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 a b s t r a c t

The landscape of modern computing systems is shifting towards architectures built by combining available ser-
vices under the “everything as a service” paradigm. These architectures are deployed on distributed cloud-edge 
infrastructures, aiming to provide innovative services to a wide range of users. However, it is crucial for these sys-
tems to address environmental sustainability concerns. This poses challenges in operating such systems in open, 
dynamic, and uncertain environments while minimizing their energy consumption. To tackle these challenges, 
we propose a decentralized service assembly approach that ensures the assembly is energetically self-sustainable 
by relying on locally harvested and stored energy. In our contribution, we introduce a general service selection 
template that enables the derivation of different selection policies. These policies guide the construction and 
maintenance of the service assembly. To evaluate their effectiveness in meeting the sustainability requirements, 
we conduct a comprehensive set of simulation experiments, providing valuable insights.

1.  Introduction

The Internet of Things (IoT) envisions digital transformation sce-
narios where data-driven and AI-augmented functionalities support hu-
man beings in their tasks, leveraging the sensing and actuating capabil-
ities provided by a multitude of low-end devices embedded in everyday 
things. This vision relies on the existence of a diffused “fabric” made of 
high-speed wired and wireless communication technologies connecting 
end-user devices to a variety of computing nodes, spanning distant cloud 
servers, proximity edge/fog nodes, and even other end-user devices (the 
so-called computing continuum (Casamayor-Pujol et al., 2023)).

The anything as a service paradigm is commonly acknowledged as 
an appropriate engineering abstraction in this context. It offers a uni-
form perspective, as mentioned in the IoT roadmap (Bouguettaya et al., 
2021). Essentially, all functionalities, even those provided by “things”, 
are abstracted and made available as services that can be connected to 
and by other services (Bouguettaya et al., 2017).

Such a scenario presents challenges for software engineering due to 
its dynamic and open-ended nature. Factors such as the distribution and 
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heterogeneity of the service ownership, the mobility of devices host-
ing the services, and the intermittent nature of communication chan-
nels contribute to the transient availability of services in a given area 
or time interval. This transient availability is more of a norm than an 
exception. Consequently, authors highlight the serendipitous nature of 
IoT-based services, as new value-added services often emerge from the 
opportunistic composition of available ones (Bouguettaya et al., 2021). 
There is a rich literature on possible approaches to address the problem 
of service composition (Razian et al., 2022). Regardless of their peculiar-
ities, the proposed approaches to service composition share a common 
underlying assumption that the selected services to be used in the com-
position of a new value-added service are fully functional. However, 
this assumption can be challenged due to the dynamic and open-ended 
nature of the scenario being considered. Each deployed service could 
indeed rely on external resources such as other existing services, code 
libraries, data sources, or reusable assets, which we refer to as its depen-
dencies. These dependencies must be resolved to ensure that the service 
is fully functional. However, the continuous availability of the needed 
resources cannot be guaranteed, as we have already pointed out in
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relation to services. Following the paradigm of anything as a service, 
these resources can be considered as services themselves, which may 
also have their own dependencies that need to be resolved and main-
tained.

Hence, to enable the emergence and smooth operation of new ser-
vices in a dynamic and open environment, such as the IoT and com-
puting continuum, it is necessary to consistently activate a dependency 
resolution process that keeps all the dependencies of the already existing 
services resolved. Adopting the terminology used, for example, in Sykes 
et al. (2011), we call the problem of designing and implementing this 
process the service assembly problem, which corresponds, as discussed in 
Section 9, to finding a solution to the following research question1:
RQ0: Given a dynamic set of services, how can we solve and maintain over 
time their dependencies using other services in the same set?

Different answers to this question can already be found in the liter-
ature. Independent of the adopted approach, giving an effective answer 
to RQ0 means, in the end, favoring the pervasive diffusion of function-
alities based on the use of information and communication technologies 
(ICT), as it facilitates the emergence and maintenance of new services 
from existing ones. In this respect, there is an increasing concern that 
the overwhelming diffusion of ICT could negatively impact the achieve-
ment of environmental sustainability objectives (Freitag et al., 2021), 
because of the increase in energy consumption and the potential rise 
in greenhouse gas emissions if the energy demand is met using brown
energy sources.

To this extent, our goal is to investigate RQ0 from the perspective 
of the energetic autonomy concept. This means that the energy required 
for the services in a specific environment should come solely from local 
renewable energy sources (such as solar or wind energy), resulting in 
zero greenhouse gas emissions. The main research question we intend 
to address in this paper can be thus stated as follows:
RQ1: How and to what extent can we answer RQ0 under the requirement 
that the assembled services fulfill the energetic autonomy constraint (as stated 
above)?

Existing answers to RQ0 are natural candidates for investigating 
RQ1. Some of these answers employ optimization techniques that typi-
cally assume global and centralized knowledge, where complete infor-
mation about the system is available. Since our focus is on decentralized 
systems, where only local knowledge is accessible, we address RQ1 by 
building on the solution proposed in Angelo et al. (2020), as its decen-
tralization, self-adaptation, and scalability features make it particularly 
suitable for the IoT scenario we are considering.

Besides RQ1, we also address another related question. The primary 
obstacle to tackling RQ1 is to guarantee service availability, even with 
the intermittent nature of green energy sources. In this respect, any solu-
tion aimed at RQ1 must rely on data about the energy demand of the ser-
vices and the availability of adequate energy (the system’s energy state). 
Collecting and updating the energy state is essential in the dynamic sce-
nario we are considering. However, this activity also contributes to the 
overall energy demand. The choice of different indicators to represent 
the energy state could have different impacts on energy consumption, 
depending on the complexity of their collection and updating process. 
Opting for simpler indicators that offer less detailed information could 
reduce the related energy consumption, but they could impede the goal 
of achieving energetic autonomy. This gives rise to an additional re-
search question, which can be stated as follows:
RQ2: Can we get insights about which energy state indicator is more suitable 
to reach a good trade-off between achieving the energetic autonomy goal and 
the complexity of keeping that indicator updated?
Paper contribution. Answering the research questions RQ1 and RQ2 
requires tackling issues, including: (𝑖) the complexity caused by the high 

1 We discuss in Section 9 the relationship of this problem with the service 
composition problem.

Table 1 
Notation.

𝐍  Set of nodes
𝑁𝑆  Node hosting the service 𝑆
𝐒  Set of services
𝐓  Set of service types
𝑇 𝑦𝑝𝑒𝑆  Type of the provided interface by 𝑆
𝐷𝑒𝑝𝑆  Set of dependencies of 𝑆
𝑃𝑟𝑜𝑣𝑆 (𝑡)  Set of services selected to resolve the dependencies of 𝑆
𝑅𝑒𝑞𝑆 (𝑡)  Set of services bound to 𝑆 to resolve one of their dependencies
𝜇𝑆,𝑑  Average number of times a service 𝑆 requires dependency 𝑑
𝐵𝑁 (𝑡)  Battery level of node 𝑁 at time slot 𝑡
𝐺𝑁 (𝑡)  Energy generated by node 𝑁 within time slot 𝑡
𝐶𝑁  Energy consumed by node 𝑁 within time slot 𝑡
𝐿𝑐𝑜𝑚𝑝𝑆 (𝑡)  Node level (local scope) computation energy consumption
𝑂𝑐𝑜𝑚𝑝
𝑆 (𝑡)  System level (global scope) computation energy consumption

𝐾𝑐𝑜𝑚𝑚
𝑆,𝑆′  Communication energy consumption for a single

 request from 𝑆 to 𝑆′

𝐿𝑐𝑜𝑚𝑚𝑆 (𝑡)  Node level (local scope) communication energy consumption
𝑂𝑐𝑜𝑚𝑚
𝑆 (𝑡)  System level (global scope) communication energy consumption

𝑔𝑒𝑓𝑆  Global (system-wide) energy footprint of service 𝑆
𝑙𝑒𝑓𝑆  Local (node level) energy footprint of service 𝑆
𝑔𝑒𝑆,𝑆′  Global energy (Eq. (10))
𝑙𝑒𝑆,𝑆′  Local energy (Eq. (11))
𝑛𝑒𝑆′  Energy level of the node hosting service 𝑆′ (Eq. (12))
𝑟𝑙𝑆′  Residual lifetime of the node hosting service 𝑆′ (Eq. (13))

number of entities distributed in the system (e.g., IoT devices, edge/fog 
computing nodes), (𝑖𝑖) the lack of global knowledge, which is typical 
in large-scale dynamic distributed systems, (𝑖𝑖𝑖) the unpredictable vari-
ability of the environment (e.g., entities joining/leaving the system or 
changing their quality attributes).

To cope with these issues, the proposed approach to answer RQ1 and 
RQ2 has the following characteristics:

1. The system is completely decentralized, eliminating the requirement 
for each participating entity to possess complete knowledge of the 
system’s state.

2. It handles on its own events such as nodes or services joining/leaving 
the system or changes in locally available energy.

Our contribution deeply refines and extends some preliminary re-
sults already presented in Caporuscio et al. (2020). With respect to that 
paper, the main extensions and refinements concern: (𝑖) the considera-
tion of a more complex reference scenario that includes intermittently 
available green energy sources and battery-powered devices and also 
the possibility of nodes hosting multiple services; (𝑖𝑖) the definition of 
a parameterized service selection policy, from which different policies 
can be easily derived to implement the service selection process; (𝑖𝑖𝑖) 
a more articulated presentation of the adopted approach and a deeper 
comparison with related works, and (𝑖𝑣) an extensive set of experiments 
referring to the more complex reference scenario we are considering.
Structure of the paper. Sections 2 and 3 lay the groundwork for this 
study by formalizing the system model and providing an overview of the 
service assembly approach we build on, respectively. Then, Section 4 in-
troduces the adopted energy model, and Section 5 defines the metrics we 
adopt to measure the self-sustainability. Section 6 defines energy-aware 
service ranking metrics, introduces a parameterized service selection 
policy, and gives details on the service selection policies that can be de-
rived from it. Section 7 shows the results of our experiments, Section 8 
discusses how these results answer RQ1 and RQ2 and possible threats to 
their validity. Section 9 reviews related works, while Section 10 outlines 
conclusions and future work.

2.  System model

Table 1 summarizes the notations used throughout the paper.
We consider a distributed system consisting of a set 𝐍 of nodes (e.g., 

IoT and computing continuum nodes), and a set 𝐒 of (software) services 
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Fig. 1. Service assembly examples: same dependencies but different bindings 
for full resolution.

deployed on these nodes, each of them implementing a specific func-
tionality. A Node 𝑁 ∈ 𝐍 hosts one or more services 𝑆 ∈ 𝐒, providing 
them with the basic computing and communication resources needed 
for their operations and supplying the required energy (see Section 4).

Given a service 𝑆 ∈ 𝐒, we denote by 𝑁𝑆 its hosting node, and 
by 𝑇 𝑦𝑝𝑒𝑆 ∈ 𝐓 the type of the functionality it offers (provided inter-
face). We assume that, in general, 𝐒 includes multiple services hav-
ing the same type (functionally equivalent services), but different non-
functional characteristics.

A service 𝑆 ∈ 𝐒 generally requires functionalities offered by other 
resources to carry out its own task. As already pointed out in the In-
troduction, we adopt a unifying service-oriented perspective and model 
each of these resources as a service 𝑆′ ∈ 𝐒. We denote by 𝐷𝑒𝑝𝑆 ⊆ 𝐓 the 
overall set of dependencies needed by 𝑆. In case 𝐷𝑒𝑝𝑆 = ∅, this means 
that 𝑆 needs only the basic computing and communication resources of 
its hosting node 𝑁𝑆 ∈ 𝐍 to provide its functionality.

Given 𝐷𝑒𝑝𝑆 , 𝑃𝑟𝑜𝑣𝑆 (𝑡) ⊆ 𝐒 denotes the set of services to which 𝑆 is 
bound at time 𝑡 to resolve such dependencies (i.e., the Providers of 𝑆). For 
the sake of symmetry, as a given service 𝑆 can be used by other services 
to fulfill their dependencies, 𝑅𝑒𝑞𝑆 (𝑡) ⊆ 𝐒 denotes the set of services using 
𝑆 at time 𝑡 (Requesters of 𝑆).

We assume that 𝐷𝑒𝑝𝑆 is fixed for each service and known in ad-
vance. We remark that we have included the time index 𝑡 to 𝑃𝑟𝑜𝑣𝑆 (𝑡)
and 𝑅𝑒𝑞𝑆 (𝑡) to evidence that they represent dynamic state information, 
which can change over time. To this end, we adopt a discrete-time model 
indexed by 𝑡 = 0, 1,…, where we conventionally assume that the length 
of a time slot is 𝛿 = 1 measured in some suitable time unit.

A service is said to be fully resolved (and hence fully functional) when 
all its dependencies are resolved, that is, when for all 𝑑 ∈ 𝐷𝑒𝑝𝑆 there ex-
ists a fully resolved service 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡) whose type matches 𝑑 (Razian 
et al., 2022; Paolucci et al., 2002). In the scenario we are considering, 
the dependencies in 𝐷𝑒𝑝𝑆 are dynamically resolved at runtime.

The overall assembly of services resulting from the bindings between 
each service 𝑆 and other services used to resolve its dependencies can 
be represented as a directed graph 𝐆(𝑡) = (𝐒,𝐄(𝑡)), where 𝐒 represents 
the graph nodes and 𝐄(𝑡) ⊆ 𝐒 × 𝐒 is the set of graph edges. Specifically, 
a directed edge (𝑆𝑖, 𝑆𝑗 ) ∈ 𝐄(𝑡) denotes that, at time 𝑡, 𝑆𝑖 is using 𝑆𝑗 to 
resolve one of its dependencies (i.e., 𝑆𝑗 ∈ 𝑃𝑟𝑜𝑣𝑆𝑖 (𝑡)). An assembly of 
services represented by a graph 𝐆(𝑡) is fully resolved if for all 𝑆 ∈ 𝐒, 𝑆 is 
fully resolved at time 𝑡.

Fig. 1 shows an assembly of services (including services 𝑆1 - 𝑆6) that 
illustrates the actual deployment of services on nodes 𝑁1, 𝑁2, 𝑁3 and 
𝑁4. The figure reports two scenarios, Fig. 1a and b, where service de-
pendencies are (fully) resolved in different ways. The set of types and 
dependencies for this example is reported in Table 2, where for each sce-
nario we show the sets 𝑃𝑟𝑜𝑣𝑆 (𝑡) and 𝑅𝑒𝑞𝑆 (𝑡). Fig. 1 also shows the com-
puting and communication resources (𝑐𝑜𝑚𝑝𝑖 and 𝑐𝑜𝑚𝑚𝑖) of each node 
𝑁𝑖, used by each service hosted by that node for its operations.

Table 2 
Service assembly: Types and dependencies.
 S  Type  Dep  Prov  Req  Prov  Req

 Scenario 1  Scenario 2
𝑆1 𝑇1 𝑇2 𝑆2  – 𝑆2  –
𝑆2 𝑇2 𝑇3 𝑆4 𝑆1 𝑆6 𝑆1
𝑆3 𝑇4  –  – 𝑆4  – 𝑆4
𝑆4 𝑇3 𝑇4 𝑆3 𝑆2 𝑆3  –
𝑆5 𝑇4  –  – 𝑆6  – 𝑆6
𝑆6 𝑇3 𝑇4 𝑆5  – 𝑆5 𝑆2

From the model presented in this Section, it follows that building 
and maintaining over time a graph 𝐆(𝑡) = (𝐒,𝐄(𝑡)), where each 𝑆 ∈ 𝐒 is 
fully resolved, means providing an effective answer to the RQ0 stated in 
the Introduction. In the next section, to make the paper self-contained, 
we outline the main elements of a decentralized approach presented in 
Angelo et al. (2020), which achieves this goal. This procedure provides 
the basis for the approach we propose to get an answer to RQ1 and 
RQ2, which are the focus of this paper. This approach is discussed in 
the following Sections 4–8.

3.  Service assembly

The fully decentralized service assembly approach summarized in 
this section drives the system modeled in Section 2 toward the construc-
tion and maintenance of a fully resolved service assembly (RQ0). The 
approach is based on previous work (Angelo et al., 2020). However, for 
the sake of readability, we summarize it herein.

The proposed approach adheres to the Service Statelessness design 
principle (Erl, 2005), and services do not maintain the interaction state 
between service invocations Hence, we assume that the state of a given 
interaction (𝑆𝑖, 𝑆𝑗 ) ∈ 𝐄(𝑡) between 𝑆𝑖 and 𝑆𝑗 is kept by 𝑆𝑖, and requests 
include all information necessary for their processing. Service stateless-
ness improves (𝑖) decoupling of interacting services, (𝑖𝑖) flexibility of the 
model, since it allows for easily rearranging the assembly at runtime, 
and (𝑖𝑖𝑖) scalability, by exploiting service caching and replication.

Referring to Fig. 2, the core idea underpinning this approach is to 
deploy at each node 𝑁𝑖 ∈ 𝐍 a self-adaptation mechanism architected 
according to the well-known MAPE-K model (Weyns et al., 2013), with 
Monitor (𝑀), Analyze (𝐴), Plan (𝑃 ) and Execute (𝐸) components, plus 
a Knowledge (𝐾) component that maintains relevant information about 
the Managed System (e.g., service type, energy consumption, quality of 
service).

To collectively act as a Managing System for the Managed System com-
posed of the nodes and the services deployed on them (see Fig. 2), the 
distinct MAPE-K loops should coordinate their activities. To this end, 
we adhere to the Information Sharing Pattern (Weyns et al., 2013), where 
each MAPE-K loop requires information from other nodes in the system 
to drive its self-adaptation activities.

Continuing with Fig. 2, each service (e.g., 𝑆1) exposes its depen-
dencies through an invoke interface and provides a probe interface to 
support the monitoring activities. The MAPE-K activities are carried out 
at each node by three different components, namely 𝑀 (Monitor), 𝐴𝑃
(Analyze and Plan), and 𝐸 (Execute).

The 𝑀 (Monitor) component is responsible for the information dis-
semination activity. This activity allows for the update of the knowl-
edge base (𝐾) at each node 𝑁 , thanks to the interaction with sibling 𝑀
components hosted by the other nodes in the system. In turn, the 𝐴𝑃
component locally implements at each node the analysis and planning 
activities aimed at (𝑖) analyzing the information kept by the knowledge 
𝐾 and (𝑖𝑖) selecting the services of interest that resolve the dependencies 
of the local services.

The dissemination activity performed by the 𝑀 components is 
based on a classical advertisement schema (Meshkova et al., 2008), 
implemented through a Publish/Subscribe mechanism, which has been 
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Fig. 2. Node architecture.

proven to be effective in pervasive computing environments (Nast et al., 
2023). We refer to Angelo et al. (2020) for details on the adopted ad-
vertisement schema.

Based on the information disseminated in this way, the 𝐴𝑃  compo-
nent performs its operations, implemented by the Check(), Update() 
and Select() functions shown in Fig. 2. Some details of these functions 
are outlined below. As shown in Algorithms 1 and 2, the key element 
of both Update() and Select() is the 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛) function, fully 
described in Section 6, whose goal is to drive the operations of the func-
tions Update() and Select() to properly address RQ1 and RQ2.

Update(). The Update() function checks each message 𝐦 received 
through the dissemination activity, to see whether an advertised service 
𝑆′ could be used to resolve some dependency 𝑑 ∈ 𝐷𝑒𝑝𝑆 for any 𝑆 ∈
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁  (the set of services hosted by a node 𝑁). In the positive 
case, the function Update() considers 𝑆′ as a possible member of the set 
𝐶𝑎𝑛𝑑𝑆,𝑑 that collects the “best” known 𝐻 or less candidates (according 
to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)) to solve the dependency 𝑑. The upper bound 𝐻
on the cardinality of 𝐶𝑎𝑛𝑑𝑆,𝑑 is a system parameter, set to a suitable 
value to limit memory occupancy. Algorithm 1 outlines the Update()
operations.

Algorithm 1 Function Update().
// Input parameters

1: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁 ;m;𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)
// Algorithm

2: for all 𝑆 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁 do
3:  for all 𝑑 ∈ 𝐷𝑒𝑝𝑆 do
4:  for all 𝑆′ ∈ m do
5:  if 𝑇 𝑦𝑝𝑒𝑆′ = 𝑑 then
6:  𝐶𝑎𝑛𝑑𝑆,𝑑 ← 𝐶𝑎𝑛𝑑𝑆,𝑑 ∪ {𝑆′}
7:  if |𝐶𝑎𝑛𝑑𝑆,𝑑 | ≤ 𝐻 then
8:  continue
9:  else // Drop the worst service to keep |𝐶𝑎𝑛𝑑𝑆,𝑑 | ≤ 𝐻
10:  𝑆∗ ← “worst” 𝑆 ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 according to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)
11:  𝐶𝑎𝑛𝑑𝑆,𝑑 ← 𝐶𝑎𝑛𝑑𝑆,𝑑 ⧵ {𝑆∗}

Check() and Select(). The Check() function analyzes the knowledge 
𝐾 (i.e., the set of service candidates 𝐶𝑎𝑛𝑑𝑆,𝑑 for each 𝑆 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁
and 𝑑 ∈ 𝐷𝑒𝑝𝑆 ). This may happen proactively (e.g., every Δ𝑡 time unit) or 
reactively (e.g., when values in the monitored data are detected outside 
predefined tolerance windows). Whenever the analysis performed by 
the Check() function notices a significant variation in 𝐾, then a new 
plan is required by calling the Select() function.

The Select() function selects from the set 𝐶𝑎𝑛𝑑𝑆,𝑑 the “best” known 
service (according to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)) to resolve a dependency 𝑑, for 

any 𝑑 ∈ 𝐷𝑒𝑝𝑆 and for any 𝑆 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁 . Algorithm 2 outlines the 
Select() operations.

Algorithm 2 Function Select().
// Input parameters

1: 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)
// Algorithm

2: for all 𝑆 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑜𝑙𝑁 do
3:  for all 𝑑 ∈ 𝐷𝑒𝑝𝑆 do
4:  𝑆∗ ← “best” 𝑆 ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 according to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)
5:  use 𝑆∗ to resolve dependency 𝑑 (add 𝑆∗ to 𝑃𝑟𝑜𝑣𝑆 (𝑡))

4.  Energy model

In this section, we introduce the model and the associated notation 
that we will use to characterize the relevant energy-related information 
for the system we are considering. They integrate the model and nota-
tion introduced in Section 2. We will use them in Section 5 to define the 
metrics measuring the system’s energetic autonomy, and in Section 6 to 
define the procedure that will drive the assembly process described in 
Section 3 towards achieving the goal of energetic autonomy.

We assume that the computing and communication resources associ-
ated with each node are the only direct sources of energy consumption, 
while the energy consumption of services in 𝐒 is related to the use they 
directly or indirectly make of these resources.

4.1.  Node energy model

The computing and communication resources present in each node 
draw the energy required for their operations from a local “green” 
source (e.g. solar or wind generator), whose production rate can vary 
over time or be temporarily null. In case of insufficient or null energy 
production, these resources can draw energy from a locally available 
battery, which is recharged by the locally produced excess energy. As 
we are interested in investigating the ability to be energetically au-
tonomous, we do not consider the possible connection of the system 
nodes to a global power grid that could compensate for the lack of local 
energy. We use the following notation to characterize the energetic state 
of a node 𝑁 ∈ 𝐍:

• 𝐵𝑁 (𝑡): battery level at time slot 𝑡
• 𝐺𝑁 (𝑡): energy generated within time slot 𝑡
• 𝐶𝑁 (𝑡): energy consumed within time slot 𝑡

𝐺𝑁 (𝑡) is an uncontrollable parameter whose value can change over time, 
as is typical for renewable energy sources (see Appendix A). The value of 
𝐶𝑁 (𝑡) and 𝐵𝑁 (𝑡) instead depends on the activities of the services hosted 
by 𝑁 , and hence depends on how those services are assembled with 
other services. We assume that the values of 𝐺𝑁 (𝑡), 𝐶𝑁 (𝑡) and 𝐵𝑁 (𝑡) are 
estimated by the monitor component at each node 𝑁 ∈ 𝐍.

4.2.  Service energy model

When a service request arrives at a service 𝑆 ∈ 𝐒, 𝑆 starts execut-
ing its internal operations, which consume energy because of the use 
of the computing and communication resources of its hosting node 𝑁𝑆 . 
Besides this, the request arrived at 𝑆 can generally trigger a flow of 
cascading requests addressed to services in 𝑃𝑟𝑜𝑣𝑆 (𝑡), which in turn will 
cause additional energy consumption by the use of the computing and 
communication resources of their hosting nodes (which could include 
𝑁𝑆 , in case of co-located services).

As a first step in the definition of a model of the energy consumption 
for service 𝑆, we separately characterize in the following paragraphs 
the energy consumption caused, respectively, by the computation and 
the communication activities triggered by a single request addressed to 
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Fig. 3. Visualization of the computation energy consumption indexes for the service 𝑆1 in an example scenario (see shaded boxes).

𝑆. In both cases, we will give two different characterizations that differ 
concerning the extent to which they take into account the cascading 
process of requests addressed to services in 𝑃𝑟𝑜𝑣𝑆 (𝑡).

Computation energy. Let us denote by 𝐼𝑐𝑜𝑚𝑝𝑆  the average individual
computation energy consumption of 𝑆, i.e., the energy directly con-
sumed by 𝑆 using the local computing resource of the hosting node 
𝑁𝑆 for its internal operations. Hence, 𝐼𝑐𝑜𝑚𝑝𝑆  does not consider at all the 
indirectly consumed computation energy caused by the use of services 
in 𝑃𝑟𝑜𝑣𝑆 (𝑡). Moreover, for each 𝑑 ∈ 𝐷𝑒𝑝𝑆 , let us denote by 𝜇𝑆,𝑑 the av-
erage number of times 𝑆 requires the dependency 𝑑 to fulfill a request 
it has received. For both 𝐼𝑐𝑜𝑚𝑝𝑆  and 𝜇𝑆,𝑑 , we assume that their value is 
known (e.g., through a monitoring activity locally performed at the node 
hosting 𝑆).

We now introduce the following two definitions:
• 𝑂𝑐𝑜𝑚𝑝𝑆 (𝑡): overall (system-wide) average computation energy con-
sumption of a service 𝑆, which is equal to 𝐼𝑐𝑜𝑚𝑝𝑆  plus the compu-
tation energy indirectly consumed by 𝑆 because of its use of services 
𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡), wherever they are located in the system:
𝑂𝑐𝑜𝑚𝑝𝑆 (𝑡) = 𝐼𝑐𝑜𝑚𝑝𝑆 +

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅ 𝑂

𝑐𝑜𝑚𝑝
𝑆′ (𝑡) (1)

• 𝐿𝑐𝑜𝑚𝑝𝑆 (𝑡): local (node level) average computation energy consumption 
of a service 𝑆, which is equal to 𝐼𝑐𝑜𝑚𝑝𝑆  plus the average computation 
energy indirectly consumed by 𝑆 because of its use of services 𝑆′ ∈
𝑃𝑟𝑜𝑣𝑆 (𝑡), but limited to services co-located with it on the same node:
𝐿𝑐𝑜𝑚𝑝𝑆 (𝑡) = 𝐼𝑐𝑜𝑚𝑝𝑆 +

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
∧𝑁𝑆′=𝑁𝑆

𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅ 𝐿
𝑐𝑜𝑚𝑝
𝑆′ (𝑡) (2)

Fig. 3 shows, with a simple deployment scenario, the set of nodes, 
software services and computing services involved in the definition 
of each computation energy consumption index introduced above.
Communication energy. Let us denote by 𝐾𝑐𝑜𝑚𝑚

𝑆,𝑆′  the average energy di-
rectly consumed by a service 𝑆 using the local communication resources 
of 𝑁𝑆 for a single interaction between 𝑆 and service 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡) (this 
cost is considered negligible and conventionally assumed to be zero 
when 𝑆 and 𝑆′ are hosted by the same node). Also in this case, we as-
sume that the 𝐾𝑐𝑜𝑚𝑚

𝑆,𝑆′  value is known (e.g., through a monitoring activity 
locally performed at the node hosting 𝑆).

We now introduce the following two definitions:
• 𝑂𝑐𝑜𝑚𝑚𝑆 (𝑡): overall (system-wide) average communication energy con-
sumption caused by a single request addressed to 𝑆, which is equal to 
the overall communication energy directly consumed at 𝑁𝑆 plus the 
communication energy consumed by services 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡), wher-
ever they are located: 
𝑂𝑐𝑜𝑚𝑚
𝑆 (𝑡) =

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
∧𝑁𝑆′≠𝑁𝑆

𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅𝐾
𝑐𝑜𝑚𝑚
𝑆,𝑆′ +

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅ 𝑂

𝑐𝑜𝑚𝑚
𝑆′ (𝑡) (3)

• 𝐿𝑐𝑜𝑚𝑚𝑆 (𝑡): local (node level) average communication energy consump-
tion, which is equal to the overall communication energy directly 
consumed at 𝑁𝑆 plus the communication energy consumed by ser-
vices 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡) co-located with 𝑆: 
𝐿𝑐𝑜𝑚𝑚𝑆 (𝑡) =

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
∧𝑁𝑆′≠𝑁𝑆

𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅𝐾
𝑐𝑜𝑚𝑚
𝑆,𝑆′ +

∑

𝑆′∈𝑃𝑟𝑜𝑣𝑆 (𝑡)
∧𝑁𝑆′=𝑁𝑆

𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅ 𝐿
𝑐𝑜𝑚𝑚
𝑆′ (𝑡) (4)

Based on the definitions above, we now give two characterizations, 
which differ in their scope, of the energy footprint of a service 𝑆 ∈ 𝐒, 
defined as the overall average energy consumption caused by a single 
request addressed to 𝑆:

• global (system-wide) energy footprint, which includes the energy di-
rectly consumed by 𝑆 and the energy indirectly consumed by 𝑆 be-
cause of its use of services 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡), wherever they are located 
in the system:
𝑔𝑒𝑓𝑆 (𝑡) = 𝑂𝑐𝑜𝑚𝑝𝑆 (𝑡) + 𝑂𝑐𝑜𝑚𝑚𝑆 (𝑡) (5)

• local (node level) energy footprint, which includes the energy directly 
consumed by 𝑆 and the energy indirectly consumed because of its 
use of services 𝑆′ ∈ 𝑃𝑟𝑜𝑣𝑆 (𝑡), but limited to services co-located with 
it on the same node:
𝑙𝑒𝑓𝑆 (𝑡) = 𝐿𝑐𝑜𝑚𝑝𝑆 (𝑡) + 𝐿𝑐𝑜𝑚𝑚𝑆 (𝑡) (6)

We remark that, based on their definitions, 𝑙𝑒𝑓𝑆 (𝑡) requires only a 
local monitoring activity for its estimation, limited to the node hosting 𝑆, 
while 𝑔𝑒𝑓𝑆 (𝑡) requires the acquisition of information from other nodes.

5.  Energetic autonomy metrics

We present the metrics that we use to measure the extent to which a 
given assembly of services achieves the energetic autonomy goal defined 
in the Introduction. We will use these metrics to assess the effectiveness 
of answering RQ1 of the management policies introduced in the next 
Section 6. In the definition of these metrics, our perspective is that the 
assembly of services achieves the goal of energetic autonomy as much 
as it can keep “alive” the nodes on which it is deployed, that is, with 
sufficient energy to support the operations of the services. We point 
out that this required energy includes not only the energy spent for the 
operations that implement the service functionality, but also the energy 
spent in complementary operations like service setup and shutdown.

As a first step, we define the following index that expresses the in-
stantaneous energy-based node availability. We point out that it is de-
fined from an energy perspective only, in the sense that a node is consid-
ered available if it can satisfy the energy demand of the services it hosts. 
Other possible causes of (un)availability are ignored in this definition:

• 𝐴𝑁 (𝑡), 𝑁 ∈ 𝐍, 𝑡 = 0, 1,…: node instantaneous availability, defined as:

𝐴𝑁 (𝑡) =

{

1 if 𝐵𝑁 (𝑡 − 1) + 𝐺𝑁 (𝑡) − 𝐶𝑁 (𝑡) > 0
0 otherwise

(7)

Based on this definition, we now define the following energy-related 
system-wide index:

• 𝐴𝑆𝑌 𝑆 (𝑡), 𝑡 = 0, 1,…: instantaneous system availability, expressing the 
fraction of nodes in 𝐍 that are available at time 𝑡, defined as:

𝐴𝑆𝑌 𝑆 (𝑡) =
∑

𝑁∈N 𝐴𝑁 (𝑡)
|N|

(8)

𝐴𝑆𝑌 𝑆 (𝑡) is a time-dependent index that can be used to trace how 
the availability of the system evolves over time as a consequence of 
variations in its energy state.
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We also define the following time-independent index, which can be 
used as a figure of merit summarizing in a single number the system’s 
energetic autonomy:

• 𝐴𝑆𝑌 𝑆 : steady-state system availability:

𝐴𝑆𝑌 𝑆 = lim
𝑡→∞

∑𝑡
𝜏=0 𝐴𝑆𝑌 𝑆 (𝜏)

𝑡
(9)

From (8) and (9) it follows that 0 ≤ 𝐴𝑆𝑌 𝑆 (𝑡), 𝐴𝑆𝑌 𝑆 ≤ 1. From the en-
ergetic autonomy perspective, the optimal scenario corresponds to the 
case where these indices are equal to one, as it indicates that the system 
is able to keep its nodes fully operational, relying only on locally avail-
able/produced (green) energy, without resorting to an external power 
grid. Keeping these indices as close as possible to this optimal value 
thus represents the energetic autonomy goal we intend to pursue with 
the approach presented in the following sections.

6.  Service ranking and selection

In this section, we first define (Section 6.1) the metrics that we 
will use to rank functionally equivalent services with respect to their 
suitability in meeting the energetic autonomy goal. Then, we present 
(Section 6.2) a parameterized selection policy that, based on the de-
fined metrics, selects one service within a given set. Actually, this pol-
icy defines a template for generating a family of possible service se-
lection policies. Each policy in this family can be instantiated by the 
assignment of specific values to the template parameters. This guar-
antees a high flexibility in the exploration of different policies. We 
will exploit this flexibility in the experiments discussed in Section 7, 
where we assess the effectiveness of different policies in answering
RQ1 and RQ2.

6.1.  Energy-aware service ranking metrics

Given a service 𝑆 and a dependency 𝑑 ∈ 𝐷𝑒𝑝𝑆 , we recall that the as-
sembly procedure outlined in Section 3 keeps updated at the node host-
ing 𝑆 a set 𝐶𝑎𝑛𝑑𝑆,𝑑 , which collects functionally equivalent candidate 
services the node has become aware of to resolve 𝑑. The goal of the met-
rics we define here is to rank the services belonging to 𝐶𝑎𝑛𝑑𝑆,𝑑 , in order 
to drive the selection of one of them as a member of the set 𝑃𝑟𝑜𝑣𝑆 (𝑡) (this 
selection is performed by the Select() function introduced in Section 3). 
The ultimate aim is to favor, thanks to this selection, the achievement 
of the energetic autonomy objective (RQ1).

We recall from the Introduction that we also intend to address the 
research question RQ2, which concerns getting insights about possi-
ble trade-offs between the effectiveness of the assembly process and 
the “complexity” of the indicators (metrics) used to drive its opera-
tions (with respect to the energetic autonomy goal). To this end, we 
define four different energy-aware ranking metrics with different com-
plexity characteristics, as discussed at the end of this subsection. We 
classify these metrics into two groups. The first group includes two 
service-based metrics that rank services based on their energy footprint, 
as defined in Section 4.2. The rationale for these two metrics is that 
a service 𝑆′ should be selected to resolve a dependency of a service 
𝑆 on the basis of the impact that its operations have on the overall 
energy consumption (as seen from the perspective of 𝑆, i.e., also tak-
ing into account the communication cost between 𝑆 and 𝑆′). The sec-
ond group includes two node-based metrics that instead rank services 
by considering the “energy wealth” of the node hosting them. The ra-
tionale for this second set of metrics is that a service should be se-
lected, taking into account the amount of available energy it can rely 
on for its operations. As an example, in comparison with the metrics in 
the former set, these latter metrics could lead to prefer a service that 
consumes more energy (greater energy footprint), if it is hosted by a 
node with a fully charged battery and/or a higher energy generation
rate.

Service-based metrics.

Table 3 
Overhead for energy-aware service rank-
ing metrics.
 ranking  monitoring  dissemination
 metric  overhead  overhead
𝑔𝑒𝑆,𝑆′ (𝑡) ℎ𝑖𝑔ℎ ℎ𝑖𝑔ℎ
𝑙𝑒𝑆,𝑆′ (𝑡) ℎ𝑖𝑔ℎ 𝑙𝑜𝑤
𝑛𝑒𝑆′ (𝑡) 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ
𝑟𝑙𝑆′ (𝑡) 𝑙𝑜𝑤 ℎ𝑖𝑔ℎ

• global energy metric 𝑔𝑒𝑆,𝑆′ (𝑡): this metric ranks 𝑆′ ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 accord-
ing to its system-wide energy footprint 𝑔𝑒𝑓𝑆′ (𝑡), defined by Eq. (5), 
plus the communication cost between 𝑆 and 𝑆′:

𝑔𝑒𝑆,𝑆′ (𝑡) = 𝑔𝑒𝑓𝑆′ (𝑡) + 𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅𝐾
𝑐𝑜𝑚𝑚
𝑆,𝑆′ (10)

• local energy metric 𝑙𝑒𝑆,𝑆′ (𝑡): this metric has a more limited scope than 
𝑔𝑒𝑆,𝑆′ (𝑡), as it ranks 𝑆′ ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 according only to its local energy 
footprint 𝑙𝑒𝑓𝑆′ (𝑡) (Eq. (6) if 𝑆 and 𝑆′ are co-located, otherwise ac-
cording to the communication cost between 𝑆 and 𝑆′:

𝑙𝑒𝑆,𝑆′ (𝑡) = 𝑙𝑒𝑓𝑆′ (𝑡) ⋅ 𝑈{𝑁𝑆′=𝑁𝑆}

+ 𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′ ⋅𝐾
𝑐𝑜𝑚𝑚
𝑆,𝑆′ ⋅ 𝑈{𝑁𝑆′≠𝑁𝑆}

(11)

where 𝑈{𝑐𝑜𝑛𝑑} is the indicator function that holds 1 when condition 
𝑐𝑜𝑛𝑑 is true, and 0 otherwise.

Node-based metrics.
• node energy metric 𝑛𝑒𝑆′ (𝑡): this metric ranks 𝑆′ ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 according 
to the current battery level of the node that hosts it (𝑁𝑆′ ), defined 
as:

𝑛𝑒𝑆′ (𝑡) = 𝐵𝑁𝑆′ (𝑡) (12)

• residual lifetime metric 𝑟𝑙𝑆′ (𝑡): this metric ranks 𝑆′ ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 accord-
ing to the currently estimated residual lifetime of 𝑁𝑆′ ; the estimate 
is based on the current values of the node battery level and energy 
production/consumption rate:

𝑟𝑙𝑆′ (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝐵𝑁𝑆′ (𝑡)

𝐶𝑁𝑆′ (𝑡)−𝐺𝑁𝑆′ (𝑡)
if 𝐶𝑁𝑆′ (𝑡) − 𝐺𝑁𝑆′ (𝑡) > 0

∞ otherwise
(13)

Discussion. We evidence some characteristics of the defined metrics:
(i) 𝑔𝑒𝑆,𝑆′ (𝑡) and 𝑙𝑒𝑆,𝑆′ (𝑡) are “lower-is-better” metrics, while 𝑛𝑒𝑆′ (𝑡)

and 𝑟𝑙𝑆′ (𝑡) are “higher-is-better” metrics;
(ii) 𝑛𝑒𝑆′ (𝑡) and 𝑟𝑙𝑆′ (𝑡) can be considered as “simple” metrics with 

respect to the information needed for their measurement, as they re-
quire the collection of relatively easy-to-measure coarse-grained physi-
cal quantities (battery level, charge/discharge rate). Comparatively, the 
𝑔𝑒𝑆,𝑆′ (𝑡) and 𝑙𝑒𝑆,𝑆′ (𝑡) metrics are more complex, as they require finer-
grained measurements (computation and communication energy con-
sumed by the activation of each service).

(iii) when 𝑆 and 𝑆′ are not colocated, the estimation at the node 
hosting 𝑆 of the metrics 𝑔𝑒𝑆,𝑆′ (𝑡), 𝑛𝑒𝑆′ (𝑡) and 𝑟𝑙𝑆′ (𝑡) requires the acqui-
sition of information disseminated by other nodes; 𝑙𝑒𝑆,𝑆′ (𝑡) is instead 
the only metric whose estimation at the node hosting 𝑆 requires only 
locally monitored information (i.e., 𝑙𝑒𝑓𝑆′ (𝑡), 𝜇𝑆,𝑇 𝑦𝑝𝑒𝑆′  and 𝐾

𝑐𝑜𝑚𝑚
𝑆,𝑆′ , see 

Section 4.2), independently of whether 𝑆 and 𝑆′ are colocated or not. 
Hence, in terms of the communication overhead, 𝑙𝑒𝑆,𝑆′ (𝑡) is a “simpler” 
metric than 𝑔𝑒𝑆,𝑆′ (𝑡), 𝑛𝑒𝑆′ (𝑡) and 𝑟𝑙𝑆′ (𝑡).

Table 3 summarizes the characteristics discussed above of the four 
considered metrics and gives a qualitative assessment of the monitoring 
and dissemination overhead caused by the MAPE-K loop (see Fig. 2). 
It is worth noticing that we consider the computation overhead of the 
analysis and planning activities negligible, because it only consists of 
updating the efficiency estimator of the policies discussed in the next 
section.
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6.2.  Parameterized service selection policy

The functions Update() and Select() introduced in Section 3 rely 
on the parameterized selection policy described in this section. It is 
based on a generalization and adaptation of a method originally pro-
posed in Schaerf et al. (1995) for a scenario of decentralized load bal-
ancing in a distributed system with load-dependent QoS. The key ele-
ments of our policy are: (𝑖) the forecasting method used to update the 
value of the adopted service ranking metric and (𝑖𝑖) the selection crite-
rion used to select a service within a given set of candidates, based on 
the ranking value associated with each of them. We denote this pol-
icy by 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛), where 𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛 are the policy parameters. 
In the following two paragraphs, we explain in detail their role in the 
definition of the two key policy elements.

Forecasting method. We denote by 𝑟𝑎𝑛𝑘 the ranking metric used 
to drive the selection process; in our setting, we have 𝑟𝑎𝑛𝑘 ∈
{𝑔𝑒𝑆,𝑆′ , 𝑙𝑒𝑆,𝑆′ , 𝑛𝑒𝑆′ , 𝑟𝑙𝑆′}. The values of these metrics are kept up to date 
at each node, thanks to data locally monitored or obtained through the 
dissemination procedure described in Section 3. The update procedure 
is based on the simple exponential smoothing method (Hyndman and 
Athanasopoulos, 2021):
𝑟𝑎𝑛𝑘𝑛𝑒𝑤 = 𝛼 ⋅ 𝑟𝑎𝑛𝑘𝑙𝑎𝑠𝑡 + (1 − 𝛼) ⋅ 𝑟𝑎𝑛𝑘𝑜𝑙𝑑 (14)

where 𝑟𝑎𝑛𝑘𝑛𝑒𝑤 is the new forecast for the value of 𝑟𝑎𝑛𝑘, 𝑟𝑎𝑛𝑘𝑜𝑙𝑑 is the 
previous forecast and 𝑟𝑎𝑛𝑘𝑙𝑎𝑠𝑡 is the last collected value (by direct obser-
vation or calculated on the basis of disseminated data), while 𝛼 is the 
smoothing parameter, with 0 < 𝛼 ≤ 1.

When 𝛼 = 1, Eq. (14) defines a “memoryless” forecasting method 
based only on the last observed value; otherwise, 𝛼 values increasingly 
close to zero give more and more weight to the accumulated past expe-
rience (for example, if 𝛼 is set equal to 1∕𝑘, where 𝑘 is the number of 
collected observations for 𝑟𝑎𝑛𝑘 up to the present time, Eq. (14) corre-
sponds to the sample mean of 𝑟𝑎𝑛𝑘 that, by definition, gives increasingly 
more weight to past observed values).

Selection criterion. The goal of this criterion is to pick a single service 
within the set 𝐶𝑎𝑛𝑑𝑆,𝑑 of candidates. We adopt a probabilistic method 
to this end that depends as follows on the parameters ℎ and 𝑠𝑔𝑛, where 
ℎ ∈ ℕ and 𝑠𝑔𝑛 ∈ {−1,+1}. Given a service 𝑆′ ∈ 𝐶𝑎𝑛𝑑𝑆,𝑑 and its ranking 
value 𝑟𝑎𝑛𝑘, we define the following function:
𝑝(𝑆′) = 𝑟𝑎𝑛𝑘(𝑠𝑔𝑛)⋅ℎ (15)

where 𝑠𝑔𝑛 = +1 if 𝑟𝑎𝑛𝑘 is a “higher-is-better” metric, while 𝑠𝑔𝑛 = −1 if 
it is a “lower-is-better” metric. Then, we normalize 𝑝(𝑆′) in the interval 
[0, 1]:

𝑝(𝑆′) =
𝑝(𝑆′)
𝜓

(16)

where 𝜓 =
∑

𝑆′∈𝐶𝑎𝑛𝑑𝑆,𝑑 𝑝(𝑆
′) is a normalization factor. Finally, we in-

terpret 𝑝(𝑆′) as a selection probability associated with 𝑆′ and use it to 
probabilistically select a service within 𝐶𝑎𝑛𝑑𝑆,𝑑 .

According to Eqs. (15) and (16), different values of parameter ℎ lead 
to different probabilistic selection policies:

• ℎ = 0: random policy that selects with uniform probability any ser-
vice in 𝐶𝑎𝑛𝑑𝑆,𝑑 . We will use this policy as a baseline policy against 
which we will compare the other ones that we will consider;

• ℎ = 1: weighted fair policy that selects a service in 𝐶𝑎𝑛𝑑𝑆,𝑑 with prob-
ability proportional to the rank associated with that service through 
metric 𝑟𝑎𝑛𝑘;

• ℎ ≥ 2: biased-towards-best policy that, for increasing values of ℎ, se-
lects a service in the set 𝐶𝑎𝑛𝑑𝑆,𝑑 with probability increasingly biased 
towards the “best” service in that set, according to metric 𝑟𝑎𝑛𝑘.

• For ℎ → ∞ we obtain a greedy policy that always selects the “best” 
service, i.e., the service with the maximum (minimum) 𝑟𝑎𝑛𝑘 value 
within the set 𝐶𝑎𝑛𝑑𝑆,𝑑 (as noted in Schaerf et al. (1995), a value 
ℎ ≥ 20 is sufficient to get a greedy behavior).

Fig. 4. Assembly decisions driven by different service ranking metrics.

It should be noted that, for increasing values of ℎ, the selection pol-
icy increases its degree of exploitation with respect to exploration. The 
dualism between exploration and exploitation in learning techniques is 
an important aspect that has long been investigated (Ishii et al., 2002). 
A high degree of exploration allows algorithms to rapidly traverse the 
solution space in search of the best achievable result to the detriment 
of the short-term solution’s effectiveness. The extreme case of an explo-
rative algorithm is the random policy. On the other hand, a high level 
of exploitation favors the best-known solution at the disadvantage of 
missing better candidates from an unknown set. In most cases, it is not 
trivial to establish the right balance between exploration and exploita-
tion in view of the complexity of the task these techniques are required 
to solve.

An example of the different selection decisions driven by the rank-
ing metrics we have defined is shown in Fig. 4, which depicts the same 
service assembly scenario already shown in Fig. 1 (the service types 
and dependencies are those reported in Table 2). We use a “color code” 
to graphically illustrate an example of the possible relative values of 
service-based and node-based metrics, where in both cases a darker tone 
is intended to represent a higher value of the metric: in particular, (i) 
different orange tones represent different values of a node-based met-
ric (e.g., the node energy metric 𝑛𝑒𝑆′ (𝑡) defined by Eq. (12); (ii) different 
blues tones represent different values of a service-based metric (e.g., the 
global energy metric 𝑔𝑒𝑆,𝑆′ (𝑡) defined by Eq. (10). Consider the two func-
tionally equivalent services 𝑆4 and 𝑆6: they both offer a service of type 
𝑇3 and hence any of them could be used to solve the dependency of 𝑆2. 
If we rank these services according to a service-based metric, then 𝑆4
is better than 𝑆6, from the perspective of a service requesting a type 𝑇3
service: the lighter blue tone of 𝑆4 indicates that each invocation of 𝑆4
causes a lower energy consumption; this, hopefully, should reduce the 
possibility that requests made by 𝑆2 for a 𝑇3 service leads some node 
to run out of energy, thus becoming unavailable. Fig. 4a shows the as-
sembly decision for 𝑆2 that could result from this ranking. On the other 
hand, if we rank the services according to a node-based metric, then 𝑆6
is better than 𝑆4: the darker orange tone indicates that node 𝑁4 hosting 
𝑆6 has a higher battery level than node 𝑁3 hosting 𝑆4, which means that 
𝑆6 can rely on a higher energy budget for its operations. Fig. 4b shows 
the assembly decision for 𝑆2 that could result from this alternative rank-
ing. It is not easy to decide a priori which of the two selection decisions 
leads to better results. In the next section, we investigate both this con-
cern and the balance between exploitation and exploration discussed
above.

7.  Experimental results

In this section, we experiment with the different policies to address 
the research questions RQ1 and RQ2. To this end, we compare the per-
formance of ranking metrics (Section 6.1) and selection policies (Sec-
tion 6.2), under various conditions, focusing on how effectively they 
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Fig. 5. 𝐴𝑆𝑌 𝑆 (𝑡) in scenarios with green energy source (solar panel) and battery (small). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

support the system in maintaining energetic autonomy. By analyzing 
their behavior, we aim to identify which policy offers the most balanced 
and practical approach to energy-aware self-adaptation.

As remarked at the end of Section 3, the decentralized service assem-
bly procedure described there eventually leads to the creation of a fully 
resolved assembly. This result is achieved independently of the rule used 
by the Update() and Select() functions to update the content of the set 
of functionally equivalent services 𝐶𝑎𝑛𝑑𝑆,𝑑 (all services in the set imple-
ment 𝑑), and to select within it the service to be included in 𝑃𝑟𝑜𝑣𝑆 (𝑡). In 
this section, we assume that the Update() and Select() functions intro-
duced in Section 3 operate according to the selection policy described in 
Section 6.2. In particular, Update() updates 𝐶𝑎𝑛𝑑𝑆,𝑑 possibly dropping 
from it the “worst” ranked service according to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛), and
Select() selects from 𝐶𝑎𝑛𝑑𝑆,𝑑 the service to be included in 𝑃𝑟𝑜𝑣𝑆 (𝑡) as 
the “best” ranked service according to 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛).

Different instances of 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛) (corresponding to different se-
lections among the possible values for its parameters 𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛) lead 
to the construction of assemblies that, albeit being functionally equiva-
lent, have different energetic autonomy characteristics. We thus present 
in this section a set of simulation experiments to assess the effective-
ness of different service selection policies (instances of 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛)) 
with respect to the issues raised by RQ1 and RQ2. To this end, we ex-
periment with instances of 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛) obtained by making its pa-
rameters range over the set of values shown in Table 4, for a total of 
twenty-four different policies. We have selected these values to cover a 
large set of different regions of the overall space of all possible policies 
that can be instantiated from 𝑃 (𝑟𝑎𝑛𝑘, 𝛼, ℎ, 𝑠𝑔𝑛). In particular, the pos-
sible values for the rank parameter are those described in Section 6.1. 
For the other two parameters 𝛼 and h, we recall from Section 6.2 that 
𝛼 = 1 defines a memoryless policy that considers only the last observed 
value of the ranking metric, while 𝛼 = 0.5 defines a policy that takes into 
account also past values. On the other hand, the three values selected 
for the h parameter define selection policies ranging from a probabilis-
tic service selection strictly proportional to the services’ rank (ℎ = 1), to 
a probabilistic service selection biased towards the best-ranked service 

Table 4 
Parameters of the service selection 
policy.

 parameter  possible values
𝑟𝑎𝑛𝑘 𝑔𝑒𝑆,𝑆′ , 𝑙𝑒𝑆,𝑆′ , 𝑛𝑒𝑆′ , 𝑟𝑙𝑆′

𝛼  0.5, 1
ℎ  1, 10, 50

(ℎ = 10), to a greedy policy that (almost surely) selects the best-ranked 
service (ℎ = 50).

In addition, for comparison, we consider two other policies:
• a baseline Random policy (corresponding to ℎ = 0) that randomly se-
lects a service within the set of known functionally equivalent candi-
dates. This policy serves as a benchmark to compare the “smartness” 
of the other considered policies with respect to a blind selection pol-
icy;

• a QoS-aware policy taken from Angelo et al. (2020), which selects 
a service using a QoS-based ranking metric. To this end, we assume 
that each service has an associated QoS index, measuring some (non-
energy) QoS-related aspects of the service (e.g., performance, relia-
bility, cost, or some suitable combination of them). According to An-
gelo et al. (2020), we assume that this index is load-dependent: the 
higher the load addressed to a service, the worse the value of its 
QoS index. This policy serves as a benchmark to compare the impact 
on the system’s energetic autonomy of a QoS-focused criterion with 
respect to the energy-focused selection criteria adopted in this paper.

We conduct experiments with all these selection policies for two 
kinds of scenarios named energetic autonomy and energetic survivability, 
respectively.

In the energetic autonomy scenario, we consider nodes equipped with 
a local green energy generator and a battery that is recharged by excess 
produced energy and compensates as long as possible for temporary 
interruptions in energy generation. In this scenario, we investigate to 
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what extent the different policies can maintain the functionality of the 
system over time, as measured by the availability indices presented in 
Section 5.

In the survivability scenario, we consider nodes equipped only with 
a (initially fully charged) battery. In this case, we investigate how long 
the different policies are able to maintain some functionality and how 
quickly they degrade before the definitive collapse.

Both the energetic autonomy and the survivability scenarios do not 
consider the existence of an external source of energy (e.g., power grid) 
that could potentially compensate for the energy in the batteries and/or 
energy gathered by local green energy generators (e.g., solar panels). 
Indeed, our focus is to investigate how much the system can do without 
it.

To carry out the experiments, we implemented a large-scale simu-
lation model for the PeerSim simulator (Montresor and Jelasity, 2009). 
The replication package is publicly available to researchers interested 
in replicating and independently verifying the results presented in this 
paper2.

7.1.  Experiments settings

Our experimentation mimics a decentralized computing scenario 
where |𝐒| services with num_int different types 𝐓 = {𝑇1, 𝑇2 … , 𝑇num_int}
are deployed on a network of |𝐍| nodes.

We randomly position the network nodes in an area with a diam-
eter of 𝐷 meters and assume each node hosts 𝑛𝑜𝑑𝑒_𝑠𝑒𝑟𝑣 services, ran-
domly selected from the 𝐒 set. Each node is equipped with a solar panel 
and a battery (in the experiments, we consider two different battery 
capacities, respectively named small=3000𝑚𝐴ℎ and big=6000𝑚𝐴ℎ; see 
also Appendix B). We adopt a suitable model to keep track of the solar 
radiation variations at different day times, according to a 24-hour cycle. 
Details about this model are reported in the Appendix A.

Each simulation run simulates an observation period of 2000 hours 
for a network with |𝐍| = 50 nodes, |𝐒| = 250 services, and num_int = 10
service types, deployed in an area of diameter 𝐷 = 200 meters3. Esti-
mates for each quality index of interest are calculated from 50 simula-
tion runs. During the simulation, a node without sufficient energy is not 
available for the assembly and is made available again once its charging 
state reaches at least 20% of the node’s battery capacity.

The values of the simulation parameters (e.g., battery capacities, so-
lar panel energy generation rate) are taken from wireless sensor network 
literature (see Appendices A and B).

7.2.  Energetic autonomy in green-powered scenarios

Tables 5 and 6 show the value of the steady-state availability 𝐴𝑆𝑌 𝑆
(Eq. (9)) for the different combinations of policy parameter values, and 
the two different battery capacities. For the sake of simplicity, we dis-
play only the midpoint of the calculated confidence intervals. Both ta-
bles show that all the considered energy-aware policies perform con-
sistently better than the baseline random policy. A noteworthy result is 
that, from the energetic autonomy perspective, QoS-aware selection has 
a very negative impact, as its performance is almost indistinguishable 
from the random policy.

Besides this, the tables show that the two energy-aware policies that 
base their selection on information about the service energy footprint 
(global and local energy policies) clearly outperform the two policies that 
base their selection on information about the energy wealth of the node 
hosting the service (residual life and node energy policies). Indeed, the 
𝐴𝑆𝑌 𝑆 ≈ 1 value for the former two policies indicates that they can keep 
almost all the nodes active, thus guaranteeing (on average) full-service 

2 https://github.com/mi-da/Self-Sustainable-Service-Assembly
3 These numbers are similar to several WSN environmental monitoring sce-

narios, for example, in air quality monitoring (Han et al., 2019) or smart farm-
ing (Bandara et al., 2020).

Fig. 6. Zoom-in at week 1 (a) and day 21 (b) of 𝐴𝑆𝑌 𝑆 (𝑡), in a scenario with solar 
panel and a small battery, 𝛼 = 0.5, ℎ = 1.

Table 5 
𝐴𝑆𝑌 𝑆 : Steady-state availability values (small battery).
𝛼  0.5  0.5  0.5  1  1  1
 h  1  10  50  1  10  50
 global energy (𝑔𝑒𝑆,𝑆′ )  0.99  0.99  0.99  0.99  0.99  0.99
 local energy (𝑙𝑒𝑆,𝑆′ )  0.98  0.99  0.99  0.98  0.99  0.99
 residual life (𝑟𝑙𝑆′ )  0.87  0.87  0.87  0.85  0.86  0.87
 node energy (𝑛𝑒𝑆′ )  0.84  0.84  0.82  0.84  0.84  0.85
 random  0.69  0.69  0.70  0.69  0.70  0.70
 QoS-aware  0.68  0.67  0.72  0.72  0.71  0.70

continuity. On the other hand, the 𝐴𝑆𝑌 𝑆 < 0.9 value for the latter two 
policies indicates that they instead cause some nodes to run out of en-
ergy.

The plots of 𝐴𝑆𝑌 𝑆 (𝑡) (Eq. (8)) in Figs. 5 and 7 provide finer-grain 
insights about the effectiveness of the considered policies by showing 
how they perform with respect to the optimal value 𝐴𝑆𝑌 𝑆 (𝑡) = 1. The 
figures clearly show that the global energy policy provides the best re-
sult, constantly guaranteeing over time the full availability of all nodes 
(𝐴𝑆𝑌 𝑆 (𝑡) ≈ 1 for all 𝑡 values), despite the intermittent availability of solar 
energy. The local energy policy provides results almost indistinguishable 
from the global energy one, or slightly worse.

On the other hand, the plots for the residual life and node energy poli-
cies confirm their less satisfactory performance. Indeed, apart from the 
initial phase, where they take advantage of the full battery charge (as de-
fined in our experiment settings), they quickly stabilize around 𝐴𝑆𝑌 𝑆 (𝑡)
values that are quite far from 1. Besides this, a (negatively) notewor-
thy behavior of these two policies is given by the oscillations of the 
𝐴𝑆𝑌 𝑆 (𝑡) value, which are particularly pronounced in the small battery 
case (Fig. 5). Because of them, the actual number of available nodes 
(and consequently of active services) may temporarily drop to values 
much smaller than the average. These oscillations follow a 24-hour pe-
riod and are thus clearly correlated with the solar energy availability (as 
evidenced in Fig. 6, which shows a zoom-in of Fig. 5a around the first 
week and the 21st simulated day, respectively). This indicates that, with 
respect to the local and global energy policies, the residual life and node 
energy policies are less effective in utilizing the backup energy provided 
by the batteries to mask the temporary unavailability of green energy 
sources.

Finally, Figs. 5 and 7 confirm the bad and comparable performance 
of the random and QoS-aware policies.

7.3.  Energetic survivability in battery-only scenarios

In these experiments, we assume that, for some reason, the green 
energy source is not available at all for all nodes. Consequently, each 
node will remain active as long as its battery provides sufficient energy. 
Eventually, all the nodes will exhaust their batteries, and the system 
availability will drop to zero. Hence, it does not make sense to con-
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Fig. 7. 𝐴𝑆𝑌 𝑆 (𝑡) in scenarios with green energy source (solar panel) and battery (big). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Table 6 
𝐴𝑆𝑌 𝑆 : Steady-state availability values (big battery).
𝛼  0.5  0.5  0.5  1  1  1
 h  1  10  50  1  10  50
 global energy (𝑔𝑒𝑆,𝑆′ )  0.99  0.99  0.99  0.99  0.99  0.99
 local energy (𝑙𝑒𝑆,𝑆′ )  0.99  0.99  0.99  0.99  0.99  0.99
 residual life (𝑟𝑙𝑆′ )  0.86  0.85  0.82  0.85  0.85  0.86
 node energy (𝑛𝑒𝑆′ )  0.82  0.82  0.80  0.84  0.81  0.82
 random  0.76  0.74  0.74  0.70  0.76  0.70
 QoS-aware  0.73  0.74  0.75  0.71  0.73  0.75

sider the steady-state availability 𝐴𝑆𝑌 𝑆 (Eq. (9)). Figs. 8 and 9 show
instead the plots of the instantaneous availability 𝐴𝑆𝑌 𝑆 (𝑡) (Eq. (8)), in 
the small and big battery cases, respectively (in all cases, we assume 
that all nodes start with a fully charged battery). As expected, the fig-
ures show that 𝐴𝑆𝑌 𝑆 (𝑡) drops towards zero for increasing values of 𝑡. 
However, the figures clearly show that the global and local energy poli-
cies vastly outperform the residual life and node energy policies in guar-
anteeing the system’s survivability in the considered critical situation. 
Another interesting result that can be observed from these plots is that 
the value of parameter ℎ impacts the system survival ability, differently 
from the previous experiments where a green energy source was avail-
able. Indeed, both Figs. 8 and 9 show that the system survival ability 
benefits from some amount of greediness in service selection (i.e., ℎ > 1).

Finally, Figs. 8 and 9 show the very negative impact of the QoS-aware 
policy on the system’s survivability.

8.  Learned lessons: Answers to RQ1 and RQ2

We have considered two types of metrics to rank functionally equiv-
alent services, thus driving their selection during the dependencies reso-
lution process in an assembly of services: (i) metrics based on the energy 
footprint of the service itself (global energy 𝑔𝑒𝑆,𝑆′  and local energy 𝑙𝑒𝑆,𝑆′ ), 
and (ii) metrics based on the energy wealth of the node hosting the ser-
vice (residual lifetime 𝑟𝑙𝑆′  and node energy 𝑛𝑒𝑆′ ).

We briefly recall the considerations made in Section 6.1 about the 
monitoring and dissemination overhead caused by the MAPE-K loop. 
With respect to the monitoring effort at each node, metrics (i) cause 
a higher overhead with respect to metrics (ii), as they require finer-
grained measurements. With respect to the information dissemination 
overhead, it is low for the local energy metric 𝑙𝑒𝑆,𝑆′ , as it only requires 
the use of locally collected information for its estimation; the dissem-
ination overhead is instead higher for the other three metrics, as the 
exchanged messages should carry the information needed for their es-
timation, in addition to the functional information required by the de-
pendency resolution procedure.

From the experimental results discussed in Section 7, we see that 
the selection policies based on the metrics global energy 𝑔𝑒𝑆,𝑆′  and lo-
cal energy 𝑙𝑒𝑆,𝑆′  (type (i)) vastly outperform those based on the other 
two policies (type (ii)). In particular, for the “energetic autonomy” sce-
nario (green energy source plus battery), they allow achieving values 
of the considered metrics very close to their maximum ( = 1), while 
this is not the case for the other policies. This provides a strong indi-
cation that, with respect to the monitoring overhead, type (i) policies 
are worth the greater effort required for their implementation, in the 
perspective of guaranteeing the energetic autonomy of green-powered 
service assembly.

With respect to the information dissemination overhead, a posi-
tive outcome of the experiments is that system-wide dissemination of
non-functional information about the energetic profile of each service or 
node is unnecessary. Indeed, the policy based on the local energy metric 
𝑙𝑒𝑆,𝑆′ , whose dissemination overhead is low, reaches results very close 
to those achieved by the policy based on the global energy metric 𝑔𝑒𝑆,𝑆′ , 
which appears to be the optimal one. This implies that the adoption of 
𝑙𝑒𝑆,𝑆′  considerably reduces the amount of information to be dissemi-
nated (and the consequent energy overhead), limiting it to only func-
tional information (i.e., service types needed to build and maintain a 
fully resolved assembly), with negligible impact on energy performance.

In summary, these results indicate that we can identify a service se-
lection policy (based on the 𝑙𝑒𝑆,𝑆′ (𝑡) ranking metric) that, used in com-
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Fig. 8. 𝐴𝑆𝑌 𝑆 (𝑡) in scenarios with battery only (small).

Fig. 9. 𝐴𝑆𝑌 𝑆 (𝑡) in scenarios with battery only (big).

bination with a decentralized assembly procedure, allows us to achieve 
two goals: (𝑎) building and maintaining over time an energetically au-
tonomous fully resolved assembly of services (RQ1), and (𝑏) achieving 
this result paying a limited energy overhead (RQ2).

As a final remark, the experiments in Section 7 also show that driv-
ing the service selection by QoS-focused ranking metrics without con-

sidering the energetic profile of each service might have a dramat-
ically negative impact on the system’s energetic autonomy. This in-
dicates that when QoS issues other than energy are considered rel-
evant, they should be carefully balanced with energetic issues. We 
leave it to future work to investigate the trade-off between these two
issues.
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8.1.  Threats to validity

There are some potential threats to the validity (Wohlin et al., 2012) 
of the proposed approach.

A threat to internal validity is represented by the selection of the self-
sustainability indexes. To smooth this threat, we adopted different met-
rics that looked at self-sustainability from different perspectives (e.g., 
service- and node-based, local and global scope).

Construct validity: We mitigated construct validity threats using a 
large-scale simulation model for our experimentation in the PeerSim 
simulator (Montresor and Jelasity, 2009). PeerSim has been developed 
with extreme scalability and support for dynamism in mind, and it is 
released to the public under the GPL open-source license. We use the 
simulator’s cycle-based engine to allow for scalability. The cycle-based 
engine uses some simplifying assumptions, such as ignoring the details 
of the transport layer in the communication protocol stack. Since our 
results focus on the application layer energy behavior, simplifying as-
sumptions do not impact the validity of our experiments. However, as 
our evaluation is based on simulation rather than execution on phys-
ical hardware, we could not directly monitor or measure the actual 
energy consumption of the system. Instead, we estimated energy be-
havior based on modeled parameters and abstractions defined at the 
application level. While this approach enables large-scale and repeat-
able experimentation, it inevitably limits the precision of energy mea-
surements compared to empirical observations from real deployments. 
We plan to address this limitation in future work by conducting real-
world experiments and measuring energy consumption through appro-
priate hardware (e.g., Otii Arc4) and software monitoring tools (e.g., 
Prometheus5). Finally, the solar radiation model implemented has been 
constructed and validated against real data captured at the Bioparco 
of Rome (Stazione meteo di bioparco di roma, 2023) (as illustrated in 
the Appendix A). The energy consumption model and its parameters 
have been retrieved from previous literature and have been proven to 
model electronic and amplifier power consumption (Heinzelman et al., 
2002; Ikpehai et al., 2019; Kang et al., 2006) in a fairly accurate way.

Conclusion validity: We mitigated conclusion validity threats by using 
a large number of simulation repetitions to reduce the confidence inter-
val of the simulation results. Indeed, this threat is inherent to all sim-
ulated systems, as probabilistic functions govern their behavior (Banks 
et al., 2013). For this reason, each experiment has been executed 50
times.

A threat to external validity concerns the approach’s evaluation. In-
deed, we adopted an evaluation based on extensive simulations, instead of 
considering single case studies, to perform a general analysis of the ap-
proach’s effectiveness. Specifically, we focused on experimenting with 
an extensive range of possible selection policies to identify the most 
promising ones from the self-sustainability perspective. In future work, 
we plan to extend the evaluation by investigating how the identified 
policies behave with respect to different settings of the system parame-
ters, according to real-world cases.

9.  Related work

While a large body of related work exists on the addressed topic, we 
summarize hereafter only those papers that are closely related to the 
proposed approach and concern IoT and edge computing scenarios, service 
composition and service assembly, and energy awareness.

Reference scenario. Our work concerns the dynamic assembly and 
composition of services in an IoT and edge computing scenario. Some 
papers present examples of this scenario and focus on related issues. As 
an example, Nasir et al. (2022) present NexusEdge, a system based on a 
decentralized IoT-edge architecture that enables applications to run on 

4 https://www.qoitech.com/
5 https://prometheus.io/

edge gateways without the support of the cloud. Examples of dynamic 
IoT environments can also be found in Razian et al. (2022), Sun et al. 
(2019), Khanouche et al. (2016) and Halba et al. (2023).

Service composition and service assembly. Service composition refers to 
the process of creating and sustaining a new value-added service using 
existing services in a dynamic environment. Research in this field can 
be categorized into two main categories (Rao and Su, 2004). Category 
1 (𝐶1) involves dynamically decomposing a general task into a set of 
subtasks that can be fulfilled by existing services, whose operations 
must then be appropriately coordinated. Hence, the composition pro-
cess can lead to different decompositions of the overall task, depending 
on the available services (e.g., Razian et al. (2022), Chen et al. (2018), 
Gabrel et al. (2018) and Rodriguez-Mier et al. (2016)). The second cat-
egory (𝐶2) instead includes works that assume that the general task to 
be carried out is already divided into predetermined activities, speci-
fied through a workflow using specific composition patterns (such as 
sequence, parallel, iteration, and conditional selection), before start-
ing the service composition process. The objective here is to identify 
the already-existing services that carry out the predetermined activities 
(e.g., Razian et al. (2022), Rao and Su (2004), Cardellini et al. (2012) 
and Lemos et al. (2015)).

The service assembly problem we consider in this paper focuses in-
stead on the dynamic maintenance of existing services through the solu-
tion of their dependencies. Different approaches to solving this problem 
can already be found in the literature. Some of them explicitly address 
the service assembly problem (e.g., Sykes et al. (2011) and Angelo et al. 
(2020)). Other solutions can be obtained by suitably adapting solutions 
primarily addressing Service Composition 𝐶2 cited above. Indeed, ser-
vice assembly can be considered a special case of service composition 
𝐶2, with a “null” workflow, under the hypothesis that the dependencies 
of a service are known at deployment time6. Hence, most of the ap-
proaches concerning the 𝐶2 service composition can also be adopted to 
tackle the service assembly problem, and they are thus directly related 
to the work presented in this paper. Focusing in particular on energy-
aware solutions to this problem, they have been considered in several 
papers (Sun et al., 2019; Hamzei et al., 2023; Li and Zhu, 2023; Baker 
et al., 2017; Xiang et al., 2014; Tong et al., 2020; Zeng et al., 2020; 
Wang et al., 2018). Indeed, Table 7 reports papers that address 𝐶2 ser-
vice composition by explicitly considering energy awareness (RQ1).

In these papers, energy concerns are typically addressed in terms 
of building a service composition with minimal energy consumption, 
given an assumed energy consumption model. In our approach, we have 
addressed a similar issue, but in the context of intermittently avail-
able green energy sources (RQ1). In addition, we have also addressed 
another issue (RQ2), which appears to have been overlooked by ex-
isting approaches. It concerns getting insights about the trade-off be-
tween building a service assembly that meets a given energy-aware 
goal, and the (energetic) cost that must be paid to keep updated the 
information used to drive the system towards the achievement of that
goal.

Concerning the approaches adopted in these papers, many of them 
are based on the definition of single (Tong et al., 2020; Zeng et al., 
2020) or multi-objective optimization problems (Baker et al., 2017; Xi-
ang et al., 2014; Wang et al., 2018; Sun et al., 2018), which are then 
solved through some heuristic, given their (usually) NP-hard complex-
ity. Other approaches have been proposed based on Bayesian networks 
(e.g., Kazem et al. (2015)), temporal dependencies (e.g., Guidara et al. 
(2016)), and machine learning methodologies (e.g., Wang et al. (2020), 
Ren et al. (2020) and Ekie et al. (2021)).

A common trait of most of the reviewed literature addressing ques-
tions related to RQ1 is that the proposed solutions are based on central-

6 By null workflow, we mean a workflow consisting only of the indication of a 
set of required services, without the indication of any structure (e.g., precedence 
relationship) among them.
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 ized approaches that, besides relying on the implicit assumption of the 

feasibility of maintaining consistent global knowledge, may suffer from 
the typical scalability and single point of failure problems. A central-
ized solution might be a viable approach to service composition when 
the underlying assumption is to have a set of known services that oper-
ate in a closed environment. This assumption does not match the open 
and highly dynamic characteristics of the IoT-edge computing scenario 
we are focusing on. Hence, we relax this assumption and, in addition 
to specifically focusing on the service assembly problem, we propose a 
fully decentralized approach that appears to be best suited to an open 
and dynamic scenario.

In this regard, decentralized approaches that specifically address 
the problem of service assembly have already been proposed (Sykes 
et al., 2011; Angelo et al., 2020; Caporuscio et al., 2020). Similarly to 
our work, the authors in Sykes et al. (2011) propose a decentralized 
approach to the autonomous assembly of services based on a gossip 
protocol. They prove that the use of gossiping techniques for realiz-
ing an autonomous assembly of services is a viable solution for scale 
and information dissemination convergence. However, unlike us, they 
focus on the fulfillment of functional requirements (dependency reso-
lution) and the enforcement of architectural constraints (e.g., specific 
connection topologies). As already remarked in the introduction, our 
work is based on the decentralized solution to service assembly pro-
posed in Angelo et al. (2020), which was focused on satisfying gen-
eral QoS-aware requirements. We build on it to address the sustain-
ability concerns expressed by RQ1 and RQ2. As detailed in the In-
troduction, we already partially addressed RQ1 in Caporuscio et al. 
(2020), where we present an early approach for energy-aware service
assembly.

Table 7 summarizes reviewed papers addressing the service assembly 
problem explicitly or implicitly as part of the 𝐶2 service composition 
problem (RQ0). The table highlights which of these papers address RQ1 
and RQ2. In the table, “previous” refers to the works we build on and 
extend.

Energy-saving solutions for software applications. The general increas-
ing concern about sustainability issues motivates the growing attention 
to reducing the carbon footprint of software applications (Fonseca et al., 
2019; Nardi et al., 2018).

The proposed approaches address this issue at different levels. At the 
hardware level, edge-fog-specific energy management techniques have 
been proposed based on the idea of suitably modulating the energy con-
sumption of each node through DVFS (Dynamic Voltage and Frequency 
Scaling) and DMS (Dynamic Modulation Scaling) mechanisms (Karimi-
afshar et al., 2020; Kwak et al., 2015; Toor et al., 2019). Our proposal 
complements these approaches, as we instead adopt a higher-level soft-
ware architecture-oriented perspective.

At the software level, the software engineering community at large 
has been paying increasing attention to energy efficiency solutions, a 
summary can be found in Horcas et al. (2019) and Kanso and Exposito 
(2023). In addition, from the point of view of software architecture, the 
need to consider the energy attribute at the architectural level is gaining 
consensus (Vos et al., 2022).

At the infrastructure level, approaches to energy management for 
applications running in cloud infrastructures have already been pro-
posed, based on techniques such as virtual machine consolidation and 
on/off switching of servers (Beloglazov et al., n.d.; Lee and Zomaya, 
2012; Ni and Bai, 2017). However, they rely on the characteristics of 
large cloud data centers, where servers are often homogeneous, close 
to each other, and connected through high-speed networks. These tech-
niques are hardly applicable to the scenario we are focusing on, where 
nodes are usually heterogeneous, highly distributed, and with limited 
power and computing/communication capabilities. On the other hand, 
the distribution of edge nodes lends itself to the local harvesting of re-
newable (green) energy from on-site sources, for example, solar and 
wind (Zeng et al., 2020; Jalali et al., 2017), as we assume to do in our
approach.
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10.  Conclusion and future work

This paper focuses on the challenges of supporting the construction 
of new service-based systems in decentralized computing scenarios by 
considering environmental sustainability. These systems are inherently 
open, highly dynamic, and operate in uncertain environments. In this 
context, we have evidenced the role of the service assembly issue. To ad-
dress the related challenges, we have presented a solution that builds 
upon a previously proposed fully decentralized service assembly pro-
cedure. In particular, we have defined a suitable energy model for the 
scenario we are considering and have specialized the service selection 
policy underpinning that procedure to achieve energetic autonomy, re-
lying solely on locally harvested and stored energy. To this end, we have 
proposed a general template for defining a service selection policy, from 
which different policies can be easily derived to drive the construction 
and maintenance of the service assembly. Through extensive simula-
tion experiments, we have gained valuable insights into the assembly 
management policies that promise to be most effective in meeting the 
sustainability requirements.

From these results, we plan to extend our work in several direc-
tions. They include (1) improving the model for incorporating advanced 
energy-aware heuristics (e.g., turning off monitoring when not needed), 
(2) extending the evaluation of the approach to include trade-off analy-
sis between QoS and energy consumption, and (3) applying the proposed 
approach to real-world case studies sourced from the existing literature 
and industrial partners.
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Appendix A.  Solar source model

The model of the energy production follows the values of the solar 
radiation on the ground recorded by the “Bioparco” weather station in 
Rome (Italy) as illustrated in Fig. A.1 (Stazione meteo di bioparco di 
roma, 2023).

We assume that each node is equipped with a solar panel of 5×5cm. 
Using panels with polycrystalline solar cells, the maximum energy that 
can be supplied is about 0.016Wh/cm2 [41]. Consequently, the maxi-
mum green energy production 𝐺𝑁 (𝑡) of each node is about 0.4Wh.

Fig. A.1. Solar radiation measured at Bioparco di Roma.

We use a six state model to simulate the solar radiation variations 
(see Fig. A.2 and Table A.1), where each state represents a four-hour 
time interval.

Fig. A.2. Solar states state-model representation.

Fig. A.3. Energy production of three nodes over a period of four days.

Transitions from one state to another occur deterministically: the 
simulator spends exactly 24 simulation cycles in one state and then 
moves on to the next (as explained in the paper, one cycle models ten 
minutes of wall-clock time).

Table A.1 
Solar states and time of the day.
 Solar state  Time interval (hh:mm)
𝑆0  0:00 - 4:00
𝑆1  4:00 - 8:00
𝑆2  8:00 - 12:00
𝑆3  12:00 - 16:00
𝑆4  16:00 - 20:00
𝑆5  20:00 - 24:00

In order to create a realistic trend for energy production, we use a 
random walk to update the green energy production rate 𝐺𝑁 (𝑡):

𝐺𝑁 (𝑡) =

{

𝐺𝑁 (𝑡 − 1) + 𝑚𝑠 + 𝑒 with probability 𝑝𝑠
𝐺𝑁 (𝑡 − 1) − 𝑚𝑠 + 𝑒 with probability 𝑝𝑠 − 1

where 𝑠 indicates the current solar model state, 𝑝𝑆 is a state-dependent 
probability value, 𝑚𝑠 a state-dependent constant, and 𝑒𝑠 is a disturbance 
factor that is randomly calculated. Table A.2 shows the parameters used 
for the solar state model.
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Table A.2 
State-dependent parameters of the solar 
model.

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑝𝑠  0.4  0.8  0.6  0.2  0.2
𝑚𝑠  0.1  0.15  0.15  0.15  0.1

We introduced the disturbance factor to simulate a node-to-node 
variation in energy production. Indeed, even if the nodes are located 
in a limited area, the energy production can be slightly different (e.g., 
presence of clouds or shadows).

To model the complete absence of light in the night, the value of 
𝐺𝑁 (t) is equal to zero when the system is in the state 𝑠0.

As an example of the energy production trend, Fig. A.3 shows a graph 
where the green energy production rates 𝐺𝑁 (𝑡) of three nodes of the 
network are compared for a time interval of approximately four days 
(i.e., around 600 simulation cycles).

Appendix B.  Energy Consumption model

For each node, the energy consumption is given by the sum of three 
components: (𝑖) energy consumption related to CPU operations, (𝑖𝑖) en-
ergy consumption for receiving messages and, (𝑖𝑖𝑖) the energy consump-
tion for sending messages. Each of these modeled contributions is com-
puted at simulation time.

Fig. B.1. First order radio model (Heinzelman et al., 2000).

For the energy spent in transmission and reception, we use the first-
order radio model, see Fig. B.1. The equations modeling transmission 
and energy consumption are the following:
𝐸𝑇𝑥(𝑘, 𝑑) = 𝜆 ⋅ 𝑘 ⋅ (𝐸𝑒𝑙𝑒𝑐𝑡 + 𝑑2 ⋅ 𝜖𝑎𝑚𝑝) (B.1)

𝐸𝑅𝑥(𝑘) = 𝜆 ⋅ 𝑘 ⋅ 𝐸𝑒𝑙𝑒𝑐𝑡 (B.2)

where:

• 𝜆 represents the flow of incoming requests to the service;
• 𝑘 is the number of bits in a message;
• 𝐸𝑇𝑥(𝑘, 𝑑) represents the energy spent for the transmission of a k-bit 
message between two services that are hosted on nodes distant 𝑑;

• 𝐸𝑅𝑥(𝑘) represents the energy spent for receiving a k-bit message;
• 𝜖𝑎𝑚𝑝 is a constant representing the energy spent by the amplification 
circuit for sending messages.

The parameters configuring the energy consumption model have 
been retrieved from existing literature (Heinzelman et al., 2002; Ikpehai 
et al., 2019; Kang et al., 2006):

• 𝐸𝑒𝑙𝑒𝑐𝑡 = 50𝑛𝐽∕𝑏𝑖𝑡
• 𝜖𝑎𝑚𝑝 = 10𝑝𝐽∕𝑏𝑖𝑡∕𝑚2

• 𝑘 = 1264𝑏𝑖𝑡 = 158𝑏𝑦𝑡𝑒𝑠

With respect to the computational energy model, the single-
operation CPU energy consumption has been set to 50𝑛𝐽 (Grochowski 
and Annavaram, 2006).

On average, the big battery model in the simulations corresponds 
to a battery of 6000𝑚𝐴ℎ, while the small battery model to a battery of 
3000𝑚𝐴ℎ. 
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