KIT | KIT-Bibliothek | Impressum | Datenschutz

Inverse Electromagnetic Scattering Problems for Long Tubular Objects

Arens, Tilo 1; Knöller, Marvin 1; Schurr, Raphael 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We consider the inverse time-harmonic electromagnetic scattering problem of reconstructing an object from knowledge of the generated far-field pattern for one incident field in the case of a long tubular object. Both perfectly conducting and penetrable objects are considered. The inverse scattering problem can be formulated as a nonlinear, ill-posed operator equation where the operator is the far-field map that maps the boundary of the scatterer to the far-field pattern of the scattered field. The shape of the scatterer is reconstructed using a Gauss–Newton minimization procedure for the regularized relative residual of this equation. Our main theoretical result is a characterization of the domain derivative of the far-field map for the class of tubular objects considered. Numerical examples are provided in which the computation of the electromagnetic scattered fields and their domain derivatives is carried out using boundary element methods. Even for noisy data, we obtain very accurate reconstructions of scatterers with rather complicated shapes.


Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 28.02.2026
Sprache Englisch
Identifikator ISSN: 1064-8275, 1095-7197
KITopen-ID: 1000189822
Erschienen in SIAM Journal on Scientific Computing
Verlag Society for Industrial and Applied Mathematics (SIAM)
Band 48
Heft 1
Seiten A185–A208
Vorab online veröffentlicht am 06.01.2026
Schlagwörter inverse scattering, Maxwell’s equations, shape derivative, tubular objects
Nachgewiesen in Scopus
OpenAlex
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page