The Journal of Systems and Software 235 (2026) 112755

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems & Software

SOFTWARE

A self-sustainable service assembly for decentralized computing

environments

Mauro Caporuscio
Francesca Ricci ¥ ¢

2 Linnaeus University, Vixjo, Sweden

b Ericsson Research, Goteborg, Sweden

¢ Universita di Roma Tor Vergata, Rome, Italy

d Karlsruhe Institute of Technology, Karlsruhe, Germany
¢ Spike Reply, Milan, Italy

&* Mirko D’Angelo

b Vincenzo Grassi

¢, Raffaela Mirandola 9,

ARTICLE INFO ABSTRACT

Editor: Dr Alexander Chatzigeorgiou

Keywords:

Service assembly
Service composition
Software architecture
Sustainable computing
Decentralized systems

The landscape of modern computing systems is shifting towards architectures built by combining available ser-
vices under the “everything as a service” paradigm. These architectures are deployed on distributed cloud-edge
infrastructures, aiming to provide innovative services to a wide range of users. However, it is crucial for these sys-
tems to address environmental sustainability concerns. This poses challenges in operating such systems in open,
dynamic, and uncertain environments while minimizing their energy consumption. To tackle these challenges,
we propose a decentralized service assembly approach that ensures the assembly is energetically self-sustainable
by relying on locally harvested and stored energy. In our contribution, we introduce a general service selection

template that enables the derivation of different selection policies. These policies guide the construction and
maintenance of the service assembly. To evaluate their effectiveness in meeting the sustainability requirements,
we conduct a comprehensive set of simulation experiments, providing valuable insights.

1. Introduction

The Internet of Things (IoT) envisions digital transformation sce-
narios where data-driven and Al-augmented functionalities support hu-
man beings in their tasks, leveraging the sensing and actuating capabil-
ities provided by a multitude of low-end devices embedded in everyday
things. This vision relies on the existence of a diffused “fabric” made of
high-speed wired and wireless communication technologies connecting
end-user devices to a variety of computing nodes, spanning distant cloud
servers, proximity edge/fog nodes, and even other end-user devices (the
so-called computing continuum (Casamayor-Pujol et al., 2023)).

The anything as a service paradigm is commonly acknowledged as
an appropriate engineering abstraction in this context. It offers a uni-
form perspective, as mentioned in the IoT roadmap (Bouguettaya et al.,
2021). Essentially, all functionalities, even those provided by “things”,
are abstracted and made available as services that can be connected to
and by other services (Bouguettaya et al., 2017).

Such a scenario presents challenges for software engineering due to
its dynamic and open-ended nature. Factors such as the distribution and

* Corresponding author.

heterogeneity of the service ownership, the mobility of devices host-
ing the services, and the intermittent nature of communication chan-
nels contribute to the transient availability of services in a given area
or time interval. This transient availability is more of a norm than an
exception. Consequently, authors highlight the serendipitous nature of
IoT-based services, as new value-added services often emerge from the
opportunistic composition of available ones (Bouguettaya et al., 2021).
There is a rich literature on possible approaches to address the problem
of service composition (Razian et al., 2022). Regardless of their peculiar-
ities, the proposed approaches to service composition share a common
underlying assumption that the selected services to be used in the com-
position of a new value-added service are fully functional. However,
this assumption can be challenged due to the dynamic and open-ended
nature of the scenario being considered. Each deployed service could
indeed rely on external resources such as other existing services, code
libraries, data sources, or reusable assets, which we refer to as its depen-
dencies. These dependencies must be resolved to ensure that the service
is fully functional. However, the continuous availability of the needed
resources cannot be guaranteed, as we have already pointed out in

E-mail addresses: mauro.caporuscio@Inu.se (M. Caporuscio), mirko.dangelo@ericsson.se (M. D’Angelo), vincenzo.grassi@uniroma2.it (V. Grassi),

raffaela.mirandola@kit.edu (R. Mirandola), fr.ricci@reply.it (F. Ricci).

https://doi.org/10.1016/j.jss.2025.112755

Received 10 March 2025; Received in revised form 23 October 2025; Accepted 17 December 2025

Available online 23 December 2025

0164-1212/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0001-6981-0966

(i)

(ii)

(iii)

i

ii

iii

iv

\begin {equation}ge_{S,S'}(t)= gef_{S'}(t) + \mu _{S,\sstype {S'}}\cdot \scommcost {S}{S'} \label {eq:ge-metric}\end {equation}

$ge_{S,S'}(t)$

$S'\in \mathit {Cand}_{S,d}$

$gef_{S'}(t)$

\begin {equation}gef_S(t) = \scompsystem {S} + \scommsystem {S}{N} \label {eq:gefootpr}\end {equation}

S

S

$S'\in \ssprov {S}$

S

$S'\in \ssprov {S}$

\begin {equation}lef_S(t) = \scomplocal {S} + \scommlocal {S}{N} \label {eq:lefootpr}\end {equation}

S

S'

$le_{S,S'}(t)$

$ge_{S,S'}(t)$

$S'\in \mathit {Cand}_{S,d}$

$lef_{S'}(t)$

S

S'

S

S'

\begin {equation}\begin {aligned} le_{S,S'}(t)&= lef_{S'}(t)\cdot U_{\{\snode {S'}=\snode {S}\}} \\ &\quad + \mu _{S,\sstype {S'}}\cdot \scommcost {S}{S'} \cdot U_{\{\snode {S'}\neq \snode {S}\}} \end {aligned} \label {eq:le-metric}\end {equation}

$U_{\{cond\}}$

$cond$

\begin {equation}ne_{S'}(t) = B_{\snode {S'}}(t) \label {eq:eb-metric}\end {equation}

$ne_{S'}(t)$

$S'\in \mathit {Cand}_{S,d}$

$\relax \mathit {N}_{S'}$

$rl_{S'}(t)$

$S'\in \mathit {Cand}_{S,d}$

$\relax \mathit {N}_{S'}$

\begin {equation}rl_{S'}(t) = \begin {cases} \frac {B_{\snode {S'}}(t)}{C_{\snode {S'}}(t) - G_{\snode {S'}}(t)} & \text {if $C_{\snode {S'}}(t)-G_{\snode {S'}}(t)>0$} \\ \infty & \text {otherwise} \end {cases} \label {eq:rl-metric}\end {equation}

$\mathbf {N}$

$\mathbf {S}$

$N \in \mathbf {N}$

$S \in \mathbf {S}$

$S \in \mathbf {S}$

$\relax \mathit {N}_{S}$

$\sstype {S} \in \mathbf {T}$

$\mathbf {S}$

$S\in \mathbf {S}$

$S^\prime \in \mathbf {S}$

$\ssdeps {S} \subseteq \mathbf {T}$

S

$\ssdeps {S}=\emptyset $

S

$\snode {S}\in \mathbf {N}$

$\ssdeps {S}$

$\ssprov {S} \subseteq \mathbf {S}$

S

t

S

S

$\ssreq {S} \subseteq \mathbf {S}$

S

t

S

$\ssdeps {S}$

t

$\relax \mathit {Prov}_{S}(t)$

$\relax \mathit {Req}_{S}(t)$

$t=0,1,\dots $

$\delta =1$

$d \in \ssdeps {S}$

$S' \in \ssprov {S}$

d

$\ssdeps {S}$

S

$\mathbf {G}(t) = (\mathbf {S}, \mathbf {E}(t))$

$\mathbf {S}$

$\mathbf {E}(t) \subseteq \mathbf {S} \times \mathbf {S}$

$(S_i, S_j) \in \mathbf {E}(t)$

t

S_i

S_j

$S_j\in \ssprov {S_i}$

$\mathbf {G}(t)$

$S \in \mathbf {S}$

S

t

S_1

S_6

N_1

N_2

N_3

N_4

$\ssprov {S}$

$\ssreq {S}$

$comp_i$

$comm_i$

N_i

$\mathbf {G}(t) = (\mathbf {S}, \mathbf {E}(t))$

$S\in \mathbf {S}$

$(S_i, S_j) \in \mathbf {E}(t)$

S_i

S_j

S_i

i

ii

iii

$N_i \in \mathbf {N}$

M

A

P

E

K

S_1

M

AP

E

M

K

N

M

AP

i

K

ii

M

AP

$\textsc {Check}()$

$P(rank,\alpha ,h,sgn)$

$\textsc {Update}().$

$\mathbf {m}$

S'

$d\in \ssdeps {S}$

$S\in ServicePool_N$

N

S'

$\mathit {Cand}_{S,d}$

H

$P(rank,\alpha ,h,sgn)$

d

H

$\mathit {Cand}_{S,d}$

$\textsc {Update}()$

$\textsc {Check}()$

$\textsc {Select}().$

$\textsc {Check}()$

K

$\mathit {Cand}_{S,d}$

$S\in ServicePool_N$

$d\in \ssdeps {S}$

Δt

$\textsc {Check}()$

K

$\textsc {Select}()$

$\textsc {Select}()$

$\mathit {Cand}_{S,d}$

$P(rank,\alpha ,h,sgn)$

d

$d\in \ssdeps {S}$

$S\in ServicePool_N$

$\textsc {Select}()$

$\mathbf {S}$

$N\in \mathbf {N}$

$B_N(t)$

t

$\ngreen {N}(t)$

t

$\nconsumption {N}(t)$

t

$\ngreen {N}(t)$

$\nconsumption {N}(t)$

$B_N(t)$

N

$\ngreen {N}(t)$

$\nconsumption {N}(t)$

$B_N(t)$

$N\in \mathbf {N}$

$S\in \mathbf {S}$

S

$\relax \mathit {N}_{S}$

S

$\ssprov {S}$

$\relax \mathit {N}_{S}$

S

S

$\ssprov {S}$

$\scompind {S}$

S

S

$\snode {S}$

$\scompind {S}$

$\ssprov {S}$

$d\in \ssdeps {S}$

$\mu _{S,d}$

S

d

$\scompind {S}$

$\mu _{S,d}$

S

$\scompsystem {S}$

S

$\scompind {S}$

S

$S'\in \ssprov {S}$

\begin {equation}\scompsystem {S} = \scompind {S} + \sum _{S'\in \ssprov {S}}\mu _{S,\sstype {S'}}\cdot \scompsystem {S'} \label {eq:compsystem}\end {equation}

$\scomplocal {S}$

S

$\scompind {S}$

S

$S'\in \ssprov {S}$

\begin {equation}\scomplocal {S} = \scompind {S} + \sum _{\substack {S'\in \ssprov {S}\\ \land \snode {S'}=\snode {S}}}\mu _{S,\sstype {S'}}\cdot \scomplocal {S'} \label {eq:complocal}\end {equation}

S_1

$\scommcost {S}{S'}$

S

$\snode {S}$

S

$S'\in \ssprov {S}$

S

S'

$\scommcost {S}{S'}$

S

$\scommsystem {S}{N}$

S

$\snode {S}$

$S'\in \ssprov {S}$

\begin {equation}\scommsystem {S}{N} = \sum _{\substack {S'\in \ssprov {S}\\ \land \snode {S'}\neq \snode {S}}}\mu _{S,\sstype {S'}}\cdot \scommcost {S}{S'} + \sum _{S'\in \ssprov {S}}\mu _{S,\sstype {S'}}\cdot \scommsystem {S'}{N?} \label {eq:commsystem}\end {equation}

$\scommlocal {S}{N}$

$\snode {S}$

$S'\in \ssprov {S}$

S

\begin {equation}\scommlocal {S}{N} = \sum _{\substack {S'\in \ssprov {S}\\ \land \snode {S'}\neq \snode {S}}}\mu _{S,\sstype {S'}}\cdot \scommcost {S}{S'} + \sum _{\substack {S'\in \ssprov {S}\\ \land \snode {S'}=\snode {S}}}\mu _{S,\sstype {S'}}\cdot \scommlocal {S'}{N?} \label {eq:commlocal}\end {equation}

$S\in \mathbf {S}$

S

$lef_S(t)$

S

$gef_S(t)$

$A_N(t)$

$N\in \mathbf {N}$

$t=0,1,\dots $

\begin {equation}A_N(t) = \begin {cases} 1 & \text {if $B_N(t-1)+\ngreen {N}(t)-\nconsumption {N}(t)>0$}\\ 0 & \text {otherwise} \end {cases} \label {eq:d-n}\end {equation}

$A_{SYS}(t)$

$t=0,1,\dots $

$\mathbf {N}$

t

\begin {equation}A_{SYS}(t) = \frac {\sum _{N\in \textbf {N}}A_N(t)}{|\textbf {N}|} \label {eq:AvINF}\end {equation}

$A_{SYS}(t)$

$\overline {A}_{SYS}$

\begin {equation}\overline {A}_{SYS} = \lim _{t\rightarrow \infty }\frac {\sum _{\tau =0}^t A_{SYS}(\tau) }{t} \label {eq:A-INFsteady}\end {equation}

$0\leq A_{SYS}(t)$

$\overline {A}_{SYS}\leq 1$

S

$d\in \ssdeps {S}$

S

$\mathit {Cand}_{S,d}$

d

$\mathit {Cand}_{S,d}$

$\relax \mathit {Prov}_{S}(t)$

S'

S

S

S

S'

$ge_{S,S'}(t)$

$le_{S,S'}(t)$

$ne_{S'}(t)$

$rl_{S'}(t)$

$ne_{S'}(t)$

$rl_{S'}(t)$

$ge_{S,S'}(t)$

$le_{S,S'}(t)$

S

S'

S

$ge_{S,S'}(t)$

$ne_{S'}(t)$

$rl_{S'}(t)$

$le_{S,S'}(t)$

S

$lef_{S'}(t)$

$\mu _{S,\sstype {S'}}$

$\scommcost {S}{S'}$

S

S'

$le_{S,S'}(t)$

$ge_{S,S'}(t)$

$ne_{S'}(t)$

$rl_{S'}(t)$

i

ii

$P(rank,\alpha ,h,sgn)$

$rank,\alpha ,h,sgn$

$rank$

$rank\in \{ge_{S,S'}, le_{S,S'}, ne_{S'}, rl_{S'}\}$

\begin {equation}\widehat {rank}_{new}=\alpha \cdot rank_{last} + (1-\alpha) \cdot \widehat {rank}_{old} \label {eq:efficiency-estimator}\end {equation}

$\widehat {rank}_{new}$

$rank$

$\widehat {rank}_{old}$

$rank_{last}$

$\alpha $

$0<\alpha \leq 1$

$\alpha =1$

$\alpha $

$\alpha $

$1/k$

k

$rank$

$rank$

$\mathit {Cand}_{S,d}$

h

sgn

$h \in \mathbb {N}$

$sgn\in \{-1,+1\}$

$S'\in \mathit {Cand}_{S,d}$

$rank$

\begin {equation}\overline {p(S')} = rank^{(sgn)\cdot h} \label {eq:selection-function}\end {equation}

$sgn=+1$

$rank$

$sgn=-1$

$\overline {p(S')}$

$[0,1]$

\begin {equation}p(S')=\frac {\overline {p(S')}}{\psi } \label {eq:selection-prob}\end {equation}

$\psi =\sum _{S' \in \mathit {Cand}_{S,d}} \overline {p(S')}$

$p(S')$

S'

$\mathit {Cand}_{S,d}$

h

$h=0$

$\mathit {Cand}_{S,d}$

$h=1$

$\mathit {Cand}_{S,d}$

$rank$

$h\geq 2$

h

$\mathit {Cand}_{S,d}$

$rank$

$h\rightarrow \infty $

$rank$

$\mathit {Cand}_{S,d}$

$h\geq 20$

h

$ne_{S'}(t)$

$ge_{S,S'}(t)$

S_4

S_6

T_3

S_2

S_4

S_6

T_3

S_4

S_4

S_2

T_3

S_2

S_6

S_4

N_4

S_6

N_3

S_4

S_6

S_2

$\mathit {Cand}_{S,d}$

d

$\relax \mathit {Prov}_{S}(t)$

$\mathit {Cand}_{S,d}$

$P(rank,\alpha ,h,sgn)$

$\mathit {Cand}_{S,d}$

$\relax \mathit {Prov}_{S}(t)$

$P(rank,\alpha ,h,sgn)$

$P(rank,\alpha ,h,sgn)$

$rank,\alpha ,h,sgn$

$P(rank,\alpha ,h,sgn)$

$P(rank,\alpha ,h,sgn)$

$P(rank,\alpha ,h,sgn)$

$\alpha $

$\alpha =1$

$\alpha =0.5$

$h=1$

$h=10$

$h=50$

$h=0$

$|\mathbf {S}|$

$\textsc {num}_\textsc {int}$

$\mathbf {T} = \{T_1,T_2\ldots , T_{\textsc {num}_\textsc {int}}\}$

$|\mathbf {N}|$

D

$node_serv$

$\mathbf {S}$

$3000mAh$

$6000mAh$

$|\mathbf {N}|=50$

$|\mathbf {S}|=250$

$\textsc {num}_\textsc {int}=10$

$D=200$

$\overline {A}_{SYS}$

$\overline {A}_{SYS}$

$\overline {A}_{SYS}$

$\overline {A}_{SYS}\approx 1$

$\overline {A}_{SYS}< 0.9$

$A_{SYS}(t)$

$A_{SYS}(t)$

$A_{SYS}(t)$

$A_{SYS}(t)= 1$

$A_{SYS}(t)\approx 1$

t

$A_{SYS}(t)$

$\alpha = 0.5$

$h = 1$

$A_{SYS}(t)$

$A_{SYS}(t)$

$21{\rm st}$

A_{SYS}

$A_{SYS}(t)$

$A_{SYS}(t)$

$A_{SYS}(t)$

$A_{SYS}(t)$

t

h

$h>1$

$ge_{S,S'}$

$le_{S,S'}$

$rl_{S'}$

$ne_{S'}$

$le_{S,S'}$

$ge_{S,S'}$

$le_{S,S'}$

$le_{S,S'}$

$ge_{S,S'}$

$le_{S,S'}$

$le_{S, S'}(t)$

a

b

50

$C1$

$C2$

$C2$

$C2$

$C2$

$C2$

$C2$

$\ngreen {N}(t)$

$\ngreen {N}(t)$

\begin {equation*}\ngreen {N}(t)= \begin {cases} \ngreen {N}(t-1)+m_s+e & \text {with probability p_s}\\ \ngreen {N}(t-1)-m_s+e & \text {with probability p_s-1} \end {cases}\end {equation*}

s

p_S

m_s

e_s

$\relax \mathit {G}_{N}$

s_0

$\ngreen {N}(t)$

(i)

(ii)

(iii)

\begin {align}&E_{Tx}(k,d) = \lambda \cdot k\cdot (E_{elect} + d^2\cdot \epsilon _{amp}) \label {Xeqn17-B.1}\\ &E_{Rx}(k)= \lambda \cdot k \cdot E_{elect} \label {Xeqn18-B.2}\end {align}

$\lambda $

k

$E_{Tx}(k,d)$

d

$E_{Rx}(k)$

$\epsilon _{amp}$

$E_{elect}=50 nJ/bit$

$\epsilon _{amp}=10 pJ/bit/m^2$

$k = 1264 bit = 158 bytes$

$50 nJ$

mAh

mAh

https://orcid.org/0000-0002-2935-6583
https://orcid.org/0000-0003-4337-4734
https://orcid.org/0000-0003-3154-2438
https://orcid.org/0009-0001-5152-6534
mailto:mauro.caporuscio@lnu.se
mailto:mirko.dangelo@ericsson.se
mailto:vincenzo.grassi@uniroma2.it
mailto:raffaela.mirandola@kit.edu
mailto:fr.ricci@reply.it
https://doi.org/10.1016/j.jss.2025.112755
https://doi.org/10.1016/j.jss.2025.112755
http://creativecommons.org/licenses/by/4.0/

M. Caporuscio et al.

relation to services. Following the paradigm of anything as a service,
these resources can be considered as services themselves, which may
also have their own dependencies that need to be resolved and main-
tained.

Hence, to enable the emergence and smooth operation of new ser-
vices in a dynamic and open environment, such as the IoT and com-
puting continuum, it is necessary to consistently activate a dependency
resolution process that keeps all the dependencies of the already existing
services resolved. Adopting the terminology used, for example, in Sykes
et al. (2011), we call the problem of designing and implementing this
process the service assembly problem, which corresponds, as discussed in
Section 9, to finding a solution to the following research question':
RQO: Given a dynamic set of services, how can we solve and maintain over
time their dependencies using other services in the same set?

Different answers to this question can already be found in the liter-
ature. Independent of the adopted approach, giving an effective answer
to RQO means, in the end, favoring the pervasive diffusion of function-
alities based on the use of information and communication technologies
(ICT), as it facilitates the emergence and maintenance of new services
from existing ones. In this respect, there is an increasing concern that
the overwhelming diffusion of ICT could negatively impact the achieve-
ment of environmental sustainability objectives (Freitag et al., 2021),
because of the increase in energy consumption and the potential rise
in greenhouse gas emissions if the energy demand is met using brown
energy sources.

To this extent, our goal is to investigate RQO from the perspective
of the energetic autonomy concept. This means that the energy required
for the services in a specific environment should come solely from local
renewable energy sources (such as solar or wind energy), resulting in
zero greenhouse gas emissions. The main research question we intend
to address in this paper can be thus stated as follows:

RQ1: How and to what extent can we answer RQO under the requirement
that the assembled services fulfill the energetic autonomy constraint (as stated
above)?

Existing answers to RQO are natural candidates for investigating
RQL1. Some of these answers employ optimization techniques that typi-
cally assume global and centralized knowledge, where complete infor-
mation about the system is available. Since our focus is on decentralized
systems, where only local knowledge is accessible, we address RQ1 by
building on the solution proposed in Angelo et al. (2020), as its decen-
tralization, self-adaptation, and scalability features make it particularly
suitable for the IoT scenario we are considering.

Besides RQ1, we also address another related question. The primary
obstacle to tackling RQ1 is to guarantee service availability, even with
the intermittent nature of green energy sources. In this respect, any solu-
tion aimed at RQ1 must rely on data about the energy demand of the ser-
vices and the availability of adequate energy (the system’s energy state).
Collecting and updating the energy state is essential in the dynamic sce-
nario we are considering. However, this activity also contributes to the
overall energy demand. The choice of different indicators to represent
the energy state could have different impacts on energy consumption,
depending on the complexity of their collection and updating process.
Opting for simpler indicators that offer less detailed information could
reduce the related energy consumption, but they could impede the goal
of achieving energetic autonomy. This gives rise to an additional re-
search question, which can be stated as follows:

RQ2: Can we get insights about which energy state indicator is more suitable
to reach a good trade-off between achieving the energetic autonomy goal and
the complexity of keeping that indicator updated?

Paper contribution. Answering the research questions RQ1 and RQ2
requires tackling issues, including: (i) the complexity caused by the high

1 We discuss in Section 9 the relationship of this problem with the service
composition problem.

The Journal of Systems & Software 235 (2026) 112755

Table 1
Notation.
N Set of nodes
Ny Node hosting the service .S
S Set of services
T Set of service types
Typeg Type of the provided interface by .S
Depg Set of dependencies of §
Provg(r) Set of services selected to resolve the dependencies of §
Req (1) Set of services bound to S to resolve one of their dependencies
Usa Average number of times a service S requires dependency d
By (1) Battery level of node N at time slot ¢
Gy () Energy generated by node N within time slot ¢
Cy Energy consumed by node N within time slot ¢
LY (1) Node level (local scope) computation energy consumption
o™ (1) System level (global scope) computation energy consumption

Ko Communication energy consumption for a single
request from S to .S’

L™ (1) Node level (local scope) communication energy consumption
og"™™ (1) System level (global scope) communication energy consumption
gefs Global (system-wide) energy footprint of service S

lefg Local (node level) energy footprint of service .S

ges s Global energy (Eq. (10))

leg Local energy (Eq. (11))

neg, Energy level of the node hosting service S’ (Eq. (12))

rlg Residual lifetime of the node hosting service .S" (Eq. (13))

number of entities distributed in the system (e.g., IoT devices, edge/fog
computing nodes), (ii) the lack of global knowledge, which is typical
in large-scale dynamic distributed systems, (iii) the unpredictable vari-
ability of the environment (e.g., entities joining/leaving the system or
changing their quality attributes).

To cope with these issues, the proposed approach to answer RQ1 and
RQ2 has the following characteristics:

1. The system is completely decentralized, eliminating the requirement
for each participating entity to possess complete knowledge of the
system’s state.

2. It handles on its own events such as nodes or services joining/leaving
the system or changes in locally available energy.

Our contribution deeply refines and extends some preliminary re-
sults already presented in Caporuscio et al. (2020). With respect to that
paper, the main extensions and refinements concern: (i) the considera-
tion of a more complex reference scenario that includes intermittently
available green energy sources and battery-powered devices and also
the possibility of nodes hosting multiple services; (ii) the definition of
a parameterized service selection policy, from which different policies
can be easily derived to implement the service selection process; (iii)
a more articulated presentation of the adopted approach and a deeper
comparison with related works, and (iv) an extensive set of experiments
referring to the more complex reference scenario we are considering.

Structure of the paper. Sections 2 and 3 lay the groundwork for this
study by formalizing the system model and providing an overview of the
service assembly approach we build on, respectively. Then, Section 4 in-
troduces the adopted energy model, and Section 5 defines the metrics we
adopt to measure the self-sustainability. Section 6 defines energy-aware
service ranking metrics, introduces a parameterized service selection
policy, and gives details on the service selection policies that can be de-
rived from it. Section 7 shows the results of our experiments, Section 8
discusses how these results answer RQ1 and RQ2 and possible threats to
their validity. Section 9 reviews related works, while Section 10 outlines
conclusions and future work.

2. System model
Table 1 summarizes the notations used throughout the paper.

We consider a distributed system consisting of a set N of nodes (e.g.,
IoT and computing continuum nodes), and a set S of (software) services

M. Caporuscio et al.

(a) S, is linked to S 4

(b) S, is linked to S¢

Fig. 1. Service assembly examples: same dependencies but different bindings
for full resolution.

deployed on these nodes, each of them implementing a specific func-
tionality. A Node N € N hosts one or more services S € S, providing
them with the basic computing and communication resources needed
for their operations and supplying the required energy (see Section 4).

Given a service S €S, we denote by Ny its hosting node, and
by Typeg € T the type of the functionality it offers (provided inter-
face). We assume that, in general, S includes multiple services hav-
ing the same type (functionally equivalent services), but different non-
functional characteristics.

A service S € S generally requires functionalities offered by other
resources to carry out its own task. As already pointed out in the In-
troduction, we adopt a unifying service-oriented perspective and model
each of these resources as a service S’ € S. We denote by Depg C T the
overall set of dependencies needed by S. In case Depg = @, this means
that .S needs only the basic computing and communication resources of
its hosting node N € N to provide its functionality.

Given Depg, Provg(t) C S denotes the set of services to which S is
bound at time 7 to resolve such dependencies (i.e., the Providers of S). For
the sake of symmetry, as a given service .S can be used by other services
to fulfill their dependencies, Req¢(f) C S denotes the set of services using
S at time ¢ (Requesters of .S).

We assume that Depg is fixed for each service and known in ad-
vance. We remark that we have included the time index ¢ to Provg(t)
and Reqg(?) to evidence that they represent dynamic state information,
which can change over time. To this end, we adopt a discrete-time model
indexed by t =0, 1, ..., where we conventionally assume that the length
of a time slot is § = 1 measured in some suitable time unit.

A service is said to be fully resolved (and hence fully functional) when
all its dependencies are resolved, that is, when for all d € Depg there ex-
ists a fully resolved service S’ € Provg(t) whose type matches d (Razian
et al., 2022; Paolucci et al., 2002). In the scenario we are considering,
the dependencies in Depg are dynamically resolved at runtime.

The overall assembly of services resulting from the bindings between
each service S and other services used to resolve its dependencies can
be represented as a directed graph G(7) = (S, E(r)), where S represents
the graph nodes and E(r) C S x S is the set of graph edges. Specifically,
a directed edge (S;, S;) € E(7) denotes that, at time #, S; is using S to
resolve one of its dependencies (i.e., S, € P’OUS,.(f))- An assembly of
services represented by a graph G(?) is fully resolved if for all S € S, S is
fully resolved at time 7.

Fig. 1 shows an assembly of services (including services .S; - S,) that
illustrates the actual deployment of services on nodes N, N,, N; and
N,. The figure reports two scenarios, Fig. 1a and b, where service de-
pendencies are (fully) resolved in different ways. The set of types and
dependencies for this example is reported in Table 2, where for each sce-
nario we show the sets Provg(r) and Reqg(1). Fig. 1 also shows the com-
puting and communication resources (comp; and comm;) of each node
N;, used by each service hosted by that node for its operations.

The Journal of Systems & Software 235 (2026) 112755

Table 2
Service assembly: Types and dependencies.

S Type Dep Prov Req Prov Req

Scenario 1 Scenario 2
N 1 T] TZ S 2 - S 2 -
S 2 TZ T3 S. 4 N 1 S 6 Sl
S5 T - - Sy - Sy
Sy Ty T, S S, S, -
Ss T, - - Se - S
Sy T TS - S8,

From the model presented in this Section, it follows that building
and maintaining over time a graph G(¢) = (S, E(7)), where each S € S is
fully resolved, means providing an effective answer to the RQO stated in
the Introduction. In the next section, to make the paper self-contained,
we outline the main elements of a decentralized approach presented in
Angelo et al. (2020), which achieves this goal. This procedure provides
the basis for the approach we propose to get an answer to RQ1 and
RQ2, which are the focus of this paper. This approach is discussed in
the following Sections 4-8.

3. Service assembly

The fully decentralized service assembly approach summarized in
this section drives the system modeled in Section 2 toward the construc-
tion and maintenance of a fully resolved service assembly (RQO). The
approach is based on previous work (Angelo et al., 2020). However, for
the sake of readability, we summarize it herein.

The proposed approach adheres to the Service Statelessness design
principle (Erl, 2005), and services do not maintain the interaction state
between service invocations Hence, we assume that the state of a given
interaction (S}, S;) € E(t) between S; and S, is kept by .5;, and requests
include all information necessary for their processing. Service stateless-
ness improves (i) decoupling of interacting services, (ii) flexibility of the
model, since it allows for easily rearranging the assembly at runtime,
and (iii) scalability, by exploiting service caching and replication.

Referring to Fig. 2, the core idea underpinning this approach is to
deploy at each node N; € N a self-adaptation mechanism architected
according to the well-known MAPE-K model (Weyns et al., 2013), with
Monitor (M), Analyze (A), Plan (P) and Execute (E) components, plus
a Knowledge (K) component that maintains relevant information about
the Managed System (e.g., service type, energy consumption, quality of
service).

To collectively act as a Managing System for the Managed System com-
posed of the nodes and the services deployed on them (see Fig. 2), the
distinct MAPE-K loops should coordinate their activities. To this end,
we adhere to the Information Sharing Pattern (Weyns et al., 2013), where
each MAPE-K loop requires information from other nodes in the system
to drive its self-adaptation activities.

Continuing with Fig. 2, each service (e.g., .S|) exposes its depen-
dencies through an invoke interface and provides a probe interface to
support the monitoring activities. The MAPE-K activities are carried out
at each node by three different components, namely M (Monitor), AP
(Analyze and Plan), and E (Execute).

The M (Monitor) component is responsible for the information dis-
semination activity. This activity allows for the update of the knowl-
edge base (K) at each node N, thanks to the interaction with sibling M
components hosted by the other nodes in the system. In turn, the AP
component locally implements at each node the analysis and planning
activities aimed at (i) analyzing the information kept by the knowledge
K and (ii) selecting the services of interest that resolve the dependencies
of the local services.

The dissemination activity performed by the M components is
based on a classical advertisement schema (Meshkova et al., 2008),
implemented through a Publish/Subscribe mechanism, which has been

M. Caporuscio et al.

)
! 1
| [Information Sharing System] |

i
|]
i

5 K :

2, check]

[N update |

jo2]] }

£ i

& i !

S M AP E]

=) !
| activeThread analyzePlan consume ,
! passiveThread select |

i
R |
1
i
|

£

o)

B

>0

@D

3
i

=

g,

Ioh

=4
1| S
|
i

Fig. 2. Node architecture.

proven to be effective in pervasive computing environments (Nast et al.,
2023). We refer to Angelo et al. (2020) for details on the adopted ad-
vertisement schema.

Based on the information disseminated in this way, the AP compo-
nent performs its operations, implemented by the CHECK(), UPDATE()
and SELECT() functions shown in Fig. 2. Some details of these functions
are outlined below. As shown in Algorithms 1 and 2, the key element
of both UPDATE() and SELECT() is the P(rank,a, h, sgn) function, fully
described in Section 6, whose goal is to drive the operations of the func-
tions UPDATE() and SELECT() to properly address RQ1 and RQ2.

UPDATE(). The UPDATE() function checks each message m received
through the dissemination activity, to see whether an advertised service
S’ could be used to resolve some dependency d € Depg for any S €
ServicePool y; (the set of services hosted by a node N). In the positive
case, the function UPDATE() considers .S’ as a possible member of the set
Candg , that collects the “best” known H or less candidates (according
to P(rank,a,h,sgn)) to solve the dependency d. The upper bound H
on the cardinality of Candg, is a system parameter, set to a suitable
value to limit memory occupancy. Algorithm 1 outlines the UPDATE()
operations.

Algorithm 1 Function UPDATE().
// Input parameters
1: ServicePool y;m; P(rank, a, h, sgn)
// Algorithm
2: for all S € ServicePool y do
for all d € Depg do
for all S’ € m do
if Typeg, = d then
Candg, <« Candg, U {S'}
if |Candg | < H then
continue
else // Drop the worst service to keep |Cand g ;| < H
S§* « “worst” S € Cand g ; according to P(rank, a, h, sgn)
Candg, « Candg , \ {S*}

— =
CEeeNaUaw

CHECK() and SELECT(). The CHECK() function analyzes the knowledge
K (i.e., the set of service candidates Cand g , for each S € ServicePool
and d € Depg). This may happen proactively (e.g., every At time unit) or
reactively (e.g., when values in the monitored data are detected outside
predefined tolerance windows). Whenever the analysis performed by
the CHECK() function notices a significant variation in K, then a new
plan is required by calling the SELECT() function.

The SELECT() function selects from the set Cand s ; the “best” known
service (according to P(rank,a,h, sgn)) to resolve a dependency d, for

The Journal of Systems & Software 235 (2026) 112755

any d € Depg and for any S € ServicePool . Algorithm 2 outlines the
SELECT() operations.

Algorithm 2 Function SELECT().

// Input parameters

P(rank,a, h, sgn)

// Algorithm

2: forall S e ServicePool y do

3 for all d € Depg do

4: S* « “best” S € Cand 5, according to P(rank,a, h, sgn)
5 use S* to resolve dependency d (add S* to Provg(r))

—

N

. Energy model

In this section, we introduce the model and the associated notation
that we will use to characterize the relevant energy-related information
for the system we are considering. They integrate the model and nota-
tion introduced in Section 2. We will use them in Section 5 to define the
metrics measuring the system’s energetic autonomy, and in Section 6 to
define the procedure that will drive the assembly process described in
Section 3 towards achieving the goal of energetic autonomy.

We assume that the computing and communication resources associ-
ated with each node are the only direct sources of energy consumption,
while the energy consumption of services in S is related to the use they
directly or indirectly make of these resources.

4.1. Node energy model

The computing and communication resources present in each node
draw the energy required for their operations from a local “green”
source (e.g. solar or wind generator), whose production rate can vary
over time or be temporarily null. In case of insufficient or null energy
production, these resources can draw energy from a locally available
battery, which is recharged by the locally produced excess energy. As
we are interested in investigating the ability to be energetically au-
tonomous, we do not consider the possible connection of the system
nodes to a global power grid that could compensate for the lack of local
energy. We use the following notation to characterize the energetic state
of anode N € N:

e By (1): battery level at time slot ¢
e Gy (1): energy generated within time slot ¢
e Cy(n): energy consumed within time slot ¢

Gy (1) is an uncontrollable parameter whose value can change over time,
as is typical for renewable energy sources (see Appendix A). The value of
Cy () and By (1) instead depends on the activities of the services hosted
by N, and hence depends on how those services are assembled with
other services. We assume that the values of G (r), Cy (7) and B (7) are
estimated by the monitor component at each node N € N.

4.2. Service energy model

When a service request arrives at a service S € S, S starts execut-
ing its internal operations, which consume energy because of the use
of the computing and communication resources of its hosting node N.
Besides this, the request arrived at S can generally trigger a flow of
cascading requests addressed to services in Provg(r), which in turn will
cause additional energy consumption by the use of the computing and
communication resources of their hosting nodes (which could include
Ny, in case of co-located services).

As a first step in the definition of a model of the energy consumption
for service .S, we separately characterize in the following paragraphs
the energy consumption caused, respectively, by the computation and
the communication activities triggered by a single request addressed to

M. Caporuscio et al.

-_|
1
I--
1
_-

N,

The Journal of Systems & Software 235 (2026) 112755

_-I
1
I--
1
-_

N,

(a) Individual computation energy consumption of

S 1;”1”"’ Lf;”l’""(r)

(b) Local computation energy consumption of S; :

(c) Overall computation energy consumption of S :
Ocnmp (l)

Fig. 3. Visualization of the computation energy consumption indexes for the service .S| in an example scenario (see shaded boxes).

S. In both cases, we will give two different characterizations that differ
concerning the extent to which they take into account the cascading
process of requests addressed to services in Provg(t).

Computation energy. Let us denote by I ™" the average individual
computation energy consumption of S, i.e., the energy directly con-
sumed by .S using the local computing resource of the hosting node
N for its internal operations. Hence, I ;" does not consider at all the
indirectly consumed computation energy caused by the use of services
in Provg(t). Moreover, for each d € Depyg, let us denote by ug , the av-
erage number of times .S requires the dependency d to fulfill a request
it has received. For both I¢™"” and ug 4, we assume that their value is
known (e.g., through a monitoring activity locally performed at the node
hosting S).

We now introduce the following two definitions:

o 03" (1): overall (system-wide) average computation energy con-
sumption of a service .S, which is equal to g™ plus the compu-
tation energy indirectly consumed by S because of its use of services
S’ € Provg(t), wherever they are located in the system:

09" W =T" + Y Hsaypey - 05" ® ¢9)
S’eProvg(1)

o L™ (1): local (node level) average computation energy consumption
of a service S, which is equal to I plus the average computation
energy indirectly consumed by S because of its use of services S’ €
Provg(t), but limited to services co-located with it on the same node:

comp __ ycomp comp
L™ @) =19 + Z HsTypeg - L™ (®)
S’EProUS(I)
ANgr=Ng
Fig. 3 shows, with a simple deployment scenario, the set of nodes,
software services and computing services involved in the definition
of each computation energy consumption index introduced above.

Communication energy. Let us denote by K;‘fg,’" the average energy di-
rectly consumed by a service .S using the local communication resources
of N for a single interaction between S and service S’ € Provg(?) (this
cost is considered negligible and conventionally assumed to be zero
when S and S’ are hosted by the same node). Also in this case, we as-
sume that the K;"g,’" value is known (e.g., through a monitoring activity
locally performed at the node hosting .S).

We now introduce the following two definitions:

o O™ (1): overall (system-wide) average communication energy con-
sumption caused by a single request addressed to .S, which is equal to
the overall communication energy directly consumed at Ng plus the
communication energy consumed by services S’ € Provg(r), wher-
ever they are located:

O™t =" N Hsrypey KSW+ D Hsrype, - OS(0) ®3)
S’€Provg(1) S'eProvg(t)
ANg#Ng

LY™™(t): local (node level) average communication energy consump-
tion, which is equal to the overall communication energy directly
consumed at Ng plus the communication energy consumed by ser-
vices S’ € Provg(t) co-located with S:
L™= Y My KSF D

S'eProvg(t) S’'eProvg(1)
ANg#Ng ANg=Ng

B Typey - L™ (1) @

Based on the definitions above, we now give two characterizations,
which differ in their scope, of the energy footprint of a service S €S,
defined as the overall average energy consumption caused by a single
request addressed to S:

o global (system-wide) energy footprint, which includes the energy di-
rectly consumed by S and the energy indirectly consumed by .S be-
cause of its use of services S’ € Provg(t), wherever they are located
in the system:

gefs) = 03" () + 0" (1))

e local (node level) energy footprint, which includes the energy directly
consumed by .S and the energy indirectly consumed because of its
use of services S’ € Provg(1), but limited to services co-located with
it on the same node:

lefs(t) = L™ (1) + LY (1) (6)

We remark that, based on their definitions, /ef¢(¢) requires only a
local monitoring activity for its estimation, limited to the node hosting S,
while gef¢(7) requires the acquisition of information from other nodes.

5. Energetic autonomy metrics

We present the metrics that we use to measure the extent to which a
given assembly of services achieves the energetic autonomy goal defined
in the Introduction. We will use these metrics to assess the effectiveness
of answering RQ1 of the management policies introduced in the next
Section 6. In the definition of these metrics, our perspective is that the
assembly of services achieves the goal of energetic autonomy as much
as it can keep “alive” the nodes on which it is deployed, that is, with
sufficient energy to support the operations of the services. We point
out that this required energy includes not only the energy spent for the
operations that implement the service functionality, but also the energy
spent in complementary operations like service setup and shutdown.

As a first step, we define the following index that expresses the in-
stantaneous energy-based node availability. We point out that it is de-
fined from an energy perspective only, in the sense that a node is consid-
ered available if it can satisfy the energy demand of the services it hosts.
Other possible causes of (un)availability are ignored in this definition:

e Ay(@), N €N, t=0,1,...: node instantaneous availability, defined as:
A = {1 if BN(t.—1)+GN(t)—CN(t)>0 -
0 otherwise

Based on this definition, we now define the following energy-related
system-wide index:

e Agys(®), t=0,1,...: instantaneous system availability, expressing the
fraction of nodes in N that are available at time 7, defined as:
Y nen An()
Asys(®) = % (®)

Agys(t) is a time-dependent index that can be used to trace how
the availability of the system evolves over time as a consequence of
variations in its energy state.

M. Caporuscio et al.

We also define the following time-independent index, which can be
used as a figure of merit summarizing in a single number the system’s
energetic autonomy:

o Agys: steady-state system availability:

t

Agys = lim im0 A;SYS(T) ©

From (8) and (9) it follows that 0 < Agy5(t), Agys < 1. From the en-
ergetic autonomy perspective, the optimal scenario corresponds to the
case where these indices are equal to one, as it indicates that the system
is able to keep its nodes fully operational, relying only on locally avail-
able/produced (green) energy, without resorting to an external power
grid. Keeping these indices as close as possible to this optimal value
thus represents the energetic autonomy goal we intend to pursue with
the approach presented in the following sections.

6. Service ranking and selection

In this section, we first define (Section 6.1) the metrics that we
will use to rank functionally equivalent services with respect to their
suitability in meeting the energetic autonomy goal. Then, we present
(Section 6.2) a parameterized selection policy that, based on the de-
fined metrics, selects one service within a given set. Actually, this pol-
icy defines a template for generating a family of possible service se-
lection policies. Each policy in this family can be instantiated by the
assignment of specific values to the template parameters. This guar-
antees a high flexibility in the exploration of different policies. We
will exploit this flexibility in the experiments discussed in Section 7,
where we assess the effectiveness of different policies in answering
RQ1 and RQ2.

6.1. Energy-aware service ranking metrics

Given a service .S and a dependency d € Depg, we recall that the as-
sembly procedure outlined in Section 3 keeps updated at the node host-
ing S a set Candg ,, which collects functionally equivalent candidate
services the node has become aware of to resolve d. The goal of the met-
rics we define here is to rank the services belonging to Cand s 4, in order
to drive the selection of one of them as a member of the set Prov (1) (this
selection is performed by the SELECT() function introduced in Section 3).
The ultimate aim is to favor, thanks to this selection, the achievement
of the energetic autonomy objective (RQ1).

We recall from the Introduction that we also intend to address the
research question RQ2, which concerns getting insights about possi-
ble trade-offs between the effectiveness of the assembly process and
the “complexity” of the indicators (metrics) used to drive its opera-
tions (with respect to the energetic autonomy goal). To this end, we
define four different energy-aware ranking metrics with different com-
plexity characteristics, as discussed at the end of this subsection. We
classify these metrics into two groups. The first group includes two
service-based metrics that rank services based on their energy footprint,
as defined in Section 4.2. The rationale for these two metrics is that
a service S’ should be selected to resolve a dependency of a service
S on the basis of the impact that its operations have on the overall
energy consumption (as seen from the perspective of .5, i.e., also tak-
ing into account the communication cost between .S and S’). The sec-
ond group includes two node-based metrics that instead rank services
by considering the “energy wealth” of the node hosting them. The ra-
tionale for this second set of metrics is that a service should be se-
lected, taking into account the amount of available energy it can rely
on for its operations. As an example, in comparison with the metrics in
the former set, these latter metrics could lead to prefer a service that
consumes more energy (greater energy footprint), if it is hosted by a
node with a fully charged battery and/or a higher energy generation
rate.

Service-based metrics.

The Journal of Systems & Software 235 (2026) 112755

Table 3
Overhead for energy-aware service rank-
ing metrics.

ranking monitoring dissemination
metric overhead overhead
geg o (1) high high

leg o (1) high low

neg (t) low high

rlg (1) low high

* global energy metric geg ¢ (1): this metric ranks S" € Cand 5 4 accord-
ing to its system-wide energy footprint gef (¢), defined by Eq. (5),
plus the communication cost between S and S”:

. Kcomm

ges s(1) =gefg () + HS Typegr S5 10)

local energy metric leg ¢ (¢): this metric has a more limited scope than
geg (1), as it ranks S” € Cand g 4 according only to its local energy
footprint lef (t) (Eq. (6) if S and .S’ are co-located, otherwise ac-
cording to the communication cost between .S and .S’:

leS,S’(t)zlefS’(I)'U(NS/=NS) an

comm

tUsTypey Ko Uing#ng)

where Uy, is the indicator function that holds 1 when condition
cond is true, and 0 otherwise.

Node-based metrics.

node energy metric neg (): this metric ranks S’ € Cand g ; according
to the current battery level of the node that hosts it (Ng), defined
as:

neg ()= By, (1) 12

residual lifetime metric rlg (7): this metric ranks S” € Cand g 4 accord-
ing to the currently estimated residual lifetime of N ; the estimate
is based on the current values of the node battery level and energy
production/consumption rate:

By, ()
Cng -G g,

) otherwise

if Cy, () = Gy, (1) >0

rlg(t) = 13

Discussion. We evidence some characteristics of the defined metrics:

(D) geg (1) and leg ¢ (1) are “lower-is-better” metrics, while ne g (t)
and rlg (1) are “higher-is-better” metrics;

(i) neg (¢) and rlg (r) can be considered as “simple” metrics with
respect to the information needed for their measurement, as they re-
quire the collection of relatively easy-to-measure coarse-grained physi-
cal quantities (battery level, charge/discharge rate). Comparatively, the
geg (1) and leg ¢ (7) metrics are more complex, as they require finer-
grained measurements (computation and communication energy con-
sumed by the activation of each service).

(iii) when S and S’ are not colocated, the estimation at the node
hosting .S of the metrics geg ¢/ (), neg (t) and ri g (t) requires the acqui-
sition of information disseminated by other nodes; leg ¢ (7) is instead
the only metric whose estimation at the node hosting S requires only
locally monitored information (i.e., lefg/(?), u S Typegs and Kg‘fg,’", see
Section 4.2), independently of whether S and S’ are colocated or not.
Hence, in terms of the communication overhead, /e ¢ (7) is a “simpler”
metric than geg ¢ (), neg () and rl g (2).

Table 3 summarizes the characteristics discussed above of the four
considered metrics and gives a qualitative assessment of the monitoring
and dissemination overhead caused by the MAPE-K loop (see Fig. 2).
It is worth noticing that we consider the computation overhead of the
analysis and planning activities negligible, because it only consists of
updating the efficiency estimator of the policies discussed in the next
section.

M. Caporuscio et al.
6.2. Parameterized service selection policy

The functions UPDATE() and SELECT() introduced in Section 3 rely
on the parameterized selection policy described in this section. It is
based on a generalization and adaptation of a method originally pro-
posed in Schaerf et al. (1995) for a scenario of decentralized load bal-
ancing in a distributed system with load-dependent QoS. The key ele-
ments of our policy are: (i) the forecasting method used to update the
value of the adopted service ranking metric and (ii) the selection crite-
rion used to select a service within a given set of candidates, based on
the ranking value associated with each of them. We denote this pol-
icy by P(rank,a, h, sgn), where rank, a, h, sgn are the policy parameters.
In the following two paragraphs, we explain in detail their role in the
definition of the two key policy elements.

Forecasting method. We denote by rank the ranking metric used
to drive the selection process; in our setting, we have rank €
{geg s.les g1 negr, rl g). The values of these metrics are kept up to date
at each node, thanks to data locally monitored or obtained through the
dissemination procedure described in Section 3. The update procedure
is based on the simple exponential smoothing method (Hyndman and
Athanasopoulos, 2021):

grﬁcnew =a-rank;,, + (1 —a)- @old a4

where @new is the new forecast for the value of rank, Wold is the
previous forecast and rank,,,, is the last collected value (by direct obser-
vation or calculated on the basis of disseminated data), while « is the
smoothing parameter, with 0 < a < 1.

When a =1, Eq. (14) defines a “memoryless” forecasting method
based only on the last observed value; otherwise, a values increasingly
close to zero give more and more weight to the accumulated past expe-
rience (for example, if a is set equal to 1/k, where k is the number of
collected observations for rank up to the present time, Eq. (14) corre-
sponds to the sample mean of rank that, by definition, gives increasingly
more weight to past observed values).

Selection criterion. The goal of this criterion is to pick a single service
within the set Cand , of candidates. We adopt a probabilistic method
to this end that depends as follows on the parameters 4 and sgn, where
h e N and sgn € {-1,+1}. Given a service S’ € Cand 5 ; and its ranking
value rank, we define the following function:

p(S") = ranktssWh @15)

where sgn = +1 if rank is a “higher-is-better” metric, while sgn = —1 if
it is a “lower-is-better” metric. Then, we normalize p(S’) in the interval
[0,1]:

s’y = 25D 16)
%

where y =), S'eCandg 4 p(S”) is a normalization factor. Finally, we in-
terpret p(S’) as a selection probability associated with S’ and use it to
probabilistically select a service within Cand g 4.

According to Egs. (15) and (16), different values of parameter /s lead
to different probabilistic selection policies:

e h =0: random policy that selects with uniform probability any ser-
vice in Cand g ,. We will use this policy as a baseline policy against
which we will compare the other ones that we will consider;

e h = 1: weighted fair policy that selects a service in Cand 5 ; with prob-
ability proportional to the rank associated with that service through
metric rank;

e h > 2: biased-towards-best policy that, for increasing values of 4, se-
lects a service in the set Cand g ; with probability increasingly biased
towards the “best” service in that set, according to metric rank.

e For h — oo we obtain a greedy policy that always selects the “best”
service, i.e., the service with the maximum (minimum) rank value
within the set Candg, (as noted in Schaerf et al. (1995), a value
h > 20 is sufficient to get a greedy behavior).

The Journal of Systems & Software 235 (2026) 112755

(a) Service-based metric

(b) Node-based metric

Fig. 4. Assembly decisions driven by different service ranking metrics.

It should be noted that, for increasing values of A, the selection pol-
icy increases its degree of exploitation with respect to exploration. The
dualism between exploration and exploitation in learning techniques is
an important aspect that has long been investigated (Ishii et al., 2002).
A high degree of exploration allows algorithms to rapidly traverse the
solution space in search of the best achievable result to the detriment
of the short-term solution’s effectiveness. The extreme case of an explo-
rative algorithm is the random policy. On the other hand, a high level
of exploitation favors the best-known solution at the disadvantage of
missing better candidates from an unknown set. In most cases, it is not
trivial to establish the right balance between exploration and exploita-
tion in view of the complexity of the task these techniques are required
to solve.

An example of the different selection decisions driven by the rank-
ing metrics we have defined is shown in Fig. 4, which depicts the same
service assembly scenario already shown in Fig. 1 (the service types
and dependencies are those reported in Table 2). We use a “color code”
to graphically illustrate an example of the possible relative values of
service-based and node-based metrics, where in both cases a darker tone
is intended to represent a higher value of the metric: in particular, (i)
different orange tones represent different values of a node-based met-
ric (e.g., the node energy metric neg, (t) defined by Eq. (12); (ii) different
blues tones represent different values of a service-based metric (e.g., the
global energy metric geg ¢ (1) defined by Eq. (10). Consider the two func-
tionally equivalent services .S, and Sg: they both offer a service of type
T; and hence any of them could be used to solve the dependency of S,.
If we rank these services according to a service-based metric, then S
is better than Sg, from the perspective of a service requesting a type T3
service: the lighter blue tone of .S, indicates that each invocation of S,
causes a lower energy consumption; this, hopefully, should reduce the
possibility that requests made by S, for a T; service leads some node
to run out of energy, thus becoming unavailable. Fig. 4a shows the as-
sembly decision for S, that could result from this ranking. On the other
hand, if we rank the services according to a node-based metric, then Sy
is better than .S,: the darker orange tone indicates that node N, hosting
S, has a higher battery level than node N; hosting S, which means that
S, can rely on a higher energy budget for its operations. Fig. 4b shows
the assembly decision for S, that could result from this alternative rank-
ing. It is not easy to decide a priori which of the two selection decisions
leads to better results. In the next section, we investigate both this con-
cern and the balance between exploitation and exploration discussed
above.

7. Experimental results

In this section, we experiment with the different policies to address
the research questions RQ1 and RQ2. To this end, we compare the per-
formance of ranking metrics (Section 6.1) and selection policies (Sec-
tion 6.2), under various conditions, focusing on how effectively they

M. Caporuscio et al.

°
o

o
©

o
©

o
®

o
®

o
3

o
=)

Instantaneous infrastructure availability
Instantaneous infrastructure availability

o
o

0 500 1000 1500
Hours

(@a=05h=1

°

°

o
©

o
o

o
3

o
o

Instantaneous infrastructure availability
Instantaneous infrastructure availability

o
o

The Journal of Systems & Software 235 (2026) 112755

210
N
2
%0.9— |
(] i
: o
=" b
3 /] o R
g |
Eor
[}
=3
o
2
§oo
8
z
Sos
0 500 1000 1500 2000

Hours

(©)a=05,h=50

°

Instantaneous infrastructure availability

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
Da=1,h=1 e@a=1,h=10 Ha=1,h=50

global energy = residual life = random

- local energy = node energy = QoS-aware

Fig. 5. Agy(?) in scenarios with green energy source (solar panel) and battery (small). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

support the system in maintaining energetic autonomy. By analyzing
their behavior, we aim to identify which policy offers the most balanced
and practical approach to energy-aware self-adaptation.

As remarked at the end of Section 3, the decentralized service assem-
bly procedure described there eventually leads to the creation of a fully
resolved assembly. This result is achieved independently of the rule used
by the UPDATE() and SELECT() functions to update the content of the set
of functionally equivalent services Cand g , (all services in the set imple-
ment d), and to select within it the service to be included in Provg(r). In
this section, we assume that the UPDATE() and SELECT() functions intro-
duced in Section 3 operate according to the selection policy described in
Section 6.2. In particular, UPDATE() updates Cand g , possibly dropping
from it the “worst” ranked service according to P(rank,a, h,sgn), and
SELECT() selects from Cand g, the service to be included in Provg(r) as
the “best” ranked service according to P(rank,a, h, sgn).

Different instances of P(rank, a, h, sgn) (corresponding to different se-
lections among the possible values for its parameters rank, a, h, sgn) lead
to the construction of assemblies that, albeit being functionally equiva-
lent, have different energetic autonomy characteristics. We thus present
in this section a set of simulation experiments to assess the effective-
ness of different service selection policies (instances of P(rank, a, h, sgn))
with respect to the issues raised by RQ1 and RQ2. To this end, we ex-
periment with instances of P(rank, a, h, sgn) obtained by making its pa-
rameters range over the set of values shown in Table 4, for a total of
twenty-four different policies. We have selected these values to cover a
large set of different regions of the overall space of all possible policies
that can be instantiated from P(rank,a, h, sgn). In particular, the pos-
sible values for the rank parameter are those described in Section 6.1.
For the other two parameters « and h, we recall from Section 6.2 that
a = 1 defines a memoryless policy that considers only the last observed
value of the ranking metric, while a« = 0.5 defines a policy that takes into
account also past values. On the other hand, the three values selected
for the h parameter define selection policies ranging from a probabilis-
tic service selection strictly proportional to the services’ rank (2 = 1), to
a probabilistic service selection biased towards the best-ranked service

Table 4
Parameters of the service selection
policy.

parameter possible values

rank gegg.leg g neg,rlg

a 0.5,1

h 1, 10, 50

(h = 10), to a greedy policy that (almost surely) selects the best-ranked
service (h = 50).
In addition, for comparison, we consider two other policies:

a baseline Random policy (corresponding to 4 = 0) that randomly se-
lects a service within the set of known functionally equivalent candi-
dates. This policy serves as a benchmark to compare the “smartness”
of the other considered policies with respect to a blind selection pol-
icy;

e a QoS-aware policy taken from Angelo et al. (2020), which selects
a service using a QoS-based ranking metric. To this end, we assume
that each service has an associated QoS index, measuring some (non-
energy) QoS-related aspects of the service (e.g., performance, relia-
bility, cost, or some suitable combination of them). According to An-
gelo et al. (2020), we assume that this index is load-dependent: the
higher the load addressed to a service, the worse the value of its
QoS index. This policy serves as a benchmark to compare the impact
on the system’s energetic autonomy of a QoS-focused criterion with
respect to the energy-focused selection criteria adopted in this paper.

We conduct experiments with all these selection policies for two
kinds of scenarios named energetic autonomy and energetic survivability,
respectively.

In the energetic autonomy scenario, we consider nodes equipped with
a local green energy generator and a battery that is recharged by excess
produced energy and compensates as long as possible for temporary
interruptions in energy generation. In this scenario, we investigate to

M. Caporuscio et al.

what extent the different policies can maintain the functionality of the
system over time, as measured by the availability indices presented in
Section 5.

In the survivability scenario, we consider nodes equipped only with
a (initially fully charged) battery. In this case, we investigate how long
the different policies are able to maintain some functionality and how
quickly they degrade before the definitive collapse.

Both the energetic autonomy and the survivability scenarios do not
consider the existence of an external source of energy (e.g., power grid)
that could potentially compensate for the energy in the batteries and/or
energy gathered by local green energy generators (e.g., solar panels).
Indeed, our focus is to investigate how much the system can do without
it.

To carry out the experiments, we implemented a large-scale simu-
lation model for the PeerSim simulator (Montresor and Jelasity, 2009).
The replication package is publicly available to researchers interested
in replicating and independently verifying the results presented in this
paper?.

7.1. Experiments settings

Our experimentation mimics a decentralized computing scenario
where |S]| services with NUM_INT different types T = {T},T5 ..., Tyum vt}
are deployed on a network of |N| nodes. i

We randomly position the network nodes in an area with a diam-
eter of D meters and assume each node hosts node_serv services, ran-
domly selected from the S set. Each node is equipped with a solar panel
and a battery (in the experiments, we consider two different battery
capacities, respectively named small=3000mAh and big = 6000mAh; see
also Appendix B). We adopt a suitable model to keep track of the solar
radiation variations at different day times, according to a 24-hour cycle.
Details about this model are reported in the Appendix A.

Each simulation run simulates an observation period of 2000 hours
for a network with |N| = 50 nodes, |S| = 250 services, and NUM_INT = 10
service types, deployed in an area of diameter D = 200 meters®. Esti-
mates for each quality index of interest are calculated from 50 simula-
tion runs. During the simulation, a node without sufficient energy is not
available for the assembly and is made available again once its charging
state reaches at least 20 % of the node’s battery capacity.

The values of the simulation parameters (e.g., battery capacities, so-
lar panel energy generation rate) are taken from wireless sensor network
literature (see Appendices A and B).

7.2. Energetic autonomy in green-powered scenarios

Tables 5 and 6 show the value of the steady-state availability ZSY s
(Eq. (9)) for the different combinations of policy parameter values, and
the two different battery capacities. For the sake of simplicity, we dis-
play only the midpoint of the calculated confidence intervals. Both ta-
bles show that all the considered energy-aware policies perform con-
sistently better than the baseline random policy. A noteworthy result is
that, from the energetic autonomy perspective, QoS-aware selection has
a very negative impact, as its performance is almost indistinguishable
from the random policy.

Besides this, the tables show that the two energy-aware policies that
base their selection on information about the service energy footprint
(global and local energy policies) clearly outperform the two policies that
base their selection on information about the energy wealth of the node
hosting the service (residual life and node energy policies). Indeed, the
Agys ~ 1 value for the former two policies indicates that they can keep
almost all the nodes active, thus guaranteeing (on average) full-service

2 https://github.com/mi-da/Self-Sustainable-Service-Assembly

3 These numbers are similar to several WSN environmental monitoring sce-
narios, for example, in air quality monitoring (Han et al., 2019) or smart farm-
ing (Bandara et al., 2020).

The Journal of Systems & Software 235 (2026) 112755

210 210
H 3
K] s
= =
So9 So9 =
© © e
@ g T~ RN
g Bog o ==
Sos S08 I\, ~~
3 G \ PN
© S N / N
= E 8 ; N
Eo7 Eo7 S J
3 2 N
g g Tt
gos 506
= 1=
o o
® ®
£o05 £o05
0 50 100 150 500 510 520 530
Hours Hours
(a) Week 1 (b) Day 21

global energy - residual life = random - local energy = node energy = QoS-aware

Fig. 6. Zoom-in at week 1 (a) and day 21 (b) of Agy ¢(?), in a scenario with solar
panel and a small battery, « = 0.5, h = 1.

Table 5

Agys: Steady-state availability values (small battery).
a 0.5 0.5 0.5 1 1 1
h 1 10 50 1 10 50

global energy (ges) 099 099 099 099 099 0.99
local energy (leg) 098 099 099 098 099 0.99

residual life (rlg) 0.87 087 087 085 086 0.87
node energy (neg,) 0.84 0.84 0.82 0.84 0.84 0.85
random 069 069 070 0.69 070 0.70
QoS-aware 0.68 0.67 072 072 071 0.70

continuity. On the other hand, the Ay ¢ < 0.9 value for the latter two
policies indicates that they instead cause some nodes to run out of en-
ergy.

The plots of Agyg(f) (Eq. (8)) in Figs. 5 and 7 provide finer-grain
insights about the effectiveness of the considered policies by showing
how they perform with respect to the optimal value Agy ¢(f) = 1. The
figures clearly show that the global energy policy provides the best re-
sult, constantly guaranteeing over time the full availability of all nodes
(Agys(t) = 1 forall t values), despite the intermittent availability of solar
energy. The local energy policy provides results almost indistinguishable
from the global energy one, or slightly worse.

On the other hand, the plots for the residual life and node energy poli-
cies confirm their less satisfactory performance. Indeed, apart from the
initial phase, where they take advantage of the full battery charge (as de-
fined in our experiment settings), they quickly stabilize around Agy ()
values that are quite far from 1. Besides this, a (negatively) notewor-
thy behavior of these two policies is given by the oscillations of the
Agys(t) value, which are particularly pronounced in the small battery
case (Fig. 5). Because of them, the actual number of available nodes
(and consequently of active services) may temporarily drop to values
much smaller than the average. These oscillations follow a 24-hour pe-
riod and are thus clearly correlated with the solar energy availability (as
evidenced in Fig. 6, which shows a zoom-in of Fig. 5a around the first
week and the 21st simulated day, respectively). This indicates that, with
respect to the local and global energy policies, the residual life and node
energy policies are less effective in utilizing the backup energy provided
by the batteries to mask the temporary unavailability of green energy
sources.

Finally, Figs. 5 and 7 confirm the bad and comparable performance
of the random and QoS-aware policies.

7.3. Energetic survivability in battery-only scenarios

In these experiments, we assume that, for some reason, the green
energy source is not available at all for all nodes. Consequently, each
node will remain active as long as its battery provides sufficient energy.
Eventually, all the nodes will exhaust their batteries, and the system
availability will drop to zero. Hence, it does not make sense to con-

https://github.com/mi-da/Self-Sustainable-Service-Assembly

M. Caporuscio et al.

The Journal of Systems & Software 235 (2026) 112755

210 210 210
3 \ H H
K)]
g 0.9 \N\"N“ g, % 0.9 N, % 0.9
o NG gty it o) W r\n\ Wy 00, Yy <4 J)J;
3 ‘\\l ”"'\\\u ”)ll W o e W‘ "l \‘\\'\ 3 “\\,\ ‘v)"f A i o A ""»\ s Wt E] M‘l')l
Sos M So0 e NCHRL So bt i «*Mv, iy
F H\ g -"u‘ﬂfﬂ%\ g b R i 3‘
= £ = s
Eo7 L i Eo7 s 1‘“#“.'(’«0{"*;‘ o7 i i """g
: o wwﬂ‘amm 2 i, S
3 3 3
506 o6 506
c = [=
© @ o]
2 05 2 05 2 05
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
(@a=05h=1 (b)a=05H=10 (©a@=05h=50
210 210 210
3 \‘ 8 \ A
T N T o, T te,
809 Nilﬂw.‘ b g0 “.‘ o 5" \";l i
@ \«m‘w [4 \\“\ ", Wy et o % \n" ‘,\ 1, S Ve
3 W‘) 1 3 syt it \,\’l\“\'ﬂ Wit E \M\A"M’ AI VIR g 1
M,M ' I W
E 08 “’I\‘L W"}'n SRIAY E 08 ““l,'mh \“Wl"“'l,\“#’a\t‘h\‘y\ ""'\'ﬂ,‘h\‘l"”,\‘ll\".\ é 08 Q"r VWM‘MJ.‘M;‘WJ,\ Ry
.“Eo 7 "‘Wn "’“‘,{ﬂ,‘"z\v o, %0.7 WWI’MR“"\"WMM Wi _%OJ i Mh%l“‘”"f(q“&‘yw‘ﬁ%@l‘g\w %
2 G W 2 i
o o o
% 06 % 06 % 06
€ k< c
z z il
Zos o5 Los
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
da=1h=1 e@a=1hr=10 Ha=1,h=50

global energy = residual life = random

local energy = node energy = QoS-aware

Fig. 7. Agys(1) in scenarios with green energy source (solar panel) and battery (big). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

Table 6

ZSY s Steady-state availability values (big battery).
a 0.5 0.5 0.5 1 1 1
h 1 10 50 1 10 50
global energy (ges s/) 099 099 099 099 099 0.99
local energy (leg 5) 099 099 099 099 099 0.99
residual life (rlg) 086 085 082 085 085 0.86
node energy (neg,) 082 082 080 084 081 0.82
random 0.76 0.74 0.74 0.70 0.76 0.70
QoS-aware 0.73 0.74 0.75 0.71 0.73 0.75

sider the steady-state availability Agyg (Eq. (9)). Figs. 8 and 9 show
instead the plots of the instantaneous availability A gy ¢(¢) (Eq. (8)), in
the small and big battery cases, respectively (in all cases, we assume
that all nodes start with a fully charged battery). As expected, the fig-
ures show that Agy ¢(r) drops towards zero for increasing values of 7.
However, the figures clearly show that the global and local energy poli-
cies vastly outperform the residual life and node energy policies in guar-
anteeing the system’s survivability in the considered critical situation.
Another interesting result that can be observed from these plots is that
the value of parameter h impacts the system survival ability, differently
from the previous experiments where a green energy source was avail-
able. Indeed, both Figs. 8 and 9 show that the system survival ability
benefits from some amount of greediness in service selection (i.e., 4 > 1).

Finally, Figs. 8 and 9 show the very negative impact of the QoS-aware
policy on the system’s survivability.

8. Learned lessons: Answers to RQ1 and RQ2

We have considered two types of metrics to rank functionally equiv-
alent services, thus driving their selection during the dependencies reso-
lution process in an assembly of services: (i) metrics based on the energy
footprint of the service itself (global energy ge s and local energy leg o),
and (ii) metrics based on the energy wealth of the node hosting the ser-
vice (residual lifetime rl g and node energy neg).

10

We briefly recall the considerations made in Section 6.1 about the
monitoring and dissemination overhead caused by the MAPE-K loop.
With respect to the monitoring effort at each node, metrics (i) cause
a higher overhead with respect to metrics (ii), as they require finer-
grained measurements. With respect to the information dissemination
overhead, it is low for the local energy metric leg ¢/, as it only requires
the use of locally collected information for its estimation; the dissem-
ination overhead is instead higher for the other three metrics, as the
exchanged messages should carry the information needed for their es-
timation, in addition to the functional information required by the de-
pendency resolution procedure.

From the experimental results discussed in Section 7, we see that
the selection policies based on the metrics global energy geg ¢ and lo-
cal energy leg ¢ (type (i)) vastly outperform those based on the other
two policies (type (ii)). In particular, for the “energetic autonomy” sce-
nario (green energy source plus battery), they allow achieving values
of the considered metrics very close to their maximum (= 1), while
this is not the case for the other policies. This provides a strong indi-
cation that, with respect to the monitoring overhead, type (i) policies
are worth the greater effort required for their implementation, in the
perspective of guaranteeing the energetic autonomy of green-powered
service assembly.

With respect to the information dissemination overhead, a posi-
tive outcome of the experiments is that system-wide dissemination of
non-functional information about the energetic profile of each service or
node is unnecessary. Indeed, the policy based on the local energy metric
leg s/, whose dissemination overhead is low, reaches results very close
to those achieved by the policy based on the global energy metric gey ¢,
which appears to be the optimal one. This implies that the adoption of
leg s considerably reduces the amount of information to be dissemi-
nated (and the consequent energy overhead), limiting it to only func-
tional information (i.e., service types needed to build and maintain a
fully resolved assembly), with negligible impact on energy performance.

In summary, these results indicate that we can identify a service se-
lection policy (based on the /e ¢ (r) ranking metric) that, used in com-

M. Caporuscio et al.

The Journal of Systems & Software 235 (2026) 112755

21.00 21.00- 21.00-
3 3 3
s S i~]
‘© ‘© " \\ ‘T
= 4 I ~ F
®.75- ®075 N ©0.75-
g 2 ¥ ~ e
5 5) ™~ 3
B © 1 ~ B
2 2 L AN 2
= = v ~ =
8050 050 LN ~<o 2050
= = \ ~ ~—a =
£ £ Ay e S~ £
%} » ‘6 ~~. ~— >
3 E ST 3
@ 0.25- ®0.25- B STt @ 0.25-
c = e e -~ c
8 e e - s
c = [=
© @ @
® ® ®
£0.00- £0.00- £0.00-
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
(@a=05h=1 b)a=05h=10 (c)a=0.5h=50
21.00 21.00 21.00
3 3 3
s s s
T T T
> > >
©0.75- ©0.75- ©(.75-
e < <
3 3 3
° ° ©
= = =
@ 0.50 @ 0.50- @050
£ £ -~ £
- - [~ -
[%] [} T~ -_— [}
3 g - - 3
80.25 2025 T e 20.25:
8 s | UTTTTEmRmRTamaT = 5
=4 f=4 f=4
o] 1]
7] @ @
£0.00- £0.00- £0.00-
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
da=1h=1 @a=1h=10 Ha=1,h=50
global energy - residual life = random - local energy = node energy = QoS-aware
Fig. 8. Agy(?) in scenarios with battery only (small).
2100 21.00- 2100 %
= ~ £ - = ~——
a LN o T —— <} Y i N
2 NN 2 == 2 N T T T
© "\ ~ [[DO
> VsoN > > NS
©0.75- NN N ©0.75- ©(.75- o
e < <
3 3 =} N
° ° ° RS
=] =] ~ N =3 ~ -
£ £ - = . ~-.
@ 0.50 @ 0.50- S~ @050 ~ S aal
t= = . ~~ £ . -
£ £ v £ T me— s
) » B EE . T 7] B e e
] E | 3
80.25 $0.25 20.25-
8 S S
=4 = c
©] o
7] k7] @
£0.00- £0.00- £0.00-
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
@a=05h=1 (b)a=05h=10 (©)a=05h=50
21.00- 2100 == o
z £ ——— A e
| S 2 —————— s by ———
K] K] bl T Ve
> > > '\ ~
Sors 8075 ®o75 >~
5 5 5 . -
3] 15} 15 . S~oL
2 =4 - = - Teal
Zoso Zoso T Foso S el
£ £ P, TToe- £ T
- - Bt . - il S
3 3 3
20.25 20.25° 20.25°
T]]
< < <
© o] v
® ® ®
£0.00- £0.00- £0.00-
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Hours Hours Hours
dDa=1,h=1 ea=1hr=10) a=1,h=50

global energy = residual life = random

local energy = node energy = QoS-aware

Fig. 9. Agy (1) in scenarios with battery only (big).

bination with a decentralized assembly procedure, allows us to achieve
two goals: (a) building and maintaining over time an energetically au-
tonomous fully resolved assembly of services (RQ1), and () achieving
this result paying a limited energy overhead (RQ2).

As a final remark, the experiments in Section 7 also show that driv-
ing the service selection by QoS-focused ranking metrics without con-

11

sidering the energetic profile of each service might have a dramat-
ically negative impact on the system’s energetic autonomy. This in-
dicates that when QoS issues other than energy are considered rel-
evant, they should be carefully balanced with energetic issues. We
leave it to future work to investigate the trade-off between these two
issues.

M. Caporuscio et al.
8.1. Threats to validity

There are some potential threats to the validity (Wohlin et al., 2012)
of the proposed approach.

A threat to internal validity is represented by the selection of the self-
sustainability indexes. To smooth this threat, we adopted different met-
rics that looked at self-sustainability from different perspectives (e.g.,
service- and node-based, local and global scope).

Construct validity: We mitigated construct validity threats using a
large-scale simulation model for our experimentation in the PeerSim
simulator (Montresor and Jelasity, 2009). PeerSim has been developed
with extreme scalability and support for dynamism in mind, and it is
released to the public under the GPL open-source license. We use the
simulator’s cycle-based engine to allow for scalability. The cycle-based
engine uses some simplifying assumptions, such as ignoring the details
of the transport layer in the communication protocol stack. Since our
results focus on the application layer energy behavior, simplifying as-
sumptions do not impact the validity of our experiments. However, as
our evaluation is based on simulation rather than execution on phys-
ical hardware, we could not directly monitor or measure the actual
energy consumption of the system. Instead, we estimated energy be-
havior based on modeled parameters and abstractions defined at the
application level. While this approach enables large-scale and repeat-
able experimentation, it inevitably limits the precision of energy mea-
surements compared to empirical observations from real deployments.
We plan to address this limitation in future work by conducting real-
world experiments and measuring energy consumption through appro-
priate hardware (e.g., Otii Arc*) and software monitoring tools (e.g.,
Prometheus®). Finally, the solar radiation model implemented has been
constructed and validated against real data captured at the Bioparco
of Rome (Stazione meteo di bioparco di roma, 2023) (as illustrated in
the Appendix A). The energy consumption model and its parameters
have been retrieved from previous literature and have been proven to
model electronic and amplifier power consumption (Heinzelman et al.,
2002; TIkpehai et al., 2019; Kang et al., 2006) in a fairly accurate way.

Conclusion validity: We mitigated conclusion validity threats by using
a large number of simulation repetitions to reduce the confidence inter-
val of the simulation results. Indeed, this threat is inherent to all sim-
ulated systems, as probabilistic functions govern their behavior (Banks
et al., 2013). For this reason, each experiment has been executed 50
times.

A threat to external validity concerns the approach’s evaluation. In-
deed, we adopted an evaluation based on extensive simulations, instead of
considering single case studies, to perform a general analysis of the ap-
proach’s effectiveness. Specifically, we focused on experimenting with
an extensive range of possible selection policies to identify the most
promising ones from the self-sustainability perspective. In future work,
we plan to extend the evaluation by investigating how the identified
policies behave with respect to different settings of the system parame-
ters, according to real-world cases.

9. Related work

While a large body of related work exists on the addressed topic, we
summarize hereafter only those papers that are closely related to the
proposed approach and concern IoT and edge computing scenarios, service
composition and service assembly, and energy awareness.

Reference scenario. Our work concerns the dynamic assembly and
composition of services in an IoT and edge computing scenario. Some
papers present examples of this scenario and focus on related issues. As
an example, Nasir et al. (2022) present NexusEdge, a system based on a
decentralized IoT-edge architecture that enables applications to run on

4 https://www.qoitech.com/
5 https://prometheus.io/

12

The Journal of Systems & Software 235 (2026) 112755

edge gateways without the support of the cloud. Examples of dynamic
IoT environments can also be found in Razian et al. (2022), Sun et al.
(2019), Khanouche et al. (2016) and Halba et al. (2023).

Service composition and service assembly. Service composition refers to
the process of creating and sustaining a new value-added service using
existing services in a dynamic environment. Research in this field can
be categorized into two main categories (Rao and Su, 2004). Category
1 (C1) involves dynamically decomposing a general task into a set of
subtasks that can be fulfilled by existing services, whose operations
must then be appropriately coordinated. Hence, the composition pro-
cess can lead to different decompositions of the overall task, depending
on the available services (e.g., Razian et al. (2022), Chen et al. (2018),
Gabrel et al. (2018) and Rodriguez-Mier et al. (2016)). The second cat-
egory (C2) instead includes works that assume that the general task to
be carried out is already divided into predetermined activities, speci-
fied through a workflow using specific composition patterns (such as
sequence, parallel, iteration, and conditional selection), before start-
ing the service composition process. The objective here is to identify
the already-existing services that carry out the predetermined activities
(e.g., Razian et al. (2022), Rao and Su (2004), Cardellini et al. (2012)
and Lemos et al. (2015)).

The service assembly problem we consider in this paper focuses in-
stead on the dynamic maintenance of existing services through the solu-
tion of their dependencies. Different approaches to solving this problem
can already be found in the literature. Some of them explicitly address
the service assembly problem (e.g., Sykes et al. (2011) and Angelo et al.
(2020)). Other solutions can be obtained by suitably adapting solutions
primarily addressing Service Composition C2 cited above. Indeed, ser-
vice assembly can be considered a special case of service composition
C2, with a “null” workflow, under the hypothesis that the dependencies
of a service are known at deployment time®. Hence, most of the ap-
proaches concerning the C2 service composition can also be adopted to
tackle the service assembly problem, and they are thus directly related
to the work presented in this paper. Focusing in particular on energy-
aware solutions to this problem, they have been considered in several
papers (Sun et al., 2019; Hamzei et al., 2023; Li and Zhu, 2023; Baker
et al., 2017; Xiang et al., 2014; Tong et al., 2020; Zeng et al., 2020;
Wang et al., 2018). Indeed, Table 7 reports papers that address C2 ser-
vice composition by explicitly considering energy awareness (RQ1).

In these papers, energy concerns are typically addressed in terms
of building a service composition with minimal energy consumption,
given an assumed energy consumption model. In our approach, we have
addressed a similar issue, but in the context of intermittently avail-
able green energy sources (RQ1). In addition, we have also addressed
another issue (RQ2), which appears to have been overlooked by ex-
isting approaches. It concerns getting insights about the trade-off be-
tween building a service assembly that meets a given energy-aware
goal, and the (energetic) cost that must be paid to keep updated the
information used to drive the system towards the achievement of that
goal.

Concerning the approaches adopted in these papers, many of them
are based on the definition of single (Tong et al., 2020; Zeng et al.,
2020) or multi-objective optimization problems (Baker et al., 2017; Xi-
ang et al., 2014; Wang et al., 2018; Sun et al., 2018), which are then
solved through some heuristic, given their (usually) NP-hard complex-
ity. Other approaches have been proposed based on Bayesian networks
(e.g., Kazem et al. (2015)), temporal dependencies (e.g., Guidara et al.
(2016)), and machine learning methodologies (e.g., Wang et al. (2020),
Ren et al. (2020) and Ekie et al. (2021)).

A common trait of most of the reviewed literature addressing ques-
tions related to RQ1 is that the proposed solutions are based on central-

6 By null workflow, we mean a workflow consisting only of the indication of a
set of required services, without the indication of any structure (e.g., precedence
relationship) among them.

https://www.qoitech.com/
https://prometheus.io/

M. Caporuscio et al.

Table 7

Related work classification with respect to the addressed RQs.

Decentralized

Centralized

Angelo et al. (2020) Caporuscio et al. (2020)

Zeng et al. (2020) Sun et al. (2019) Wang et al. (2018) Sun et al. (2018) Wang et al. (2020) Ren et al. (2020) ~ Sykes et al. (2011)

Cardellini et al. (2012) Hamzei et al. (2023) Li and Zhu (2023) Baker et al. (2017) Xiang et al. (2014) Tong et al. (2020)

RQO
RQ1
RQ2

previous

13

The Journal of Systems & Software 235 (2026) 112755

ized approaches that, besides relying on the implicit assumption of the
feasibility of maintaining consistent global knowledge, may suffer from
the typical scalability and single point of failure problems. A central-
ized solution might be a viable approach to service composition when
the underlying assumption is to have a set of known services that oper-
ate in a closed environment. This assumption does not match the open
and highly dynamic characteristics of the IoT-edge computing scenario
we are focusing on. Hence, we relax this assumption and, in addition
to specifically focusing on the service assembly problem, we propose a
fully decentralized approach that appears to be best suited to an open
and dynamic scenario.

In this regard, decentralized approaches that specifically address
the problem of service assembly have already been proposed (Sykes
et al., 2011; Angelo et al., 2020; Caporuscio et al., 2020). Similarly to
our work, the authors in Sykes et al. (2011) propose a decentralized
approach to the autonomous assembly of services based on a gossip
protocol. They prove that the use of gossiping techniques for realiz-
ing an autonomous assembly of services is a viable solution for scale
and information dissemination convergence. However, unlike us, they
focus on the fulfillment of functional requirements (dependency reso-
lution) and the enforcement of architectural constraints (e.g., specific
connection topologies). As already remarked in the introduction, our
work is based on the decentralized solution to service assembly pro-
posed in Angelo et al. (2020), which was focused on satisfying gen-
eral QoS-aware requirements. We build on it to address the sustain-
ability concerns expressed by RQ1 and RQ2. As detailed in the In-
troduction, we already partially addressed RQ1 in Caporuscio et al.
(2020), where we present an early approach for energy-aware service
assembly.

Table 7 summarizes reviewed papers addressing the service assembly
problem explicitly or implicitly as part of the C2 service composition
problem (RQO). The table highlights which of these papers address RQ1
and RQ2. In the table, “previous” refers to the works we build on and
extend.

Energy-saving solutions for software applications. The general increas-
ing concern about sustainability issues motivates the growing attention
to reducing the carbon footprint of software applications (Fonseca et al.,
2019; Nardi et al., 2018).

The proposed approaches address this issue at different levels. At the
hardware level, edge-fog-specific energy management techniques have
been proposed based on the idea of suitably modulating the energy con-
sumption of each node through DVFS (Dynamic Voltage and Frequency
Scaling) and DMS (Dynamic Modulation Scaling) mechanisms (Karimi-
afshar et al., 2020; Kwak et al., 2015; Toor et al., 2019). Our proposal
complements these approaches, as we instead adopt a higher-level soft-
ware architecture-oriented perspective.

At the software level, the software engineering community at large
has been paying increasing attention to energy efficiency solutions, a
summary can be found in Horcas et al. (2019) and Kanso and Exposito
(2023). In addition, from the point of view of software architecture, the
need to consider the energy attribute at the architectural level is gaining
consensus (Vos et al., 2022).

At the infrastructure level, approaches to energy management for
applications running in cloud infrastructures have already been pro-
posed, based on techniques such as virtual machine consolidation and
on/off switching of servers (Beloglazov et al., n.d.; Lee and Zomaya,
2012; Ni and Bai, 2017). However, they rely on the characteristics of
large cloud data centers, where servers are often homogeneous, close
to each other, and connected through high-speed networks. These tech-
niques are hardly applicable to the scenario we are focusing on, where
nodes are usually heterogeneous, highly distributed, and with limited
power and computing/communication capabilities. On the other hand,
the distribution of edge nodes lends itself to the local harvesting of re-
newable (green) energy from on-site sources, for example, solar and
wind (Zeng et al., 2020; Jalali et al., 2017), as we assume to do in our
approach.

M. Caporuscio et al.
10. Conclusion and future work

This paper focuses on the challenges of supporting the construction
of new service-based systems in decentralized computing scenarios by
considering environmental sustainability. These systems are inherently
open, highly dynamic, and operate in uncertain environments. In this
context, we have evidenced the role of the service assembly issue. To ad-
dress the related challenges, we have presented a solution that builds
upon a previously proposed fully decentralized service assembly pro-
cedure. In particular, we have defined a suitable energy model for the
scenario we are considering and have specialized the service selection
policy underpinning that procedure to achieve energetic autonomy, re-
lying solely on locally harvested and stored energy. To this end, we have
proposed a general template for defining a service selection policy, from
which different policies can be easily derived to drive the construction
and maintenance of the service assembly. Through extensive simula-
tion experiments, we have gained valuable insights into the assembly
management policies that promise to be most effective in meeting the
sustainability requirements.

From these results, we plan to extend our work in several direc-
tions. They include (1) improving the model for incorporating advanced
energy-aware heuristics (e.g., turning off monitoring when not needed),
(2) extending the evaluation of the approach to include trade-off analy-
sis between QoS and energy consumption, and (3) applying the proposed
approach to real-world case studies sourced from the existing literature
and industrial partners.

CRediT authorship contribution statement

Mauro Caporuscio: Writing — review & editing, Writing — original
draft, Methodology, Investigation, Conceptualization; Mirko D’Angelo:
Writing — review & editing, Writing — original draft, Software, Methodol-
ogy, Investigation, Data curation, Conceptualization; Vincenzo Grassi:
Writing — review & editing, Writing — original draft, Methodology, In-
vestigation, Conceptualization; Raffaela Mirandola: Writing — review
& editing, Writing — original draft, Methodology, Investigation, Con-
ceptualization; Francesca Ricci: Writing — review & editing, Writing
- original draft, Software, Methodology, Investigation, Data curation,
Conceptualization.

Acknowledgements

This work was partially supported by the Helmholtz Association with
the KiKIT project and the Grant 46.23 (Engineering Secure Systems) and
by the German Research Foundation (DFG) - SFB 1608 - 501798263.

Data availability
Link above
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Solar source model

The model of the energy production follows the values of the solar
radiation on the ground recorded by the “Bioparco” weather station in
Rome (Italy) as illustrated in Fig. A.1 (Stazione meteo di bioparco di
roma, 2023).

We assume that each node is equipped with a solar panel of 5 x 5cm.
Using panels with polycrystalline solar cells, the maximum energy that
can be supplied is about 0.016 Wh/cm2 [41]. Consequently, the maxi-
mum green energy production G y (1) of each node is about 0.4 Wh.

14

The Journal of Systems & Software 235 (2026) 112755

solar radiation (W/m2)

hours of the day

Fig. A.1. Solar radiation measured at Bioparco di Roma.

We use a six state model to simulate the solar radiation variations
(see Fig. A.2 and Table A.1), where each state represents a four-hour
time interval.

Fig. A.2. Solar states state-model representation.

"
w ?\'{Ih‘j ln I ‘MMIJ\\W An J

Gossip cycle

Fig. A.3. Energy production of three nodes over a period of four days.

Transitions from one state to another occur deterministically: the
simulator spends exactly 24 simulation cycles in one state and then
moves on to the next (as explained in the paper, one cycle models ten
minutes of wall-clock time).

Table A.1
Solar states and time of the day.

Solar state Time interval (hh:mm)

Sy 0:00 - 4:00
S 4:00 - 8:00
S, 8:00 - 12:00
S 12:00 - 16:00
S, 16:00 - 20:00
Ss 20:00 - 24:00

In order to create a realistic trend for energy production, we use a
random walk to update the green energy production rate G (¢):

Gu(t) = Gy(t—1)+ mg+e with probability p,
N Gy(t—1)—mg+e with probability p, — 1

where s indicates the current solar model state, pg is a state-dependent
probability value, m, a state-dependent constant, and e, is a disturbance
factor that is randomly calculated. Table A.2 shows the parameters used
for the solar state model.

M. Caporuscio et al.

Table A.2
State-dependent parameters of the solar
model.
5 S, 3 Sy Ss
D 0.4 0.8 0.6 0.2 0.2
m 0.1 0.15 0.15 0.15 0.1

s

We introduced the disturbance factor to simulate a node-to-node
variation in energy production. Indeed, even if the nodes are located
in a limited area, the energy production can be slightly different (e.g.,
presence of clouds or shadows).

To model the complete absence of light in the night, the value of
Gy (1) is equal to zero when the system is in the state s,.

As an example of the energy production trend, Fig. A.3 shows a graph
where the green energy production rates Gy (t) of three nodes of the
network are compared for a time interval of approximately four days
(i.e., around 600 simulation cycles).

Appendix B. Energy Consumption model

For each node, the energy consumption is given by the sum of three
components: (i) energy consumption related to CPU operations, (ii) en-
ergy consumption for receiving messages and, (iii) the energy consump-
tion for sending messages. Each of these modeled contributions is com-
puted at simulation time.

Ep, (@)
k bit packet .
Transm'lt Tx Amplifier
Electronics
E, ..k samp* k *d?
ERx
)
Receive
Electronics
Eelec* k

Fig. B.1. First order radio model (Heinzelman et al., 2000).

For the energy spent in transmission and reception, we use the first-
order radio model, see Fig. B.1. The equations modeling transmission
and energy consumption are the following:

Ep (eyd) =2k - (Eyper +d* - €
Eg(k)=4-k-E

elect

(B.1)
(B.2)

amp)

where:

e) represents the flow of incoming requests to the service;

¢ k is the number of bits in a message;

e Er.(k,d) represents the energy spent for the transmission of a k-bit
message between two services that are hosted on nodes distant d;

e Ep.(k) represents the energy spent for receiving a k-bit message;

€4mp 18 @ constant representing the energy spent by the amplification

circuit for sending messages.

The parameters configuring the energy consumption model have
been retrieved from existing literature (Heinzelman et al., 2002; Ikpehai
et al., 2019; Kang et al., 2006):

e E,p; =50nJ /bit
® Camp = 10pJ /bit/m?
o k = 1264bit = 158bytes

15

The Journal of Systems & Software 235 (2026) 112755

With respect to the computational energy model, the single-
operation CPU energy consumption has been set to 50nJ (Grochowski
and Annavaram, 2006).

On average, the big battery model in the simulations corresponds
to a battery of 6000mAh, while the small battery model to a battery of
3000mAh.

References

Angelo, M.D., Caporuscio, M., Grassi, V., Mirandola, R., 2020. Decentralized learning for
self-adaptive qos-aware service assembly. Future Gene. Comput. Syst. 108, 210-227.

Baker, T., Asim, M., Tawfik, H., Aldawsari, B., Buyya, R., 2017. An energy-aware service
composition algorithm for multiple cloud-based iot applications. J. Netw. Comput.
Appl. 89, 96-108. Emerging Services for Internet of Things.

Bandara, T.M., Mudiyanselage, W., Raza, M.S., 2020. Smart farm and monitoring sys-
tem for measuring the environmental condition using wireless sensor network - iot
technology in farming. In: 5th International Conference on Innovative Technologies in
Intelligent Systems and Industrial Applications. CITISIA, pp. 1-7.

Banks, J., Carson, J., Nelson, B.L., Nicol, D., 2013. Discrete-Event System Simulation.
Prentice Hall. 5th edition. 5th edition edition.

Beloglazov, A., Abawajy, J., Buyya, R., . Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Gen. Comput. Syst.
28 (5), 755-768.

Bouguettaya, A., et al., 2017. A service computing manifesto: the next 10 years. Commun.
ACM 60 (4), 64-72.

Bouguettaya, A., et al., 2021. An internet of things service roadmap. Commun. ACM 64
(9), 86-95.

Caporuscio, M., Angelo, M., Grassi, V., Mirandola, R., 2020. Decentralized architecture
for energy-aware service assembly. In: Jansen, A., Malavolta, I., Muccini, H., Ozkaya,
1., Zimmermann, O. (Eds.), Software Architecture. Springer International.

Cardellini, V., Casalicchio, E., Grassi, V., lannucci, S., Presti, F.L., Mirandola, R., 2012.
MOSES: a framework for qos driven runtime adaptation of service-oriented systems.
IEEE Trans. Software Eng. 38 (5), 1138-1159.

Casamayor-Pujol, V., Donta, P.K., Morichetta, A., Murturi, I., Dustdar, S., 2023. Edge in-
telligence - research opportunities for distributed computing continuum systems. IEEE
Internet Comput. 27 (4), 49-62.

Chen, N., Cardozo, N., Clarke, S., 2018. Goal-driven service composition in mobile and
pervasive computing. IEEE Trans. Serv. Comput. 11 (1), 49-62.

Ekie, Y.J., Gueye, B., Niang, L., Ekie, A.M.T., 2021. Web based composition using machine
learning approaches: a literature review. In: Proceedings of the 4th International Con-
ference on Networking, Information Systems & Security, NISS "21.

Erl, T., 2005. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA.

Fonseca, A., Kazman, R., Lago, P., 2019. A manifesto for energy-aware software. IEEE
Software 36 (6), 79-82.

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G.S., Friday, A., 2021. The
real climate and transformative impact of ict: a critique of estimates, trends, and reg-
ulations. Patterns 2 (9).

Gabrel, V., Manouvrier, M., Moreau, K., Murat, C., 2018. Qos-aware automatic syntactic
service composition problem: complexity and resolution. Future Gen. Comput. Syst.
80, 311-321.

Grochowski, E., Annavaram, M., 2006. Energy per instruction trends in intel microproces-
sors. Technol. Intel Mag. 4 (3).

Guidara, I., Al Jaouhari, I., Guermouche, N., 2016. Dynamic selection for service compo-
sition based on temporal and qos constraints. In: 2016 IEEE International Conference
on Services Computing (SCC), pp. 267-274.

Halba, K., Griffor, E., Lbath, A., Dahbura, A., 2023. Iot capabilities composition and de-
composition: a systematic review. IEEE Access 11, 29959-30007.

Hamzei, M., Khandagh, S., Navimipour, N.J., 2023. A quality-of-service-aware service
composition method in the internet of things using a multi-objective fuzzy-based hy-
brid algorithm. Sensors 23 (16), 7233.

Han, Q., Liu, P., Zhang, H., Cai, Z., 2019. A wireless sensor network for monitoring envi-
ronmental quality in the manufacturing industry. IEEE Access 7, 78108-78119.

Heinzelman, W., Chandrakasan, A., Balakrishnan, H., 2002. An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Trans. Wireless Commun.
1(4), 660-670.

Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H., 2000. Energy-efficient communi-
cation protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences.

Horcas, J.M., Pinto, M., Fuentes, L., 2019. Context-aware energy-efficient applications for
cyber-physical systems. Ad Hoc Netw. 82, 15-30.

Hyndman, R., Athanasopoulos, G., 2021. Forecasting: Principles and Practice. Vol. 3. rd
edition edition.

Ikpehai, A., Adebisi, B., Rabie, K.M., Anoh, K., Ande, RE., Hammoudeh, M., Gacanin,
H., Mbanaso, U.M., 2019. Low-power wide area network technologies for internet-of-
things: a comparative review. IEEE Internet Things J. 6 (2), 2225-2240.

Ishii, S., Yoshida, W., Yoshimoto, J., 2002. Control of exploitation-exploration meta-
parameter in reinforcement learning. Neural Netw. 15 (4), 665-687.

Jalali, F., Khodadustan, S., Gray, C., Hinton, K., Suits, F., 2017. Greening iot with fog: a
survey. In: International Conference on Edge Computing.

Kang, K.D., Liu, K., Abu-Ghazaleh, N., 2006. Securing Geographic Routing in Wireless
Sensor Networks, In: 9th Annual NYS Cyber Security Conference: Symposium on In-
formation Assurance.

Kanso, A.N.H., Exposito, E., 2023. A review of energy aware cyber-physical systems.

http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0002
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0003
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0004
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0005
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0007
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0008
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0009
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0010
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0011
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0012
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0013
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0014
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0015
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0015
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0016
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0017
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0018
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0019
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0020
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0021
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0022
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0023
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0024
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0025
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0026
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0027
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0028
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0029
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0030
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0031

M. Caporuscio et al.

Karimiafshar, A., Hashemi, M.R., Heidarpour, M.R., Toosi, A.N., 2020. Effective utiliza-
tion of renewable energy sources in fog computing environment via frequency and
modulation level scaling. IEEE Internet Things J. 7 (11), 10912- 10921.

Kazem, A.A.P., Pedram, H., Abolhassani, H., 2015. Bnqm: a bayesian network based qos
model for grid service composition. Expert Syst. Appl. 42 (20), 6828-6843.

Khanouche, M.E., Amirat, Y., Chibani, A., Kerkar, M., Yachir, A., 2016. Energy-centered
and qos-aware services selection for internet of things. IEEE Trans. Autom. Sci. Eng.
13 (3), 1256-1269.

Kwak, J., Kim, Y., Lee, J., Chong, S., 2015. Dream: dynamic resource and task allocation
for energy minimization in mobile cloud systems. IEEE J. Sel. Areas Commun. 33 (12),
2510-2523.

Lee, Y.C., Zomaya, A.Y., 2012. Energy efficient utilization of resources in cloud computing
systems. J. Supercomput. 60 (2), 268-280.

Lemos, A.L., Daniel, F., Benatallah, B., 2015. Web service composition: a survey of tech-
niques and tools. ACM Comput. Surv. 48 (3), , 1-41.

Li, J., Zhu, S., 2023. Service composition considering energy consumption of users and
transferring files in a multicloud environment. J. Cloud Comput. 12 (1), 43.

Meshkova, E., Riihijarvi, J., Petrova, M., Mahonen, P., 2008. A survey on resource discov-
ery mechanisms, peer-to-peer and service discovery frameworks. Comput. Netw. 52
(11), 2097-2128.

Montresor, A., Jelasity, M., 2009. Peersim: a scalable p2p simulator. In: IEEE Ninth Inter-
national Conference on Peer-to-Peer Computing, pp. 99-100.

Nardi, B., Tomlinson, B., Patterson, D.J., Chen, J., Pargman, D., Raghavan, B., Penzen-
stadler, B., 2018. Computing within limits, communications of the. ACM 61 (10),
86-93.

Nasir, N., Sobral, V.A L., Huang, L.P., Campbell, B., 2022. Nexusedge: leveraging iot gate-
ways for a decentralized edge computing platform. In: 7th Symposium on Edge Com-
puting.

Nast, M., Raddatz, H., Rother, B., Golatowski, F., Timmermann, D., 2023. A survey and
comparison of publish/subscribe protocols for the industrial internet of things. In: Pro-
ceedings of the 12th International Conference on the Internet of Things.

Ni, J., Bai, X., 2017. A review of air conditioning energy performance in data centers.
Renewable Sustainable Energy Rev. 67, 625-640.

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K., 2002. Semantic matching of web
services capabilities. Berlin Heidelberg, Berlin, Heidelberg, Springer. The Semantic
Web - ISWC 2002.

Rao, J., Su, X., 2004. A survey of automated web service composition methods. In: Inter-
national Workshop on Semantic Web Services and Web Process Composition. Springer,
pp. 43-54.

Razian, M., Fathian, M., Bahsoon, R., Toosi, A.N., Buyya, R., 2022. Service composition in
dynamic environments: a systematic review and future directions. J. Syst. Softw. 188,
111290.

16

The Journal of Systems & Software 235 (2026) 112755

Ren, L., Wang, W., Xu, H., 2020. A reinforcement learning method for constraint-satisfied
services composition. IEEE Trans. Serv. Comput. 13 (5), 786-800.

Rodriguez-Mier, P., Pedrinaci, C., Lama, M., Mucientes, M., 2016. An integrated semantic
web service discovery and composition framework. IEEE Trans. Serv. Comput. 9 (4),
537-550.

Stazione meteo di bioparco di roma , 2023. https://stazioni2.soluzionimeteo.it/
bioparcoroma/mobile/pages/station/day.php.

Schaerf, A., Shoham, Y., Tennenholtz, M., 1995. Adaptive load balancing: a study in multi-
agent learning. J. Artif. Int. Res. 2 (1), 475-500.

Sun, M., Zhou, Z., Duan, Y., 2018. Energy-aware service composition of configurable iot
smart things. In: 14th International Conference on Mobile Ad-Hoc and Sensor Net-
works. IEEE.

Sun, M., Zhou, Z., Wang, J., Du, C., Gaaloul, W., 2019. Energy-efficient iot service compo-
sition for concurrent timed applications. Future Gen. Comput. Syst. 100, 1017-1030.

Sykes, D., Magee, J., Kramer, J., 2011. Flashmob: distributed adaptive self-assembly. In:
Giese, H., Cheng, B.H.C. (Eds.), ICSE Symposium on Software Engineering for Adaptive
and Self-Managing Systems, ACM.

Tong, E., Chen, L., Li, H., 2020. Energy-aware service selection and adaptation in
wireless sensor networks with qos guarantee. IEEE Trans. Serv. Comput. 13 (5),
829-842.

Toor, A., Islam, S., Sohail, N., Akhunzada, A., Boudjadar, J., Khattak, H.A., Din, L.U.,
Rodrigues, J.J., 2019. Energy and performance aware fog computing: a case of dvfs
and green renewable energy. Future Gen. Comput. Syst. 101, 1112-1121.

Vos, S., Lago, P., Verdecchia, R., Heitlager, 1., 2022. Architectural tactics to optimize soft-
ware for energy efficiency in the public cloud. In: 2022 International Conference on
ICT for Sustainability.

Wang, H.,, Li, J., Yu, Q., Hong, T., Yan, J., Zhao, W., 2020. Integrating recurrent neural
networks and reinforcement learning for dynamic service composition. Future Gen.
Comput. Syst. 107, 551-563.

Wang, S., Zhou, A., Bao, R., Chou, W., Yau, S.S., 2018. Towards green service composition
approach in the cloud.

Weyns, D., et al., 2013. On patterns for decentralized control in self-adaptive systems.
LNCS 7475, 76-107.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A., 2012. Experimen-
tation in Software Engineering. Springer Publishing Company.

Xiang, F., Hu, Y., Yu, Y., Wu, H., 2014. Qos and energy consumption aware service com-
position and optimal-selection based on pareto group leader algorithm in cloud man-
ufacturing system. Central Eur. J. Oper. Res. 22 (4), , 663-685.

Zeng, D., Gu, L., Yao, H., 2020. Towards energy efficient service composition in
green energy powered cyber-physical fog systems. Future Gen. Comput. Syst. 105,
757-765.

http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0032
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0033
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0034
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0035
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0036
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0036
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0037
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0038
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0039
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0040
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0040
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0041
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0041
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0041
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0042
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0043
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0043
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0043
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0044
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0045
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0046
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0047
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0048
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0049
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0049
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0049
https://stazioni2.soluzionimeteo.it/bioparcoroma/mobile/pages/station/day.php
https://stazioni2.soluzionimeteo.it/bioparcoroma/mobile/pages/station/day.php
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0050
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0051
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0051
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0051
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0052
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0052
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0053
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0053
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0053
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0054
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0055
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0056
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0056
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0056
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0057
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0057
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0057
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0058
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0058
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0059
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0060
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0060
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0061
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0062
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0062
http://refhub.elsevier.com/S0164-1212(25)00424-8/sbref0062

	A self-sustainable service assembly for decentralized computing environments
	1 Introduction
	2 System model
	3 Service assembly
	4 Energy model
	4.1 Node energy model
	4.2 Service energy model

	5 Energetic autonomy metrics
	6 Service ranking and selection
	6.1 Energy-aware service ranking metrics
	6.2 Parameterized service selection policy

	7 Experimental results
	7.1 Experiments settings
	7.2 Energetic autonomy in green-powered scenarios
	7.3 Energetic survivability in battery-only scenarios

	8 Learned lessons: Answers to RQ1 and RQ2
	8.1 Threats to validity

	9 Related work
	10 Conclusion and future work
	A Solar source model
	B Energy Consumption model

