KIT | KIT-Bibliothek | Impressum | Datenschutz

Self-Supervised Learning Strategies for a Platform to Test the Toxicity of New Chemicals and Materials

Lautenschlager, Thomas 1; Friederich, Nils ORCID iD icon 1; Sitcheu, Angelo Jovin Yamachui ORCID iD icon 1; Nau, Katja ORCID iD icon 1; Hayot, Gaëlle 2; Dickmeis, Thomas ORCID iD icon 2; Mikut, Ralf ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)

Abstract:

High-throughput toxicity testing offers a fast and cost-effective way to test large amounts of compounds. A key component for such systems is the automated evaluation via machine learning models. In this paper, we address critical challenges in this domain and demonstrate how representations learned via self-supervised learning can effectively identify toxicant-induced changes. We provide a proof-of-concept that utilizes the publicly available EmbryoNet dataset, which contains ten zebrafish embryo phenotypes elicited by various chemical compounds targeting different processes in early embryonic development. Our analysis shows that the learned representations using self-supervised learning are suitable for effectively distinguishing between the modes-of-action of different compounds. Finally, we discuss the integration of machine learning models in a physical toxicity testing device in the context of the TOXBOX project.


Volltext §
DOI: 10.5445/IR/1000189854
Veröffentlicht am 23.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Biologische und Chemische Systeme (IBCS)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000189854
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Verlag arxiv
Umfang 24 S.
Bemerkung zur Veröffentlichung Proc. 35. Workshop Computational Intelligence, Berlin, 19.-21.11.2025
Schlagwörter Computer Vision and Pattern Recognition (cs.CV), Artificial Intelligence (cs.AI), Machine Learning (cs.LG)
Nachgewiesen in OpenAlex
Dimensions
arXiv
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page