_

KIT - The Research University in the Helmholtz Association

Online Motion Planning for Robot
Manipulators in Dynamic
Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultat fir Informatik des
Karlsruher Instituts fr Technologie (KIT)

genehmigte
Dissertation

von

Xi Huang

Tag der mandlichen Prifung: 05. Juni 2025
1. Referent: Prof. Dr.-Ing. Tamim Asfour
2. Referent: Prof. Dr.-Ing. Torsten Kroger

www.kit.edu

Abstract

Online Motion Planning for Robot Manipulators in
Dynamic Environments

This thesis focuses on the development of motion planning algorithms for dynamic envi-
ronments. A dynamic environment is defined as one that evolves over time, necessitating
that planning algorithms be efficient in terms of planning and replanning and capable of
adapting to the robot’s current state and to potential changes in the environment. To ad-
dress these challenges, this thesis proposes three contributions, each targeting a different
aspect of motion planning in dynamic settings.

In order to achieve efficient planning and replanning with short planning time and small
variations, the first research question is formulated to address the bottleneck of speeding
up motion planning methods. Since collision checking is a major bottleneck for rapid
motion planning, a motion planning method is proposed to identify and eliminate unnec-
essary collision checks during planning. This method uses a precomputed deterministic
roadmap to capture the collision-free space of the static environment. It then performs a
heuristic-informed search on the roadmap and introduces a novel safe zones concept for
edge examination to find a feasible solution. When exploring the precomputed roadmap
for a solution, the heuristic-informed search minimizes the number of edge examinations
by prioritizing edges based on heuristics derived from path costs in the roadmap. The
concept of safe zones utilizes the spatial relation between the robot and the environment
to identify regions that do not require collision checks. As a result, the method achieves
both a reduced number of edge examinations and a decrease in collision checks for each
examination.

Despite the significant speedup by reducing the number of collision checks, the planning
time naturally increases with problem complexity and remains unbounded. The second
contribution is a method to generate subgoals for decomposing complex motion planning
problems into small, easily solvable subproblems. Iteratively planning the subproblems
ensures short planning time in dynamic environments. This method begins with a pipeline
to collect a dataset of suitable subgoals, which can be planned within a specific bounded
time. Using this dataset, a conditional generative model captures the distribution of sub-
goals based on the given planning problems. During inference, a time estimator acts as
a critic to evaluate whether the generated subgoals can meet the desired time constraints
and lead the robot toward the final goal. Based on this evaluation, the proposed method
makes informed decisions to select a suitable subgoal for planning.

The contributions above solely consider the current geometric state of dynamic environ-
ments and overlook the temporal aspect. This short-sightedness over the time horizon can
result in frequent replanning and local-minima issues. The third contribution addresses
this issue by using episodic reinforcement learning to implicitly account for potential

iii

changes in the environment over time. The learned policy refines reference trajectories
based on the dynamic environment. Three trajectory refinement strategies based on B-
spline movement primitives are introduced to modify the reference trajectories while en-
suring smooth trajectory transitions. The planning results of the contributions above can
be used as reference trajectories. This spatiotemporally aware method achieves superior
task performance compared to methods that solely depend on geometric information and
other spatiotemporal planners.

Comprehensive evaluations and ablation studies in simulation and real robot experiments
are conducted to demonstrate the effectiveness and limitations of the proposed methods.

v

Zusammenfassung

Online-Bewegungsplanung fur
Robotermanipulatoren in Dynamischen
Umgebungen

Diese Dissertation beschiftigt sich mit der Entwicklung von Bewegungsplanungsalgorith-
men fiir Robotermanipulatoren in dynamischen Umgebungen. Dynamische Umgebungen
verdndern sich im Laufe der Zeit, weshalb Planungsalgorithmen sowohl effizient als auch
anpassungsfihig sein miissen. Insbesondere ist es erforderlich, dass sie in der Lage sind,
schnell auf Anderungen zu reagieren und sich an den aktuellen Zustand des Roboters
sowie an Veridnderungen in der Umgebung anzupassen. Zur Losung dieser Herausforde-
rung werden drei zentrale Beitrige vorgestellt, die jeweils unterschiedliche Aspekte des
Bewegungsplanungsproblems adressieren.

Der erste Beitrag zielt auf eine Beschleunigung der Bewegungsplanung ab, indem un-
notige Kollisionspriifungen wihrend des Planungsprozesses vermieden werden. Die vor-
geschlagene Methode basiert auf einer vorab berechneten, deterministischen Roadmap,
die den kollisionsfreien Raum der statischen Umgebung erfasst. AnschlieBend wird eine
heuristikgestiitzte Suche auf der Roadmap durchgefiihrt, und ein neuartiges Konzept von
Sicherheitszonen fiir die Kantenauswertung eingefiihrt, um eine realisierbare Losung zu
finden. Beim Durchsuchen der vorab berechneten Roadmap minimiert die heuristikge-
stiitzte Suche die Anzahl der Kantenauswertungen, indem Kanten basierend auf Heuristi-
ken priorisiert werden, die aus Pfadkosten in der Roadmap abgeleitet sind. Das Konzept
der Sicherheitszonen nutzt die rdumliche Beziehung zwischen dem Roboter und der dyna-
mischen Umgebung, um Bereiche zu identifizieren, in denen keine Kollisionspriifungen
erforderlich sind. Dadurch kann sowohl die Anzahl der Kantenpriifungen als auch die
Gesamtzahl der Kollisionspriifungen deutlich reduziert werden.

Da die Planungszeit trotz der beschriebenen Optimierungen mit wachsender Problem-
komplexitit weiterhin unbeschrinkt ansteigen kann, wird im zweiten Beitrag ein Verfah-
ren vorgestellt, das komplexe Bewegungsplanungsprobleme in kleinere, einfach 16sbare
Teilprobleme unterteilt. Zu diesem Zweck wird zunichst ein Datensatz geeigneter Zwi-
schenziele erstellt, die innerhalb eines festen Zeitrahmens 16sbar sind. AnschlieBend wird
ein konditionales generatives Modell trainiert, das auf Basis der Problemstellung passende
Zwischenziele vorschlédgt. Ein Zeitschitzer bewertet in der Inferenzphase die vorgeschla-
genen Zwischenziele im Hinblick auf ihre Planbarkeit innerhalb des gegebenen Zeitlimits
und ihre Eignung zur Anndherung an das Endziel. Auf dieser Grundlage wird ein geeig-
netes Zwischenziel fiir die weitere Planung ausgewihlt.

Die oben genannten Beitriige beriicksichtigen ausschlieBlich den aktuellen geometrischen
Zustand dynamischer Umgebungen und vernachlidssigen den zeitlichen Aspekt. Diese
Kurzsichtigkeit in Bezug auf den Zeithorizont fiihrt zu hdufiger Neuplanung und leidet un-

ter lokalen Minima in dynamischen Umgebungen. Der dritte Beitrag geht dieses Problem
an, indem episodisches Reinforcement Learning eingesetzt wird, um potenzielle Verén-
derungen in der Umgebung iiber die Zeit hinweg implizit zu beriicksichtigen. Die erlernte
Policy verfeinert Referenztrajektorien unter Beriicksichtigung der zeitlichen Entwicklung
der Umgebung. Hierfiir werden drei Strategien zur Trajektorienverfeinerung eingefiihrt,
die auf B-Spline-Bewegungsprimitive basieren und einen glatten Ubergang zwischen Tra-
jektorienabschnitten gewéhrleisten. Die in den ersten beiden Beitridgen berechneten Tra-
jektorien dienen hierbei als Referenz. Das raumzeitlich bewusste Verhalten der Methode
fiihrt zu einer deutlich verbesserten Aufgabenleistung im Vergleich zu rein geometrischen
oder klassischen raumzeitlichen Planungsverfahren.

Die Wirksamkeit und Grenzen der vorgeschlagenen Methoden werden durch umfang-
reiche Evaluierungen und Ablationsstudien sowohl in Simulationen als auch an realen
Robotersystemen nachgewiesen.

Vi

Contents

[Abstract

Zusammentfassung|

1__Introduction

(1.1 ResearchQuestions|

2.1 Overview of Motion Planning|
[2.1.1 ~ Sampling-Based Methods|
[2.1.2 Optimization-Based Methods|

[2.2 Motion Planning in Dynamic Environments|
[2.2.1 ~ Sampling-Based Methods|
[2.2.2 Optimization-based Methods|.

[3.1.1 Task and Configuration Space|
[3.1.2 Collision Checking and Distance Computation|
[3.1.3 Standard Edge Examination|
(3.2 Problem Description| oo oL
[3.3 Precomputed Deterministic Roadmap|

[3.4.1 Heurstics for Roadmap Exploration|

[3.6.2 AblattonStudy| oL
[3.6.3 Evaluation in Robot Experiments|

11
12
13
13
14
16
16
17

19
21
21
21
22
23
23
25
26
26
29
30
36
37
38
40
41
42

45
47
47

Vil

Contents

4.2 Problem Description|
4.3 Generating Spatial Subgoals|
#4.3.1 Subgoal Dataset|
“4.3.1.1 Components in Dataset]

“4.3.1.2 Dataset Generation Pipelinef

4.3.2 Learning Subgoal Distributions|
4.3.2.1 Planning Problem Representation|

4322 Trammg L.

4.4 Temporal Distributionsas Critic|
4.4.1 Capturing Temporal Distributions|
4.4.2 Metrics for Subgoal Selections|

4.4.2.1 Selection Strategies|
4.4.3 Planning Range Shaping|

4.5.1.1 Planning Time Fulfillment.
4.5.1.2 Goal Reaching|
[4.5.2 Ablation Study|o o

5

Learning Motion Refinements for Spatiotemporal Awareness|

1 Prelimmnaries|
[5.1.1 Episodic Reinforcement Learning|
[5.1.2 Using Movement Primitivesin ERL}

[5.2 Problem Description| 0 0oL

[5.4.2 AblationStudy|o
[5.4.3 Evaluation in Robot Experiment|

[6.2.1 Interacting with Environments|
[6.2.2 Explainable Safety Guarantees|

[Bibliography|

[List of Figures|

List of Tables

viii

105
107

1 Introduction

Humans live in a dynamic world that is constantly changing, which requires us to adapt
our behavior continuously to stay safe. This adaptation often needs to happen within
very short timeframes. Treating the reaction process as a whole, a delayed reaction time
can result in undesired and potentially fatal consequences in scenarios such as driving
in crowded traffic. The average human reaction time is approximately 220 milliseconds,
includingﬂ receiving stimulus (20-50 ms), processing (70-100 ms), and finally initiating
actions (50-150ms) [180, (145, [109]]. The fastest human reaction time is close to 100 ms
[32]. Similarly, in robotics, the reacting and planning pipeline can be divided into three
stages, i.e., perception, processing, and response. This thesis only focuses on the pro-
cessing part of the reaction. To enable robots to operate effectively in a dynamic world,
they should show a shorter reaction time than humans. In extreme cases where objects
are moving at high speeds, an even shorter overall reaction time is needed to reduce the
disparity in the environment before and after the three stages of reaction. For instance, if
an object is moving at a speed of 2 m/s and the robot has an overall reaction time of 50
milliseconds, the object will have traveled 100 millimeters during this processing time.
This mismatch can cause potentially fatal consequences. However, efficient planning of
collision-free motions for robots with high degrees of freedom (DoF), e. g., articulated
manipulators, at a millisecond level of time remains a significant challenge.

In scenarios like most production lines, robots are programmed to navigate the surround-
ing static environment for one specific task efficiently. When these robots are in oper-
ation, human workers are not allowed to enter or share space with them, as illustrated
in Figure Assuming the environment remains stationary, previous developments in
motion planning methods have focused on designing algorithms to find solutions that op-
timize specific objectives, such as minimizing energy consumption or minimizing execu-
tion time. Depending on the algorithms and the complexity of the problems, the planning
process usually takes seconds to hours [157]]. Planning must be restarted from the begin-
ning once the surrounding environment or task context changes. When deploying robots
into our daily lives, as shown in Figure [I.Ib] or in more dynamic production lines such
as logistics, their surrounding environments change continuously and are sometimes even
unpredictable. It is crucial that the algorithm can consistently provide solutions within
a bounded time frame. Algorithms designed with the assumption of stationary environ-
ments often fail to generalize and perform effectively in such dynamic contexts.

From this point onward, the term dynamic environments refers to the environments that
change continuously and can sometimes be unpredictable. In dynamic environments,
planners must be able to adapt in real-time and meet the following requirements to ensure
safe and effective performance:

* Bounded reaction time at the millisecond level, enabling rapid responsiveness to
changes in the environment.

For simplicity, the reaction process is only divided into three stages in this thesis.

1 Introduction

* Spatiotemporal awareness to involve consideration of potential environmental
changes over time, allowing the system to adjust its motion strategy in advance
and minimize unnecessary replanning efforts.

¢ Current robot state awareness to facilitate smooth motion transitions.

T

1L a (0
(a) Isolated environment (b) ARMAR-6 [5] in a daily scenari

Figure 1.1: Robots in isolated and open environments. (a) An industrial robot is operating
in an isolated cell with fences and safety monitoring equipment. (b) ARMAR-
6 is performing a handover task collaborating with human workers.

1.1 Research Questions

This thesis focuses on developing motion planning algorithms for articulated manipula-
tors with high DoF in dynamic environments while addressing the aforementioned re-
quirements. Three research questions are formulated to fulfill one or some of the require-
ments. Before formulating the research questions, a brief review of different categories
of motion planning methods and their capabilities is provided. Current planning methods
can roughly fit into these three categories: sampling-based methods, optimization-based
methods, and reaction control methods.

Sampling-based methods can be used in a plug-in manner to offer solutions to planning
problems without the need to carefully specify the problem and define cost functions.
The output of a sampling-based method is usually a collision-free geometric plan. Recent
methods in this category handle spatiotemporal planning problems with full knowledge
of the environment along the time horizon [44]] or use parallelization to accelerate the
sampling and collision checking [162]]. The spatiotemporal planning methods [44]] usually
require several seconds of planning budgets and fail to provide millisecond-level reaction
time. On the other hand, methods based on parallelization [162] fulfill the requirement of
millisecond-level reaction time but consider solely the geometric state of the environment
and the robot and return a set of geometric waypoints as solutions. These solutions are
not guaranteed to respect the current robot joint position and velocity limits, and can be

This is a snapshot from the video: https://youtu.be/hVprn7XwRkk, Throughout the remainder
of this thesis, figures are original unless stated otherwise.

https://youtu.be/hVprn7XwRkk

1.1 Research Questions

infeasible. Therefore, all requirements in Table @ are marked with —+, indicating these
requirements can be partially met by some methods in the category.

Optimization-based methods take a reference trajectory as an initial solution and improve
it incrementally according to handcrafted objective functions [167]. This category of
methods can directly output trajectories and account for current robot states and desired
kinematic constraints. While most optimization-based methods have a relatively long and
unbounded computation time, recent advances such as STORM [12] and CuRoBo [159]
provide good online optimization performance. STORM handles dynamic environments
by explicitly modeling them in the cost function and updates the final policy by rolling
out sampled trajectories[12]. Due to the limited horizon of the sampled trajectories, only
a short duration of environmental changes can be considered. On the other hand, CuRoBo
[159] is limited to so-called semi-dynamic environments, meaning that it only considers
the current state of the environment. Although CuRoBo demonstrates good online per-
formance, its computation time highly depends on the random seeds [52] and remains
unbounded. Therefore, the fulfillment for spatiotemporal awareness is marked as — and
bounded reaction time as —+ in Table[I.I|for the optimization-based methods.

Reactive control methods such as potential fields [[77] and velocity fields using Dynamical
Systems (DS) [[76] can be fast and deterministic due to their low computational complex-
ity. The outcome of these methods is feasible control commands based on the current
state of the robot. Therefore, the requirements for the current robot state awareness and
the bounded reaction time are met. However, these methods only consider the current
state of the environment and do not meet the requirement for spatiotemporal awareness.

Sampling-Based Optimization-Based Reactive Control

Bounded Reaction Time —+ —+ 4
Spatiotemporal Awareness —+ - -
Current Robot State Awareness —+ + +

Table 1.1: Fulfillment of requirements for motion planning methods. Only methods for
dynamic environments are considered. The symbols — and + indicate whether
methods in the category meet the requirement, while —4- denotes that the re-
quirement is partially met by methods in the category.

None of these three categories of methods can fully meet the requirements stated above.
Compared to methods from the other categories, sampling-based motion planning meth-
ods can be easily plugged into diverse scenarios as a global planner without much mod-
eling effort, and Table shows their potential to fit in dynamic environments. Using
sampling-based methods as the foundation, this thesis formulates three research questions
to overcome the limitations of traditional motion planning methods and, thus, fulfill the
requirements. Addressing these questions leads to three main contributions in this thesis,
termed Contribution 1, Contribution 2, and Contribution 3, illustrated in Figure @

Q1 What is the main bottleneck in accelerating robot motion planning, and how
can it be overcome?

¢ Contribution 1 describes a method that reduces the number of collision checks
during planning - a significant bottleneck that slows down rapid motion generation

1 Introduction

in dynamic environments. The proposed method addresses this bottleneck from
three different angles. First, a deterministic roadmap is computed offline, which
provides admissible heuristics for the online planning phase. In the online phase,
a heuristics-informed search and a concept of safe zones are developed to reduce
the number of edge examinations and the number of collision checks per edge ex-
amination, respectively. These three components lead to a significant decrease in
collision checks, resulting in a speedup of 7 times on average for most compli-
cated test planning problems. This method can further be used as a base planner in
the following contributions. Other than the significant speedup, the results in the
evaluation also indicate that the planning time increases with the complexity of the
planning problem and remains unbounded.

Q2 Can identifying and reaching subgoals be a more efficient strategy in dynamic
environments?

* Contribution 2 introduces a method for generating subgoals that decompose com-
plex motion planning problems into small, easily solvable subproblems. By itera-
tively planning these subproblems, the approach ensures a short, bounded planning
time in dynamic environments and guides the robot to approach the final goal in-
crementally. This method first establishes a data collection pipeline for suitable
subgoals. With the collected dataset, a generative model is trained to capture the
distribution of the subgoals. During inference, a learned critic is deployed to evalu-
ate whether the generated samples fulfill the requirement of bounded planning time
while being goal-oriented. The proposed method effectively decomposes complex
problems requiring more than 1 second of planning time into small problems re-
quiring less than 0.05 seconds.

Q3 How can planned solutions be adjusted to account for changes in the environ-
ment along the time horizon?

* Contribution 3 proposes a method for refining trajectories to account for potential
changes in the environment along the time horizon, addressing the limitations of
Contribution 1 and Contribution 2. To grant spatiotemporal awareness regarding
dynamic environments, this method uses episodic reinforcement learning to im-
plicitly encode an understanding of how environments evolve into the learned pol-
icy. Additionally, trajectory refinement strategies based on B-spline-based move-
ment primitives are developed to ensure smooth motion transitions, considering
the robot’s current positions and velocities. As a result, this method effectively
combines sampling-based motion planning with episodic reinforcement learning,
demonstrating superior task success rates compared to methods that do not incor-
porate spatiotemporal awareness.

While Contribution 1 and Contribution 2 together meet the first requirement regarding
reaction time, Contribution 3 meets the other two requirements regarding proactive con-
sideration of potential environment variations and smooth motion transitions.

1.2 Outline of the Thesis

-
W=y

N
\!;,0\ ‘\‘;Qo' B‘ ®

Reduced Collision Checks Planning to Subgoals Spatiotemporal Awareness
Contribution 1 Contribution 2 Contr?butior.\ 3 '
1. Edge examination with safe 1. Learned subgoal distributions 1. Onllpe motion refinement
zones 2. Learned a critic for subgoal 2. Spatiotemporal awareness
2. Heuristic-informed search selection 3. Imprgved task success rate by
3. Planning speedup by 7 times 3. Planning within 50 ms two times
Bounded planning time Bounded planning time Bounded planning time
Spatiotemporal awareness Spatiotemporal awareness Spatiotemporal awareness
Current robot state awareness Current robot state awareness Current robot state awareness
(a) Contribution 1 (b) Contribution 2 (¢) Contribution 3

Figure 1.2: Illustration of the contributions.

1.2 Outline of the Thesis

In the following, the structure of this thesis will be briefly introduced to give an overview
of the big picture.

Chapter 2| first provides a broad review of robot motion planning methods and highlights
how the focus of developing motion planning algorithms has shifted and evolved over
time. Subsequently, it further delves into the topic of planning in dynamic environments,
showing how different categories of methods, such as sampling-based and optimization-
based methods, change their paradigm to embrace this challenge.

Chapter [3] addresses the bottleneck of speeding up motion planning methods for con-
stantly changing environments. Being aware that the huge amount of collision checks is
the bottleneck hindering rapid motion planning, a novel path planning method is proposed
to identify and eliminate unnecessary collision checks during planning. As a result, this
method demonstrates an average speedup of more than 7x in complex scenarios, mak-
ing it possible to conduct robot motion planning in milliseconds. Despite the speedup, the
proposed method does not address the constraints regarding a limited budget for planning.

Chapter [tackles the constraints regarding limited budget by decomposing a complex,
long-horizon planning problem into smaller, manageable ones while still being goal-
oriented. A generative model is used to sequentially generate a batch of subgoals, which
can incrementally guide the robot to the final goal. To ensure the capability of planning
within the time constraints, these constraints are implicitly encoded into the generative
model and are explicitly considered using a time estimator as a critic.

Chapter [5] proposes a method to take into account how the dynamic environment evolves
along the time horizon, while the method proposed in the previous chapters only considers
the current state of the environment. The proposed method leverages reference trajectories
as priors and uses reinforcement learning to generate refinements over the trajectories.

1 Introduction

Multiple refinement strategies are discussed in this chapter and evaluated in simulation
and real-world experiments.

Chapter [6] concludes the thesis by summarizing the key takeaways and highlighting the
most important results of the work. At the end of each proposed component, contributions
and limitations are discussed in detail. Based on these discussions, possible research ideas
are proposed to tackle further challenges.

2 Related Work

This chapter reviews the state of the art in robot motion planning in the following order.
First, Section [2.1] gives an overview of the different categories of methods for general
motion planning problems. Then, Section [2.2] describes how the methods from these cat-
egories address the planning problem in the context of dynamic environments. Details of
how machine learning changes the field of motion planning and how the end-to-end learn-
ing method conceptually differs from the classical motion planning methods are included
in this part as well. Finally, Section [2.3|clarifies the relation between this thesis and other
existing methods.

2.1 Overview of Motion Planning

Motion planning methods have been proposed and developed over the decades. This
section reviews some significant categories of motion planning methods, i.e., sampling-
based methods [74, 92, [86], optimization-based methods [140, 70, (146, 164, [167], and
movement primitive (MP) methods [98, [144, [121]. As an overview, this section does
not distinguish the methods by their capability to apply in dynamic environments. More
discussion on dynamic environments is given in Section

2.1.1 Sampling-Based Methods

The concept of motion planning using a reference point in the collision-free space was
first introduced around 1979 [106]. This concept was later developed to plan in the
configuration space for arbitrary kinematics. It has been proven that finding the short-
est path in the configuration space among polyhedral obstacles is NP-hard [15]. This
gave rise to sampling-based methods. The sampling-based perspective of motion plan-
ning methods was originally introduced [6] to fix the local minima problem caused by
artificial potential fields [77]]. While this method samples actions to escape the local min-
ima, modern sampling-based methods evolved to approximate collision-free regions in
the configuration space. Two major groups of sampling-based motion planning methods
are single-query and multi-query planning methods. Single-query methods grow trees by
sampling random configurations until the trees connect the start and goal configurations.
Once the start-goal query is changed, the trees must grow from scratch. Methods like
rapidly-exploring random trees (RRT) [92, 86], expansive-space trees (EST) [S1) [128],
fast-marching trees (FMT) [65], batch informed trees (BIT) [39] belong to this category.
Multi-query methods usually construct a graph using random sampling to approximate
the feasible set in the configuration space. This graph can be used for multiple start-goal
queries and saved locally for the next usage [[71, [178]. Methods such as probabilistic
roadmaps (PRM) [74] and its variants [48} 27, 29] belong to this category.

2 Related Work

The focus of the early phase of sampling-based methods is to have an efficient planner
that is probabilistically complete. A planner is probabilistically complete if it can find
the solution given an infinite time budget in case the solution exists. Techniques such as
lazy collision checking [48, [27]], biased sampling strategies [90, 188} 162], and deterministic
sampling strategies [14, 53] are proposed to improve the planner’s performance in terms
of planning time while keeping the algorithm probabilistically complete.

Later on, the focus of developing sampling-based planners has been shifted to optimality.
With rewiring operations with respect to heuristics on a graph or a tree, the planners can be
extended to optimal planners, such as the graph-based planner PRM* [73]], the tree-based
planner RRT* [[73]], FMT* [65], BIT* [39], and the bi-directional tree-based planner AIT*
[1S7].

With the increasing use of data-driven and machine learning techniques, several meth-
ods have been proposed to enhance or replace components in the sampling-based motion
planning pipeline. It is important to note that the techniques discussed in this thesis are
built on sampling-based methods and closely integrate with machine learning techniques
to facilitate planning in dynamic environments. A detailed review of methods that com-
bine sampling-based motion planning with machine learning is provided to visualize the
different possibilities to apply machine learning to motion planning methods.

Data-Driven The early stage of leveraging the data does not involve machine learning.
Lightning [11] collects the previous planning examples and saves them in a database for
later retrieval. As a new planning query is requested, the result from a previous similar
planning problem is retrieved from the database and then modified for the new query.
Instead of saving the experience directly in the database, Thunder [24] constructs and
maintains a sparse graph based on the experience and achieves much faster computation.

Later on, components using supervised learning and reinforcement learning were actively
developed and integrated into sampling-based pipelines.

Reinforcement Learning PRM-RL [33]] combines reinforcement learning and PRM for
long-range navigation tasks. As a local planner, the RL agent navigates the robot based
on the noisy sensor inputs and provides connectivity information for the PRM. This con-
nectivity information indicates the capability of the RL agent to travel between two points
and is used for graph construction instead of the trivial straight-line interpolation. This is
different from kinodynamic planning methods [127]. While kinodynamic sampling-based
methods solve optimal control problems to connect two samples, the edges in PRM-RL
do not explicitly represent system dynamics. Other than connectivity information, the
RL agent has also been used to provide the heuristics for connecting the nodes in RRT
[22]]. While the connectivity and heuristics are handcrafted features, APES [95] uses a
generator-critic framework to bias the sampling distribution, which can directly optimize
the planner’s performance. This framework is very similar to the action-critic frame-
work in reinforcement learning. The methods above use RL to replace a component in
sampling-based methods. The reverse also holds. DDPG-MP [69] puts motion demonstra-
tions from sampling-based planners into a replay buffer to guide the exploration in case
the RL agent fails in an episode during training. This idea is close to the idea proposed in
Contribution 3, where the reference trajectories serve as good priors for exploration.

Supervised Learning Compared to reinforcement learning, the marriage between su-
pervised learning and sampling-based methods is more successful. The exploration has
been in biasing the sampling distribution [96, |61}, 88, 91, 95], lazy collision checking

2.1 Overview of Motion Planning

by learning to prioritize the exploration [[180, 18, [182) [18] and estimating the possibil-
ity of collision [56, 157, [183]] or clearance [75], construct roadmaps with critical samples
(62, 188, 91], planning in encoded latent spaces [S9, [18] and predict next samples in an
auto-regressive manner [[134, [135) 137, (136, [155]. Supervised learning is more powerful
than reinforcement learning in this context, which can be attributed to its ability to encode
tasks and environments. The following introduces methods of each category mentioned
above to illustrate the idea.

Sampling from biased distributions conditioned on the task context usually results in
a significant speedup compared to uniform sampling. Repetition sampling [96] learns
Gaussian Mixture Models (GMM) from previous solutions and applies the learned distri-
bution to similar tasks. GMM-based Multi-RRTs (GMMM-RRT) [[184] build trees inside
each component of the mixture models and finally connect them. Other than GMMs, a
conditional variational auto-encoder (CVAE) [79] can be learned from optimal paths and
used to generate task-relevant samples [61]. Compared to GMMs, CVAE does not ex-
plicitly express the sample distribution but encodes it in a latent space. Conditioning on
the task context, such as the initial states, goal region, and obstacles, the samples from
the latent spaces can be mapped to biased samples. LEGO [88]] fuses the idea of critical
PRMs and learned distribution. It identifies a set of bottleneck nodes representing the
regions difficult for a uniform sampler to cover. This is similar to the surface sampler
and the Gaussian sampler. The learned CVAE is trained to capture the distribution of the
bottleneck nodes.

Collision Estimation GMM can be used to represent the distribution of the collision
region in configuration space as well [56, 57]]. The components in the mixture model can
be updated during the planning. Some approaches learn to reject the sample instead of
bias the distribution to the desired region [183]]. ClearanceNet [75]] is a neural network that
predicts the clearance, i. e., the minimum distance between the robot and the environment,
and can provide gradients to shift the samples away to enlarge the minimum distance.
With the features of batched operation and gradients coming from a neural network, a
parallelized algorithm, CN-RRT, achieves a significant speedup.

The prioritized exploration works closely with collision estimation. A transformer-
based graph neural network (GNN) is used to predict whether an edge in a random ge-
ometric graph is collision-free or not [180]. The prediction prioritizes the search and
exploration of the graph, resulting in fewer collision checks. The graph-based explorer
[180] suffers from the problem that the exploration does not take the global accumulated
cost of the path into account. GraphMP [182]] addresses the problem by introducing two
GNN-based modules to estimate the probabilities of collision and the heuristics for A*
graph search.

Roadmap Construction The concept of connectivity is further used to construct critical
PRMs [62], where the samples of high connectivity are seen as critical samples. A neural
network is trained and used to evaluate the connectivity of the samples. SV-PRM [91]
treats the samples in a PRM as particles and uses particle-based variational inference [[104]
to update the distribution of the samples for more homogeneous coverage of the feasible
set. Strictly speaking, SV-PRM is more of a maximum a posteriori (MAP) problem than
a supervised learning problem. The information collected from the observation is used to
update the posterior distribution. However, to show a big picture of how machine learning
improves different components in the sampling-based motion planning pipeline, SV-PRM
is introduced together with the learned critical roadmaps.

2 Related Work

Planning in Latent Space Learned Latent RRT (L2RRT) [59] uses an autoencoding
model, a dynamic model, and a collision-checking model to construct an RRT-based
pipeline. With the encoded states using the encoding model, the steering and collision
checking operations are conducted in the latent space. Planning in latent space has been
extended to trajectory optimization [3]. Neural Exploration-Exploitation Trees (NEXT)
[18] is a meta-neural path planning algorithm that uses a neural prior to guide the selection
and expansion of tree-like planning approaches. The high-dimensional planning space is
mapped to a 3D discrete latent space.

Learning Differential Fields An alternative representation of the desired distribution is
the cost-to-go map [38]], which is a field indicating the cost to reach the goal. The trajec-
tory from the start to the goal is generated by following the slope of the field. A similar
idea is the implicit signed distance field in joint space [83]. NTFields [114] leverage
a physics-informed network to mimic the Eikonal equation, which approximates wave
propagation and solves the shortest arrival time problem. The Eikonal equation can be
applied to high-dimensional space, and the motion planning problem can be solved by
following the gradients of the field.

Auto-regressive planning refers to the machine-learning-based methods that iteratively
generate waypoints, which are then used as inputs for subsequent iterations until a solution
connecting the starting point to the goal is achieved. These methods now utilize sampling-
based motion planners to generate datasets for training, rather than relying on them at the
inference stage. DeepSMP [134] learns a contractive auto-encoder to extract features from
point clouds. These features are then fed to a deep neural sampler to predict the next sam-
ples on the optimal path. On inference, the auto-encoder and the neural sampler work in
a stochastic auto-regressive manner. The auto-regressive mechanism is further improved
by Long Short Term Memory (LSTM) [S0] and achieves fixed-time inference [[10] at a
level of seconds for a 6-DoF planning problem. A follow-up work MPNet [137, [136]
uses active continuous learning to accelerate the learning process. A bi-directional tree
and trajectory refinement techniques, building on the learned auto-regressive model, are
proposed to make the neural planner usable. This learning pipeline is further extended to
planning on constraint manifolds [136]] and MPC [100]. SIMPNet [155] uses a GNN to
encode the kinematic chain of robots and then fuses it with the working encoding using
cross-attention. The fused representation is used to generate samples in a bidirectional
auto-regressive manner, similar to MPNet [135]. As a result, a computation time of sec-
onds is reported in the paper, which cannot be directly applied to dynamic environments.
The subgoal learning in Contribution 2 is related to this category. However, the key differ-
ence is that Contribution 2 aims to generate samples that can be planned within a desired
bounded time with a sampling-based planner involved, while the methods in this cate-
gory sequentially construct a complete path without utilizing a sampling-based planner.
This distinction allows the method introduced in Contribution 2 to return a solution that
is guaranteed to be collision-free within a short time frame.

The focus of sampling-based motion planning shifts from probabilistic completeness to
optimality and finally to machine learning-based methods. Machine learning can be ap-
plied to various components of the sampling-based motion planning pipeline.

10

2.1 Overview of Motion Planning

2.1.2 Optimization-Based Methods

Trajectory optimization uses gradient information to update the initial trajectory regarding
user-defined objective functions while fulfilling the constraints. The general formalism of
trajectory optimization for a path of T time steps To.r = [Ty, . . ., ©7| with z. € R can
be written as

minf(wO:T)a s.t. g(wO:T) S O, h<$O:T) = 07 (21)

Zo:T

where f(-) denotes the objective function, g(-) defines the inequality constraints and h(-)
defines equality constraints. Based on this formalism, some trajectory optimization meth-
ods are proposed to reduce the problem complexity and accelerate the optimization. In the
following, methods based on gradient-based optimization [[140, [186, 167, 146, 147, 165,
142,141}, gradient-free optimization [70, 93] and planning as inference are reviewed.

Gradient-Based Optimization Second-order derivatives contribute to faster convergence
of the optimization. CHOMP [140) [186] uses covariant gradients with respect to the Hes-
sian to achieve fairly fast convergence regarding the objective function composed of the
collision avoidance and trajectory smoothness. Covariant gradients do not depend on
the selection of coordinate systems [[167] and provide a reliable step size and step direc-
tion for the optimization. TrajOpt [146,147] consider continuous-time collision checking
and use sequential convex optimization to solve the non-convex optimization problem in
Eq. 2.1 Compared to CHOMP, TrajOpt requires fewer iterations to converge. KOMO
[165], a framework for robot motion optimization, is the first to introduce an anytime
version of the Augmented Lagrangian. This framework is further used in work such as
logic-geometric programming (LGP) [166] and BITKOMO [72]]. Inspired by KOMO,
RieMO [141]] is a motion optimization framework integrating first-order Riemannian ge-
ometry of the workspace. The geometry of the workspace, including obstacles, can be
better represented by Riemannian metrics. Different Gaussian-Newton approximations
and their impact on the optimization are investigated [142] as well. Other than Gaussian-
Newton methods, Stein variational gradient descent can be applied to trajectory optimiza-
tion [[130].

Gradient-Free Optimization STOMP [70] generates a set of noisy trajectories and com-
putes their costs in every iteration. These costs are used to update the candidate solution,
and no gradients are required. A similar idea of stochastic optimization can be seen in
model predictive path integration (MPPI) methods [175}12]]. Stochastic trajectory opti-
mization has been extended to be multimodal and can generate diverse solutions [116]].
Optimal transport is used to accelerate the trajectory optimization based on particles [93]],
where a gradient-free update rule, the Sinkhorn Step, shifts the particles toward low-cost
regions.

Planning as Inference Trajectory optimization can be viewed as probabilistic inference
[164, 168]. Instead of optimizing a trajectory, the methods of this category condition the
distribution of trajectories on the desired constraints and infer the posterior distribution.
GPMP [111] considers smooth continuous-time trajectories as samples from a Gaussian
process (GP). Unlike the discrete-time formulation Eq. 2.1} only a few states are used
to parameterize the trajectory, and GP interpolates these states. GPMP2 [31]] uses factor
graphs and numerical optimizations to accelerate GPMP. The factor graph can be modi-
fied for replanning at run-time while the goal changes. The changes regarding the start
and goal position have a relatively small impact on the factor graph. However, when
the environment changes, the benefit of using the factor graph from previous planning

11

2 Related Work

does not hold anymore. Gaussian Variational Inference Motion Planning (GVI-MP) [181]
optimizes the trajectory distributions by using variational inference to approximate the
posterior distribution. Compared to GPMP, GVI-MP is a motion planning formalism that
considers uncertainties.

2.1.3 Movement Primitives

Movement Primitives (MPs) [[144, 98, [121] are motion generators that are broadly used
in learning-based methods such as imitation learning [[185] and reinforcement learning
[117, [118]. The fundamental idea of MPs is to learn a weight vector for a set of pre-
defined basis functions to parameterize a trajectory. Dynamic Movement Primitives [144]
introduces a force term to a second-order spring-damper system with goal attractions.
Parameterizing the force term leads to parameterization of the trajectories. Probabilistic
Movement Primitives (ProMPs) represent the weight vector with a probabilistic model,
enabling probabilistic inference conditioned on the environmental context and online up-
dates. While ProMPs can model uncertainty and conduct conditional inference based on
new observations, they fail to support the desired boundary conditions to achieve smooth
trajectory switching. Probabilistic Dynamic Movement Primitives (ProDMPs) unify the
DMPs and ProMPs by employing the closed-form solution instead of numerical inte-
grations to represent how the force term in DMPs influences the trajectory, resulting in
probabilistic modeling of the trajectories while supporting the smooth transitions.

Movement primitives are central to Episodic Reinforcement Learning (ERL) methods.
Early works on ERL employed black-box optimization techniques to evolve parameter-
ized controllers, such as small MLPs [174} 163, 43]]. Episodic Policy Learning [82] first
proposed using Movement Primitives as parameterized policies for ERL. This approach
reduces the search space dimensions, shifting from the neural network parameter space
to the smaller weight space of MPs (typically ranging from 20 to 50). Beyond improving
sample efficiency, MPs also enable the generation of smooth trajectories [118]] and more
efficient exploration [99]]. Early MP-based ERL methods [125} 1, [129] cannot deal with
task variations. To address this limitation, follow-up works such as [2]] and [[17] proposed
using linear models to predict MP parameters conditioned on task context. A recent work,
Deep Black-Box Reinforcement Learning (BBRL) [117] further extends MP-based ERL
with neural network policies and on-policy policy gradient updates with differentiable
trust region layers. Building upon BBRL, MoRe-ERL employs contextual ERL to learn
smooth motion residuals and further improve the sample efficiency by leveraging the prior
knowledge from sampling-based motion planners.

Other than ERL, movement primitives have been deployed for residual learning meth-
ods. The idea of using RL to learn motion residuals was first introduced by [152] and
[68]. This approach leverages the generalization capability of RL to enhance traditional
feedback controllers, such as the PID regulator, to handle complex dynamics like contacts
and friction, which are often difficult to model. Learning motion residuals simplifies the
RL problem, reducing the demand for samples and making real-world applications more
feasible [68,139]. Recent works have also explored incorporating MPs into residual RL
(16} 26], where MPs generate reference trajectories, while step-based RLs are used to
learn the motion residual. However, step-based residual RL still suffers from similar limi-
tations to step-based RL, including a lack of smoothness in generated motions and a heavy
reliance on dense Markovian reward.

12

2.2 Motion Planning in Dynamic Environments

In Contribution 3, the proposed method uses ERL and B-spline-based movement primi-
tives [102] to compute motion refinements for reference trajectories in dynamic environ-
ments, showing superior sample efficiencies and task success rates.

2.2 Motion Planning in Dynamic Environments

The previous section introduced multiple categories of methods for solving motion plan-
ning problems. This section delves deeper into methods suitable for dynamic environ-
ments. First, a clear line is drawn to distinguish the methods operating in dynamic en-
vironments from those that cannot. The methods that can consistently return feasible re-
sults within 50 ms are categorized as dynamic-environment-capable. Then, an additional
distinction is introduced to separate methods incorporating predictions of future system
evolution from those that rely solely on the current state.

This section reviews methods from the following categories: sampling-based methods
(162,176,149, 179]], optimization-based methods [[171} 123,41, 107,159, 169], geomet-
ric methods [[143} 97, 20, [170], signed distance field [[83), 101} 103} [35]], dynamic system
(76, 155, 184, 138, 134] and end-to-end methods [103} [78]. While reviewing these methods,
the focus is on analyzing where the speedup comes from. By having their capabilities
analyzed, the uniqueness of the approaches proposed by this thesis will be demonstrated
later in Section

2.2.1 Sampling-Based Methods

A very straightforward approach to speeding up motion planning is parallelization. The
parallelization does not conceptually change the algorithm but uses a more reasonable
scheduler [[150] or more efficient data structure [[162, 138, [176] to achieve a significant
speedup.

MPAccel [150] proposes a Spatial Aware Scheduler (SAS) and Cached Early-exit Colli-
sion Detection Unit (CECDU). SAS distributes the resources for collision checking while
verifying an edge. CECDU uses a hierarchy to conduct collision checking based on prim-
itives and precise collision checking if required.

Vectorized Sampling-Based Planning (VSBP) [162] utilizes Single Instruction/Multiple
Data (SIMD) to speed up sampling-based motion planning on CPUs. The vectorization
includes forward kinematics, collision checking, and an edge validation scheme. This
is a general speedup that can be applied to most sampling-based methods. The method
proposed in this dissertation can also benefit from this approach.

While VSBP focuses on the parallelization of the planning algorithm, Collision-Affording
Point Tree (CAPT) [138]] is a novel data structure designed to support parallelization in
the perception part. CAPT is a spatial data structure that represents 3D point clouds. It
inherits the SIMD parallelism and refines k-d trees to achieve collision checking against
a point cloud with thousands of points at more than 60 FPS. Together with VSBP, online
motion planning using sensor data on a CPU is feasible.

Fully Connected Informed Trees (FCIT*) [176l] applies vectorized edge verification in
VSBP to a fully connected graph, achieving anytime almost-surely asymptotic optimality

13

2 Related Work

at the price of sacrificing the speed. The optimality is rather spatial optimality, neglecting
the spatiotemporal aspect.

All methods mentioned above can be used in semi-dynamic environments, meaning that
they are fast enough to constantly replan, but only with respect to the current state of the
environment.

2.2.2 Optimization-based Methods

Optimization-based methods can be enhanced to be dynamic-environment-capable from
diverse aspects. Other than parallelization using GPUs [159, [70], these methods achieve
efficient computation by introducing waypoints to concentrate on smaller problems [[123,
169, [107]] or using neural signed distance fields [103}101].

Parallelization

While the parallelization of sampling-based methods is realized using efficient data struc-
tures, the parallelization of optimization-based methods is usually done using GPUs.

CuRoBo [[159] is an optimization-based framework based on GPU-parallelism. Given an
initial configuration and goal pose in SE(3), CuRoBo parallelizes optimizations for IK
and trajectory optimization over multiple random seeds. To have a good solution, the
number of seeds is usually set to more than 1000. DiffusionSeeder [52] uses Diffusion
[49] to generate seed trajectories for optimization, resulting in faster convergence and
higher success rate. Other than Gaussian-Newton methods, sampling-based MPC can
be implemented on GPUs as well. Stochastic Tensor Optimization for Robot Motion
(STORM) [12] is a parallelized MPPI or sampling-based MPC method. The roll-out of
the sampled trajectories runs on GPUs, and the collected costs are used to update the
actual robot trajectory. Additionally, a mapping between the raw sensor data and the
collision-checking-related cost function is learned, making this method capable of directly
integrating perception into the control loop. As a global planner, CuRoBo finds a complete
path to the desired goal, while STORM can get stuck in local minima.

Signed Distance Fields

Signed distance fields map points in a specific space to the distances between these points
and the corresponding closest objects. Methods like MPPI need efficient distance compu-
tation to include the collision objective in the optimization [83)]. Therefore, neural signed
distance fields provide a huge boost for this purpose due to their parallelization on GPUs.

Regularized Deep Signed Distance Fields (ReDSDF) [103]] are signed distance fields at
any scale based on the assumption that the distance to the object center can approximate
the distance while the point of interest is far from the object. In the close-up case, the
joint configuration of the object is considered for the fine-grained distance field. Com-
posite signed-distance field [33]] takes object tracking into account and fuses the predicted
signed distance field of dynamic objects along the time horizon into the static distance
field, resulting in efficient collision avoidance. Neural Joint Space Implicit Signed Dis-
tance Function [83] uses a neural network to predict the shortest distance between the

14

2.2 Motion Planning in Dynamic Environments

robot and a point in the Cartesian space. The learned neural network can be used as
collision avoidance constraints or a cost function in a quadratic programming inverse
kinematics or a joint space sampling-based MPC. The formulation is similar to STORM;
therefore, it inherits the same problem as STORM. Another approach combining config-
uration space distance field and MPPI is RAMP [172]]. RAMP uses MPPI as a global
planner and introduces an additional local vector-based approach for trajectory follow-
ing. Establishing the distance field in robot joint configuration space, configuration space
distance field (CDF) [101] directly estimates the minimum joint movements to hit the
object. These joint movements indicate the gradients on the field. The CDF is designed
for manipulation tasks. In the grasping scenario, the gradients directly guide the robot to
approach the objects.

Problem Decomposition

Decomposing the high-dimensional space into a hierarchical tree structure, Park et al.
sequentially optimize the trajectory in each tree node [123l]. An incremental approach
based on ITOMP [122] is used to handle the dynamic obstacles for a short time horizon.
The trajectory is optimized according to the hierarchy and will be aborted once the time
budget is up. This process is repeated until the goal is reached. The concept proposed
here is to generate sub-trajectories instead of solving the complete problem, which is very
similar to that introduced in chapter @ The difference is that this method decouples all
joints in a hierarchy. While the robot movement is strongly correlated, this assumption can
lead to a huge amount of local refinements. This approach can address the spatiotemporal
aspect of the environment only for a very small time window.

SecMPC [169] decomposes an overall manipulation control problem into solving sequen-
tial waypoints, timing the waypoints, and refining a short receding-horizon path. It as-
sumes that the task and motion planning (TAMP) plan is computed offline. While the
waypoints and their timing are optimized over the whole execution, accounting for long-
term constraints, the short receding-horizon path is refined to reactively avoid collision.

SPARROWS [107] is a receding-horizon trajectory planner based on a differentiable
reachability set and an exact signed distance function. The receding-horizon mechanism
is very similar to the concept of subgoal introduced in chapter] Although the authors
claimed that this method can be used for online planning, the signed distance field is com-
puted offline. This indicates that this algorithm cannot be used for dynamic environments
where the signed distance field changes over time.

Some methods combine the decomposition and the parallelization [64, [7]. Via-Point-
based Stochastic Trajectory Optimization (VP-STO) [64] deploys a Gaussian distribution
to iteratively sample via-points and uses the sampled via-points as references to sim-
plify the stochastic trajectory optimization problem. The distribution is updated using an
evolution-based optimization method, Covariance Matrix Adaptation (CMA-ES), at run-
time. The fundamental idea in VP-STO is close to the subgoals learning in Contribution
2, implying that VP-STO is not able to address the spatiotemporal aspect of the planning
problem either.

15

2 Related Work

2.2.3 Reactive Control

Reactive control methods provide instant robot commands based on the current state of
the robot [77, [76]. Therefore, the requirements regarding millisecond-level reaction time
and current robot state awareness are fulfilled by nature. The following reviews the recent
reactive methods based on dynamical systems (DS). Compared to other reactive methods,
methods based on DS provide a strong theoretical guarantee for goal attractions.

Dynamical Systems

Using a similar formulation modeling the flow around an object, real-time collision avoid-
ance can be achieved using Dynamical Systems (DS) [76]. The modeled flow indicates
the velocity of the robot. Instead of precomputing a trajectory for the robot, the meth-
ods based on DS compute a velocity field or control field. Given the robot’s position,
the desired control command is computed in real-time, making these methods dynamic-
environment-capable. Similar to potential fields, velocity-field methods have a generally
short computation time, and their performance depends on the construction of the fields. It
is worth mentioning that the avoidance behavior is only defined by the task space, making
it not applicable in complicated scenarios [[76} 155, [38]].

Concave objects are a common cause for local minima in potential-field [[177] and velocity-
field methods [84]]. To avoid these local minima, Rotational Obstacle Avoidance Method
(ROAM) [55] extends the velocity field approach to concave objects using general non-
linear dynamics. However, the avoidance is still limited to the task space. On-manifold
planning methods [38] model the environments as a manifold, on which the end-effector
trajectory can be derived. However, this method cannot be applied to joint space trajecto-
ries.

To scale the DS-based avoidance policy to joint space, a sampling-based MPC approach
is used to construct obstacle-tangential velocity components in a receding horizon manner
[84]. This method uses DS to compute joint space motion and activates the velocity com-
ponent based on sampling-based MPC as an avoidance policy when necessary. However,
the sampling-based MPC requires explicit modeling to account for potential changes in
the environment over time, which makes it challenging to adapt effortlessly to different
problems.

Generally, methods based on DS can provide good performance regarding collision avoid-
ance in dynamic environments due to their capability of instant responses and awareness
of current robot states. However, the spatiotemporal awareness remains unexplored.

2.2.4 Geometric Methods

Geometric methods use Riemannian geometry and Riemannian metrics to replace com-
monly used Euclidean metrics. Riemannian geometry is a branch of differential geometry
that studies smooth manifolds. The metrics used to measure distance, angles, and other
geometric properties are called Riemannian metrics [94]. Riemannian metrics offer a
unified way to represent the motion in the task space and joint configuration space.

RieMO [141]] is a motion optimization framework integrating first-order Riemannian ge-
ometry of the workspace. The geometry of the workspace, including obstacles, can be

16

2.3 Relation to State of the Art

better represented by Riemannian metrics. An optimization framework based on Rieman-
nian metrics is proposed to investigate how to properly utilize the gradient information in a
motion optimization problem. Riemannian Motion Policy (RMP) [143] is a mathematical
object that pairs diverse policies with a Riemannian metric and fuses them into a second-
order dynamical system. For example, suppose there are multiple motion policies, and
each can avoid an obstacle in the workspace. In that case, RMP composes these policies
using the Riemannian metrics and uses PullBack operations to map the resulting motion
to joint configuration space. RMPflow [20] and RMP2 [97] use a tree hierarchy to repre-
sent and weigh these motion policies, making it very flexible to compose diverse policies
[1770]. Strictly speaking, RieMO is not a dynamic-environment-capable method. Starting
with RMP, the time-consuming computation of low-level policies can be distributed to
different machines, and the composition runs in real time. Riemannian geometry has also
been employed in Imitation Learning (IL) [81} 8].

2.3 Relation to State of the Art

Contribution 1 While methods reviewed in Section [2.2.1|use parallelization to accelerate
the collision checking and distance computation [162, [138]] and neural signed distance
fields [83] conduct batched operations on GPUs, all these methods strive to increase the
capacity of collision checks per time unit. This benefits the method proposed in Contribu-
tion 1 rather than conflicting, since the goal of Contribution 1 is to reduce the accumulated
amount of the distance computation. Theoretically, improved capacity per time unit can
further shorten the planning time using the proposed method in Contribution 1.

Contribution 2 The idea of decomposing a complex problem into small ones is used from
different angles to shorten the computation time in optimization-based methods [[169, [7,
107]. The general concept is to generate sub-trajectories instead of solving the complete
problem, which is very close to the method proposed in Contribution 2. Different from
these methods, Contribution 2 aims to generate samples for sampling-based planners that
can be planned within the desired bounded time.

Contribution 3 The most obvious feature in Contribution 3 is the implicit consideration
of potential environment variations over time. Sampling-based methods such as ST-RRT*
[44] conduct spatiotemporal planning when full knowledge of the environment is avail-
able. However, this assumption regarding full knowledge is, in most cases, not realistic.
For sampling-based MPC methods such as STORM [12], the dynamics of the objects
require explicit modeling to take into account possible changes in the environment over
time. By taking only a short time window of state predictions into account, the approaches
can still suffer from the problem of short-sightedness. RMPflow [19] integrates both po-
sition and velocity as the state of the environment to determine which obstacles should be
considered in the current control loop.

17

3 Speeding up Motion Planning by
Reducing Collision Checks

Newell’s time scale of human action indicates that the time scale for deliberate action
1s 100 milliseconds [113]], encompassing perception, processing, and action. Planning
belongs to the processing stage. Given the time required for the subsequent stages, the
algorithm must plan a feasible trajectory within a few milliseconds. However, typical
motion planning algorithms require up to several seconds to compute a solution [115].
To address the gap between the required milliseconds and the actual seconds taken, this
chapter explores the following research question:

What is the main bottleneck in accelerating robot
motion planning, and how can it be overcome?

The bottleneck is well known in the literature [48, [75]. For a robot manipulator with
high DoF, collision checking uses up more than 95% of the computation time of the
sampling-based motion planning methods [48]], making it the primary bottleneck to speed
up and achieve online motion planning. Collision checking is an essential module for
sampling valid configurations and examining the connection between two configurations
in sampling-based methods. For an ordinary sampling-based motion planning problem,
a large number of collision checks are needed to find a collision-free path. While one
single collision check takes several microseconds [120, [119], this adds up to seconds of
computation time.

To mitigate this computational burden, two main strategies can be employed: (a) reducing
the total number of collision checks, denoted by n.., and (b) reducing the computational
time required per collision check. This chapter focuses on strategy (a). While some other
works [[120, 175,159,112} 25] try to solve the problem using option (b), the methods from
option (a) can benefit from them, leading to even greater overall efficiency. In this chap-
ter, to enable the sampling-based motion planning methods to respond to the changes in
the environment quickly, a Heuristics-Informed Robot Online (HIRO) planning method
is proposed to address the primary bottleneck of fast motion planning |'t This method
consists of (1) an offline step computing a deterministic roadmap regarding the static
environment and (2) an online step conducting a heuristic-informed search over the pre-
computed roadmap. For a static environment, the deterministic roadmap represents the
collision-free joint configurations of the environment and must be computed only once
and stored locally. The heuristic-informed search prioritizes edges with a high probabil-
ity of being in the final solution and employs a novel concept, safe zones, to examine
their validity. This proposed method significantly reduces the number of collision checks
required to solve motion planning problems, enabling faster motion planning.

'HIRO was originally published in IROS’22 [53].

19

3 Speeding up Motion Planning by Reducing Collision Checks

The total number of collision checks n.. is correlated to two factors, i.e., the number of
evaluated edges n.. and the average number of checks per edge n... The key insight
of this chapter is that n.. can be optimized by informed heuristics for the graph search,
and n.. can be reduced by introducing the concept of safe zones. Using a precomputed
roadmap for the static environment, HIRO reduces the complexity of a single collision
check and allocates computational resources to the dynamic part, thereby resulting in a
further speedup.

Static Environment Planning Problem Planned Motion

l

Edge Examination
with Safe Zones

Informed Search

Deterministic Roadmap Search Tree Heuristics Tree

Figure 3.1: Pipeline of the HIRO. The deterministic roadmap is computed offline. Given
anew planning problem with new obstacles in the workspace, HIRO performs
a heuristics-informed search on the roadmap and examines edges using safe
zones until a solution is found.

The high-level pipeline of the proposed method is illustrated in Figure[3.1] In the offline
preparation phase, HIRO generates a deterministic roadmap regarding the static environ-
ment. The static part of the environment comprises permanently present objects, such as
the table on which the robot is mounted. The dynamic component of the environment,
including manipulable objects and humans within the workspace, is treated separately
during the online phase. This precomputed roadmap can be stored locally and loaded
only once prior to execution. Then, during the online planning phase, HIRO performs a
heuristics-informed search across this roadmap. The heuristics estimate lower bounds on
the final path cost, guiding the search to prioritize exploring edges likely relevant to the
optimal solution. This process involves examining edges with safe zones. The so-called
safe zones outline the regions in configuration space that are certain to be collision-free,
allowing the examination to move on to the uncertain parts of the edge. The concept of
safe zones improves the efficiency of the examination compared with the standard pro-
cedure, which requires breaking down the edge at a fixed resolution and sequentially
checking the areas. In dynamic environments, HIRO keeps colliding nodes and edges in
the roadmap by temporarily deactivating them for the current search, enabling the exact
roadmap to be used as conditions change.

20

3.1 Preliminaries

HIRO is evaluated across a range of planning problems of varying complexity, achieving
an average speedup of 7.6x compared to the best baseline in the most challenging group
of problems. Furthermore, the method is applied to a real-world scenario with moving
objects, requiring rapid trajectory adjustments to avoid collisions and reach target goal
regions. This requires the method, as a global planner, to be reactive and responsive. It is
worth noting that this planner is sufficiently fast for dynamic environments by accounting
for only the current state of the environment.

This chapter is structured as follows: Section [3.1|briefly introduces the concepts of robot
task and configuration space and standard edge examination procedures, Section [3.3] de-
picts the offline phase computing deterministic roadmaps, and Section [3.4] describes the
heuristic-informed graph search on the precomputed roadmap. Section [3.5] details the
mathematical foundation of safe zones and how to apply safe zones to edge examination.
Finally, Sectionexhibits detailed evaluation results both in simulation and with robots.
Discussions of the limitations of this approach are given at the end of the chapter.

3.1 Preliminaries

Before introducing the safe zone concept and the corresponding edge evaluation pipeline,
this section briefly reviews fundamental concepts in motion planning, including the task
and configuration spaces, collision checking, and edge examination.

3.1.1 Task and Configuration Space

In robotics, task space and joint configuration space are two essential ways to describe a
robot’s pose and motion [[151]]. The task space, also known as Cartesian space, is the space
in which the robot operates. In contrast, the joint configuration space represents all pos-
sible combinations of the robot’s joint parameters. These parameters correspond to joint
angles for a manipulator with revolute joints. Due to the rotation of revolute joints, linear
displacements in configuration space usually result in nonlinear motion in task space, see
Figure[3.2] Additionally, infeasible regions in the task space correspond to very different
representations in the joint space, complicating motion planning between two joint con-
figurations. For example, as shown in Figure the smallest circular obstacle in the task
space can correspond to the largest infeasible regions in the joint configuration space on
the left.

3.1.2 Collision Checking and Distance Computation

Collision-checking and distance-computation methods are two overlapping categories.
Distance computation methods compute the distance between two objects, thereby im-
plicitly indicating whether a collision occurs. On the other hand, some methods over-
approximate object volumes using primitive shapes, quickly returning collision status
without computing the exact distance. Generally, distance computation incurs some over-
head relative to binary collision checking.

In robot manipulation tasks, Bounding Volume Hierarchies (BVHs) are commonly used
for binary collision checking [151]. Typical types of bounding volume include Axis-

21

3 Speeding up Motion Planning by Reducing Collision Checks

Joint 1 [rad]
Joint 1 [rad]
Joint 1 [rad]

T T T T T T T T T T T T T T T T T T
3 2 1 0 1 2 3 3 1 2 3 3 2 1 0 1 2 3

‘Z ‘\ 1‘)
Joint 0 [rad] Joint 0 [rad] Joint 0 [rad]

(a) Configuration space

o o | o

Al [Tn]
@)

y [m]
O

y [m]

‘ [m] O

(b) Task space

Figure 3.2: Configuration space and task space of a 2-DoF robot. Gray circle-shaped
obstacles in the task space correspond to irregularly shaped regions in the
configuration space. The red dot in the configuration space represents the
current configuration of the red robot in the task space. Linear changes in the
configuration space (blue solid lines) result in non-linear motions in the task
space. Swept volumes of the robot in task space, obtained by following the
line in configuration space, are shown in blue.

Aligned Bounding Box (AABB) and Oriented Bounding Box (OBB) [151]. A commonly
used distance computation algorithm is the Gilbert-Johnson-Keerthi (GJK) method [42]].
BVH structures can be used as a pre-processing step for GJK. Instead of checking all
pairs of objects directly, BVH quickly eliminates unlikely collisions and selects the close
pairs for further refinement. GJK is implemented as the default solver for both collision
checking and distance computation in widely used collision-checking libraries, such as
FCL [119] and Coal [120]. Using the Coal implementation, both binary and distance
computations via GJK can be performed in 3 us, with no significant differences observed
[120]. Therefore, no further distinction between these two categories will be made in this
thesis.

3.1.3 Standard Edge Examination

Edge examination can be performed in two ways: discrete and continuous examination.
Discrete examination checks validity along the edge at a fixed resolution, which can lead
to false positives. While continuous examination does not have such a problem, it is more
computationally expensive.

Discrete examination is not performed sequentially from one end to the other. Instead,
given valid edge endpoints, the examination begins at the midpoint of the edge. This ap-
proach originates from the discovery that the longer edge has a higher chance of colliding
and the collisions are more likely to occur near the midpoint of the edge, as it is the most

22

3.2 Problem Description

—— e e e g

(a) Discrete checking (b) Continuous checking

Figure 3.3: Illustration of discrete and continuous examination. Discrete examination
verifies the middle point of the segments for better efficiency, where the green
cubes indicate the examination points. When an edge is verified to be valid
using discrete checking, it is still possible that a segment between two cubes
is invalid, while the continuous checking in (b) does not have such a problem.

uncertain region if endpoints are verified collision-free [[161]. The collision checking in
Movelt! [23]] and VAMP [162] follow a similar concept. A visualization of discrete and
continuous examination methods is provided in Figure

3.2 Problem Description

A motion planning problem for manipulators can be defined by the start robot configura-
tion g, the goal configuration g,, and the surrounding environment S = {S;,S;}. The
surrounding environment is limited to objects that are within reach of the robot manipula-
tor. It is composed of the static environment Sg and the dynamic environment S;, where
S, refers to the objects whose states remain constant over time and S, contains all other
objects in S that do not belong to S;.

To enable rapid planning in dynamic environments, a graph-like roadmap G is used to
cover and represent the collision-free space of the static environment. During the on-
line planning phase, the start and goal configurations, i.e., g, and g, are attached to G,
and then a collision-free path q;.y = {q1, ..., qx} considering S, is searched within G,
subject to constraints q; = g, and gy = q,. Higher-order boundary conditions, such
as velocity and acceleration, are not considered in this path-planning problem but can
be addressed through online trajectory-generation algorithms [85]. The objective is to
minimize the total number of distance computations, and collision checks n.., thereby
reducing the planning time ¢,,.

3.3 Precomputed Deterministic Roadmap

In the offline phase, a graph-like roadma;ﬂ G is constructed to represent the collision-
free space of the static environment. The resulting roadmap is the foundation for online
pathfinding. Ideally, the roadmap should provide a solution path for any arbitrary planning

2The term roadmap follows the convention of probabilistic roadmaps. It is interchangeable with the graph
in this chapter.

23

3 Speeding up Motion Planning by Reducing Collision Checks

request, if one exists. This requires that the roadmap G covers the high-dimensional con-
figuration and avoids disconnected subgraphs. A dense graph can fulfill this requirement.
However, dense graphs can lead to increased computation and, thereby, unnecessarily
long planning time. Hence, the roadmap must achieve sufficient coverage using fewer
samples where possible.

A deterministic roadmap uses quasi-random sequences such as the Halton sequence [46]
to replace the uniform sampler. Halton sequences generate numbers in the interval (0, 1)
using prime numbers as bases. Halton sequences require fewer samples to cover the
configuration space than uniform sampling. The difference between the Halton sequences
and the uniform sampling is shown in Figure [3.4] Specifically in this example, Halton
sequences cover most of the configuration space of a 2-DoF robot effectively with only
50 well-distributed samples. Halton sequences are increasingly popular for trajectory
optimization tasks [[12} [159].

-3 -2 1 0 1 2 3 -3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 2 1 0 1 2 3

(a) Halton-50 (b) Uniform-50 (c) Halton-75 (d) Uniform-75

Figure 3.4: Roadmaps using Halton sequences and uniform sampling with 50 and 75
samples, respectively. To emphasize the advantages of Halton sequences,
three circular obstacles, same as in Figure [3.2] are placed as static environ-
ments. Roadmap (a) with 50 samples using the Halton sequence shows better
coverage than roadmap (d) with uniformly sampled 75 samples.

Roadmaps are determined by three hyperparameters: the selection of prime numbers
for the random seed, the number of connecting neighbors, and the maximum connec-
tion length. The random seeds determine the sampled nodes in the graph, and the other
two hyperparameters rule the connections among nodes. The key difference between de-
terministic roadmaps and uniformly sampled roadmaps lies in the sampled nodes. The
connectivity-related hyperparameters are the same in both roadmaps. Therefore, no fur-
ther discussion regarding the optimization of the number of connecting neighbors and the
maximum length of connections will be made in this thesis.

A precomputed roadmap based on Halton sequences underpins the informed search in-
troduced in Section [3.4] Useful heuristics significantly improve the efficiency of graph
searches, especially when the edge evaluations are computationally expensive. Using ad-
missible heuristicﬂ algorithms such as A* [47] have proven to be much more efficient
than the Dijkstra algorithm [28]] ﬂ The core benefit of using precomputed roadmaps is that
they provide actual path costs regarding the static environment without additional costly
computations.

The second advantage of using deterministic roadmaps is their ability to cover the free
configuration space. In dynamic environments, roadmaps must cover the collision-free

3Heuristics are called admissible if they don’t overestimate the cost.
A applies admissible heuristics on top of the Dijkstra algorithm.

24

3.4 Heuristics-Informed Search

space with low discrepancy. A lower discrepancy indicates that the samples cluster less
and cover the space more homogeneously. This property is also desired in optimization-
based methods [12,[159]. As shown in Figure [3.4] Halton sequences achieve better cover-
age with fewer samples compared to uniform sampling, reducing graph complexity while
maintaining low discrepancy. Although adding more samples reduces the discrepancy,
they also increase search complexity. This is especially important in high-dimensional
configuration space ﬂ

3.4 Heuristics-Informed Search

After a deterministic roadmap is computed offline, an informed search is conducted on the
roadmap to find feasible paths between g, and g, online while optimizing the number of
examined edges n... The resulting paths are guaranteed to be collision-free and feasible
with respect to both static and dynamic environmental constraints. Optimizing n.. reduces
computational resources during planning, thereby reducing the planning time.

Informed graph search is essentially a variant of A* search. A visualization of both meth-
ods is shown in Figure[3.5] The key difference is the heuristics used for the exploration.
The informed graph search comprises two tree structures, i.e., a search tree 75 and a
heuristic tree 7. Admissible heuristics obtained from 7 help the search tree 7g priori-
tize the edge examination. As the exploration and examination proceed, more information
regarding the current state of the environment becomes accessible. Based on this infor-
mation, the heuristics tree 7y will be updated. This section first introduces the heuristics
used for searching the precomputed roadmap and then explains the details of the priori-
tized search based on these heuristics.

(a) Heuristics-informed search (b) A* using L2 distance

Figure 3.5: Comparison of exploration using heuristics informed search and A* using
L2 distance as heuristics on a roadmap with 75 nodes. The start node is
marked in orange, and the goal node is marked in cyan. The obstacles shown
in gray were unknown at the time the roadmap was generated. The edges
examined during the search are color-coded: red indicates invalid edges, and
green signifies valid edges. Both search methods yield the same solution
path. While only 27 edges have been examined in (a), 94 edge examinations
are needed in (b).

3 A thorough comparison of the standard probabilistic roadmap and deterministic roadmap can be found in
literature [14}166].

25

3 Speeding up Motion Planning by Reducing Collision Checks

3.4.1 Heuristics for Roadmap Exploration

The proposed informed graph search uses the heuristic tree 7y to compute the path cost
in the precomputed roadmap of the static environment as heuristics. The 7Ty is initialized
with a root node at the goal region and expands to the start configuration on the graph
with the A* algorithm without conducting collision checking. The objective is to find the
shortest path from the goal to the start configuration in the graph. As unforeseen obstacles
appear in the workspace, a feasible path between the start and goal configurations will not
become shorter. Because dynamic environmental conditions can only increase path cost,
the path cost in the static environment serves as a lower bound for the path cost in dynamic
environments. Hence, they are admissible heuristics.

Slightly different from A*, where the heuristics are assigned to nodes, the heuristics in this
proposed method are assigned to edges. Assigning heuristics to edges allows the priority
queue Q to maintain edge rankings rather than node rankings. This avoids expanding all
edges of a node, which entails expensive collision checking, thereby reducing computa-
tional cost. However, this does not affect the computation of heuristics. For each edge,
the heuristics

he = {ne,reaciu Ce,reach}~ (31)

are composed of the number of edges to reach the goal n ..., and the length of the
shortest connection to the goal c. yeqch. These two values describe the effort to reach the
goal and can be used to prioritize the exploration of 7g.

It is worth noting that running A* multiple times can lead to substantial time consumption
as the number of runs increases, even though collision checking is not involved in this step.
Therefore, instead of repeating the A* algorithm from scratch, 75 grows and updates
incrementally to provide heuristics for the other nodes.

3.4.2 Informed Search

The informed graph search comprises two tree structures, i.e., a search tree 7g and a
heuristic tree 7. Given a planning problem with the start g, and the goal g,, two corre-
sponding nodes v, and v, are added to the precomputed roadmap G. The search tree 7g
explores from v, and the Ty uses v, as its root node.

With the heuristics h. provided by Ty, the search tree Tg explores toward the goal con-
figuration v,. The exploration is an iterative process, which maintains a priority queue Q
of edges and takes an edge from O for examination at each iteration. The exploration is
prioritized by the ranked f-score in Q

fe = {ne,reacha Ce reach + Ce,come}7 (32)

where ¢, .ome indicates the cost-to-come traveling from v to this edge e in 7 and 1. yeqch,
Ce,reach, are the heuristics introduced in Eq. . When f. is put in the priority queue Q,
the edges are ranked in lexicographic order. That is, the edges are first ranked by 7. reqcn
and then by ¢ reach + Cecome- A smaller number indicates a higher priority and gets out
of the queue earlier. The number 7. ,cq., indicates the surrogate efforts to reach the final

26

3.4 Heuristics-Informed Search

T T
-3 -2 -1 0 1 2 3 -3 -2 1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(b) Update of the heuristic tree Ty

Figure 3.6: Snapshots of a heuristics-informed search. The orange node represents the
start point, while the cyan node represents the goal. The gray obstacles were
unknown when constructing the roadmap. The heuristic tree T rewires and
updates over time. In both (a) and (b), the edge with the best-estimated cost
in Ty is marked in cyan, indicating which edge will be examined next. Note
that the heuristics tree updates in the second and third plots as the search
progresses.

goal, and ¢, yeqch + Ce come refers to the approximate path cost between the start and goal
using this edge as a via point. Put differently, the exploration first considers the edges
that need less effort to reach the goal. If multiple edges indicate the same effort, the one
with the lowest estimated path cost, C¢ reqch + Ce.comes Will be selected for examination
using safe zones. A visualization is shown in Figure 3.10[Due to the concept of safe
zones introduced in section [3.5] collision checking is not conducted with fixed resolution
along the edge and, therefore, is decoupled from c ycqen. The number 7 yeqcn 18 a better
approximation of the effort. If the edge is considered valid in the iteration, the search tree
Ts expands the child node v, of this edge. During exploration, the heuristics h,. in Ty are
updated based on the currently available knowledge in the environment and influence the
ranking in Q. The exploration iterates until the search tree 7g reaches the goal region or
the priority queue is empty. Details regarding the exploration of 7 and updates of Ty are
described in the following.

Algorithm [I] depicts a high-level procedure of the heuristics-informed search. It starts
with initializing the search tree 7g at the start node vy, the heuristics tree 7y at the goal
node v,, and the priority queue Q (Algorithm I} line 1,2). Additionally, an empty closed
set S,seq 18 declared. The closed set includes the three kinds of nodes: (1) the nodes that
have been expanded and added to 7g; (2) the nodes that are not valid regarding the current
state of the environment; and (3) the nodes that don’t have any chance to be part of the
resulting path, e.g., all outgoing edges are not valid.

27

3 Speeding up Motion Planning by Reducing Collision Checks

After the initialization, 7s expands the start node v, and pushes all edges connected to v,
to the priority queue Q without performing any collision checking (Algorithm (1} line 3).
During the expansion described in Algorithm 2 7} is responsible for providing heuris-
tics to rank the edges in Q. Then, the search iterates until the problem is solved or the
termination conditions are met (Algorithm [I] lines 4 - 26). The loop terminates when the
priority queue is empty or a solution is found. Other early-termination conditions, such as
the maximum number of iterations or the maximum computation time, can also be used.
Within the iteration loop, the priority queue O automatically sorts the edges according
to the f.. For every iteration, Q pops out the edge e with the best f. (Algorithm (I} line
5). The best f. refers to the lowest 1 reqch and Ce reach + Cecome- 1f the child node v, of
the edge e is already in the closed set S.scq, it indicates that v, either has already been
expanded or is confirmed to be impossible to be on the final path. Hence, there is no
need to expand or examine this node. In this case, the iteration moves on and skips this
edge (Algorithm[I] lines 8-10). Otherwise, if v.. is not in Sgjpseq, We first examine whether
v, is valid regarding the dynamic environment (Algorithm [I] line 11) and then examine
the edge e (Algorithm [I} line 16). If v, is not valid, it indicates that all nodes having v
as the predecessor node in 7z need to find a new predecessor as shown in Algorithm []
By finding new predecessors, Ty and the heuristics in 75 are updated accordingly. After
the updates, the iteration continues from the beginning and considers the next best edge
(Algorithm 1] line 14). With v, being valid, the edge e is examined using safe zones (Al-
gorithm [I], line 16), which is the most expensive step of the algorithm. Upon the edge
being valid, we expand the child node v, further (Algorithm [T} line 20) as described in
Algorithm 2] Otherwise, the heuristics need to be updated.

As described in Algorithm 2} expanding a node v is computing the f-scores for outgoing
edges of v and pushing them to the priority queue Q. The outgoing edges are those
whose nodes are not in S¢jpseq. The f-scores are composed of ce come and the heuristics.
The computation of the heuristics is shown in Algorithm [3] It is worth noting that the
heuristics are computed using dynamic programming as 7y grows, and they are stored as
properties on edges and nodes.

Once a node or an edge has been examined as invalid, the heuristic tree must be updated
(]'_1'], line 13, 24). The update step described in Algorithm E] takes all the neighbors v 5}
of the input node v in T and selects the one with the best-estimated cost. If no neigh-
bor is connected to Ty, Ty grows toward v, and finally updates the heuristics. If no
valid neighbors exist in the roadmap, this node will be added to the closed set and will
never be visited again. Updating the heuristics guides the search to avoid spending time
on edge evaluations that do not contribute to the result, given the current knowledge of
the environment. One key difference between our method and LazyPRM is that we up-
date the heuristic rather than the roadmap when new environmental information becomes
available.

Finally, upon successful termination of the search, the graph search yields a set of way-
points as described in Algorithm [5] So far, the waypoints are not executable for robots
yet. An additional module is needed to convert the waypoints to a trajectory with veloc-
ity profiles and time stamps of fixed resolution [126, [89]. Because the trajectory does
not exactly follow the edges and waypoints [89], a backtracking and correction strategy
is necessary to ensure safety. As the first step of the correction, the signed distances of
the contact points are used to recover the invalid trajectory to a valid configuration. If no
appropriate correction is found, the edge caused by this problem will be deactivated, and

28

[

e N & R W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1 for each e in getOutEdges(v, G) do
Ne, Cereach <— getHeuristics(e, Trr)

2
3
4
5
6

3.5 Edge Examination with Safe Zones

we will seek an alternative solution. Only a few new edges should be searched since the

invalid edges and nodes have already been deactivated.

Algorithm 1:
Informed Graph Search

Ts vs, TH vy
Sclosed {Us}s Q H,
solved + False
Expand(vs, G, Q, Ts, Th)
while !solved\!Q.empty() do
€ < QpOp() /I Get prioritized edge
vy, < getParentNode(e)
v, +— getChildNode(e)
if v, € S.jpseq then
‘ Continue // No value to expand
end
if lisNodeValid(v.) then
Sclosed < {Sclosed} U {Uc}
updateHeuristics(ve, G, TH)
Continue;
end
if isEdgeValid(e) then
if inGoalRegion(v.) then
‘ solved < True;
end
Expand(ve, G, Q, Ts, Ty)
vc.setPredecessor(vy, Ts)
Sclosed {Sclosed}) {vc}

else
| updateHeuristics(ve, G, Trr)
end

end
return getSolution(vg, vy, Ts)

Algorithm 2: Expand

Input: v, G, Q, Ts, T

Ce,come < getDistToRoot(e, Ts)

fe < getFScore(ne, Ce,{reach,come})

Q.push(e, fe)

end

N SN B R W N =

= N7 B N VI S

2

N QN N AW N =

Algorithm 3: getHeuristics

Input: e, G, Ty
ve < getChildNode()
if lisinTree(v,, Tz) then
‘ growHeuristicsTree(v., G, Trr)
end
d + getDistToRoot(v., Tzr) + e.length()
n < getEdgeCountsToRoot(v., Trr)
return n, d

Algorithm 4: updateHeuristics

Input: v, G, Ty
for each v,, in getSuccessors(v, Ty) do
if lisInTree(v., Tr) then
‘ growHeuristicsTree(vy,, G, Ty)
end
Vnns) < getNeighbours(v,, G, Trr)
Ninns}> d{nns} —
getHeuristics({vnns}, G, Ti)
Vpest < arg minnn(d{nns}) // Best heuristics
vy,.setPredecessor(Vpest, TH)

end

Algorithm 5: getSolution

Input: vy, vy, Tg

path <[], v < vy

while v! = v; A v.hasPredecessor(7g) do
path.append(v)
v < v.getPredecessor(7g)

end

path.revert()

return path // Return empty list if problem not solved

3.5 Edge Examination with Safe Zones

In sampling-based motion planning, samples are usually connected using straight lines in
the configuration space. These straight lines are also termed edges. While constructing
a solution, edges must be checked to ensure they are collision-free with respect to the

29

3 Speeding up Motion Planning by Reducing Collision Checks

(b) Task space

Figure 3.7: Safe zones of a 2-DoF robot with respect to three circular obstacles. The
green polygons in (a) indicate the safe zones around specific configurations
marked by red dots. The safe zones correspond to the blue swept volumes in
(b). The red robots in (b) represent the specific configurations in (a).

current state of the environment. Edge examination involves numerous collision checks
and distance computations, making it computationally expensive. The core idea of edge
examination with safe zones is to outline the region where no collision checks are needed
and allocate the computational resources elsewhere during the edge examination, e. g., the
regions we are not sure whether they are collision-free or not.

While the standard collision-checking pipeline is sensitive to the choice of checking reso-
lution, safe zones explicitly determine a collision region around the joint configuration of
interest. Similar to collision checking, safe zones are computed using the distance infor-
mation between the robot and the environment. The shape and size of the safe zones adapt
according to the distance information. For a given robot joint configuration, the safe zone
grows as the distance between the robot and the obstacle increases. The outcome is a flex-
ible checking resolution. The following describes the mathematical details for deriving
safe zones and their application to edge examination.

3.5.1 Safe Zones

Formally, a safe zone is a closed continuous volume constructed by multiple hyperplanes.
Because of its continuity, no further collision checks are needed within the safe zone,
which does not exhibit the false-positive problem of the pipeline with discrete resolutions.

Given a N-dimensional collision-free robot joint configuration gy € RY, its safe zone is
a closed non-symmetric volume around this configuration. All configurations within the
safe zone are collision-free regarding the dynamic environmentﬂ In a two-dimensional

5The configurations of interest lie on the precomputed roadmap. Therefore, no consideration regarding
the static environment is required.

30

3.5 Edge Examination with Safe Zones

configuration space, safe zones have a form of quadrilaterals as shown in Figure ﬂ The
quadrilateral is defined by two sets of {q[f], qﬁ} indicating the lower and upper bounds of
the movement along the two joints, respectively. In Figure[3.8b] g, is marked in red and
{4}, 4} refers to the four corner points of the quadrilateral, i.e., (g7, 0], [, 0], [0, ¢{]
and [0, ¢ |. As the degrees of freedom grow to N, the safe zone is an N-D cross-polytope
defined by N sets of lower and upper bounds. The bounds are determined by constraints
derived from the spatial relations between robot links and obstacles in the task space; see
Figure [3.8a] Note that the safe zone is a subset of the collision-free configurations around
qo, and this thesis does not try to identify all collision-free configurations. The following
presents details on establishing the constraints.

A

(a) Task space (b) Configuration space

Figure 3.8: Illustration of computing safe zones for a 2-DoF robot with two triangular
obstacles. The colored distance in (a) corresponds to the hyperplanes in the
same color in (b). The green polygon in (b) represents the safe zone of this
particular robot configuration.

Determining the safe zone for a configuration gy starts by constraining the robot joints’
motion in certain directions. The goal is to find a set of configurations g, around the
joint configuration gy that is collision-free, illustrated in Figure [3.8] Consider the closest
point C; between the j-th link of the robot and the i-th obstacle in the environment. The
closest distance vector is defined as d¢;; € R3. For a safe movement at g, regarding the
i-th obstacle, any point on the j-th link should not travel a distance larger than the shortest
distance ||d¢; , ||, which is the L2-norm of the closest distance vector d;;, highlighted by
the colored vector in Figure [3.8a

Lemma 3.5.1. Consider an articulated manipulator with revolute joints at a joint config-
uration qq. Suppose the distance between the j-th link and the i-th obstacle is given by
||dc; |2 If a joint movement Aq driving the robot qq to qo + Aq results in the maximum
displacement of any point on the j-th link in the task space to be strictly less than ||dc; |2,
then it is sufficient to conclude that the j-th link will remain collision-free with respect to
the i-th obstacle after the movement.

7An animation of safe zones in a two-dimensional configuration, see https://xi—hhhm.github.
io/roboX.huang/images/HIRO_2d_volume_animation_arm.gif

31

https://xi-hhhm.github.io/roboX.huang/images/HIRO_2d_volume_animation_arm.gif
https://xi-hhhm.github.io/roboX.huang/images/HIRO_2d_volume_animation_arm.gif

3 Speeding up Motion Planning by Reducing Collision Checks

Proof. Let the point on the j-th link closest to the i-th obstacle at configuration g, be
denoted as C;;, with distance ||dc;,,[|2. After the joint moves from g to gy + Ag, let the
new closest point on the link to the obstacle be C7 .

If a collision occurs, then C7 ; must lie on the surface of the i-th obstacle with [|d¢: [[2 = 0.
In this case, the dlsplacement of the point on the link that reaches the obstacle must be at
least ||d; ,[|2, since it started at that distance from the obstacle. However, by assumption,
the maximum displacement of any point on the j-th link in task space is strictly less than
|dc,,||2- Therefore, no point on the j-th link can reach the surface of the obstacle, and a
collision cannot occur. Hence, the j-th link remains collision-free with respect to the i-th
obstacle after the joint movement. [

Another way to interpret Lemma[3.5.1]is to accumulate the instantaneous movement start-
ing at go and establish the inequality

qo+Aq
lde, Jla= [1o, (@)l 33
q0

where J¢,,(q) € R* is a partial Jacobian matrix and J¢,,(q) dq represents the in-
stantaneous movement at C; in task space. For a manipulator with revolute joints, the
mapping from the joint velocity ¢ € RY to the velocity at a point € R? on the robot is
nonlinear. The Jacobian matrix J¢, ,(q) in Eq. is a linearization of the mapping at g
with

ve,,(a) = Je;, (@) (3.4)

By finding the local maximum along the integral path ||J¢; ; maee dq|2 > [|Jc; (@) dq||2,
Yq € [qo, g0 + Ag], we can have

qo+Aq qo+Aq
1, maslAgllz = / 1, mae gz > / 1o (@) dalle. (5)

q0 q0

In the remainder of this chapter, the Jacobian matrix J¢, ; jmaz» Which results in the local
maximum ||J¢; ; maz dq||2 > [|Je;.(q) dql|2, Vq € [qo, o + Aq], is termed as maximum
Jacobian. The maximum Jacobian links the motion of each joint to the maximum possible
motion in the task space. Combining Eq. (3.3) and Eq. (3.5), any movement Aq fulfilling

de,iH2 2 HJC maa:AQHQ (36)

iy

is safe according to Lemma [3.5.1] since the largest possible movement is less than the
current closest distance ||d;;||2. The inequality expressed in Eq. is the basis for
deriving the final expression for safe zones. The key is determining the local maximum
Jo; . ;maz- Without losing the generality, the inequality Eq. (3.6) can be rewritten by

Iyt

multiplying a rotation matrix R € R3*3,

|Rd;ill2 > [|RIc; ; mac A2, (3.7)
with
0
RJIC, marNg = 0 . (3.8)
HJC maa:AQHQ

Iyt

32

3.5 Edge Examination with Safe Zones

Take an articulated manipulator with 4 DoFs in a 3-dimensional task space as an example,
the rotation matrix R converts the inequality Eq. (3.7) into the following form

Aqo
IR IR IR IR
B R,z,0 R,z,1 R,x,2 R.z,3 AQ1
RJiji,maqu - JR,y,O JR,y,l JR,y,2 JR,y73 AQQ (39)

JRCj,i,ma:L‘,O JRCjﬁi,max,l JRCj_yi,maz,Q JRCj,i,max,?n Aq;g

The subscript [-] g indicates that the multiplication with a rotation matrix compared to Eq.
(3.6). This rewritten form simplifies the matrix multiplication to Zi:o J ch7i,max,kAqk,
with 320, Jr, ,Aq = 0 and SO, Jr, ,Aqr = 0. The values of Jg, , and Jg , do
not contribute to the computation of safe zones and do not need to be calculated. The
constraint in Eq. (3.6) becomes

N—-1
Hd,l 2 2> ’ Z JRCj,i,ma:c,kAle- (3.10)

k=0
The L2-norm operation is replaced by the absolute operator | - | on the right-hand side

of the inequality since the right-hand side indicates only a sum of scalar multiplications.
Applying |a||b] > |ab| and |a| + |b| > |a + b to the right-hand side, it has

N—-1 N-1
| TrC, mas k|Gl > 1~ Tre, mazkAgil, (3.11)
k=0 k=0

and the constraint in Eq. (3.10) can be made to be stricter as

N-1
||dj,i‘|2 > Z |<]RC]-,i,mam,k||Aq1f|- (312)
k=0

Eq. (3.12) defines a linear programming problem. The region specified by Eq. (3.12)) is a
closed volume formed by hyperplanes. It restricts the motion of all joints symmetrically
in both q[f] and qﬁ directions. As shown in Figure [3.8] the constraints are lines (1D) that
separate the safe and non-safe regions in a 2-dimensional space. In three-dimensional
space, constraints are planes (2D), whereas in an /N-dimensional space, constraints are
(N-1)-dimensional hyperplanes.

The maximum Jacobian links the upper bound of task-space movements to the joint-space
bounds along the integral path. We can compute the derivative of each Jg¢, , x(q) and then
find the nearest local maximum. It is usually impossible to have a single joint configu-
ration q at which all Jacobian terms Jrc;, x(q) for k& € {0,..., N — 1} simultaneously
attain their local maxima along the integration path. Gathering the local maximal values
Jre,.k(q) of each joint from different joint configurations and substituting them into the
constraint Eq. leads to an overly stricter bound. In practice, an approximation of
the maximum Jacobian is used. Given the current joint configuration, the Jacobian of the
point farthest away from the rotating joint on the link is used as the approximation of the
maximum Jacobian.

33

3 Speeding up Motion Planning by Reducing Collision Checks

Lemma 3.5.2. For a revolute joint of an articulated manipulator at a joint configuration
qo, its maximum Jacobian is attained at the point on the downstream links that has the
maximum perpendicular distance to the joint’s rotation axis.

Proof. The maximum Jacobian describes the relation between a joint and the maximum
possible velocity by rotating this joint at a joint configuration qo. The velocity of each
point on the manipulator from this joint onward is determined by v = [(qy)g where
[(go) denotes the distance from the joint to the point of interest at the configuration qp.
Therefore, the maximum value v on the robot is located at the point where /(g) reaches
the maximum. [

Considerations in practice: For articulated manipulators, the links typically have
shapes that can be approximated by cylinders or capsules. In this case, the farthest
points away from the rotating joints are located at one or both ends of the robot
link. For robots with tools, especially those with special finish forms, we can patch
the robot with spheres to get the maximum Jacobian. These approximations can be
automated based on the robot’s mesh description.

So far, the focus has been on safe joint movements regarding a single link-obstacle pair.
One pair of robot links and obstacles introduces a set of linear constraints that define hy-
perplanes outlining the safe movement area. The overlap area of all link-obstacle pairs is
the desired safe zone, an illustration of two-dimensional space, see Figure [3.8] In two-
dimensional space, the hyperplanes become lines. These lines intersect with the axes at
Agqpy = 0. A simpler and stricter approach is to use the intersection points and refor-
mulate the linear program. This helps ease the complexity of later edge validation. An
intersecting point of a link-obstacle pair is determined by

d. .
oo = il

= 3.13
|JRCj,i,k,max| + E’ ()

where ¢ is a small positive value to handle the singularity. For each joint £k, we select
the strictest intersecting point, which has the smallest value, to reformulate the linear
program. In the example shown in Figure [3.8b] the light purple line intersects the axis
at a smaller value than the dark purple line; this intersection point is then used in the
reformulation.

The region determined by Eq. (3.12) and Eq. (3.13) restricts the motion of every joint
symmetrically in both directions, which is unnecessary. Under the assumption that convex
volumes can represent the obstacles and the robot, only one side of the movement should
be constrained. The following explains how to determine which side to constrain the
movement.

Consider applying force along the distance direction d;; at the closest point C';; between

this obstacle and the j-th link of the robot, where 7,7 € N, the relation between the

resultant torque 7 € R” applied to the joints and the Cartesian force Fe,. = fo,, H;#Hz €
: i ld;

R? can be expressed with a partial Jacobian matrix J¢, ,(go) € R**:
T = Jgj,i(qO)FCj,m (314)

with IV denoting the DoF of the robot.

34

3.5 Edge Examination with Safe Zones

An interpretation of Eq. (3.14) is that the robot is pulled along the distance direction to
approach the obstacle. Applying 7 to the joints leads to the same effect. The sign of the
applied torque T indicates the direction of the joint movement. To avoid the robot link
approaching and coming closer to the obstacle, these directions of movement should be
constrained. Normalizing this equation regarding the force Fg; , it becomes

d;;
s=Jl (qo)—2—. (3.15)
P |l |2
In other words, for a configuration qg, the sign of s, in the vector s indicates the direction
to restrict movements of the k-th joint to avoid a collision |°, Given the restrictive move-
ment Agy,, for the joint configuration g, caused by the spatial relation between the j-th

link and the i-th obstacle, the lower bound Aqk_ji or the upper bound Aq,jji is assigned
according to 7 7

- l|d; |2 :
A _ Js if s, <0, 3.16
qkj’i ‘JRCj,i,k,maz‘ t € ' (|
d;; :
At Idillz ¢ 5 >0, (3.17)
k

i ’JRC’j,i,k,max‘ + €
wi q.. and Agq,” denoting the lower and upper intersection point regarding the j""-
th Ag, , and Ag][| denoting the | d upper intersection point regarding the ;'

link-i*"-obstacle pair. The strictest intersection point is used for reforming linear pro-
gramming problem

Aq, = max{Aq, } (3.18)
-]71/ 75t

Ag = min{Aq }. (3.19)
]7Z gt

Considerations in practice: Every joint should have Ag; and Ag;" defined. If one
or both are not defined due to the current robot and environment settings, a constant
such as 7 is used to keep the safe zone conservative and less aggressive.

Using the strictest intersection points, a set of linear programming problems is defined by

N-1
S alag) +1t =0, (3.20)
k=0

where [-| indicates the combination of the restrictive direction of the active hyperplane.
For a 2-DoF robot, there are four possible combinations for [-], i.e., {+,+}, {+,—},
{—,+}, and {—, —}. The combination {+, +} indicates that Agj and Ag;" are used to
form the linear programming problem Eg. to compute the coefficients ag and
bl that defines the hyperplanes. The hyperplanes form a closed volume in the con-

figuration space that can be used as a safe zone. After solving for aE and bl using

8Similar formalism can also be found in literature [36].

35

3 Speeding up Motion Planning by Reducing Collision Checks

Aq =[Aqy,. ., Aqy 4] and AgT = [Aqd, ..., Aq);,_|]T, atest configuration gy is
in the safe zone of q, if

=

al (Grestr — qos) + 01 < 0 3.21)
0

i

holds for all combinations of restrictive directions. An example in a configuration space
with two degrees of freedom is shown in Figure 3.7] In this example, the hyperplanes
become lines of quadrilaterals.

3.5.2 Edge Examination

As noted in the preliminaries, the standard procedure begins the examination in the mid-
dle. Starting from the middle only changes the order of the sequence and can allow the
colliding points, if any, to be identified earlier. If a collision is found, there is no need to
check the rest of the sequence, and the examination is aborted.

L 4
L 4

(a) Edge examination with safe zones (b) Standard edge examination

Figure 3.9: Comparison of edge examinations with safe zones and standard edge exam-
ination. The red dot in (a) indicates the middle of the edge excluded by safe
zones, which is the next point to build safe zones.

Figure 3.10: An example of examining edges with safe zones in the configuration space
of a 2-DoF robot. Robots and obstacles are the same as in Figure @

The edge examination with safe zones is similar to the standard collision procedure, see
Figure 3.9] The difference is the determination of the next point to examine. As shown
in Figure [3.10] to verify the connection between two nodes, the safe zones of both nodes
are first determined. The connection between two configurations, in this case, is a straight
line, or in short, an edge. Since we are certain that the region covered by the safe zones
is collision-free, we need only focus on the region excluded by both safe zones. The
checking process iterates by computing safe zones of the middle points on the excluded

36

3.6 Evaluation

segments, e.g., the red one in Figure until the edge is covered by safe zones or a
collision is detected.

Assuming that we have an edge e defined by its two endpoints {g.,, g..}, the direction of
this edge is represented by the sign of q., — g.., which indicates which hyperplanes are
active. By computing the intersection of the hyperplanes and the edge, the coverage of
the safe zones on the edge is derived. To showcase the computation, an example using the
2-DoF robot in Figure [3.8]is given as follows. Consider an edge e defined by q.,, and g,
whose direction is represented by {+, —}. The activated hyperplanes defined by

ag"Aqo+al T Ag + bt =0, (3.22)
ag TAq +a;TAg + b =0, (3.23)

where Eq. (3.22) indicates the hyperplane in the positive direction of the edge and Eq.
(3.23) in the negative direction. Specifically for a configuration g. on edge e, the goal is
to determine the intersection between the active hyperplanes Eq. (3.22)) and Eq. (3.23)) of
its safe zone and the edge e. It leads to

Al Ay S =0 o
ec, €p,

qec,l - QGp,l

o +b =0, (3.25)
Gec,0 — Yep,0

a5+Aq;0 + a;+Aq;

where ¢.. [} and g,] denotes the [-]-th joint of q.. and g.,, respectively. The partial on e
between g, + Aq; oand geco + Aq;fo is covered by the safe zoneﬂ

3.6 Evaluation

The objective of HIRO is to reduce the accumulated number of distance computations and
collision checks n... Experiments in simulation and the real world with robots are con-
ducted to evaluate the proposed method. With the experiments, the following questions
should be answered:

Q3.1 How does the approach perform across environments of varying complexity?
Q3.2 How does each component contribute to improvement?

Q3.3 TIs this approach fast enough for dynamic environments?

For the evaluation in simulation, we generate datasets of random planning scenes. A
planning scene includes obstacles S, in the reachable workspace and a planning query
with valid start g, and goal g, configurations. At least one feasible path exists between
the start and goal configurations in a planning scene. Figure [3.11]illustrates examples of
planning scenes, where the green spheres indicate obstacles S;. The hardware experiment
is conducted with a UR10e Robot. Throughout the robot experiment, the robot has to

The edge e has a 1-D representation, defining the range of ¢, ¢ is sufficient to outline the safe region on
edge.

37

3 Speeding up Motion Planning by Reducing Collision Checks

\ TN \S TS

Figure 3.11: Examples of the planning scene datasets with 4, 8, 12, and 16 spherical ran-
dom obstacles; start(orange) and goal(blue) poses are randomly generated.

4 Spheres 8 Spheres 12 Spheres 16 Spheres

Planning Time [ms] Mean Planning Time [ms] Mean Planning Time [ms] Mean Planning Time [ms] Mean

Mean Std HIRO M. Mean Std HIRO M. Mean Std HIRO M. Mean Std HIRO M.
HIRO 2.47 6.45 - 5.35 17.97 - 6.11 10.56 - 11.96 23.50
RRT 61.36 258.83 24.84 83.25 291.08 15.56 147.90 465.86 24.2 230.09 566.33 19.23
RRTConnect 15.19 8.99 6.14 21.06 26.46 3.93 38.43 139.63 6.28 58.36 144.35 4.87
PRM 46.53 188.41 18.83 68.95 185.46 12.88 110.52 320.10 18.08 222.25 525.96 18.58
LazyPRM 27.83 209.81 11.26 33.73 104.28 6.3 66.97 239.57 10.96 177.71 838.46 14.85

Table 3.1: Planning results of HIRO and baseline methods. The mean and standard de-
viation of the planning time are shown in milliseconds. The ratio between the
mean of the baseline methods and HIRO is shown in green.

respond to environmental changes and adapt its motion accordingly, which is crucial for
real-world applications in human-robot collaboration. The experiments are implemented
using the Robot Operating System (ROS), the Open Motion Planning Library (OMPL)
[158]], and the Flexible Collision Library (FCL) [119]. In all experiments, the results do
not include path smoothing.

3.6.1 Evaluation in Simulation

In the simulation experiment, the proposed method is compared with baseline methods
across various planning problems of varying complexity. Baseline methods are open-
source implementations of RRT [92]], RRTConnect [86], PRM [74], and LazyPRM [48]]
from OMPL. To be specific, the Movelt! [23]] wrapper of OMPL is used. To represent
the different complexities of the problems, four groups of problems with 4, 8, 12, and
16 obstacles are created. Each problem group comprises 250 problems, in which the
obstacles and the start-goal pair are randomly sampled. At least one feasible path exists
between the start and goal configurations. For all problem groups, the same roadmap with
40,000 nodes is used. Each node is allowed to have 20 neighbors in a radius of 7[rad].
The baseline methods use default parameters defined in Movelt!. Each problem is run 20
times with different seeds.

Table [3.1] lists the results of the mean and standard deviation of the planning time of the
baseline methods and HIRO. All 5,000 runs of each problem group are used to compute
the mean and standard deviation. HIRO exhibits a much shorter mean computation time
while maintaining a small standard deviation within each problem group. This indicates
that the proposed method is robust in solving a range of problems. This can be attributed
to the low discrepancy of the precomputed roadmap. While the samples are less clustered
in the high-dimensional spaces, it is easier to find a solution on the roadmap.

38

3.6 Evaluation

—— 4 Spheres 8 Spheres == 12 Spheres =—— 16 Spheres

Z 0% =

10° =

10% = 04

.
e

RRTConnect Avg. Planning Time [ms]
%,

RRTConnect Avg. Planning Time [ms]

RRTConnect Avg. Planni
e .

2 b 2e .
i o
|52

%o
o
5
"0
3
‘e,

a
0
g @ - D
o 0 1
. . O o 5 e - 3 .
o Q *. %0 D o ol o
Y o o . .. S £ 1 PO AP ORRO
- S o 2 L U XS
& | &8 | - e N
K S . o 3 L e
10! = 10% = . 10 = . S 10t =
E E E o E
| Gl o I | | " I o IR |
0" 10! 10° 100 10! 10 100 10! 10° 100 10! 10
HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms]

(a) Distribution of planning time using HIRO and RRTConnect. The dashed lines indicate equal
p g g q
performances. For the scatter points on the left of the dashed line, HIRO exhibits shorter
planning time. Note that both axes are on a logarithmic scale and RRT-Connect starts with
10" ms.

10% = 10% 10% = 10% =

10"

Avg, Tmprovement

Avg, Improvement

Avg, Tmprovement
.

5 100 =

10° =

G o T NIRRT " " "
0 02 0 00 102 0

10 10" 1 10" 0 10! 10
HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms] HIRO Avg. Planning Time [ms]

(b) Planning time and improvements compared to RRTConnect. Data points above 10° in the
vertical direction indicate an improvement. Note that both axes are on a logarithmic scale.

50 - 50 - 50 - 50 —

40 - 40 - 40 = 40 =

30 ~m 30 30 - 30 =

20 20 4 20 - 20
| | | | | 04 | | | | | 04 | | | | | 04 | | | | |
0 3.0% 6.0% 9.0% 12.0% 15.0% 0 3.0% 6.0% 9.0% 12.0% 15.0% 0 3.0% 6.0% 9.0% 12.0% 15.0% 0 3.0% 6.0% 9.0% 12.0% 15.0%

(c) Histogram of the improvement over various planning problems. The y-axis indicates the aver-
age improvements, same as in (b).

Figure 3.12: Results of various planning problems with different numbers of obstacles.
Each point in the scatter plots indicates an individual problem.

From another perspective, the number of obstacles does not truly reflect the difficulty of a
planning problem since difficulty depends on both the environment and the query. If the
obstacles are clustered in a small region that does not block the robots, the planning prob-
lem becomes easy. To have a closer look at each problem and show the difference between
HIRO and the baseline methods, Figure [3.12a] and Figure [3.12b] present the results of ev-
ery planning scene as a dot. Table [3.T]exhibits that RRTConnect performs the best among
all the baselines. Therefore, the results of RRTConnect are used for this comparison. Fig-
ure [3.12a) visualizes the distribution of the average planning time of each problem over 20
runs. For the points that lie precisely on the dashed line, HIRO is identically fast as RRT-
Connect in these planning problems. Figure [3.12b] exhibits the improvements compared
to RRTConnect. The improvement is measured as the ratio of the average computation
time for RRTConnect to that for HIRO for each problem. An improvement equaling one
indicates identical performance. The distribution of the improvements is summarized in
histograms in Figure Data points with ratios exceeding 50 are omitted.

The results show clear improvements across most planning problems. Note that HIRO
uses a deterministic roadmap, keeping the computational cost of a problem constant across

39

3 Speeding up Motion Planning by Reducing Collision Checks

runs. The computation time varies only slightly due to CPU scheduling. Hence, the aver-
age planning time is a useful metric for assessing the planner’s responsiveness. However,
some outlier cases with worse performance than the baseline are also shown in Figure
B.12al The number of these cases increases with the number of obstacles. At the same
time, HIRO’s performance appears to decline with increasing obstacle density. One rea-
son is that the same 40,000-node roadmap is used for all four problem sets. As obstacles
increase, more detours in the roadmap are required due to insufficient density. While in-
creasing the number of nodes in the roadmap may increase search complexity and lead to
worse performance, a hierarchical approach can be considered. The hierarchy will be dis-
cussed and explored at the end of this chapter. Nevertheless, the dataset with 16 obstacles
shows a mean improvement of 7.62-fold.

Q3.1 How does the approach perform across environments of varying complexity?

A3.1 The proposed method shows significant improvements in all four tasks of
different complexity. The improvements are evident in most of the prob-
lems tested. The proposed method also exhibits low variance across dif-
ferent planning problems. However, the approach performs worse in some
outlier cases, and the number of these cases increases with the number of
obstacles. This can be attributed to the insufficient density of the precom-
puted roadmap. To solve this problem, a hierarchy of the roadmap can be
considered.

3.6.2 Ablation Study

Despite the significant speedup achieved, it is still necessary to investigate the contri-
butions of each component. The first ablation study compares Halton sequences with
uniform sampling methods. The second ablation study examines the improvement with
and without safe zones in place. As the benefit of using informed search has been shown
in Figure no further investigation is conducted.

Table shows the results collected with a single core on an Intel 19-9900K CPU. The
results for HIRO differ slightly from those in Table [3.T|because the data in Table [3.T| were
collected with different hardware. The variant using uniform sampling with safe-zone
checks exhibits a longer average planning time than HIRO, suggesting that the search al-
gorithm must explore more of the graph to find solutions. On the other hand, this variant
shows shorter planning time than the one with a standard checking procedure. The ad-
vantage of safe zones becomes increasingly significant as problem complexity increases.
The planning time associated with precomputed roadmaps is generally lower than that
of the other baseline methods reported in Table [3.1] This indicates that the precomputed
roadmap effectively eliminates infeasible configurations and reduces the search space.

Q3.2 How does each component contribute to improvement?

A3.2 Deterministic roadmaps offer general contributions to improvements, while
safe zones provide significant improvement when the complexity of plan-
ning problems increases.

40

3.6 Evaluation

4 Spheres 8 Spheres 12 Spheres 16 Spheres
Planning Time [ms] | Planning Time [ms] | Planning Time [ms] | Planning Time [ms]
Mean Std Mean Std Mean Std Mean Std
HIRO 2.094 5.369 4.571 15.204 5.203 9.134 10.312 20.474
Uniform + Safe Zone 3.511 2.019 5.459 10.859 7.176 13.205 12.781 28.005

Uniform + Standard Checking | 3.685 2.130 5.562 12.192 7.903 17.226 14.104 36.015

Table 3.2: Ablation study. All variants have a planning budget of one second.

3.6.3 Evaluation in Robot Experiments

In the robot experiment, a human-size model, J essicﬂ represents the dynamic changes in
the environment. The robot setup is shown in Figure[3.13] During the experiment, Jessica
appears and disappears in the workspace, forcing the robot to adapt its motion frequently.
Jessica is tracked using an ArUco marker [40]] captured by an Intel RealSense D435 cam-
era mounted above the workspace. An oriented bounding box (OBB) approximates the
collision volume for planning.

Throughout the experiment, the robot traverses between both ends of the table. This
scenario simulates that the robot primarily conducts a pick-and-place task while simulta-
neously sharing the workspace with Jessica. Figure [3.14] presents a complete workflow
cycle. The arrows refer to Jessica’s sudden displacement while the robot is moving. Upon
detection of a specific movement, a planning request is triggered. To better visualize the
planned path, we let the robot execute the adjusted path to the end. No path smoothing or
shortening method is used for the presented path. The hardware experiment confirms that
HIRO can quickly respond to environmental changes and adapt the path accordingly E

Figure 3.13: Robot experiment setup. The left figure shows a UR10e robot and a dynamic
object with an ArUco marker attached for tracking purposes. Throughout
the experiments, the robot travels between the two configurations of the mid-
dle and right figures.

Q3.3 Is the approach fast enough for dynamic environments?

A3.3 The approach can instantly replan in response to sensor events while Jessica
constantly moves in the workspace. However, due to the limited number
of nodes in the precomputed roadmap, the resulting trajectory may not be
optimal and intuitive.

10The name arose during a late-night lab experiment.
A supplementary video is available at ht tps: //youtu.be/ITBz1W7Ecbg

41

https://youtu.be/ITBz1W7Ecbg

3 Speeding up Motion Planning by Reducing Collision Checks

Figure 3.14: Robot experiment with Jessica moving within the workspace. The robot
moves between the far end (top left) and the near end (bottom left) of the
table. The red arrows indicate Jessica’s sudden movement during the robot’s
motion. Snapshots are shown in chronological order from left to right.

3.7 Limitations and Discussion

The proposed method, HIRO, demonstrates an approximately 7x reduction in compu-
tation time across diverse planning problems in the most challenging scenarios. Three
components, i.e., precomputed roadmaps, heuristic-informed search, and edge examina-
tion with safe zones, contribute together to the speedup.

The precomputed roadmap is the foundation of such improvements. Using the roadmap,
edge examination can be prioritized according to heuristics based on the approximated
lower bound of the path cost. This results in fewer edges, n.., being examined. Further-
more, while searching the roadmap, self-collision and collision checks with respect to the
static environment are unnecessary, thereby reducing computational burden. However,
using fixed-sized roadmaps sacrifices the completeness of the sampling-based method.
Completeness guarantees that, given unlimited time, the algorithm can return a solu-
tion if the planning problem has a feasible solution. An unlimited planning budget is
neither realistic nor reasonable in dynamic environments. To have a balanced trade-off
between completeness and speed, the following concepts can be considered: (1) a hier-
archical roadmap whose resolution can be adjusted by partially activating or deactivating
the nodes and edges, and (2) introducing intermediate subgoals, to which the algorithm
can surely return a feasible solution. An observation from the evaluation is that more time
is inevitably required for reasoning as complexity increases. The concept of subgoals
avoids solving complex problems in dynamic environments by decomposing them into
subproblems. This concept can reduce the complexity of each planning and ensure a short
planning time for each subproblem. More details regarding subgoals are introduced in
Chapter 4]

Figure[3.15|demonstrates another limitation. After certain changes in the environment are
detected, the resulting path first guides the robot toward the object and then retreats to
a similar position. The effective avoidance behavior occurs after this unnecessary back-
and-forth motion. This sub-optimality can be attributed to the fixed size of the roadmap
and the placement of the samples in the roadmap. A more advanced method can be

42

3.7 Limitations and Discussion

considered to place the samples more strategically instead of using Halton sequences,
such as identifying the regions that require denser sampling.

Figure 3.15: Snapshots of a sub-optimal avoidance trajectory, shown in chronological or-
der from left to right. In the left figure, the red screen indicates that changes
in the environment are detected and planning is triggered. The robot first ap-
proaches the object and then moves away from it, resulting in a suboptimal
motion.

43

4 Planning with Learned Subgoals

When facing a generic robot motion planning problem, the HIRO method proposed in
Chapter [3| addresses the bottleneck by reducing the number of collision checks and con-
centrating resources on uncertain regions. This planning problem can refer to either plan-
ning a complete problem from the current robot position to its final goal or planning a
subproblem to incrementally progress toward the goal. Although HIRO demonstrates a
significant speedup, its planning time remains unbounded and increases with the expan-
sion of the search space and problem complexity.

Intuitively, if the start and goal configurations are closer to each other, a solution is more
likely to be found in a shorter, bounded time. Therefore, breaking down a complete
planning problem into smaller, more manageable subproblems can be a more practical and
effective approach in dynamic environments. Each subproblem is defined by a specific
subgoal, ideally located near the robot’s current position. Additionally, closer proximity
makes the motion less vulnerable to environmental changes over time, as it takes less time
to reach the subgoal, and future events are less likely to affect execution. This chapter aims
to investigate the following research question:

Can identifying and reaching subgoals indeed be
a more efficient strategy in dynamic environments?

This question is equivalent to finding a set of subgoals that improve the planning perfor-
mance with respect to desired metrics, such as planning and execution time. In the context
of planning in dynamic environments, a good subgoal must have these two properties: (a)
manageable planning time from the current robot position to the subgoal and (b) progres-
sively leading the robot to the final goal. Therefore, the question above converts to

How to capture the distributions of the good subgoals?

Traditional reactive methods [37,77] usually focus on the property (a). Despite the instant
computation time, these methods can easily fall into local minima and fail to approach the
final goal [84]. On the other hand, motion planning methods, including sampling-based
[74, 186] and optimization-based methods [70, [140], put more weight on the progression
towards the final goal, i.e., the property (b). They rely on the spatial domain alone to per-
form their computations, neglecting the fact that the resulting solution is time—sensitiv
meaning that these solutions may only be effective for a brief period in dynamic environ-
ments. The method proposed in this chapter seeks to address both properties simultane-
ously.

ITime-sensitiveness indicates that the solution remains valid only in a limited and usually short time frame.

45

4 Planning with Learned Subgoals

1 1 .'
P
% ’ I’ - 26 1 .
i . mn
E /\ 1 e
. ol—"—==| | a
S % * e H [|
Ei800{1a Eroblsns] t [obstacles Subgoals ® Goal @ Start
(a) Architecture of the method (b) Illustration of the method

Figure 4.1: Architecture and illustration of the method. Subgoal candidates g,, are shown
within the dashed bounding box in (a) and indicated by numbered orange
marks in (b). They are generated by a conditional variational autoencoder
(CVAE) that takes encoded latent representations of point clouds and plan-
ning problems as input. By evaluating the planning time distributions from
the start to these candidates and from the candidates to the final goal, the best
candidate is selected as a subgoal, highlighted by a green outline in both (a)
and (b).

Assuming that the dynamic environment can be seen as frozen for a short time frame, e.g.,
50 ms, the method proposed in this chapter integrates temporal information into learning
to be aware of the time budget while solving a planning problem. The outcome is a
collision-free motion plan regarding the current status of the environment to an interme-
diate subgoal.

In this chapter, the focus is on determining the distribution of good subgoals whose tempo-
ral information satisfies constraints on real-world planning time. In this context, temporal
information does not refer to how the environment evolves over time; rather, it refers to
the time required to find a solution from the current robot state to this intermediate sub-
goal. To this end, a Planning with Learned Subgoal (PLS) method is proposed. Figure[d.]
visualizes this method. PLS consists of (1) a subgoal generation module conditioned on
the final robot goal pose, current robot state, and the current state of the environment, and
(2) a critic module that evaluates and selects the generated samples from the first module
according to various metrics.

The temporal information is involved in two aspects. First, the problem can be viewed as
finding the mapping from the original complete problems to subgoal distributions. Data-
driven methods, especially generative models, are well-suited to learning such complex
mappings. When all data points in the training dataset satisfy the constraints, temporal in-
formation is implicitly encoded in the trained model. Second, a critic trained on temporal
information is used to assess whether the generated samples exhibit the aforementioned
properties of good subgoals. Together with temporal information, methods learning solely
from spatial data can be extended to scenarios where temporal constraints, such as plan-
ning time, are crucial.

Unlike methods that use a learned spatial distribution [61, 88, 96] to bias sampling, the
subgoals offered by PLS are more akin to milestones. These milestones decompose a
complex planning problem into small and easily solvable pieces. An example in 2D for
illustration purposes is shown in Figure [4.1b] Given a planning problem with obstacles,
the learned generative model generates a batch of candidate subgoals, marked in orange.
Then, the critic examines each candidate by estimating the planning time from the cur-

46

4.1 Preliminaries

rent robot position to the candidate and from the candidate to the goal. This examination
assesses the likelihood of finding a solution within the constrained planning budgets and
whether the candidates can contribute to achieving the final goal. In the illustrated case,
the candidate with index 2 is the most suitable for the subgoal as it indicates a low plan-
ning time from start to candidate and from candidate to goal. The selection is detailed
in Section 4.4.2] After selection, the range of the planning problem shrinks to the blue
dashed box for better planning performance. Experiments show that integrating temporal
information significantly improves the planning algorithm and can be applied to reactive
planning scenarios in which the planner has limited time to find a solution. The contribu-
tions are mainly:

» Utilizing a generative model to predict spatial subgoals that decompose a complex
planning problem.

* Employing learned time estimators as a critic to capture the temporal aspects re-
garding the planning time for given planning problems.

* Designing two metrics based on time estimations to identify suitable and goal-
directed subgoal candidates.

In the remainder of this chapter, some preliminaries on variational inference and genera-
tive models are introduced in Section @; Section @formulate the problem and introduce
how the generative model and time estimator cooperate to generate and select subgoals;
Later on, Section[4.3]depicts the training and inference of generative model in details; Sec-
tion 4.4] gives details of how to select samples using a learned critic at the inference stage
and Section [4.5] verifies the proposed method with simulative experiments and extensive
ablation studies.

4.1 Preliminaries

One of the core components of the method proposed in this chapter is capturing the sub-
goal distribution from the data. This section introduces basic concepts of variational in-
ference and variational auto-encoders.

4.1.1 Variational Inference

The core problem in this chapter is to approximate the distribution of the suitable subgoals.
This problem aligns with the general objective of Variational Inference (VI) methods,
which are widely used to approximate probability densities [[13]. Consider a data point
or an n-dimensional observation € R" in a dataset X’ and an m-dimensional latent
variable z, the goal of VI is to find a distribution ¢*(z) in a family of distributions @) such
that

q¢"(z) = arg min Dy, [¢(2)||p(z]x)], (4.1)
q(z)€Q

where p(z|x) represents the true distribution of the latent variable z given the data « and
Dk, [] denotes the Kullback-Leibler (KL) divergence [87]. The KL-Divergence captures
the divergence of two generic distributions ¢(x) and p(x) by

D e)p(o)] = Bevy [l 4] = [aoriog 20 an, a2

47

4 Planning with Learned Subgoals

with sampling from the distribution ¢(x). The variables are changed in Eq. (4.2) to
avoid confusion with the distributions in Eq. (4.1). Applying Bayes’ rule

p(x|z)p(2) (4.3)

p(el) = 228

to Eq. (4.1)), the KL-Divergence captures the divergence of two distributions by

q(z)
D [l Ip(x10)] = By 105 11
=E.4[logq(z) —log p(z|z)]
= Ez~q log g(z) — log p(x|z) — log p(z)] + log p(x)
= z~q [log p(x|z) + log p(z) — log q(z)l +log p(x) 4.4)
ELBO

The term ELBO refers to the Evidence Lower Bound, which can also be derived via
Jensen’s Inequality. By maximizing the ELBO, the KL-divergence Dxy, [¢(2)||p(z|x)] is
minimized. This turns an inference problem, i.e., computing the analytic posterior distri-
bution, into an optimization problem. In practice, there are various methods to maximize
the ELBO. However, introducing these methods is beyond the scope of this work. Eq.
will be used and discussed in the variational auto-encoder (VAE) and conditional
variational auto-encoder (CVAE).

4.1.2 Variational Auto-Encoder

Different from variational inference, which uses a latent distribution ¢(z) to approximate
the posterior distribution p(z|x) given the data X, Variational Auto-Encoder (VAE) is a
type of generative model that learns the latent distribution ¢(z|x) given the data x and
then generates samples similar to the data based on this latent distribution [30].

Put differently, the objective of the VAE is to find the samples of z that are likely to
generate © € X'. Note that the representation of the latent variable is not unique. In the

context of VAE, this representation can be customized to meet the needs. The objective
of VAE is slightly different from VI

¢"(z|@) = arg min Dy [q(z|z)|[p(z|2)], (4.5)
qa(zlz)eQ

where the approximated distribution ¢(-) also depends on . It indicates that the goal is

to find a latent representation ¢(z|x) that is close to the real latent representation p(z|x)

given the data . Eq. (4.4) becomes

Dxu [q(z[®)||p(2]2)] = = Eeng(zla) [log p(|2) +log p(2) — log g(2|2)] +log p(x)
ELBO
= Dk [q(2[®)|[p(2)] = Bzng(zle) [log p(|2)] +log p(x) (4.6)
Encoder De;c:der

The first term of the right-hand side in Eq. (4.6) encourages the approximated latent dis-
tribution ¢(z|x) to be close to the desired distribution p(z). The second term denotes

48

4.1 Preliminaries

the log-likelihood that a latent representation sampled from ¢ can reconstruct in the
dataset. The optimization regarding Eq. (4.5) minimizes Dy, [¢(z|z)||p(2z)] and maxi-
mizes E, ., [log p(x|2)].

Encoder The first term encodes the data distribution to a latent space and aligns the re-
sulting distribution ¢(z|x) to the desired latent distribution p(z). Hence, this term is used
to refer to an encoder. The distributions p(z) and ¢(z|x) of the latent variable z are usu-
ally assumed to be Gaussian, namely p(z) ~ N (0,I) and ¢(z|x) ~ N (pe(x), Xg(x)),
where 6 represents a neural network. The first term becomes

Dxw [a(z]z)[Ip(2)] = Dxu N (po(), Zo())[|IN (0, I)] . (4.7)

Decoder Another assumption is that the distribution p(xz|z) is Gaussian N (f4(z), Xq),
where X; = 021 denotes the covariance matrix of the decoded samples and o2 will not be
determined explicitly. Sampling from the distribution p(z), VAE decodes the samples and
projects them back to the data representation using the function f,(-), where ¢ indicates
the parameters of a neural network. According to the definition of Gaussian, the prob-
abilistic density function of N (f,(2),X4) is proportional to e~ 2@ fo(2 TR @ Ju(2)),
Therefore, with >3; = agI , the likelihood that the sample z reconstructs & can be written
as

log p(x|z) o< —||lz — fo(2)|[3 (4.8)

With E.., [log p(z|z)] = log p(x|z), the expectation can be written as
Exvqzlo) log pl(@(2)] o — ||z = fo(2)]l:: (4.9)

Training The training pipeline is visualized in Figure Given the data from the dataset
X, the encoder outputs the mean gy and the covariance matrix 3y of the correspond-
ing multivariate Gaussian distribution of the latent variable z. The decoder projects the
samples from the latent distribution back to the high-dimensional space. The parameters
of the neural networks 6 and ¢ can be iteratively optimized using gradient descent. It is
worth noting that the reparameterization trick [79] is employed to enable backpropagation
through the encoder. The pipeline minimizes the loss function

J = BDxu N (po(x), Zo())[IN (0, I)] + ||z — fu(2)II2 (4.10)

where 3 denotes the weighting between the KL-divergence and the reconstruction error
introduced by the encoder.

Inference During the training, the encoder learns to project the data to a distribution close
to the standard multivariate Gaussian N (0, I). Therefore, a VAE can directly sample
from N(0, I) and feed the samples into the decoder without using the encoder during
inference. A question to ask is why an encoder is required if only the decoder works solely
at the inference stage. In practice, it is usually the case that ¢(z|x) does not converge to
N (0, I) at the training stage. Sampling from the latent distribution ¢(z|x) does not imply
a completely random variable but a perturbation or exploration from the latent feature so
that the data can be reconstructed, reducing || — f,(z)|[3. Forcing the ¢(z|x) close
to A(0, I) makes the model generalize. Put differently, 5 balances the generation and
reconstruction. If the generation and reconstruction are well balanced, ¢(z|x) is not far
from N (0, I), and hence similar data can be generated.

49

4 Planning with Learned Subgoals

e N S

Encoder ﬂ Decoder

! ! f I ! f
124 b ‘é—?— z c w X z
| | '

.

Q0O
000
QOO
(]e]e)

Training
m l
g QOO
o QO
& 669

w
o)
%3
he]
&
o L
® QOO
S |88

QOO

O
O

Sample \)
‘ﬁ zZ — Decoder

e 1

000,

Inference
w
j8)
el
@
N
o L
[Q0O
S |38
§ 659

Figure 4.2: Training and inference pipeline of VAE (left) and CVAE (right). The encoders
are not needed at the inference stage for both VAE and CVAE. Encoders and
Decoders are usually neural networks.

4.1.3 Conditional Variational Auto-Encoder

The conditional variational auto-encoder (CVAE) is an extension of VAE. As shown in
4.2] the conditional variational auto-encoder takes an additional condition c to generate
new synthetic data f,(z,c) compared to the VAE. Consider the subgoal generation as
an example. Subgoals are generated for specific planning problems and the surround-
ing environment. The condition ¢ in this context refers to the planning problem and the
surrounding environment.

The distribution of the latent variables p(z|x, ¢) for generating the synthetic data should
be similar to the distribution ¢(z|x, ¢) represented by the dataset. The KL-divergence
between these two distributions becomes

Dk, [q(z]z, c)||p(z|, €)] = E.q(zjae) [logq(z|x,) — logp(z|x, c)]. 4.11)

The loss for training CVAE becomes
J = BDxw [N (ps(x, €), Bg(, €))[IN(0, I)] + || — fs(2, 0)]]5. (4.12)

The training and inference of CVAE are the same as VAE. The condition ¢ is usually an
encoded latent representation of raw data.

4.2 Problem Description

Given a planning problem of a robot with N DoF defined by the current robot config-
uration gq; € RV, goal configuration g, € R, and the surrounding environment S, the
proposed method in this chapter aims to find a mapping f,(qs, g,, S) to the distribution of
joint configuration g5, € RY, where the maximum planning time ¢, from g; to g, using a
sampling-based planner 7;(qs, gs,) is less than a desired bound ¢;,. The joint configuration
gy 1s termed a subgoal. The surrounding environment & can be represented as a point
cloud. Note that the objective is not to completely cover the actual distribution fulfilling
ts < t, but to find a subset of the distribution.

50

4.3 Generating Spatial Subgoals

This can be understood as a three-part problem. The first step is to collect a dataset X,
which captures the correspondence between {q;, g,, S} and g,,. The second step focuses
on training the model f,(gs, g4, S) to generate subgoals g, that closely resemble those in
the dataset X'. The third step involves selecting the generated subgoal candidates during
inference. A critic, which is a neural network fy(gs, gs4, S), is trained to help identify the
best candidates according to specific desired metrics.

4.3 Generating Spatial Subgoals

The core idea behind generating subgoals is to first learn the distribution of desired sub-
goals from the data, then sample from this distribution during inference. The desired
subgoals should consider both the spatial and temporal aspects of the planning. The spa-
tial aspect requires that the subgoals progressively lead the robot to the final goal. The
temporal aspect requires the planning time from the current robot position to the subgoal
to be within the desired reaction time. This section first describes the details of collecting
a dataset in Section[4.3.1] In Section [#.3.2] the dataset is used to train generative models
to capture its latent representation and to generate similar subgoals conditioned on the
planning problem.

4.3.1 Subgoal Dataset

A subgoal dataset consists of planning problems, corresponding point clouds, subgoals,
and the planning time for each subgoal. An example is shown in Figure[4.3] Each compo-
nent is described in detail in the following in Section[4.3.1.1] The data generation pipeline
is introduced in Section

Start =—— Goal Subgoal

(a) Cluttered environment and point clouds (b) Planning problem and subgoals in dataset

Figure 4.3: Components in the subgoal dataset. The point cloud representation of a clut-
tered environment is shown in (a). A planning problem, including the start
and goal configurations and the corresponding subgoals, is shown in (b).

4.3.1.1 Components in Dataset

A dataset of one million random planning problems is collected. Each planning problem
includes the robot’s start and goal configurations, the point cloud of the current workspace,

51

4 Planning with Learned Subgoals

at least one subgoal, and the corresponding planning time from the start configuration to
each subgoal. This section only depicts each component, and details of collecting will be

presented in Section[4.3.1.2]

Planning Problem Description A planning problem is generally defined by the start con-
figuration, i.e., the current robot configuration, the goal, and the surrounding environment.
The goal can be specified as a joint configuration or as the Cartesian pose of the tool center
point (TCP). If the goal is specified in TCP, an additional inverse kinematics (IK) mod-
ule is required to convert the goal pose into joint configurations. Since IK often yields
multiple solutions, the dataset directly represents the goal using joint configurations to
eliminate ambiguity.

Point Clouds The surrounding environment is represented by point clouds in the dataset.
The point cloud representation remains consistent regardless of the number of objects in
the environment and is unaffected by changes in viewing angle. There are alternatives,
such as state-based and image-based representations. A state-based representation pro-
vides structured information about objects in the environment, including their shape and
position. However, when representing the state information by a vector s, the length of the
vector varies depending on the number of objects. It can be very challenging for current
machine learning methods to capture a meaningful representation when the input state is
inconsistent. One possible approach to encoding an arbitrary number of objects of dif-
ferent shapes into a unified state-based representation is to first approximate the objects
with primitive shapes and then use a graph model to derive a latent representation [180].
Image-based representations do not suffer from variable dimensionality issues. However,
they are strongly influenced by the camera’s position. Changes in viewpoint can signifi-
cantly affect the learned policy, potentially leading to execution failure.

Subgoals For each planning problem in the dataset, there is at least one subgoal. Subgoals
are represented as joint configurations to avoid ambiguity. The planning time from the
start to subgoal configurations must be less than 50 ms.

Planning Time to Subgoals Due to the stochastic process of sampling-based methods,
the planning time of a planning problem is not deterministic but has a distribution. To
represent this distribution, the dataset records the planning time for 20 runs between each
subgoal and its corresponding start position.

4.3.1.2 Dataset Generation Pipeline

The dataset comprises over one million randomly generated planning requests for a UR10e
robot, each specifying a unique start and goal configuration, with joint values constrained
to [—2m, 27] across all joints. These requests are planned using OMPL [158] in diverse
environments. The environment includes up to 12 randomly positioned boxes. There
is at least one feasible path for each request. Feasible paths are represented as a list of
waypoints. Suitable waypoints are extracted from these feasible paths and saved in the
dataset. The data generation pipeline is visualized in Figure 4.4 The following presents
an overview of generating subgoal datasets from a spatial and temporal perspective.

The spatial aspect of the subgoals concerns whether each subgoal can progressively guide
the robot toward the final goal. The planned feasible paths are reliable sources for deriving
subgoals regarding this aspect. Each waypoint in the resulting path is a candidate subgoal
for the dataset. Sampling-based planners are stochastic and can output completely dif-

52

4.3 Generating Spatial Subgoals

ferent results for the same problem. An asymptotically optimal sampling-based planner
AIT* is used to reduce subgoal variance. The AIT* planner refines the solution
incrementally within the time budget, reducing unnecessary detours and making the way-
points in the resulting path more expressive and less redundant.

The subgoal’s temporal aspect refers to the planning time from the start configuration
to the subgoal configuration. For each waypoint along the feasible paths, the planning-
time distribution from 20 runs is collected. The planner used for this computation should
be consistent with the deployment planner. With this consistency, there are no other re-
strictions on choosing the planner. The planner can be HIRO, AIT*, RRTConnect, or
something else. The data reported here were collected using RRTConnect. This choice is
informed by the characteristics of AIT* as an optimal planner that continually refines its
solutions until the given time budget is exhausted. Our observations indicate that AIT*
generally takes a bit more time to return an initial solution than RRTConnect, consistent
with the results reported in the original AIT* paper [157]. A maximum planning time of
50ms is used as a threshold to filter out unsuitable subgoals. Theoretically, this constraint
on planning time should be small to enable reactive planning in changing environments.
Practically, however, the smaller the range, the less data it can accommodate, and thus
training a model properly becomes harder.

The point cloud is captured from 4 viewpoints floating above the workspace in the Py-
Bullet physics simulator. The original point clouds are downsampled to 4086 points to
facilitate feature and representation learning; see Figure .32

o~ \ =g Motion Filter

"_-\4
Waypoints

Planning Problems

v

A

-

)

-—
Simulator ‘ ' —T

Point Cloud

Figure 4.4: Pipeline of dataset collection. The motion planner receives planning prob-
lems as input and generates solutions as a list of waypoints. The motion filter
computes the planning time from the planning problem’s start configuration
to each waypoint. It selects waypoints that meet the time constraints, des-
ignating them as valid subgoals marked in green. The collected information,
including the planning problems, their point cloud representations, the filtered
subgoals, and the associated planning times, is then saved in the dataset.

53

4 Planning with Learned Subgoals

4.3.2 Learning Subgoal Distributions

A generative model is trained to capture the subgoal distribution for a given set of planning
problems. This section first introduces the representation of the planning problems used
by the generative model, then outlines the training and inference pipeline.

4.3.2.1 Planning Problem Representation

The generative model uses the start and goal configurations and the point clouds of the
surrounding environment as inputs to generate subgoals. Both input sources are projected
into latent representations using encoders based on neural networks. Then, the subgoals
are generated, conditional on the latent representations. The following describes the en-
coder for joint configurations and the point cloud encoder in detail.

Planning Problem Encoder To achieve higher resolution for the reconstruction in joint
space, the following positional encoding with L levels

xpp = |x,cosx,sinx, ..., cos (2Xx), sin (2x)]. (4.13)

Positional encoding is used in recent methods like Neural Radiance Field (NeRF) [[108]
to capture the high-frequency part of the data. After projecting the joint configuration to
higher dimensions, an additional multi-layer perceptron is used to process the data.

0.o/0
O

oi%o

)

& ! — (jsg
Point Cloud
oin! ouds N 2 z o

Planning Problems

Figure 4.5: Pipeline of training CVAE to capture the spatial subgoals. Modules that use
neural networks are marked with a symbol in the upper right corner.

Point Cloud Encoder As shown in Figure the point cloud contains additional masks
for the environmental obstacles (shown in white) and the current robot start state (shown
in green). An architecture based on PointNet++ [[133] is adopted. PointNet++ learns a
hierarchical point cloud representation and is robust against various sampling densities
of point clouds. Architectures based on PointNet++ have been used and proven effective
in a wide range of point cloud processing tasks [133} 25, |110]. In addition, PointNet++
integrates PointNet [[132] as a sub-component. Partially observed point clouds can be
effectively processed using PointNet, even if trained only on fully observed scenes [132].
Specifically, the PointNet++ architecture uses three set abstraction groups followed by
three fully connected layers. In the first set abstraction layer, an iterative farthest point
sampling (FPS) [133] is performed to create a set of 512 points. FPS aims to find a
representative subset of points that capture the essential characteristics of the entire point
cloud. By selecting points as far apart as possible, farthest point sampling aims to preserve
the overall structure and diversity of the point cloud data. A grouping query within Scm

54

4.3 Generating Spatial Subgoals

of at most 128 points is then performed on the sampled set of 512 points. At the end of
the final abstraction, a local PointNet [132] consisting of layers of size [1, 64, 64, 64] is
created. The second set of abstractions has a lower resolution. It samples 128 farthest
points and then groups at most 128 points within a 30cm radius. The associated PointNet
consists of layers of size [64, 128, 128, 256]. The third set of abstraction skips the farthest
point sampling and groups all points together. The subsequent final PointNet consists of
layers of size [256, 512, 512, 1024]. Finally, after the set abstraction layers come the three
fully connected layers with dimensions [4096, 4096, 2048], respectively. Between these
layers, group norm and Leaky ReLU is used. This point cloud encoder has 17.8 million
parameters, and its output is an embedding of 2048 dimensions.

4.3.2.2 Training

The previous section introduced the dataset’s components and generation pipeline. This
section describes how to train a generative model to predict subgoals given the whole
planning problem. Previous works [60, 88|] showcase that a conditional variational au-
toencoder (CVAE) [[154] is capable of generating samples along the optimal path or in the
bottleneck region. The fundamental idea behind them is that CVAE can capture the latent
representation and generate samples similar to the dataset, conditioning on the environ-
ment representation.

The subgoal generation problem aims to train a model to generate samples similar to the
dataset mentioned in Section.3.1] fulfilling the spatial and temporal requirements. Since
the dataset only includes subgoals with a planning time of less than 50 ms, the temporal
requirement is implicitly included in the data distribution.

As introduced in the preliminaries Section 4.1, CVAE maps the data « to a latent distri-
bution N (p(x, €), X(x, ¢)) and then reconstructs the data as & = f,(z, ¢) from samples
z ~ N(u(z,c),X(x, c)), conditioning on c.

In subgoal generation, the condition c refers to the planning problem description {q;, g4, S}
The data example x refers to the corresponding subgoals g, of the planning problem in
the joint configuration space. To adapt the loss to fit in this context, the loss described in

Eq. is modified as
J = BDKL [N([.Lg(ﬂZ,C), 29(13,(3))”./\/’(0,1)] + 9(337 f¢(Z,C)), (414)

where g(x, f,(2,c)) is a non-linear function capturing the reconstruction error of sub-
goals in both joint configuration space gjoint(-) and the task space gpx (+)

9(z, fs(z,¢)) = agrk(z, f3(2,¢)) + (1 — @) Gioms (T, f5(2, €)). (4.15)

Although the model directly outputs joint configurations as subgoals, the loss function in-
cludes reconstruction errors in the task space and considers the robot’s kinematics. Using
the 2-DoF robot in Figure [3.8] as an example, predicting wrong values at the first joint
and at the second joint can generally lead to significantly different effects at the robot’s
end-effector. The changes at the first joint usually result in a more significant robot dis-
placement. Therefore, the gpk is a weighting function that reflects the kinematics of the
robot.

55

4 Planning with Learned Subgoals

With the positional encoding introduced in Eq. [.13] the 1oss gjoin¢ is written as

L

Giom (. f5(2,€)) = ||& = fo(z,€)I3 + D _ |l cos (2'z) — cos (2'fy(=, €))II3

=0

L
+ Z || sin (2'a) — sin (2 f4(z, ¢))| | (4.16)

Points are sampled from the surface of each robot link’s corresponding oriented bounding
boxes (OBBs) to represent the reconstruction errors in the task space. These points are
sampled only once and then used throughout the training. The loss function ggk is written
as

grx (@, f5(2,) ZHT T(fs(z, 0)|l3, 4.17)

where 7; indicates the forward kinematics transforming the joint configurations to 3-D
positions [z, 1, 2] of the i*" point in task space and n denotes the number of points on the
OBB surfaces. Orientation is not explicitly considered in the loss function since a group
of points can also implicitly express orientation.

4.3.2.3 Inference

After training the CVAE model, it can be deployed to the dynamic environment. At the
inference stage, the CVAE’s data flow differs slightly from the training stage. The encoder
is not involved at the inference stage, shown in Figure4.2] At the inference stage, a latent
variable z is directly sampled from a multivariate Gaussian p(z) ~ N (0, I'). The decoder
fs+(z,¢s,q,,S) generates a subgoal configuration based on z and the encoded planning

problem {gs, q,, S}.

The timing of triggering the inference is also an essential factor. Two options can be
considered: the inference can be triggered (1) at a fixed frequency or (2) when a new
motion plan is needed. In the second option, a new motion plan is needed when a predicted
collision between the robot and obstacles is detected or the robot has successfully reached
the subgoal. The first option is used for the policy rollouts in Section

The CVAE uses a Gaussian distribution to approximate the actual data distribution. This
assumption results in a problem that the learned distribution N (f,(z,¢),3,) overap-
proximates the actual distribution. When sampling from this learned approximation, the
samples may not satisfy the temporal or spatial requirements. To address this issue, an
additional module is trained to serve as a critic for the samples.

4.4 Temporal Distributions as Critic

The model introduced in Section4.3|can generate diverse subgoals for the same planning
problem {q;, g,, S}, see Figure This section introduces a critic module that evaluates
the generated subgoal candidates and selects the best-suited one for planning. The objec-
tive is to select the subgoal that can be planned within the desired bounds while guiding
the robot to the final goal.

56

4.4 Temporal Distributions as Critic

Start Goal = Subgoal inference

Figure 4.6: Generated subgoals for the problem shown in Figure Due to the diversity
of the subgoals, a critic is needed to evaluate them.

The critic module comprises a neural network-based time estimator and selection strate-
gies informed by the time estimates. The time estimator captures the distribution of plan-
ning time given the start and goal configurations and the surrounding environments, as
illustrated in Figure 4.7} The advantage of capturing the distribution rather than learning
a classifier is that it can serve as a surrogate measure of planning effort. While a classifier
provides a binary classification indicating whether a subgoal is good, multiple metrics
can be defined based on the planning effort. Combining these metrics in different ways,
diverse strategies can be used to define and evaluate the goodness of subgoal candidates.
This section first details how to learn the distribution of temporal effort, and then develops
two metrics based on the learned distribution.

A\

v

Point Clouds § §
3 g

v J

Planning Problems (&

Figure 4.7: Pipeline of training the time estimator. Modules that use neural networks are
marked with a symbol in the upper right corner. The parameters in the point
cloud encoder and the problem encoder are frozen and don’t change during
training.

4.4.1 Capturing Temporal Distributions
The neural-network-based time estimator fy(gs, gsy, S) takes the start configuration g,

the subgoal candidate g, and the environment S as input to estimate the distribution of
the planning time, where 1/ denotes the parameters of the neural network.

57

4 Planning with Learned Subgoals

The dataset described in Section [4.3.1] is used to train the time estimator. Each entry
in the dataset includes a problem description and the planning time for 20 runs from
the start configuration to each waypoint. The planning time in the dataset ranges from
several milliseconds to seconds. The training includes all waypoints in the dataset, not just
those with planning times under 50 milliseconds. Including all waypoints can broaden
the prediction range and prevent the model from overfitting to a narrower range than
50 milliseconds. Ideally, the estimated distribution should maximize the accumulated
likelihood of the data collected from the 20 runs. This distribution serves as a proxy for
the planning effort for the given problem and is correlated with the number of collision
checks performed. It is worth noting again that these predictions apply only to the planner
used to collect the data. An example of the planning time distribution for a problem in
the dataset is shown in Figure #.8] Two statistical models are used to approximate the
underlying data distribution, i.e., the normal and log-normal distributions.

Normal Distribution Log Normal Distributions
x Samples 7 % Samples
307 —— Estimated —— Estimated
] - - Est.cdf=0.95 | °| ——. Est. cdf=0.95
— Fit 5] — Fit
== Fit cdf=0.95 == Fit cdf=0.95

Probability Density

1
o] & sl
0.0 02 04 0.6 08 10 0.0 0.2 0.4 0.6 08 10

Planning Time [s] Planning Time [s]

WX)OKI)I

Figure 4.8: Samples of planning time described by normal and log-normal distributions.
Red: statistically determined. Green: estimated by a model. The figure was
adapted from a conference publication [54].

Normal distribution is also known as the Gaussian distribution. It is symmetric and can be
determined by two parameters, mean y and standard deviation o. Since the planning time
is a one-dimensional variable, a scalar expression is used to represent both parameters.
Furthermore, because the planning time is always positive, the left tail of the distribution
may get cut off, which means the model may not fully capture the data accurately.

Log-normal distribution describes the data whose logarithm is normally distributed. In
other words, given a set of normally distributed data X, log-normal distribution describes
the transformed data Y = eX. The data from a log-normal distribution is always positive
and skewed, which coincides with the planning time. As shown in Figure 4.8} the data has
a long tail in the positive direction. Similar to the normal distribution, a one-dimensional
log-normal distribution can be expressed by two parameters . and o.

Given a set of data points, the parameters ;2 and o can be fit by maximizing the likeli-
hood. This can be easily done using most modern machine learning libraries, such as
PyTorch or scipy. Different from fitting, the goal for the time estimator is to estimate the
parameters given {qs, gs4, S }. Intuitively, the time distribution depends on the complexity
of a planning problem defined by the start-goal query {qs, gs,}. and the environment S.
Specifically, the same encoded latent representation of {qs, gs,, S} in Section are
used to derive the distribution. A neural network parameterized by) takes this encoded
representation as input and outputs the parameters i, o of a 1-D distribution. With the

58

4.4 Temporal Distributions as Critic

same goal of maximizing the likelihood, the loss function to train the neural network is
written as

M
o 1 o X .
J(T, [p,6) = —— g log p(tm|it, &) +w((fi — p)* + (6 — 0)?), (4.18)
m=1

~~
negative log—Ilikelihood

where 7' is the planning-time random variable, ¢, is the planning time of one run col-
lected by the dataset, and M refers to the number of total runs for one planning problem.
Minimizing the negative log-likelihood is equivalent to maximizing the likelihood. In
addition to the negative log-likelihood, we add a mean square error (MSE) loss between
the parameters p and o empirically derived from the data ¢,, and the output of the time
estimator /i and 6, weighted by w. This term serves a regularization purpose, balancing
the mean and variance and avoiding mode collapse. As shown in Fig. .1a] the gradient of
the time estimator does not backpropagate to the encoding blocks. Examples of learned
distribution using normal and log-normal models are shown in Figure 4.§]

4.4.2 Metrics for Subgoal Selections

The time estimator estimates the surrogate planning effort between two joint configura-
tions g5 and g,, conditioning on the environment surroundings S. Compared to simply
learning a binary classifier, the surrogate planning effort enables the extension to design
diverse metrics to quantitatively evaluate a subgoal candidate and finally make an in-
formed selection.

Two aspects are considered for the evaluation: (a) whether it is likely to plan to the sub-
goal within the given time bounds and (b) whether the subgoal is goal-oriented, i.e., can
progressively lead the robot to approach the final goal. Two extreme cases illustrate why
it is important to consider both aspects simultaneously. In the first extreme case, a model
copies the start configuration and uses it as output, making the generated subgoals cover
aspect (a). Similarly, in the second extreme case, if a model outputs the goal configuration
directly, aspect (b) is logically covered. However, neither of these models can contribute
to planning in dynamic environments. Therefore, it is desirable that the subgoals address
both aspects simultaneously.

To this end, a start-to-sample metric is designed to characterize aspect (a), and a goal-
to-sample metric characterizes aspect (b). It is worth noting that the start and goal are
interchangeable in planning time, and the learned model should produce similar results if
the start and goal configurations are swapped.

Sampling-based motion planning is a stochastic process, and every planning problem can
have an unusually long planning time. This is also known as tail risk. In the subgoal
selection, the focus is not on tail-risk events but on the main part of the distribution.
Thus, the start-to-sample metric uses the cumulative density function (CDF) ¢(-) of the
estimated distribution to characterize the subgoal. The main part of the distribution can
be represented by tg5, where ¢(tg5) = 0.95, indicating that 95% of the values drawn from
this distribution are supposed to be smaller than tg5. The value of Z95 is used to denote
the planning effort of a problem since it represents 95% of the planning cases and gives
a straightforward evaluation of how hard is the planning problem. ¢9; can be analytically

59

4 Planning with Learned Subgoals

determined given the parameters x4 and o. Depending on the needs, one can set this
confidence level to a higher value. The start-to-sample and goal-to-sample metrics are
described in detail below.

Start-to-Sample Metric The start-to-sample metric estimates the planning effort between
the start and the generated subgoal candidates. The time estimator uses the start and the
subgoal configuration as input and predicts the distribution of the planning time p(t|/, 7).
The variable to; determined by p(t|/i, d) is used as a surrogate metric to represent the
planning effort.

Goal-to-Sample Metric The goal-to-sample metric estimates the planning effort between
the goal and generated subgoal candidates, addressing the aspect (b) mentioned earlier. In
search algorithms, cost-to-go heuristics estimate the effort required to reach the goal and
are used to prioritize exploration. Similar to this concept, the goal-to-sample metric uses
the planning effort 95 between the goal and generated subgoal candidates to describe
whether it is easy to plan from the subgoal to the final goal or vice versa. A lower o5
value indicates an easier planning problem, suggesting that the corresponding subgoal is
goal-oriented.

4.4.2.1 Selection Strategies

Two selection strategies, termed best-effort and goal-oriented, are designed using the met-
rics mentioned above. These selection strategies are applied to the subgoals candidates
generated by the CVAE.

The best-effort strategy uses only the start-to-sample metrics and selects the subgoal
candidates whose tg5 is less than the desired upper bound of the planning time ¢,. If
multiple subgoal candidates meet this requirement, then the subgoal will be randomly
selected among them. If there are no qualified candidates, the one with the least ¢95 value
will be selected. This strategy is designed to select the candidates that potentially need
the least effort to plan, regardless of whether they can lead the robot to the goal or not.

The goal-oriented strategy builds on the best-effort strategy and uses the goal-to-sample
metrics to select qualified candidates. Instead of randomly selecting, it ranks the samples
by the goal-to-sample metric and selects the one with the lowest value, i.e., the most goal-
oriented. If there are no qualified candidates, the goal-oriented and best-effort strategies
are equivalent.

4.4.3 Planning Range Shaping

A larger planning range usually means a larger search space and, therefore, a longer plan-
ning time for sampling-based motion planners. For some complex planning problems,
the planning range has to be large enough to avoid the infeasible region in the collision
space. As subgoals break down complex problems into pieces, shaping the planning range
accordingly for every small planning problem becomes possible and beneficial. This con-
centrates the samples in the region where the planner can find a solution. A similar con-
cept can be found in batch-informed trees (BIT) [39]. The difference is that methods in
the BIT family derive bounds defined by high-dimensional ellipsoids after an initial so-
lution is found. In contrast, PLS directly sets the planning range based on the planning
problems.

60

4.5 Evaluation

For an N-DoF robot arm, we set the lower bounds b, € RY and upper bounds b, € RY
for joints depending on the mobility of each joint and the planning problem. In practice,
we constrain the search space with greater paddings for the joints that can produce large
motion, usually the ones close to the robot base, depending on the robot’s kinematics.

4.5 Evaluation

As the method is proposed to generate subgoals that account for the spatial and temporal
aspects, experiments are designed to examine the subgoals regarding these two aspects.
With the experiments, the following questions should be answered:

Q4.1 Can generated samples be planned within a short period?
Q4.2 Can the generated samples guide the robot toward the final goal?

Q4.3 Can the learned model generalize to unseen scenarios?

The results in this section are collected with a model trained by the dataset mentioned in
Section .3.1] The checkpoint with the lowest loss on the validation set is chosen as the
best checkpoint and used to compute the results reported in this section.

4.5.1 Evaluation in Simulation

Two simulation experiments were conducted to answer Q4.1 and Q4.2. Both experiments
use the same trained spatial subgoal generator model. The generator has a neural-network-
based encoder with dimensions [1024, 512, 512, 256] that encodes the input to the mean
and variance of a latent variable z with dimension 128. The sampled latent variable is
then used as input to reconstruct the subgoals using a decoder with dimensions [1024,
1024, 512, 256]. The time estimator uses two residual blocks, each with 3 fully connected
layers with a dimension of 128. For the loss functions, 5 = 7 in Eq. and w = 0.01
in Eq. (4.18). During the training, the learning rate is 5¢~*. The computation time of all

planners is collected with a single core of an Intel 19-9900K CPU.

|:;’ | ,
P N 4 BN

Start == Goal = Subgoal inference

Figure 4.9: Rollouts of the learned model. The previously predicted subgoal is used to
start the configuration for the current problem. The ground truth of the sub-

goals see Figure [4.3]

61

4 Planning with Learned Subgoals

4.5.1.1 Planning Time Fulfillment

To answer the question Q4.1, the trained model is deployed to 1000 planning problems.
The planning problems are first solved using the RRTConnect planner for 30 runs, all
of which take at least 0.05s. This guarantees the complexity of the test problems. The
planning time for these runs serves as a baseline to highlight the improvements achieved
by using subgoals.

At this stage of the experiment, the trained model outputs subgoals for each problem
but does not work iteratively toward the final goal. The sole evaluation metric for this
experiment is the planning time from the start configurations to the subgoals using RRT-
Connect, the same planner used to generate the dataset. Throughout the evaluation, the
trained model generates subgoal candidates in batches of 16 for each planning problem.
Then, these subgoal candidates are selected either randomly or using the best-effort strat-
egy. The results reflect the trained model’s ability to generate samples while meeting the
requirement for bounded planning time.

Since the test planning problems are selected with planning time greater than 0.05s as a
requirement, the baseline that solves the complete problem using RRTConnect naturally
handles 0% of cases that meet the desired time bound ¢,4. Other planners can be used for
baselines. However, the focus at this stage is on highlighting the distinction between plan-
ning subproblems and complete problems. If using other planners yields an improvement,
the improvement attributable to the choice of planners can benefit both the subproblem
and the complete problem. Using other planners does not affect the decomposition of
complex problems into small, easy problems.

Success Under Time Budget ¢, [%] Planning Time [s]
ty, = 0.05 ‘ t, =0.1 t, = 0.2 Mean Std.
RRTConnect (baseline) 0 3.8 12.9 1.153 1.86
Random selection 65.4 74.9 83.2 0.143 0.328
LogNormal 67.0 73.6 79.9 0.198 0.434
Normal 71.3 78.9 86.2 0.122 0.211
LogNormal + Shaping 85.1 90.0 94.1 0.056 0.203
Normal + Shaping 89.2 93.8 96.7 0.035 0.137

Table 4.1: Results of planning to subgoals once. The pipeline rolls out only once for
each planning problem instead of iterating until the final goal is reached.

The results are reported in Table [d.1] For each problem, the RRTConnect algorithm plans
the subproblem defined by the start configuration and the selected generated subgoal
across 30 runs. The problem is considered successful only if all 30 runs yield a plan-
ning time below a specified threshold. The thresholds are set to be 0.05, 0.1, and 0.2
seconds.

While RRTConnect cannot manage to plan within the given planning budget of 0.05s,
65.4% of the randomly selected generated samples can be planned within 0.05s. Using
the best-effort metric, the ratio of qualified subgoals increased up to 71% using the normal
distribution. With the planning range shaping, up to 89.2% of the generated samples were
planned within 0.05 s. As the threshold is extended to 0.1 and 0.2 seconds, we gain a big
picture of how the planning time of the predicted subgoals is distributed. More than 93.8%
of the predicted subgoals can be planned within 0.1 s, while only 3.8% of the complete

62

4.5 Evaluation

problem can be solved within this range. Therefore, the experimental results empirically
show that the predicted samples can be planned in a much shorter period compared to the
original complete problem. Thus, Q4.1 is answered:

Q4.1 Can generated samples be planned within a short period?

A4.1 While none of the original complete problems can be planned within 0.05 s,
over 89% of the selected generated subgoals succeeded in being planned
within this budget, proving the generated samples effective.

4.5.1.2 Goal Reaching

To answer question Q4.2, the trained model is used to sequentially roll out until the final
goal is reached or the maximum number of iterations of 10 is reached. The same set of
problems as in planning time fulfillment is used in this experiment. Each problem will
be rolled out 10 times. Every rollout begins with the initial start configuration defined
in the problem. After selecting a subgoal, the RRTConnect planner searches for a so-
lution between the current start configuration and the subgoal, and the planning time is
recorded. If no solution is found, the rollout will be aborted and reported as failed. If a
solution is found, the predicted subgoal becomes the start configuration for the next iter-
ation, and the point cloud representation gets updated. The same procedure is repeated
for the next iteration until the termination condition mentioned above is met. A rollout is
considered successful only if the final goal is reached. Using the same subgoal generation
model, three subgoal selection strategies are evaluated: random selection, best-effort, and
goal-oriented. For the best-effort and goal-oriented strategies, there are two distribution
assumptions, i.e., normal and log-normal distribution, making them five different ways to
select subgoals.

Planning time and path length between adjacent subgoals, as well as the accumulated
planning time and path length, are the metrics used to evaluate performance. These met-
rics are computed using the RRTConnect planner. In addition, the AIT* planner is used
to compute the optimal path length for baseline purposes.

Reached Goal All Tterations Under Budget ¢, [%] Planning Time [s] Acc. Length

[%] ty = 0.05 ty, = 0.1 ty = 0.2 [rad]

Baseline 0 0 3.8 12.9 1.153 - 17.65 (AIT*)
Random Selection 61.7 82.6 87.4 91.9 0.517 0.061 50.67
Best-effort + LogNormal + Shaping 81.5 90.1 93.2 95.9 0.208 0.029 25.79
Best-effort + Normal + Shaping 69.0 95.2 97.0 98.4 0.149 0.016 23.55

Goal-oriented + LogNormal + Shaping 85.2 89.3 93.3 96.2 0.172 0.030 25.51

Goal-oriented + Normal + Shaping 82.3 88.5 922 96.2 0.214 0.039 25.56

Table 4.2: Planning to final goals. The pipeline rolls out iteratively until the final goal is
reached. All results are computed using the RRTConnect planner unless stated
otherwise. For the baseline statistics, the AIT* uses a planning budget of 5
seconds to compute the optimal path length.

Results of the baseline and the mentioned variants are shown in Table 4.2] The success
rate reported in the table indicates that the method can plan directly or sequentially to

63

4 Planning with Learned Subgoals

the final goal, with a maximum of 0.05 s per iteration. The maximum allowed number of
iterations is set to 10. Since the baseline method, RRTConnect, cannot provide a solution
within 0.05s, its success rate is 0. Other than success rates, the accumulated planning
time of the from the initial start to the final goal as well as the planning time be-
tween are listed in the table. The results of the random selection indicate that a
model relying solely on spatial information is ineffective at meeting time constraints or
guiding the robot to its goal configuration. Using temporal information to select the can-
didates generally improves performance in both aspects. Compared to the baseline results
regarding the path length provided by AIT*, other variants exhibit a longer path length.
An obvious reason is that RRTConnect is used to plan between adjacent subgoals without
path smoothing, resulting in a suboptimal path between the subgoals. Other metrics are
needed to examine the optimality of the subgoals.

Q4.2 Can the generated samples guide the robot toward the final goal?

A4.2 Using a goal-oriented selection strategy based on log-normal distribution, the
model succeeded in 85.2% of the test cases to sequentially guide the robot
from the initial start position to the final goal, while the baseline method
fails to achieve a single case. Results also show that a model relying solely
on spatial information is not effective in either meeting time constraints or
successfully guiding the robot to its goal configuration.

4.5.2 Ablation Study

In the previous section, the results for different combinations of selection strategies, statis-
tical models for the planning-time distribution, and activation of planning range shaping
are reported in Tables and This section analyzes the contribution of each compo-
nent based on these results.

With and without time estimator In Table the success rate of planning under the
budget ¢, = 0.05 using time estimator is higher than random selections. In addition to
reducing planning time, the time estimator helps select candidates that progressively guide
the robot toward the goal; see Table When integrating the sample-to-goal metric, the
percentage of goals reached is higher for both statistical models.

Statistical models In both Table |4.1|and Table the time estimator using normal distri-
bution shows better performance in planning time but worse performance in guiding the
robot to the final goal. On the other hand, the log-normal distribution is robust in both
experiments. In the goal-reaching experiment, the rollout is autoregressive, meaning that
the current input {g;, q,,S}: of the neural network is based on the previously selected
subgoal gy 1, 1.€., s+ = qs4:—1. The generated subgoals do not belong to the dataset
and are unseen by the model. The learned model based on the log-normal distribution
demonstrates robustness to these unseen inputs. Therefore, this model is selected for the
experiment in Section #.5.3]

With and without planning range shaping The results show that using planning range
shaping is beneficial in both experiments. The planning range shaping limits unneces-
sary sampling and checking in regions far away from the start and subgoal configuration.
However, this cannot be applied to complex planning problems.

64

4.5 Evaluation

4.5.3 Generalization in Unseen Environments

To verify the model’s ability to generalize to unseen environments, the model trained
on the dataset described in Section [4.3.1]is applied to the environment shown in Figure
|.10l Two UR10e robot arms, marked in gray and pink, share a workspace with two static
obstacles: a cube and a table.

- Current robot pose = Goal Selected Subgoal === Dynamic Obstacle

3

Figure 4.10: Generalization in an unseen environment with two robot arms, marked in
gray and pink. The pink robot is the dynamic part of the environment. The
generated iteratively lead the gray robot to the final goal.

In this setup, the pink robot strictly follows pre-defined trajectories and does not adapt to
changes in the workspace. It serves as a dynamic part of the environment. The gray robot
conducts goal-reaching tasks, assuming that the final goal configuration of the upstream
manipulation task is given. Rather than planning directly to the final goal, subgoals are
iteratively generated, and an RRTConnect planner plans a solution to each subgoal based
on the current state of the environment. An online trajectory generator [126] converts the
solution to the executable trajectory. Subgoal generation and planning are repeated at 20
Hz until the robot reaches the desired goal. For each iteration, 16 subgoal candidates are
generated, and the log-normal time estimator and the goal-oriented strategy are used for
the selection. The choice of subgoal selection strategy is an informed decision based on
the results reported in f.2] Compared with randomly selecting subgoals, this selection
strategy yields less noisy motion.

Six snapshots of a rollout are shown in Figure #.10]in chronological order. The snapshot
labeled with "1" presents the initial setup. The first subgoal chosen generally steers the
G-robot’s end-effector toward its base link, as it appears to be the shortest path to reach
the goal when the P-robot is still at a considerable distance. In snapshot "2", the model
predicts a subgoal close to the final goal region right away. As the P-robot approaches

65

4 Planning with Learned Subgoals

the center of the table in snapshot "3", the newly generated subgoal directs the G-robot to
elevate to avoid a collision. Finally, it maneuvers over the P-robot and reaches the final
goal region.

Q4.3 Can the learned model generalize to unseen scenarios?

A4.3 The model managed to avoid the moving robot in the workspace and reach
the goal, although it is solely trained on the dataset with cubic static ob-
jects. The capability of generalization is attributed to the representation of
the scene using point clouds.

4.6 Limitations and Discussions

The proposed method aims to generate subgoals that not only guide the robot toward
its ultimate goal but also can be planned from the current robot configuration within the
desired time period. Existing generative models that use only spatial information are
extended by integrating temporal information to select appropriate subgoals from a batch
of candidates. Although experiments show that the proposed method can achieve shorter
planning time for both subgoals and the accumulated path, several limitations need to be
addressed.

The first limitation is that the proposed method takes only the current state of the environ-
ment as input and neglects the history of the states. Neglecting the history of the states
implies that the learned policy is not able to predict how the environment evolves in the
upcoming time steps, making the predicted subgoals highly time-sensitive. This limitation
comes from the dataset and the model architecture. Theoretically, episodic reinforcement
learning or sequential models may be well-suited to solving this problem. This limitation
is addressed in Chapter [5using episodic reinforcement learning.

The second limitation is that the time estimator serves only as a critic. Ideally, the desired
time constraints can be used as the condition of the generative model, and the time esti-
mator can be used as a score functiorﬁ whose gradients guide the subgoal candidates to
the region where the time constraints are not violated. Therefore, replacing the generative
model architecture and the time estimator with a diffusion-based method [21]] is a viable
option.

2The concept of score function is introduced in denoising diffusion probabilistic models [49].

66

5 Learning Motion Refinements for
Spatiotemporal Awareness

Previous chapters introduced two methods, HIRO and PLS, that aim to reduce the com-
putational time of a single planning process while keeping it bounded. The result is a
collision-free, feasible path given the current state of the environment. However, these
two methods consider only the current geometric state of the environment and neglect
the temporal aspect. In this context, the femporal aspect refers to how the environment
evolves along the time horizon. These two methods are categorized as geometric planning
methods. In dynamic environments, geometric planning methods must constantly repeat
the planning pipeline until the robot reaches the final goal. Due to their short-sightedness
over the time horizon, they often become stuck in undesired local minima, for example,
when avoiding obstacles by moving the robot along with them. This chapter investigates
how to adapt the pre-planned solution, e.g., from HIRO and PLS, and gain foresight along
the time horizon. The research question is formulated as

How can planned solutions be adjusted to
changes in the environment along the time horizon?

To take into account the environment factor along the time horizon, a simple option is
to extend the geometric planning problem with an additional time horizon and form a
planning problem in RN *! space [44, [153]], where N denotes the DoFs of the system,
and 1 indicates the additional temporal dimension. This option assumes that full knowl-
edge of the environment over the time horizon is accessible and explicitly considers this
knowledge. However, these methods suffer from extremely long planning times of tens
of seconds [44], and the assumption of full environment knowledge is not reasonable in
many cases. Another important perspective is that robots cannot only avoid but also in-
teract with the environment in dynamic environments, such as catching a flying object.
In this scenario, there are infinitely many possible goal configurations over the time hori-
zon. Due to the undetermined goal selection, these methods are unsuitable for dynamic
environments.

On the other hand, episodic reinforcement learning (ERL) methods treat planning prob-
lems as black-box optimization problems and implicitly encode how environments evolve
in the policy. Given the initial observations, the ERL methods generate full trajectories
that account for possible environmental changes and interactions over the horizon. This
assumes that environments do not evolve completely stochastically and instead follow
specific rules; for example, a flying tennis ball follows roughly a parabolic trajectory.
This assumption is also valid in the real world. Generating a full trajectory requires the
methods to understand the environment’s dynamics and anticipate its states while inter-
acting with it, especially for contact-rich tasks. When the system dynamics have evolved
differently from the encoded anticipation, e.g., new objects enter the environment, the

67

5 Learning Motion Refinements for Spatiotemporal Awareness

policy can be triggered to adapt to the new observation [118]]. This is particularly help-
ful for long-horizon tasks or for environments whose dynamics are difficult to distill. A
typical example is multiple robots collaborating on the same task, where each robot is a
moving object, and the environment changes continuously as the task progresses.

Usually, ERL methods use a single Gaussian to represent a policy, with a fixed number
of movement-primitive bases. The learned policy may be insufficiently expressive for
certain complex scenarios, even when these scenarios are part of the task-context distri-
bution. Combining ERL with the planning methods proposed in the previous chapters is
a good solution to address this problem. While these two geometric planning methods
do not account for potential environmental changes over time, their solutions provide a
good prior for ERL methods. Using these solutions as reference trajectories, the ERL
methods need only account for potential environmental changes and refine the trajectories
accordingly.

Compared to solely using ERL without references, two key advantages are that (a) it
reduces the complexity of learning, thereby improving sample efficiency, and (b) it pre-
serves dexterous robot behaviors that are challenging to learn from scratch. Furthermore,
the inference, i. e., a forward pass of the neural network, takes a deterministic computation
time, which ensures that the algorithm can rapidly respond in a dynamic environment.

\"

Task Context

\“

Execute Reference Traj.

Reference Trajectory

Residual

e ERL Policy I_'
) 40

\..

New Obstacle

AU

Execute Fixed Traj.

o —>
[wT7 aT]T -~ N(l"7 2) _[W = Fix Reference Traj.

Figure 5.1: Illustration of the MoRe-ERL pipeline. The robot follows the reference tra-
jectory provided by a motion generator, with the executed segment shown in
and the remainder in =, based on the task context. When the task context
changes, such as the appearance of new obstacles, MoRe-ERL identifies crit-
ical segments on the remaining reference trajectory (-) using learned parame-
ters & = [a,,] T and parameterize residuals f(w) for the selected segments
using B-spline-based movement primitives. The adjusted trajectory, after ap-
plying these residuals, is shown by the solid blue-green curve (=).

In this chapter, to answer the research question above, a general framework for Motion
Residuals using ERL (MoRe-ERL) is proposed to generate motion residuals to refine
previously planned task-related reference trajectories. This framework can seamlessly
plug into arbitrary ERL methods and motion generators, such as HIRO and PLS, intro-
duced in the previous chapters. Given a reference trajectory from these motion generators,
MoRe-ERL learns residuals and refines the reference into safe, feasible, and efficient task-
specific trajectories while implicitly accounting for system dynamics. As shown in Figure
5.1 MoRe-ERL (1) identifies the trajectory segments that require modification while pre-

68

5.1 Preliminaries

serving critical task-related behaviors, and then (2) it generates trajectory refinements for
these segments using B-Spline-based movement primitives to ensure smooth transitions.

Three refinement strategies are investigated, and their performance is evaluated in multi-
ple simulation tasks. The segment identification and the trajectory refinements are jointly
learned as a correlated policy. Having the reference trajectory as prior knowledge, MoRe-
ERL significantly outperforms training from scratch using ERL methods, achieving supe-
rior sample efficiency and task performance. The main contributions are

e The first RL algorithm that combines ERL and residual learning to refine refer-
ence trajectories, offering spatiotemporal awareness and achieving superior sample
efficiency and task performance.

* An end-to-end policy that identifies the segments of reference trajectories needing
modification and parameterizes movement primitives as residuals.

* Three trajectory refinement strategies using B-spline-based movement primitives,
which enforce smooth transitions between the reference and the fixed trajectories.

In the remainder of this chapter, Section[5.I]introduces the preliminaries, including episodic
reinforcement learning and B-spline-based movement primitives; Section [5.2] defines the
problem formally; Section 5.3 describes how motion refinements are learned using ERL;
and Section[5.4]shows the experimental results and ablation studies in simulations as well
as in the real world.

5.1 Preliminaries

5.1.1 Episodic Reinforcement Learning

Episodic Reinforcement Learning (ERL), see [[174] and [82], predicts an entire sequence
of actions to accomplish a task by optimizing cumulative rewards without explicitly mod-
eling detailed state transitions within an episode. ERL methods usually predict a weight
vector w, given the task context. This weight vector is then used to parameterize a com-
plete trajectory q(t) = f(w) for q(t) € RY and ¢ € [0,T], where N corresponds to the
dimensionality of the trajectory space, such as the DoFs in a robotic system, 7’ represents
the trajectory duration, and f(-) indicates a generic function for trajectory parameteriza-
tion using a motion generator. The predicted trajectory can be directly utilized as per-step
actions or as input to a trajectory tracking controller for computing lower-level motor
commands. Given the initial state so ~ p(sg) specifying the starting configuration and
task context, the goal of ERL is to find a weight vector w that maximizes the return
R(so, f(w)) after executing the trajectory q(t) = f(w). The ERL learning objective is
generally expressed as:

J = Ep(se),me(wlso) [R(80, f(w)) — Vi(s0)] , (5.1)

where 7y denotes the policy parameterized by 6, often implemented using a neural net-
work. The return R(sg, f(w)) = 3.,_, 7'r, is the cumulative reward obtained by follow-
ing the trajectory, where -y is the discount factor, and r; is the reward at time step ¢. The
term V(s() represents a value estimator of the state s, parameterized by ¢, and acts as a
baseline to stabilize training [[160]].

69

5 Learning Motion Refinements for Spatiotemporal Awareness

Compared to traditional step-based RL (SRL) methods like PPO [148]], ERL shifts the
solution search from the per-step action space A to a parameterized trajectory space W,
predicting trajectory parameters as 7(w|s). This often facilitates broader exploration and
results in smooth, correlated motion trajectories [99]]. Additionally, the learning objective
in Eq. (5.1)) relaxes the requirement for Markovian rewards [160], which enforces that the
reward 7, at a given time step ¢ depends only on the current state s, and action a;. Step-
based RL methods such as SAC [45] rely on temporal difference (TD) learning. This
requires Markovian rewards to assign value credits to per-step actions and states prop-
erly. In contrast, ERL assigns task credit to the entire trajectory episode parameterized
by w by aggregating per-step rewards. This removes the requirement for rewards to be
Markovian, allowing for the use of delayed or history-dependent rewards, referred to as
non-Markovian rewards [160]. Intuitively, non-Markovian rewards offer greater flexibil-
ity and simplicity in task design [[117], as they rely on fewer assumptions compared to
their Markovian counterparts.

Usually, ERL methods use MPs as the motion generator. MPs can encapsulate trajectories
from a lower-dimensional parameter space, thereby reducing the problem complexity.

5.1.2 Using Movement Primitives in ERL

Parameterizing trajectories using MPs [144, 1121} 98] is central to ERL methods. This sec-
tion first describes Probabilistic Movement Primitives (ProMPs) and then introduces B-
spline-based movement primitives (BMPs) using the same formalism as ProMPs. ProMPs
[121]] represent a trajectory g(t¢) using a linear basis function:

alt) = flw) = ®() Tw = () w, (5.2)

where u = t/T € [0, 1] denotes the normalized time, also called the phase variable. The
term ®(u) = [®;(u), Pa(u), ..., Py, (u)] " represents N, basis functions for each dimen-
sion in the trajectory space, evaluated at u. The weight vector w = [wy, wy, ..., wy,] "
controls the trajectory shape by scaling the basis functions. Typically, a neural network is
used to predict the mean p,, and covariance matrix 32, and the weight vector is sampled
from the distribution w ~ N (w|pw, X4). For non-periodic trajectories, ProMPs often
utilize radial basis functions (RBF) as the basis functions, with their centers uniformly
distributed in the phase space [0, 1].

ProMPs are advantageous due to their simple linear representation, which enables fast
computation and probabilistic modeling (see [[121] for details). However, ProMPs lack
mathematical support for enforcing specific boundary conditions at the trajectory’s start
and end points. This limitation restricts their ability to generate new trajectories that
seamlessly transition from an existing one. However, this is a critical requirement for real-
world scenarios where frequent trajectory switching is necessary. Recent works (78}, [102]]
address these inherent limitations by replacing the RBF functions in ProMPs with B-
splines. The resulting model, B-spline-based movement primitives (BMPs), retains the
linear basis function representation of ProMPs while supporting an arbitrary number and
order of trajectory transition conditions. Mathematically, these conditions are known as
boundary conditions.

Definition of BMP. The basis functions of BMP, ' (u) = [(u), @5 (u), ..., X, (u)]",
are defined as P-th order polynomial functions, where 0 < P < N,. These basis functions

70

5.1 Preliminaries

g 1-)
2 —_— D
DS 0.8- — 2
=] o . 0)
2 [o} Type Condition zui =?
»n 0.6 - v
E o4 Position u-io) = q(to) wiu)
'E ’ Velocity u'gl) = q(to) %(wgn - w}“))
=5 0.2-
: § Acceleration urgz) = G(to) %{U(wgn) - 2u‘g’) + wﬁn))
0 ‘ 0 ‘ ‘ ‘
0 02 04 06 08 1 (] Uy U2 u3 Uy
X 4 (c) Mapping between boundary
(a) B-Spline in 2D (b) Basis functions conditions and control points

Figure 5.2: Illustration of BMPs: (a) A clamped B-spline curve in 2D parameterized with
six control points. (b) Basis function of different orders using a recursive for-
mulation, where ®} denotes the basis function of p'* order for the 0* control
point. The knots u represent the change of time. (c) Mapping between bound-
ary conditions and control points at ¢,. Boundary conditions are defined by
aligning the the control point wy), i =0, 1, 2 to given initial position ¢(ty), ve-
locity ¢(ty) and acceleration ¢(t,) conditions, respectively. The higher-order

control point w%z) can be represented using the 0-th order control points.

are constructed over M definition intervals, equally divided by M —+ 1 knots uy, ..., uas,
with vy = 0 and uy; = 1. Typically, M = N, + P [131] and the intervals between two
adjacent knots have the same length J. In B-splines, the weights w are also interpreted
as control points, which define a convex hull that bounds the trajectory, see Figure
Each basis function ®7, where n € [1, N,], is defined recursively from order 0 to order P
[131]. To illustrate this recursive process, we denote intermediate orders with the index p,
where p € [0, P]. For p = 0, the basis functions are piecewise constant:

1 ifu, §Ou<un+1, (5.3)
0 otherwise.

For p > 0, each basis function ®?(u) is computed by interpolating between two cor-
responding lower-order basis functions, ®?~!(u) and @ﬁjrll (u), using coefficients j, and
Jn+1, rESpectively:

O (u) = jin P (u) + Gnpr P07 (w). (5.4)
Jn =" 1 = et (5.5)
D po

By recursively['] applying Eq. (5.4) until order P, the P-th order basis function is ob-
tained, see Figure[5.2b] By substituting the resulting BMP basis functions into Eq. (5.2)),
the trajectory of BMP can be computed using the linear basis function representation of
ProMPs.

Derivative of B-Splines. It is worth noting that the ¢-th order derivative of a P-th order
B-spline remains a (P — ¢)-th order B-spline:

q®? (t) = @P_i(u)Tw(i), (5.6)

"For illustrative visualization of this recursive process and more details, please refer to literature [102].

71

5 Learning Motion Refinements for Spatiotemporal Awareness

where w) = | Y), e w](\l}l)y_i]T represents the control points of the B-spline’s derivatives.

These control points are computed recursively:

P—i .. 4
Tl —), 5.7)

n

(1) —
wy, 3

Enforcing boundary conditions of arbitrary orders. To ensure the trajectory passes
through given starting and ending positions, BMP employs clamped B-splines [[131]] where
the trajectory goes through the first and the last control points. Thus, we directly align
these two control points with the given position values. Similarly, control points derived
from Eq. (5.6) and enforce higher-order conditions, such as velocity and acceler-
ation. The mapping between boundary conditions at ¢y and the corresponding control
points is summarized in Table Boundary conditions at the end follow similar map-

pings.

5.2 Problem Description

Consider a task context ¢, and a robot trajectory g, o.r = {0, - - ., g7} is generated to
solve this task. The task context describes how the problem is defined. This terminology
follows the convention in episodic reinforcement learning literature [117, [118], and can
be extended to include various objectiveﬂ For a point-to-point motion planning problem,
the task context is defined by ¢y = {qo, g,, S}, where g, and g, denote the current and
goal robot joint configuration, respectively, and S represents the surrounding dynamic
environment.

As the task context changes to ¢, at time 7 € (0, T, the method proposed in this chapter
aims to find a policy that generates trajectory-level refinements, Aq,.r, based on the cur-
rent context ¢, and original robot trajectory g, ..r. A state encoder s(-) is used to encode
¢, and g, .7 into a state vector s, = s(¢;, g, ..r). Following Section an ERL prob-
lem is formulated to optimize the policy distribution 7(w|s,) by maximizing the expected
roll-out return R(s,, f(w)) of an episode using the following objective function

J = Eps,)moulsr) [F(8r, f(w)) — Vi(s:)], (5.8)

where the vector w determines the start and the end of the residual action as well as the
parameterization of the action sequence using BMPs. While MoRe-ERL adopts BBRL
[117] for the optimization, the framework is modular enough to plug in any other ERL
algorithm.

5.3 Learning Residuals for Reference Trajectories

Reference trajectories contain extensive information for completing the given tasks and
can be accessed from various sources, such as optimization-based motion planning, sampling-
based motion planning, or other learned policies. This information serves as a valuable
prior in two key aspects: (a) it reduces the complexity of learning, thereby improving

For example, reaching the desired goal while interacting with the environment at the same time

72

5.3 Learning Residuals for Reference Trajectories

Joint angle [rad]
Joint angle [rad]
=

N "‘ 0" .\/
\

L2

Full Residual Partial Replacement MoRe-ERL Residual

| ! | ' ! | | ! | ' |
0 20 40 60 80 100 0 20 40 60 80 100
Steps Steps

(a) MoRe-ERL residuals and two variants (b) MoRe-ERL res. (c) Step-based res.

Figure 5.3: Illustration of trajectory refinements using MoRe-ERL. (a) The reference tra-
jectory is shown in green, with bold solid points indicating the timing vari-
ables o and a.. Cyan sections show learned residuals or replacements, and
the solid blue-green curve denotes the adjusted trajectory. Random roll-outs
in (b) and (c) use MoRe-ERL and step-based residual methods. In the demon-
strated case, the trajectory with MoRe-ERL residuals (=) deviates from the
reference trajectory at ovy = 20 and converges back at o, = 70.

sample efficiency, and (b) it preserves dexterous maneuvers that are challenging to learn
from scratch.

When the task context ¢, changes unexpectedly, e. g., the environment did not evolve as
anticipated, we search for a policy that generates trajectory-level refinements Aq,.; based
on the current context ¢, and the reference trajectory q, ..7. The reference trajectory q, .r
can be a partially executed trajectory grounded on the previous context ¢ at time k& with
k < 7. The refinements are applied as residuals directly on the reference trajectory,

qr 17 = qr T + AqT:T‘ (59)

To allow for greater flexibility in modifying the reference trajectory, we introduce two
additional timing variables, oy, o, € [7,T] with oy < a, which denote the start and end
point of refinements, respectively. Using these variables, the refinements at time k € [7, T
are defined as:

(5.10)

Agqy for k € [ag, o]
Aq’r:T - .
0 otherwise.

Figure [5.34) visualizes the refinements described in Eq. (5.9) and (5.10)), termed MoRe-
ERL residuals. The reference trajectory is partially modified by the learned residuals Agqy,
between o and .. These two timing variables are represented by bold solid points.

To ensure continuity and smoothness at s and a, during trajectory switching, we use
BMPs to parameterize the residual. BMPs enforce boundary conditions up to arbitrary
orders. For a residual trajectory Ag,,.., using BMPs with N, control points w;.y, =
[w1, ..., wn,] ", the boundary conditions are set to be 0. This ensures that the position and
velocity of the refined trajectory align with the reference trajectory at o and «., guaran-
teeing continuity and smoothness while the trajectory switches. To be more specific, to
parameterize a residual trajectory Ay,,. .., using IV, control points wy.n, = [wy, ..., w Nb]T
BMPs use wy, wy to enforce the boundary conditions at the start of the refinement and
use wy,_1,wy, at the end. The remaining control points wa.y, 2 = [W3, ..., Wy, 2]
parametrize the transition behavior between a and .. These control points for BMPs
are jointly learned with o and a.. During inference, given the encoded state s, the pol-
icy m(w, a|s;) returns the mean 4., o, and the covariance matrix ¥, ., of a single Gaus-
sian distribution for w = [w,. Ny—25 Qs a.]". Sampling from this Gaussian distribution

b

73

5 Learning Motion Refinements for Spatiotemporal Awareness

(w3, _g: s,] T ~ N (.o, Zw,a) the residual sequence can be expressed as
Aqaslae - Q(—;[S;aewigle—Q? (5.1 1)

Figure [5.3b]illustrates how the MoRe-ERL residual is applied to the reference trajectory,
marked in green. Different from the jerky motions produced by step-based methods in
Figure BMPs ensure smooth transitions between the reference trajectory and the
refinements.

In addition to partially applying residuals, we consider two alternative approaches: fully
applying residuals and partially replacing segments between o and .. These variants
are termed full residual and partial replacement, respectively. The full-residual approach
is a special case of partial residuals with oy = 7 and . = T', applying residuals to the
entire trajectory (Figure[5.3a] left). In contrast, partial replacement modifies the reference
trajectory as:

A f k Sy e
qk:{ qr fork € [as, o] (5.12)

gr, otherwise.

When parameterizing trajectories with BMPs in partial replacement, boundary conditions
are set to match the position and velocity of the reference trajectory at a; and a, (see
Figure middle). Full replacement is excluded from consideration, as it would require
learning the trajectory from scratch. Table[S.1|shows the difference among these variants.

Among MoRe-ERL residuals and these two variants, MoRe-ERL residuals demonstrate
the best overall performance across various scenarios. Learning residuals leverages prior
knowledge embedded in reference trajectories, preserving critical maneuvers and enhanc-
ing task completion. The identification of o, and «, helps retain essential behaviors.
Further details are provided in Section

Type Learned Parameters How to Refine
Full Residual w Residuals on top of the reference
Partial Replacement gy Qg W Replace the reference
MoRe-ERL Residual g, O, W Residuals on top of the reference

Table 5.1: Difference between MoRe-ERL residuals and the variants.

5.4 Evaluation

Three simulation experiments in MuJoCo [163] and an experiment with real-world hard-
ware are designed to answer the following questions:

74

5.4 Evaluation

Q5.1 What benefits does MoRe-ERL have compared to sampling-based methods?
Q5.2 What benefits does MoRe-ERL have compared to other RL methods?
Q5.3 What are the benefits of spatiotemporal awareness?

Q5.4 Can the learned policy be directly deployed in the real world?

In simulation scenarios, we compare MoRe-ERL with baseline methods, including sampling-
based motion planning, episode-based RL, and step-based RL methods. While the episode-
based methods work perfectly with non-Markovian rewards, the step-based methods per-
form poorly in such settings [[117]. For an unfriendly comparison against our method, we
shape a Markovian reward based on the performance of step-based methods and evaluate
MoRe-ERL on both Markovian and non-Markovian rewards. The Markovian return of an
episode with 7, steps summarizes rewards from each step with a discount factor ~y

R]V[(’lU, ST) = Z ’Yt_T(ﬁcrc,t + /Bgrg,t + Blrlﬂf)’ (513)
t=1

where 7., 74, and 7, indicate the reward terms at ¢ regarding collision, task complete-
ness, and joint limit violation, respectively. The collision reward is assigned r.; = —1
when a collision occurs. The joint limits reward 7; ; is computed using the L2-norm. The
task completeness reward r ; is described separately in each scenario. These reward terms
are weighted by corresponding coefficients ;). The non-Markovian return Ry (w, s;)
does not collect rewards regarding collision and goal reaching at every step, but only at
the end of the episode

Ry (w, s:) = Bere + Byrg +6) 7 i (5.14)
—~— t=r

Non—Markovian

This setting links the reward closer to the definition of success and avoids potential reward
hacking. The results of simulation scenarios show that MoRe-ERL with non-Markovian
rewards achieved significantly higher performance than baselines, see Table [5.2] The
results summarized in Table are collected with a single core on an Intel 19-9900K
CPU.

5.4.1 Evaluation in Simulation
5.4.1.1 Multi-Box Scenario

The multi-box scenario has a UR10e robot mounted on a table, which travels among three
regions separated by two bars to complete arbitrary tasks. At the same time, dynamic
obstacles enter the robot’s working space, see Figure [5.4a The obstacles either move
with constant velocity or follow parabolic paths. Figure [5.5/shows an episode rollout.

In every episode, the initial joint configurations and goal are randomly selected. At the
beginning of the episodes, the obstacles stand still. And then, the obstacles start to move
and enter the workspace asynchronously during the episode. We design the trajectories
of the obstacles to be adversarial to our method so that at least one of them will hit

75

5 Learning Motion Refinements for Spatiotemporal Awareness

(a) Multi-box (b) Dual-arm

Figure 5.4: Simulation experiments in Mujoco. The robot with reduced opacity in sim-
ulation indicates the desired goal position. In the multi-box scenario, green
boxes follow parabolic trajectories, while the red box moves at a constant
velocity. Each box is released at a different timestamp. In the dual-arm sce-
nario, the URS robot moves in the directions shown by the green arrows.

Multi-box Dual-arm
Methods PT [s] Success | PT[s] Success

! 1 ! 1
ST-RRT* 1.0 0.928 5.0 0.392
RRT-Connect 0.609 0.587 4.229 0.204
ERL + DMP 0.092 0.002

oY 0.011 0.010
ERL + DMPs + Residuals 0.584 0.168
BBRL 0.731 0.133
Full Residual .881 .674
ull Residua 0.010 0.88 0.0098 0.67

Partial Replacement 0.812 0.299
MoRe-ERL (ours) 0.889 0.767

Table 5.2: Results of MoRe-ERL and baseline methods in both environments, evaluated
by planning time (PT) and success rate. The arrow | indicates lower is better,
and 1 indicates higher is better. An episode is reported as a success only if
the robot reaches the goal region (radius 0.1) without collisions. The results
of sampling-based methods are averaged over 10 runs with different random
seeds. The results of RL methods are average with 8 random seeds.

the robot if the robot follows the reference trajectory. The episode terminates when the
goal or the pre-defined maximum duration of 3 seconds is reached. For episode-based
methods, the observation includes a) the current robot configurations and velocity, b) the
goal of the robot, and c) the parameters from which the agent can infer the trajectories of
the dynamic obstacles, such as their initial position and velocity, and their end position.
The end positions serve the purpose of distinguishing the parabolic trajectories from the
ones with constant velocity. On the other hand, the step-based methods receive a new
observation every simulation step and return the next joint position as action. The state
for step-based methods additionally includes the current Cartesian position, the velocity
of the boxes, and the current timestamp.

76

5.4 Evaluation

(b) Side view

Figure 5.5: An episode rollout involving two boxes following parabolic trajectories
(green) and one box moving at a constant speed (red). Snapshots from two
perspectives are arranged chronologically from left to right and top to bottom.
The robot with lower opacity represents the reference trajectory.

=== MoRe-ERL —— Partial Replacement — Full Residual — BBRL — PPO — PPO-Res — SAC —— SAC-Res
=
g é 40 - 25-
£ 08- = 08- = s
3 5 < 30- g 2-
< 0.6- Z 06~ g g 5.
= : : :
g 04- = 04- 3 20- >
z i g B
. ; -2 S
£ o02- & 0.2- Z 10- 5 05
L 2 =] z
- g o} A
g 0- S 0- 0-
3 | !] ! ' ! & | ! ' | | | 0- | ' | | | | | ' | | |
2 0O 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25
Environment Interactions (x107) Environment Interactions (x107) Environment Interactions (x 107) Environment Interactions (x107)

Figure 5.6: Learning curves of multi-box experiments. From left to right: (1) Success
rate with non-Markovian reward; (2) Success rate with Markovian reward;
(3) Collision counts; (4) Distance to target. Better results from two reward
settings are shown in (3) and (4).

The residual version of both episode-based and step-based methods must be aware of
the reference on which the residual acts. A representation of the reference is included

77

5 Learning Motion Refinements for Spatiotemporal Awareness

in the observation of the residual methods. We use five intermediate waypoints of the
reference trajectory as the representation for ERL residual methods and the next reference
action for step-based residual methods. The reference trajectories are generated using
a sampling-based motion planner. Note that this approach is agnostic to the choice of
planner, allowing alternative motion generators to be seamlessly integrated.

Sampling-based methods were allocated one second of planning time for each problem
in the R*! space-time state space, with 6 DoFs for robot joints and 1 DoF for time. For
ST-RRT*, the maximum arrival time was set to 3 seconds, while RRTConnect [86] used a
fixed arrival time of 3 seconds due to its inability to handle unknown arrival times. For RL
methods, the Markovian reward uses 3. = 5, 3, = 20 and 3; = 0, and the non-Markovian
reward uses 3. = 10, 3, = 40 and §; = 1.

The learning curves in Figure [5.6] demonstrate that MoRe-ERL achieves higher sample
efficiency and yields comparable or better performance compared to ERL trained from
scratch and step-based residual RL approaches under both Markovian and non-Markovian
reward settings. However, with a sufficient planning budget, ST-RRT* achieves the high-
est success rate of 92.8% in this task. When the planning time budget is reduced to 100 ms,
the success rate of ST-RRT* drops to below 70%. In contrast, MoRe-ERL maintains a sig-
nificantly faster inference time of 10.1 ms while achieving a competitive success rate of
88.9%. Note that the scenarios are initialized to be adversarial to residual methods. ST-
RRT* does not suffer from such a disadvantage, which reduces the task complexity for
ST-RRT*. A common solution is to wait for the boxes to settle and approach the goal.
For a more complicated task where the environment is constantly moving, such as the
dual-arm task, MoRe-ERL significantly outperforms ST-RRT*.

5.4.1.2 Dual-Arm Scenario

The dual-arm scenario involves a URS and a KUKA iiwa 14 robot mounted on a shared
workspace, as shown in Figure [5.4b] The URS follows pre-defined trajectories, acting as
a dynamic part of the environment, while the KUKA iiwa 14 actively avoids collisions
and moves toward the goal pose. Figure shows an episode rollout.

Similar to the multi-box environment, episodes are randomly initialized and terminate
when the goal is reached or the pre-defined maximum duration of 5 seconds elapses. For
step-based methods, the observation includes a) the position and velocity of both robots,
b) the goal of the iiwa robot, and c) the current timestamp. As in Section[5.4.1.1] the step-
based residual method includes the next reference action in the observation, while MoRe-
ERL incorporates five intermediate waypoints from the reference trajectories. Sampling-
based baselines reported in Table [5.2] are given 5 seconds planning time budgets for each
problem in a space-time state space R"*!. The maximum arrival time of ST-RRT* is set to
5 seconds, and RRTConnect has a fixed arrival time. The Markovian reward is weighted
by 3. = 5, B, = 20 and 3 = 0 and the non-Markovian setting is same as Section[5.4.1.1]

In this scenario, MoRe-ERL achieves a 76.7% success rate under the non-Markovian re-
ward, outperforming ST-RRT*, which succeeds in only 39.2% of cases after 5 seconds
of planning. It is worth mentioning that the test cases are randomly generated, and some
of them may not be solvable. To approximate the upper bound of success rate, we in-
creased the planning budget to 120 seconds, where ST-RRT* achieved success in 86% of
the test cases. No significant performance gain is shown if the planning budget increases

78

5.4 Evaluation

(a) Front view

(b) Side view

Figure 5.7: An episode rollout with a URS robot as dynamic environments. Snapshots
from two perspectives are arranged chronologically from left to right and top
to bottom. The robot with lower opacity represents the reference trajectory.

further. Figure [5.8] shows that step-based methods failed to learn reasonable policies in
both Markovian and non-Markovian reward settings, while MoRe-ERL demonstrates su-
perior performance under both reward settings. Two ablation variants of MoRe-ERL, full
residual and partial replacement, report success rates of 67.4% and 29.9% under non-
Markovian reward, respectively. MoRe-ERL'’s superior performance stems from its abil-
ity to identify the interval requiring residual while retaining critical maneuvers, such as
retracting from a shelf. These behaviors are usually difficult to learn from scratch.

79

5 Learning Motion Refinements for Spatiotemporal Awareness

=== MoRe-ERL Partial Replacement — Full Residual BBRL — PPO — PPO-Res — SAC SAC-Res

40 - 15
1//\%&\:
021 ; Z ?—‘&:__
0- 0-
| | | | | | | | | | 0 i i] i | \ | | |
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Environment Interactions (x107) Environment Interactions (x 107) Environment Interactions (x107) Environment Interactions (x 107)

0.8- 0.8~

2 30 -
0.6~ ;

20 -

|

0.4-

Z 10-

Distance to Target, IQM

Success Rate, Markovian, IQM
(=] f=1 [=1
) | |
Collision Counts, IQM

Success Rate, Non-Markovian, IQM

Figure 5.8: Learning curves of the dual-arm experiment. From left to right: (1) Success
rate with non-Markovian reward; (2) Success rate with Markovian reward;
(3) Collision counts; (4) Distance to target. Better results from two reward
settings are shown in (3) and (4).

Q5.1 What benefits does MoRe-ERL have compared to sampling-based methods?

A5.1 Compared to sampling-based methods such as ST-RRT*, MoRe-ERL does
not need full knowledge of how the environment evolves along the time hori-
zon. It can account for potential changes and refine a whole trajectory solely
based on the current state of the environment within a deterministic infer-
ence time of around 10 ms. Moreover, it yields a policy achieving nearly
twice the success rate in the dual-arm experiment.

Q5.2 What benefits does MoRe-ERL have compared to other RL methods?

A5.2 Compared to step-based RL methods, an obvious advantage is that ERL

methods can support non-Markovian rewards and converge to a better pol-
icy. While using a Markovian reward based on the performance of step-
based methods, MoRe-ERL still shows higher success rates.
Compared to other ERL methods, MoRe-ERL can inherit some good priors
from the reference trajectories, such as entering or pulling out of a shelf.
Learning these behaviors from scratch requires more MP bases and interac-
tion samples. This becomes more significant in the dual-arm experiment.

Advantages Compared to Geometric Planning

Three sampling-based planners are deployed in a dynamic environment as baselines to
highlight the advantages of using MoRe-ERL compared to planning solely based on the
current geometric state of the environment. Every planner is given a budget of 1, 2, and 3
seconds. Two receding horizon planning schemes are used: (1) replanning 200 ms earlier
if a predicted collision between the robot and obstacles is detected, and (2) replanning at
a fixed frequency of 20 Hz. Each planning iteration generates a trajectory to the final goal
in both schemes. To simplify the comparison, computation time is ignored throughout the
iterations, which implies that new trajectories can be seamlessly connected to previous
ones, with the environment assumed to remain static during the planning interval. While
this assumption benefits geometric planners, it does not hold in real-world scenarios. In
practice, the planner must complete its computation within 200 ms in the first scheme and
within 50 ms (20 Hz) in the second scheme to remain responsive. The results of the first

80

5.4 Evaluation

scheme are shown in Table [5.3] and Table [5.4] The number of replanning iterations 7.,
the planning time per iteration ¢;;, and the accumulated planning time per problem ¢, are
listed as metrics. The results of planning at fixed frequency are not listed since all three
planners have a zero success rate in the dual-arm scenario.

Methods Budget [s] | nye | tiz [S] | tace [S] | Success
1.0 1.80 | 0.222 | 0.400 0.38
RRT 2.0 1.95 | 0.272 | 0.531 0.395

3.0 2.06 | 0.326 | 0.672 0.385
1.0 2.11 | 0.025 | 0.055 0.563
RRTConnect 2.0 2.05 | 0.035 | 0.097 0.589
3.0 2.07 | 0.048 | 0.072 0.543
1.0 1.92 | 1.031 | 2.026 0.775
AIT* 2.0 191 | 2.049 | 3915 0.770
3.0 201 | 3.072 | 6.176 0.780

Table 5.3: Multi-box scenario with sampling-based planners using a receding horizon
scheme, where the replanning is triggered when a potential collision is de-

tected.
Methods Budget [s] | nye | tit [S] | tace [S] | Success
1.0 1.57 | 0.503 | 0.790 0.040
RRT 2.0 1.65 | 0.909 | 1.495 0.045

3.0 1.80 | 1.268 | 2.282 0.050
1.0 299 | 0.129 | 0.385 0.175
RRTConnect 2.0 3.11 | 0.154 | 0.478 0.225
3.0 3.21 | 0.158 | 0.507 0.180
1.0 2.6 | 1.022 | 2.658 0.270
AIT* 2.0 293 | 2.047 | 6.007 0.345
3.0 2.88 | 3.062 | 8.833 0.380

Table 5.4: Dual-arm scenario with sampling-based planners using a receding horizon
scheme that the replanning is triggered when a potential collision is detected.

Three baseline methods, i. e., RRT[182]], RRTConnect[86]] and AIT*[157]], are used as the
geometric planner to form the comparison. Note that the planning is conducted in R,
while the planning in Table [5.2|is performed in the spatiotemporal space RV 1. Among
these planners, AIT* has achieved the highest success rate in both scenarios, yet worse
than the performance of MoRe-ERL. In the dual-arm scenario, MoRe-ERL successfully
completed twice as many test cases. It is worth mentioning that the scene was frozen for
RRT, RRTConnect, and AIT* during the planning for simplification purposes. Without
this simplification, the fastest planner among these three, RRTConnect, demonstrates an
average planning time of about 150 ms, which is not enough for dynamic environments.
Comparing the results of geometric planners in Table and Table to the planners
with spatiotemporal awareness in Table[5.2] such as MoRe-ERL and ST-RRT*, geometric
planners generally demonstrate a worse performance.

81

5 Learning Motion Refinements for Spatiotemporal Awareness

Q5.3 What are the benefits of spatiotemporal awareness?

A5.3 MoRe-ERL achieved higher task performance compared to the geometric
planners, which only consider the current geometric state of the environment
and need to constantly replan at runtime.

5.4.2 Ablation Study

Ablation studies regarding different trajectory refinement strategies and trajectory encod-
ing methods are conducted.

Trajectory refinement strategies Ablation studies on different trajectory refinement strate-
gies, i. e., Full Residual and Partial Replacement, described in Section [5.3] are conducted
on both simulation environments. These two strategies are illustrated in Figure Full
Residual involves adding residual signals to the entire reference trajectory without learn-
ing the start ag and end «, points. Partial Replacement refers to replacing the reference
trajectory segment between o and a, with the trajectory generated by BMPs. The re-
sults in Figure [5.6| demonstrate that full residual achieves comparable performance with
slightly better sample efficiency than MoRe-ERL in the multi-box task. This behavior
can be attributed to the fact that full residual is a special case of MoRe-ERL with oy = 7
and a, = T, leading to reduced search space dimension. However, in scenarios that re-
quire dexterous maneuvers, such as a dual-arm environment, MoRe-ERL residuals show
clear advantages in both convergence speed and final performance, demonstrating the im-
portance of identifying the interval requiring residual while retaining critical maneuvers.
Meanwhile, partial replacement underperforms in both tasks compared to the other two
variants, highlighting the effectiveness of learning motion residuals.

Movement Primitives. Prior work [[124] has modeled obstacles in the task space using
potential fields, which are explicitly incorporated into the DMP formulation as coupling
terms. However, these methods are limited to simple obstacle geometries, such as a single
moving sphere, and therefore do not scale to our experimental setup, which involves com-
plex static and dynamic structures like bookshelves and moving robot arms. To demon-
strate the benefits of BMPs, we replace them with DMPs in both the learning-from-scratch
(ERL + DMPs) and residual settings. Table[5.2]shows that BMPs consistently outperform
DMPs, as DMPs achieve high collision-free rates but often fail to reach the goal.

Encoding reference trajectory The reference trajectories can be encoded as input using
different methods, such as intermediate waypoints, transformer-based encoder [[173]], and
weight vector w of BMPs. With an extensive exploration of the architectural design of
transformers, their performance is yet lower than simply using waypoints. Results are
shown in Table [5.5] A possible reason is that training in such architecture requires more
data, which reduces the sample efficiency.

Waypoints Transformer BMP weights vector
Success 0.889 0.78 0.68

Table 5.5: Success rate of different trajectory representations in the multi-box scenario.

82

5.4 Evaluation

5.4.3 Evaluation in Robot Experiment

(a) Front view (b) Overview

Figure 5.9: Robot experiment setup. MoRe-ERL applies residuals to adjust the trajec-
tory == of a KUKA iiwa robot into a safe and feasible motion =, effectively
avoiding the moving URS robot. Snapshots of the KUKA iiwa executing the
adjusted motion are outlined in green, while the red marker highlights the
frame on the reference trajectory where the robots would have collided.

The hardware setup aligns with the dual-arm experiment in the simulation, with modifica-
tions for real-world calibration between two robots. Figure[5.9provides two distinct views
of the setup. Initially, the policy is trained in simulation using the procedure outlined in
Section [5.4.1.2] achieving a success rate of approximately 95%. The trained policy is
subsequently deployed on real-world hardware. Episodes are designed such that the goal
of the current episode becomes the starting point of the next, allowing for seamless se-
quential rollouts. Applying the policy to the real world faces many challenges, especially
for an end-to-end policy. The biggest problem during the real-world experiment is the
path-following problem. This involves kinematic limits, i.e., joint position, velocity, and
acceleration limits. During the training, the policy gets penalized if the resulting trajec-
tory violates the joint limit constraints. This setting makes room for the policy to generate
trajectories that are very close to the joint limits but do not violate them. These kinds of
trajectories are prone to being rejected by the low-level controller of the real robots. The
second problem is the real-world calibration. The relative position between the robots and
objects in the real world cannot perfectly match the one in the simulation. This requires
the learned policy to handle such uncertainty. Overall, two out of 80 trajectories in the
real-world experiment are close to the joint limits El

Q5.4 Can the learned policy be directly deployed in the real world?

A5.4 The policy learned by MoRe-ERL has a strong capability in transferring from
simulation to the real world. However, constraints such as joint limits and
uncertainties due to the mismatches in the environments should be further
addressed.

3Recorded episode sequences see https://youtu.be/J9-r5mibG50,

83

https://youtu.be/J9-r5mibG5o

5 Learning Motion Refinements for Spatiotemporal Awareness

Figure 5.10: Rollout with robots in the real world. Snapshots are arranged chronolog-
ically from left to right and top to bottom. To avoid the URS robot, the
KUKA iiwa has to first move away from its initial position (first row), and
then it is able to reach the final goal (bottom right).

5.5 Limitations and Discussions

MoRe-ERL is the first residual learning method tailored for episodic reinforcement learn-
ing, which can be built on top of any method within the ERL category. By identifying
the crucial intervals within the reference trajectory and applying residual learning to these
segments, MoRe-ERL enhances both learning efficiency and task performance compared
to learning from scratch. With the spatiotemporal awareness implicitly encoded in the
policy, the trajectories refined by MoRe-ERL demonstrate a significant improvement in
dynamic environments with a deterministic bounded computation time.

Despite the enhanced sample efficiency and task performance, several assumptions are
made. The first one is that the reference trajectories are good priors. While this is usu-
ally true, the performance of the proposed method strongly relies on the quality of the
reference trajectory. The current approach lacks the capability to deny the reference tra-
jectory and choose a better one. The second assumption is an episode’s finite horizon. The
real world can be seen as an open-ended system with an infinite horizon. This mismatch
makes the proposed method unsuitable in some cases, such as long-horizon planning. This
is also a common problem of episodic reinforcement learning. The third limitation is the
representation of the reference trajectory.

In the future, the following aspects can be explored: (a) more flexible modifications of
reference trajectories, such as compressing, stretching specific segments, or completely
rejecting the whole trajectory; (b) extending methods such as [118] to automatically iden-
tify triggers for replanning, and extending the formalism of ERL to support an undefined
horizon length. (c) leveraging sequence encoding techniques for improved representation
of both the reference and the environment [156]]. These directions promise to further
expand the versatility and effectiveness of MoRe-ERL in addressing complex reinforce-
ment learning challenges.

84

6 Conclusion and Future Work

This thesis investigated the problem of robot motion planning using a manipulator in dy-
namic environments. Planning in dynamic environments requires the algorithm to respond
rapidly and be aware of the current state of the robot as well as how the environment
evolves along the time horizon. These requirements form the following difficulties for
the traditional motion planning methods, especially for sampling-based motion planning
methods:

* First, the computation time for traditional motion planning methods ranges from
hundreds of milliseconds to several seconds. The scale and variation in planning
time make these planners unsuitable for online scenarios in dynamic environments.

* Second, even with a systematic and significant speedup, computation time naturally
increases with problem complexity and eventually exceeds the threshold for online
planning.

 Third, planning usually focuses only on the spatial aspect of the environment, show-
ing a lack of awareness regarding potential changes in the environment over time.

In this thesis, these challenges are addressed by three standalone modules. These modules
can be effectively combined to achieve further enhancements. In the following, Section
summarizes the research questions and the contributions of each module, while Sec-
tion [6.2| outlines potential research directions for extending the contributions made in this
thesis.

6.1 Conclusion

Three research questions have been formulated to address the challenges mentioned above.
Thorough literature research reveals that most existing motion planning methods are not
capable of performing online motion planning in dynamic environments. This leads to the
formulation of the first research question, which aims to address the challenge of acceler-
ating motion planning, specifically focusing on the large number of collision checks that
are often required. While this is a common problem for motion planning methods, the
first contribution focuses solely on sampling-based methods and consists of two compo-
nents. The first component introduces a concept of heuristics-informed search based on
a precomputed probabilistic roadmap. It significantly reduces the amount of exploration,
leading to fewer edge examinations. The second component analyzes the spatial relation
between the robot and obstacles and introduces the concept of safe zones. Safe zones
outline the region surrounding a joint configuration that is surely collision-free. Conse-
quently, the number of collision checks is further reduced by omitting these checks within
safe zones during edge examinations. As a result, the proposed method, HIRO, achieved
a sevenfold speedup in the most complex test environments in the evaluation.

85

6 Conclusion and Future Work

A clear trend observed when evaluating HIRO is that the computation time increases with
the complexity of the problems. To address this issue, the second research question is for-
mulated to propose a new approach for planning in dynamic environments, termed PLS.
PLS generates subgoals to decompose complex problems into small, manageable ones.
The contribution to this research question includes a comprehensive pipeline for collect-
ing datasets for subgoal learning, a generative model that captures the subgoal distribution
in complex planning problems, and a critic module that selects subgoals based on various
metrics. As aresult, the proposed method can achieve the goal by sequentially planning to
subgoals in 90% of test cases while keeping the planning time below 50 ms. When HIRO
is integrated, the planning time can be theoretically further improved.

The last research question focuses on refining the planned reference trajectories to raise
awareness of the system dynamics. Being aware of how the system evolves beforehand
can improve the task success rates and reduce the need for constant replanning. The refer-
ence trajectories can be provided by HIRO or PLS. The contribution to this research ques-
tion is a trajectory-refinement method based on episodic reinforcement learning (ERL)
and B-spline movement primitives. The formalism of ERL ensures that the system dynam-
ics are implicitly encoded in the policy without explicitly modeling it, and the B-spline
enables a smooth transition while refining the trajectories. The learned policy can identify
the segments of the reference trajectory that require refinements while preserving critical
task-specific behaviors. Compared to geometric planning methods, this method achieves
up to twice the task success rate while keeping a short computation time. This method
accounts for the current robot state and potential environmental changes over time and
has a deterministic inference time, fulfilling all three requirements listed at the beginning
of this thesis.

In summary, the research carried out in this thesis led to three key contributions to the
field of planning in dynamic environments:

* Contribution 1: Speeding up geometric motion planning methods

This contribution describes a method consisting of (1) an offline step computing
a deterministic roadmap regarding the static environment and (2) an online step
conducting a heuristic-informed search over the precomputed roadmap. The deter-
ministic roadmap must only be computed once for a static environment and saved
locally. The heuristic-informed search prioritizes the edge with a good chance of
being in the final solution and uses a novel concept of safe zones to examine their
validity.

* Contribution 2: Planning to geometric subgoals for bounded planning time
In this contribution, a generation module is trained to capture the subgoal distribu-
tion conditioned on the final robot goal pose, current robot state, and the current
state of the environment. Sampling from the learned distribution, a critic module
is designed to evaluate and select the generated samples from the generation mod-
ule according to various metrics. Contribution 1 can be used as a planner here for
further improvement.

* Contribution 3: Trajectory refinements accounting for spatiotemporal envi-
ronment variations
The proposed online trajectory refinement method combines sampling-based mo-
tion planning and episodic residual reinforcement learning. It can be built on top
of any method within the ERL category. Identifying the crucial intervals within
the reference trajectory and applying residual learning to these segments enhances

86

6.2 Future Research Directions

learning efficiency and task performance. It can be easily connected to Contribution
1 and Contribution 2 by using their planning outcomes as reference trajectories.

With these three contributions, the requirements for robot motion planning mentioned at
the very beginning of this thesis are addressed.

6.2 Future Research Directions

The limitations of each contribution are fully discussed at the end of each chapter. At
a high level, this thesis addressed the online motion planning problem mainly from two
aspects: short and bounded motion planning time and spatiotemporal awareness. With the
rise of task complexity and diversity, enabling a robot to operate flawlessly in a cluttered
and dynamic environment requires more than these two aspects. The following lists two
potential future research directions for robot motion planning in dynamic environments.

6.2.1 Interacting with Environments

Interacting with our environment is a common aspect of daily life. However, sampling-
based motion planning methods, along with those proposed in this thesis, are designed
solely to compute a trajectory that guides a robot from one pose to another without inten-
tionally interacting with the environment. This limitation restricts the range of applica-
tions for these methods.

Contribution 3 demonstrates that combining reinforcement learning with trajectories orig-
inally computed for static environments can enhance both the success rate of task execu-
tion and sampling efficiency. While the scenarios evaluated in this contribution focus on
point-to-point robot movements, the algorithm can be adapted to more complex situations
that involve interactions with the environment, such as catching a flying ball or picking
up a parcel from a conveyor belt. Additionally, various trajectory refinement techniques
can be explored, including accelerating, holding, and even discarding the reference tra-
jectories. It is important to note that the proposed methods utilize state-based inputs.
Considering raw sensor data as input to address uncertainties may offer a more effective
approach.

6.2.2 Explainable Safety Guarantees

Explainable behaviors are crucial when machine learning methods come into play [4]].
When deploying a robot into a cluttered, dynamic environment, such as a warehouse, it
shares the workspace with multiple human or robotic agents. In this scenario, its behavior
is expected to be predictable, explainable, traceable, and safe, especially when an error
occurs.

Contributions 1 and 2 use a spatial planner to compute the solution, indicating that the
resulting solution is surely collision-free with respect to the state of the environment while
the planning is triggered. However, reinforcement learning is used in Contribution 3,
where the exploration of the policy is reward-guided and not controlled. Considering
explainable reinforcement learning [9] and making the policy explainable and providing

87

6 Conclusion and Future Work

safety guarantees is a step forward to deploying the proposed algorithms to real-world
applications.

88

Bibliography

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

[9]

[10]

Abbas Abdolmaleki, Rudolf Lioutikov, Jan R Peters, Nuno Lau, Luis Pualo Reis,
and Gerhard Neumann. Model-based relative entropy stochastic search. Advances
in Neural Information Processing Systems, 28, 2015.

Abbas Abdolmaleki, Bob Price, Nuno Lau, Luis Paulo Reis, and Gerhard Neu-
mann. Contextual covariance matrix adaptation evolutionary strategies. In Inter-
national Joint Conferences on Artificial Intelligence Organization (IJCAI), 2017.

Tomoki Ando, Hiroto lino, Hiroki Mori, Ryota Torishima, Kuniyuki Takahashi,
Shoichiro Yamaguchi, Daisuke Okanohara, and Tetsuya Ogata. Learning-based
collision-free planning on arbitrary optimization criteria in the latent space through
cGANSs. Advanced Robotics, 37(10):621-633, 2023.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, and others. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible Al. Infor-
mation Fusion, 58:82—-115, 2020.

Tamim Asfour, Mirko Waechter, Lukas Kaul, Samuel Rader, Pascal Weiner, Simon
Ottenhaus, Raphael Grimm, You Zhou, Markus Grotz, and Fabian Paus. Armar-6:
A high-performance humanoid for human-robot collaboration in real-world scenar-
10s. IEEE Robotics & Automation Magazine, 26(4):108-121, 2019.

Jerome Barraquand and Jean-Claude Latombe. Robot motion planning: A dis-
tributed representation approach. The International Journal of Robotics Research,
10(6):628-649, 1991.

Florian Beck, Minh Nhat Vu, Christian Hartl-Nesic, and Andreas Kugi. Model
predictive trajectory optimization with dynamically changing waypoints for serial
manipulators. IEEE Robotics and Automation Letters, 2024.

Hadi Beik-Mohammadi, Sgren Hauberg, Georgios Arvanitidis, Gerhard Neumann,
and Leonel Rozo. Reactive motion generation on learned Riemannian manifolds.
The International Journal of Robotics Research, 42(10):729-754, 2023.

Yanzhe Bekkemoen. Explainable reinforcement learning (XRL): a systematic lit-
erature review and taxonomy. Machine Learning, 113(1):355-441, 2024.

Mayur J Bency, Ahmed H Qureshi, and Michael C Yip. Neural path planning:
Fixed time, near-optimal path generation via oracle imitation. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3965—
3972, 2019.

89

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

90

Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path planning frame-
work that learns from experience. In 2012 IEEE International Conference on
Robotics and Automation, pages 3671-3678. IEEE, 2012.

Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D
Ratliff, Dieter Fox, Fabio Ramos, and Byron Boots. Storm: An integrated frame-
work for fast joint-space model-predictive control for reactive manipulation. In
Conference on Robot Learning, pages 750-759. PMLR, 2022.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 112(518):
859-877, 2017.

Michael S Branicky, Steven M LaValle, Kari Olson, and Libo Yang. Quasi-
randomized path planning. In Proceedings 2001 ICRA. IEEE International Confer-
ence on Robotics and Automation (cat. No. 01CH37164), volume 2, pages 1481—
1487, 2001.

John Canny. The complexity of robot motion planning. MIT press, 1988.

Jodao Carvalho, Dorothea Koert, Marek Daniv, and Jan Peters. Adapting object-
centric probabilistic movement primitives with residual reinforcement learning. In
2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids),
pages 405412, 2022. doi: 10.1109/Humanoids53995.2022.10000148.

Onur Celik, Dongzhuoran Zhou, Ge Li, Philipp Becker, and Gerhard Neumann.
Specializing versatile skill libraries using local mixture of experts. In Conference
on Robot Learning, pages 1423-1433. PMLR, 2022.

Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. Learning to
plan in high dimensions via neural exploration-exploitation trees. arXiv preprint
arXiv:1903.00070, 2019.

Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, Byron
Boots, and Nathan Ratliff. Rmp flow: A computational graph for automatic motion
policy generation. In Algorithmic Foundations of Robotics XIII: Proceedings of
the 13th Workshop on the Algorithmic Foundations of Robotics 13, pages 441-457.
Springer, 2020.

Ching-An Cheng, Mustafa Mukadam, Jan Issac, Stan Birchfield, Dieter Fox, By-
ron Boots, and Nathan Ratliff. Rmpflow: A geometric framework for generation

of multitask motion policies. IEEE Transactions on Automation Science and Engi-
neering, 18(3):968-987, 2021.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burch-
fiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning
via action diffusion. The International Journal of Robotics Research, 2024.

Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra
Faust. RL-RRT: Kinodynamic motion planning via learning reachability estimators
from RL policies. IEEE Robotics and Automation Letters, 4(4):4298—4305, 2019.

Bibliography

[23] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the
barrier to entry of complex robotic software: a moveit! case study. arXiv preprint
arXiv:1404.3785, 2014.

[24] David Coleman, Ioan A Sucan, Mark Moll, Kei Okada, and Nikolaus Correll.
Experience-based planning with sparse roadmap spanners. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 900-905. IEEE,
2015.

[25] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox. Object
rearrangement using learned implicit collision functions. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 6010-6017. IEEE,
2021.

[26] Todor Davchev, Kevin Sebastian Luck, Michael Burke, Franziska Meier, Stefan
Schaal, and Subramanian Ramamoorthy. Residual learning from demonstration:

Adapting dmps for contact-rich manipulation. /EEE Robotics and Automation Let-
ters, 7(2):4488-4495, 2022.

[27] Christopher Dellin and Siddhartha Srinivasa. A unifying formalism for shortest
path problems with expensive edge evaluations via lazy best-first search over paths
with edge selectors. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 26, 2016.

[28] Edsger Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

[29] Andrew Dobson and Kostas E Bekris. Sparse roadmap spanners for asymptotically
near-optimal motion planning. The International Journal of Robotics Research, 33
(1):18-47, 2014.

[30] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[31] Jing Dong, Mustafa Mukadam, Frank Dellaert, and Byron Boots. Motion planning
as probabilistic inference using Gaussian processes and factor graphs. In Proceed-
ings of Robotics: Science and Systems (RSS), 2016.

[32] Kevin Duffy. Reaction times and sprint false starts. =~ URL https://
condellpark.com/kd/reactiontime.html

[33] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia,
Marek Fiser, and James Davidson. Prm-rl: Long-range robotic navigation tasks
by combining reinforcement learning and sampling-based planning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 5113-5120.
IEEE, 2018.

[34] Bernardo Fichera and Aude Billard. Learning dynamical systems encoding non-
linearity within space curvature. arXiv preprint arXiv:2403.11948, 2024.

[35] Mark Nicholas Finean, Wolfgang Merkt, and Ioannis Havoutis. Predicted compos-
ite signed-distance fields for real-time motion planning in dynamic environments.
arXiv preprint arXiv:2008.00969, 2020.

91

https://condellpark.com/kd/reactiontime.htm
https://condellpark.com/kd/reactiontime.htm

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

92

Fabrizio Flacco, Torsten Kroger, Alessandro De Luca, and Oussama Khatib. A
depth space approach to human-robot collision avoidance. In 2012 IEEFE Interna-
tional Conference on Robotics and Automation, pages 338-345, 2012.

Fabrizio Flacco, Torsten Kroeger, Alessandro De Luca, and Oussama Khatib. A
depth space approach for evaluating distance to objects. Journal of Intelligent &
Robotic Systems, 80(1):7-22, 2015.

Christopher K Fourie, Nadia Figueroa, and Julie A Shah. On-manifold strategies
for reactive dynamical system modulation with non-convex obstacles. IEEE Trans-
actions on Robotics, 2024.

Jonathan Gammell, Siddhartha S Srinivasa, and Timothy Barfoot. Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically guided search
of implicit random geometric graphs. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 3067-3074. IEEE, 2015.

Sergio Garrido-Jurado, Rafael Mufioz-Salinas, Francisco Jose Madrid-Cuevas, and
Manuel Jesus Marin-Jimenez. Automatic generation and detection of highly re-
liable fiducial markers under occlusion. Pattern Recognition, 47(6):2280-2292,
2014.

Weizong Ge, Hongyu Chen, Hongtao Ma, Liuhe Li, Ming Bai, Xilun Ding, and
Kun Xu. A dynamic obstacle avoidance method for collaborative robots based on
trajectory optimization. Cobot, 2:6, 2023.

Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional space. IEEE
Journal on Robotics and Automation, 4(2):193-203, 2002.

Faustino Gomez, Jiirgen Schmidhuber, Risto Miikkulainen, and Melanie Mitchell.
Accelerated neural evolution through cooperatively coevolved synapses. Journal
of Machine Learning Research, 9(5), 2008.

Francesco Grothe, Valentin N Hartmann, Andreas Orthey, and Marc Toussaint. St-
rrt*: Asymptotically-optimal bidirectional motion planning through space-time. In
2022 International Conference on Robotics and Automation (ICRA), pages 3314—
3320. IEEE, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochas-
tic actor. In International Conference on Machine Learning, pages 1861-1870.
PMLR, 2018.

John H Halton. Algorithm 247: Radical-inverse quasi-random point sequence.
Communications of the ACM, 7(12):701-702, 1964.

Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. /[EEE Transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968. doi: 10.1109/tssc.1968.300136. URL https:
//doi.org/10.1109/tssc.1968.300136.

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136

Bibliography

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Kris Hauser. Lazy collision checking in asymptotically-optimal motion planning.
In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages
2951-2957. IEEE, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. Advances in Neural Information Processing Systems, 33:6840-6851, 2020.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735-1780, 1997.

David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive con-
figuration spaces. In Proceedings of International Conference on Robotics and
Automation, volume 3, pages 2719-2726. IEEE, 1997.

Huang Huang, Balakumar Sundaralingam, Arsalan Mousavian, Adithyavairavan
Murali, Ken Goldberg, and Dieter Fox. Diffusionseeder: Seeding motion optimiza-
tion with diffusion for rapid motion planning. arXiv preprint arXiv:2410.16727,
2024.

Xi Huang, Gergely Sé6ti, Hongyi Zhou, Christoph Ledermann, Bjorn Hein, and
Torsten Kroger. HIRO: Heuristics informed robot online path planning using pre-
computed deterministic roadmaps. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 8109-8116. IEEE, 2022.

Xi Huang, Gergely Soti, Christoph Ledermann, Bjorn Hein, and Torsten Kroger.
Planning with learned subgoals selected by temporal information. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pages 9306-9312.
IEEE, 2024.

Lukas Huber, Jean-Jacques Slotine, and Aude Billard. Avoidance of concave ob-
stacles through rotation of nonlinear dynamics. IEEE Transactions on Robotics,
40:1983-2002, 2023.

Jinwook Huh and Daniel D Lee. Learning high-dimensional mixture models for
fast collision detection in rapidly-exploring random trees. In 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 63—69. IEEE, 2016.

Jinwook Huh, Bhoram Lee, and Daniel D Lee. Adaptive motion planning with
high-dimensional mixture models. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 3740-3747, 2017.

Jinwook Huh, Galen Xing, Ziyun Wang, Volkan Isler, and Daniel D Lee. Learning
to generate cost-to-go functions for efficient motion planning. In International
Symposium on Experimental Robotics, pages 555-565. Springer, 2020.

Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces.
IEEE Robotics and Automation Letters, 4(3):2407-2414, 2019.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions

for robot motion planning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7087-7094. IEEE, 2018.

93

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

94

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions
for robot motion planning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7087-7094. IEEE, 2018.

Brian Ichter, Edward Schmerling, Tsang-Wei Edward Lee, and Aleksandra Faust.
Learned critical probabilistic roadmaps for robotic motion planning. arXiv preprint
arXiv:1910.03701, 2019.

Christian Igel. Neuroevolution for reinforcement learning using evolution strate-
gies. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., vol-
ume 4, pages 2588-2595. IEEE, 2003.

Julius Jankowski, Lara Brudermiiller, Nick Hawes, and Sylvain Calinon. Vp-sto:
Via-point-based stochastic trajectory optimization for reactive robot behavior. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages
10125-10131. IEEE, 2023.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast march-
ing tree: A fast marching sampling-based method for optimal motion planning in
many dimensions. The International Journal of Robotics Research, 34(7):883-921,
2015.

Lucas Janson, Brian Ichter, and Marco Pavone. Deterministic sampling-based mo-
tion planning: Optimality, complexity, and performance. The International Journal
of Robotics Research, 37(1):46-61, 2018.

Xiaogang Jia, Qian Wang, Atalay Donat, Bowen Xing, Ge Li, Hongyi Zhou, Onur
Celik, Denis Blessing, Rudolf Lioutikov, and Gerhard Neumann. Mail: Improving
imitation learning with mamba. arXiv preprint arXiv:2406.08234, 2024.

Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar,
Matthias Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Resid-
ual reinforcement learning for robot control. In 2019 International Conference on
Robotics and Automation (ICRA), pages 6023—-6029. IEEE, 2019.

Tom Jurgenson and Aviv Tamar. Harnessing reinforcement learning for neural
motion planning. arXiv preprint arXiv:1906.00214, 2019.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Ste-
fan Schaal. Stomp: Stochastic trajectory optimization for motion planning. In
2011 IEEE International Conference on Robotics and Automation, pages 4569—
4574. 1EEE, 2011.

Marcelo Kallman and Maja Mataric. Motion planning using dynamic roadmaps. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 35, pages 4399-4404, 2004.

Jay Kamat, Joaquim Ortiz-Haro, Marc Toussaint, Florian T Pokorny, and Andreas
Orthey. Bitkomo: Combining sampling and optimization for fast convergence in
optimal motion planning. In 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 4492—-4497. IEEE, 2022.

Bibliography

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal mo-
tion planning. The International Journal of Robotics Research, 30(7):846—-894,
2011.

Lydia Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4):566-580, 1996.

J. Chase Kew, Brian Ichter, Maryam Bandari, Tsang-Wei Edward Lee, and Alek-
sandra Faust. Neural collision clearance estimator for batched motion planning. In

International Workshop on the Algorithmic Foundations of Robotics, pages 73-89.
Springer, 2020.

Seyed Mohammad Khansari-Zadeh and Aude Billard. A dynamical system ap-
proach to realtime obstacle avoidance. Autonomous Robots, 32:433-454, 2012.

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5(1):90-98, 1986.

Piotr Kicki, Davide Tateo, Puze Liu, Jonas Giinster, Jan Peters, and Krzysztof
Walas. Bridging the gap between learning-to-plan, motion primitives and safe re-
inforcement learning. In 8th Annual Conference on Robot Learning, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

Holle Kirchner and Simon J Thorpe. Ultra-rapid object detection with saccadic eye
movements: Visual processing speed revisited. Vision research, 46(11):1762-1776,
2006.

Holger Klein, Noémie Jaquier, Andre Meixner, and Tamim Asfour. On the de-
sign of region-avoiding metrics for collision-safe motion generation on riemannian
manifolds. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2346-2353. IEEE, 2023.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances
in Neural Information Processing Systems, 21, 2008.

Mikhail Koptev, Nadia Figueroa, and Aude Billard. Neural Joint Space Implicit
Signed Distance Functions for Reactive Robot Manipulator Control. IEEE Robotics
and Automation Letters, 8(2):480-487, 2022.

Mikhail Koptev, Nadia Figueroa, and Aude Billard. Reactive collision-free motion
generation in joint space via dynamical systems and sampling-based MPC. The
International Journal of Robotics Research, 43(13):2049-2069, 2024.

Torsten Kroger and Friedrich M Wahl. Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events. IEEFE Transactions on Robotics,
26(1):94-111, 20009.

James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia Proceed-
ings (Cat. No. 00CH37065), volume 2, pages 995-1001. IEEE, 2000.

95

Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

96

Solomon Kullback and Richard A Leibler. On information and sufficiency. The
Annals of Mathematical Statistics, 22(1):79-86, 1951.

Rahul Kumar, Aditya Mandalika, Sanjiban Choudhury, and Siddhartha S Srinivasa.
Lego: Leveraging experience in roadmap generation for sampling-based planning.
arXiv preprint arXiv:1907.09574, 2019.

Tobias Kunz and Mike Stilman. Time-optimal trajectory generation for path fol-
lowing with bounded acceleration and velocity. Robotics: Science and Systems
VIII, pages 1-8, 2012.

Alexander Lambert, Brian Hou, Rosario Scalise, Siddhartha Srinivasa, and Byron
Boots. Stein Variational Probabilistic Roadmaps. In 2022 International Conference
on Robotics and Automation (ICRA), pages 11094-11101. IEEE, 2022.

Alexander Lambert, Brian Hou, Rosario Scalise, Siddhartha S Srinivasa, and Byron
Boots. Stein Variational Probabilistic Roadmaps. In 2022 International Conference
on Robotics and Automation (ICRA), pages 11094-11101. IEEE, 2022.

Steven LaValle. Rapidly-exploring random trees: A new tool for path planning.
Research Report 9811, 1998.

An T Le, Georgia Chalvatzaki, Armin Biess, and Jan R Peters. Accelerating mo-
tion planning via optimal transport. Advances in Neural Information Processing
Systems, 36:78453-78482, 2023.

John M Lee. Smooth manifolds. In Introduction to smooth manifolds, pages 1-29.
Springer, 2003.

Yiyuan Lee, Constantinos Chamzas, and Lydia E Kavraki. Adaptive experience
sampling for motion planning using the generator-critic framework. IEEE Robotics
and Automation Letters, 7(4):9437-9444, 2022.

Peter Lehner and Alin Albu-Schiffer. Repetition sampling for efficiently planning
similar constrained manipulation tasks. In 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 2851-2856. IEEE, 2017.

Angqi Li, Ching-An Cheng, M Asif Rana, Man Xie, Karl Van Wyk, Nathan Ratliff,
and Byron Boots. RMP2: A structured composable policy class for robot learning.
arXiv preprint arXiv:2103.05922, 2021.

Ge Li, Zeqi Jin, Michael Volpp, Fabian Otto, Rudolf Lioutikov, and Gerhard Neu-
mann. Prodmp: A unified perspective on dynamic and probabilistic movement
primitives. /IEEE Robotics and Automation Letters, 8(4):2325-2332, 2023.

Ge Li, Hongyi Zhou, Dominik Roth, Serge Thilges, Fabian Otto, Rudolf Li-
outikov, and Gerhard Neumann. Open the black box: Step-based policy updates
for temporally-correlated episodic reinforcement learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Linjun Li, Yinglong Miao, Ahmed H Qureshi, and Michael C Yip. MPC-MPNet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints. IEEE Robotics and Automation Letters, 6(3):4496—4503,
2021.

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Yiming Li, Xuemin Chi, Amirreza Razmjoo, and Sylvain Calinon. Configuration
space distance fields for manipulation planning. arXiv preprint arXiv:2406.01137,
2024.

Weiran Liao, Ge Li, Hongyi Zhou, Rudolf Lioutikov, and Gerhard Neumann.
Bmp: Bridging the gap between b-spline and movement primitives. arXiv preprint
arXiv:2411.10336, 2024.

Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Jan Peters, and Georgia Chal-
vatzaki. Regularized deep signed distance fields for reactive motion generation.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 6673—6680, 2022.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose
bayesian inference algorithm. Advances in Neural Information Processing Systems,
29, 2016.

Wansong Liu, Kareem Eltouny, Sibo Tian, Xiao Liang, and Minghui Zheng. Kg-
planner: Knowledge-informed graph neural planning for collaborative manipula-
tors. IEEE Transactions on Automation Science and Engineering, 2024.

Tomas Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM, 22(10):560—
570, 1979.

Jonathan Michaux, Adam Li, Qingyi Chen, Che Chen, Bohao Zhang, and Ram
Vasudevan. Safe planning for articulated robots using reachability-based obstacle
avoidance with spheres. Proceedings of Robotics: Science and Systems, 2024. doi:
10.15607/RSS.2024.XX.035.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. Communications of the ACM, 65(1):99-106, 2021.

Ieva Miseviciute. The speed of human visual perception. URL https:
//www.tobii.com/resource—-center/learn—-articles/speed-
of-human-visual-perception.

Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational
grasp generation for object manipulation. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2901-2910, 2019.

Mustafa Mukadam, Xinyan Yan, and Byron Boots. Gaussian process motion plan-
ning. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 9—15. IEEE, 2016.

Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Adam Fishman,
and Dieter Fox. Cabinet: Scaling neural collision detection for object rearrange-
ment with procedural scene generation. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 1866—1874. IEEE, 2023.

Allen Newell. Unified theories of cognition. Harvard University Press, 1994.

97

https://www.tobii.com/resource-center/learn-articles/speed-of-human-visual-perception
https://www.tobii.com/resource-center/learn-articles/speed-of-human-visual-perception
https://www.tobii.com/resource-center/learn-articles/speed-of-human-visual-perception

Bibliography

[114] Ruiqi Ni and Ahmed H Qureshi. NTFields: Neural time fields for physics-informed
robot motion planning. arXiv preprint arXiv:2210.00120, 2022.

[115] Andreas Orthey, Constantinos Chamzas, and Lydia E Kavraki. Sampling-based
motion planning: A comparative review. Annual Review of Control, Robotics, and
Autonomous Systems, 7, 2023.

[116] Takayuki Osa. Multimodal trajectory optimization for motion planning. The Inter-
national Journal of Robotics Research, 39(8):983-1001, 2020.

[117] Fabian Otto, Onur Celik, Hongyi Zhou, Hanna Ziesche, Vien Anh Ngo, and Ger-
hard Neumann. Deep black-box reinforcement learning with movement primi-
tives. In 6th Annual Conference on Robot Learning (CoRL 2022), volume 205 of
Proceedings of Machine Learning Research, pages 1244—1265. Machine Learning
Research Press (ML Research Press), 2022.

[118] Fabian Otto, Hongyi Zhou, Onur Celik, Ge Li, Rudolf Lioutikov, and Gerhard
Neumann. Mp3: Movement primitive-based (re-) planning policy. arXiv preprint
arXiv:2306.12729, 2023.

[119] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library
for collision and proximity queries. In 2012 IEEE International Conference on
Robotics and Automation, pages 3859-3866. IEEE, 2012.

[120] Jia Pan, Sachin Chitta, Dinesh Manocha, Florent Lamiraux, Joseph Mirabel, Justin
Carpentier, Louis Montaut, and others. Coal: an extension of the flexible collision
library, 2015. URL https://github.com/coal-library/coal.

[121] Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Proba-

bilistic movement primitives. Advances in Neural Information Processing Systems,
26, 2013.

[122] Chonhyon Park, Jia Pan, and Dinesh Manocha. ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments. In Proceedings of
the, volume 22, pages 207-215, 2012.

[123] Chonhyon Park, Jia Pan, and Dinesh Manocha. High-DOF robots in dynamic en-
vironments using incremental trajectory optimization. Int. J. Humanoid Robotics,
2014. doi: 10.1142/50219843614410011.

[124] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Movement
reproduction and obstacle avoidance with dynamic movement primitives and po-
tential fields. In Humanoids 2008-8th IEEE-RAS international conference on hu-
manoid robots, pages 91-98. IEEE, 2008.

[125] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682—697, 2008.

[126] Hung Pham and Quang-Cuong Pham. Time-optimal path tracking via reachability

analysis. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 3007-3012, 2018.

98

https://github.com/coal-library/coal

Bibliography

[127] Quang-Cuong Pham, Stéphane Caron, and Yoshihiko Nakamura. Kinodynamic
planning in the configuration space via admissible velocity propagation. In
Robotics: Science, volume 32, 2013.

[128] Jeff M Phillips, Nazareth Bedrossian, and Lydia E Kavraki. Guided expansive
spaces trees: A search strategy for motion-and cost-constrained state spaces. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 4, pages 3968—-3973. IEEE, 2004.

[129] Kai Ploeger, Michael Lutter, and Jan Peters. High acceleration reinforcement learn-
ing for real-world juggling with binary rewards. In Conference on Robot Learning,
pages 642—-653. PMLR, 2021.

[130] Thomas Power and Dmitry Berenson. Constrained stein variational trajectory op-
timization. /EEE Transactions on Robotics, 2024.

[131] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-Spline
Techniques. Springer, Berlin, Heidelberg, 2002. ISBN 978-3-642-05240-8. doi:
10.1007/978-3-662-04947-3.

[132] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 652—-660, 2017.

[133] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances in Neural
Information Processing Systems, 30, 2017.

[134] Ahmed Qureshi and Michael Yip. Deeply informed neural sampling for robot
motion planning. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 6582—-6588. IEEE, 2018.

[135] Ahmed Qureshi, Anthony Simeonov, Mayur Bency, and Michael Yip. Motion
planning networks. In 2019 International Conference on Robotics and Automation
(ICRA), pages 2118-2124, 2019.

[136] Ahmed H Qureshi, Jiangeng Dong, Austin Choe, and Michael C Yip. Neural ma-
nipulation planning on constraint manifolds. /IEEE Robotics and Automation Let-
ters, 5(4):6089-6096, 2020.

[137] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael Yip.
Motion planning networks: Bridging the gap between learning-based and classical
motion planners. IEEE Transactions on Robotics, 2020.

[138] Clayton W Ramsey, Zachary Kingston, Wil Thomason, and Lydia E Kavraki.
Collision-affording point trees: SIMD-amenable nearest neighbors for fast colli-
sion checking. arXiv preprint arXiv:2406.02807, 2024.

[139] Alireza Ranjbar, Ngo Anh Vien, Hanna Ziesche, Joschka Boedecker, and Gerhard
Neumann. Residual feedback learning for contact-rich manipulation tasks with
uncertainty. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2383-2390. IEEE, 2021.

99

Bibliography

[140] Nathan Ratliff, Matt Zucker, Andrew Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In 2009 IEEE In-
ternational Conference on Robotics and Automation, pages 489-494. IEEE, 2009.

[141] Nathan Ratliff, Marc Toussaint, and Stefan Schaal. Understanding the geometry of
workspace obstacles in motion optimization. In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 4202—4209. IEEE, 2015.

[142] Nathan Ratliff, Marc Toussaint, Jeannette Bohg, and Stefan Schaal. On the fun-
damental importance of gauss-newton in motion optimization. arXiv preprint
arXiv:1605.09296, 2016.

[143] Nathan D Ratliff, Jan Issac, Daniel Kappler, Stan Birchfield, and Dieter Fox. Rie-
mannian motion policies. arXiv preprint arXiv:1801.02854, 2018.

[144] Stefan Schaal. Dynamic movement primitives-a framework for motor control in
humans and humanoid robotics. In Adaptive Motion of Animals and Machines,
pages 261-280. Springer, 2006.

[145] Peter H Schiller and Jennifer Kendall. Temporal factors in target selection with
saccadic eye movements. Experimental Brain Research, 154:154—159, 2004.

[146] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Robotics: Science and Systems, volume 9, pages 1-10.
Berlin, Germany, 2013.

[147] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Brad-
low, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with

sequential convex optimization and convex collision checking. The International
Journal of Robotics Research, 33(9):1251-1270, 2014.

[148] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[149] Philip Schomer, Mark Timon Hiineberg, and J Marius Zdllner. Optimization of
sampling-based motion planning in dynamic environments using neural networks.
In 2020 IEEE intelligent vehicles symposium (IV), pages 2110-2117. IEEE, 2020.

[150] Deval Shah, Ningfeng Yang, and Tor M Aamodt. Energy-efficient realtime motion
planning. In Proceedings of the 50th Annual International Symposium on Com-
puter Architecture, pages 1-17, 2023.

[151] Bruno Siciliano, Oussama Khatib, and Torsten Kroger. Springer Handbook of
Robotics, volume 200. Springer, 2008.

[152] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy
learning. arXiv preprint arXiv:1812.06298, 2018.

[153] Avishai Sintov and Amir Shapiro. Time-based RRT algorithm for rendezvous plan-
ning of two dynamic systems. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 6745-6750. IEEE, 2014.

100

Bibliography

[154] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output repre-
sentation using deep conditional generative models. Advances in Neural Informa-
tion Processing Systems, 28, 2015.

[155] Davood Soleymanzadeh, Xiao Liang, and Minghui Zheng. SIMPNet: Spatial-
informed motion planning network. IEEE Robotics and Automation Letters, 2025.

[156] Gergely Soti, Xi Huang, Christian Wurll, and Bjorn Hein. dgrasp: Nerf-informed
implicit grasp policies with supervised optimization slopes. arXiv preprint
arXiv:2406.09939, 2024.

[157] Marlin P Strub and Jonathan D Gammell. Adaptively Informed Trees (AIT*) and
Effort Informed Trees (EIT*): Asymmetric bidirectional sampling-based path plan-
ning. The International Journal of Robotics Research, 41(4):390-417, 2022.

[158] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72—-82, December 2012.
doi: 10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.

[159] Balakumar Sundaralingam, Siva Kumar Sastry Hari, Adam Fishman, Caelan Gar-
rett, Karl Van Wyk, Valts Blukis, Alexander Millane, Helen Oleynikova, Ankur
Handa, Fabio Ramos, Nathan Ratliff, and Dieter Fox. curobo: Parallelized
collision-free minimum-jerk robot motion generation, 2023.

[160] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[161] Gildardo Sédnchez and Jean-Claude Latombe. A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking. In Robotics Research: The
Tenth International Symposium, pages 403—417. Springer, 2003.

[162] Wil Thomason, Zachary Kingston, and Lydia E Kavraki. Motions in microseconds
via vectorized sampling-based planning. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pages 8749-8756. IEEE, 2024.

[163] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026-5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

[164] Marc Toussaint. Robot trajectory optimization using approximate inference. In
Proceedings of the 26th annual International Conference on Machine Learning,

pages 1049-1056, 2009.

[165] Marc Toussaint. Newton methods for k-order markov constrained motion prob-
lems. arXiv preprint arXiv:1407.0414, 2014.

[166] Marc Toussaint. Logic-geometric programming: An optimization-based approach

to combined task and motion planning. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 1930-1936, 2015.

101

https://ompl.kavrakilab.org

Bibliography

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

102

Marc Toussaint. A tutorial on Newton methods for constrained trajectory opti-
mization and relations to SLAM, Gaussian Process smoothing, optimal control,
and probabilistic inference. Geometric and numerical foundations of movements,

pages 361-392, 2017.

Marc Toussaint and Christian Goerick. A bayesian view on motor control and

planning. In From Motor Learning to Interaction Learning in Robots, pages 227—
252. Springer, 2010.

Marc Toussaint, Jason Harris, Jung-Su Ha, Danny Driess, and Wolfgang Honig.
Sequence-of-constraints mpc: Reactive timing-optimal control of sequential ma-
nipulation. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 13753-13760. IEEE, 2022.

Julen Urain, Angi Li, Puze Liu, Carlo D’Eramo, and Jan Peters. Composable
energy policies for reactive motion generation and reinforcement learning. The
International Journal of Robotics Research, 42(10):827-858, 2023.

John Vannoy and Jing Xiao. Real-time adaptive motion planning (RAMP) of mo-
bile manipulators in dynamic environments with unforeseen changes. IEEE Trans-
actions on Robotics, 24(5):1199-1212, 2008.

Vasileios Vasilopoulos, Suveer Garg, Pedro Piacenza, Jinwook Huh, and Volkan
Isler. RAMP: Hierarchical reactive motion planning for manipulation tasks using
implicit signed distance functions. arXiv preprint arXiv:2305.10534, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W Anderson. Ge-
netic reinforcement learning for neurocontrol problems. Machine Learning, 13:
259-284, 1993.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A
Theodorou. Information-theoretic model predictive control: Theory and applica-
tions to autonomous driving. IEEE Transactions on Robotics, 34(6):1603—-1622,
2018.

Tyler S Wilson, Wil Thomason, Zachary Kingston, Lydia E Kavraki, and
Jonathan D Gammell. Nearest-neighbourless asymptotically optimal mo-
tion planning with fully connected informed trees (FCIT*). arXiv preprint
arXiv:2411.17902, 2024.

Zhengtian Wu, Jinyu Dai, Baoping Jiang, and Hamid Reza Karimi. Robot path
planning based on artificial potential field with deterministic annealing. ISA Trans-
actions, 138:74-87, 2023.

Yiming Yang, Wolfgang Merkt, Vladimir Ivan, Zhibin Li, and Sethu Vijayakumar.
HDRM: A resolution complete dynamic roadmap for real-time motion planning in
complex scenes. IEEE Robotics and Automation Letters, 3(1):551-558, 2017.

Yuandong Yang and Oliver Brock. Elastic roadmaps—motion generation for au-
tonomous mobile manipulation. Autonomous Robots, 28(1):113-130, 2010.

Bibliography

[180]

[181]

[182]

[183]

[184]

[185]

[186]

Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based

motion planning using graph neural networks. Advances in Neural Information
Processing Systems, 34:4274-4289, 2021.

Hongzhe Yu and Yongxin Chen. Stochastic motion planning as gaussian variational
inference: theory and algorithms. arXiv preprint arXiv:2308.14985, 2023.

Xiao Zang, Miao Yin, Jingi Xiao, Saman Zonouz, and Bo Yuan. Graphmp: Graph
neural network-based motion planning with efficient graph search. Advances in
Neural Information Processing Systems, 36:3131-3142, 2023.

Clark Zhang, Jinwook Huh, and Daniel D Lee. Learning implicit sampling dis-
tributions for motion planning. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 36543661, 2018.

Xin Zhao, Huan Zhao, Shaohua Wan, and Han Ding. A Gaussian Mixture Models
based Multi-RRTs method for high-dimensional path planning. In 2018 IEEFE In-
ternational Conference on Robotics and Biomimetics (ROBIO), pages 1659-1664.
IEEE, 2018.

You Zhou, Jianfeng Gao, and Tamim Asfour. Learning via-point movement prim-
itives with inter-and extrapolation capabilities. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4301-4308. IEEE,
2019.

Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa.
Chomp: Covariant hamiltonian optimization for motion planning. The Interna-
tional Journal of Robotics Research, 32(9-10):1164—-1193, 2013.

103

List of Figures

(1. ~ Robots 1n 1solated and open environments|
(.2 Illustration of the contributions.]
(3.1 Pipelineofthe HIRO|

[3.2 Configuration space and task space of a 2-DoFrobot)

[3.4 Halton sequences and uniform sampling|
[3.5 Exploration using heuristics informed search and A* using L2 distance|. .
[3.6 Snapshots of a heuristics-informed search{
[3.7 Safe zones of a 2-DoF robot with respect to three circular obstacles|. . . .
(3.8 Illustration of computing safe zones|

B9

Edge examination with safe zones and standard edge examination|

[3.10 An example of examining edges with sate zones|.

[3.11 HIRO planning scene datasets|

.....

[3.13 Robot experiment setup for HIRO|

[3.14 Robot experiment with Jessica]

4.2 Training and inference pipeline of VAE and CVAE|
4.3 Components 1n the subgoal dataset|
4.4 Pipeline of dataset collection for subgoals|
4.5

Pipeline of training CVAE| o o000

76

Example for generated subgoals|

a7

Pipeline of training the time estimator|]

73

Normal and log-normal distributions|

7

Roll fthelearmedmodell.

5.1

0.2 Illustration of BMPs| .

[5.3 Illustration of trajectory refinements using MoRe-ERL.
[5.4 Simulation experiments in Mujoco.|. 0L
5.5

Policy rollouts in multi-box scenario|

Learning curves of multi-box experiments|

Policy rollouts in dual-arm scenario]

Learning curves of dual-arm experiments.|

5.6
5.7
5.8
[5.9 Robot experiment setup

20
22
23
24
25
27
30
31
36
36
38
39
41
42
43

46
50
51
53
54
57
57
58
61
65

68
71
73
76
77
77
79
80
83
84

105

List of Tables

(1.1 Fulfillment of requirements for motion planning methods| 3
3.1 _Resutls of HIRO and baselmnesl 38
(3.2 Ablation study for HIRO| 0oL, 41
4.1 Results of planning to subgoalsonce| 0oL, 62
4.2 Results of planning to final goals| 63
0.1 Difference between MoRe-ERL residuals and the vanants] 74
0.2 Results of MoRe-ERI and baseline methods|. 76
[>.3 Advantages compared to geometric planning(multi-box)[. 81
[>.4 Advantages compared to geometric planning (dual-arm)|. 81
[5.5 Success rate of different trajectory representations in the multi-box sce- [

DATIO. |« v v v o e e e e e e e e e e e e e e e e e 82

107

	Abstract
	Zusammenfassung
	Introduction
	Research Questions
	Outline of the Thesis

	Related Work
	Overview of Motion Planning
	Sampling-Based Methods
	Optimization-Based Methods
	Movement Primitives

	Motion Planning in Dynamic Environments
	Sampling-Based Methods
	Optimization-based Methods
	Reactive Control
	Geometric Methods

	Relation to State of the Art

	Speeding up Motion Planning by Reducing Collision Checks
	Preliminaries
	Task and Configuration Space
	Collision Checking and Distance Computation
	Standard Edge Examination

	Problem Description
	Precomputed Deterministic Roadmap
	Heuristics-Informed Search
	Heuristics for Roadmap Exploration
	Informed Search

	Edge Examination with Safe Zones
	Safe Zones
	Edge Examination

	Evaluation
	Evaluation in Simulation
	Ablation Study
	Evaluation in Robot Experiments

	Limitations and Discussion

	Planning with Learned Subgoals
	Preliminaries
	Variational Inference
	Variational Auto-Encoder
	Conditional Variational Auto-Encoder

	Problem Description
	Generating Spatial Subgoals
	Subgoal Dataset
	Components in Dataset
	Dataset Generation Pipeline

	Learning Subgoal Distributions
	Planning Problem Representation
	Training
	Inference

	Temporal Distributions as Critic
	Capturing Temporal Distributions
	Metrics for Subgoal Selections
	Selection Strategies

	Planning Range Shaping

	Evaluation
	Evaluation in Simulation
	Planning Time Fulfillment
	Goal Reaching

	Ablation Study
	Generalization in Unseen Environments

	Limitations and Discussions

	Learning Motion Refinements for Spatiotemporal Awareness
	Preliminaries
	Episodic Reinforcement Learning
	Using Movement Primitives in ERL

	Problem Description
	Learning Residuals for Reference Trajectories
	Evaluation
	Evaluation in Simulation
	Multi-Box Scenario
	Dual-Arm Scenario

	Ablation Study
	Evaluation in Robot Experiment

	Limitations and Discussions

	Conclusion and Future Work
	Conclusion
	Future Research Directions
	Interacting with Environments
	Explainable Safety Guarantees

	Bibliography
	List of Figures
	List of Tables

