ETP-KA /2025-23

AT

Karlsruhe Institute of Technology

Track Finding
with Graph Neural Networks
in the Belle 11 Drift Chamber

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN
(Dr. rer. nat.)

von der KIT-Fakultat fiir Physik des
Karlsruher Instituts fiir Technologie (KIT)
genehmigte
DISSERTATION

von

M.Sc. Lea Reuter

Tag der miindlichen Priifung: 31. Oktober 2025
Referent: Prof. Dr. Torben Ferber
Korreferent: Prof. Dr. Markus Klute



@ @ @ This document is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en


https://creativecommons.org/licenses/by-sa/4.0/deed.en




iii

Disclaimer

Algorithm development and data analyses in high-energy physics such as the work presented
in this doctoral thesis are a collaborative effort. The SuperKEKB particle accelerator which
provides the particle beams essential for all studies at Belle II was built and is operated
and maintained by the SuperKEKB accelerator group. The Belle II detector was built
and is maintained and operated by the Belle II collaboration. The Belle II collaboration
also creates the centrally provided simulated and recorded datasets and maintains the
computing infrastructure necessary to process them. The software environment necessary
for studies with Belle II data plays an important role and was created and is maintained by
the collaboration. I have been a part of the Belle II collaboration since 2021 and performed

all studies detailed in this thesis except for the following:

e The D*" — D°(— K%(— rtr )nTr )nd and eTe” — ptu” candidate selections

on measured data, that are implemented as validation modes in VIBE".

e The selections of the high level trigger during data acquisition are implemented in

the Belle II Analysis Software Framework.

The algorithm developed in this thesis has been published in |1, together with part of the
results in Chapters 3 to 6.
I implemented my algorithm into the Belle II Analysis Software Framework together with

Giacomo De Pietro.

This thesis incorporates the use of Artificial Intelligence (AI) tools to help with grammatical
or stylistic improvement of text, and program code creation.

GraummaurlyT and DeepL Write'| are utilised throughout the thesis for spell and grammar
checks, as well as for paraphrasing individual, selected sentences to improve clarity and
precision in academic writing. I have approved all suggested changes.

ChatGPT® is used to aid the development of C+-+ and Python code, in particular code
restructuring and optimisation that do not constitute the core scientific work of this thesis.

I have approved and tested all suggestions to provide robust and reliable results.

*VIBE: Validation Interface for the Belle IT Experiment. See https://vibe.belle2.org/ (Access Date:
2025-09-18)

"Grammarly: An Al writing assistant. See https://app.grammarly.com/| (Access Date: 2025-09-18).

'DeepL. Write: Al-powered writing companion. See https://www.deepl.com /en /write| (Access Date:
2025-09-18)

SChatGPT: A virtual Al assistant based on large language models. See https://openai.com/chatgpt/
(Access Date: 2025-09-18).


https://vibe.belle2.org/
https://app.grammarly.com/
https://www.deepl.com/en/write
https://openai.com/chatgpt/
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Chapter 1

Introduction

Particle physics experiments such as the Belle II experiment probe the Standard Model of
particle physics (SM) and search for new physics that is not explained by the SM. These
experiments rely on reconstructing the paths of charged particles through the detector
from the ionization trails left in the tracking subdetectors. By combining the reconstructed
trajectories with measurements from the other subdetectors, the properties of the particles
can be determined. A tracking algorithm that accurately reconstructs all true particle
trajectories with high purity is essential for performing any analysis or search at Belle II.
The Belle II experiment aims to collect the integrated luminosity of [ £dt = 50 ab™?! [2] to
achieve a higher sensitivity for very rare processes. To reach this, the [SuperKEKB| acceler-
ator steadily increases its instantaneous luminosity towards the design value. However, the
higher instantaneous luminosity amplifies beam-induced effects and detector noise, which
increases the detector occupancy. As a result, the performance of the current track finding
algorithm of Belle IT decreases with increasing backgrounds |3].

One of the biggest questions in particle physics is understanding the nature of |dark matter
(DM). Many models predict DM candidates such as weakly interacting massive particles,
axions, or sterile neutrinos |4, 5. They are often accompanied by new mediator particles
forming a dark sector. If DM interacts non-gravitationally with the SM, it could be
produced directly at [Belle IT. Almost all searches at Belle Il for [DM explicitly search for
an additional light, MeV-GeV mediator that decays into invisible [DM]| particles or back to
SM| particles [6-8].

One interesting research direction at Belle II are searches for long-lived neutral mediators
like dark photons or dark scalars [9], or inelastic DM |9, 10]. In contrast to B mesons,
which are a major part of the Belle II physics program [11] and decay promptly due
to their short lifetimes, these long-lived particles can have much longer lifetimes. This
allows them to travel measurable distances before decaying. Their signatures include tracks
that are displaced from the interaction point. Two searches for these displaced signatures
were carried out at Belle IIj up to today: the search for a dark Higgs boson produced in

association with inelastic dark matter [12], and the search for a long-lived spin-0 particle



in b — s transitions [13]. Both searches found that reconstruction efficiency for displaced
tracks decreases significantly for [Belle II, and improvements would greatly benefit new

searches.

The reduced reconstruction efficiency for displaced tracks and the loss of performance
with higher backgrounds necessitate the development of a new track algorithm.
In this thesis, I present the development and implementation of a graph neural network
(GNN)-based tracking reconstruction algorithm CAT Finder (CDC Al Track Finder) for
the main tracking detector of Belle IT, the CDC. The CAT Finder uses object conden-
sation [14] to simultaneously identify the unknown number of tracks in the event and
determine their respective parameters. Additionally, the CAT Finder assigns the detector
hits to the tracks for subsequent track fitting. By integrating this algorithm into the Belle
II Analysis Software Framework (basf2), it also provides seeds for track finding and fitting
that combine all three tracking detectors.
In Chapter 2, I give an overview of the accelerator, experiment, and the subdetectors,
including the [CDC. I describe the simulated datasets with backgrounds used for training
and evaluation, as well as selections on the measured data to study the CAT Finder per-
formance in Chapter 3. Chapter |4 defines the key metrics to evaluate track reconstruction
algorithms at Belle II. The full tracking chain, the current (CDC]|track finding algorithm in
basf2 (Baseline Finder), and my new CAT Finder algorithm are described in Chapter 5.
In Chapter |6, I compare the Baseline Finder and the CAT Finder for |(CDC-only perfor-
mance. I then extend the evaluation to full detector reconstruction, replacing Baseline Finder
with CAT Finder as |CDC| track finding algorithm. In Chapter |7, I validate the combined
performance of all three tracking detectors and study the impact on all subdetectors that
depend on reconstructed trajectories. The evaluation on measured data is presented in
Chapter 8. Since one goal of CAT Finder is to improve displaced tracks, I perform a
sensitivity study for a long-lived spin-0 particle S in BT — K15 in Chapter 9.

In Chapter 10, I report on the ongoing work and directions for future improvements.
Finally, I summarize and conclude the thesis in Chapter [11.
Natural units are used throughout this thesis for mass, energy, and momentum. Charge

conjugated decays are implied in this thesis.



Chapter 2

The Belle 11 Experiment

I describe the experimental setup in this thesis in the following chapter. I start with giving
an overview of the SuperKEKB accelerator |15], followed by the Belle II detector [16]. In
the last chapter, I highlight the main tracking detector of Belle I, the |CDC, which I will

focus on in this thesis.

2.1 The SuperKEKB Accelerator

The [SuperKEKB| accelerator is an electron-positron collider. An overview of the accelerator
is given in Fig. 2.1. While electrons are emitted via a photo cathode, the positrons are
produced in collision of an electron beam with a tungsten target, which requires a damping
ring to reduce the emittance. Electron and positron bunches are accelerated with a linear
accelerator and once they reach their target energy, they are injected into the storage rings.
This injection happens continuously during the operation. The SuperKEKB]|accelerator
is an asymmetric collider, where the electron ring operates at 7GeV ( High-Energy Ring
(HER)) and the positron beam at 4 GeV ( Low-Energy Ring (LER)). The collision takes
place at the Belle I experiment with the center-of-mass system (cms) collision energy
is the Y(4S5) resonance at /s = 10.58 GeV, so that it enables decays into B-meson pairs.
The lab frame is boosted due to the beam asymmetry with a Lorentz boost of Sy = 0.28 in
the electron beam (forward) direction. This enables the precise measurements of B- and
D-meson decays, where the decay time is expressed in travel length. The main processes
including their cross section is discussed in Section 3.4l

The accelerator is designed to achieve an instantaneous luminosity of £ = 6 x 10% cmﬂsfl7
and an integrated luminosity of [ £d¢t = 50 ab_1|2]. Achieving this high instantaneous
luminosity requires the particle bunch lengths to be small, and extremely small horizontal
and vertical beam sizes, which is known as the nano-beam scheme, and shift the bunches
using crab cavities to align the bunches at the interaction point [17]. The luminosity is then

expressed using the beam currents I are increased, the vertical beam-beam parameter £, ;.
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electron-positron
: injector linac
o !

Figure 2.1: Schematic view on the SuperKEKB| accelerator complex. Taken from [15].

is increased, and the vertical beta function at the Interaction Point (IP) 3] is decreased|2]:

I
L x igyi.

7 (2.1)

Increased beam-beam parameter increases the collision probability but also makes the
beam more unstable. The parameters above are continuously adjusted to achieve the target
luminosity and the highest instantaneous luminosity achieved at the time of this thesis is
L£=51x10*cm % 18).

2.2 The BellelIl Detector

Particle collisions occur at the [P, with the Belle II detector [16]| detecting the particles
produced in the collision. Starting from the [IP, it consists of a charged particle spec-
trometer, followed by particle identification systems, the electromagnetic calorimeter, a
superconducting solenoid, and the Kg and muon detector. A schematic view of the detector
is given in Fig. 2.2, including the relevant subdetectors arranged around the [P to achieve
a 4m coverage in a cylindrical shape. The detector is asymmetric with a larger detector
region towards the forward direction, due to the boosted lab frame in the direction of the
electron beam.

The Belle II coordinate system is centered at the [P, with the positive z-axis pointing in
the direction of the electron beam. The z-axis is horizontal, pointing outward from the
accelerator center, while the y-axis is vertical and points upwards. The polar angle 6 is
defined from 0 to 7, where # = 0 describes the forward direction, building the longitudinal
plane aligned with the detector’s solenoid axis. The azimuthal angle ¢ is defined from —=

to 7 in the transverse x-y plane orthogonal to the detector’s solenoid axis, with positive x
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Resistive Plate Counters (RPC) (outer barrel)
Scintillator + WLSF +MPPC (endcaps, inner barrel)

K. and muon detector (KLM): ]

Csl(Tl) crystals
waveform sampling (energy, time, pulse-shape)

[ Electromagnetic calorimeter (ECL):

Trigger:
Hardware: <30 kHz
Software: <10 kHz

2 layer DEPFET pixel detectors (PXD)

Vertex detectors (VXD):
4 layer double-sided silicon strip detectors (SVD)

Particle Identification (PID):
Time-Of-Propagation counter (TOP) (barrel)
Aerogel Ring-Imaging Cherenkov Counter (ARICH) (FWD))

He(50%):C2Hs (50%), small cells,
fast electronics

[Central drift chamber (CDC):

DEPFET: depleted p-channel field-effect transistor
WLSF: waveler
MPPC: multi-pixel

1 photon

Figure 2.2: Schematic overview of the Belle II detector at the collision point of the
electron-positron collider, including the sub-detectors. Taken from [19]

and y = 0 being ¢ = 0.
I give a short explanation of the different subdetectors in the following, with a complete

description provided in [16].

2.2.1 Tracking and Vertexing Detectors

The charged particle spectrometers measure the trajectory of the electromagnetically charged
particles, referred to as tracks. As these particles traverse through the detector, they ionize
the detector material, with the resulting signals recorded. Due to the magnetic field of 1.5T
the particle trajectories are bend, which enables the identification of the electromagnetic
charge of particles and their momentum. The Belle Il tracking detectors consist of three
subdetectors. The first two are the high granularity Pixel Detector (PXD)| |20, 21] around
the TP, followed by the Silicon Vertex Detector (SVD) [22] detector. Both detectors have
a high spatial resolution to resolve the decay vertices close to the [P from among others
B-meson, D-meson, or Kg decays. The main tracking detector is the CDC| |23, 24|, which
I describe in detail in Section 2.3/ as the main detector of this work.

I describe the remaining two detectors in the following.

Pixel Detector

The [PXD) detector consists of two silicon sensor layers, located around the beam pipe with
a radius of 1 cm around the [IP. The first [PXD|layer is located at 1.4 cm, spanning from
-4cm to 5cm in the z-direction. The second PXD) layer is at 2.2 cm with the z-coordinate
ranging from -5cm to 9cm. To minimize the material budget, the PXD) sensors are made
up from Depleted Field Effect Transistors to enable very thin layers. The pixel sensors

on the two layers range from 50 um x 55 ym to 50 ym x 85 pm, arranged in modules of
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250 x 768 sensors, with 16 modules on the first layer and 24 modules on the second layer.
Charged particles traversing the sensor produce electron-hole pairs, where the electrons are
measured with their three-dimensional coordinates with a spatial resolution of PXD) of
12 pm.

During data taking from 2018-2022 (run I), only the first layer was functional, besides two
modules that were installed on the second layer, due to a module on the first layer not
working. The second layer was installed during the time between run I and |data taking
starting from 2024 (run II).

Silicon Vertex Detector

The SVD|is constructed from four layers of double-sided silicon strip sensors. The layers
are located at the radius (and z-coordinate) of 3.9cm (-9cm to 14.7cm), 8cm (-16 cm
to 21cm), 11.5cm (-21cm to 29cm), and 14cm (-26 cm to 35cm), covering an angular
acceptance of 17° < 6 < 150°. The forward modules of the SVD are slanted in the
direction of the beam pipe. When a charged particle traverses the material and ionizes the
material, electron-hole pairs are created. While holes travel to the strips parallel to the
z-axis, electrons travel to the strips aligned perpendicular at r — ¢ in the transverse plane.
By combining the information of the measured clusters on both sides of the silicon strip
sensors, the three-dimensional information can be determined, enabling a spatial resolution

between 18 ym to 35 pm.

2.2.2 Particle Identification Detectors

While all subdetectors except the PXD|contribute to identifying the different particle types
traversing the detector, there are two detectors dedicated to identifying charged pions and

kaons.

Time-Of-Propagation Counter

The Time-Of-Propagation counter (TOP) detector |25] covers an angular region of 31° <
§ < 128° and is located outside of the CDC|in the barrel region of Belle II. The TOP
uses Cherenkov radiation to identify particles. When a charged particle traverses one of
the 16 quartz bars aligned parallel to the z-axis, it emits Cherenkov photons at a specific
angle depending on its velocity. The photons travel through the quartz, with a mirror
placed at the forward end, and are read out with a photomultiplier at the backward end.
By measuring the time the photons take to propagate through the detector together with

the position of the photons at the backward readout, pions and kaons can be identified.
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Aerogel Ring-Imaging Cherenkov Detector

The Aerogel Ring-Imaging Cherenkov detector (ARICH) detector [26] is located in the
forward direction of the detector and has an acceptance of 14° < § < 30°. As the TOP
detector, the particle identification is based on Cherenkov radiation emitted according to the
particle velocity. This detector uses proximity-focusing ring-imaging detector technology
based on two layers of silica aerogel tiles, where the photons are collected via hybrid

avalanche photo detectors.

2.2.3 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECL) |27] measures the energy of particles. It is a
homogeneous calorimeter with scintillating thallium-doped caesium iodide crystals with
a depth of approximately 16 radiation lengths. The crystals are ordered in the barrel
and the endcaps in forward and backward direction, covering an angular acceptance of
12.4° < 6 < 155.1° with two gaps between 31.4° < 6 < 32.2° and 128.7° < # < 130.7°. The
energy of the particles is measured with the electromagnetic shower they induce in the
crystals. The photons that are created within this shower are collected by photodiodes at
the end of the crystals, where the collected energies are clustered together building the
ECL clusters. These ECL clusters are combined with the tracking information to find out
if the shower came from a charged particle leaving a track or neutral particles like photons
or 7’ They can also be used to identify particles, as for example electrons deposit nearly

their full energy in the ECL, while muons deposit low amounts of energy.

2.2.4 Kg and Muon Detector

The outermost detector after the solenoid is the K} and muon detector (KLM)|28, 29],
detecting muons that only interact minimal with the previous detector material and long-
lived neutral kaons Kg. Similar to the |[ECL, it is arranged in three regions with the barrel
and two endcaps, leading to a total angular acceptance of the KLM]of 18° < # < 155°.
The KLM]| consists of alternating absorber plates and active material detector layers.
The absorbers are iron plates, which also serve as magnetic flux return for the solenoid,
which provide together with the calorimeters’s 0.8 interaction lengths for the Kg to shower
hadronically and additional 3.9. These hadronic showers can then be detected by the ECL
or KLM.

Due to the high background particle flux, scintillators are used in the endcaps and for the
first two barrel detector layers. The later 13 detector layers in the barrel are made up from
resistive plate chambers. While Kg are identified by their hadronic shower, clustering the
KLM)| measurements together, muons are identified by comparing KLM|measurements with

their extrapolated trajectory.
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2.2.5 Trigger System

While the bunch crossing rate at SuperKEKB is 250 MHz, the process rate for the T(4S) at
the target luminosity is at 0.67 kHz|[11]. Particle collisions are much less frequent than the
_l’_ —

e (7)
with an angle that the electron or positron can be detected within the [ECL at a rate of
44.6 kHz. Because there are bandwidth restriction in the Data Acquisition (DAQ), the

storable rate cannot exceed 10kHz. To achieve this reduced rate, the measured data is

bunch crossing, with the most common occurrence being Bhabha scattering e e ™ — e

reconstructed and selections are applied to decide if the measured data should be saved or
can be discarded, referred to as trigger systems.

This reconstruction is first done using a hardware-based trigger system, which is called the
Level 1 trigger (L1 trigger) in Belle II, in which the rate is reduced to 30 kHz. The L1
trigger uses field-programmable gate array (FPGA)s to combine the information from the
CDC, ECL, KLM and [TOP)| to decide if an event should be kept or not.

In a second step, the software-based High Level Trigger (HLT) reconstructs the event using
the Belle Il reconstruction software on CPUs excluding the PXD. The [PXD|is excluded
due to the placement of the readout electronics outside of the detector acceptance, which
decreases the material budget but also makes simultaneous readout of the pixels no longer
possible. Instead, the time of readout is integrated which in return increases the occupancy
making the PXD) clusters unable to be included in the reconstruction. Instead, once the
HLT]| decides to keep an event, the reconstructed track information is used to define regions
of interest in the PXD| where the pixels are read out. With the [HLT, the rate is reduced
to 10kHz.

These triggers are employed to filter interesting physics events according to the Belle II
physics program|11], while rejecting uninteresting events such as Bhabha scattering or beam

interactions outside of the collision point.

2.3 The Central Drift Chamber

The CDC|is the main tracking detector of Belle II, necessary to measure the momentum of
particles and provide particle identification for low momentum particles that do not reach
the outer detector systems.

Charged particles travel through the 50% helium and 50% ethane gas mixture while ionizing
the gas. In comparison to the PXD and [SVD) silicon based detectors, the (CDC|has a
lower material budget. Through an approximately radial electric field, the electrons and
ions are separated and the electrons are accelerated and amplified in the gas towards the
sensor anode due to the high wire voltage [30].

The (CDClis a 233 cm long cylinder with a radius from 16 cm to 113 cm, that consists of
14,336 gold-plated tungsten sensor wires and 42,240 aluminium field wires. The wires are

aligned to form 10 x 8mm? and 18 x 18mm” large drift cells, with the sensor wire in the
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middle and the field wires surrounding to span the electric field in which the electrons drift
to the sensor, as shown in Fig. 2.3. When a signal is measured, the timing signal is is
recorded with a Time-to-Digital Converter (TDC) with a resolution of & = 0.98 ns. The
total timing of the measurement is given with

a-TDC =Ty — Tiop — Taript — Tprop (2.2)
with the collision time Tj, the time-of-flight from the collision point to the drift cell T},
the drift time of the ionized electrons to the sensor wire Ty, ¢, and the time the signal
needs to propagate through the wire to the backward readout electronics T}, [24].
The drift length is calculated from the drift time using the time-to-space x — t relation as
shown for example in Fig. 2.3, The drift length resolution is about 120 ym. As it is unknown
where in the drift cell the particle passed through, the measured signal is expressed in the
drift circle around the sensor wire, as only the length the ionized electrons travelled is
known.
While the time of flight and propagation time is O(1)ns, the drift time of the ionized
electrons is much larger and reaches values over 600 ns depending on the readout window.
The propagation time of the signal along the wire is orders of magnitude shorter than the
electron drift time. As the signal is only read out at the backward end of the wire, the
measurement provides no information about the position of the hit along the sensor wire.
In addition to the time of the signal, the digitized signal amplitude [Analog-to-Digital
Converter (ADC)| count, which is proportional to the energy deposition of the particle, and
the Time over Threshold (TOT) are also provided.

-
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(a) Drift cell schematic. (b) Drift cell x — ¢ relation.

Figure 2.3: The left figure shows a schematic view of a charged particle (grey) passing a
drift cell bound by the field wires (blue), including the drift path of the electrons (purple)
and the resulting drift length (orange) with the drift circle (yellow). The right figure, taken
from |24], shows the non-linear = — ¢ relation between the drift time and drift length of
such a drift cell.



10 2.3. The Central Drift Chamber

120 140/ Belle Il Simulation (own work)

Belle 1l Simulation (own work)

Barrel

1003‘ 120 \ /
§100 5 Z .
- © 7 o
o~ ; ”l 1
> 80| =
£ + P g
S ~ © o
= X< 60y @

40

20

—0100 =50 0 50 100 150

0,

20 40 60 80 100 120
X (cm)

(a) Superlayer arrangement in x — y. (b) Superlayer arrangement in p — z.

Figure 2.4: (CDC geometrical overview in the x — y plane (left) and the p — z plane, where

p =1/ % + y2 (right). Axial superlayers are colored blue, stereo superlayers colored grey.
The superlayers are annotated according to their naming scheme in Table 2.1.

The full arrangement of the sensor wires is given in Fig. 2.4 for the transverse x — y plane
and the p — z plane, with p = \/3:2 + y2. The CDC covers the acceptance region of
17° < 6 < 150° and the full azimuthal angle in 27. The wires are arranged in 56 layers,
with groups forming the axial and stereo superlayers as seen in Table 2.1. Particles with a
polar angle between 35.4° < § < 123° traverse all layers of the CDC if their momentum is
high enough. Particles with a polar angle between 17° < 6 < 35.4° leave the CDC early
in the forward endcap and particles with a polar angle between 123° < 6 < 150° leave
the CDC|early in the backward endcap. Axial superlayers (A) are aligned in parallel to
the z-axis, enabling the two-dimensional trajectory. Stereo superlayers (U,V) on the other
hand are tilted in respect to the z-axis according to the stereo angles given in Table 2.1
and visualized in Fig. 2.5. This shift in the wire alignment allows for the measurement of
particle trajectories in z-direction. A typical event display for an Y(4S5) — BTB™ event

in the |CDC]is shown in Fig. 2.6, where as reference position for the stereo wire z and y

Table 2.1: Configuration of the CDC| sensor wires, taken from [16].

Superlayer  Niver  Nsensor cells r (cm) Stereo angle (mrad)
Axial Al 8 160 16.80 — 23.80 0.0

Stereo U2 6 160 25.70 — 34.80 45.4 — 45.8
Axial A3 6 192 36.52 — 45.57 0.0

Stereo V4 6 224 47.69 — 56.69 -55.3 —-64.3
Axial Ab 6 256 58.41 — 67.41 0.0

Stereo U6 6 288 69.53 — 78.53 63.1 — 70.0
Axial A7 6 320 80.25 — 89.25 0.0

Stereo V8 6 352 91.37 — 100.37 -68.5 —-74.0
Axial A9 6 384 102.09 - 111.14 0.0
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Figure 2.5: This figure shows the x — y projection of the CDC sense wires. The axial
wires, which are aligned along the z-axis and therefore have the same projected z and y
position over their entire length, are drawn in blue. The stereo wires, which are tilted
with respect to the z-axis, are shown by indicating their positions at both ends of the wire:
the backward end in red and the forward end in purple. A grey line connects these two
positions, illustrating the projected displacement of the stereo wires in the x—y plane as a
function of z.
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Figure 2.6: Figure and text taken from [1|: Typical event display in the z-y plane
(Fig. 2.6a) and the z-p plane (Fig. 2.6b) for a simulated Y(4S) — BT B~ event with high
data beam backgrounds. In the xz-y plane, filled colored circular markers represent signal hits,
while filled gray triangular markers represent background hits. These markers correspond to
the locations of the sense wires at the z position of the wire center, for wires with recorded
ADC signals. In the z-p plane, only the signal hits are shown. The three detector regions,
forward endcap, barrel, and backward endcap, are also indicated in the z-p plane.

position the middle of the wire as shown in Fig. [2.5.






Chapter 3

Dataset

In this chapter, I provide a detailed overview of the datasets utilized throughout this thesis.
I begin by describing the simulation in Section 3.1. Next, I discuss the datasets employed
for training the novel (GNN|algorithm developed in this work in Section 3.2, Following the
description of the training data, I present the evaluation samples used for both measured
data and simulation in Sections 3.3/ and |3.4. Finally, I describe the dark sector motivated

samples in Section 3.5.

3.1 Simulation

To develop and evaluate a new tracking algorithm, it is necessary to know the underlying
truth. For this, I simulate events described in the following Section 3.2/ with basf2. Within
basf2), the complete detector geometry and the interaction of the generated particles with the
detector are simulated using GEANT4. The detector response is also simulated, resulting

in digitized detector outputs close to the data taken at Belle II.

3.1.1 Beam Backgrounds

Besides the simulated signal samples, due to the beam interplay there are additional
measurements in the |[CDC not coming from the signal process, that are now described
following |31, 32|. Due to the increased beam current and Belle II nano-beam scheme,
particles can deviate from their original orbit and can hit the beam pipe or other material
close to the detector. This can generate shower particles that can then be measured in the
detector, referred to as beam induced backgrounds. While |31] gives a complete overview
over all effects, the most relevant effects in the |CDC|regarding the track finding are the

following;:

Particle Scattering Two particles in the same beam bunch can coulomb scatter, which
causes one of the particles to lose and and the other to gain energy, which results in

deviating from the expected beam orbit. This effect is called the Touschek rate and is

13
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Figure 3.1: Example event displays in the z-y-plane for beam-background overlays.
Figure 3.1a shows an example pattern for the cross talk in the red box as well as annotate
the track signature in one beam background event taken from data from experiment 26 run
1430. Figure |3.1b shows one example event for the simulated beam background.

proportional to the beam current squared and inversely proportional to the number of
bunches in the ring and the beam size that is reduced due to the Belle II nano-beam
scheme, increasing the number of background hits with higher luminosity achieved
during the run period. Besides scattering within itself, the beam can also scatter at
gas atoms in the beam pipe, either by coloumb scattering or bremsstrahlung, or other
structures. If this interaction occurs close to the Belle Il experiment, the shower
particles can reach the detector. This effect is proportional to the beam current and

the number of gas molecules.

Luminosity backgrounds The collision of beams has a very high cross section for radia-
tive bhabha scattering and two photon processes, which is uninteresting physics wise

but increases the occupancy of the detector.

Cross-talk If there is a large charge deposition in one of the readout channels in the (CDC|
it might happen that this leads to neighbouring channels being triggered too, due to
the charge leaking in to the neighbors.

Particle scattering and luminosity-related backgrounds can produce track-like signatures or
isolated wire hits, for example when Bremsstrahlung photons convert into electron—positron
pairs that are trapped in the magnetic field and detected by only a single wire. An example
of a track signature is shown in Fig. 3.1a. Cross talk results in large cluster-like patterns,
highlighted for one example in Fig. 3.1al

The number of background hits is dependent on the beam conditions and the luminosity, as

well as the gas condition of the |(CDC. Fig. 3.2/ shows the number of background hits, with
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Figure 3.2: Number of beam background CDC Hits for different experiments and runs as
well as the simulated backgrounds.

their respective median, standard deviation and associated luminosity values in Table 3.1.
The numbers are shown for different experiments and runs of Belle II data taking. Runs
represent continuous data-taking periods, where the run number increases whenever data
taking is restarted. Belle II groups runs into experiments based on consistent detector
conditions and similar L1 trigger and HLT software configurations. The recorded in-
stantaneous luminosity is the peak instantaneous luminosity, which varies during the run
due to adjusted beam parameters, but shows a trend where an increase in instantaneous
luminosity increases the number of beam-background hits. Especially towards the end of
run I, which includes experiments up to 26, the number of beam-background hits increased
drastically over 7 months, from 338 to 1260 for the later runs. Additionally, the spread of
the distribution also increased, with the standard deviation of the distribution going from
111 to 229 hits. However, the instantaneous luminosity or the beam conditions alone cannot
explain the strong increase in beam background hits. Run 2 started in January 2024 and
experiment 35, run 714 is from October. Here, although the beam conditions are comparable
to experiment 26, run 1430 and the peak instantaneous luminosity is significantly lower,
the number of beam-background hits is significantly higher. One assumption for the high
increase is either the gas conditions of the CDC| or the Malter effect [33, 34|, which is

explained in Section 6.4.

For the simulation, I overlay randomly triggered events from data that have a very
low probability to contain actual collision data from the data-taking period of run I
with beam-background distribution of experiment 26, run 1430. As the number of these
overlays is limited, I combine multiple runs with an average instantaneous luminosity of

about Ly = 3.53 x 10°** em ™2

resulting in the high data beam backgrounds with over 2 million overlays available. If not

s~! and similar median number of beam-background hits,

specified differently, the beam-backgrounds used for simulation for any results shown within

this thesis are the high data beam backgroundss.
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Table 3.1: Experiment and Runs with their time and respective luminosity. The choice of
runs is inspired by [3].

Peak inst. luminosity ~Beam-background hits

Experiment  Run Date (in 103 cm_2s_1) Median Std. Dev.
22 30 30.11.2021 2.4 338 111
22 468 15.12.2021 3.2 541 166
24 2176 21.04.2022 3.4 604 167
26 898 31.05.2022 3.2 836 223
26 1430 11.06.2022 3.6 1216 229
35 714 27.10.2024 2.1 1645 268
low simulated beam background release-06 1.06 367 91
low simulated beam background release-08 3.0 440 84
high simulated beam background release-08 60.0 3980 185

There are also centrally produced simulated beam background events approximating the

collider conditions in 2021 [31, 32| low simulated beam backgrounds corresponding to an

instantaneous luminosity Lyeam = 1.06 X 10** em?s™! available. The statistics are way

higher, but some effects, such as cross talk and the track signatures, are underestimated.

This can be seen when comparing the example display of Fig. [3.1a taken from data with
the simulated beam-background display of Fig.|3.1bl It is explicitly stated when the low

simulated beam backgrounds are used.

3.1.2 Detector Degradation

Due to all the effects mentioned in the previous chapter, the occupancy increases which also
increases the current in the CDC. This can lead to a faster chamber ageing as depositions
can build-up on the wires and will be explained shortly following |30].

Depositions on the anodes can lead to a decrease of the amplification power. If the build-up
is conductive, the wire radius is increasing, reducing the amplification range. If the build-up
is insulating, a counter field can build, also reducing the amplification. In the worst case,
whiskers that deform the wire can build up, impacting the electric field structure and
enabling point discharges, either in a permanent underlying current or random signals.

If insulating depositions are build-up on the cathodes, then the Malter effect can happen
[33]. Here, positively charged ions accumulate at the insulation layer of the cathode. This
ion layer builds as field between itself and the cathode and can become strong enough to
induce field emissions of electrons from the cathode. These electrons then drift towards the
anode, being amplified which generates more positive ions, that collect at the insulating
layer, which either maintains or increases the field strength. In the end, this leads to a
continuous current without any external impact. This is known as the malter current, where

due to the constant current signals are measured in the affected wires even in the absence of
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Figure 3.3: Figure 3.3a shows the accumulated charge per layer of the (CDC|as reported
in Belle II internal meetings [36] for the data taking period of run L. Figure 3.3b shows
the approximated detection inefficiency per layer according to Eq. (3.1) for four different
values of C.

ionizing particles going through the gas. Furthermore, real signals measured by a charged
particle ionizing the gas can be overshadowed by the malter current, making it unable to dif-

ferentiate or measure the signal at all. The detector operation can also become very unstable.

The detector degradation is measured with the accumulated charge on each wire, shown
for the frun I period in Fig. 3.3a, with 150mC/cm in the innermost layer and around
35mC/cm in the outermost layer. The ageing of the CDC and its effect on the trackfinding
performance is also discussed in detail in the thesis [35] I supervised . I model two effects

regarding the detector degradation.

Wire ineflficiencies

With the amplification power decreasing or signals being obscured by either a permanent
current or sudden spark, this means that the wires get less sensitive to detect less signal.
This results in not measuring certain hits in the particle trajectory. As the detector
degradation effect is dependent on the particle flux [30], the inner part of the CDC|is the
most effected, as this region is the most dense one. The accumulated charge on the |CDC
layers over the run I datataking period is shown in Fig. 3.3a. I use the following formula

to approximate the wire efficiency for both anode-aging and malter effects:

No Lo

. 1
N, L (3.1)

€layer,i = 1-C
Ng and N; refer to the number of wires in the layer 0 and the i-th layer respectively of
the |CDC| as the charge accumulation decreases the more wires are available. The length
of the wires is also relevant for the accumulation, where longer wires are less effected by

the charge accumulation, described by the fraction of the length of the 0-th layer Ly to



18 3.1. Simulation

the i-th layer L;. Furthermore, the value C is introduced as a tunable parameter to adjust
the efficiency, where at a value of C' = 0 all wires have perfect detection capabilities and
with a value of C = 1 the innermost layers of the (CDC|are not able to detect anything.
Figure 3.3b shows the inefficiency of the wire with

wire inefficiency = 1 — detection efficiency,

matching the shape of the accumulated charge during data taking, which is especially

impacted in the first layers.

Disabled Boards

During data taking, it can happen that one readout board produces multiple errors. Possible
errors can result from radiation on the readout boards as they are located in the detector
at the |[CDC|. Another issue may arise from high occupancy due to the beam background
conditions, where the buffer might not be enough to handle the large data amounts. Instead
of stopping the run and additional time required for bug fixing, its possible to disable the
problematic board for the ongoing run, which minimizes the data-taking downtime. As a
drawback, the detector coverage is now reduced as nothing is measured for this respective

region.

Wire Efficiency Map

Both the wire inefficiencies and the disabled boards are included in the simulation. They
are measured in data for a combination of runs in an experiment over a certain time period.
Figure 3.4al shows the wire conditions for experiment 22, run 30 from 2021.

A total of 121 wires is completely off, and 430 wires have decreased efficiency. Figure 3.4b
shows the wire conditions for the end of [run I. In comparison to 2021, now a total of
168 wires are off and 809 have decreased efficiency, increasing the rate of affected CDC
wires from a total of 3.8 % to 6.8 %. These specific wire maps are used for the simulation
with the data beam backgrounds. For the simulation including the low simulated beam
backgrounds, the averaged wire efficiency map over the full run I period is used which is
shown in Fig. [3.4c. Additionally, I include one approximation of conditions for the [run
11 using Eq. (3.1) with C' = 0.35 and a worst-case scenario for the disabled boards, where
2 boards in one superlayer are disabled right after each other, effectively disabling the
superlayer in this ¢-region, for being able to probe the tracking robustness against this

scenario. One can see that the inner superlayer of the CDC|is impacted the most.
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Figure 3.4: Wire efficiency maps of the |CDC used for simulation for different experiments
and run in Fig. 3.4a and Fig. 3.4b and the average wire efficiency map over the full run I
data taking period, used in combination of the low simulated beam background samples.
Coldred wires have a decreased efficiency of less than one, and wires that are coloured red
are completely off. The large regions correspond to disabled boards. If these regions are red,
the boards were disabled for the full integrated time period, if they are coloured differently,
they were disabled during this time period because an issue was raised.

3.2 Training Datasets

For the development of the new tracking algorithm, the training dataset is the most
important part. The dataset used in this thesis is also published in [1], and this section
will follow the description closely. The following are the key signatures for the tracking

algorithm:

1. Tracks with a low momentum (p; > 0.4 GeV) have a large curvature and form circles
in the |CDC, even with the possibility to curl through the detector multiple times,

whereas tracks with a high momentum have a small curvature and leave the detector
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Table 3.2: Text and content adapted from [1|: Event samples used for training and
validation. See text for details.

category name Ogen (%) rgeDn (cm) aggl (°)
1 prompt fwd 17.0 - 35.4 0 0

2 prompt brl 35.4 - 123.04 0 0

3 prompt bwd 123.04 — 150.0 0 0

4 prompt full 17.0 — 150.0 0 - 100 0

5 displaced fwd 17.0 - 35.4 0—-100 0

6 displaced brl 35.4 —123.04 0 - 100 0

7 displaced bwd 123.04 — 150.0 0 — 100 0

8 displaced angled  17.0 — 150.0 0 - 100 0-30
9 vertex large 17.0 - 150.0 0 - 100 0-90
10 vertex small 17.0 — 150.0 0 - 100 0—-25
11 mix 4-+10 - - -
category name Generator

12 BB’ EvtCen

13 B Bt EvtGen

in an approximately straight line.

2. Tracks can either exit the detector in the barrel region, traversing the full detector,

or leave the detector early in either the forward or backward direction.

3. Displaced vertices can have small opening angles, potentially overlapping in their
trajectory, or large opening angles where the tracks are well separated but might go

along one |CDC]layer.

The goal is not to bias the tracking algorithm towards specific physics processes. Therefore,
I create a dataset that does not follow conservation laws for charge, energy, momentum,
lepton flavour, and more, but instead uses particles drawn randomly from the parameter
space defined in Table 3.2. Most of the events in the detector have very prompt tracks
that are coming from the 1P} or very close to it, so that they decay in the inner tracking
detectors. The main target of this work is to develop a tracking algorithm that works better
for tracks coming from a displaced vertex than the current one, where the displacement is
so large that it decays in the |[CDC. For the tracks in the categories 1-11, muons are used,
with their charge-conjugate state implied. All the generated quantities for these categories

are drawn randomly from independent uniform distributions for each charged particle.

3.2.1 Prompt Sample

The first four datasets in Table |3.2 are prompt tracks that come from the [IP. I simulate
samples in equal parts that go into the forward, barrel, and backward direction to enrich
the dataset with shorter track signatures, categories 1-3. To prevent the model to learn

detector regions as a signature, I also add one combined category 4 where tracks can go to
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Figure 3.5: Transverse momentum of the two particles pi\fl(% and p}:\:[(% in the different

vertex samples from h — putp” (left), Kg —Sata (middle) and the category 8 samples
described in Table 3.2

the full |CDC acceptance region. The momentum for these tracks is sampled uniformly in
Pt,gen from 0.05GeV to 6 GeV. I do not sample momentum higher than py 4., =6 GeV, as
these tracks are mostly going straight through the detector with a small curvature. For
these tracks, the resolution in the end is dominated by the track fitting algorithms described
in Section 5.1, and an initial estimate of up to 6 GeV event for higher momentum tracks is

sufficient.

3.2.2 Displaced Vertex Sample

Using specific physics processes with displaced vertices, such as dark matter candidates
(h — p ) [12] or K9 mesons [37] (see Section 3.5), introduces a bias in the training,
since the model adapts to the underlying physics parameters.

For example, in the case of the b — pp~ sample, the two displaced tracks from the
h vertex in the chosen parameter configuration combined to a transverse momentum of
py = 4.5 GeV. This can be seen in Fig. 3.5a. When training on these events, the model
learned that for vertices with displacements greater than 30 cm, the sum of the track
momenta should reproduce this value. As a result, it effectively applied a scaling factor to
individual tracks whenever the true combined p, differed.

The same effect is observed when using Kg events for training (Fig. 3.5b. Furthermore, due
to the lifetime of 2.7 cm|37], not enough statistics are available for displaced tracks over
30 cm.

To avoid any bias, because particle mass, momentum, and opening angle are strongly
correlated, I instead generate training samples using random opening angles for each track
from the vertex.

At first, a starting position is chosen with v, v,, and v, in 3D with

rggl = \/v2 + U; + 2. (3.2)
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Figure 3.6: Pointing angle for o?P = 0° for the blue particle and o?P = 45° for the red
particle. The yellow cross shows the starting position of the particle, where the yellow solid
line shows the vector connecting the interaction point and the starting position (the yellow
dashed line is the extension), and the black vector shows the particle momentum.

Two particles with opposite charge are generated at this starting position. For each particle,
I create a momentum vector, randomly sampled from a uniform distribution in p from
0.05 GeV to 6 GeV. The momentum direction is generated from the rotation angle aggl with

respect to the vector connecting the origin and rge[i for a randomly selected perpendicular

2D
gen:

By using this approach, the momentum of both particles is no longer correlated as shown
in Fig. 3.5c.

direction. One example is shown in Fig. |3.6| for the simplified 2D case with «

One important track signature is particles flying close together compared to those with a
large opening angle. Therefore, I simulate the vertex sample with the large opening angle

for category 9, as well as events with small opening angles in category 10.

3.2.3 Transition Sample

I include a transition sample between the prompt tracks and the displaced vertices. This
approach improved the training result, as the model was not able to predict tracks from
displaced vertices, and in the worst case, the loss also did not converge for this reason.
I displace particles for rggl in the direction of their momentum, so that the momentum
direction and the starting direction align. I also enrich these samples regarding the endcap
region, resulting in samples 5-7. Following the vertex sample generation, I also create single,

displaced, angled particles with aggl in category 8.

3.2.4 Low Momentum Particles

I enrich samples of categories 1-4 with low momentum particles with the momentum p or p;.
To address low momentum track signatures, I randomly sample from a Poisson distribution
with A\ = 1. This means that in about 37% of cases the event is left unchanged, in 37%

of cases one additional low-momentum track is added, and in around 26% of cases two or
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more such tracks are added.

In earlier iterations, I included dedicated samples consisting only of low-momentum tracks.
However, this led the model to learn a distinction between events with only high- or only low-
momentum tracks, rather than capturing a realistic mixture. The reason for this is driven by
the beam-background overlays (Fig. 3.1a)), which can contain beam-background tracks that
are often low-momentum. The probability of obtaining a low-momentum signal track in the
0.05 GeV-6 GeV range is only about 6%, which further reinforced this imbalance. Without
careful treatment, the model can confuse these backgrounds with genuine signal tracks.
Ideally, truth information for background tracks would be available to resolve this, but
including it in simulated beam-backgrounds is computationally expensive, and it is simply
not accessible in recorded data, as these would rely on the current track-finding algorithm
that struggles with reconstructing tracks that do not originate from the interaction point
(Section 5.2).

Since these tracks are background and do not come from the collision, thus not relevant
for physics analyses, I explicitly include their signatures in the training data and train the
model to classify them as background. Enriching the events with low-momentum particles

and creating a mix of topologies proved to be the best approach.

3.2.5 Physics Dataset

While muons are a suitable particle type for training full trajectories through the CDC,
as they interact minimally within the [Belle II| detector material, I also aim to extend the
training to different particle species, as they have different material interactions, which lead
to different energy losses and trajectories. All particles that do not decay within the Belle II
detector are considered |[Final State Particle (FSP) particles. The ones relevant for tracking
are charged particles such as electrons, muons, pions, kaons, protons, and their antiparticles.
While heavier particles such as the deuteron are also [F'SP| these processes are rare and
statistically limited. I want to train on events with higher track multiplicities, as for BB
events in Belle II, an average of 11 charged particles is expected in the [CDCL In addition
to muons, I generated samples with 1-11 particles consisting of a mixture of electrons,
muons, pions, kaons, protons, and their antiparticles, and also increased the average event
multiplicity while reducing the momentum range to 0.05-3 GeV. Nevertheless, the model
achieved the best performance when trained directly on BB events. For interactions of
other particle types with the detector material, I give an update on the training samples in
Section 10.2, as finishing this was out of scope of this thesis.

Training on BB events provides a suitable choice, as these events include realistic momentum
and angular distributions. Given the large variety of possible decay channels, it is highly
unlikely that the model learns any correlations, particularly as the energy and momentum
conservation in the |CDC are further influenced by photon contributions. For the training,
I use EvtGen||38] to simulate B°B° and B~ B™ events.
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3.2.6 Training Dataset Composition

For all events in categories 1-8, I generate 1-6 charged particles, drawn from an independent
uniform distribution. Examples for the event displays are given in Fig. A.1. For categories
1-4, I use an independent uniform distribution of 0.05 < p, < 6.0 GeV, with additional low
momentum particles as described above, and for categories 5-8 an independent uniform
distribution of 0.05 < p < 6.0 GeV. Each sample of categories 1-8 contains 60,000 events.
On average, events in categories 1-8 contain 4.5 particles, corresponding to 276,000
particles per sample. Categories 9 and 10 contain either two, four, or six charged particles,
again drawn from an independent uniform distribution, resulting in 120,000 events with
a total of 480,000 particles. Category 11 is defined as a mixture of categories 4 and 10.
The number of charged particles is drawn from a Poisson distribution with A = 1.5 for the
full momentum range 0.05 < p; < 6.0 GeV, and enriched with additional low momentum
tracks with 0.05 < p; < 0.4 GeV also drawn from a Poisson distribution with A = 1.5. The
number of vertices is also drawn from a Poisson distribution with A = 1.5, resulting in two
oppositely charged particles per vertex.
This yields 240,000 events in each of the major category groups: prompt (categories 1-4),
displaced (categories 5-8), and vertex (categories 9-10). The category 11 sample contains
300,000 events.

I define two training datasets used throughout this thesis:

CAT Finder dataset This dataset consists of 1,180,000 simulated events from cate-
gories 1-11. About 2% of the events are discarded because they either do not contain
any particle with a sufficient number of signal hits in the CDC| for training. The

maximum number of particles in this training set is 15.

CAT B Finder dataset In addition to the CAT Finder dataset, this dataset includes
category 12 and 13 samples with 120,000 B’B° and 120,000 B~ B* events without
requiring a minimum number of particles per event. This introduces an additional
category group of high-multiplicity multi-particle events, bringing the total to 1,400,000

simulated events.

For both datasets, I use 80% for training and 20% for validation. As part of the simulation,
I generate one dataset overlayed with low simulated beam backgrounds and high data beam

backgrounds.

3.3 Technical Evaluation Samples

The evaluation on the training dataset categories is done on a statistically independent
dataset from categories 1-9, containing between 90,000 to 150,000 events with over 1 million

evaluated events.
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I also add neutral kaon K?g — 777 events containing one ng each. The ng decay
vertex is calculated from the nominal Kg lifetime [37] with a uniformly generated trans-
verse momentum of p,(K%) = [0.05 — 3] GeV. The average transverse decay distance is
v, = 8.24cm.

All evaluation events use the high data beam backgrounds overlays, except for the inference
under varying beam background conditions, where I test the pre-trained model robustness
performance on both events with low simulated beam backgrounds and high data beam

backgrounds.

3.4 Belle II Physics Evaluation Samples

It is important to evaluate the performance of a tracking algorithm on relevant processes for
the Belle II physics program|11]. The cross section of Belle IT for various processes at the
cms collision energy /s = 10.58 GeV is given in Table 3.3. The processes are generated using
EvtGen|38], PYTHIAS|39|, KKMC|40|, Tauola|41] and BabaYaga@NLOJ42|. For studies
in this thesis, I generate an integrated luminosity of [ Ldt = 2fb ! of Y (4S), continuum, and
tau pairs according to the cross section of Table 3.3/ for all algorithms that I evaluate. I use
both high data beam backgrounds and low simulated beam backgrounds for the simulation.
For the low multiplicity events, due to the large cross section of the Bhabha scattering, I
do not generate either of these final states according to the expected cross section, nor do
I include additional low multiplicity physics events. Instead I directly simulate 100, 000
ete () and " () events including initial state radiation and bremsstrahlung.

The following sections go into detail about event selections for multiple analyses performed

Table 3.3: Total cross sections of various physics processes at /s = 10.58 GeV at Belle 1T
including continuum, Y (4S5) decays, 7 pair, and low multiplicity events including Bhabha
scattering and e"e” — ' () taken from [11], and the generator used for production.

Physics process Cross section (nb) Generator
T(45) - B
0.510 EvtGen + PYTHIAS

bdo
=

BYB~ 0.540 EvtGen + PYTHIAS
Continuum
ut(7y) 1.605 KKMC + PYTHIAS
dd(y) 0.401 KKMC + PYTHIAS
s5(7) 0.383 KKMC + PYTHIAS
cé(v) 1.329 KKMC + PYTHIAS
Tau pairs - B
T (7) 0919  KKMC + Tauola
Low multiplicity events - o
ete (v) 295.800 BabaYaga@NLO

w () 1.148 KKMC
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on measured data in the later part of the thesis. Analyses on simulation for low multiplicity
events are inaccessible as they would require a large computational effort to simulate

sufficient numbers of background samples, and are therefore not included in the thesis.

3.41 ete” = putu(y)

For the evaluation on simulation, I use KKMC]|to generate radiative muon pairs ete” =

W ()

To evaluate di-muon events on measured data, the selections in Table |3.4] are applied
on the HLT|to sort events during data taking. There are two different HLT selections for
di-muon events, one for events where both muons are reconstructed as matched clusters in
the |[ECL, and one for events where only one muon is reconstructed as a matched cluster in
the ECLL

The first one, where both muons have matched clusters, requires two tracks in the event
with opposite charge, and a back-to-back opening angle between 170° to 190° in both the
azimuthal angle ¢ and the polar angle §. As muons are minimum ionizing particles, the
energy of each matched cluster is required to be less than 0.5 GeV, and the total energy from
track and photon clusters in the ECL| to be less than 2 GeV. Furthermore, the momentum
of both tracks is required to be larger than 0.5 GeV.

The second selection, where only one muon is reconstructed with a matched ECL|cluster,
requires at least two tracks with opposite charge, and also an opening angle between 170°
to 190° in both the azimuthal angle ¢ and the polar angle § between two opposite charged
tracks. The matched [ECL]cluster is required to have an energy less than 1 GeV, and the
reconstructed mass of both tracks to be between 8 GeV and 12 GeV (with /s = 10.58 GeV).
There can be more than two tracks in the second selection.

The events have to pass either one of the two selections to be classified as a di-muon event
and are tailored towards eTe” — /ﬁ/f, where no radiative photon is emitted with high

energy.

For the case where an additional photon is radiated, a different HLT| selection is
applied, given in Table 3.5. The event should have fewer than four tracks. For two tracks
in the event, they have to be in the |CDC acceptance, with at least one (CDC]| hit, and a
matched ECL cluster with less than 0.5 GeV energy. At least one track has to be matched
to a KLM] cluster, if the second one is not, then the |[ECL cluster energy is required to
be less than 0.25 GeV, and the momentum of the track to be less than 2 GeV. The highest
track momentum in the event is required to be larger than 1 GeV, and the lowest track
momentum to be less than 3 GeV. The opening angle between the two tracks has to be
larger than 90°, and the recoil momentum p,ecoii = |Pin — P1 — P2/, with the initial beam
four-momentum p;,, and the momentum of the two tracks p, of the event larger than 0.1 GeV.

Further selections are given in the respective chapter.
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Table 3.4: Event HLT selection criteria for ete™ — whp.

- HLT selection Selection criteria

“Matched clusters two tracks with opposite charge within the CDC acceptance
matched KLM cluster(s) or (Equster < 0.25 GeV and p < 2.0 GeV)
||¢1 — ¢| — 180°| < 10°
|07 + 5] — 180°| < 10°
each matched clusters with Fj ger < 0.5 GeV
total EYCY < 2GeV
both tracks p > 0.5 GeV

Missed cluster at least two tracks with two opposite charge
|61 — 3| — 180°| < 10°
107 + 05| — 180°] < 10°
at least one with ECL cluster matched and E jger < 1 GeV
reconstructed mass of both tracks between 8 GeV and 12 GeV.

Table 3.5: Event HLT selection criteria for e e™ — utp 7.

- HLT selection Selection criteria

" Additional photon Number of tracks < 4
two opposite charged tracks, each |d¥'| < 2.0cm and |20 | < 4.0 cm
one track E.jyster < 0.5 GeV, the other F j qer < 0.25 GeV
In CDC acceptance with at least one CDC hit
at least one matched KLM cluster
matched KLM cluster(s) or (Equster < 0.25 GeV and p < 2.0 GeV)
Highest p > 1 GeV
Lowest p < 3 GeV

|61 — da = 90°
Recoil momentum p,epy > 0.1 GeV

3.42 ete” —ete (v)

To select Bhabha scattering events (eTe” — ee™ (7)), several complementary criteria are
applied, targeting both track-based and calorimeter-based signatures. The selection logic
is summarized in Table 3.6/ and detailed below. The event needs to satisfy one of these
categories to pass the HLT) selection.

For the first category, events are required to have at least two tracks with opposite charge.

3D, must satisfy P > 165°,

The three-dimensional opening angle between the two tracks, «
ensuring a back-to-back topology in the center-of-mass frame. Each track must fulfill
either a momentum requirement p/+/s > 0.175, where p is the track momentum, or an
energy-over-momentum requirement Egj e /P > 0.8, with Eger being the energy of the
associated [ECL/ cluster. At least one track must be matched to an [ECLI cluster. The total
reconstructed energy in the ECL| defined as the sum of energies of all clusters matched to
tracks as well as the remaining unmatched clusters in the event, must exceed 4 GeV.

Alternatively, events can be selected based on calorimeter information alone. Two ECL
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Table 3.6: Event HLT selection criteria for Bhabha scattering.

HLT selection Selection criteria

" Track reconstruction at least two tracks with opposite charge

two-track opening angle o3P > 165°
p/(\/s) > 0.175 or Eyger/P > 0.8 and at least one matched track
Total reconstructed energy of all clusters > 4 GeV

~ [ECL reconstruction  165° < |Getuster,1 — Peluster.2| < 178.5°
178° < (H:Iuster,l + ezluster,Q) < 182°
both E1(>:klus‘cel“/\/g >0.4
at least one Ester/v/5 > 0.45

Radiative Bhabha two opposite charged tracks in the event, both at least 1 |(CDC hit
both 0.7 < Eguster/P < 1.3
CDC | ionization loss within 30% of electron expectation

clusters are required, with the azimuthal angle difference |¢auster.1 — @eluster.2| between 165°
and 178.5°, and the sum of their polar angles (6" cluster,1+4 07,ser 2) between 178° and 182°,
making them back-to-back. Both clusters must have a normalized energy Ejusier/v/'S > 0.4,
and at least one must exceed 0.45.

For the last category, two oppositely charged tracks are required, each with at least one CDC
hit. Both tracks must have an energy-over-momentum ratio 0.7 < Ejyster/P < 1.3, and the
CDC ionization loss (dE/dx, see Section 7.3.1) must be within 30% of the expectation for
electrons, ensuring electron identification and suppressing hadronic backgrounds. Further

selections are given in the respective chapter.

3.4.3 J/4 and Kg Decays in High Multiplicity Events

The high multiplicity |[HLT) selection requires at least three tracks in the event with a
transverse momentum p; > 0.2 GeV and |dIP| < 2 and ]zIP| < 4 and the event should
not be classified as Bhabha scattering according two the track reconstruction selection in
Table 3.6. I evaluate both the J/v and Kg candidates in high-multiplicity events using

measured data. The event selections are described in the respective chapter.

3.5 Dark Sector Evaluation Samples

Another interesting field to study is the search for new physics, especially [DM| as described
in Chapter 1. For this, the focus in this work is on signatures of long-lived particles decaying
into displaced tracks. Two searches performed at Belle II probe such signatures. The first
one is the search for a dark Higgs boson produced in association with inelastic dark matter
[12]. The second is the search for a long-lived scalar particle in flavour-changing neutral
current b — s transitions [13].

Both searches highlight that the Belle II| reconstruction is optimized for short lifetimes,

necessary to measure charge-parity violation in B-meson oscillation. However, the recon-
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struction efficiency decreases for vertices displaced further than the SVD|but still inside
the tracking volume. As I aim to improve the reconstruction for displaced tracks, I include

the samples of these two searches in my evaluation.

3.5.1 Dark Higgs Boson Produced in Association with Inelastic Dark
Matter

A complete overview of the search performed in Belle II, including the theoretical foun-
dations, is given in [3]. The underlying model of this search is a two-mediatior model. It
includes the dark photon [6] A’ that mixes kinetically with the SM photon, and is assumed
massive in the [Belle Il search. As this mixes with the [SM photon, it can decay into [SM
particles or the DM candidate. The DM candidate in this model is a stable Majorana
fermion y; |9, 10], that can be excited to x, via the absorption of a massive dark photon,
called inelastic DM. The mechanism to give mass to the dark photon is done via a dark
Higgs h mechanism similar to the SM|. The dark Higgs can then decay in either DM, or
via mixing with the SM Higgs boson into |SM particles.

The samples used in this thesis are dark Higgs

ete” = Ah(—putp)

events, generated using MADGRAPH5@QNLO [43] with one dark Higgs h — w T, and a
fully invisible decay of a light dark photon A’. The four momentum of the h and A’ can be
calculated via cms energy with the dark Higgs masses m;, = [0.5,2.0,4.0] GeV. The dark
Higgs decay vertex h — u+u_ is pointing back to the interaction point. Here, pointing
refers to the alignment of the momentum vector of the h aligns with the direction of the
vector from the [IP|to the decay vertex of the h . The dark Higgs decay vertex position is
drawn randomly from a uniform rggl—distribution up to 100 cm to ensure enough statistics
of the parameter space of very displaced vertices.

I generate one additional sample near the expected Belle II sensitivity given in [12] with
my = 1.5GeV and the kinetic mixing angle 6 with sin(d) = 10! and a lifetime of

ct = 21.5cm.

Additionally, I include samples following the full decay chain in [12], given by

+ - + - + -

e'e = h(=pp )xaxe(—ee xi)

with the masses m;, = [0.5,1.0,2.5] GeV, m, = 2.5GeV, and an virtual A my = 3m,, .
Here, two displaced vertices are present, one from h — ,u+ 1 pointing back to the interaction
point, and one from the three-body x, decay, where the reconstructable vertex from the
visible 'SM particles e"e” is non-pointing. Non-pointing refers to the case where the

momentum vector and the vertex vector of the x5 do not align. Both decay positions are
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distributed uniformly in rggl up to 100 cm to cover large displacements.
These samples provide both pointing and non-pointing displaced vertices, making them ideal

to test the reconstruction efficiency of my algorithm in a low multiplicity track environment.

3.5.2 Long-lived Spin-0 Particle in b — s Transition

A complete overview over the B — K S search performed in Belle IT/including the theoretical
foundations is given in [44]. Here, a light scalar S is produced in b — s transitions. The
b — s transitions within the SM| are suppressed [45]|, which makes B — KX decays
rare and an opportunity to search for small deviations with respect to the SML The S
exhibits a displaced vertex signature in combination with the kaon, resulting in a clean
experimental environment with low background. I consider decays for the light scalar for
S — u' 'y /r 7T /KTK™. In contrast to the inelastic dark matter case from the previous
section, which involves only four charged particles in the final state, B decays at the T(45)
resonance contain on average about six charged particles in addition to the three particles
forming the signal B-meson. This provides a high-multiplicity track environment to test the
performance of my track reconstruction algorithm for displaced tracks under more complex
event conditions.

The signal sample is generated with EvtGen|38|, using the decay models VSS for T(45) —
BT B~ of a vector particle to two scalar particles, and PHSP (two-body phase space) for
both the BT — KTS and S — 272~ generic decays. The S is generated first with a
lifetime of zero and then displaced according to ¢ . The lifetimes for the signal samples

are simulated for a reduced range in comparison to 13| with
er =[0.01,0.1,1.0,0.5,5.0,10.0, 50.0, 100.0, 10%, 10*] cm.

I will follow the Belle IT convention using m for the reference mass and M for the measured
mass throughout this thesis. The masses simulated for the signal events, where the final

states are kinematically accessible, are
mg = [0.22,0.4,0.9,1.4,1.9,2.4,2.9,3.4,3.9,4.4] GeV
for the S — ptp™,

mg = [0.4,0.9,1.4,1.9,2.4,2.9,3.4,3.9, 4.4] GeV

for S — 777 and

mg = [1.0,1.4,1.9] GeV

for the S — KK~ final state. There are only three mass points for the § — KTK~
due to computational limitations.. These within the mass range relevant for the model

described in [13]. The event selection is given in the respective chapter.
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Metrics

The metrics to evaluate the performance of a new tracking algorithm are defined in [1| and
repeated closely following |1] here. The first step is to find out if a reconstructed track
can be matched to the simulated truth. Given a simulated particle with a number of hits
matched to this particle, the hit efficiency ey,;; is defined as the number of hits matched to
this particle and included in the track divided by the total number of hits matched to this

track:
. Npits(matched and € track)
hit =

4.1
Npits (Matched) (4.1)

When all hits matched to the simulated particle are included in the track, this results in
perfect hit efficiency of 1.0. The next step is the hit purity py; per track. This is the
number of hits matched to the particle and included in the track, divided by the total

number of hits included in the track:

_ Npes(matched and € track)
Phit = Npits (€ track)

(4.2)

The hit purity of a track is 1.0 if all hits included in the track are matched to the same
particle.

To relate a track to a simulated particle, a minimum hit efficiency of €p,;, > 0.05, hit purity
of ppi; > 0.66 and a minimum 7 hits to be included in the track.

The reason for the low hit efficiency is due to tracks that curl within the tracking volume,
thus leaving many hits. The hit purity requirement ensures that at least 66% of the hits
need to be associated with a single unique particle. The hit efficiency and hit purity
requirement are calculated using only (CDC]| hits for the |(CDC|only evaluation, and all hits
of the tracking detectors for the full reconstruction evaluation.

If multiple tracks are related to a particle, the track with the highest purity is chosen to be
matched. If two tracks have the same hit purity, the highest hit efficiency is chosen. The
other tracks are defined as clone tracks. If a track does not achieve the hit efficiency and
hit purity requirements, it is defined as a fake track.

The track efficiency 4 can now be defined using the matched tracks to the number of

31
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simulated particles that leave at least one hit in the tracking detector:

Nk (Mmatched to part.)
Ngimulated (> 1matched hit)’

Etrk = (43)
The track charge efficiency ey o, is the most important performance metric, where, in
addition to the track being matched to the simulated particle, it also needs to have the

correct charge:
N¢ks(Matched to part., corr. charge)

4.4
> lmatched hit) (44)

Etrk,ch =
nsimulated(

The track purity p;, is defined as the number of matched tracks to the total number of

tracks: (matched ¢ 6)
Nerks (Matched to part.
Pirk = RIS . (45)
Nirks

The clone rate is the ratio of the clone tracks to all tracks that are related to a simulated

particle

M¢lone trks (4 6)

Telone = ,
clone T ks (related to part.)

and the fake rate the ratio of the fake tracks to the total number of tracks

Nfake trks
Ttake — n . (4 . 7)
trks

The wrong charge rate is defined by the matched track that has a wrong charge prediction
dived by the number of matched tracks.

Nks(Matched to part., wrong ch.)

. _ ] 4.8
wrong ch. Nks(Mmatched to part.) 9

As tracks can be found, but fail the fitting step, the metrics above are distinguished

according to this difference:

Track finding performance metrics The track finding efficiency, track charge finding
efficiency, track finding clone rate, track finding fake rate and wrong finding charge

rate are calculated with the track objects after the track finding

Track fitting performance metrics The track fitting efficiency, track charge fitting
efficiency, track fitting clone rate, track fitting fake rate and wrong fitting charge rate

are calculated with the track objects after the track finding and track fitting.

These parameters are defined as the performance metrics for the |CDC only evaluation.
The full reconstruction efficiency of different FSP (f) is defined as

Neks(Matched to part. f, corr. charge)

Efficiency(f) = (4.9)

Ngimulated (= 1matched hit)
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with track objects after the full reconstruction.
The track momentum resolution is evaluated using the normalized residuals of the transverse
and longitudinal momentum components, p, and p,, by comparing the reconstructed and

simulated values for matched tracks:

H(Pt,z) _ Pt zrec — Ptz simulated ) (4. 10)
D¢,z simulated

For an unbiased reconstruction, the distribution of n(p; ) is expected to peak at zero. The

resolution r(p; ) is defined as the 68% coverage of the normalized residual distribution,

r(pt2) = Poss (|n(pr.) — Psogs (n(pe.2))]) (4.11)

where P, denotes the gth quantile of the n(p, ,) distribution, with Pjyy corresponding to
the median [46]. In the case of a normal distribution, this definition is equivalent to the

standard deviation.






Chapter 5
Track Reconstruction Algorithms

In this chapter, I discuss the track reconstruction algorithms. Conventional track finding
approaches typically start from seeds placed either at the inner or outer boundary of the
tracking detector volume and then iteratively build the particle trajectories, for example
using a Combinatorial Kalman Filter (CKF)|47]. This strategy cannot be applied to the
CDC. Track finding cannot start from the outside, since a large fraction of tracks never
reach the outermost layers. Moreover, the inner and outer axial layers are parallel to the
z-axis and therefore provide no z-information, only by combining them with the stereo
layers can a full three-dimensional trajectory be reconstructed. For these reasons, a different
approach is used at (Belle II.

The reconstruction is split into two stages. In the first stage, hits originating from the same
particle are grouped together, including an initial estimate of the track kinematics. In the
second stage, a dedicated track fitting algorithm refines this estimate by performing a fit. I
begin by describing the track fitting algorithm in Section 5.1, since its requirements strongly
influence the design of the track finding algorithms. I then present the Baseline Finder,
currently used for track finding in the CDC at Belle Il and implemented in basf2, in
Section 5.2. In Section 5.3, I introduce the new GNN-based track finding algorithm, which
is published in [1|. Plots, text, and tables closely reference the paper. Finally, I provide a
summary of the full track reconstruction chain, including all three tracking detectors, in
Section 15.4.

5.1 Track Fitting

The |CDC track finding algorithm needs to provide the following for the subsequent track
fitting algorithm:

e an initial estimate of the track parameters, which include the track starting point,

the momentum and the charge,

e a set of ordered hits from the starting point,

35
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e an initial estimate of the covariance matrix of the track parameters.

The track fitting is performed using Kalman Filter algorithms implemented in GENFIT?2 [48-
51|. This algorithm recursively predicts the next state of a particle, including the posi-
tion, momentum, and the covariance according to the seed. The Runge-Kutta-Nystrom
method [52] is used to handle material effects such as energy loss or multiple scattering, as
well as non-uniform magnetic fields to extrapolate the particle’s trajectory. By comparing
this prediction of the particle movement with the actual measurement, a new prediction is
obtained for all three parameters, which each hit improving the track parameters. This
approach is very dependent on the ordering. As it might be that the track finding algorithms
assign wrong hits to the track that come from other particles or beam-background, this
decreases the track fit and can result in the fit failing. To prevent this, in addition a
Deterministic Annealing Filter (DAF) is used to add weights to the hits in the trajectory.
This downweights hits far away from the fitted trajectory, with hits being removed from
the trajectory. If too many hits are rejected by the DAF| the track fit can fail. There
are three particle mass hypotheses used in the Belle II track fitting step used to calculate
the energy loss and material effect: pions, kaons, and protons. The latter two are added
as these improve the resolution for kaons and protons. As I focus on muons and pions in
Chapter |6, I only use the pion mass hypothesis for the fitting for the CDC-only results in
Chapter [6. For the chapters from Chapter 7 on, the kaon and proton mass hypotheses are

used in addition.

5.2 Baseline Track Finding

The current Belle II tracking algorithm is described in detail in [46]. The track finding
operates in two steps, a global Legendre transformation [53] and a local cellular automa-
ton [54]. Both of these approaches use pre-filtered hits, using a cut based approach based
on TDC, ADC and TOT (see Section 2.3).

The global Legendre approach operates assuming that the particle trajectory originates
close to the [P, which makes it particularly suited for prompt tracks. This algorithm
operates only on the hits from the five axial superlayers of the |(CDCL The method is
conceptually related to the Hough transform, where circles in a plane are mapped into lines
in a parameter space. In the case of charged particles in a magnetic field, neglecting the
energy loss, the trajectories are described as circles in the x—y plane. To simplify their

description, a conformal transformation is applied to the hit coordinates

2x 2y

u = V=
2 27
r+y

- ) 51

z® + y2 (5-1)
which maps circles passing through the origin into straight lines in the (u, v) plane, requiring
they pass through the IP at (z,y) =(0,0). Unlike point-like hits from the silicon detectors,

either directly from [PXD) clusters or the combination of the silicon strips, the measurement
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Figure 5.1: The left plot shows a drift circle in black, and two potential trajectories for
the left-hit hypothesis in red and green, and for the right-hit hypothesis in orange and
blue. All four trajectories are going through the IP|at (0,0). The middle plot shows the
Legendre transformation of the drift circle under the left hit hypothesis for p, and the
right hit hypothesis p_. The right plot visualizes multiple drift circles coming from four
different particle according to their colour. All figures are taken from [55].

of the |(CDC corresponds to the drift circle with radius d around the wire position (z,y)
(Section 2.3)). To account for this, the Legendre transformation is used to describe the two
tangents to each drift circle, corresponding to the left-hit (+) and right-hit (-) hypotheses.
An example for four different, tangent trajectories for a single drift circle are shown in

Fig. 5.1a. The transformation into the Legendre parameter space (p, ) is given by

p+(0) = % (xcos(f) + ysin(f) £ d), 6 € [0, 7] (5.2)
+y —d

shown in Fig. 5.1b| for the example drift circle. If several drift circles originate from the
same trajectory, their p4 (6) curves intersect at a common point in parameter space. After
transforming all drift circles that passed the background filter in the event, a binary search
in the in (p,0) space is performed to find all sets of tracks as shown in Fig. 5.1c The
main advantage of the Legendre algorithm is its robustness against missing hits along
the trajectory, which may occur due to reduced wire efficiency or masked boards (see
Section 3.1.2). However, since it relies on the assumption that tracks pass close to the
1P}, it is not suitable for particles originating from displaced vertices, as illustrated in
Fig. 5.2a. In such cases, the extrapolated trajectories do not cross the [P as seen in
Fig. 5.2b, and the Legendre transformation cannot describe or reconstruct them. This
effect is most pronounced for particles with low transverse momentum and large open-
ing angles. For high-momentum particles with small opening angles, the trajectory may

by chance pass through the [P, in which case the algorithm can still find the track (Fig. 5.2c).

To reconstruct the full three-dimensional trajectory, hits from the stereo superlayers must
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(a) Neutral particle decaying dis-(b) Extrapolated trajectories for (¢) Extrapolated trajectories for
placed in two charged muons. low momentum particles. high momentum particles.

Figure 5.2: The left figure shows a displaced vertex decaying in two opposite-charged
muons traveling outwards of the detector according to their solid lines. The middle figure
adds the extrapolated trajectory with a dashed line for each particle, showing that the
trajectory misses the interaction point. On the right, the opposite-charged muons have
a higher momentum and a smaller opening angle, which results in their extrapolated
trajectories passing by the [IP.

be incorporated in a second step. Since stereo wires are tilted with respect to the z-axis,
their measured (x,y) position depends on the assumed z coordinate and cannot be assigned
uniquely. While stereo hits are added in a second step to allow the z-determination, it
may happen that parts of the trajectory are missing due to the tight constraints of the
Legendre transformation. To address this, a local Cellular Automaton algorithm is used to
identify short track segments within each superlayer by linking neighbouring hits. These
segments are then combined with the Legendre track candidates using a Boosted Decision
Tree (BDT). During this process, the stereo hit z- and y-reference position assuming z = 0
(see Fig. 2.5) is updated, to the value where the (z,y) position of the stereo hit aligns with

the two dimensional trajectory from axial hits.

Finally, the Legendre algorithm fits the axial hits to a circle in the transverse plane,
providing an initial estimate of the curvature and thus the transverse momentum. A subse-
quent linear fit in the p—z plane using the stereo hits yields the estimate of the longitudinal

momentum.

5.3 Graph Neural Network based Track Finding

Machine learning (ML) is widely used in high energy physics (HEP), and has been shown
to improve performance in multiple areas. An up-to-date overview is provided in the living
review [56]. The task of recognizing an unknown number of objects, in this case the tracks
from the detector hits, is called object detection |57] in computer vision. Object detection is

typically performed using convolutional neural networks (CNNs) [58] or transformer-based
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methods [59], which rely on Euclidean, grid-like inputs such as images. Due to the non-
uniform and irregular structure of the (CDC| especially for the axial and stereo superlayers,
CNNs are not suitable for track reconstruction in [Belle II. Graph representations are
better suited for such data, with nodes representing objects and edges representing their
relationships. |GNNs|operate directly on graphs and have been applied in multiple domains
like materials science and chemistry [60] and medicine |61]. A comprehensive overview of

GNN methods and applications is provided in [62].

In HEP, GNNs|are used to model irregular detector geometries and have successfully learnt
latent representations |63, |64], which will be the basis of the algorithm presented in this
thesis. They have been applied to combine information from subdetectors for particle re-
construction [65], electromagnetic calorimeters [66, 67|, and decay chain reconstruction [68].
Significant efforts on track reconstruction using GNNs [69-72| have been driven by the
TrackML challenge |73, [74]. However, the use case is different as for Belle II, as these
algorithms target the very high-multiplicity environments of the Large Hadron Collider
(LHC) experiments. In these experiments, there are significantly more tracks compared
to Belle II, a higher fraction of sensor hits belonging to the tracks, and simpler track
kinematics, as the tracks are coming from the interaction point with high transverse mo-
mentum. Studies on track reconstruction algorithms that are detector independent typically
focus on idealized detector simulations and tracks with simple kinematics |71, 75|, that
are not displaced. For gaseous detectors, GNNs| have been explored for edge classification
(PANDA [76|, BES III [77]|) and hit classification (COMET [78]), although none address
complex event topologies. Additionally, these approaches require multiple additional steps
to extract the tracks with their respective parameters and currently none provide end-to-end
ML solutions that are proven to be less resource demanding while achieving the same
performance [79-81]. Drift detectors as the CDC differ significantly from pixel and strip
detectors used at the LHC and High Luminosity LHC (HL-LHC), which provide 3D spatial
information. In contrast, the |(CDC| uses indirect measurements of the drift time and wire
position (see Section [2.3), making track reconstruction more complex due to the lack of
spatial information as described earlier in Section 5.2. Beyond GNNs| other ML methods,

such as large language models [82] and transformers [83], are also explored for tracking tasks.

In addition to handling irregular input, |GNNs offer practical advantages. The occu-
pancy of the CDC| varies significantly with up to 15% per event, depending on beam
background conditions (Section 3.1.1) and the number of signal tracks.

As the track finding algorithm needs to run on the CPU-only HLT), it is required to have
less than 2 GB memory consumption and O(100) ms processing time per event. GNNs can
naturally process variable-sized inputs without the need for any sorting or padding, i.e.,
the addition of zero-values to standardize input dimensions. This reduces computational

overhead and makes GNN more memory efficient than transformer models and, in return,
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a suitable choice for track reconstruction in Belle II. I will go into detail about the input
features and the targets for the |GNN|in this work in Section [5.3.1, and follow with the
detailed explanation of the chosen |GNN architecture and training loss, the postprocessing,

and the hyperparameter optimization afterwards.

5.3.1 Input Features and Prediction Targets

The most relevant input feature is the position of the |[CDC hits. Because the |[CDC]is read
out only from the backward end of the wires, the z-position of a hit along the wire cannot
be determined (see Section 2.3). The stereo wires (Fig. 2.5) cover a large range in the z—y
projection, so a fixed reference position along each wire has to be chosen for use as input to

the |GNN| model. I consider two reference positions:
z = 0: the position of the z- and y-coordinates of the wires at z = 0.

middle of the wire: z- and y-coordinates at the middle of the wire as the reference

position.

The difference on the corresponding x- and y-coordinates is shown in Fig. 5.3 for particles
with different 6 angles ranging from 20° to 135°.

The middle of the wire position has the benefit that as the collisions’ |cms| is boosted
towards the forward direction, which results in a smaller shift between the axial and stereo
layers for the majority of the tracks. This can be seen as the stereo layers are aligned for
6 ~60° for the middle of the wire in Fig. 5.3b.

The z = 0 position simplifies the learning task. The model does not have to learn the
z-dependence of the wire map shift for the middle of the wire as shown in Fig. |5.3a, but
instead can more easily translate from the stereo layers to the momentum in the z-direction
and the starting position of tracks in the z-direction. This was shown in [84], where the
track charge fitting efficiency increased on the technical samples (Section 3.2 from 91%,
when using the middle-of-the-wire reference position, to 92% when using the z = 0 reference
position.

Since the technical samples do not include the forward boost, the difference is expected
to be less pronounced in physics samples. A detailed evaluation of measured data will
therefore be required in future studies.

While polar coordinates are a natural choice for representing the wire geometry, angle-based
representations introduce discontinuities at 360°. This abrupt transition from 360° to 0°
made it difficult for the model to learn. Using Cartesian coordinates for the input features

was crucial for model’s performance.

To account for the loss of radial information when using Cartesian coordinates for
the input features, additional wire descriptions are provided. Specifically, each wire has as

input its layer number (ranging from 1 to 56), its superlayer (from 1 to 9), and the local layer
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Figure 5.3: Reference z position for the approximated wire position shown in p — z view
in Fig. 5.3a and x — y view for different 6 angles in Fig. |5.3b|/for z = 0 in green and z in
the middle of the wire in blue.

number within each superlayer (see Section 2.3). This structured representation captures
the radial position of the hit without introducing the issues associated with continuous
geometric parameters. Additionally, the digitized measurements of the wire signal are used
as input with the ADC and [TDC, as described in Section 2.3, The signal and background
distributions are shown in Fig. 5.4, for both low simulated beam backgrounds and high
data beam backgrounds. As the simulation does not correctly capture cross-talk, not
only the yield but also the shapes differ between the simulated and measured background
distributions. While separating the signal and background distribution is not possible for
only ADC or TDC, the combination provides separation power as seen in Fig. 5.4c and
Fig. 5.4f. Furthermore, the distributions for different particle types for both [ADC|and
TDC are shown in Fig. 5.5. While the TDC|distribution does not differ too much, as the
time-of-flight is O(100) less than the drift-time, the |ADC differed between the particle
types. Especially K and p deposit more energy in the drift cells (]30]), which leads to
higher |ADC| counts. While I considered the drift-time and drift-length, these values are
very dependent on the calibration (discussed in detail in Section 10.1), and using the raw
digitized measurements proved to be more efficient (investigated again in [84]).

A dedicated study about the input features to use during the training of the algorithm is
reported in the bachelor thesis I supervised in [84]. Although TOT was considered as an
input feature in [84], I encountered issues with this feature on measured data. I will discuss
the details in Section 10.1. Next, I define the prediction targets. Particle trajectories
within Belle IT are parametrized using the point of closest approach (POCA)|85|, including
dy as distance from the IP|to the POCA in the transverse plane and 2, for the z-distance.

Furthermore, their momentum is defined with the inverse of the curvature radius and the
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angle of the transverse momentum at the [POCA. The z-direction is defined by the angle
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of the momentum at POCA| and the transverse plane.
Using the helix radius of particle tracks as a training target proved ineffective: for high
transverse momentum (p, > 6 GeV) the radius diverges, while for low-p, tracks it becomes
very small, which introduces numerical instability in the prediction targets. This wide
dynamic range made it impossible to normalize the target values, and therefore impossible
for the model to learn. Instead, I train the model on the momentum vector p,, C, pg/l € and

. Even though these outputs range from 0 to 6 GeV, scaling them did not improve the
model performance, therefore I keep them unscaled for convenience. Cartesian coordinates
are used as prediction targets for the starting position vector described with vMC, vg/[ ©

MC
. . Cartesian coordinates are chosen for the same reason here as for the input features.

, and
v
In addition, the model has to predict if a particle has a positive charge or a negative charge.
The final set of input features and prediction targets used for the model is given in Table 5.1.
All input features are scaled to ensure they are suitable for model training. The x- and
y-positions are originally given in centimeters and are converted to meters to bring their
values into a consistent range of approximately -1.1 to 1.1. All other features are normalized
to the [0,1] range by first shifting the distribution by its minimum value, and then dividing
by the resulting respective maximum values. To limit the influence of outliers and focus on
the region relevant for the signal hits, as shown in Fig. |5.4al and Fig. 5.4d, the ADC) value
is clipped at 600, where the signal hits are mostly between 25 and 300.

Table 5.1: Final set of input features and prediction targets, including their ranges before
and after scaling.

Feature Original range Scaled range

Input features

x at wire midpoint (cm) [—111, 111] [—1.11, 1.11]
y at wire midpoint (cm) [—111, 111] [—1.11, 1.11]
Global layer [0, 56] [0, 1]
Superlayer [0, 8] [0, 1]
Local layer [0, 7] [0, 1]

ADC (counts) [0, 600]" [0, 1]

TDC (counts) [5100, 4200] [0, 1]

Prediction targets

prC (GeV [0,6] -
py < (GeV) [0,6] -
P (Gov) 0.6

M (m) [—111, 111] —1.11, 1.11]
o€ (m) [—111, 111] ~1.11, 1.11]

[
[

vy~ (m [—73, 157] [—0.73, 1.57]
{0, +1}
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5.3.2 Graph Neural Network Model

There are three major tasks the algorithm has to achieve:
1. identify the unknown number of tracks in the event;
2. predict the three-momentum, starting point, and the charge of each track;
3. assign the associated hits to each track.

Due to not knowing the number of tracks beforehand and the need to handle overlapping
tracks, I use an object condensation loss [14], which predicts the number of objects (tracks),

and associated features (track parameters) in a GNN-based one-shot approach.

GravNet

GNNs| operate on graph-structured data, where nodes represent detector hits and edges
define relationships between them, allowing information to be exchanged during the message
passing step. This graph construction is a crucial preprocessing step, but constructing a
graph during the transition between axial and stereo superlayers is challenging. This is due
to a significant offset and a change in sign in the spatial gap between particles moving in
the forward versus backward directions, particularly noticeable between 45° and 120°, as
shown in Fig. 5.3b. Additionally, this offset varies depending on the reference z-position of
the input features.

GravNet |64] addresses these issues by allowing the model to dynamically learn meaningful
connections between nodes, removing the need for manually designing complex and geometry-
dependent graphs. An overview of GravNet is illustrated in Fig. |5.6.

In the first step, the inputs to this layer are transformed into a learnable representation
space S, and learned feature space Fig.

In the representation space S, the ng-dimensional Euclidean distance between each node
j and all other nodes is calculated, and edges are built for node j with the k& nearest
neighbours, visualized in step two.

In the third step, the learned features fir of all the connected nodes are exponentially
weighted by their Euclidean distance and aggregated by summation.

These aggregated node features are concatenated with the initial node features and the

learned features in the final step four.

Architecture

The architecture of my model is shown in Fig. 5.7, which is implemented in PyTorch
Geometric [86).

The model input is every wire hit as a graph node, with the input features defined
in Section 5.3.1 The first layer is a Batch Norm Layer (BNL) [87|, followed by N = 4
GravNet Blocks. Each GravNet Block starts with global average pooling 88|, where the
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Figure 5.7: Figure and text taken from [1]: illustration of the GNN| architecture.

mean value for each feature per event is calculated. Each mean feature is then appended
to the original node features, so that a global information exchange of the event graph is
possible, thus improving the model learning. After the pooling layer, the network includes
two consecutive Linear Layers (LLs), followed by a BNL and another LL. All LLs use
the exponential linear unit (ELU) activation function [89]. The feature transformation

follows a GravNet layer, responsible for the graph building and message passing between
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the nodes. The output of the GravNet layer is propagated through another | BNL|and then
forwarded to the next GravNet block. Skip connections |90| prevent vanishing gradients in
the earlier layers of the model. With these skip connections, the output of each GravNet
block is passed through an extra LL (LL2) directly to the final linear layer.

There are five output layers of the model, addressing both the track assignment and

the parameter prediction task.

Object Condensation

In computer vision, object detection often uses anchor boxes and bounding boxes to identify
and separate objects, resolving overlaps by analyzing bounding box intersections. These
methods rely on distinct object centers, making them less suitable for tracking, where
tracks can overlap spatially and lack well-defined centers. They are also sensitive to object
size and density 79|, which vary widely in Belle II, with tracks ranging from a few to over
a thousand measured (CDC] hits per signal particle. Traditional seed-based or multi-step
clustering approaches can lose information due to successive thresholds and segmentation
stages. Object condensation |14| was proposed as a one-shot approach for calorimeter
clustering in sparse, overlapping environments without requiring fixed cluster counts or
centers.

I visualize the steps of object condensation in Fig. |5.8 for two particles with their associated
hits with additional background hits. If a (CDC| hit results from the energy deposition of a
signal particle, the corresponding node is assigned a unique integer object ID per particle,
starting from 1. In contrast to the simplified schematic in Fig. [5.8, for the training only
signal particles with at least 7 matched hits in the event are labelled signal. If the (CDC
hit is associated with any signal particle that has less than 7 matched hits, the node is
labelled as background.

The concept of object condensation is to group nodes belonging to the same object by
pulling them together in a learned clustering space. The goal is to condense the information
of each object onto a single representative node, while simultaneously repelling nodes that
belong to different objects. This is achieved by introducing a learned potential in the

clustering space.

The following notation is adapted from the original notation in [14] to fit the use case of
this work. Each node is assigned a (-value. This S-value is given by one output LL|with a
single neuron, followed by a sigmoid activation function to constrain the value between 0
and 1. Utilizing this output, a weight is calculated for each node. The weight ¢; per node @
is calculated using the g-value, that is clipped at a maximum of 1 — ¢, with € = 107 to

avoid infinity and ¢,,;, > 0, to avoid a value of 0:

q; = arCtanh(/Bi) + Gmin- (53)
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Using these weights, the potential affecting each node can be calculated. Instead of the
computationally expensive task of calculating it between each node to every other node, a
simplification is done where the potential is approximated by only taking the node with
the highest weight ¢, for each object, shown in Fig. 5.8b. These approximated weights g,
can now be used to attract nodes from the same object k together, as shown in Fig. 5.8¢,

with the attractive potential

2
Vattractive,k(x) - HI‘ - xaH dok- (5'4)

The term || - || describes the n-dimensional Euclidean distance according to the cluster space
dimension C'S. To repulse nodes from different objects than k as seen in Fig. |5.8d), the

repulsive potential
‘/repulsive,k(x) = maX(O7 1- H(E - xa”)qak (55)

is applied. As soon as the distance between the nodes with the highest weight is larger than
one, this potential goes to zero, thus no longer affecting the loss. The distance between two
objects is therefore bound by this value 1. With the introduction of the matrix element
M;y, that is 1 if the node j belongs to object k and 0 else, the attraction potential loss for
all nodes N and all objects K is defined as

N K
1
Lattractive = N § E ]kvattractlve k( )) (56>
j=1 k=1

and the repulsive potential loss as

1 N K
Lrepulsive = N Z Z repulswe k) (57)

j=1 k=1

Using this potential also ignores the issue of class balance. Track objects with a low number
of hits (< 10), as they either go into the endcap directions or are very displaced, are
weighted the same as low-momentum tracks curling in the detector and leaving well over
200 hits. One minimum of Ly, can be achieved by every node having the value of § = e.

To counteract the model to only assign this value to every node, the Lg loss

K
Z 1 - Bak (58)
k:

is added, requiring that the node with the highest weight is assigned a S value of 1 and else
penalized. This also combines with the desired behaviour of condensing the information of

each object down to one node where the 8 value is at maximum. There is also the need to
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suppress the background nodes Np, for this the additional loss term Lg,press noise 15 added

Np
1
Lsuppress noise — 5B Ng E Bi, (59)
i=1

thus encouraging the model to assign low 8 values that are close to 0 to the background
nodes. I set s = 1, since the noise suppression term is already normalized by the number
of background nodes. This allows the model to focus more on the other loss components,
without disproportionately emphasizing noise suppression. The interplay of the losses for

the object condensation layers is shown in Fig. 5.8e.

Lastly, the model also has to predict the parameters of each object. For this, the three
track parameter LLs shown in Fig. 5.7 are used to predict the momentum, starting position,
and charge. Because the goal at the end of the training is to condense the information
on only one point with the highest weight, it is also only necessary to predict the correct
parameters on the nodes with the highest -value. Therefore, all parameter prediction

loss terms L calculated from the prediction p and truth ¢ taken from the matched

parameter

particle are scaled with the weight ¢;, resulting in the weighted loss term

N K N
L/ . Zj:l Zk:l q; - Mjk : Lparameter(tkapk:) (5 10)
parameter — N K N . .
Dim1 Dokt My + €

The weight ¢; is calculated according Eq. (5.3) but using a different value for g;,. For the
momentum prediction and the starting position prediction, I use one linear layer each with
three output nodes without an activation function. The output nodes predict p,, p,, and
p, in GeV for the momentum. For the starting position, I use the Cartesian coordinates
described in section Section 5.3.1. For the momentum and starting position loss term L,,
and L,, I calculate the mean absolute error between the predicted value p and the true

value t using
Lp/v = |tp/v - pp/v|- (5.11)
The charge prediction is achieved by one [LL using one output node with a sigmoid

activation function. Then, a binary cross entropy loss is calculated resulting in the charge

loss

Lcharge = _tcharge In (pcharge) + (1 - tcharge) In (1 - pcharge)‘ (512)

For the total loss, I sum over all individual loss terms
L= Lattractive + Lrepulsive + Lﬁ + Lsuppress noise + L; + Li, + Litharge' (513>

The values of ¢,,;,, and ¢,,;, can be used to prioritize the prediction of the object properties
with §,,;, or focus on object segmentation with q,;, using a high value. As the parameter

prediction is not as relevant as the object segmentation in my case, I chose a high value
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for ¢, = 1 and a low value for §,,;, = 0.1. By selecting a low value for §,,;,, the model
emphasizes learning parameter predictions on the nodes with the highest § values, since
the relative differences between § dominate over the constant offset §,,;,. Increasing ¢,
would diminish this effect, causing the model to treat all nodes more equally in the track
parameter prediction. For object condensation, I prefer to treat all nodes more equally to
ensure clear differentiation between objects and to cluster all nodes belonging to the same
object closely together. Therefore, I chose a larger offset for this purpose. Similarly to
increasing qy,;, to weight the condensation losses even more than the parameter prediction
losses, a scaling factor can be applied to the individual loss terms. Preliminary studies
showed that this did not improve the object condensation performance, but the tuning of

these hyperparameters in Eq. (5.13) could be revisited in future studies.

5.3.3 Graph Neural Network Post-Processing

The process I use to retrieve track information from the model’s inference step is outlined

in Fig. 5.9. It consists of six stages carried out in sequence:

1. T apply the trained model to the event to obtain predictions at the node level as
shown in Fig. |5.9a. Each node has the output of all 5 output layers described in the
previous section, so a position in the learned clustering space, a -value indicating its

condensation relevance, and values for all seven track parameters.

2. To begin identifying potential tracks, I apply a threshold ¢g to the predicted S-values.
Nodes with S-value above this threshold are considered as candidates for condensation

points, as shown in Fig. 5.9bl

3. I then refine this set of candidates by enforcing spatial separation in the cluster
space. Starting with the node that has the highest -value, I compute n-dimensional
Euclidean distances r to all other candidates in the cluster space. Using a threshold
ty, I discard any candidates within r < t; of the current one. This step is repeated
iteratively until all remaining candidates are sufficiently spaced apart. The surviving
nodes are the final condensation points, each representing an individual track (see
Fig. 5.9¢).

4. Once the condensation points are identified, the parameters for each track, such as
momentum, position, and charge, are obtained directly from the model’s predictions

at the corresponding condensation points (see Fig. 5.9d).

5. To assign hits to tracks, I compute the distance from each condensation point to
every node in the latent space. Nodes within a radius r < t; of a condensation point
are assigned to that track, as illustrated in Fig. 5.9e. If ¢;, > t;/2, a hit could be
associated with multiple condensation points. To avoid assigning any hit to more

than one track, as this is currently not handled by the subsequent fitting stages, I
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Figure 5.9: Figure and text taken from [1]: Track finding using object condensation:
(a) Latent space, (b) condensation point candidate selection based on f threshold, (c)
condensation point selection based on isolation, (d) parameter extraction, (e) clustering,

and (f) hit ordering in real space.

assign it only to the closest condensation point. Each condensation point with its
set of associated nodes constitutes a candidate track. However, I require at least
seven hits per track to proceed, and tracks with fewer hits are excluded. Alternative
clustering algorithms were tried in the supervised thesis [91], but it was found that
the method described here is the fastest and most performant. I will go into detail

about the alternative clustering algorithms in Section 10.3.

. Once the hits are assigned, I sort them to prepare for track fitting. The ordering
starts from the hit closest to the predicted entry point of the CDC. This is either
the predicted starting position if it lies within the CDC, or the intersection of the
predicted direction with the inner CDC surface, starting at the predicted position
and extending in the direction of the predicted momentum as shown in Fig. 5.9f. 1

calculate Euclidean distances in the x — y plane and iteratively select the nearest hit
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to construct the track sequence. While this method performs well for most cases, it
fails for low momentum tracks that curl back and re-enter the CDC multiple times.
One approach to address this is to apply a Hough transformation (see Section 5.2)
to isolate only the first arm of the loop, as explored in the bachelor’s thesis [92].
However, this was found to degrade performance in high-multiplicity events. An
alternative solution is to train the model exclusively on the first arm of a curling track,
ensuring that both hit ordering and subsequent fitting are more likely to succeed. I
trained models both on the full and only the first arm and report results for curlers

in Section 6.1.1.

An example event with corresponding learned latent space representation is shown in
Fig. 5.10. Unlike the Baseline Finder, the CAT Finder does not offer a predefined covari-
ance matrix for initializing track fits. As a workaround, I initialize all covariance matrix
elements to 0.1. While this affects the time required for the track fit to converge, I have not
observed any significant impact on track finding efficiency with different initialization. Both

this initialization and the ordering of hits for low-momentum curling tracks are aspects that
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Figure 5.10: Figure and text taken from [1]:: Event display and (Fig. 5.10b) cluster
space representation of one example event from category 11 (Table 3.2) for high data beam
backgrounds.
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could be more appropriately handled during the track fitting step rather than the track
finding stage. Tuning the track fitting procedure should be addressed in future work and

will be discussed in Section 10.6.

5.3.4 Hyperparameter Optimization

For the CAT Finder, both model and track finding hyperparameters (tg, t4, t)) are
optimized in two stages, beginning with the model hyperparameters. This ordering is chosen
because optimizing the model hyperparameters requires retraining, which is computationally
expensive, whereas the track-finding hyperparameters can be tuned after training at
significantly lower cost. For the CAT Finder, the hyperparameters should be optimized
for the track finding efficiency, purity, and parameter resolution. However, performing full
reconstruction after each training step for every model is not computationally possible
within the scope of my thesis. Even evaluating the track finding step alone is not feasible,

as this still increases the time after each step.

Model Hyperparameter Optimization

For the most time-efficient approach, the model’s validation loss is used to approximate the
model’s performance. The loss is used as the target metric to minimize in the hyperparameter
optimization. The search is conducted on a reduced, independent training dataset of 62,000
events (6% of the original training dataset), maintaining the same sample composition
as the main training set (see Table 3.2) for a maximum of 200 epochs. The considered
hyperparameters and their ranges are listed in Table 5.2. To save computing time, a
Bayesian hyperband optimization [93] is used. This efficiently explores the hyperparameter
space by using information from previous trials to focus on the most promising regions
rather than searching randomly. Furthermore, runs are stopped early if the target metric is
significantly worse than in previous trainings. This is implemented using the Weights and
Biases [94] sweep method, with the number of runs limited to 300 due to computational
constraints.”.

The most influential hyperparameters, as shown in Fig. [5.11, are the number of nearest
neighbours in GravNet (k), the width of the LL, and the number of GravNet blocks (N),
all of which are strongly anti-correlated with respect to the loss. This anti-correlation means
that increasing their values generally decreases the loss and improves model performance,
favouring larger models. The remaining four hyperparameters show little correlation and
have a lesser impact. The final selected values, ranked by importance, are summarized in
Table [5.2. The optimal model consists of 797,812 trainable parameters.

While this optimization provides good initial starting parameters for the model training,
it should be repeated only after finalizing all other aspects of the track finding pipeline,

including fitting optimization and final dataset preparation, due to the significant compu-

*The 300 runs are equivalent to approximately 300 days of computing time
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Figure 5.11: Parameter importance and correlation regarding the loss of the hyperparam-
eter search using by Weights and Biases [94].

tational cost. Thus, this hyperparameter search is not repeated even for different dataset
compositions discussed in Section [3.2.  During final training, I reduce the learning rate
from 0.001 by a factor of two each time the loss does not improve for 30 epochs, using a
batch size of 1024.

To accelerate training, I apply a two-phase strategy. In the first phase, I train the model
on the low simulated beam background dataset to learn track signatures, focusing on
condensing the hits from the track objects and track parameter prediction. This phase is
the most time-consuming part that typically requires around 500 epochs to converge. In
the second phase, I fine-tune the model on a dataset with a higher beam background, using
a learning rate reduced by a factor of 10 compared to the first phase.

This fine-tuning step focuses on background suppression and improves overall performance

Table 5.2: Table and text taken from [1]: Overview of the GNN model hyperparameters,
including the explored ranges and the final values obtained after optimization. The
parameters are listed in order of importance, as illustrated in Fig. |5.11. The optimization is
based on the event categories given in Table 3.2, using an independent dataset corresponding
to 6% of the full training sample. This dataset is split into 80% for training and 20% for
validation. The final hyperparameters are selected based on the lowest validation loss.

Hyperparameter Examined range Result
Number of nearest neighbours in GravNet k 2-100 54
Width of the linear layer LL 32-128 126
Number of GravNet blocks N 2-7 4

Dimension of the Object Condensation - 95 3

cluster coordinate space C'S

GravNet Momentum 0.1-0.8 0.77
GravNet spacial information space dimension S 3-6 4
Width of the linear layer LL2 16-64 16
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on high data beam backgrounds. Training on the high data beam backgrounds takes
over three times longer per epoch due to higher hit occupancy, as low simulated beam
backgrounds consists of on average 440 beam-background hits in comparison to high data
beam backgrounds with 1216 average beam background hits on average. This two-step
approach significantly reduces total training time, as the model converges after only 50
additional epochs in the second step. This is substantially more time efficient than training

exclusively on high data beam backgrounds samples from the start.

Track Finding Hyperparameter Optimization

I optimize the three track finding hyperparameters tg, ¢4, and t; targeting the typical
events expected at Belle II (see Section 3.4) using prompt samples from category 2 (see
Table 3.2) and displaced Kg — 7' events, where the Kg momentum is directed into the
CDC barrel region (see Section 3.2 for details).

To evaluate performance, I compute the track finding and fitting efficiency ¢, and purity
Pk for multiple values of 25 € {0.01,0.1,0.3,0.5,0.7,0.9,0.95}, generating ROC curves to
illustrate the trade-off between efficiency and purity. This is done for several combinations
of the condensation point distance t; € {0.1,0.2,0.3,0.5,0.7} and the hit radius ¢, €
{0.05,0.1,0.15,0.25,0.3}. The resulting performance, based on the combined track finding
and fitting charge efficiency, is shown in Fig. 5.12. The final working point w = (t3, 4, )

is selected to ensure that, first
Etrk<mi) + ptrk(mi) > Etrk(ba‘sehne) + ptrk(baseline)7 (514)

and then
m?X (5trk(mi)category 2+ 6trk(t'oi)[("g,_>7r""7r—) ) (515)

where &,1 (1;),, is the track finding and fitting efficiency on the category 2 or the Kg —Satr
sample. This results in the optimal values t53 = 0.3, t; = 0.3 and ¢;, = 0.15. T repeated this
study on the tracking fitting charge efficiency for BB events in Fig. B.1, yielding similar
results as the category 2 sample. Increasing t;, nearly as large as the ¢;, did show promising
results on B°B° simulated events (see [91]), but this did not translate to data, and the

reconstruction efficiency dropped for larger t;,.
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Figure 5.12: Figure and text taken from [1]: Combined track finding and fitting charge
efficiency as function of purity for the CAT Finder, and the respective value for the
Baseline Finder for (a) category 2 and (b) Kg — 7w~ for high data beam backgrounds.
See text for details.

5.4 Full Detector Reconstruction

The tracking chain [46, 85| for the full reconstruction, which incorporates all three tracking
detectors, begins with the hits in the |[CDC. The full tracking chain implemented in |basf2
is shown in Figure |5.13. For the Baseline Finder, a cut-based background filter is applied
using the |ADC, TDC, and TOT]|features described in Section 5.2, as well as a cross-talk
identification algorithm based on the CDC front-end readout chips (see Section 3.1.1). In
contrast, this background filtering step is not applied for the CAT Finder, as the relevant
features are already used directly as input to the CAT Finder model, allowing for a more
effective and data-driven optimization compared to the cut-based approach. This data-
driven approach enables the machine learning model to learn patterns in the (CDC| hits
distributions, including subtle correlations between features like ADC, [TDC, and [TOT),
potentially leading to better background discrimination. The tracks found by the CDC
track finding algorithms Baseline Finder (in blue) and CAT Finder (in red) are used as a
starting point for the remaining tracking detectors.

After the CD(]| tracks are found, the CDC]| hits assigned to the track are marked and
cannot be used again during any of the later steps. The CDC tracks are then extrapolated
to the SVD) with a |(CKF. During this step, SVD) clusters matching the trajectory of
the |CDC]|track are attached to the (CDC track, resulting in (CDCH [SVD|tracks shown
in Fig. 5.13l The SVD) clusters attached to the CDCH [SVD) tracks are also marked and

cannot be used in the subsequent steps.
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Figure 5.13: An illustration of the Belle II tracking pipeline.

All remaining clusters are used in the [SVD) standalone track finding utilizing an ad-
vanced filter concept called Sector Map [95] and a cellular automaton [54], described in
more detail in [46].

This is especially relevant for low-momentum particles that do not or barely reach the CDC,
leaving no to less than 6 hits in the |[CDCl The tracks found here are then extrapolated
to the CDC|and |CDC]|hits that match the trajectory of the SVD) tracks are attached.
This results in SVDH |[CDC| tracks, which have their origin from the [SVD) track finding as
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shown in Fig. 5.13.

Both the |[SVDH ICDC and |[CDCH SVD) tracks are fitted in a combined fit. The PXD
occupancy is too high to directly include the PXD|clusters in a combined PXD+ |[SVD
stand-alone track finding (Section 2.2). Additionally, since the PXD|is excluded from the
HLT]| reconstruction, using it in full reconstruction track finding could cause significant
discrepancies between online data taking and offline reconstruction. Instead, the combined
SVDH |CDC and |[CDCH [SVD| tracks are extrapolated to the PXD|using a |[CKF|to attach
the PXD) clusters to improve the resolution of the impact parameters. Then, a final track

fit is performed with clusters and hits from all three tracking detectors.

For the Baseline Finder, low transverse momentum tracks are selected using an |mul+
tivariate analysis (MVA) and on these tracks an additional track fit is performed with the
opposite charge, thus flipping the track. Both the original track fit and the flipped track
are compared, and an additional MVA|decides which track to keep. This is not necessary
for the CAT Finder, and discussed in detail in Section 6.1.1] Furthermore, all |CDC] hits
that were not attached to any track are counted, used by analysts to gauge the level of
beam backgrounds (see Section 3.1.1).

After all three tracking detectors of Belle II are combined to return the tracks, these tracks
are now extrapolated to the particle identification (PID) detectors, the ECL, and the
KLM.

For the CAT Finder, I implemented the code used in this thesis as a |basf2| Python module,
fully integrated into the basf2|framework. A C++ version of my CAT Finder implementation
is currently under development (see [96]) and will be included in the upcoming release of

basf2, which enables its use in addition to the existing algorithm.



Chapter 6

Track Finding Comparison in the

CDC

A large part of my results shown in this chapter are published in [1|. The plots, text, and
tables closely reference the paper.

This chapter focuses on the track reconstruction in the |CDCL I show a comparison of the
CAT Finder and Baseline Finder with and without the track fitting described in Section 5.1.
First, I discuss the track finding and fitting charge efficiency for prompt particles, followed
by the comparison for displaced particles in Section 6.1. Next, I compare the momentum
resolution between the algorithms in Section 6.2, and report the position reconstruction
of the CAT Finder in Section 6.3. Finally, I evaluate the CAT Finder robustness against

varying beam background conditions and detector ageing in Section 6.4.

6.1 Track Finding and Track Fitting Efficiency

6.1.1 Prompt Tracks

The technical prompt sample from category 1-3 (see Table 3.2) is ideal for an in-depth
evaluation of difficult prompt track signatures. There are three difficult track signatures for

the prompt track finding:

e Particles that leave the detector in endcap regions do not traverse the full detector,
thus leaving a low number of hits. I report the efficiencies differentiated between the

endcap regions and the barrel region for all algorithms.

e Particles with a transverse momentum of p, < 0.255 GeV do not have enough
momentum to reach the end of the (CDC| and instead start doing a loop inside
the CDC. If their polar angle is within the CDC| geometry 80° < 6 < 95°, they
can re-enter the CDC|without significant energy loss in the vertex detectors (inner
curlers). An example of an inner curler is shown in Fig. 6.1a. Figure 6.1c shows the

p — z view. The inner curler stops if it reaches the electronics or readouts outside of

99
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Figure 6.1: Event displays in the z-y-plane (top) and the p — z plane (bottom) for
(Fig. 6.1a, Fig. 6.1c) inner curler (left) and (Fig. 6.1b, Fig. 6.1d) outer curler (right) for
high data beam background. Filled, coloured circular markers indicate signal hits, where the
colour represents the time of the first interaction in the drift cell as given by the GEANT4
simulation. The simulated time represents the time of the first interaction of the particle
in the drift cell as given by the |GEANT4 simulation. The colours start with white for
the earliest hit and transition to darker red as time progresses, illustrating the particle
trajectory. Filled gray triangular markers in the x — y view show background hits. Only
signal hits are shown for the p — z view.

the tracking detector, or has a hadronic interaction between the SVD|and |[CDC|

highlighting the dependence on detector geometry.

o Minimum-ionizing muons and pions with transverse momentum in the range
0.255 GeV < p; < 0.3 GeV can cross the entire CDC and then pass through the
outer detectors [TOP and |[ECL with minimal energy loss. If their polar angle lies

within the CDC barrel region, they may re-enter the CDC| (outer curlers). Heavier

particles and electrons typically lose too much energy in the ECL to do so. Figurel6.1b

presents an example of an outer curler. Compared to the inner curler, the energy loss

per loop outside the tracking volume is significantly higher, resulting in a decreasing

loop radius with each turn.



Chapter 6. Track Finding Comparison in the CDC 61

As already discussed in Section 5.3.3, neither the current hit ordering nor the track fitting
algorithms correctly handle the curlers. Thus, I split the discussion of the samples from
categories 1-3 in tracks that are non-curling and tracks that curl. This split is only done
for the technical samples and for no other samples. Curling tracks are identified if two
consecutive hits have a distance larger than 20 cm or if there are more than 32 signal hits
in the first |[CDC| superlayer Al. No events are discarded, the particles are sorted into
the respective categories accordingly. Due to the low-momentum enrichment, many tracks
populate the inner |[CDC| making this sample the most fitting to evaluate the prompt

performance.

Non-curling tracks

The track finding charge efficiencies and the track fitting charge efficiencies for the three
detector regions forward endcap, barrel, and backward endcap are shown in Fig. 6.2 The
performance metrics are summarized in Table 6.1. The first challenging track signature
involves particles leaving few hits as they exit the [(CDC| early. Despite the high beam
background density in the inner superlayers and no pre-filtering, the CAT Finder achieves
higher hit purity and significantly better track efficiency in the endcap compared to the
Baseline Finder. A similar trend is observed for the combined finding and fitting charge
efficiency. While the CAT Finder has a higher initial fake rate than the Baseline Finder,
it drops after fitting—indicating some CAT Finder tracks cannot be fitted. The clone rate
remains low and comparable for both in the endcap.

In the barrel, the CAT Finder shows higher finding efficiency than the baseline but with
increased fake and clone rates. Fig. |6.2b| shows efficiency drops for p, < 0.3 GeV in both
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Figure 6.2: Figure and text taken from |1]: Track finding charge (empty markers, connected
by solid lines to guide the eye) and combined track finding and fitting charge efficiency (filled
markers, connected by dashed lines to guide the eye) for the prompt evaluation samples
(category 1-3, see Table 3.2, high data beam backgrounds) with curler tracks removed, as
function of simulated transverse momentum piw “ for the Baseline Finder (blue) and the
CAT Finder (red) in the (a) forward endcap, (b) barrel, and (c) backward endcap. The
vertical error bars that show the statistical uncertainty are smaller than the marker size.
The horizontal error bars indicate the bin width. The uncertainties of the different track
finding algorithms are correlated since they use the same simulated events.
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Table 6.1: Figure and table taken from [1|: The performance metrics for the prompt
evaluation samples (category 1-3, high data beam backgrounds, see Table 3.2 and Section 3.2
for details) for non-curling tracks for CAT Finder and Baseline Finder in different detector
regions. Uncertainties below <0.01% are not shown in the table.

(in %) €trk Tfake clone €trk,ch twrong ch.

forward endcap

Baseline Finder  80.170'7  0.557002 0.01 78.4701 2.0610°94

CAT Finder  98.9470°0% 1627005 0217050 98.8070:05  0.06750}

Baseline Fitter ~ 78.17077  0.407502 0.01 7ty 1)
CAT Fitter  95.9370°0% 0317002 0.067007  94.2070:05 1717807

barrel

Bascline Finder  97.977007 2317007 0.057801 05027005 2.0075:04

CAT Finder  99.6170°02 3347005 0597092 99.167005  0.467002
Baseline Fitter ~ 96.8870°9%  1.8370-07 0.03 9557006 1.4210-08

CAT Fitter 9767007 1.26705% 0167001 97.39709%  0.2270°0)

backward endcap

Baseline Finder  60.5701  1.0879%%  0.0370%1 580701 4087507
CAT Finder  97.6475°0% 127003 0147001 97427003 0227001
Baseline Fitter ~ 58.87077  0.02700%  0.02_y0, 568707 3287008

CAT Fitter  92.4375°07  0.697002  0.03_40 87677009 5167500

algorithms, detailed in Fig. 6.3l

If the transverse momentum is below 0.039 GeV, the transverse momentum is not enough
to reach the [CDCl If the transverse momentum is between 0.039 GeV< p, < 0.055 GeV,
it only manages to reach and deposit hits in the first superlayer of the |[CDC. The labels
A1-A9 indicate these superlayer boundaries Section 2.3 reached by prompt particles based
on their transverse momentum.
The CAT Finder significantly outperforms the Baseline Finder in track charge efficiency
for non-curling particles that do not reach the end of the |(CDC, as shown in Fig. 6.3a. This
holds for both finding and combined finding—fitting efficiency, despite some CAT Finder
tracks not being fitted. For axial superlayers (A), both algorithms show similar combined
efficiencies, while for stereo layers (U, V), the Baseline Finder performance drops. At low
momenta, the Baseline Finder struggles to determine the track’s starting direction for
one-loop tracks (see Fig. 6.4), leading to a higher wrong charge rate of 1.42% compared to
the 0.22% of the CAT Finder. The CAT Finder predicts the correct charge more often,
improving performance. In the 0.255, GeV < p, < 0.3, GeV range, both perform similarly.
For matched tracks found by both algorithms (intersecting sample), the CAT Finder
achieves higher hit efficiency and purity (Figs. 6.3c and 6.3d). In the additional sample
(tracks found only by one algorithm), the CAT Finder still shows higher hit efficiency and
purity, while the number of additional Baseline Finder tracks is very small. This indicates
that the CAT Finder finds more complex, high-quality tracks, though not all can be fitted.

Improving their fit requires further tuning beyond the scope of this work.
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Figure 6.3: Figure and text taken from [1]: The top row shows the low momentum track
finding (empty markers, connected by lines to guide the eye) and combined track finding
and fitting charge efficiency (filled markers) (b) and the track finding and combined track
finding and fitting charge efficiency (a) for the prompt evaluation samples (category 1-3,
high data beam backgrounds, see Table 3.2) for non-curling tracks. The middle row shows
hit efficiency and hit purity for tracks found by both CAT Finder and Baseline Finder
(intersecting sample) (c and d) and the bottom row for the additional found tracks (e and f).
The dashed horizontal dark (light) gray lines show the axial (stereo) superlayer boundaries
how far the prompt track reaches with the given transverse momentum. (paper figure)
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Figure 6.4: Event display of a
single-loop curler under high data
beam background, shown in the x —y
view (top, Fig. 6.4a) and the p — z
view (bottom, Fig. |6.4b). Filled,
colored circular markers represent
stgnal hits, with color encoding the
global time of the first interaction
in each drift cell as provided by the
GEANT4 simulation. The color scale
progresses from light pink (early hits)
to red and dark red (later hits), vi-
sualizing the particle trajectory. In
the © — y view, filled gray triangu-
lar markers indicate background hits
(see Fig. 2.6 for details). Only sig-
nal hits are shown in the p—z view.
The blue arrow indicates the particle
trajectory direction in the z — y and
p — z view, while the orange arrow
indicates the reversed direction.
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Curling tracks

Figure [6.5 repeats the analysis from Fig. [6.3| for curling tracks. The CAT Finder shows
significantly better track finding charge efficiency (Fig. 6.5a) than the Baseline Finder.
However, track fitting efficiency is lower, as current fitting algorithms and the CAT Finder
hit ordering (Section 5.3.3) cannot handle curling signatures. Fig. 6.6/ shows the CAT Finder

prediction for the two previous example curlers, including the curling signature. The
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Figure 6.5: Figure and text taken from [1|: Low momentum track finding (empty markers,
connected by lines to guide the eye) and combined track finding and fitting charge effi-
ciency (filled markers) (b) and the track finding and combined track finding and fitting charge
efficiency (a) for curling tracks with high data beam backgrounds. The middle row shows
hit efficiency and hit purity for tracks found by both CAT Finder and Baseline Finder
(intersecting sample) (c and |d) and the bottom row for the additional found tracks (e and f).
The dashed horizontal dark (light) gray lines show the axial (stereo) superlayer boundaries
how far the prompt track reaches with the given transverse momentum.
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Figure 6.6: Text adapted from [1]: Event displays in the z-y-plane for (Fig. 6.6a) inner
curler (left) and (Fig. 6.6b) outer curler (right) for high data beam background. Filled,
colored circular markers indicate signal hits. Filled gray triangular markers in the x — y
view show background hits (see Fig. 2.6/ for details). Markers with colored outlines are
found by the GNN to belong to the same track object. The GNN predictions (colored
lines) are drawn using the predicted starting point and three momentum for the predicted
particle charge, and the corresponding condensation point is marked by a colored cross.

Baseline Finder assigns only one loop per track, resulting in low hit efficiency for the
intersecting sample (Fig. 6.5c), but its tracks can be fitted reliably. For particles not
reaching the end of the CDC, fitting efficiency is similar between both algorithms, but it
drops in the last bin—corresponding to outer curlers. The CAT Finder achieves very high
hit efficiency and purity, even in the additional sample. This improved hit efficiency would
improve the estimate for the beam-background conditions according to the unmatched
number of |(CDC hits (Section 5.4), reduce clones, and help identify complete tracks. But
to propagate this to the end of the reconstruction chain, significant modifications to the
fitting algorithms are needed. Current Belle I fitting is not optimized for curling tracks,
resulting in low post-fit efficiency. A potential solution involves identifying the outermost
first loop for accurate momentum estimation and passing this to the fitter while marking the
additional hits as taken to avoid clones. A Hough transformation approach (see Section 5.2)
was explored in a thesis I supervised |92]. Tracks were first filtered as curlers and classified

as

e outer curlers with large polar angle 6 and significant energy loss in the TOP and

ECL, requiring looser boundaries;
e inner curlers with smaller 6 and less energy loss, needing tighter constraints.

While promising in concept, the method did not yield a viable solution. To account for the
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Figure 6.7: Text adapted from [1]: Event displays in the z-y-plane for (Fig. 6.7a) inner
curler (left) and (Fig. 6.7b) outer curler (right) for high data beam background. Filled,
circular markers indicate signal hits while filled, and only colored circular markers are used
as training targets for the model. Filled gray triangular markers in the x — y view show
background hits (see Fig. 2.6 for details).

fit requirement, I train this new model on only the first loop before the TOP)|detector as
the training signal Fig. |6.7. This increases the chance of capturing a fittable helix within
current fitting constraints, the resulting CAT B Finder (see Section 3.2) is evaluated in
Section |C.2. The overall finding and fitting charge efficiency for low momentum particles
improves in comparison to CAT Finder. The performance will be addressed in the upcoming
Section 6.1.1L

Prompt tracks in u_u+(’)’)

In addition to the previously described samples, I evaluated the track finding algorithms
on simulated /f/ﬁ(’y) events. As one of the main calibration samples at BelleIl, these
events aim for a track fitting charge efficiency of 100% in the barrel. Unlike the category
1-3 evaluation samples with up to 12 particles in an event, /ﬁ () events almost always
contain two isolated, prompt, high-momentum particles.

I observed that the CAT Finder achieves significantly higher finding charge efficiency in
both endcaps, though with a slightly higher fake rate than the Baseline Finder. After fitting,
the combined charge efficiency of the CAT Finder is comparable to the Baseline Finder,
but with a noticeably lower fake rate. In the barrel, both algorithms perform well, with
the CAT Finder reaching 99.48% and the Baseline Finder 99.07%, and the CAT Finder
maintaining a lower fake rate. In the endcaps, I measured a combined charge efficiency
of 94.7% for the CAT Finder, clearly outperforming the Baseline Finder at 67.7%. The
CAT B Finder achieves similar performance as the CAT Finder for tracks going in the
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barrel, but decreased performance for the endcaps with 91.8% I provide detailed plots and

numerical results in Section [C.3.

Prompt Tracks from % in BB

The most relevant event types for the Belle II flavour-physics program are B°B° and B~ B*
events. In this section, I report the combined track finding and fitting charge efficiencies
for prompt pions, results for other particle types (ei, ,ui, K i, p/p) are presented in
Section [C.4.

I show the tracking finding charge efficiency for 7+ as a function of pivl © and cos 0™ for
the Baseline Finder (Fig. 6.8a), CAT Finder (Fig. 6.8b), and CAT B Finder (Fig. 6.8c).
I observe that both CAT Finder and CAT B Finder improve efficiency in the endcaps and
for inner and outer curlers, with CAT B Finder showing the best performance. Figure (C.4
shows efficiency vs. inIC over Nsl\é[e?l, the number of visible particles. As Nsl\é[e?l increases, effi-
ciency drops across all models due to increased overlap and occupancy from low-momentum
tracks.

The same comparisons are repeated for fitted tracks in Fig. 6.9/ and Fig. C.5. Here, the
benefit of the new CAT B Finder becomes clear: unlike CAT Finder, it successfully fits
inner curlers and retains the better endcap performance, with similar results for outer
curlers compared to the Baseline Finder.

Table 6.2 summarizes the performance for prompt primary pions in BB events. In the
barrel, I observe a fitting charge efficiency of 81.8% for the Baseline Finder, 77.8% for the
CAT Finder, and 87.% for the CAT B Finder, outperforming the Baseline Finder in the

most relevant figure of merit.

Figure 6.10| presents hit efficiency over Nsl\é[egl with distributions (Fig. 6.10a) and medi-
ans for comparison (Fig. 6.10b). Hit efficiency drops with higher multiplicity for all models,
but more steeply for the CAT Finder. The higher the multiplicity, the lower the momen-
tum of the particles. The CAT B Finder recovers some performance but remains slightly
below the Baseline Finder. Hit purity (Fig. 6.10d) is higher for both CAT Finder and
CAT B Finder, reflecting a trade-off made during hyperparameter tuning (Section 5.3.4),
which favoured purity over efficiency. The results for the other FSP are given in Sec-
tion [C.4l Hit efficiency is highest for muons and comparable between Baseline Finder
and CAT B Finder. Other particle types show lower hit efficiencies, which I attribute to
the training data, as only muon particle tracks were used for CAT Finder, and over 50%
of muon particle tracks for CAT B Finder. Training on a mix of different particle types
improves general performance but requires careful dataset design, which I will discuss in
detail in Section 10.2.

Despite differences in hit efficiency, fitting efficiency remains consistent across particle types

in the new model.
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Table 6.2: The performance metrics for prompt, primary 7~ in BB samples for
CAT Finder, CAT B Finder and Baseline Finder in different detector regions. Uncer-
tainties below <0.01% are not shown in the table.

(in %) Etrk fake Tclone €trk,ch “wrong ch.
FWD
. . +0.5 +0.2 +0.02 —+0.5 +0.04
Baseline Finder 60.5782 2078% 0.0478?3 60.4,8_2 OA09,8_95
CAT Finder 85.0;8% 6.3;8'% 1‘518:68 84.3;8% 0.8}'8:67
CAT B Finder  90.979% 3.9762 0857508 905708 0.43%0 07
. . +0.5 +0.2 +0.02 +0.5 +0.2
Baseline Fitter 552;8_? 2118_% OAO418_83 53918_% 2,418'%
) 3 : : : :
CAT Fitter 68,0182 2'518? 0'38418‘82 6641182 2'718'5
CAT B Fitter ~ 79.570% 18792 0187894 781104 1.8702
BRL
. . +0.1 +0.06 +0.03 +0.2 +0.09
Baseline Finder 86.778'% 245878.82 0.487000%3 834078_% 4.2378_82
CAT Finder  89.9707 5757008 237095  g7970-1 2A21f0‘_OZ
CAT B Finder  94.77707 4027388 3207006 93 4%0-1 1461002
Baseline Fitter 84.2%’2 1‘79%;&% 0‘32%3023 81481??'2 2.83%‘%3
CAT Fitter  78.70p% 19970103 0.09Tp703  77.8Tp5 1287070,
CAT B Fitter 879707  1.21700%7 0817093 g7.2701 0707002
BWD
. . +0.6 +0.3 +0.02 +0.6 +0.09
Baseline Finder 51-3;8'6 4A0;8_g 0.04;8?4 51.1;8? OA32;8_211
. .5 . . . .
CAT Finder 77'718'2 3'6183 0'9918'65 76.618_2 1'418’39
CAT B Finder  86.179% 22762 0837509 857701 0.4870Y
. . +0.6 +0.3 +0.02 +0.6 +0.2
Baseline Fitter 478188 3318_3 OAO4J_r8_8;1 46A9J_r8_g 1.918%
CAT Fitter 6037 3507 03310708 58.2707 35207
CAT B Fitter ~ 71.279°¢ 24762 0137501 69.270-¢ 2.970-2
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Figure 6.8: The track finding charge efficiency for the true transverse momentum p}fv[ ©

over the polar angle for the Baseline Finder (Fig. 6.8a), CAT Finder (Fig. 6.8b), and
CAT B Finder (Fig. 6.8c). The difference in track finding charge efficiency between the
two new tracking algorithms to the Baseline Finder is given in Fig. 6.8d.
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Figure 6.9: The track fitting charge efficiency for the true transverse momentum p}fvl

Fitting efficiency

Difference in Fitting charge efficiency

C

over the polar angle for the Baseline Finder (Fig. 6.9a), CAT Finder (Fig. 6.9b), and
CAT B Finder (Fig. 6.9¢). The difference in track fitting charge efficiency between the two
new tracking algorithms to the Baseline Finder is given in Fig. 6.9d. The same plot, but
for the track finding charge efficiency is given in Fig. 6.8/
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Figure 6.10: Hit efficiency (top row) and hit purity (bottom row) over the number of
particles seen in the |[CDC for all primary matched pions in the intersecting sample. The left
column shows the distributions for the Baseline Finder in blue, CAT Finder in red, and
CAT B Finder in orange, while the right column shows the median for all three algorithms.
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6.1.2 Displaced Tracks

For displaced tracks, two additional difficult track signatures are added on top of the prompt

track signatures:

e Particles with small opening angles overlapping close together and with large opening

angles, possibly going backwards in the detector.

e Particles where the vertex does not point back to the interaction point.

Pointing Vertices

I evaluated the track finding charge efficiency for pointing displaced vertices using simulated
h — pﬁ - events, where the dark Higgs decays uniformly along its flight path into two
opposite charged muons. I considered three mass hypotheses: m;, = 0.5 GeV (small opening
angles), my, = 2.0, GeV, and m;, = 4.0 GeV (large opening angles). Large masses lead to
well-separated muon tracks within the same superlayer, which might even go from outside
back to the interaction point, while small masses result in overlapping tracks. Due to the
uniform lifetime distribution along the dark Higgs direction, these samples contain many
highly displaced tracks.

Additionally, I studied events with single Kg S atn decays, where the decay distance
follows an exponential distribution.

Track finding and fitting charge efficiencies for the Baseline Finder and CAT Finder are
shown in Fig. 6.11; finding and fitting efficiencies are in Section |C.5. Integrated performance
metrics over the full samples are summarized in Table 6.3 and Table 6.4\

Across all p,, displacements, and detector regions, I observed that the CAT Finder con-
sistently achieves higher efficiencies both before and after fitting. It also has the lowest
fake (2.5%) and clone rates, reaching 85.4% combined efficiency per track over the full
acceptance. In contrast, the Baseline Finder achieves 52.2% efficiency with a higher fake
rate of 4.1%.

I further tested the algorithms on a signal sample near the expected Belle IT sensitivity,|3,
10, 12|, with m;, = 1.5 GeV, sin(f) = 10_4, and ¢ = 21.5cm. Here, the CAT Finder
finds and fits both tracks in 87.2% of events, compared to 44.9% for the Baseline Finder.
Fake rates are 2.5% (CAT Finder) and 3.3% (Baseline Finder). Restricting to the barrel,
I measured 90.0% efficiency for the CAT Finder and 52.2% for the Baseline Finder, with
fake rates of 2.1% and 3.0% of the tracks, respectively.

Unlike h — pt ™ decays, Kg -t

7 decays occur closer to the IP and at lower momen-
tum. Despite these differences, the trend remains consistent: the CAT Finder significantly
improves track finding and fitting efficiency, while maintaining similar or lower fake and

clone rates compared to the Baseline Finder.
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Figure 6.11: Figure and text taken from [1]: Track finding (empty markers) and combined
track finding and fitting efficiency (filled markers) for (top) displaced tracks in h — p* p~
events and in (bottom) Kg — 77 events with high data beam backgrounds, as function
of (left) the true simulated transverse momentum pi” ¢ and (right) the true simulated

displacement vlj)\/lc in the z — y plane.

Table 6.3: Figure and text taken from [1]: The performance metrics per track for b — 't~
(my, =10.5,2.0,4.0] GeV) samples with high data beam backgrounds decaying uniformly along
its flight direction into two charged particles (see Section 3.2 for details) for different track
finding algorithms in different detector regions.

(in %) Eork Tfake Telone €trk,ch Twrong ch.

forward endcap

Baseline Finder 36.21{%‘2 15.11{%‘; 0.3%%9 33481??21 6451??:%
CAT Finder  88.1752 158709 0.6a%595 830703 48752

Baseline Fitter ~ 35.5707% 175757 022707, 843709 34102
CAT Fitter ~ 79.7753 7.4703 0.17998 75.4703 54102

barrel

Baseline Finder  59.5701  4.947007 0537092 564701 5137008
CAT Finder  96.8970°9°%  5.1279:9¢ 1567002 94.9479:06 2017807

Baseline Fitter ~ 58.8707 3577005 0331000 s7.4f)] 2361002

CAT Fitter 92757007 2.12F0-01 0547002 89211008 3817005

backward endcap

Baseline Finder ~ 17.270% 44702 0327508 15.1f3'§ 121757
CAT Finder  71.0707% 148703 074007 646700 911902
Baseline Fitter ~ 16.5707% 48793 0.23t00 156703 5.879%
CAT Fitter ~ 58.0753 3100 0087802 53.3703 82104
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Table 6.4: Figure and text taken from [1]:The performance metrics per displaced pion
track in ng — 7wt 7" samples with high data beam backgrounds with a uniformly generated
transverse momentum of p,(K%) = [0.05 — 3] GeV. The average transverse decay distance
is v, = 8.24 cm (see Section 3.2/ for details) for different track finding algorithms in different
detector regions.

(in %) Etrk Tfake Tclone €trk,ch Twrong ch.

forward endcap

Baseline Finder  63.2702 35701 0137592 62,5792 1.2179:96
CAT Finder  93.2701 6.8701 02678552 927t 0457003
Baseline Fitter ~ 61.9702 41781 017502 61.2752 1.2319-6¢
CAT Fitter  88.610'1 3.0170°0% 0087001 866752 2237007
barrel
Baseline Finder ~ 91.25709% 6807008 08310 %%  g35701 3.079:98
CAT Finder 9615709 11527005 1.997097 95567007 0.61700%
Baseline Fitter ~ 90.05707 5397097 0591002 851707 2161008

CAT Fitter  93.437008  513%00T 0547502 92.997008 461002

0.02

backward endcap

Baseline Finder ~ 44.0703 2517008 01T00s 427703 3A0f8‘_}4
CAT Finder  90.1707} 9.6751 0427503 89.atdT 0741300

Bascline Fitter ~ 42.61703 2.24%0°0% 00700, 412702 3.210]
CAT Fitter ~ 83.2702 2357007 0127800 79.3702 a7ty

Non-pointing Vertices

I evaluated the track finding charge efficiency for non-pointing displaced vertices using
simulated eTe™ —h(— pupu )x1xa(— €7 e x1) events, where the Yo decays uniformly
along its flight path into two charged particles and an invisible y; (see Section 3.5). The
results for the electrons are shown in Fig. 6.12| for the barrel region. In comparison to the
h — uﬂf samples, a large part of the tracks cannot be fitted, especially for electrons that
are in the low momentum region. The total integrated efficiency per track is 43.7% for
the Baseline Finder with a fake rate of 2.76%, whereas the efficiency for the CAT Finder
is nearly doubled with 81.9% while keeping a lower fake rate of 1.54%. All track metrics
are given in Table 6.5]split in detector regions. In total, the CAT Finder performance is
far superior for both pointing and non-pointing tracks, even for difficult particle types like

electrons, that produce bremsstrahlung.
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Figure 6.12: Text adapted from [1]: Track finding (empty markers) and combined
track finding and fitting efficiency (filled markers) for (top) displaced electron tracks in
ete” =h(—= u ) xaxe(— ete xq) events with high data beam backgrounds, as function
of (left) the true simulated transverse momentum pi\/[ C, and (right) the true simulated

displacement vi,\/lc in the z — y plane.

Table 6.5: Text adapted from |1]: The performance metrics per track for e e” —h(—
wt ) xaxe(— efexy) (my, = [0.5,1.0,2.5] GeV and m,, =2.5 GeV) samples with
high data beam backgrounds for the y, decaying uniformly along its flight direction into
two charged particles and an invisible x; (see Section 3.2 for details) for different track
finding algorithms in different detector regions.

(in %) Etrk fake Telone Etrk,ch twrong ch.

forward endcap

Baseline Finder ~ 20.5170% 101758 0.2%09 199709 32708
CAT Finder ~ 72.5707% 72102 0667005 es2ffl 50702

Baseline Fitter ~ 19.3707% 108795 0217095 185705 42704
CAT Fitter  57.375% 4302 on?S0l ss0t0% 4ath

barrel

Baseline Finder ~ 42.8702 366700 0677005 307102 71701
CAT Finder 943870708 3.337007 2587007 887ty  5.98700%

Baseline Fitter 40.6f§‘§ 2.41f§1§§ 0.294:%:;&% 38.5%}% 5.2f§‘é7

: +0. +0. +0. . +0.
CAT Fitter 8137071  1.33700% 0537002 770701 4187007
backward endcap

Baseline Finder ~ 12.610% 37702 013902 117t0t 7108
CAT Finder  63.270°¢ 81102 1807 565108 106703

Baseline Fitter ~ 11.5707% 34505 00efgoi 107800 6484581;
CAT Fitter ~ 42.3755 19701 0217003 306708 65701

6.2 Track Momentum Resolution

The CAT Finder provides estimates of the three-momentum for each condensation point
used within this work as starting values for the subsequent track fitting algorithm GENFIT2.
The resolution after the fitting step are the result of the trackfit described in Section 5.1. As
for high transverse momentum, the tracks appear like straight lines. Detailed information
on the drift lengths need to be combined to achieve a good momentum approximation. For
this reason, the training dataset momentum range stopped at p, = 6 GeV. Even though

this biases the model, as it learned that the prediction goes up to around p, = 6 GeV, this
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value is sufficient as a seed for the track fit for higher energetic particles. As the resolution
of the CAT Finder is biased (see Section C.6 for details), the resolution is not shown for

track momenta above p, = 4 GeV for the CAT Finder before fitting.

6.2.1 Prompt Tracks

I analyzed the momentum resolution of matched prompt tracks (categories 1-3 in Table 3.2),
focusing on non-curling tracks found by both the CAT Finder and Baseline Finder algo-
rithms (Section [6.1.1). The transverse n(p;) and longitudinal 7(p,) resolutions are shown
in Fig. 6.13.

For tracks before fitting, the CAT Finder yields a consistent n(p;) of a few percent across all
detector regions. In contrast, the Baseline Finder achieves better resolution in the barrel,
reaching below 1%, but its performance drops in the endcaps due to lower hit efficiency
and purity. The longitudinal resolution 7(p,) shows similar behavior in the barrel for both
algorithms, while CAT Finder again performs better in the endcaps.

After fitting with | GENFIT2, both CAT Finder and Baseline Finder show nearly identical
resolutions for n(p,) and n(p,) across all regions, which is expected due to the comparable
hit efficiencies at higher p, values.

The helix parameters (see Section 5.3.1) are compared in Section |C.7
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Figure 6.13: Figure and text taken from |1]: Relative (top) transverse and (bottom)
longitudinal momentum resolution as function of simulated transverse momentum piw < for
the intersecting prompt evaluation sample (category 1-3, high data beam backgrounds, see
Table 3.2) in the (left) forward endcap, (center) barrel, and (right) backward endcap for
tracks found by both (red) CAT Finder and (blue) Baseline Finder. For the CAT Finder
the resolution is shown only for p, <4 GeV, see Section |C.6 for details.
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Figure 6.14: Text adapted from [1]: Relative (left) transverse and (right) longitudinal
momentum resolution as function of simulated transverse momentum pi\/[ © (top) and
number of seen particles Nsl\é[e(rjl (bottom) for the intersecting prompt pions from BB,
high data beam backgrounds, see Table [3.2) in the barrel, and (right) backward endcap for
tracks found by (red) CAT Finder, (orange) CAT B Finder, and (blue) Baseline Finder.
For the CAT Finder the resolution is shown only for p, <4 GeV, see Section (C.6 for details.

In high-multiplicity BB events, the resolution before fitting is also larger for both
CAT Finder and CAT B Finder compared to Baseline Finder, shown in Fig.6.14. Curling
tracks are not removed here. However, CAT B Finder improves over CAT Finder. After
fitting, CAT Finder performs worse at low p;. This is correlated with Nsl\é[e(rjl, and can be
seen in Fig. 6.14c/ with resolution decreasing as Nsll/[e?l increases. The CAT Finder shows the
steepest drop in hit efficiency, as illustrated in Fig. 6.10b, which directly correlates with its
poorer momentum resolution. The CAT B Finder, however, matches the Baseline Finder in

resolution, even though the hit efficiency is slightly decreased compared to Baseline Finder.

6.2.2 Displaced Tracks

I evaluate the momentum resolution for matched displaced tracks using events from dark
Higgs and single ng — 7w decays, as described in Section 3.3 and Section 3.5. I include
curling tracks and focus on intersecting and additional samples in the barrel region.

The transverse and longitudinal momentum resolutions, n(p;) and n(p,), for the intersecting
sample of both CAT Finder and the Baseline Finder are shown in Fig. [6.15. Extended
results for the additional sample for CAT Finder in Section |(C.8 and the comparison for

Kg — 7t7 " is in Section C.9. The Baseline Finder sample for additional displaced tracks
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is too small for reliable statistics.

Before track fitting, CAT Finder achieves better n(p;) and n(p,) resolutions across most
p; and displacement values, except at very small displacements, where Baseline Finder
performs better.

For the K g — wt7~ sample, which has smaller displacements on average, both CAT Finder
and Baseline Finder show improved resolution compared to the h — ™~ sample.

After fitting with |GENFIT2, both algorithms yield comparable momentum resolutions.
For electrons from ete” —h(— ,u,+,u_)X1X2(—> e+e_xl), I observe better resolution for
n(p;) and n(p,) after the track finding, except in the very small displacement case in
Fig.6.16. This trend holds even after fitting with (GENFIT2 and correlates with the higher
hit efficiency achieved by the CAT Finder (see Section C.10).
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Figure 6.15: Figure and text taken from [1]|: Relative resolution of (first column) transverse
and (second column) longitudinal momentum as function of simulated transverse momentum
pi\/[ © (top row) and simulated displacement véwc (bottom row) for displaced tracks from
h — ,u+/f decays with high data beam backgrounds in the barrel for tracks found by
both (red) CAT Finder and (blue) Baseline Finder for the intersecting sample. For the

CAT Finder the resolution is shown only for p, <4 GeV, see Section |C.6| for details.
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Figure 6.16: Text adapted from [1]: Relative resolution of (first column) transverse and
(second column) longitudinal momentum as function of simulated transverse momentum
pM¢ (top row) and simulated displacement vi,wc (bottom row) for displaced electron tracks

from ete” —h(— p ) x1xa(— e e ) decays with high data beam backgrounds in the
barrel for tracks found by both (red) CAT Finder and (blue) Baseline Finder for the
intersecting sample. For the CAT Finder the resolution is shown only for p, <4 GeV, see
Section |C.6| for details.

6.3 Position Reconstruction

In this section, I focus on evaluating the position predictions from the CAT Finder, which
directly uses the GNN output. Neither the Baseline Finder nor any post-fitting methods
provide comparable position information, as their track models are defined purely by a
helix without a specific start point.

In Fig.|6.17, I show the CAT Finder ’s position predictions for truth-matched displaced
tracks across various samples. For displaced tracks from pointing vertex samples like
h — /fr/f and Kg — ' ,the CAT Finder yields unbiased and well-resolved predictions,
even in the inner detector region lacking nearby CDC hits (Fig. 6.17a below 16 cm, Fig. 6.17b).
For non-pointing decays such as the two-electrons in e"e™ —h(— p p )x1x2(— e e x1)
sample, the resolution broadens overall, but remains accurate overall. This suggests the
CAT Finder doesn’t simply extrapolate from a single trajectory, it likely uses context from

nearby tracks to infer the shared decay vertex.
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Figure 6.17: Figure and text adapted from [1]: Two-dimensional histograms showing
pred

P
*r,

the correlation between the reconstructed position of the CAT Finder model output v
in the x — y plane and the simulated position vﬁ/lc for (a) h — ptp~, (b) Ky =
(¢) ete” =h(—= uu )xixa(— ete x1), (d) displaced tracks with high transverse momen-
tum, (e) displaced angled tracks with high transverse momentum, (f) displaced tracks with
low transverse momentum, and (g) displaced angled tracks with low transverse momentum,
each with high data beam backgrounds.

For individual tracks, there is a rather complex and non-trivial geometrical behaviour
learned by the model. When examining low p, tracks within the CDC, I observe that
the GNN tends to predict starting points along the helix where the inferred, negative
momentum vector points back toward the interaction point. As a large part of the training
events are the transition samples (category 5-7) between the prompt tracks and the vertex

samples, the training is biased towards tracks being extrapolated towards the interaction
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Figure 6.18: Figure and text taken from [1]: Hllustration how the GNN learns to predict
the starting position for particles with low transverse momentum even without the presence
of another nearby track from a common vertex.

point, which the model learned. As a result, the CAT Finder infers reliable start positions
even for tracks with vf)wc < 16, cm (Fig. 6.171).

For higher p; tracks, this inference breaks down. The near-linear trajectory leads to
ambiguity in momentum direction, and the predictive power vanishes in the inner region
(Fig. 6.17d). To confirm this, I evaluated tracks from category 8 samples containing only
individual non-pointing particles. As expected, the CAT Finder shows no meaningful

prediction in the inner detector (Fig. 6.17¢, Fig. 6.17g).

6.4 Robustness to Variable Detector Conditions

6.4.1 Beam-background Conditions

As outlined in Section 3.1.1, beam background conditions fluctuate due to changes in
accelerator settings. In particular, changes in the beams’ current, which happen during
the beam tuning in a run, can lead to substantial variations within a run. It is therefore
essential for reconstruction algorithms to remain robust under these dynamic conditions,
given by the varying |CDC|occupancy.

The reconstruction algorithms must be robust under these changes. The current model
training strategy I employ consists of pre-training the model on the low simulated back-

grounds and fine-tuning it on the high data backgrounds. For analyzing the performance
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of the model, I evaluate the model trained on low simulated backgrounds with a median
occupancy of 440 beam background hits (see Table 3.1). This model is tested on both the
low simulated background samples (Table 6.6) and the high data background samples with a
median occupancy of 1216 hits (Table 6.7) for the samples of categories 1-3. In addition to
the hit occupancy, the wire efficiency maps also differ between the two evaluation samples.
They are shown in Fig. 3.4c| for the low simulated background and in Fig. 3.4b|for the high
simulated background. The model trained on high data background samples is reported
in Table 6.1. Comparing the track fitting charge efficiency between the low simulated
backgrounds and the high data backgrounds for the Baseline Finder, I observe a significant
drop in the endcaps. This is also the case for the CAT Finder, but to a much smaller extent.
When applying the pre-trained model directly to high background data, the performance is
slightly lower than that of the model trained on high background. Specifically, the track
fitting efficiency drops by about 1 percentage point in the barrel and 3-4 points in the
endcaps. However, the fake rate is slightly improved, suggesting that hyperparameter
tuning might suffice to compensate for efficiency loss.

Overall, even without specific retraining, the CAT Finder continues to outperform the
Baseline Finder across all detector regions, demonstrating strong robustness to beam

background fluctuations.

Table 6.6: Table and text taken from [1]|: performance metrics for the prompt evaluation
samples (category 1-3, see Table 3.2 and Section 3.2 for details) for non-curling tracks
for CAT Finder and Baseline Finder in different detector regions for a model trained and
evaluated on low simulated beam-background. Uncertainties below <0.01% are not shown in
the table.

H 0y
(in %) Etrk fake tclone Strk,ch twrong ch.

forward endcap

Baseline Finder  87.0575°09  0.8310:%3 0.01 84.97T01  2.3970-08
CAT Finder  99.2670°52 1027503 0157050 99227592 0.03_, ¢,

. . +0.1 +0.03 +0.1 +0.03
Baseline Fitter 85418_000lr 0A78_8_83 OAOé o 84.3_8_(1)r 0.99_8_83
CAT Fitter 97127905 0.321092 0047001 96.42709%  0.7210-02

barrel

Baseline Finder  98.7179:03  2.0610:94 0.03 96.7379:93 907804
CAT Finder  99.727081 2157007 0421002 99.47002  0.337002
Baseline Fitter ~ 97.6870°94  1.7575:0% 0.01 96.2779:0%  1.4410-03

CAT Fitter  98.13700%  0.9770%% 0137501 97977007 0171001

backward endcap

Baseline Finder ~ 69.5707  0.7279:93 0.02 662701 4667007
CAT Finder  98.54700% 0757002 0114001 08.43700%  0.11730]
Baseline Fitter ~ 67.87077  0.637503 0.02 65.870 1 2.9810:0¢

CAT Fitter 95127595 037092 003_,4, 91.667058 3637002
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Table 6.7: Table and text taken from |1]: The performance metrics for the evaluation
samples for different track finding algorithms in different detector regions evaluated on high
data beam background, but trained on low simulated beam background for non-curling tracks.
Uncertainties below <0.01% are not shown in the table.

H o7
(in %) Strk fake tclone Ctrk,ch twrong ch.

forward endcap

Baseline Finder ~ 80.1707 0557092 0.01 784100 2.0670°0%
CAT Finder  97.73700% 1467003 0507005 07187002 0.567003
Baseline Fitter ~ 78.17077  0.4975:02 0.01 771101 1.3775:0%

CAT Fitter  93.8970°07  0.22F70-00 0197001 91.9310-08 5 997009

barrel

Baseline Finder ~ 97.9779°07 2317007 0.057007  95.0270:0%  2.0070:07
CAT Finder 9957092 22570-00 1947090 98697005 0.8270-02

Baseline Fitter ~ 96.8870°0%  1.8375:9% 0.03 95.5T0 00 1.427007

CAT Fitter  96.8970°0% 0767002 0457002 96.461003  0.447802

backward endcap

Baseline Finder ~ 60.5707 1087001 0.0300] 580ty 408t(]
CAT Finder  95.0270°08  1.0370:0% 041002 94287006 787002
Baseline Fitter  58.8707  0.02790%  0.02_,,, 568707 3.2810:98
CAT Fitter  87.5570°09  0.44708%2 0167097 828701 547807

6.4.2 Detector Ageing Effects

With increasing luminosity at |Belle 11, hardware-related issues such as reduced wire
efficiency and failing readout boards become more prominent, as discussed in Section [3.1.2.
While I already analyzed the model’s response to different wire efficiency maps in the
previous section, I now investigate its robustness under future conditions.

To this end, I approximate a realistic wire efficiency scenario expected in run II, as shown in
Fig.3.4d T then evaluate both the CAT Finder and Baseline Finder on this new efficiency
map using the technical samples from categories 1-3.

To study localized detector effects, the detector is divided into ¢-regions aligned with the
masked board positions, as shown in Fig.|6.19a. These include a stereo hole in superlayer U2
(segment 8), an axial hole in A3 (segment 9), and another axial hole in A5 (segment 5). The
track charge finding and fitting charge efficiency drops massively for the Baseline Finder
for the two segments 5 and 9 with the axial holes. For the Baseline Finder, the track fitting
charge efficiency in segments without axial holes is 92%. However, it drops to 33.1% for
the inner axial hole in segment 9 and to 62.2% for the outer axial hole in segment 5. The
stereo hole in segment 8, on the other hand, does not seem to impact the Baseline Finder
performance. This is expected as only the hits on axial superlayers are included in the
Baseline Finder track finding algorithm (see Section 5.2). The CAT Finder remains robust
against all superlayer holes, achieving a stable track fitting charge efficiency of approximately
92% over the full ¢ regions. These results show that the current Baseline Finder algorithm
is not robust against hardware-related challenges. It introduces ¢-dependent asymmetries,

which are difficult for analysts to handle or correct. In contrast, the CAT Finder maintains
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stable performance under these conditions, showing strong robustness against hardware
failures. Beyond the superior track charge efficiency, the CAT Finder model also shows
improved hit efficiency and momentum resolution (see Section C.11)).

While the tracking algorithms must work reliably even when boards fail during data
taking, offline reconstruction can take advantage of known detector conditions. To further
improve performance, in the thesis I supervised [35], the fine-tuning of the CAT Finder
was specifically analyzed for runs with degraded hardware. In this work, the CAT Finder
was fine-tuned on the exact wire efficiency and board configuration of each run. The results
demonstrate that while the general CAT Finder already outperforms the Baseline Finder
in all tested scenarios, fine-tuning leads to further improvements. Furthermore, training on
a broad set of efficiencies and wire board maps improves generalization and adaptability
to unknown detector conditions. This thesis also investigates worst-case scenarios. Wire
efficiencies below 0.5 (see Fig. 3.3b)) are found to significantly degrade the performance
of the Baseline Finder, whereas the CAT Finder is able to recover. These findings are
relevant for stable |CDC operation before the next Belle II upgrade and demonstrate that

the CAT Finder offers a reliable, future-proof solution for track reconstruction.
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Figure 6.19: The approximated wire efficiency map, described in detail in Section 3.1.2,
sectioned in ¢-segments in Fig. 6.19a. The track finding and fitting charge efficiency is
given for the Baseline Finder (blue) and the CAT Finder (red) for the ¢ segments in the
polar view (Fig. 6.19b) and the unrolled view (Fig. 6.19Db).



Chapter 7

Validation of Full Detector

Reconstruction

After analyzing the performance of my new GNN based track finder, the CAT Finder, for
the |(CDC|detector only (see Chapter 6), the next step is to validate the performance within
the full Belle II| reconstruction. While I validated and compared the CAT Finder with the
Baseline Finder within the official [Belle II validation framework in detail, I summarize
the most important validation metrics in this chapter.

First, I validate the global track reconstruction performance, which is based on the combi-
nation of all three tracking detectors (Section 5.4), for both prompt and displaced tracks
in Section [7.1. In the next step, I examine the track charge asymmetry in Section [7.2),
resulting from reconstruction differences between positively and negatively charged particles.
Lastly, I validate the implementation of my tracking algorithm into the [Belle IT framework
by examining the particle identification probing both the correct implementation within
the tracking framework and the correct extrapolation of tracks to the other subdetectors
in Section 7.3. The samples in this chapter are statistically independent between the
algorithms, as they have been independently produced for these studies and statistically

independent from the |[CDC-only validation in the previous chapter.

7.1 Track Efficiency

7.1.1 Prompt Tracks in BB

I can now directly compare the CDClonly results with those obtained after full reconstruc-
tion. Particles are only counted as fully reconstructed if their charge is correctly identified.
The different full reconstruction efficiencies (Eq. (4.9)) for pions for the three algorithms,
together with their comparison, are presented in Fig. 7.1. For the Baseline Finder, the
previously reported poor performance in the endcaps is recovered by the SVD)track finding,
as described in Section 5.4. In the case of the CAT Finder, it was shown in the previous

chapter that while the tracks in the barrel region are successfully found (Fig. |6.8b)) not

87
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(d) Difference in the full reconstruction charge efficiency for the CAT Finder and CAT B Finder
vs the Baseline Finder.

Figure 7.1: The full reconstruction efficiency for the true transverse momentum pivl ©

over the polar angle for the Baseline Finder (Fig. |7.1a), CAT Finder (Fig. 7.1b), and
CAT B Finder (Fig. 7.1c). The difference between the two new tracking algorithms to the
Baseline Finder is given as difference in full reconstruction efficiency in Fig. 7.1d. The same
plot but for the CDC-only track charge finding and fitting efficiency is given in Fig. 6.8
and Fig. 6.9.
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all of them can be fitted (Fig. 6.9b), leading to a reduced track charge fitting efficiency
compared to the Baseline Finder. This is due to curlers not being properly handled at this
stage, as discussed in the previous chapter in Section |6.1.1. However, this performance
degradation is also mitigated by the SVD|track finding. The CAT B Finder model, on the
other hand, already showed superior performance compared to both Baseline Finder and
CAT Finder in the |CDCronly track finding and fitting. When looking at the comparison,
I now observe that the CAT B Finder model remains better by 1 percentage point in the
barrel region than the Baseline Finder, in contrast to the 5 percentage points improvement
observed in the previous chapter. This reduction in performance gap is due to the flip and
refit module described in Section 5.4, which is applied only to the Baseline Finder. Tracks
that previously had incorrect charge predictions are now mostly refitted and stored with
the correct charge after running this module. Since both CAT Finder and CAT B Finder
already predict the charge correctly, there is no need to apply the module to these algo-
rithms, simplifying the overall optimization process.

The total integrated values for prompt pion efficiency are summarized in Table 7.1. The
CAT Finder performs 0.25 percentage point worse than the Baseline Finder in terms of
efficiency and also exhibits a slightly higher fake rate of 4.08% compared to 3.44% for
Baseline Finder. Additionally, the clone rate for CAT Finder is 4.76%, which is higher than
the 3.29% for Baseline Finder. The CAT B Finder model achieves the highest efficiency
overall, with improvements of one percentage point while also maintaining a lower fake rate
compared to the Baseline Finder.

I observe the same trend in hit efficiency and hit purity over the number of Nsl\élei in
the full reconstruction in Fig. 7.2, as in the CDCronly case shown in Fig. 6.10. Both
CAT Finder and CAT B Finder maintain the highest purity, but their hit efficiency drops
more noticeably with increasing Nsl\e/[e(fl for more than 20 seen particles in the event, more so
for CAT B Finder than for Baseline Finder, and most significantly for CAT Finder.

The results for electrons, muons, kaons, and protons are summarized in Section D.1.
For both kaons and protons, the full reconstruction efficiency is reduced when using the
CAT Finder compared to the Baseline Finder. The CAT B Finder achieves similar re-
sults as the Baseline Finder. The hit purity for all particle types is consistently higher
for both CAT Finder algorithms than for the Baseline Finder, though the hit efficiency

o . MC : : .
decreases with increasing Ng,.n- As observed for pions, this decrease is more pronounced

Table 7.1: Full reconstruction efficiency, fake and clone rate for prompt pions for the
Baseline Finder, CAT Finder and CAT B Finder in BB events.

Algorithm = Efficiency Fake Rate 7 Clone Rate

Baseline 90.57 £0.07% 3.44£0.03%  3.29 £ 0.04%
CAT 90.32 £ 0.07% 4.08 £0.04%  4.76 + 0.05%
CATon B 91.65+0.07% 3.17+£0.04%  3.70 £ 0.04%
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Figure 7.2: Hit efficiency (top row) and hit purity (bottom row) over the number of
particles seen in the CDC, for all primary matched pions. The left column shows the
distributions for the Baseline Finder in blue, CAT Finder in red, and CAT B Finder in
orange, while the right column shows the median for all three algorithms. The same plot
for the (CDC-only reconstruction is given in Fig. 6.10.

for CAT Finder than for CAT B Finder. For muons, however, the hit efficiency remains
unchanged between CAT B Finder and Baseline Finder, and the drop in efficiency for
the CAT Finder is smaller than for the other particle types. This can be explained by
the training setup, where the CAT Finder is trained exclusively on muon events and the
CAT B Finder on a mixed dataset that includes 75% muon events (see Section [3.2). Since
the input features vary across particle types, as shown in Fig. 5.5, particle-dependent perfor-
mance is expected. Nevertheless, this dependence is less pronounced for the CAT B Finder,
which achieves higher overall hit efficiency than the CAT Finder by incorporating multiple

particle types in the training.

Finally, I examine the extrapolation to the two inner tracking detectors. The number of
SVD and PXD) clusters assigned to pion tracks is given in Fig. [7.3. For all three algorithms,
most tracks are assigned eight SVD| clusters, which corresponds to four hits from the four
SVD layers (see Section 2.2). In the case of the PXD, the majority of tracks are assigned
a single cluster, consistent with the PXD) configuration during run I, where only one

layer was installed (Section 2.2). I do not observe differences between the three tracking
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Figure 7.3: Distributions of the number of SVD clusters (left) and PXD) clusters
(right) assigned to the 7% tracks. The Baseline Finder distribution is given in blue, the
CAT Finder in red, and the CAT B Finder in orange.

algorithms, and the |CKF' is successfully able to extrapolate the |CDC tracks to the inner

tracking detectors as described in Section 5.4l

7.1.2 Displaced Tracks in Kg —nTx" in High Multiplicity Events

While the efficiency for very long-lived particles that decay further outwards within the
CDC|volume depends solely on the CDC|track finding, the efficiency for particles originating
from Kg decays depends on the combined performance of the SVD|/and CDC. The overall
Kg efficiency, the Kg fake rate, and the T 1 efficiency for the decay chain D*" DO(—>
KY(— atn )aT77)xd are given in Table 7.2, Given the lifetime er(K9) = 2.7,cm [37] and
a median (90% quantile) momentum of 0.55 GeV (1.38 GeV) in this sample, most K& decay
within the two innermost tracking detectors. I observe that the reconstruction efficiency for
ng increases by 5 percentage points for the CAT Finder and by 8 percentage points for
the CAT B Finder model compared to the Baseline Finder. While the CAT Finder again
exhibits a higher fake rate, the CAT B Finder model maintains the same fake rate as the
Baseline Finder while achieving a higher efficiency.

Fig. 7.4d shows the difference in K g reconstruction efficiency between CAT Finder and
Baseline Finder (left) and CAT B Finder and Baseline Finder (right). The binning is
chosen according to the tracking detector acceptance, as described in Section 2.2, In the
innermost region, the decays occur within the PXD) followed by the SVD. From 16.8 cm
on, the decay vertex of the Kg lies within the CDC| thus outwards going particles can
only be reconstructed by the CDC]|track finding algorithms. Similar to prompt particles,
I observe that Kg decaying very close to the interaction point are reconstructed with
decreased efficiency using the CAT Finder in comparison to the other two algorithms due

to the handling of curlers. However, for Kg with a decay vertex of more than 8 cm, which
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Figure 7.4: The K 2 efficiency as a function of on the true decay vertex of ng, with bins for
the true radial distance di\,/lc over the true longitudinal distance dlg/lc for the Baseline Finder
(Fig. 7.4a), CAT Finder (Fig. 7.4b), and CAT B Finder (Fig. 7.4c). The difference between
the two new tracking algorithms to the Baseline Finder is given in Fig. 7.4d.

corresponds to the second SVD) layer in p, the CAT Finder efficiency is improved compared
the Baseline Finder. For the CAT B Finder, 1 observe higher efficiency across all regions.
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Table 7.2: K?g full reconstruction efficiency and fake rate, and the full reconstruction
efficiency of T from Kg decays for the Baseline Finder, CAT Finder and CAT B Finder.

Algorithm Kg Efficiency Kg Fake Rate TR0 Efficiency

Baseline 70.8+0.3% 5.84+0.1% 85.3+0.2%
CAT 75.240.3% 7.4+0.1% 88.44+0.1%
CAT on B 78.940.3% 5.84+0.1% 90.34+0.1%

The prompt performance is recovered with this model, and training on high-multiplicity
events has further improved Kg reconstruction even for more displaced Kg compared to
the CAT Finder.

7.2 Track Charge Asymmetry

One major research topic of Belle II is measuring the |Charge Parity (CP) violation
in multiple decay chains (i.e. [97-100]). A reconstruction asymmetry for positively and
negatively charged particles can mimic the (CP)| violation. While this effect is negligible for
particles with p, > 0.5 GeV, it becomes relevant for low momentum particles. In the analysis
measuring the |(CP|asymmetry in DY — nt A [101], the flavor of the DY is determined
from the soft pion emitted in the strong decay D*T — Dz, For this analysis, the
reconstruction asymmetry is the dominating systematic uncertainty. Thus, it is necessary
to examine this effect in detail for a new tracking algorithm.

With N lre°0(7r+) and N™(77) as the number of of correctly reconstructed prompt 7" and
7, and NMC(7T+) and NMC(ﬂ'*) as the number of generated prompt pions, the detection
charge asymmetry A%" ig defined as the difference between the reconstruction charge

asymmetry

(7.1)

— _ 7.2
( (7.2)

which results in
Adet _ Areco . AMC (73>

for all prompt pions.

The detection charge asymmetry describes only the effects due to the track reconstruction
algorithms.

Fig. 7.5/ shows the detection asymmetry for the Baseline Finder, the CAT Finder, and the
CAT B Finder, as well as the difference between the CAT Finder (CAT B Finder) and
the Baseline Finder.
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Figure 7.5: Detection asymmetry between positively charged and negatively charged
prompt pions for all three track finding algorithms in full reconstruction. Fig. |7.5a/ shows
the overall values. Red translates to a higher detection efficiency for positively charged
pions, while blue translates to a higher detection efficiency for negatively charged pions.
The dashed black curve shows the particle traversing exactly one loop (Eq. (7.4), explained
in Fig. 7.7) for the respective transverse momentum and polar angle for the inner (CDC
boundary in forward direction of z = 57cm. The superlayer boundaries described in
Section 6.1.1 are added as guidelines in the top left plot. Fig. 7.5b| shows the difference of
detection asymmetry.
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I additionally give the reconstruction efficiency in Fig. 7.6, to simultaneously monitor
that the changes in asymmetry are not due to an overall worse reconstruction efficiency.

The reconstruction efficiencies split by charge are given in Section D.2.

While the Baseline Finder is often not able to provide correct information on the di-
rection if the particle trajectory is exactly one loop in the (CDC| the flip and refit module,
explained in Section 5.4, improves the correct charge assignment significantly. While it
basically removes any dependency on detector geometry in the backwards direction, the
one loop in the forward direction is still visible, as more positively charged particles are
being detected. The condition for a particle to complete exactly one loop in the (CDC, as
shown in Fig. 7.7, is obtained by requiring that, over a longitudinal distance of Az = 0.57
m, the helix advances by 27 in the azimuthal plane. This distance corresponds to the inner
boundary of the |CDC in the forward direction. In this case, the transverse momentum

p}fvl € and polar angle oM are related by

o™MC = arctan (AZB> , (7.4)

2 - p, ¢

for the magnetic field strength of B = 1.5 T. This relation demonstrates that the observed
charge asymmetry in Fig. 7.5a) coincides with the kinematics of a one-loop curler in the
detector. 1 do not observe this geometrical dependence for either the CAT Finder nor the
CAT B Finder model, which can correctly predict the direction of the loop.

Another region with detection asymmetry is the region around oMC = 90°. The direction
of the particle can be inferred from the energy loss in the particle trajectory. However,
especially within the inner |(CDC| superlayers, the higher beam background occupancy will
interfere with the signal hit measurements from the particle. While for angles differing
from oMC = 90°, the algorithms can assume that the particles come from the collision point
and fix the direction according to the change in the z-coordinate, this is not possible for
particles with M€ = 90°.

All three track finding algorithms have a detection asymmetry within this region. The
detection asymmetry is the most prominent for the Baseline Finder. Interestingly, the
detection asymmetry flips sign for tracks with a transverse momentum high enough to
reach the superlayer U6, but then flips back for higher momentum again.

€ > 0.255 GeV, no asymmetry is

For outer curlers with a transverse momentum of p}f\/[
observed. This is because the energy loss in the outer |CDC walls and surrounding detectors
is larger than within the tracking volume, and even if the tracks re-enter the |(CDC| their
trajectories before and after re-entry differ too much to be misidentified (see Fig. 7.7). The
CAT Finder has less detection asymmetry than the Baseline Finder, and flips sign at the
region oMC = 90°. For the CAT B Finder, which was trained on BB events in addition,

the structure is more similar to the Baseline Finder, but still overall less prominent.
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One important next step is checking the detection asymmetry on measured data. For the
Baseline Finder, the observed detection asymmetry on data has the opposite sign compared
to the simulation [101]. It would be relevant to see whether this discrepancy is reduced

with the CAT Finder, or has an even larger effect, but this is out of scope for this work.

Fig. 7.6 shows that the asymmetry is correlated with an overall reconstruction inefficiency.
For the inner region at oMC = 90°, all three algorithms have decreased reconstruction
efficiency, due to the previously named reasons. This reconstruction inefficiency shows up
for positively and negatively charged pions as seen in Section D.3. Furthermore, for the
Baseline Finder, at the one loop line at Az = 0.57 m in the forward direction, the efficiency
is also decreased. This is not the case for both CAT Finder and CAT B Finder. Decreased
efficiencies for the Baseline Finder are observed in regions where the maximum p distance
the particle can travel in the detector happens to be within an stereo superlayer U2, V4,
or U6 in Fig. 7.6b. The |GNN approach, in contrast to the Baseline Finder, accounts
for detector geometry and does not exhibit such reconstruction inefficiencies. Unlike the
Baseline Finder, where the optimization of detection asymmetry requires a new algorithm
and involves a trade-off between the central region at o™ = 90° and the one-loop curlers,
such that improving asymmetry in one region degrades it in the other, both CAT Finder

algorithms avoid this dependency.
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Figure 7.6: Reconstruction efficiency of prompt pions for all three track finding algorithms
in full reconstruction. Fig. 7.6a shows the overall values. The dashed black curve shows
the particle traversing exactly one loop (Eq. (7.4), explained in Fig. 7.7) for the respective
transverse momentum and polar angle for the inner (CDC boundary in forward direction
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Figure 7.7: The left shows the curve for Eq. (7.4) in blue for Az = 0.57m and 6 points
close to the curve, corresponding to the generated particle transverse momentum p%v[ € and
o™C for the event displays on the right. The right shows an event display of different curlers
in the x — y view (top, Fig. 6.4a) and the p — z view (bottom, Fig. 6.4b). Filled, colored
circular markers represent signal hits belonging to the different particles on the left. The
combination of p}gv[ © and OMC always produces one single loop in the CDC, except for the
particle with pi\dc = 0.3 GeV, that leaves the CDC| loses energy outside the CDC, and
comes back with a small outer curler.
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7.3 Particle Identification

To reliably perform analyses such as measuring rare decays where backgrounds need to
be suppressed [102], lepton flavour violation [103], and lepton flavour universality [104], it
is essential to accurately distinguish the particle types of FSPs (see Section 3.2.5). For
each subdetector (see Section [2.2) except the PXD, a likelihood £§§§‘§§§$ is calculated for
a given particle hypothesis, further described in |11, 105]. These individual likelihoods are
then combined to form a global likelihood. For example, the combined likelihood for the

pion hypothesis in Belle Il is given by:

TOP

VP £EPC 4 10g £IOF 4+ 1og £AVCH | 160 £ECL 4 10g KM, (7.5)

log £, = log + log
Many of these likelihoods depend on the accuracy of the reconstructed track parameters, as
the particle trajectories must be extrapolated to the corresponding subdetectors, as shown

in Fig. 7.8, as well as the particle momentum.

SVD| The [PID| calulcation of the SVD depends on the ionization loss in the SVDL.
This ionization loss depends on the particle type [30] and is sensitive to the correct
number of SVD) clusters assigned to the tracks to calculate. As the (CDC|tracks are
extrapolated with a |CKF to the SVD) to assign clusters, this is dependent on the
CDC( track finding algorithms.

extrapolated
tracks

intersection

Figure 7.8: Event display for a BB event in the 2 — y view at z = 0 for all subdetectors
(Section 2.2). The hits in the tracking detectors are shown with colored circular markers for
the signal and grey triangular markers for the background hits. The clusters of the ECL
are shown as bars, following the color coding from the tracking detector. The clusters of
the KLM are summarized in the first intersection. The figure is adapted from T. Brandes.
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CDC| As for the SVD, the ionization loss in the (CDC|is measured to identify the particle
type. This is dependent on the correct number of hits assigned to the CDC| tracks.

TOP|and /ARICH The PID) of the [TOP and ARICH| detectors depends on the
intersection of the tracks with the respective detectors as well as the particle momen-
tum to determine the distribution of the photons from the Cherenkov radiation (see
Section 2.2).

ECL| The ECL needs to match clusters to the tracks and relies on the correct track
extrapolation to distinguish between photons and electrons. Furthermore, the ratio
between the measured energy in the KCL| and the respective particle momentum

that is dependent on the CDC distinguishes electrons from the other particle types.

KLM! The outermost detector relies on the correct track extrapolation to distinguish
muons from other particles, depending on their expected trajectory assuming minimal

interaction.

Validating the particle identification performance tests not only the tracking quality,
but also the coordination between subdetectors, to check the correctness of the overall
implementation. The likelihoods of the subdetectors can differ due to the differences
in the tracking algorithms. For example, the hit efficiency for CAT Finder is decreased
for high multiplicity events, which results in a decreased momentum resolution for low
momentum particles as shown in Fig. 6.14. While CAT B Finder and Baseline Finder have
a very similar hit efficiency, CAT B Finder has an overall higher reconstruction efficiency,

especially for displaced particles, therefore, it is necessary to test this in detail.

7.3.1 Ionization Energy Loss

One method to identify particles is by their specific ionization energy loss (dE/dx) in
a medium. This energy loss is approximately proportional to the particle’s charge and
velocity [37], resulting in the same function for all [FSPs. When the energy loss is expressed
as a function of momentum, as particles with the same charge and velocity but different
masses will have different momenta, this leads to distinct curves for each particle type.
As a result, measuring dF/dz as a function of momentum allows for an estimation of the
particle’s mass, which in turn enables its identification.

For each (CDC hit belonging to a track, the dE/dx in the drift cell is measured. The CDC
hits with the lowest 5% and the highest 25% of dE/dx measurements of each track are
excluded and for the remaining CDC hits the average dE/dx is calculated. The average is
truncated to remove the effects of the non-Gaussian tails, especially towards higher dE/dz
values. These two cut values of 5% and 25% are the result of the centralized calibration
and will require re-calibration for future use with the new track-finding algorithm. This is

because the dE/dx measurement depends on hit purity, which has been improved in both
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the CAT Finder and CAT B Finder algorithms, and hit efficiency, which has decreased in
the case of CAT Finder. I report the results without re-calibration in this work.

Fig. 7.9/ shows the ionisation energy loss of pions, kaons, and protons in the |CDC over the
reconstructed particle momentum. The ionization energy losses for muons and electrons
are shown in addition in Section D.3, but the separation power in the momentum range of
Belle IT is limited. Using the CDC| dE/dz, pions, protons, and kaons for track momentum
p < 1GeV can be distinguished. For larger momentum, the separation power decreases
significantly. The CAT Finder distributions for the three particles are slightly broader than
those from the Baseline Finder and CAT B Finder algorithms, which is expected due to
the lower hit efficiency of the CAT Finder. This can be seen in detail in Fig.|7.10, where the
same events are reconstructed with all three algorithms, and I select the intersecting sample
between all three. While the distributions of the CAT B Finder and Baseline Finder
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Figure 7.9: CDC| dE/dx in arbitrary units (a.u.) over momentum for pions (blue), Kaons
(red), and protons (purple) for the Baseline Finder (top left), CAT Finder (top right) and
CAT B Finder (bottom left). The dE/dx values are normalized to the average energy
loss for an electron at the Fermi plateau [105], as the absolute value is not necessary to
distinguish between the different particle types.
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Figure 7.10: (CDC dE/dx distribution for a given true momentum range for pions (left),
kaons (middle), and protons (right) for the Baseline Finder (blue), CAT Finder (red),
and CAT B Finder (orange) for the intersecting sample between all three algorithms. No
statistical uncertainties are shown, since the same samples are used for all three algorithms
in these figures. See Fig. [7.9 for details.

models are in good agreement, the distribution for pions in the CAT Finder model (see
Fig. 7.10a) is shifted toward lower values at the left tail. This leads to a reduced dE/dx
resolution for CAT Finder, which is also observed in Baseline Finder for tracks pointing
into the endcaps, as these typically have fewer assigned hits. A similar comparison is shown
for the SVD dE/dz in Section D.3. The ionization loss in the SVD is larger than in the
CDC, but as I observe the same number of SVD|clusters assigned to the tracks in Fig. 7.3
for all three algorithms, the differences also stem from the momentum resolution and not

the dF/dx measurements, as seen in Fig. |D.14.
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7.3.2 Track Extrapolation

TOP and ARICH subdetector

The TOP]|likelihood relies on precise momentum resolution and the correct extrapolation
of the tracks. From the track extrapolation, the crossing point of the particle within the
TOP)| detector is determined. This is necessary to compute the time-of-flight correctly. The
time-of-flight resolution for both low- and high-momentum tracks is shown in Fig. 7.11. As
expected, low-momentum tracks exhibit a broader resolution due to the reduced overall
tracking resolution at lower momenta (see Fig. 6.14). Consequently, time differences for
slower particles, affected by this lower resolution, tend to increase more significantly in
proportion. All three tracking algorithms yield consistent results within uncertainties, con-
firming the correct implementation in bast2. The resulting photon distribution, produced
via Cherenkov radiation, is combined with the time-of-flight measurement and particle
momentum to compute a likelihood for each particle hypothesis. I compare the difference
in log-likelihood log £ between the kaon and pion hypotheses for true pions (Fig. [7.12a)
and true kaons (Fig. 7.12b), restricted to high-momentum tracks with p > 1 GeV. True
pions predominantly yield negative likelihood differences, while kaons result in positive
values, demonstrating a clear separation between the two particle types. Again, all three

tracking algorithms agree within uncertainties.

The
ARICH-only PID)for pions and kaons is given in Fig. 7.13, where all three algorithms agree

ARICH) detector follows a similar approach, but in the forward direction. The

within uncertainties.
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Figure 7.11: Time-of-flight determined from the track extrapolation to the TOP), detector
for low momentum tracks with p < 1 GeV (left) and high momentum tracks with p > 1 GeV
(right) for the Baseline Finder (blue), CAT Finder (red), and CAT B Finder (orange).
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Figure 7.12: Difference in the logarithmic particle likelihood of the TOP, between
kaons L£3°" and pions £°F for pions (left) and kaons (right) with p > 1GeV for the
Baseline Finder (blue), CAT Finder (red) and CAT B Finder (orange).
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Figure 7.13: |ARICH pionID efficiency with a cut value of 0.2 for true pions (left) and
true electrons (right) for the Baseline Finder (blue), CAT Finder (red) and CAT B Finder
(orange) over bins of reconstructed particle momentum.

ECL Subdetector

Electron identification is primarily driven by the |[ECL. To probe this, I examine the ECL
electronID efficiency as a function of particle momentum in Figure 7.14. This electronlD
relies, among others, on the correct matching of the |[ECL clusters to the tracks and the
measurement of the cluster energy over the particle momentum. The cluster energy over
momentum is expected to be close to one for electrons, as electrons deposit almost all
energy within the cluster, and is significantly lower for other charged particles. Both of
these depend on the momentum resolution. Electrons with transverse momentum above
approximately 0.3 GeV have sufficient energy to reach the ECL barrel region. As shown in

Fig. [7.14a; the [ECL| electronlID efficiency for true electrons is low in the first momentum
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Figure 7.14: ECL electronlD efficiency with a cut value of 0.2 for true electrons (left) and
true pions (right) for the Baseline Finder (blue), CAT Finder (red), and CAT B Finder

(orange) over bins of reconstructed particle momentum.

bin, where electrons do not reach the KECL. However, the efficiency improves significantly
once electrons enter the ECL|acceptance region in the second and third bin, and then
plateaus at &~ 95% efficiency. In comparison, Fig. |7.14b| demonstrates that true pions are
effectively suppressed by applying the same selection on the ECL electronID variable. All

three algorithms agree within uncertainties.

KLM Subdetector

Muons are primarily identified by the [KLM. Their distinguishing feature is the ability to
penetrate thick absorber material without major energy loss compared to other particles.
This property is used to construct the muon likelihood in the KLM. Particle trajectories
are extrapolated from the inner subdetectors through the detector material and magnet to
the KLM) under the muon hypothesis, assuming minimal interaction. In the same way as
the TOP, |ARICH, and ECL| particle identification, this approach is highly dependent
on the precision of the track reconstruction. For this, the track is extrapolated to the
KLM assuming the muon hypothesis. The extrapolated trajectory is compared with the
positions of the measured clusters per layer, and a X2 test |106] is performed to assess the
discrepancy between the two. The resulting X2 value is divided by the number of degrees
of freedom (ndof) to obtain the reduced x*/ndof. Fig. 7.15 shows the distribution of this
reduced value for true, prompt muons (Fig. 7.15a) and true, prompt pions (Fig. 7.15b).

I require all prompt particles to have a transverse momentum of at least 0.7 GeV to be
able to reach the KLM) in the barrel region.
For muons, the extrapolated track under the muon hypothesis agrees well with the measured
clusters, resulting in a distribution peaking around 1. In the case of pions, although the
distribution also peaks near 1, significantly larger values are observed, showing the expected

mismatches between the muon hypothesis and the actual cluster measurements from the
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Figure 7.15: The relevant metrics to distinguish muons (left) and pions (right) reaching
the [ KLM|with a true transverse momentum of at least 0.7 GeV. The top row shows the
reduced X2 over the number of degrees of freedom between the actual measured clusters in
the KLM]|and the track extrapolation under muon hypothesis, while the bottom row shows
the last extrapolated KLM]|layer the track should reach if it were a muon, in contrast to
the last layer it reached.

pions. In addition to the reduced X2 /ndof, the last extrapolated layer within the KLM is
also determined. This layer corresponds to the maximum depth a particle is expected to
reach under the muon hypothesis, based on its momentum. Figure 7.15¢ and Fig. [7.15d
illustrate the difference between this extrapolated last layer and the actual last layer hit by
the track. For muons, the extrapolation aligns closely with the measured hits. For pions,
however, the difference is more pronounced, as their greater ionization energy loss causes
them to stop earlier than predicted.

These values enter the likelihood calculation for the KLM) enabling the separation between

muons and other particles. All algorithms agree within uncertainties.
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7.3.3 Global PID

After testing the specific detector identification power for the |[CDC| directly dependent on
the track finding algorithms, as well as the correct extrapolation to all subdetectors outside
of the tracking detectors, I can confirm the correct implementation of my new (GNN-based
algorithm. One last validation is to check the resulting global [PID| from all subdetectors
(Eq. (7.5)), defined as the normalized likelihood for each particle type. For pions, it is given

as:
Lr

PID = .
(m) Lot Lo+ Lo+ Ly + Ly + Ly

(7.6)

The global [PID| efficiency for the charged particles e, u, m, K, and p in B°B° events”,
requiring a global [PID)|value greater than 0.8, is shown in Fig. 7.16 as a function of the recon-
structed momentum. This cut value does not directly translate to efficiency and needs to be
optimized for each analysis. As described in this section, due to the differences in the hit effi-
ciency of the tracking algorithms,re-optimization for different algorithms might be necessary.
For low-momentum electrons and pions, the efficiency is decreased compared to Baseline Finder.
In the momentum region between 1.5 and 2 GeV, the Baseline Finder has a slightly higher
muonlD efficiency, whereas the CAT B Finder model has a slightly higher protonlID effi-
ciency overall. For all other regions, the three track-finding algorithms show consistent results
within uncertainties. These findings confirm that both CAT Finder and CAT B Finder
are correctly implemented within basf2| and can be reliably used in the full reconstruction.
Furthermore, I will use the same [PID|cuts for all three algorithm configurations in the

following analyses, as they agree within uncertainties.

*Deuterons are not shown in this section, due to statistical limitations in BB events.
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Figure 7.16: Global [PID| efficiency for the respective particles in B°B° events, for
Baseline Finder (blue), CAT Finder (red), and CAT B Finder (orange), where the lines
between points are only helps to guide the eye.



Chapter 8

Validation on Data

After confirming that I implemented the CAT Finder and CAT B Finder algorithms cor-
rectly within basf2 based on the simulation (see Chapter 7)), the next important step is to
validate them on measured data. For all three algorithms, I simulate and reconstruct all
samples and measured raw data with the same software setup, besides the respective CDC
tracking algorithms.

Running over the full Belle Il measured data is computationally out of scope for this thesis.
Instead, I use pre-selected data by the [HLT) which is described in detail in Section [3.4L
The HLT selection depends on the Baseline Finder as the reconstruction algorithm, which
was run during data taking. For high track multiplicity events (see Section 3.4.3), the
efficiency difference between the Baseline Finder and the new CAT Finder algorithm is
negligible. Since these events typically contain an average of 11 charged tracks, and the
selection only requires at least three, it is highly unlikely that Baseline Finder would fail
to reconstruct a sufficient number of tracks. Low multiplicity events, on the other hand,
depend on the successful reconstruction of the two tracks in the event to pass the HLT
selection (see Section [3.4.1 and Section 3.4.2). As a result, they are more sensitive to
differences between the track finding algorithms. In simulated ete™ — pu~ events, I
find that while track charge efficiency is high, CAT Finder and Baseline Finder can miss
tracks in independent events (see Section 6.1.1). This biases the low multiplicity evaluation
against Baseline Finder, since CAT Finder cannot exceed Baseline Finder ’s performance
in cases where CAT Finder finds two tracks but Baseline Finder misses one. As of the
writing of this thesis, no pre-selected data is available for low multiplicity events without
relying on track reconstruction. Furthermore, no measured data is available based on
a HLT]| selections for displaced tracks in low multiplicity events. One such example is
ete” = O(— KgKg)’y, where the Kg decays into two pions can be probed, and which can
be selected based on the photon energy. As no HLT]|selection is available, I am not able to

evaluate the performance for displaced tracks in low multiplicity events.

In this chapter, I evaluate the performance of prompt muons and electrons in high mul-

109
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tiplicity events in Section 8.1, followed by displaced pions in high multiplicity events in
Section 8.2, probing three particle types in total.

It is necessary to check the model’s robustness to different particle types, as they all
have different material interactions, which could not be modelled correctly in simulation
compared to measured data. I then study the reconstruction efficiency and resolution of
prompt muons and electrons in low multiplicity events in Section 8.3.1 and Section 8.3.2. I

summarize the results of this chapter in Section 8.4l

For high multiplicity, I use approximately 1.65 fb~! of available pre-selected data, with
a medium background scenario, called runs from experiment 22 (similar to experiment
22, run 468 with 541 median beam background hits, see Fig. 3.2) and a high background
scenario, from now on called runs from experiment 26 (similar to experiment 26, run 1430
with 1216 median hits).

For low multiplicity, I use the available smaller subset of data from Belle II for the
same runs as the high multiplicity studies. I use simulated samples with low simulated
beam backgrounds to compare with experiment 22 and high data beam backgrounds for
comparison with experiment 26. While the simulation is statistically independent between
the three tracking algorithms, I reconstruct the same measured data. While the reconstruc-
tion and selections can differ due to the differences between the algorithms, the statistical

uncertainties on measured data are correlated in this chapter.

Differences between simulation and measured data are expected, as simulation does not
perfectly reproduce detector measurements, which is why corrections are applied to the
simulation for analyses. Corrections between simulation and measured data are determined
using Baseline Finder, and obtaining them for my new tracking algorithm is out of scope.
The same applies to systematic uncertainties. Therefore, no corrections or systematic
uncertainties are applied to either the Baseline Finder or the CAT Finder algorithms. The
focus in this chapter is on comparing the |CDC tracking algorithms and their respective
differences between simulation and data. Applying Baseline Finder-based corrections would

cancel out in a direct comparison and is thus omitted.

8.1 Prompt Tracks in High Multiplicity Events

In this section, I compare the tracking performance for prompt tracks from J/1 decays in

hadronic high multiplicity events, following the HLT) selection described in Section 3.4.3.

Event Selection

By reconstructing the excited state 1(25) from the decay chain 1)(28) — J/(— 71 )a 7™,
I can improve the purity of the J/v selection. The 1)(2S) comes from B-meson decays (see
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Section 3.4 for the cross section), where the branching fraction B — ¢ (25)X, with X being
anything, is (3.0640.30)-10* [37]. The branching fraction for the decay 1(25) — J/ 7t n~
is 34.69 £ 0.34%, and the J/v has a branching fraction of 5.971 4 0.032% for the electron
and 5.961 £ 0.033% for the muon final state [37]. While this leads to a low expected number
of decays, I can select a pure sample of prompt electron and muon tracks to compare
my new track finding algorithm to the existing Baseline Finder. The analysis selection is

presented below.

Lepton selection Electron and muon candidates must be prompt, with transverse and
longitudinal impact parameters satisfying dip < 2cm and |zp| < 4 cm, respectively,
and within the CDC|acceptance. For electrons, a bremsstrahlung correction is applied
where the electron track is merged with photons with an energy of at least 0.5 GeV
and an opening angle between the photon and electron track of up to 11°. Particles
are identified with a likelihood-based PID. The PID(e) and the cluster energy over
particle momentum F,.,/p are required to be larger than 0.8. For muons, the
PID(p) is required to be larger than 0.8.

J /v candidate The J/1 candidate is reconstructed from two oppositely charged electrons
or muons. The reconstructed mass M+ - is required to be between 2.8 GeV and
3.4 GeV.

Pion selection Pion candidates also must be prompt, with transverse and longitudinal
impact parameters satisfying dip < 0.5 cm and |2;p| < 2 cm, respectively, and within
the |CDC| acceptance.

1(2S) candidate The J/v is combined with two opposite charged pions to form the
1¥(2S5) candidate. A vertex fit on the full decay chain is performed. The mass
difference between the ¢ (25) and the J/¢ candidate is required to be between
0.4 GeV to 0.7 GeV. By reconstructing the excited state 1(2S) from the decay chain
¥(28) = J/(— 1117 )a w7, T can then chose best candidate for the reconstructed
J/¢ by requiring difference between the reconstructed mass for the ¥ (2S) and
J/, M;f&os) — M;‘;fpo and the difference between the true mass according to [37]
with My (55) = 3686.097 £ 0.025 MeV and M), = 3096.900 = 0.006 MeV for each

candidate in the event to be minimal
. . PDG PDG
candidate = min [(M; 55y = M; jr) — (M) — MY75)]- (8.1)

The selection is summarized in Table &.1.
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Table 8.1: Selection summary for ¢(25) — J/¢(— (71 )n n .

Analysis selection Selection criteria
J/p—=ptu” | I = ete”

‘ZIP’ <4cm

Lepton |dIP| < 2cm

17° < 0 < 150°
PID(y) > 0.8 | PID(e) > 0.8
Ecluster/p > 0.8

T/0 2.8GeV < M < 3.4GeV
‘ZIP’ < 2cm
nt |dip| < 0.5cm
17° < 6 < 150°

After selecting the events following these selections, I then fit the reconstructed mass
distribution of the J/v using =zfit| [L07]. The signal and background parametrization is

given in the following.

Signal Parametrization

The signal S mass distribution is modelled by a Double Sided Crystal Ball (DSCB)
probability density function (PDF) [108, 109], defined as:

( T — —nL T — [
Al <Bl — ) N lf < —Qy,
g g

2
f(ﬂl%av alanl’arvnT) = Nsig Ty exXp <_ <x2 M) ) , if — o < u < (& (82)
(o (o

A, <Br—x_“> T LNy

ag ag
where
A ny/r " |al/r|2 (8.3)
r= exp | — .
Y |al/r| 2
nl/r
By, = Tl || (8.4)

and the normalisation N, for the signal yield. The function has at its core a Gaussian

ig
with the mean p and width o, and in addition, exponential tails on the right and left side.
The tails are described by the parameters ay /., giving the point for the transition between
the Gaussian to the exponential function, which is described by the parameter n; Jr As the
transition points oy, and the exponential order parameter n;/, are strongly correlated, this

leads to large uncertainties on the fit. To stabilize the fit, the exponential order parameters



Chapter 8. Validation on Data 113

are fixed to n;/, = 2, which is within the range of 1.5 — 2.5 for the n;/, parameters if left
floating, as well as consistent with the simulation results. The tails are then described by

the transition points «a;,..

Background Parametrization

The background of the reconstructed mass is expected to be smooth within the fit range. I
model the background using the Chebyshev polynomial PDEF' to the first order with the
linear Chebyshev coefficient ¢; and the normalization factor for the background, given by

the background yield estimator Ny,.

The signal and background fit is therefore modelled with seven floating parameters.

8.1.1 J/yY —» putp”
Reconstructed J/v mass

In Fig. 8.1, I show the reconstructed J/v mass M/ﬁlf for J/¢ — ,u+,u_ in runs from
experiment 22. The fit is performed in the range 3.0-3.2 GeV and the fit results for measured
data and simulation are given in Table 8.2. This process also probes the pion reconstruction
efficiency in addition, as all four FSP|of the decay chain need to be combined to reconstruct
the ¢(25) = J/(—= p p )ntn .

For simulation, the background is smoothly distributed. The measured data agree with
the shape of the simulation, but the signal yield is larger in the measured data com-
pared to the simulation. For all algorithms, the fitted mean of the measured data
agrees within uncertainties and is statistically consistent within two standard deviations of
MJP/%G = 3096.900 + 0.006 MeV [37], which probes the bias of the reconstruction.

The simulation is statistically independent, but the same measured data are reconstructed
with the three algorithms. Although the algorithms do not reconstruct exactly the same
events, they share a large fraction, leading to correlated results on measured data. The
statistical uncertainties are common to all algorithms.

The signal yield Ng, is highest for CAT B Finder, but all results agree within the fit
uncertainties, which shows that all three algorithms achieve a similar reconstruction effi-
ciency. Background yield Ny, is highest for CAT Finder and lowest for CAT B Finder,
also within uncertainties. I calculate the significance of the measurement with N,/ \/m7
given in Table 8.2, and the results all agree within statistical uncertainties for all three
tracking algorithms. The width ¢ is similar for CAT B Finder and Baseline Finder, while
CAT Finder has a slightly larger value (6.7 £ 0.5 MeV compared to 6.5 £ 0.5 MeV), still
within uncertainties.

In contrast to the higher prompt particle efficiency (see Section 7.1.1), I do not see a
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Figure 8.1: Reconstructed .J/1 mass from two opposite charged muons M + - in the signal
region of 3.0 GeV to 3.2 GeV for both simulation and measured data for runs from experiment
22 (see Section 3.1.1 for details), including the comparison between simulation and measured
data. The plots show M/ﬁlf using the Baseline Finder (top left), CAT Finder (top right),
and CAT B Finder (bottom) in the full reconstruction. Signal and background for the
simulation refer to the correctly reconstructed J/v, and are shown as colored, stacked
histograms. Data is shown in black. The combined fit to data (purple), as well as the
individual signal (red) and background (blue) components, is added, and the most important
fit parameters p, o, Ny, and Ny, (see Section 8.1) are annotated. The simulation is scaled

to the integrated luminosity of [ £dt = 1.644 fh 1.

significant signal yield increase for CAT B Finder in either simulation or measured data,

as the fit precision is limited by statistical uncertainties.
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I repeat the analysis for runs from experiment 26 in Fig. 8.2 to study the performance
on higher backgrounds. For all three algorithms, the simulation using high data beam
backgrounds from experiment 26 with matching beam background conditions agrees with
the measured data. The signal yield on measured data is lowest for CAT Finder (710 4 50),
higher for Baseline Finder (7404£50), and highest for CAT B Finder (760+50), but all three
agree within uncertainties. The peak position shifts from 3096.5+ 0.4 MeV in experiment 22
to 3097.6 + 0.5 MeV for Baseline Finder, with slightly different but statistically compatible
values for CAT Finder and CAT B Finder. The peak width o increases from 6.5 4 0.4 MeV
to 7.94+0.5 MeV for Baseline Finder, with 7.4+0.3MeV for CAT Finder and 7.8 0.4 MeV
for CAT B Finder, which indicates that the momentum resolution decreases for the tracks in
higher beam backgrounds. Despite the higher integrated luminosity compared to experiment
22, the overall signal and background yield is smaller. The reason here is that experiment
22 has fewer beam background hits and better |CDC| conditions compared to experiment
26. Overall, my new GNN-based algorithms reconstruct the J/¢ peak for prompt muons

with performance matching Baseline Finder in experiment 22 and experiment 26.
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Figure 8.2: Reconstructed J/1 mass from two opposite charged muons M + — in the signal
region of 3.0 GeV to 3.2 GeV for both simulation and measured data for runs from experiment
26 (see Section 3.1.1 for details), including the comparison between simulation and measured
data. The plots show M;ﬁ;f using the Baseline Finder (top left), CAT Finder (top right),
and CAT B Finder (bottom) in the full reconstruction. Signal and background for the
simulation refer to the correctly reconstructed J/v, and are shown as colored, stacked
histograms. Data is shown in black. The combined fit to data (purple), as well as the
individual signal (red) and background (blue) components, is added, and the most important
fit parameters p, o, Ny, and Ny, (see Section 8.1) are annotated. The simulation is scaled
to the integrated luminosity of [ L£dt = 1.657 fh 1.
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Table 8.2: Fit results for J/¢ — ,uJr p including statistical uncertainties on measured data

and simulation for the three algorithms Baseline Finder, CAT Finder and CAT B Finder
for runs from experiment 22 and runs from experiment 26. N, describes the signal yield,
Ny the background yield and p and o mean and width of the DSCB (see Eq. (8.2)). The

last column shows the signal significance estimate Ngg/+/Npjg-
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Number of hits in prompt muon tracks

I achieve a clean selection of signal muons in the mass window 3.07 GeV-3.12 GeV. One
additional relevant metric to probe the track finding quality is the number of |CDC hits
per track Nope mie- Fig. 8.3 compares Nepo mies for #F and 7 in runs from experiments
22 and 26 for all three algorithms. I find more hits assigned to tracks reconstructed with
Baseline Finder for both CAT Finder and CAT B Finder. Comparing simulation and
measured data for experiment 22 for " (Fig. 8.4), Baseline Finder and CAT Finder agree
within uncertainties, though CAT Finder assigns fewer hits than Baseline Finder. For
CAT B Finder, 1 see significant discrepancies, with fewer hits in measured data than in
simulation, indicating potential issues from the training on BB events.

For experiment 26 (Fig. 8.6), all algorithms show significant simulation-data differences.

For u~, discrepancies appear in experiment 22 (Fig. 8.5) and increase in experiment
26 (Fig. 8.7) for all algorithms between simulation and measured data. This opposite-sign
asymmetry is a known issue|110], affecting track quality selections and indicating that simu-
lation does not model hit behaviour accurately. I suspect this also drives the CAT B Finder
simulation—data differences.

Furthermore, beam background conditions affect all algorithms. Although CAT Finder has
fewer hits on average, the reconstructed mass width is the same across algorithms for both
experiments. The width difference between experiments 22 and 26 cannot be explained
solely by hit counts but also by hit quality, with stronger interference between overlapping

hits from particles and hits from beam-background in experiment 26.
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Figure 8.3: Number of CDC hits of the muons for the reconstructed J/¢ candidate
from two opposite charged muons in the signal region of 3.07 GeV< Mu+u_ <3.12GeV for
measured data, for the full reconstruction using the Baseline Finder (blue), CAT Finder
(red) and CAT B Finder (orange). The number of CDC hits for p* (left) and p~ (right) is
given for runs from experiment 22 (top) and runs from experiment 26 (bottom), including
the ratio between each algorithm combination. Statistical uncertainties are correlated
between all three algorithms, as the same measured data is used for reconstruction.
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Figure 8.4: Number of CDC| hits for the ,u+ of the reconstructed J/v candidate from
two opposite charged muons in the signal region of 3.07 GeV< Mu+u_ <3.12GeV for
both simulation and measured data for runs from experiment 22 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepo mies(#') using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation

refer to the correctly reconstructed J/1. The simulation is scaled to the integrated luminosity
of [L£dt =1.644fb",
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Figure 8.5: Number of CDC hits for the p~ of the reconstructed J/¢ candidate from
two opposite charged muons in the signal region of 3.07 GeV< Mu+u_ <3.12GeV for
both simulation and measured data for runs from experiment 22 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepc migs(4 ) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation

refer to the correctly reconstructed J/v. The simulation is scaled to the integrated luminosity
of [Ldt=1.644fb",
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Figure 8.6: Number of CDC]| hits for the ,u+ of the reconstructed J/1 candidate from
two opposite charged muons in the signal region of 3.07 GeV< M/ﬁlf <3.12GeV for
both simulation and measured data for runs from experiment 26 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nope mies(14 1) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation
refer to the correctly reconstructed J/v. The simulation is scaled to the integrated luminosity

of [L£dt =1.657fb ",
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Figure 8.7: Number of CDC hits for the p~ of the reconstructed J/i candidate from
two opposite charged muons in the signal region of 3.07 GeV< Mu+u_ <3.12GeV for

both simulation and measured data for runs from experiment 26 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepc mies(¢¢ ) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation
refer to the correctly reconstructed J/v. The simulation is scaled to the integrated luminosity
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8.1.2 J/p —»ete”
Reconstructed J/v mass

I repeat the analysis with opposite-charged electrons to reconstruct the J/1. Electrons and
positrons are particularly difficult to reconstruct in tracking because of bremsstrahlung. In
this process, the energy loss is proportional to the particle’s energy and alters its trajectory.
Fig. [8.8 shows the fit results for experiment 22, and Fig. [8.9| for experiment 26, with the
summary for both measured data and simulation given in Table 8.3, Compared to the
/ﬁ i final state, the eTe™ reconstructed J /1 mass shows a pronounced low-mass tail due
to electron (positron) bremsstrahlung. For experiment 22, the signal and background yields,
as well as the peak position and width, are consistent across all three algorithms within
uncertainties. For experiment 26, the signal yield is lowest for Baseline Finder at 471 + 29,
higher for CAT Finder at 540440, and highest for CAT B Finder at 550+40. Backgrounds
follow the opposite trend, largest for Baseline Finder and smaller for CAT Finder and
CAT B Finder. Between CAT B Finder and Baseline Finder (CAT Finder), the peak
position shifts from 3.0959 + 0.0011 GeV to 3.0991 4+ 0.0014 GeV (3.0992 £ 0.0009 GeV).
In comparison to the u* p~ final state, I do not observe differences in the width between
experiment 22 and experiment 26, as the tail towards lower values due to bremsstrahlung
leads to larger fit uncertainties in comparison.

This demonstrates that my new algorithms successfully reconstruct both electron and muon

tracks and reproduce the J/1 mass in high-multiplicity events.

Number of hits in prompt electron tracks

I compare the number of hits in prompt electron tracks in the signal region 3.05-3.12 GeV
for measured data in Fig. [8.10, with simulation comparisons in Section E.1. I observe
the same trends as for muons: Baseline Finder assigns the most hits in experiment 22,
with the difference decreasing in experiment 26. The CAT B Finder shows the fewest
hits and the largest discrepancies between simulation and data, as observed for the ptp~
final state. The same positivenegative track asymmetry appears as for muons. Due to
the large statistical uncertainties, I will discuss the discrepancy in the number of hits in

detail in the next section using a decay that yields more events, resulting in higher statistics.
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Figure 8.8: Reconstructed .J/v mass from two opposite charged electrons M+ - in
the signal region of 3.0 GeV to 3.2 GeV for both simulation and measured data for runs
from experiment 22 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show M + - using the Baseline Finder (top left),
CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction. Signal
and background for the simulation refer to the correctly reconstructed J/1, and are shown
as colored, stacked histograms. Data is shown in black. The combined fit to data (purple),
as well as the individual signal (red) and background (blue) components, is added, and the
most important fit parameters p, o, Ng, and Npy, (see Section 8.1) are annotated. The

simulation is scaled to the integrated luminosity of [ £dt = 1.644 fh 1.
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Figure 8.9: Reconstructed .J/v mass from two opposite charged electrons M+ - in
the signal region of 3.0 GeV to 3.2 GeV for both simulation and measured data for runs
from experiment 26 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show M + - using the Baseline Finder (top left),
CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction. Signal
and background for the simulation refer to the correctly reconstructed J/1, and are shown
as colored, stacked histograms. Data is shown in black. The combined fit to data (purple),
as well as the individual signal (red) and background (blue) components, is added, and the
most important fit parameters p, o, Ng, and Npy, (see Section 8.1) are annotated. The
simulation is scaled to the integrated luminosity of [ £dt = 1.657 fh 1.
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Table 8.3: Fit results for J/1 — ee™ including statistical uncertainties on measured data

and simulation for the three algorithms Baseline Finder, CAT Finder and CAT B Finder
for runs from experiment 22 and runs from experiment 26. N, describes the signal yield,

Npyg the background yield and p and o mean and width of the DSCB (see Eq. (8.2)). The

last column shows the signal significance estimate Ngg/+/Npjg-
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Figure 8.10: Number of CDC hits of the electrons for the reconstructed .J/v¢ candidate
from two opposite charged electrons in the signal region of 3.05 GeV< M + - < 3.12GeV for
measured data, for the full reconstruction using the Baseline Finder (blue), CAT Finder
(red) and CAT B Finder (orange). The number of CDC| hits for e* (left) and e~ (right) is
given for runs from experiment 22 (top) and runs from experiment 26 (bottom), including
the ratio between each algorithm combination. Statistical uncertainties are correlated
between all three algorithms, as the same measured data is used for reconstruction.
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8.2 Displaced Tracks of K2 — w#x~ in High Multiplicity

Events

Following the approach from the J/4 decays, I reconstruct the D** — D%(— KY(—
ata )at
D*' come from both B-mesons, with the branching fraction for B — D*" X of 17.3 +
2.0%|37] and from e"e” — ¢ events. The D** — D’z branching fraction is 67.7 + 0.5%,
with the D” — K277~ branching fraction being 2.80 4 0.18% [37]. The Kg decays in
69.20 + 0.05% into the 7" 7~ final state|37]. Especially due to the contribution from the

eTe” — ¢¢ events and the higher branching fractions, I expect a larger number of decays

777)71';5 decay chain to increase the purity of the ng — 77 selection.

in comparison to the J/¢ decay.

Event Selection

I evaluate Kg candidates in high multiplicity events on measured data using the same
HLT filter as in the previous section (see Section 3.4.3). Following the J/1 decay to select
the best Kg candidate and suppress backgrounds, the decay chain D*" = DO(—> Kg(—>

7r+7r7)7r+777)71';r is reconstructed. The analysis selection is given in the following

K g candidate Two oppositely charged particles without any further selections applied
are combined in a vertex fit. The reconstructed mass of the two charged tracks M has
to be between 480 MeV and 516 MeV. The significance of the displacement, defined as

the ratio of d, to its uncertainty given by the vertex fit, must exceed 3.

Pion selection D Pion candidates 7" must be prompt, with transverse and longitudinal
impact parameters satisfying dip < 2cm and |zp| < 4cm, respectively, with a

transverse momentum above 0.1 GeV.

D° candidate The D° candidate is reconstructed from the K 2 candidate and two opposite
charged pions. The reconstructed mass is required to be between 1.82GeV and
1.91 GeV.

Pion selection D** This pion candidate 7g is also required to be prompt dip > 2cm
and |zrp| > 4 cm, but there is no requirement on the pion momentum as it is expected

to be very small.

D** candidate The D" is combined with one charged pion to form the D*' candidate.
A vertex fit on the full decay chain is performed. The mass difference between the
D*' and the D° candidate is required to be between 0.144 GeV to 0.147 GeV. The
center-of-mass momentum of the D*T, p*D*+, is required to be larger than 1.6 GeV.
This suppresses the backgrounds from BB events at the cost of D*t signal from BB

+

events. As a large contribution of D*T comes from eTe” — ¢ events, this leads

to a higher selection purity in total. I chose best candidate for the reconstructed
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Analysis selection Selection criteria
70 0.48 GeV < M < 0.516 GeV
o significance of distance > 3
|zip| < 4cm
i |dip| < 2cm
p; > 0.1 GeV
D’ 1.82GeV < M < 1.91 GeV
+ |dz| < 4cm
s |dr| < 2cm
D 0.144 GeV < *MD*+ — Mo <0.147 GeV
P+ > 1.6 GeV

Table 8.4: Selection summary for D** — D%(— K2(— a7 a7 )xd.

Kg by requiring the difference between the reconstructed mass for the D*" and
DY, M58 — M5 and the difference between the true mass according to [37] with

MgPG = 2010.26 £ 0.05 MeV and Mg]o)G = 1864.84 4+ 0.05 MeV for each candidate in

the event to be minimal.

candidate = IZII}\III |(Mfgg - MfDDoG) — (M52 = M5°). (8.5)

The selection is summarized in Table 8.4

Reconstruction

Compared to the (2S5) reconstruction, there are now five instead of four final-state
particles. The small mass difference between the D™t and D° results in the 71';r having
small momentum of p, < 0.15GeV. With a lifetime of around 2.7 cm|37|, most K2 decays
are rather prompt. This challenges the CAT Finder, as many curlers in this momentum
range are expected, and the reconstruction efficiency strongly depends on the [SVD) for all
three algorithms. I find that at least one pion from the Kg decay is reconstructed by SVD
track finding in 38% of cases for the Baseline Finder, 41% for the CAT Finder, and 31%
for the CAT B Finder.

Reconstructed ng mass

The reconstructed Kg mass for experiment 22 is shown in Fig. 8.11]. I fit the distribution
using a [DSCB function for the signal and a Chebyshev polynomial for the background, as
described in Section 8.1. Here, n;/, is fixed to 3 as the range is between 2.5 to 3.5, both
on simulation and if left floating on measured data. The fit results for measured data
and simulation are given in Table 8.5 For experiment 22, the Baseline Finder achieves
the lowest signal yield of 8850 + 190 and the lowest background of 10130 + 190. I then
calculate the approximate significance of the measurement with N,/ \/Wkg =87.9+2.1.



Chapter 8. Validation on Data 131

The CAT Finder has a higher signal yield of 9060 4+ 210, but also a larger background of
124704220, resulting in a slightly lower significance of 81.1+ 2.0, consistent with simulation
expectations due to higher fake and clone rates from SVD|track recovery at low momentum.
The CAT B Finder achieves the highest signal yield of 9900 + 210, with a background
similar to CAT Finder at 12590 4 220, giving a significance of 88.9 4+ 2. Within statistical
uncertainties, the significance of the Baseline Finder and CAT B Finder agree, though the
CAT B Finder peak in measured data is smaller than expected from simulation. For all
three algorithms, the fitted mean obtained from the measured data is statistically consistent
with mf{gc’ = 497.611 + 0.013 MeV [37].

For experiment 26, shown in Fig. 8.12, the Baseline Finder has a signal yield of 8410 4 220
and background of 108104230, giving a reduced significance of 80.9+£2.3. The CAT Finder
yields 7940 £ 240 with background 13340 + 260, leading to a significance of 68.7 + 2.2. The
CAT B Finder again gives the highest signal yield 9010 4240 with background 13710 £ 250,
resulting in a significance of 76.9 + 2.2, consistent with Baseline Finder within uncertain-
ties. For all algorithms, the signal yield on measured data is smaller than in simulation,
and CAT Finder and CAT B Finder show increased background in the non-signal regions
M _+ - < 049MeV and M_+ - > 0.505MeV, particularly in experiment 26, between
measured data and simulation. This again indicates that there is a mismatch in the

simulation.
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Figure 8.11: Reconstructed Kg mass from two opposite charged pions M_+ - in the
signal region of 0.48 GeV to 0.52GeV for both simulation and measured data for runs
from experiment 22 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show M_+ - using the Baseline Finder (top left),
CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction. Signal
and background for the simulation refer to the correctly reconstructed .J/1, and are shown
as colored, stacked histograms. Data is shown in black. The combined fit to data (purple),
as well as the individual signal (red) and background (blue) components, is added, and the
most important fit parameters u, o, Ny, and Ny, (see Section 8.1) are annotated. The

simulation is scaled to the integrated luminosity of [ £dt = 1.644 bt
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Figure 8.12: Reconstructed ng mass from two opposite charged pions M_+ - in the
signal region of 0.48 GeV to 0.52GeV for both simulation and measured data for runs
from experiment 26 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show M_+ - using the Baseline Finder (top left),
CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction. Signal
and background for the simulation refer to the correctly reconstructed .J/1, and are shown
as colored, stacked histograms. Data is shown in black. The combined fit to data (purple),
as well as the individual signal (red) and background (blue) components, is added, and the
most important fit parameters u, o, Ng, and Ny, (see Section 8.1) are annotated. The

simulation is scaled to the integrated luminosity of [ £dt = 1.644 fh 1.
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Table 8.5: Fit results for ng — 77 including statistical uncertainties on measured data

and simulation for the three algorithms Baseline, CAT Finder and CAT B Finder for runs
from experiment 22. N, describes the signal yield, Ny, the background yield and p and

o mean and width of the DSCB. The last column shows the signal significance estimate

Nsig/ kag'
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Displacement

From the studies in Section [7.1.2, T expect the reconstruction efficiency for Kg to increase
for vertex displacements beyond 8 cm. Fig. [8.13| shows the measured data comparison for
all three algorithms as a function of the reconstructed Kg transverse vertex distance d,,
for both experiment 22 and 26 in the signal window 494.8 MeV < M_+ - < 500.8 MeV. I
observe that CAT B Finder yields more entries for vertices beyond 8 cm compared to the
Baseline Finder in both beam background conditions. For the CAT Finder, the distribution
is similar to Baseline Finder for experiment 22, but for experiment 26, CAT Finder has
fewer entries for vertices with d, < 8 cm, while exceeding Baseline Finder for more displaced
vertices. The comparison between simulation and measured data for d, is shown in Fig. E.5
and Fig. [E.6. For experiment 22 Baseline Finder and CAT Finder agree for simulation and

measured data up to 16cm, CAT B Finder has fewer events on measured data compared
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Figure 8.13: Transverse vertex distance dp K = ,/d% K9 + dy’ K0 from the interaction

)

point of the reconstructed Kg in the signal region of 494.8 MeV to 500.8 MeV for measured
data, for the full reconstruction using the Baseline Finder (blue), CAT Finder (red) and
CAT B Finder (orange). The distance is given for runs from experiment 22 (left) and runs
from experiment 26 (right), including the comparison between each algorithm combination.
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to simulation from 8 cm to 20 cm. For experiment 26 however, the simulation expects more
events at higher displacements from 6 cm on for all three algorithms than is measured on
data, with the largest impact for CAT B Finder.

Number of hits in displaced pion tracks

I also report the number of hits for the displaced pion tracks of the K g vertex in the reduced
window 494.8 MeV < M_+ - < 500.8 MeV, to increase the fraction of signal to background.
Multiple track parameters for 77 and 7~ are provided for completeness in Section E.2
for all three tracking algorithms. The comparison of measured data for all three tracking
algorithms is shown in Fig. 8.14 for runs from experiment 22 and experiment 26, and the

comparison with simulation is given in Fig. E.7-Fig. |[E.10.

For positively charged 7" from experiment 22, I find that simulation mostly agrees with
measured data for both CAT Finder and Baseline Finder, though the distributions in data
are generally shifted to lower numbers of |CDC hits. The first bin, representing SVD-only
tracks with no |CDC hits, is underestimated in the simulation for both algorithms. For
CAT B Finder, 1 again see a large discrepancy: the algorithm performs much better in
simulation than in measured data. In measured data, CAT B Finder only marginally
outperforms CAT Finder and does not reach Baseline Finder performance.

For = from experiment 22, I observe the same disagreement between simulation and
measured data, with all three algorithms showing a shift of roughly 10 hits. For experiment
26, both 77 and 7~ distributions are further shifted between simulation and measured
data.

I investigated if hits that are attached during track finding are lost during the subsequent
track fitting stages in the tracking chain (see Section 5.4). I calculate this as the dif-
ference between the number of |(CDC hits after track finding, Nopc its, reco, and after
full reconstruction, Nopc mits- Fig. [8.16/ shows this for 7 in experiment 26. I find that
Baseline Finder loses more hits in simulation between track finding and fitting, consistent
with its lower hit purity compared to CAT Finder and CAT B Finder (Fig. E.14).
Interestingly, all three algorithms show a large difference in hits lost between simulation
and measured data (Fig. 8.17). The Baseline Finder again loses the most hits during the
track fitting steps in measured data, CAT Finder and CAT B Finder losses are comparable
and less than Baseline Finder. The information on which hits are lost during the track
fitting steps is currently not available within |[basf2. This makes further investigation on
the differences between hits lost on simulation and measured data out of scope for my
thesis. This study concludes that for CAT B Finder, the low number of assigned hits
on measured data compared to Baseline Finder is not due to the track fitting step, but

something different, which I will investigate next.
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Figure 8.14: Number of |(CDC hits of the pions for the reconstructed Kg mass from
two opposite charged muons in the signal region of 494.8 MeV < M _+ - < 500.8 MeV for
measured data, for the full reconstruction using the Baseline Finder (blue), CAT Finder
(red) and CAT B Finder (orange). The number of CDC hits for 7+ (left) and 7~ (right) is
given for runs from experiment 22 (top) and runs from experiment 26 (bottom), including
the ratio between each algorithm combination.
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Figure 8.15: Difference of the number of |(CDC hits Nopc Hits, reco after the CDC track

finding and after the full reconstruction Ncpc nits for the 7 of the reconstructed Kg in
the signal region of 494.8 MeV to 500.8 MeV for both simulation and measured data for
runs from experiment 22 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show the difference in hits for the Baseline Finder
(top left), CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction.
Signal and background for the simulation refer to the correctly reconstructed Kg. The
simulation is scaled to the integrated luminosity of [ £dt = 1.644 L.
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Figure 8.16: Difference of the number of (CDC hits Nepc Hits, reco after the CDC track

finding and after the full reconstruction Nopc mis for the 7 of the reconstructed Kg in
the signal region of 494.8 MeV to 500.8 MeV for both simulation and measured data for
runs from experiment 26 (see Section 3.1.1 for details), including the comparison between
simulation and measured data. The plots show the difference in hits for the Baseline Finder
(top left), CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction.
Signal and background for the simulation refer to the correctly reconstructed Kg. The
simulation is scaled to the integrated luminosity of [ £dt = 1.657 fh L.
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Figure 8.17: Difference of the number of (CDC hits Nepc mits, reco after the CDC
track finding and after the full reconstruction Nepc mits for the 7 of the reconstructed
Kg in the signal region of 494.8 MeV to 500.8 MeV for measured data for runs from
experiment 22 (left) and experiment 26 (right). This plot shows the comparison between the
Baseline Finder (blue), CAT Finder (red) and CAT B Finder (orange). The statistical
uncertainties between the three algorithms are correlated.
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I aim to further investigate why CAT B Finder tends to attach fewer hits to tracks in
data than in simulation, and why this discrepancy becomes more pronounced at higher beam
background levels. A major challenge in this evaluation is that no ground truth is available
for measured data, which prevents a direct validation on hit efficiency and hit purity. Since
my goal is to improve upon the performance already achieved by Baseline Finder, the
reconstructed tracks from Baseline Finder cannot be used as a baseline for comparison. This
limitation is further reinforced by the fact that the discrepancy between simulation and data
is already visible in the Baseline Finder results, especially for negatively charged particles
and under high-background conditions. These observations make a direct comparison
of measured data non-trivial and suggest that there may be unaccounted effects in the
Belle Il simulation. By investigating individual event displays in the signal window
494.8 MeV < M_+ - < 500.8 MeV found by all three tracking algorithms, I observe two

major issues:

e Low-momentum tracks are often found by the SVD|track finding algorithm instead
of the |CDC]|track finding algorithms for Baseline Finder. If a track is skipped by
the CDC, the SVD,)can recover it (see Section 7.1.1).

In Fig. 8.18, I show a measured data event where all three algorithms reconstruct the
D" = D (= K (— 7tr7)rTr7)nd chain within the signal window 494.8 MeV <
M_+ - < 500.8MeV. I focus on the 7" from the Kg. For both CAT Finder and
CAT B Finder, part of the track is found by the respective [(CDC| track finding
algorithm. But only the outer part of the loop in superlayers A3, V4, and A5 is
reconstructed here. The hits from superlayer A1 and U2, where the track starts, are
missed. While this outer part 7 track is fitted, the limited number of hits reduces
the resolution, causing the CKF| (see Section 5.4) to fail in extrapolating the CDC
track into the SVDIto attach SVDI clusters.

The SVD standalone tracking (see Section 5.4) finds the beginning of the 7 track
within the SVD. This SVD 7' track then gets extrapolated to the CDC with
another [CKF. The (CDC) hits at the beginning of the track are assigned to this SVD
track, but many hits are already assigned to the 71 track found previously by the
CDC(| track finding. In the end, the track is found twice by the |[CDC|and SVD) track
finding, which results in a clone track (see Chapter 4) and leads to poor hit efficiency
for either 7 track.

In this case, it would have been better not to find the track at all with the CDC
track finding algorithms CAT Finder or CAT B Finder, as Baseline Finder did in
Fig.8.18. As mentioned earlier, at least on pion from the K 2 decay is reconstructed by
the SVD in 38% of cases for the Baseline Finder, 41% for the CAT Finder, and 31%
for the CAT B Finder. Optimizing this is challenging, and I propose an approach in
Section [10.7.
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Figure 8.18: An event display showing D*t — D°(— K2(— "z )77 )xd in the
signal window 494.8 MeV < M -+ - < 500.8 MeV reconstructed by all three track finding
algorithms. In the plot, tracks shown in the purple to yellow colormap correspond to the
reconstructed D*'. Circular markers show that the track is reconstructed by the CDC
track finding algorithm, and cross-markers show that the track is reconstructed by the
SVD| track finding and extrapolated to the (CDC, which is also annotated in the respective
legend (see text for details). The blue tracks represent the remaining tracks found by the
CDC track finding, and green tracks indicate those reconstructed by the [SVD)track finding
and extrapolated back to the |[CDC. Baseline Finder is top left, CAT Finder in the top
right, and CAT B Finder on the bottom. In the cropped, zoomed view of the plot, both
CAT Finder and CAT B Finder show that part of the loop of the Wi’:Ko (highlighted in

S
purple) is reconstructed by the CDC|track finding (highlighted in blue).
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o For CAT Finder and CAT B Finder, hits from tracks that pass through cross-talk
regions (see Fig. 3.1 and Section 3.1) are often completely unassigned. In Fig. 8.19,
I highlight such a region, showing that both algorithms miss hits compared to
Baseline Finder, for example, in the case of the 7~ from Kg. Even Baseline Finder
misses hits in these regions, in case of the my from the D°.

Cross-talk increases with higher beam-background levels. However, cross-talk is
currently not estimated correctly in the beam-background simulation as described in
Section [3.1. Instead, beam backgrounds are measured on data (Section 3.1), but in
this case, hits are already digitized. This means that the interference between the
simulated signal and measured beam background might not be modelled correctly,
as for example by wave-form addition of the |ADC and TDC]|values described in
Section 2.3.

As a result, the number of hits associated with the reconstructed tracks is overes-
timated in simulation, especially at high backgrounds, leading to the discrepancies
with measured data shown in Fig. E.4.

These observations indicate that the simulation does not fully capture beam-background
effects, resulting in systematic misalignments between simulation and real data. All
input features used in my CAT Finder models are already employed in basf2 for
multiple MVA modules and were considered safe in previous studies. Nonetheless,
the |GNN|could capture correlations present in the simulation that were previously
overlooked, which could result in the observed difference to the Baseline Finder. 1

discuss potential mitigation strategies for this behaviour in Section 10.1.



144 8.2. Displaced Tracks of Kg — aTn" in High Multiplicity Events

Baseline D™ 5 DKt )ntnT)ng CAT D** 5D%-KA->n*n-)n*n)ng

Belle 11 (own work) Experiment 26, Run 1430, Event 1130703 Belle 1l (own work) Experiment 26, Run 1430, Event 1130703

100 100

50

y (cm)
°

y (cm)
°

=50

-100 -100

-100 =50 0 50 100 -100 =50 0 50 100

m, ke (SVD) |
M2, k2 0 3
m,po (SVD)
M, po -10
ns,p*+ (SVD)

- \ A vyererty
405540 50 —20 —10 0
x (cm) x (cm)

CATB D't »D%(»K—»n*n)ntn)ng

Belle 11 (own work) Experiment 26, Run 1430, Event 1130703

100

Remaining Hits
o o e CDC Track Finding
o o e SVD Track Finding
not assigned

-100

-100 =50 0 50 100

Ty, k2
M2, k2
M, p°

15,0 (SVD)
M, p*+

4055240750 —20

x (cm)

Figure 8.19: An event display showing D*t — D%(— K2(— "z )77 )xd in the

signal window 494.8 MeV < M -+ - < 500.8 MeV reconstructed by all three track finding
algorithms. In the plot, tracks shown in the purple to yellow colormap correspond to the
reconstructed D**. Circular markers show that the track is reconstructed by the CDC
track finding algorithm, and cross-markers show that the track is reconstructed by the
SVD| track finding and extrapolated back to the |(CDC| which is also annotated in the
respective legend (see text for details). Baseline Finder is top left, CAT Finder in the top
right, and CAT B Finder on the bottom. In the cropped, zoomed view of the plot, a region
with cross-talk (Fig. 3.1) is shown.
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I performed one last investigation by directly examining the latent cluster space of the
model output (see Section 5.3.2) for measured data events. I select an event in the signal
window 494.8, MeV < M_+ - < 500.8, MeV where the Baseline Finder seems to find all
tracks and assigns approximately all hits to them. Then, I evaluate this event with the
CAT Finder and CAT B Finder models, shown in Fig. |8.20.

For the CAT Finder cluster space, I see clear seperation between the hits assigned to
tracks by Baseline Finder and the unassigned hits. However, I observe hits assigned to the
tracks, that are far away from the condensation points. These hits form tails extending
toward the unassigned hits cluster. These tails suggest that a different clustering algorithm
in the latent cluster space, rather than the current fixed-size approach (see Section 5.3.3),
could improve assignment. More in-depth studies, especially on the input features of the
hits far away from the condensation points, should be performed in the future, but they
were out of the scope of my thesis.

Nevertheless, these tails can overlap between tracks, requiring more work for separating the
different tracks.

In contrast, the CAT B Finder cluster space, trained on higher multiplicity and different
particle types versus the muon-only CAT Finder, appears to have less defined structures.
More unassigned hits have high S-weights compared to CAT Finder, but not enough hits
around to be able to form tracks (see Section 5.3.3).

I tested different hit radii up to the cluster radius as well as adjusting the §-value on
measured data, but this did not improve results. Exploring alternative clustering methods
while monitoring measured data will be the next step, which I discuss in detail in Section |10.1
and Section [10.2.
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Figure 8.20: The event reconstructed by the Baseline Finder is shown in Fig. 8.20a
(left). This event is also evaluated and given in the latent cluster space of the CAT Finder
in Fig. 8.20b and CAT B Finder in Fig. [8.20c. All plots share the labels and colored
hits according to tracks found by the Baseline Finder. The latent cluster space is shown
with the hits a-value scaled according to the S-weight (see Section 5.3.3), highlighting
the condensation points, as well as unscaled hits in the top row, together with the two-
dimensional projections in the bottom row.



Chapter 8. Validation on Data 147

8.3 Prompt Tracks in Low Multiplicity Events

The last performance check on measured data I perform are prompt tracks in low multiplicity

events for e e — ptpu” (v) and ete” el

e (7). This can be directly compared with
the prompt tracks in high multiplicity events from the previous section Section 8.1. To
calculate the momentum resolution on measured data, non-radiative events are selected by
requiring two back-to-back tracks in the |cms system. For these selections, the momentum
of the muon or electron tracks is around 5 GeV, and the transverse momentum is high. For
the hit efficiency discussed for prompt tracks in Section [7.1.1 and Section 8.1, it is also
relevant to probe tracks with a smaller transverse momentum. For these, I select muon

events with an additional radiated photon, with details given in the following.

8.3.1 Tracking Performance for ete™ — putp™ (v)
Event selection

The HLT+selection is given in Section 3.4.1 to differentiate the di-muon final state from
Bhabha scattering. I apply further selections to the already pre-selected data that are more
stringent. I differentiate, following the HLT) selections, between having two muons in the
event without a radiated photon eTe™ — p '~ , and the case where an additional photon
is radiated ete” — uﬂf’y.

The selection for only two muons, required to be back-to-back in the HLT| selection in

Section 3.4.1 in the final state is given in Table 8.6l

p selection The p candidates are selected with their tracks coming from the [IP) |dép| <
2.0, |227| < 4.0. A minimum cms transverse momentum of p; > 0.2GeV and
momentum of p* > 0.5 GeV are required. The polar angle 6 of each track is required

to be within the |CDC| barrel acceptance.

,u+ p I require exactly two reconstructed tracks in the event with the above without the

requirement on the polar angle.

The selection summary is given in Table 8.6.
To select events with the additional radiative photon, the following selections are applied:

+

Table 8.6: Event selection criteria for ete”™ — 't~ in the analysis.

Analysis selection Selection criteria
wt p; > 0.2GeV

a7 < 2.0

127 < 4.0

p* > 0.5GeV

45° < § < 125° (CDC barrel acceptance)
[T Exactly two tracks in the event
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Table 8.7: Selection criteria for e7e™ — p 0~ candidates in the analysis.

Analysis selection | Selection criteria

v Nhits cluster >1.5
(tcluster - to) < 200ns
ECL ECL

|Ttrack — Tcluster| = 50 cm
Ecluster > 1GeV

I 0.05 GeV < Eyster < 0.25 GeV

17° < 6 < 150°

d'F < 2and |27 <4

Wy 9.4GeV < M;ngsﬂtruaed < 10.8GeV
|07 - erecoil‘ <6°

|0 — Drecon| < 6°

0.5 < Py/Precoit < 1.5

~ selection The photon candidate is reconstructed with the summed weights of the ECL
crystal energy distribution of at least 1.5 and an energy greater than 1GeV. The
ECL cluster timing has to be within 200 ns of the event timing. The nearest track to

the photon cluster has to be farther away than 50 cm.

e selection The muon candidates are required to have low energy, with 0.05 GeVE <
0.25 GeV, deposited in the matched ECL clusters, and the 6 of the tracks has to be

within the |[CDC|acceptance, and they are required to come from the [IP.

pT "~ candidate The p' 1 v should have a reconstructed mass M5 (loge to

+ —
By
the beam energy within 9.4 GeV to 10.8 GeV, and the difference of the recoil polar
and azimuthal angle and the photon should be less than 6°. The photon momentum

should be within 50% of the recoil momentum.

The selections are summarized in Table [8.7.

Reconstructed mass and number of hits

I compare the yield on measured data for all three algorithms in Fig. 8.21 for experiment
22 and runs from experiment 26, using the reconstructed mass of the two oppositely
charged muons. While CAT Finder and Baseline Finder agree within uncertainties, the
CAT B Finder model shows a significantly smaller signal yield at the beam energy. Although
CAT B Finder performed best for high-multiplicity events, its performance decreases for
low-multiplicity events.

When examining the number of |CDC| hits assigned per track in Figs. [8.21b, 8.21c, 8.21e
and 8.21f, I see that CAT Finder now assigns even more hits than Baseline Finder, whereas
CAT B Finder assigns significantly fewer hits compared to the other two algorithms. This
trend is consistent across both experiments 22 and 26. While CAT Finder had fewer hits
attached in high-multiplicity events, it now outperforms CAT B Finder in low-multiplicity
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Figure 8.21: ¢Te” — ,uﬂf comparison on data between Baseline Finder, CAT Finder
and CAT B Finder for the reconstructed mass (Fig. 8.21a and Fig. 8.21d) and the number
of CDC hits for each the " (Fig. 8.21b and Fig. 8.21¢) and i~ (Fig. 8.21b and Fig. 8.21¢)
for experiment 22 (top) and experiment 26 (botton).

scenarios.
I also checked whether this higher hit assignment is due to particle momentum by examining

tem s utpTy (Section E.3). The number of hits assigned
by CAT Finder remains high even for lower transverse momentum.

events with a radiative photon in e

In conclusion, CAT Finder performs very well on low-multiplicity events, which aligns
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with its original training target. Extending to higher multiplicities and diverse particle
types with CAT B Finder is challenging and requires careful dataset construction while

accounting for discrepancies between simulation and measured data.

Momentum Resolution

With this clean selection of two back-to-back muon tracks for e e~ — 't ™, I compare
the momentum resolution for muon tracks on measured data. I calculate the difference in

transverse cms momentum p;k between pﬁ and y as
1 . _ *
Apy = —=pi (W) — pi (M+)7 (8.6)
V2

as I expect them to be equal. I fit this distribution using a DSCB| (Eq. (8.2)), without
any parameters fixed, and extract the resolution using the Full Width Half Maximum of
the fitted distribution to get the estimate for the resolution FWHM(Ap,). The results,
shown in Fig. 8.22 for experiments 22 and 26, show that the mean p of the fit is consistent
across all three algorithms. The uncertainties for the three algorithms are correlated, as the
same measured data is reconstructed. For both experiments, the resolution FWHM(Ap,)
between CAT Finder and Baseline Finder is compatible within uncertainties. However,
CAT B Finder shows worse resolution than the other two algorithms, especially for ex-
periment 26. I also observe that the resolution degrades for all three algorithms with
increasing beam background, rising from 64.3 MeV to 74.3 MeV for Baseline Finder, which
is consistent with the wider signal mass peaks for increasing backgrounds I observed for

both .J/1 and K§ (see Section 8.1 and Section 8.2).
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Figure 8.22: The momentum resolution as the difference between the transverse mo-
mentum in the center-of-mass frame between the p~ and ,u+ for the three algorithms
Baseline Finder (left), CAT Finder (middle) and CAT B Finder (right) for experiment 22
(top) and experiment 26 (bottom).

PXD|and SVD) extrapolation confirmation using dy and z, resolution

In addition, I probe the SVD|and PXD) extrapolation from the CDC|tracks. In Fig. 8.23,
I fit the distribution of (Ady) following Eq. (8.6) using a DSCB| (Eq. (8.2)) and calculate
FWHM(Ad,), using the transverse distance from the interaction point d(I)P*. Similarly, I
fit the distribution of Az, and calculate FWHM(Az,) for the longitudinal coordinate z(I)P
in Fig. 8.24. Both of these metrics probe first the extrapolation to the SVD), followed by
the correct |[PXD]| cluster assignment. I observe no significant differences, and all three

algorithms are in good agreement, proving the implementation in the tracking chain.

*The interaction point is measured and calibrated using the official [Belle II| calibration, which relies on
the Baseline Finder, and has not been recomputed for both CAT Finder algorithms.
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Figure 8.24: The z; difference of the p~ and u+ for the three algorithms Baseline Finder
(left), CAT Finder (middle) and CAT B Finder (left) for experiment 22 (top) and experi-
ment 26 (bottom).
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+ +

8.3.2 Tracking Performance for e"e™ — e e (v)

In addition to the muons in low multiplicity events, I also want to compare the track finding

reconstruction of the three algorithms following Section 8.1| for electrons. For this, I select

Bhabha scattering events, to check the reconstructed mass and resolution on electrons too.

Event selection

The HLT-selection is given in Section 3.4.2. A similar selection as for the g™ p~ events in
the previous section is applied for the analysis of Bhabha scattering. The selection is given

in the following:

e selection The e candidates are selected with their tracks coming from the [P}, with
|d(I]P| < 2.0, |zép| < 4.0.A minimum cms transverse momentum of p; > 0.2 GeV and
momentum of p* > 0.5 GeV are required. The polar angle @ of each track is required
to be within the |(CDC| barrel acceptance.

eTe” candidate I require exactly two reconstructed tracks in the event with the above

without the requirement on the polar angle. The Bhabha selection for HLT|includes
radiative photons in comparison to the ete™ — ' p ™ selection. As I want to calculate
the momentum resolution for the electrons as for the muons in the previous section, I
require both electrons to be back-to-back in azimuthal and polar angle as for the y in

the [HLT selection. This excludes a high-energy radiative photon in the final state.

The selection is summarized in Table 8.8l

Reconstructed mass and number of hits

I repeat the previous evaluation for the ete” et

e () scattering and compare the peak
yield of the collision energy in the |cms frame for all three algorithms in Fig. 8.25. 1 observe
the same behaviour as in the u+u_ final state: the CAT B Finder model underperforms
on measured data compared to CAT Finder and Baseline Finder. The difference in the
number of |CDC| hits assigned to tracks is also consistent with the previous results, where

_l’_

Table 8.8: Event selection criteria for eTe™ — eTe™ in the analysis.

Analysis selection | Selection criteria
e p; > 0.2GeV

1d""| < 2.0

127 < 4.0

p* > 0.5GeV

45° < § < 125° (CDC barrel acceptance)
ete” Exactly two tracks in the event

|1 — ol —180°| < 10°

16, + 05| — 180°] < 10°
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the CAT Finder assigns more hit and the CAT B Finder less than the Baseline Finder.
The resolution for the transverse momentum and the [SVD/and PXD|extrapolation show

consistent results with the ™y~ final state and are given in Section [E.4.
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Figure 8.25: Bhabha comparison on data between Baseline Finder, CAT Finder and
CAT B Finder for the reconstructed mass (Fig. 8.25a and Fig. 8.25d) and the number of
CDC hits for each the e* (Fig. 8.25¢ and Fig. 8.25f) and e~ (Fig. 8.25b and Fig. |8.25¢) for
experiment 22 (top) and experiment 26 (botton).
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8.4 Data Validation Summary

These findings conclude my analysis of the measured data. In this chapter, I have presented
studies of the |GNN-based tracking algorithms (CAT Finder, CAT B Finder) in compari-
son to the established Baseline Finder algorithm, using a variety of benchmark processes
on measured data. The evaluation covers prompt tracks in both low- and high-multiplicity
track environments, as well as displaced tracks in high-multiplicity track environments,
with probing electrons, muons and pions, thereby providing a comprehensive assessment of

tracking performance.

For high-multiplicity events, the reconstruction of prompt J/¢ decays shows that both
CAT Finder and CAT B Finder can match or even surpass the performance of Baseline Finder.
In the case of displaced Kg candidates, however, only the CAT B Finder model shows im-
proved performance, while CAT Finder, trained on events with on average 4.5 tracks, yields
higher signal counts for the runs from experiment 22 but suffers from increased background,
resulting in lower overall significance. In particular, CAT B Finder achieves the highest
signal yields for both J/¢ and Kg, especially in challenging high beam-background scenar-
ios, while maintaining comparable or improved significance. Nonetheless, all algorithms
exhibit increased background and reduced signal in measured data compared to simulation

in the high beam-background scenario, highlighting persistent mismodeling in the simulation.

The analysis of (CDC|hit assignment reveals that CAT B Finder, while highly effective in
simulation, attaches about ten fewer |(CDC hits per track in measured data. More generally,
all algorithms show a shift toward lower hit counts in data compared to simulation for high
beam-background conditions.

Additional challenges arise in the combination of (CDC and [SVD) track finding, where
partially reconstructed low-momentum tracks in the |[CDC often fail to merge with SVD
clusters. This makes it preferable not to reconstruct them with the CDC| track finding
algorithms at all. Furthermore, unassigned hits in cross-talk regions are more pronounced

for the GNNk-based algorithms, highlighting areas that require further improvement.

+ +

In low-multiplicity events, such as ee” — utp (7) and ete™ — eTe (v) scatter-
ing, CAT Finder and Baseline Finder deliver similar signal yields and resolution, with
CAT Finder even assigning more (CDC| hits per track. In contrast, CAT B Finder, despite
its strong performance in high-multiplicity environments, underperforms in low-multiplicity
measured data, showing a significant drop in signal yield and fewer assigned hits. Resolution
studies for momentum, d, and z; confirm that all algorithms achieve similar resolutions,
except for CAT B Finder in high beam-background levels, where the performance decreases.
These trends are observed consistently across both muon and electron final states.

Overall, the CAT Finder model proves robust across many event topologies and background
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conditions, particularly in low-multiplicity data, but it does not reach the performance
of Baseline Finder for displaced tracks below 8 cm in high beam-background scenarios.
The CAT B Finder model, while outperforming both algorithms in simulation and yielding
higher signals in high-multiplicity data, underperforms in low-multiplicity events and shows
reduced hit assignment. These limitations, together with the discrepancies between data and
simulation, indicate that both CAT B Finder and the detector simulation require further
improvement. Despite its weaker performance in high-multiplicity events, I will focus on
the CAT Finder model going forward, as it models measured data more reliably than
CAT B Finder, which still needs further development, and will be discussed in Chapter 10.






Chapter 9

Sensitivity Study for BT 5 K'S

In this chapter, I compare the performance of the CAT Finder with the Baseline Finder
in a sensitivity study of a long-lived spin-0 particle S in the decay BT — KTS. This is
described in Section 3.5.2, where the S can act as a mediator between the SM and DM
with Yukawa-like couplings similar to the Higgs boson, leading to the radiation of S from
heavy virtual particles. These couplings are smaller than those of a SM| Higgs with the
same mass and can lead to a displaced decays of S.

A search for this process was carried out in [13] 44| at the beginning of run I with an
integrated luminosity of [ Ld¢t = 189 fb~ ! In this analysis, lifetimes from 10 ym up to 4m
for the final states that I consider were probed. One of the main conclusions of this search
was that long-lived particles remain challenging at Belle II, as the standard tracking is not
optimized for decay vertices displaced beyond the SVDL Improving reconstruction for these
displaced particles is a main motivation for my new |GNNibased algorithm. Therefore, I
will probe lifetimes up to 100 m.

In contrast to the displaced vertices in low-multiplicity events discussed in Section 6.1.2)
where I already showed superior performance at large displacements [12], this analysis tests
the CAT Finder in a high-multiplicity Y(4S) — BB environment, combined with displaced
vertex signatures.

Following the approach of [13, 44] (summarized in Section 3.5.2), I analyse BT — K S with
S —putp / tr” /K K. The events are simulated with low simulated beam backgrounds
and the event selection is given in Section 9.1. Following the selection, I present the signal
efficiency in Section 9.2 and discuss the background estimation in Section 9.3. As in
Chapter 8|, systematic uncertainties and correction factors are not included, since obtaining
them for the CAT Finder is beyond the scope of this thesis. While I cannot include them,
the dominant systematics will be discussed in Section 9.4 when determining the expected

upper limits. These results will be used for the model interpretations given in Section [9.5.

159
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9.1 Event Selection

The event selection and reconstruction follows [44].

Displaced track selection: The .S candidate is reconstructed from two oppositely charged
tracks, with the decay vertex determined through a kinematic fit. Each track must
have a transverse momentum p, > 0.25 GeV and an extrapolated trajectory within
the barrel region of the ECL, requiring pECE > 30°, and be within the backward
region of the CDC, requiring 9°PC < 150°. Particle identification for the final-state
muons and pions is performed using a combined likelihood variable, given the muon

example
L
o

PID =+
(u,w,e)(:u) Ee +£M+[~ﬂ—,

which must be greater than 0.4 for both tracks forming the S candidate. For kaon
+
final states, the global PID®  (Eq. (7.5)), is required to be greater than 0.2.

S candidate: The invariant S mass M, + - is calculated from the two charged tracks.
To suppress [SM| background, the decay vertex displacement is required to satisfy
d, > 0.05cm. In resonant peaking regions of M .+ - given in Table 9.2, this
condition is tightened to d,, > 0.2cm. The significance of the displacement, defined as
the ratio of d, to its uncertainty given by the vertex fit, must exceed 3. Furthermore,
the S decay direction must point back to the interaction point, enforced by requiring
the cosine of the angle between the momentum and vertex of S in the x — y-plane
2d cos Ggoint > 0.95 for the muon and kaon final state and larger than 0.99 for the
pion final state. Furthermore, events are vetoed if the invariant mass of the two tracks
forming the S candidate, calculated under the pion mass hypothesis, falls within the
K2 mass window of 0.489 GeV to 0.507 GeV.

Kaon candidate: The kaon track used to form the B candidate must satisfy the same PID
+

requirement as for the displaced tracks with the global PID® > 0.2. Additionally,

it must be prompt, with transverse and longitudinal impact parameters satisfying

dip < 0.5cm and |z1p| < 2 cm, respectively, and must have p;, > 0.15 GeV.

B candidate: The B candidate is reconstructed by combining the S and K * candidates.

In the center-of-mass frame, the beam-constrained mass is defined as

S * 2
Mbc:\/z—\PB\ )

where p} is the reconstructed momentum of the B candidate, with s being the cms

energy squared. The energy difference is defined as

AE = B —/5/2,
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Table 9.1: Event selection for BT — K15 with S — ,u+u_, S—ntn and S - KTK~

taken from [44)].

Particle S — o ‘ S ata S — K"K~
‘le’ < 2cm
ot |dip| < 0.5cm
p > 0.15GeV
PID(K ) > 0.2
d, > 0.05cm and d, > 0.2 cm for Table 9.2
g 2d cos 9§0im > 0.95 ‘ 2d cos Hgoint > 0.99 ‘ 2d cos Hgoint > 0.95
Sign. of distance > 3
M _+ - ¢ (0.498,0.507) GeV
32° < 6" and 4°P° < 150°
S tracks py > 0.25 GeV
PID(p, 7, €) > 0.4 PID(K™) > 0.2
Bt AM,, > 5.27GeV
|AE| < 0.05 GeV |AFE| < 0.035GeV |AE| < 0.05 GeV
Cont. sup. R2 < 0.45 R2 < 0.35 R2 < 0.45

Table 9.2: Peaking backgrounds in M Syata

in GeV where a tighter vertex d, selection is

applied, taken from [44].

Source ‘ S—utpy” Sorn S KYK™
D° (1.70, 1.80)  (1.65, 1.85)  (1.75, 1.95)
J /Y (3.00, 3.15) - -
P(28S) (3.65, 3.75) - -

Ne - (2.85, 3.15)  (2.80, 3.20)
Xe176(29) - (3.40, 3.80)

b - - (1.00, 1.04)

where EJ; is the energy of the B candidate in the center-of-mass frame. The selection
requires |AE| < 0.05GeV for muon and kaon final states and |AE| < 0.035 GeV for

pion final states.

Continuum suppression: To suppress continuum background, the ratio of the second to
the zeroth Fox—Wolfram moment[111, 112|, R, is required to be less than 0.45 for

muon and kaon final states, and less than 0.35 for pion final states.

The event selection is summarized in Table 9.1.

9.2 Signal Efficiency

Following the selections in the previous section, the signal efficiency is shown in Fig. |9.1.

The signal efficiency is determined according to the fit on the signal in Section 9.4, and the
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Figure 9.1: Signal efficiency for different lifetimes for the Baseline Finder (dashed line
with triangular markers) and the CAT Finder (solid line with round markers). The lines
are added to help guide the eye. The ratio between signal efficiency is given for each final
state S — pp” (top left), S — m "7 (top right) and S — KK~ (bottom).

resulting number of events in the mass range. For short lifetimes (¢ = 1 cm), the perfor-
mance of the Baseline Finder and CAT Finder is comparable, and for mg = 2-3.5 GeV the
Baseline Finder is even slightly better, consistent with previous observations in Chapters |6
to 8 where the CAT Finder shows reduced performance in high-multiplicity events. As
demonstrated for the CAT B Finder, this performance can be further improved by includ-
ing BB events in the training samples, as shown in simulation in Chapter 7, but due to
the differences observed in measured data in the previous chapter this requires additional
work. At larger lifetimes (c7 = 10,50, 100 cm), however, the CAT Finder achieves up to a
factor 2 higher efficiency than the Baseline Finder, consistently across all three S decay
modes. Since higher efficiency alone does not guarantee better sensitivity, the next step is

to evaluate the expected background yields.
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9.3 Backgrounds

I use centrally produced simulated samples with f Ldt =500 fbfl, using a similar soft-
ware release” to the CAT Finder implementation. Producing an equivalent sample for
the CAT Finder is computationally out of scope for this thesis, instead, I generate
J Ldt =10 fb~! for CAT Finder and compare the background expectation to the cen-
trally produced Baseline Finder. For cross-checks, I also compare background yields with
the measured data and simulated results of [13|, available on HEPData [113|. These were
extracted with an earlier software release'. The biggest differences between the earlier and
the current software release is the improved |CDC| simulation and the PID| performance.
Therefore, I expect different distributions for the simulation.

The observable used for signal extraction is the reduced reconstructed scalar mass,

Mredu(fd _ \/M2 . — 4m

S—x S—x

- 2 (9.1)
with M;_m+x_ the reconstructed mass and m, the mass of the daughters according to [37].
The reduced mass corresponds to twice the daughter momentum in the S rest frame, and is
chosen to simplify the modelling close to the threshold given by the daughter masses. As the
mass of the daughters is known with a higher precision than the reconstructed momentum,
this introduces non-linear dependencies for the width of the mass distribution close to
twice the daughters mass. Using the reduced mass instead results in an approximate linear
behaviour.

The comparison of background yields as bins of M;‘i‘;‘fj, is shown in Fig. 9.2/for S — p" ™,
S—oatr,and S > KTK™.

For § — u+/f, I observe only two events, consistent with the expectation in [13]. The
centrally produced Baseline Finder background is lower than [13|, reflecting differences

+7T_, the opposite trend appears: Baseline Finder

in simulation versions. For S — =
yields exceed [13|, while the CAT Finder shows higher background levels but with large
statistical uncertainties. For S — KK, Baseline Finder agrees well with [13], whereas
the CAT Finder again exhibits higher background yields.

These higher background levels for the CAT Finder are not unexpected. The validation on
BB events in Section 5.4/ shows that the CAT Finder has a higher fake and clone rate than
the Baseline Finder, which also showed in about 11% more background events in measured
data for reconstructed ng — 7w decays in Section 8.2. I also demonstrated that this
effect can be mitigated by retraining the CAT Finder on B-meson events, which is ongoing

work but beyond the scope of this thesis.

To account for the different sample sizes, I calculate a scaling factor between the backgrounds

*Centrally produced samples use release-08-00-07, the CAT Finder is implemented in
release-08-01-08.
"The software release used in [44] was release-05.
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Figure 9.2: Comparison for the backgrounds for the observable M, ucf — including all

event selections in Table(9.1 for the Baseline Finder (left) scaled down from f Ldt =500fb "
to [ Ldt =10fb~" of the CAT Finder (right). The results from results of [13], available
on HEPData |113|, are overlayed for the simulation in red and for measured data in black,
also scaled down to [ Ldt =10 L. Top shows S — pp~, middle S — 77~ and bottom
S— K"K~

of Baseline Finder and CAT Finder. As I only observe two events for the S — p* ™ final
state for CAT Finder, I drop the PID requirement on the opposite-charge tracks forming
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Table 9.3: Error-weighted average of the binned ratio of the [ Ldt =10 fb~! CAT Finder

background yields without the PID selections to the scaled down from [ Ldt =500 fh?
Baseline Finder background yields.

Decay Channel z
S—ptuT 1.40+0.06
S—atr”  1.35+0.14

S K"K~ 1.32+0.05

the S candidate (Table 9.1). This increases the available statistics to obtain an estimate on
the scaling factor and results in the distributions in Fig. |[F.1. Building the ratio x between
the scaled down Baseline Finder and CAT Finder for the binned distribution with 4 bins,
I calculate the scaling factor as the error-weighted average & with

i

T=—"7%_ (9.2)
2 :

Z?:l g;

Here, o, refers to the uncertainty on the ratio x;. The statistical uncertainty on this

error-weighted average is given with

0z = ; (9.3)

-2
Z?:l g;

These scaling factors, listed in Table 9.3, are applied to adjust the backgrounds used for
the CAT Finder relative to the Baseline Finder, shown in Fig. F.2

Overall, while the CAT Finder exhibits increased higher background levels, there is also a
significant gain in signal efficiency at large displacements (up to a factor 2). I will determine

the impact on the limits next.

9.4 Limits

To calculate the expected upper limits, I follow the approach in [44]. To search for an excess
of the signal in the reconstructed mass, both the signal and background PDEFs need to be
modelled to describe the distribution. These are then fitted to the measured data to extract
the number of signal and background candidates. As I only evaluate on simulated events in
this work, I calculate the expected upper limits on the |SM|background-only distribution

to estimate the sensitivity of the analysis between the Baseline Finder and CAT Finder.
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9.4.1 Signal Fits

The signal distribution is modelled using a DSCB (see Eq. (8.2)), with the mean p, the
width o, and «,/, describing the tails of the distribution left floating for the fit. The
parameters n;/, are fixed to 3 taken from fits where these values are left floating, following
the approach described in Section [8.1. To determine the shape parameters of the [DSCB
PDF) I fit simulated signal samples, as shown in Fig. 9.3, for all combinations of lifetime,
mass, and final state for both the Baseline Finder and CAT Finder. For short lifetimes
(et = 1cm), the distributions and fit results are similar for both algorithms. At larger
lifetimes, the distributions for both algorithms broaden, as illustrated in Fig. 9.4 for
cr = 1cm (Fig.|9.4a) when comparing with ¢7 = 50 cm (Fig. 9.4b). The signal efficiency for
the CAT Finder is increased for the large lifetime, leading to a higher yield. The fitted signal
width also increases for larger lifetimes, with o = 2.73 + 0.28 MeV for the Baseline Finder
and o = 3.1 0.4 MeV for the CAT Finder. Overall, the differences are small and mostly
depend on the scalar mass mg, with larger lifetimes leading to broader distributions and
fewer candidates as seen in Fig. 9.5. This affects the combined signal+background fits, as a
broader width slightly increases the background under the peak, which can affect the limits.
This effect, however, is negligible, as the background and signal are modelled across the
whole fit window and the added width is added to the background yield without affecting

the signal contribution.
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Figure 9.3: Signal fits for M, + - = 1.4GeV calculated in the observable
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for the final states S — u*pu~ (top), S — 77~ (middle) and S — K"K~ (bottom) for a
lifetime of ¢ = 1 cm for the Baseline Finder (left) and the CAT Finder (right).
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Figure 9.4: Signal fits for M, + - = 0.9GeV calculated in the observable Mgfi(fi’ for

the final states S — p" p~ for a lifetime of e = 1cm (top) and er = 50 cm (bottom) for
the Baseline Finder (left) and the CAT Finder (right).
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Figure 9.5: Signal fit result of the DSCB| (Eq. (8.2)) on the signal sample B — K5 —
ptp” for the different tested masses Mg for o (top), o; (middle) and o; (bottom)
for the Baseline Finder (left) and CAT Finder (right).
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9.4.2 Combined Signal and Background Fits on Background Only

In addition to the signal, the background needs to be described. The reconstructed
Mreduced

S—oata”
Chebyshev polynomial PDF with linear coefficient ¢;, constrained to [—1, 1] following [13].

distributions of background events are smooth locally, and are modelled with a

The background distribution includes the normalization factor given by the background

yield Ny,,. The signal yield estimator depends on the signal efficiency €, determined in

sig
the previous section, the number of B-meson pairs Nzp determined for the run I dataset

and scaled to the luminosity used in [13|, and the signal branching fraction BF with
BF = BF(BT - K'S) x BF(S — zt27), (9.4)

given by the S production rate with the decay B — S and the decay rate S — z 72~ of the
final state x from theory calculations (discussed in Section 9.5). Only the number of charged

B meson pairs is of interest for the signal yield, therefore Npp = (387 £ 6) x 10°[114] of

run [ is adjusted with fi = O.5113f8:8%g [115] to take into account the number of charged

B-meson pairs. This value is scaled down from the run I luminosity to the one used here.

With this, the signal yield is given as

Nyg =2Nppfre

BF, (9.5)

sig

including the factor two as both charged B-mesons can decay in the signal process.
I fit the SM background only distribution (Fig. F.2) scaled to | Ldt =189 fb~! for the
combined signal and background PDFs. For the combined signal and background fits,

the minimum fit window is set to :|:200'(M;educfd
—x X

increased by 10% until at least ten candidates are included to stabilize the fit following
the procedure of [13|. The Gaussian mean of the DSCB is fixed to u = MEed The

S—ax'x
remaining signal shape parameters of the signal only fits are fixed and only the signal yield

) of the signal-only fit and iteratively

estimator N, the background yield estimator Ny, and the background coefficient ¢, are
floating for the fit. The fits on the background only distribution are repeated for all lifetime,
mass and decay combinations given in Section 3.5.2.

One example fit result is shown in Fig. [9.6| for the Baseline Finder and the CAT Finder,

where signal events are injected in addition to the background.
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9.4.3 Upper Limits

First, I calculate the sensitivity on the branching fraction BF without any theory as-
sumptions. While this is still dependent on the model for a scalar or pseudoscalar, as the
signal efficiency is derived for scalar kinematics (Section [3.5.2)), these results have weaker
model-dependency. The interpretation including branching fraction predictions from theory,
which is fully model dependent, is discussed in the next section.

The upper limits on the branching fraction BF also follow [13]| and use the HEPSTATS|116|
framework which interfaces with the fit models of zfit[107|. The limit setting is done
using the modified frequentist C'Lg method|117| and asymptotic approximation|118| for
the standard value of the community o = 0.5 for the 95% confidence level (C.L.) upper limits.

While I can not apply any corrections or systematic uncertainties, I will discuss the
most important one given in [44].

For small lifetimes, the systematic uncertainties on the signal efficiency in [44] are dominated
by the number of BB pairs and the signal yield estimation. The systematic uncertainty is
around 5 %. For low masses under 0.5 GeV, the veto on the M_+ - in the Kg region has
the highest contribution, due to the reconstruction disagreement between simulation and
measured data for Kg. This systematic is also the dominant one for long-lived particles
with lifetimes larger than 10 cm. I discuss this effect in Section 8.2. While the disagreement
did not improve between the publication of [13] and the time of this thesis, the estimate of
the uncertainty improved, which results in a reduced contribution compared to the O(8%)
in [44]. Assuming similar uncertainties as in [13], the limits would weaken for around 2%

for light S masses with large lifetimes and 1% for either heavier S or shorter lifetimes.

An example for S — pﬁ;f is shown in Fig. 9.7. For short lifetimes (c7 = 1cm), both algo-
rithms yield similar limits. For long lifetimes (¢ = 100 cm), the CAT Finder achieves up
to a factor 2 stronger limits, probing a larger branching fraction region. This improvement
is equivalent to increasing the dataset by approximately a factor of four when considering
the sensitivity improvements proportional to N,/ \/Wkg, as discussed in Chapter 8.

Fig. 9.8"| shows the comparison for all three final states, including the ratio between the
Baseline Finder and CAT Finder, where values above 1 indicate weaker limits for the
Baseline Finder compared to CAT Finder. While the CAT Finder performs slightly worse
than Baseline Finder for short lifetimes of ¢7 = 1cm, for longer lifetimes the CAT Finder
consistently outperforms the Baseline Finder. Only for very small mass (mg = 0.22 GeV
in S — u+ w ), the CAT Finder underperforms, indicating that further improvements in

track reconstruction for very small opening angles will be beneficial in future iterations.

*Only three values for the S — K tK™ final state are probed that are relevant for the model-dependent
interpretation in the next section.
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S—putp , 8 —atr,and S — K"K~ (middle) and the lifetime for different mixing
angles fg (right) over the dark scalar mass mg, taken from [13].

9.5 Dark Higgs-like Scalar Model Interpretation

The spin-0 particle can be interpreted as either a scalar or pseudoscalar. In this work, I
focus on the scalar case following [|44], where the long-lived scalar S produced in b — s
transitions mixes with the SM Higgs boson. Production occurs dominantly via radiation
from the top quark or W boson in the loop. The model is characterized by the dark scalar
mass mg and the mixing angle 64, with couplings to SM]| particles proportional to those of
the Higgs, scaled by sinflg. The mixing angle g controls both the production and decay
rates, and therefore the lifetime.

The branching fractions for individual decay modes are taken from |7, 119| (see Fig.|9.9)
and are independent of fg. However production and total decay rates scale with sin’ g,
making the lifetime proportional to sin 2 fg. The upper limits from the previous section
are now translated using the parameters for the dark scalar mass mg and the mixing angle
0 for the probed lifetimes for each scanned mass following |7, 119]. The translation into
parameter space is shown in Fig. |9.10. The upper limits are interpolated between all tested
lifetimes, and the intersection with the model prediction is computed. The region where the
interpolated limits are below the model prediction is excluded. Performing this intersection
for all tested masses results in the exclusion plots given in Fig. 9.11. Because the branching
fraction decreases with increasing lifetimes, this model favours more prompt decays in the
case of Belle IT in which the CAT Finder has decreased performance due to the higher
backgrounds, resulting in less parameter space being probed by the CAT Finder compared

to Baseline Finder.
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interpolation and intersection with the model prediction, marking the excluded region,
are shown for Baseline Finder (blue) and CAT Finder (red) for [ Ldt =189 fb~'. For
Baseline Finder, the region between the two blue, dotted lines is excluded, while for the
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Figure 9.11: Bounds on the dark scalar model in BT — K for the channels S — p7 ™
in blue, S — 7 7 in blue and S — KTK ™~ in green for [ Ldt =189 fb~!. This shows
the excluded parameter space for the Baseline Finder (dotted line) and CAT Finder (solid
line). There is only one value for S — K *K~ due to model interpretation only yielding a
result at this mass point.

For future Belle II searches, larger datasets will allow probing longer lifetimes. In
this case, the search can be optimized more towards larger displacements as shown in
ete” =h(— uu )xixa(— eTe x1) [12] (see Section 3.5.1). In Fig. 9.12, the backgrounds
for Baseline Finder are shown depending on the displacement d,. of the vertex S. This is
not available for the CAT Finder due to the low statistics. For all three final states, the
backgrounds are reduced significantly for displacement higher than d, > 5cm. While the

signal efficiency also reduces, especially for small lifetimes, as shown in Fig.[9.13] this allows
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Figure 9.13: Signal efficiency for different lifetimes for the Baseline Finder (dashed line
with triangular markers) and the CAT Finder (solid line with round markers) including
the stricter cut on d, > 5.0 cm compared to Table 9.1. The lines are added to help guide
the eye. The ratio between signal efficiency is given for each final state S — ,uJF,Lf (top
left), S — w7~ (top right) and S — KK~ (bottom).

to suppress the backgrounds significantly. Furthermore, there is work ongoing at |Belle II
to improve background suppression through machine-learning techniques in reconstruction
and analysis even further, for example improving PID| with machine learning[105|. For an

example future Belle IT search, assuming an integrated luminosity of [ Ldt =50 ab_1[2|
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and negligible backgrounds, set to zero in this case, for S decays far from the interaction
point with d,. > 5cm, the CAT Finder shows a clear advantage over the Baseline Finder
(Fig. 9.14). The full result is given in Fig. |9.15, with the expected 95% C.L. upper limits
calculated with the Bayesian Analysis Toolkit|120]. This improvement will be even more

Yo oh(—= u T ) xaxa(— eTe xy) [12], where the cross

pronounced in analyses such as e
section is independent of the mixing angle and thus lifetime and lifetimes up to 100 m are

already probed for the model-dependent parameter space.
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Chapter 10
Ongoing Studies and Future Work

In this chapter, I report ongoing work on the development of the |GNN| tracking algorithm,
and address the shortcomings of the algorithm that I found and reported in this thesis in
the previous sections. As many findings in this chapter are part of the active development,
I reference internal Belle Il documentation which is available upon request.

While I briefly discussed some improvement strategies in the previous chapters during
relevant passages, I summarize them in this chapter.

In Section [10.1, T summarize currently known shortcomings of the |CDC| simulation
within basf2 and strategies to mitigate the differences between simulation and measured
data. Following this discussion, I summarize my current findings on training on physics
events (Section 3.2) in Section |10.2. Studies and next steps regarding the hyperparameter
optimization are given in Section 10.3. I propose different next steps to improve the track
finding, by running the Baseline Finder and CAT Finder together (Section 10.4), including
hit filtering (Section 10.5) and tuning the track fitting algorithm (Section 10.6). Finally, I
discuss a combined track finding of the |CDC|and SVD) detectors in Section 10.7.

10.1 Discrepancy between CDC Simulation and Measured
Data

Even though the CAT B Finder model performed the best on simulation, it underperforms
on measured data (see Section 8.2 and Section 8.3.1). This suggests a possible mismatch in
input features’ modelling, likely stemming from limitations in the current CDC|simulation
in |basf2. Supporting evidence includes an increasing discrepancy between the number of
hits per track in simulation versus data with increasing background levels, which appears
both for Baseline Finder and CAT Finder (see Section 8.1). Additionally, there is a charge-
dependent bias, where positively charged tracks show more hits in simulation than in data,
while the opposite holds for negatively charged tracks, as illustrated in Fig. 8.10. Different
particles have different material interactions and ionization within the |(CDC volume, also

between opposite charged particle types. This is more relevant for the CAT B Finder

179
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model, which includes more particle types than just muons in the simulation. It might be
that particles with more interaction within the detector gas and material are not modelled
correctly. For example, it is known that the simulation of low-energy photons stopped in
the |CDC]| gas is underestimated in the current simulation, and efforts to improve this are
ongoing [121]. The CAT B Finder could pick up on these mismodeled effects, thus showing
a better performance on simulation than on measured data.

One reason for the charge dependence of the number of CDC hits is the signed angle in
which the particle crosses the drift cell [110]. There is work ongoing to determine correction
factors depending on this crossing angle, that are applied after the detector simulation with
GEANT4 when digitizing the |[CDC(]| hits.

Another known issue is the z — ¢ drift time calculation from TDC (Section [2.3), where
there was a disagreement found for large drift distances between simulation and measured
data [121]. The drift time is then translated into the drift length and included in the CKF'
and final fits (Section 5.1). If this drift length is over- or underestimated, the hits can get
excluded during the fitting stage |24]. Studies determined on data show that the translation
factors differ for positively and negatively charged particles, which generates the same sign
charge asymmetry in simulation as in measured data for the number of CDC] hits. This
effect is particularly sensitive to the composition of the |CDC gas mixture, which was
observed after the start of run II. The gas quality improved significantly compared to run
I, which resulted in a larger fraction of hits being discarded due to the calibration and
optimization still being based on the gas composition, including the contamination with
vapor that happened during run I.

What might also be an issue is that the interference between the beam-background CDC hits
and the signal hits is not handled correctly in simulation, due to more hits being lost during
the fitting stage in measured data in comparison to simulation (see Fig. 8.16). The current
approach to sum the digitized hits of signal and background if they come from the same
wire. This requires major adjustments on how the beam-backgrounds are overlayed with the
simulated signal, as a simple sum might no longer be sufficient, and might require a stronger
focus on simulated beam-backgrounds. More in-depth studies go into updating the waveform
simulation according to first-principle simulation for the |ADC, [TDC, and TOT simulation
to gain a better understanding of the effects on the detector depending on the particle’s
momentum and gas conditions [122]. These studies might also improve the cross-talk simu-

lations, which are currently not modelled correctly in the CDC| (see Section 3.1.1 and [123]).

The choice of input features remains a challenge. The best input features to chose
were investigated in [84] the bachelor thesis I supervised on simulated events. Including
the x and y reference positions at z = 0 and adding TOT information significantly
improves performance on simulated events, surpassing that of the Baseline Finder and
CAT B Finder. However, the same setup underperforms on real data as shown in Fig. [10.1

All of the inputs used here are already used within the Belle II tracking chain. As these
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Figure 10.1: Reconstructed Kg mass from two opposite charged pions M_+ - in the
signal region of 0.48 GeV to 0.52 GeV for measured data for run 468 from experiment 22.
The plots show M _+ - using the CAT B Finder (left), and the CAT Finder trained with
updated inputs including the x and y position at z = 0 and TO'T} The combined fit, as well
as the individual signal and background parametrization, is added, and the most important

fit parameters y, o, Ny, and Ny, (see Section 8.1) are annotated.

might not be correctly modelled in the simulation or the training picks up very specific
correlations for the simulation, these effects need to be mitigated.

One option that should first be tested would be noise injection into the input features. By
varying each value slightly, this can mitigate the overfitting to (spurious) correlations in the
simulation [124]. Normally-distributed noise can also be directly interjected into the first
or more hidden layers of the GNN| model. This improves the model robustness against
changes in the input features.

Another option is to add measured data to the training dataset, where the labels come from
the reconstruction of the Baseline Finder. As the Baseline Finder mostly reconstructs
trajectories that are close to the interaction point, this requires careful consideration of
which events should be included. Furthermore, the hit purity of the Baseline Finder is
only at 95% (see Fig. 6.10d), which means the tracks include fake hits, and the issue of the
number of hits assigned to positive and negative charged tracks as well as the decreased hit
efficiency with rising background levels has to be taken into account.

One more option that includes training on measured data is to train the model using a
domain adaptation classifier [125] that distinguishes measured data from simulation. In
addition to the track reconstruction, another classifier is added to predict if the feature is
from simulation or measured data. The feature extractor is trained, often using adversarial
techniques, to produce representations that are indistinguishable between simulation and
measured data. This approach has been explored in jet tagging within LHC| experiments
[126, 127]. Performance is monitored via an additional domain adaptation loss, which is
unsupervised and measures alignment between simulation and real data. Using either of
these methods should be explored in the next step, to improve the agreement between

simulation and measured data when training on multiple different particle types.
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10.2 Training on Physics Samples

While the current models are successfully able to reconstruct multiple different particle
types, the results also showed that the performance on simulation is the best for muons
(see Section 7.1.1). This is due to the reason that all events for CAT Finder and 75% of
events for CAT B Finder only consist of muons. The input feature study in Section 5.3.1
showed that the different particle types differ in their input features. Therefore, the next

step is to increase the number of other particle types in the training dataset.

For particle species other than muons, incorporating them in the training dataset re-
quires more careful consideration due to interactions in the detector. Unlike muons, which
are minimum-ionizing particles with a lifetime long enough to make decays in flight neg-
ligible for [Belle II, other particles can undergo processes that significantly impact track

reconstruction. The most relevant effects for tracking include:
e ionization loss (see Section 7.3.1), which increases the momentum uncertainty;

e multiple Coulomb scattering, which is especially relevant for low momentum particles,

as it can deflect the particles and change the trajectory;
e radiative processes such as bremsstrahlung, most relevant for electrons and positrons;
e decays in flight;
e hadronic nuclear interactions.

The last two processes are the primary sources of track reconstruction inefficiency and will
be discussed in detail in the following. Almost every BB event involves at least one decay
in flight or hadronic interaction. At the time of this thesis, I did not converge on a dataset
that can describe the full Belle II physics space. I therefore focus on summarizing the
approaches that I tested to address these challenges and propose potential directions for

future work.

Fig. 10.2| shows particles originating from hadronic interaction with the |CDC| wall or
from a hadronic interaction within the CDC| for example, with the drift or field wires.

If the extrapolated trajectories of the particle from the scattering pass close to the
interaction point, they can still be reconstructed by the Baseline Finder. In the worst case,
the Baseline Finder finds the original particle and the one resulting from the scattering as
one track, if the changes in momentum and thus direction are small between both. These
cases are particularly important to identify, since the particle from the scattering continues
towards the TOP. The [TOP|then may register them as a different particle type than the
originating one, leading to a |[PID misidentification. Only the proton going outwards the
detector could be found in Fig. [10.2b. For the other 2 particles, they would not be found
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Figure 10.2: Particles from hadronic interaction with the detector wall (left) or within the
CDC at wires (right) in the x — y view (top) and p — z view (bottom). The trajectories of
the mother particles are in orange circular markers, and the products from the scattering
are in blue triangular markers. The interaction point is marked with a red circle.

by the Baseline Finder algorithm. The reconstruction of these particles originating from
detector scattering is undesired, as it would only contribute to an increased fake rate and
not to the underlying physics process, unless specifically handled after the track finding
step. Instead, the particles and their properties before the hadronic interaction need to be

reconstructed correctly. There are three direct options for how these tracks can be handled:

e training on both the particles before and after hadronic interactions labelled as objects
(see Section 5.3.2) and adding a new output layer to the GNN model architecture

that classifies tracks as signal or background;

e labelling the unwanted hits from hadronic interactions as background hits during the
training stage, making them similar in the model handling as the beam-background
tracks (Section 3.1.1);
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p — z view (right) in the same event. Mother particles are shown in red circular markers and
daughter particles in blue triangular markers, and the production vertex of the daughter
particle is marked with a red circle.

e removing the unwanted hits from hadronic interaction from the training samples.

One additional method to handle these kinds of tracks was introduced with a recent basf2
release with the KinkFinder algorithm [128]. If a particle decays in flight, the particle’s
trajectory changes, thus creating a so-called kink. Fig. 10.3/shows two examples of a decay
from a 7t — ;ﬁyu and KT — u+l/u. For the Baseline Finder, often the mother-daughter
combinations are found as a single track, especially if the trajectory only changes in the
p — z plane. The change in trajectory is thus only observed in the stereo layers, which
are ignored during the first track finding step (see Section 5.2) and can be easily missed.
One different option is that hits are mis-assigned to the other particle, which interferes
with the matching requirement defined in Chapter 4. The new KinkFinder algorithm
splits tracks that include a kink in their trajectory and can reassign hits between tracks.
Additionally, this algorithm uses BDTs to determine if the track is coming from a hadronic
interaction, providing the analyst with the option to exclude these types of tracks during
the analysis. Comparing the performance of the CAT Finder on these kinds of tracks, as
well as including hadronic interactions in the training dataset and evaluating it with the
KinkFinder algorithm, is currently ongoing.

One additional challenge arises when training on high multiplicity events. In simulation,
the model performs well for both low- and high-multiplicity events. However, when applied
to measured data, the performance degrades in the low-multiplicity events (Section 8.3.1)).

The origin of this discrepancy still needs to be investigated in detail.
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To address this, a new dataset must be constructed that provides a more representa-
tive coverage of the full Belle II phase space, including a balanced mix of different particle
types and event multiplicities. Special focus should be put on the following signatures in

addition to the samples described in Chapter 3| according to the findings of this thesis:

e high transverse momentum for small opening angles with the two trajectories often

times having (CDC hits in neighboring wires;

e balanced mix of different particle types, as the input features and material energy
loss differ, which influences the particle trajectory. This needs to take into account

the hadronic interactions within the detector, with solutions described earlier;

e treatment of curlers to optimize for track fitting. If the track fitting procedure is not
adjusted, only the first loop of the curler should be identified by the track finding

algorithm, as described in Section 6.1.1}

10.3 Hyperparameter Adjustment

Once such a dataset is available, re-running the hyperparameter optimization should be
prioritized, since the increased complexity from overlapping and low-momentum tracks
may require a higher model capacity than currently used. I explored training with a
higher-dimensional condensation space that was increased from three to five. While this
did not yield improvements within the current setup, it may become relevant in the future,
especially in combination with more advanced clustering approaches in the latent space.
This is especially relevant for high-multiplicity events, as clusters often overlap or extend
into ellipsoidal shapes rather than the assumed spherical ones in Section [5.3.3. I also
observed this on measured data as shown in Fig. 8.20.

Several options for latent space clustering are discussed in [91], but none resulted in improved
performance. For example, [91] reported that for low transverse momentum particles with
p; < 0.5GeV, the cluster size increased compared to higher transverse momentum. Trying
to increase the size of the hit threshold ¢, (see Section 5.3.3) according to the momentum
prediction, however, did not yield improved results in [91]. Another observation from [91]
is that the distance between background hits and condensation points decreases with the
number of condensation points in an event. Similarly, the separation between condensation
points themselves also decreases. Adjusting t¢;, according to the number of condensation
points was tested but did not prove successful in [91]. These findings show that information
about the structure of the cluster space can be gained from the other predictions. This
information can be exploited when clustering in future studies.

There is also the option to use ML to assign the hits belonging to the cluster. One approach

that will be explored in future work is to use algorithms in object detection, such as [58].
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10.4 Running Baseline Finder and CAT Finder Together

As an intermediate step before finding a suitable dataset and improving the agreement be-
tween the detector simulation and the measured data, one option to include the CAT Finder
in |bast2 is to run both tracking algorithms. There are two possible strategies to combine
the Baseline Finder and CAT Finder approaches:

1. run both algorithms independently and merge the resulting track candidates;

2. run CAT Finder only on hits that remain unused after the Baseline Finder recon-

struction or vice versa.

The option to merge track candidates is available within basf2, but the investigation was
out of scope for this work. For the second strategy, the results for the D*" — DO(—> Kg(—>
7T+7r7)7r+777)77§ sample on data using the paper model are shown in Fig. [10.4. While the
signal yield is increased and more displaced tracks are found as shown in Fig. [10.5, the
background also increases to a similar level as the CAT Finder model.

A key challenge in this approach is to avoid an increase of the track clone rate. If tracks
are already reconstructed by the Baseline Finder but only a fraction of hits is attached
to the track, the remaining hits may be reused by the CAT Finder and produce duplicate
track candidates. A dedicated training of the CAT Finder for this specific combined use
case may help mitigate these issues. Although such studies are beyond the scope of this
work, they are an important direction for future investigations. Both of these approaches
could become especially valuable in scenarios where detector performance degrades further,
since the CAT Finder has been shown to recover performance under challenging conditions

such as axial holes or reduced wire efficiencies (see Section 6.4).

For running both algorithms, the computational load has to be considered. Currently, the
track finding accounts for 30% of the reconstruction time for the HLT and for the 40% of
the full reconstruction of high-multiplicity events. As of current no C++ implementation
is available of the CAT Finder model (discussed in Section 5.4), the track finding time
of CAT Finder is not optimized due to change from C++ to Python and back. For high
multiplicity events, the time reported in |96] for the CAT Finder is 1.6 times higher than
the Baseline Finder. This value is to be optimized once the CAT Finder is implemented
in ONNX [129]. This makes the second strategy, where CAT Finder only runs on unused hits
after the Baseline Finder, the more attractive option. However, the first strategy could
also become feasible if the |(CDC hits are pre-filtered to reduce the input size. While the
GNN model is already effective in suppressing background based on the input features, the
track finding time improves with pre-filtered hits. I discuss this aspect further in the next

section.
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and Ny, (see Section 8.1) are annotated.
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10.5 Hit Cleanup for CAT Finder

I describe the clipping of input features to better account for the signal distribution in Sec-
tion 5.3.1. Instead of clipping the values, there is also the option of cutting at the specified
value and removing the hits outside of the range from the model training and inference. This
cut-based filtering approach is also used for the Baseline Finder (Section 5.2). Different
cuts and the impact on the track fitting charge efficiency was investigated in detail in [84].
While the result shows that cutting does not improve the efficiency compared to clipping, it
reduces training time of up to a factor of 2 depending on the cut values on high data beam
backgrounds [84]. Beyond simple filtering using cut values on features of the |(CDC hits,
more advanced filtering strategies can significantly reduce the computational load of track
finding. Two approaches are currently available, FastBDT|34| based hit filtering introduced
in basf2 with release-09, and GNN-based cleanup [130].

For the expected high simulated beam background scenario (see Section 3.1.1), with
on average 3180 beam background hits per event, applying the | GNN-based cleanup prior
to training reduces the training time by more than an order of magnitude. In addition
to the speedup, both the CAT Finder and Baseline Finder algorithms show improved
performance when the cleanup is applied. A detailed comparison is summarized in Ta-
ble 10.1, with both algorithms having an improved full reconstruction efficiency for pions of
2 percentage points, with a decrease of 1 percentage point for the fake rate. While both
the CAT Finder and GNN-based cleanup are using a PyTorch Geometric model, there is
ongoing work to port both models to C++ using ONNX|129|, which will reduce the execution
time and memory consumption. These filtering methods are therefore crucial not only for
improving reconstruction performance but also for to improve the training time for faster

testing of different datasets and making combined track finding strategies computationally

feasible.
in % 7 efficiency  tione tmke training time/epoch
Baseline Finder 86.2 3.5 7.5 -
with GNN cleanup 88.6 3.0 6.4 -
CAT Finder 86.7 5.6 7.8 ~ 120 min
with GNN cleanup 88.9 3.8 6.5 10.5 min

Table 10.1: Comparison of pion reconstruction efficiency, tone, and te. metrics (in %)
across different configurations for the high expected beam-background (see Section 3.1.1} for
Baseline Finder and CAT Finder with and without the |GNN-based hit cleanup comparison
with Table 7.1). The training time per epoch is given for the CAT Finder.
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10.6 Tuning the Subsequent CKF and Track Fitting Algo-

rithm

One issue that I discussed in Section [8.2]is the extrapolation from the |CDC]|tracks to the
SVD. The (CKFs responsible to attach the |[SVD) clusters to the |CDC track candidates
(see Section 5.4) and should be tuned in future work.

Additionally, there are options within |GENFIT2| that can reorder the hits assigned to a
track candidate. While this is currently not implemented in bast2, this can be promising
to to investigate to improve the fitting efficiency of curlers (see Section 6.1.1).

Other options are to replace (GENFIT2 with A Common Tool for Tracking (ACTS)[131],
which promises faster fitting in comparison. This would allow more iterations of the track
fitting with loser requirements at the start, which might help in case the track finding seeds

differ too much from the true track properties.

10.7 Combined SVD and CDC track finding

One possible approach to improve the incorporation of SVD|clusters with |CDC]|tracks is
by tuning the |(CKF|as discussed in the previous section. However, this does not address the
more fundamental issue that it is often preferable to reject poor-quality track candidates
altogether during the |(CDC]|track finding stage, as the [SVD|track finding can recover these
tracks (see Fig. 8.18)). This is particularly relevant for very low-momentum particles that
only reach the first few superlayers and information about the trajectory from only the
CDC hits is limited.

Optimizing this trade-off is difficult, as reflected in the complex design of the current
tracking pipeline shown in Fig. 5.13. One simplification presented at [132] is instead
combining the |[CDC|and [SVD) track finding in a multi-modal |GNN-based approach.

As the [PXD)| depends on the (CDC|and |SVD) track finding to define the regions-of-interest
for reading out clusters at the DAQ (see Section 2.2) and assign clusters (see Section 5.4),
PXD) clusters are not included in the track-finding stage. There are plans to include
predictions on the region-of-interest for the [PXD) for readout and cluster attachment in
future work.

The proposed tracking pipeline is shown in Fig. [10.6, combining the CDC]|track finding,
the |CKF extrapolation to attach the SVD]| clusters, the SVD) track finding and the
SVD| extrapolation to attach |[CDC hits in one single step. The multi-modal GNN model
architecture is shown in Fig. 10.7, keeping the structure of the current CAT Finder model
and adding 3 additional layer after the combined input matrix of the |[CDC and [SVD
inputs.

This new algorithm is called Belle II AI Track Finder (BAT Finder). For the CDC,
the updated inputs described in Section 10.1 are used. In the case of the SVD, the input

consists of the three-dimensional hit information reconstructed by combining clusters from
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Figure 10.6: Proposed updated tracking pipeline using one step for combined SVD)|and
|glscdce track finding compared to Fig. [5.13. Presented at [132].
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opposite-side strips (Section 2.2)). Each cluster contributes with its timing information to
the corresponding strip hit. Additionally, the deposited charge and the signal-to-noise ratio
of the clusters are included as input features [22|. One example prediction including the
latent space is shown in Fig. 10.8.

Here, the low-momentum track only entering the first axial superlayer is found by
the BAT Finder, showing that including the SVD|is especially helpful for these very
low momentum curlers that are also an issue for the extrapolation. Incorporating SVD

information is also relevant for the reconstruction of curling tracks, as the z-coordinate
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Figure 10.8: Event display (Fig. 10.8a) and latent cluster space (Fig. 10.8b) representation
of one example event from category 11 (Table 3.2). Presented at [132].

provided by the SVD)allows for a more reliable identification of the first trajectory arm

and the track direction. Fig. |[10.9 shows the track reconstruction results on category 8
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Figure 10.9: Track reconstruction efficiency over the displacement of muons from the
category 8 samples (Table 3.2). Baseline Finder and CAT Finder results are for the full
reconstruction, BAT Finder results are without including the PXD. Presented at [132].

Table 10.2: Pion reconstruction efficiency, clone rate, fake rate and wrong charge rate
for category 5-7 fitted tracks over the full tracking acceptance. Baseline Finder and
CAT Finder are included in the full reconstruction, BAT Finder results are without the
PXD. Presented at [132].

(111 %) ™ efﬁc1ency Tclone Trake Ywrong ch.

Baseline Finder — 49.737000  6.447557 0.167001  1.117002

CAT Finder ~ 69.357002  4.627005  0.207001  2.871092
BAT Finder 7513799 029199 0.0675%0  3.6470:02

samples (Table 3.2) and the summarized values are given in Table [10.2. The BAT Finder"
achieves the 7 reconstruction efficiency of 75.13 % outperforming the full reconstruction
including the CAT Finder' with 69.35 %. While the fake rate for the BAT Finder is the
smallest, the wrong charge rate is increased, which might also be because the BAT Finder
has the highest efficiency and finds hard to identify tracks. Physics evaluation and the
implementation into |basf2 are necessary next steps, however this first evaluation shows

promising results for the combined [SVD|and |[CDC track finding.

Feasability Studies for Tracking with Degradating Detector

As discussed in Section 3.1.2, the performance of the |CDC| may degrade in the near future
due to the Malter effect. Since this effect depends on the accumulated charge, the innermost

axial layer with its smaller drift cells and shorter wires is affected the most. In the worst

*The [PXD|is excluded for the BAT Finder, which can influence the hit efficiency and hit purity
requirements for track matching described in Chapter |4 as on average two additional clusters are included.
"The |SVD track finding of basf2 is used here as described in Section (5.4l
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case, the entire first axial superlayer may become unusable because the gain drops too low
or the occupancy becomes too high to distinguish signal from noise.

Without the first axial superlayer, the Baseline Finder performance is massively reduced,
and track finding would need to rely on the [SVD. This, however, comes with the drawback
of reduced purity unless the SVD) track finding is further optimized. Replacing parts of
the |[CDC is both costly and time-consuming, requiring a long shutdown of the experiment
as was the case between run I and run II. This would also come with replacing the first
axial superlayer with additional silicon layers (extending the SVD) to cope with the high
beam background occupancy [34].

Demonstrating that tracking performance can be maintained or even improved with advanced
algorithms is therefore crucial to avoid major unplanned downtimes. While I studied reduced
CDC] efficiency in Section 6.4.2, the complete loss of the first axial superlayer remains
particularly challenging for the CAT Finder, especially for low-momentum particles or
those leaving the detector early in the endcaps.

Promisingly, combining SVD|and CDC information within the BAT Finder yields robust
track finding even without the first axial superlayer, as shown in Fig. [10.10. Moreover, the
multi-modal design of the BAT Finder allows for straightforward substitution of the first
CDC|inputs with |[SVD| measurements, enabling studies of upgrade scenarios where the
innermost |CDC| superlayer is replaced entirely by silicon.

This demonstrates that advanced tracking approaches such as the BAT Finder are not
only essential for handling detector ageing but also provide a viable path for future Belle 11

tracking upgrades.
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Figure 10.10: Example event display in the z—y plane showcasing the wire efficiency
map where green stand for decreased efficiency and red for wires that cannot measure
anymore (see Fig. 3.4 for details). Filled colored circular markers show signal hits, filled
gray triangular markers show background hits. Markers with colored outlines are found by
the GNN|to belong to the same track object. The GNN predictions (colored lines) are
drawn using the predicted starting point and three-momentum for the predicted particle
charge. Presented at |132].






Chapter 11

Conclusion

In this thesis, I present the first end-to-end graph neural network-based tracking algo-
rithm for a drift chamber detector in a realistic particle physics environment, evaluated
on both simulated events and measured data from Belle II. I evaluate two models, the
CAT Finder trained on a simulated dataset featuring rather low track multiplicity, and the
CAT B Finder, which additionally includes BB events in the training to optimize for high
track multiplicity.

The evaluation for the Belle I drift chamber (CDC) shows that the CAT Finder achieves
superior performance for both displaced tracks and tracks leaving in the detector end-
caps. For a long-lived, massive particle in the GeV range with a lifetime of 21.5cm, the
CAT Finder reconstructs both tracks in the event in 87.2% compared to 44.9% for the
Baseline Finder. In addition, the CAT Finder achieves a smaller fake rate of 2.5% com-
pared to the 3.3% of the Baseline Finder.

The CAT Finder also improves hit efficiency for curling tracks that leave and re-enter the
CDC| multiple times. This is important because beam-background occupancy per event
is estimated from the number of hits remaining after track finding, which is a relevant
quantity in many physics analyses.

The CAT B Finder, optimized for high track multiplicity, shows even better performance for
prompt particles originating from the interaction point. Across the full detector acceptance,
it achieves an integrated efficiency of 84.2% for prompt pions from BB events, compared
to 74.7% achieved by both the CAT Finder and the Baseline Finder.

Both CAT Finder models are robust against detector aging effects, which are already
present in the |[CDC and may worsen in the near future, and they recover performance
relative to the Baseline Finder. This demonstrates that the CAT Finder-based algorithms
provide a reliable and future-proof solution for track reconstruction at Belle II.

In addition to the (CDC-only evaluation, I demonstrate the successful implementation and
validation within the full reconstruction chain of Belle II. The CAT B Finder outperforms
the Baseline Finder by 1 percentage point on the most relevant tracking metric, the prompt

reconstruction efficiency from BB events. It exceeds the Baseline Finder by 8 percentage
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points for reconstructed, displaced Kg — 7w tr~ decays while achieving a lower fake rate.
The C++ implementation [96] of this algorithm will be integrated in the next full release of
the Belle II reconstruction software, enabling its use in addition to the existing algorithm.
After validating the track quality and implementation, I demonstrate that the algorithm
can be used for physics analysis. Using my algorithm in combination with the other
subdetectors on measured data, both the CAT Finder and CAT B Finder successfully
reconstruct electron and muon tracks from J/v decays. For displaced Kg — 7w tr decays,
the CAT B Finder achieves the largest signal yield on data out of all three algorithms, and
an especially high yield for displaced tracks. However, the increased background yield for
the CAT B Finder leads to a slightly lower approximated significance compared to the
Baseline Finder.

For further improvements, I identify discrepancies between simulation and measured data for
all three algorithms. For my algorithm, future work can address this by either incorporating
measured data into training or by adding noise to the input features. I also show that
applying filtering methods to the |CDC]| hits reduces training time, enabling my proposed
studies to mitigate simulation—data differences more efficiently. The CAT Finder model is
currently being implemented in ONNX for a full C++ implementation, which allows faster track
finding compared to the current implementation. This enables running the Baseline Finder
and the CAT Finder together, allowing the CAT Finder to focus entirely on recovering
performance due to detector ageing and reconstructing displaced tracks. Lastly, the graph
neural network-based algorithm presented here is suitable for irregular detector geometries.
This setup enables the combination of the detectors used in Belle II track finding, which
reduces background yields [132] and is a key direction for future work.

Finally, I study the sensitivity of the CAT Finder for a long-lived spin-0 particle S in
B — KTS. For lifetimes above 10 cm, the expected limits improve by up to a factor of
2, which is approximately equivalent to collecting four times more data when using the
Baseline Finder.

To conclude this thesis, I report the training setup, model architecture, training loss, and
the pre- and postprocessing for the track candidates, with the software code available
in [133|. The algorithm and part of the CDC-only evaluation are published in [1]. The
CAT Finder shown in this thesis is the first end-to-end machine learning tracking algorithm

utilized in a realistic particle physics environment.
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Appendix A

Dataset Appendix

A.1 Trainings dataset event displays

Figure |A.1 shows typical example event displays of the different training samples described
in Section 3.2l and Table 3.2.
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Figure A.1: Figure and text taken from [1]: event displays showing examples of the different
training samples for high data beam backgrounds. Filled colored circular markers show signal
hits, filled gray triangular markers show background hits. The markers correspond to the
locations of the sense wires at the z position of the center of the wire for the wires with
recorded ADC signals.



Appendix B

Hyperparameter for BB events

The hyperparameter optimization for the track finding hyperparameters described in

Section |5.3.4is given in Fig. B.1.

Baseline
0.72 ¥
0.84 1
0.714
> >
9 0.82 X . g oo
2 Working Point 5070 . .
g 9 3 Woarking Point
& &
& 0.801 g 0691
g 5
& <
o o
E ) 0.68 q
E 0.78 1 E
< * 0.67 q
g g
= =
0.76 4 0.66 -
aseline
0.65 q
0.741 T T T T T T T T T T T T T T T
0.52 0.54 0.56 0.58 0.60 0.62 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640
Purity Purity
- —e— t4=0.5, t,=0.1 — —e— t4=0.5, t,=0.1
—o— —0— t4=0.3, t,=0.15 —o— —0— t4=0.3, t,=0.15
— —— t;=0.3, t,=0.1 — —— t;=0.3, t,=0.1
— . £4=0.2, th=0.1 — . £4=0.2, th=0.1
—8— t4=0.5, t,=0.15 X baseline —e— t4=0.5, t,=0.15 X baseline
(a) Finding charge efficiency. (b) Fitting charge efficiency.

Figure B.1: Track finding (top) and fitting (bottom) charge efficiency as function of purity
for the CAT Finder, and the respective value for the Baseline Finder for BB events for
high data beam backgrounds.
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Appendix C

CDC only results

C.1 Track efficiency for category 1-3

The track finding efficiencies, as well as the combined track finding and track fitting effi-
ciencies for the Baseline Finder and the CAT Finder are shown in Fig. |C.1 for non-curling

tracks from category 1-3.
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Figure C.1: Figure and text taken from [1]|: Track finding (markers connected by solid
lines to guide the eye) and combined track finding and fitting efficiency (markers con-
nected by dashed lines to guide the eye) for the prompt evaluation samples (category 1-3,
high data beam backgrounds, see Table 3.2) with curler tracks removed, as function of simu-
lated transverse momentum p;"C for the Baseline Finder (blue) and the CAT Finder (red)
in the (a) forward endcap, (b) barrel, and (c) backward endcap. The vertical error bars that
show the statistical uncertainty are smaller than the marker size. The horizontal error bars
indicate the bin width. The uncertainties of the two track finding algorithms are correlated,
since they use the same simulated events.

C.2 The CAT B Finder in Category 1-3

The track finding and combined track fining and fitting charge efficiency for all tracks
from category 1-3 is shown in Fig. |C.2 with the additional CAT B Finder algorithm.

This includes curling tracks. While the performance in the barrel region is improved
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216 C.2. The CAT B Finder in Category 1-3

for CAT B Finder, this model has decreased efficiency compared to CAT Finder for the

backwards region. The performance metrics for CAT B Finder are given in Table |C.1
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Figure C.2: Track finding (markers connected by solid lines to guide the eye) and combined
track finding and fitting charge efficiency (markers connected by dashed lines to guide the eye)
for the prompt evaluation samples (category 1-3, high data beam backgrounds, see Table 3.2),
as function of simulated transverse momentum pi\/l “ for the Baseline Finder (blue), the
CAT Finder (red), and the CAT B Finder (orange) in the (a) forward endcap, (b) barrel,
and (c) backward endcap. The vertical error bars that show the statistical uncertainty
are smaller than the marker size. The horizontal error bars indicate the bin width. The
uncertainties of the three track finding algorithms are correlated, since they use the same
simulated events.
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Table C.1: The performance metrics for the category 1-3 evaluation samples for the
CAT B Finder in different detector regions for high data beam backgrounds, including
curling tracks. Uncertainties below <0.01% are not shown in the table. Comparison with
Table 6.1

(in %) Etrk Tfake Tclone €¢rk,ch twrong ch.

forward endcap

Bascline Finder  75.4702 0857007  0.01_g, 737703 2337509
CAT Finder  98.527007  3.8270°07 0351002  98.2570:0%  0.2770:02
CAT B Finder  98.1970°0%  2.32709% 0112007 97751002 0.45T502
Baseline Fitter ~ 73.570°2  0.6610'03 0.01 725702 1.331003
CAT Fitter  93.7170°09  0.64708%  0.077807 91,9701 1.9370:05
CAT B Fitter  94.08700% 0447002 0.047001  023%01  1.89%0%3
barrel

Baseline Finder ~ 96.5970°05  1.26700% 0777001 9417005 2587003
CAT Finder 99.471%;% 1.96}%;%2 04651?))1?92 98.443%1%2 1.03%%2
CAT B Finder  99.6270°07 2137005 1531005 98497002 1131003
Baseline Fitter ~ 95.12790%  0.897092 0497001 03437004 1.77%0-02
CAT Fitter  94.3770707  0.6070:01 0137001 o407t 0i 0317001

CAT B Fitter  95.53700% 0557007 0467001 95137081 0.431001

backward endcap

Bascline Finder  55.670'2  1.7370°9%  0.027001  53.0103 471099
CAT Finder 95927006 2047002 0111001 95137807 0.82700%

CAT B Finder  93.7170%7 1837097 0127900 92527808 1.2770:9%

Baseline Fitter ~ 54.07072  1.24790%  0.02_y4, 521703 3567008
CAT Fitter  89.970°99 127000 0047001 849701 5577007
CAT B Fitter ~ 86.710] 097095 005001 s17rOl s73tHOS
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C.3 Efficiencies, fake rates, and clone rates for u_,u+('y)

The track finding efficiencies, and the combined track finding and track fitting efficiency and
charge efficiency for the Baseline Finder in comparison with the CAT Finder are shown in
Fig. C.3.

1.21 Belle I Simulation (own work) e*e~ »u*u~(y) > 12| Belle I Simulation (own work) e*e~ »>u*u~(y)
Barrel o Barrel
c
> 1.0 e e AR dRans casaee e ae o 1.0 z—w * B e
g |+ s |7
QO o8 i o8
= )
=
=
hl 0.6 9 0.6
©
~
% 0.4 6 0.4
= —4— Baseline Finder ~ --- CAT Fitter 36 —4— Baseline Finder ~ --- CAT Fitter
0.2 -+~ Baseline Fitter CAT B Finder © 02 -+4- Baseline Fitter CAT B Finder
—4— CAT Finder CAT B Fitter }t —4— CAT Finder CAT B Fitter
00 1 2 3 4 5 00 1 2 3 4 5
MC MC
pYc (GeV) pr - (GeV)

(a) Track finding and fitting effi- (b) Track finding and fitting
ciency. charge efficiency.

Figure C.3: Figure and text adapted from [1]: Track finding (empty markers, connected
by lines to guide the eye) and combined track finding and fitting charge efficiency (filled
markers) for /f/ﬁ(’y) evaluation sample in the barrel with high data beam backgrounds.
See Fig. C.1| caption for details.

Track finding and fitting efficiency e, fake rate tg)., clone rate tgopne, track charge
efficiency €, and wrong charge rate tyyong cn, integrated over the full p, for p— ;ﬁ(’y)

events are shown in Table |C.2.
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Table C.2: Table and text adapted from |1]:The performance metrics for the p~ u' (7)
evaluation samples for different track finding algorithms in different detector regions for
high data beam background. Uncertainties below <0.01% are not shown in the table.

(in %) Etrk fake tclone €trk,ch twrong ch.

forward endcap

Baseline Finder so.zf%% 1.4f3'é o.mtg;g; 78,6f8ﬁi4 2.0f?,'}1
CAT Finder 99.81t08'_0(())73 8.51’%;5 0.07f§1§% 99.78%8'0874 0.04f03‘0822
CAT B Finder  99.47507 6.010%  0.01T001 9937907 0aF002
Baseline Fitter ~ 79.370% 10751 0.0_g g1 78.2f8‘§ 1‘4f8é
CAT Fitter ~ 99.0870°0% 119799 0.017501 97,0703 21101
CAT B Fitter ~ 98.0707 0777057 0017901 957703 2.3707
barrel
Baseline Finder ~ 99.4270-03 3.0f%30% 0.04f§'§i 99.3*’&3&8&‘11 0.12f§‘_§%
CAT Finder 100.0 5327909 0.03T961 99977991 0037001
CAT B Finder  99.997%%0 5287099 0117000 99,0410 0.057501
Baseline Fitter ~ 99.1570°9%  2.0570:9% 0037900 99.07759%  0.08705}
CAT Fitter  99.49700%  1.7870-08 0.01 99.48705%  0.02_0 oy

CAT B Fitter  99.5770°0% 1327092 0.037001 00537085 0.0310:01

backward endcap

Baseline Finder  60.670'4 47103 004005 57070 59703
CAT Finder  99.68709% 84702 0041002 99587095 117008
CAT B Finder  97.470] 76102 0047002 97103 0.319-%3
Baseline Fitter ~ 60.070% 38752 001700 572704 46792
CAT Fitter ~ 97.6751 44702 0027500 92.4702 54102
CAT B Fitter ~ 93.8702 29703 0.03t00,  88a1fdd 6.0702
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C.4 Efficiencies, fake rates and clone rates for B°B°

C.4.1 Efficiencies for prompt pions according to the number of seen

particles
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Figure C.4: The track finding charge efficiency for Baseline Finder, CAT Finder
and CAT B Finder, as well as the differences between both CAT Finder algorithms to
Baseline Finder given over the true transverse momentum and the number of seen particles

in |[CDC.
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Figure C.5: The track finding and fitting charge efficiency for Baseline Finder,
CAT Finder and CAT B Finder, as well as the differences between both CAT Finder
algorithms to Baseline Finder given over the true transverse momentum and the number
of seen particles in the (CDC.
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Figure C.7: Track fitting charge efficiency for et
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Figure C.8: Hit efficiency (top) and hit purity (bottom) vs. Ny, for all primary matched
e tracks. Left: distributions; right: medians.
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C.4.3 Prompt ,u,i
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Figure C.9: Track finding charge efficiency for Mi.
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Figure C.10: Track fitting charge efficiency for /J,:t.
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Figure C.11: Hit efficiency (top) and hit purity (bottom) vs. Ny, for all primary matched
ui tracks. Left: distributions; right: medians.
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C.4.4 Prompt K*
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Figure C.12: Track finding charge efficiency for K £,
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Figure C.13: Track fitting charge efficiency for K £,
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Figure C.14: Hit efficiency (top) and hit purity (bottom) vs. Ny, for all primary matched

K* tracks. Left: distributions; right: medians.
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C.4.5 Prompt p:t
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Figure C.15: Track finding charge efficiency for pi.
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Figure C.16: Track fitting charge efficiency for pi.
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C.5 Track efficiency for h — ,u+u_, e'e” —h(— M+H_)X1X2(—>

ete x,) and Kg — w+

.
The track finding efficiencies, and the combined track finding and track fitting efficiency
for the Baseline Finder in comparison with the CAT Finder for h — ,u+,u_, Kg —Sata,

and ete™ —h(—= u " )xixa(— eTe xy) events are shown in Fig. C.18.
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Figure C.18: Figures and text taken from [1]: Track finding (empty markers) and combined
track finding and fitting efficiency (filled markers) for (top) displaced tracks in h — W
events, in (middle) K9 — 777 events, and for electrons in ete™ —h(— pp”)x1x2(—
ete” X1) events with high data beam backgrounds, as function of (left) the true simulated

transverse momentum pi\/fc, and (right) the true simulated displacement vﬁ/lc
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C.6 High transverse momentum track resolution

Fig. C.19 presents the relative transverse momentum resolution for tracks reconstructed
and fitted by both the CAT Finder and the Baseline Finder (Fig.|C.19a-Fig. C.19f), as
well as the relative longitudinal momentum resolution in the transverse momentum range
4 GeV < p; < 6 GeV. This is illustrated in Fig. |C.19¢, where no significant tail is observed
on the right side. Even for tracks with true momentum well above 6 GeV, the initial
prediction from the CAT Finder provides a sufficiently accurate starting value for the
subsequent track fitting algorithm. While the central region of the resolution distribution
for the CAT Finder is broader compared to the Baseline Finder, the tails are considerably

smaller.
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Figure C.19: Figures and text taken from [1]: Relative (Fig. C.19a-Fig. C.19f) transverse
and (Fig. C.19g-Fig. C.1912 longitudinal momentum resolution as function of simulated
M . : _
transverse momentum p; ~ for the intersecting prompt evaluation sample (category 1-3,
see Table 3.2) in the (left) forward endcap, (center) barrel, and (right) backward endcap
for tracks found (red) and fitted (orange) by both the CAT Finder and (blue and grey)

the Baseline Finder for the high transverse momentum bin of 4 GeV< p, <6 GeV.
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C.7 Track helix parametrization resolution

The track parametrization follows a helix model and is evaluated at the point of closest
approach (POCA) to the collision point (see Section [5.2). The distance between the POCA
and the collision point in the transverse plane is denoted as d, and in the longitudinal
direction as d,. The angles of the transverse and longitudinal momentum at the POCA are
denoted by ¢ and 6, respectively.

For matched tracks, the absolute residuals of these track parameters are defined, following
Eq. (4.10), as

n(¢a 97 dOa dz) - (¢7 6) d07 dz)rec - (¢7 97 dOv dz)simulated' (Cl)

The resolution of the track parameters, r(¢, 0, dy,d,), is defined as the 68% coverage of
the absolute residuals, following Eq. (4.11) :

r(¢,0,dy,d.) :P68%(‘77_P50%(77)|>7 (C.2)

where P, denotes the g-th quantile of the distribution of 7, and Psyg is the median [46].
The resulting resolutions of the fitting parameters as a function of the simulated

transverse momentum pi\/[ < are presented in Fig. C.20.
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Figure C.20: Figures and text taken from [1]: parameter resolution as function of simulated
MC . . .

transverse momentum p; ~ for the intersecting prompt evaluation sample (category 1-3,

see Table 3.2) barrel.
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C.8 Track momentum resolution for additional CAT Finder

samples in h — pt ™ events

The relative momentum resolutions for displaced tracks from h — ;ﬁ;f decays in the

barrel for tracks only found by CAT Finder are shown in Fig. |C.21l
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Figure C.21: Figures and text taken from [1]: Relative resolution of (first column)

transverse and (second column) longitudinal momentum as function of (top row) simulated
MC . . MC .

transverse momentum p; ~ and (bottom row) simulated displacement v, ~ for displaced

tracks from h — ptp” decays in the barrel for tracks only found by CAT Finder.
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+

C.9 Track momentum resolution in Kg — w7~ events

The relative momentum resolutions for displaced tracks from Kg — 777 decays in the

barrel are shown in Fig. C.22.
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C.9. Track momentum resolution in Kg —

Tx~ events
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Figure C.22: Figures and text taken from [1]: Relative resolution of (first column)
transverse and (second column) longitudinal momentum as function of (top row) simulated

MC
transverse momentum p;

and (bottom row) simulated displacement vf)WC for displaced

tracks from Ko — 7' 7 decays. Top (a-d) row shows the resolution for tracks found by
both CAT Finder (red) and Baseline Finder (blue), and bottom (e-h) row for tracks only

found by CAT Finder.
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te” —h(—

C.10 Hit efficiency for displaced electrons in e
nET)xaxz(— eTem x)

The hit efficiency for electrons with a displaced starting position of at least 5cm from the

interaction point are given in Fig. C.23.
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Figure C.23: Hit efficiency for electrons in e e” —h(— pp )xixa2(— e e x1) with

a displacement v, > 5cm for the intersecting sample between CAT Finder (red) and
Baseline Finder (blue).

C.11 Hit efficiency and resolution for the intersecting sample

for the robustness studies

The overall hit efficiency for the Baseline Finder for particles with 2 GeV < p,lfvl € <3GeV for
the intersecting sample with CAT Finder is between 95% and 90%. For segment 5 with the
axial hole, the hit efficiency drops to only 72%. For the CAT Finder, the hit efficiency also
drops to 84%, but this is less steep than for the Baseline Finder. This drop in hit efficiency
also reflects in the resolution of the transverse and longitudinal momentum, as for both the
resolution drops for segment 5 for the Baseline Finder but not CAT Finder. Interesting to
see now is the decrease in resolution for n(p,) both CAT Finder and Baseline Finder for
segment 8 which includes the stereo hole in U2, while n(p;) stays the same. As the efficiency
of the Baseline Finder for segment 9 is only at 33%, no large drop in resolution is seen as
most tracks are not event found. The difference observed overall between CAT Finder and
Baseline Finder is 0.001 worse 7(p;) for the CAT Finder for the first 4 segments. This can
be improved by fine-tuning the model either on a set of wire efficiencies and bad boards or

directly on the corresponding wire efficiency map, as shown in [35].
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Figure C.24: The approximated wire efficiency map, described in detail in Section 3.1.2,
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Appendix D

Full Reconstruction

D.1 Prompt Tracks in BB

The full reconstruction efficiency (see Eq. (4.9)) for the electrons (Fig. D.1), muons (Fig. D.3),
kaons (Fig. D.5)), and protons (Fig. D.7), as well as the hit efficiency depending on the
number of seen particles in the event (see Fig. D.2 for electrons, Fig. D.4 for muons, Fig. D.6

for kaons, and Fig. D.8 for protons), is given in the following figures.
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Figure D.1: The full reconstruction efficiency for the true transverse momentum piv[ ©
over the polar angle for the Baseline Finder (Fig. D.1la), CAT Finder (Fig. D.1b), and
CAT B Finder (Fig. D.1c). The difference between the two new tracking algorithms to the
Baseline Finder is given as difference in full reconstruction efficiency in Fig. D.1d. The
same plot but for the CDCronly track charge finding and fitting efficiency is given in

Section (C.4.
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Figure D.2: Hit efficiency (top row) and hit purity (bottom row) over the number of
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distributions for the Baseline Finder in blue, CAT Finder in red, and CAT B Finder in
orange, while the right column shows the median for all three algorithms.
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(d) Difference in the full reconstruction charge efficiency for the CAT Finder and CAT B Finder
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Figure D.3: The full reconstruction efficiency for the true transverse momentum pivl

over the polar angle for the Baseline Finder (Fig. D.1a), CAT Finder (Fig. D.1b), and
CAT B Finder (Fig. D.1c). The difference between the two new tracking algorithms to the
Baseline Finder is given as difference in full reconstruction efficiency in Fig. D.1d. The
same plot but for the CDCronly track charge finding and fitting efficiency is given in

Section (C.4.
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Figure D.4: Hit efficiency (top row) and hit purity (bottom row) over the number of
particles seen in the (CD(]|for all primary matched muons. The left column shows the
distributions for the Baseline Finder in blue, CAT Finder in red, and CAT B Finder in
orange, while the right column shows the median for all three algorithms.
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Figure D.5: The full reconstruction efficiency for the true transverse momentum p,lfv[
over the polar angle for the Baseline Finder (Fig. D.5a), CAT Finder (Fig. D.5b), and
CAT B Finder (Fig. D.5c). The difference between the two new tracking algorithms to the
Baseline Finder is given as difference in full reconstruction efficiency in Fig. D.5d. The
same plot but for the |CDClonly track charge finding and fitting efficiency is given in

Section (C.4.
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Figure D.6: Hit efficiency (top row) and hit purity (bottom row) over the number of
particles seen in the (CD(]|for all primary matched muons. The left column shows the
distributions for the Baseline Finder in blue, CAT Finder in red, and CAT B Finder in
orange, while the right column shows the median for all three algorithms.
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(d) Difference in the full reconstruction charge efficiency for the CAT Finder and CAT B Finder
vs the Baseline Finder.

Figure D.7: The full reconstruction efficiency for the true transverse momentum p;

MC

over the polar angle for the Baseline Finder (Fig. D.7a), CAT Finder (Fig. D.7b), and
CAT B Finder (Fig. D.7c). The difference between the two new tracking algorithms to the
Baseline Finder is given as difference in full reconstruction efficiency in Fig. D.7d. The
same plot but for the CDCronly track charge finding and fitting efficiency is given in
Section C.4.
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Figure D.8: Hit efficiency (top row) and hit purity (bottom row) over the number of
particles seen in the (CD(]|for all primary matched muons. The left column shows the
distributions for the Baseline Finder in blue, CAT Finder in red, and CAT B Finder in
orange, while the right column shows the median for all three algorithms.
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D.2 Reconstruction efficiency per charge

The full reconstruction efficiency for positively charged pions is given in Fig. D.9 and for

negatively charged pions in Fig. D.10.
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Figure D.9: Reconstruction efficiency of prompt pions with positive charge for all three
track finding algorithms in full reconstruction. Fig. 7.6a shows the overall values, in dashed
black the function for the particle traversing exactly one loop (Eq. (7.4)) for the respective
transverse momentum and polar angle for the inner (CDC boundary in forward direction of
z = 57 cm.Fig. [7.6b| shows the difference of detection asymmetry.
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Figure D.10: Reconstruction efficiency of prompt pions with negative charge for all three
track finding algorithms in full reconstruction. Fig. 7.6a shows the overall values, in dashed
black the function for the particle traversing exactly one loop (Eq. (7.4)) for the respective
transverse momentum and polar angle for the inner (CDC boundary in forward direction of
z = 57 cm.Fig. 7.6b shows the difference of detection asymmetry.
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D.3 Ionization energy loss in the CDC and SVD

Baseline ete” »BBO CAT ete” »BB°
10 =3 10 =5

S.imulation (own work) imulation (own work)

CDC dE/dx (a.u.)

0 ‘ 0 : '
00 05 1.0 15 20 25 00 05 10 15 20 25
p (GeV) p (GeV)
ete~ 5B
10 :
mulation (own work)

3
S | 25 5.0 75
x © N(p)
L
S
Ll
T 4
o]
8 .

2

100 200 10 20
0. i e e + +
00 05 10 15 20 25 N(t™) N(e™)

p (GeV)

Figure D.11: CDC dE/dx over momentum for electrons (grey), muons (orange), pions
(blue), Kaons (reds) and protons (purple) for the Baseline Finder (top left), CAT Finder
(top right) and CAT B Finder (bottom left). The dE/dx values are normalized to the
average energy loss for an electron at the Fermi plateau [105], as the absolute value is not
necessary to distinguish between the different particle types.

A similar comparison is shown for the SVD dE/dx in Fig. D.12 with full distributions
available in Fig. D.13l Compared to the CDC, the ionization energy loss curves in the
SVD) are less pronounced. Nevertheless, at low momentum, the three particle types are still
clearly distinguishable, and the results are consistent across all three tracking algorithms.
This confirms that the SVD) extrapolation is functioning correctly and that a sufficient

number of [SVD|clusters are being assigned to the reconstructed tracks.
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Figure D.12: SVD|dE/dx over momentum for pions (blue), Kaons (reds) and protons
(purple) for the Baseline Finder (top left), CAT Finder (top right) and CAT B Finder

(bottom left). See Fig. D.11 for details.
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Figure D.14: SVD dFE/dz distribution for a given true momentum range for pions (left),
kaons (middle) and protons (right) for the Baseline Finder (blue), CAT Finder (red) and
CAT B Finder (orange) for the intersecting sample between all three algorithms. See
Fig. D.11] for details.



Appendix E

Validation on Data

E.1 Number of CDC| hits in J/v¢ — ete”

Figs. E.1 to E.4 show the number of CDC]| hits for the et of the reconstructed J /¢ for

runs from experiment 22 and experiment 26.
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Figure E.1: Number of CDC hits for the e* of the reconstructed .J/t¢ mass from
two opposite charged muons M _+ - in the signal region of 3.07GeV to 3.12GeV for
both simulation and measured data for runs from experiment 22 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepe mies(¢) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation
refer to the correctly reconstructed J/v. The simulation is scaled to the integrated luminosity
of [L£dt =1.644fb",
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Figure E.2: Number of CDC hits for the e of the reconstructed J/¢ mass from
two opposite charged muons M + - in the signal region of 3.07GeV to 3.12GeV for
both simulation and measured data for runs from experiment 22 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepe mits(€ ) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation

refer to the correctly reconstructed J/1. The simulation is scaled to the integrated luminosity
of [L£dt =1.644fb",
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Figure E.3: Number of CDC hits for the e’ of the reconstructed .J/t¢ mass from
two opposite charged muons M _+ - in the signal region of 3.07GeV to 3.12GeV for
both simulation and measured data for runs from experiment 26 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepe mies(¢) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation
refer to the correctly reconstructed J/v. The simulation is scaled to the integrated luminosity
of [L£dt =1.657fb ",
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Figure E.4: Number of CDC hits for the e of the reconstructed J/¢ mass from
two opposite charged muons M + - in the signal region of 3.07GeV to 3.12GeV for
both simulation and measured data for runs from experiment 26 (see Section [3.1.1 for
details), including the comparison between simulation and measured data. The plots
show Nepe mits(€ ) using the Baseline Finder (top left), CAT Finder (top right), and
CAT B Finder (bottom) in the full reconstruction. Signal and background for the simulation
refer to the correctly reconstructed J/1. The simulation is scaled to the integrated luminosity
of [L£dt =1.657fb ",
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E2 D*" = D= K)(— ntn )ntn")nd

. o 2 2 . . .
The transverse vertex distance dp K9 = 1 /dz, K9 + dy’ K0 from the interaction point of the

)

reconstructed Kg in the signal region of 494.8 MeV to 500.8 MeV are given in Fig. E.5 and
Fig. E.6| for measured data and simulation. The number of |CDC hits of the 7 and 7 of
the Kg« are given in Figs. E.7 to [E.10. The hit purity and hit efficiency on simulation only
is given in Figs. E.11/ and E.12
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Figure E.5: Transverse vertex distance d .0 = 4/d” .o +d .o from the interaction
szS xvKS vaS

point of the reconstructed Kg in the signal region of 494.8 MeV to 500.8 MeV for mea-
sured data, for the full reconstruction using the Baseline Finder (blue), CAT Finder (red)
and Baseline Finder followed by CAT Finder (purple). The statistical uncertainties are
correlated, as the same measured data is used for the different algorithms. Signal and
background for the simulation refer to the correctly reconstructed Kg. The simulation is
scaled to the integrated luminosity of [ £dt = 1.644 fh L.
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Figure E.6: Transverse vertex distance d ..o = ,/d” .0 +d’ o from the interaction
erS x7KS y7KS

point of the reconstructed Kg in the signal region of 494.8 MeV to 500.8 MeV for mea-
sured data, for the full reconstruction using the Baseline Finder (blue), CAT Finder (red)
and Baseline Finder followed by CAT Finder (purple). The statistical uncertainties are
correlated, as the same measured data is used for the different algorithms. Signal and
background for the simulation refer to the correctly reconstructed Kg. The simulation is
scaled to the integrated luminosity of [ £dt = 1.657 L.
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Figure E.7: Number of CDC hits for the 7" of the reconstructed Kg in the signal region
of 494.8 MeV to 500.8 MeV for both simulation and measured data for runs from experiment
22 (see Section 3.1.1 for details), including the comparison between simulation and measured
data. The plots show Nope mis(7 ') using the Baseline Finder (top left), CAT Finder
(top right), and CAT B Finder (bottom) in the full reconstruction. Signal and background
for the simulation refer to the correctly reconstructed Kg . The simulation is scaled to the
integrated luminosity of [ £dt = 1.644 fh 1.
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Figure E.8: Number of |[CDC hits for the 7 of the reconstructed Kg in the signal region
of 494.8 MeV to 500.8 MeV for both simulation and measured data for runs from experiment
22 (see Section 3.1.1 for details), including the comparison between simulation and measured
data. The plots show Nepc mits(7 ) using the Baseline Finder (top left), CAT Finder
(top right), and CAT B Finder (bottom) in the full reconstruction. Signal and background
for the simulation refer to the correctly reconstructed Kg . The simulation is scaled to the
integrated luminosity of [ £dt = 1.644 fh L.
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Figure E.9: Number of CDC hits for the 7" of the reconstructed Kg in the signal region
of 494.8 MeV to 500.8 MeV for both simulation and measured data for runs from experiment
26 (see Section 3.1.1/for details), including the comparison between simulation and measured
data. The plots show Nepe mis(7 ') using the Baseline Finder (top left), CAT Finder
(top right), and CAT B Finder (bottom) in the full reconstruction. Signal and background
for the simulation refer to the correctly reconstructed Kg . The simulation is scaled to the

integrated luminosity of [ £dt = 1.657 fh 1.
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Figure E.10: Number of |CDC hits for the 7~ of the reconstructed ng in the signal
region of 494.8 MeV to 500.8 MeV for both simulation and measured data for runs from
experiment 26 (see Section 3.1.1 for details), including the comparison between simulation
and measured data. The plots show Nepe mies(7 ') using the Baseline Finder (top left),
CAT Finder (top right), and CAT B Finder (bottom) in the full reconstruction. Signal
and background for the simulation refer to the correctly reconstructed Kg . The simulation
is scaled to the integrated luminosity of [ £dt = 1.657 bt
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Figure E.11: CDC hit efficiency for the 7" of the reconstructed Kg in the signal region
of 494.8 MeV to 500.8 MeV for simulation. The
Baseline Finder (top left), CAT Finder (top right), and CAT B Finder (bottom) in the
full reconstruction. Signal and background refer to the correctly reconstructed Kg . The
simulation is scaled to the integrated luminosity of [ £dt = 1.644 fh 1.

CDC hit efficiency is shown for the
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Figure E.12: |CDC hit purity for the 7 of the reconstructed Kg in the signal re-
gion of 494.8 MeV to 500.8 MeV for simulation. The CDC hit purity is shown for the
Baseline Finder (top left), CAT Finder (top right), and CAT B Finder (bottom) in the
full reconstruction. Signal and background refer to the correctly reconstructed Kg . The
simulation is scaled to the integrated luminosity of [ £dt = 1.644 bt
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Figure E.13: CDC hit efficiency for the 7" of the reconstructed Kg in the signal region

of 494.8 MeV to 500.8 MeV for simulation. The

CDC hit efficiency is shown for the

Baseline Finder (top left), CAT Finder (top right), and CAT B Finder (bottom) in the
full reconstruction. Signal and background refer to the correctly reconstructed Kg . The
simulation is scaled to the integrated luminosity of [ £dt = 1.657 bt
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Figure E.14:

+
Penc wis(Mgo)

CDC] hit purity for the 7 of the reconstructed Kg in the signal re-

gion of 494.8 MeV to 500.8 MeV for simulation. The CDC hit purity is shown for the
Baseline Finder (top left), CAT Finder (top right), and CAT B Finder (bottom) in the
full reconstruction. Signal and background refer to the correctly reconstructed Kg . The
simulation is scaled to the integrated luminosity of [ £dt = 1.657 L.
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E.3 Radiative ete™ — ptp ~

The number of ICDC hits for different bins of transverse momentum for muons from

radiative eTe”

selection in Table 3.5.

— ,uﬂf’y events of runs from experiment 26 in Fig. E.15., following the
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Figure E.15: Comparison between the number of (CDC hits for the CAT Finder (red) and
the Baseline Finder (blue) in bins of transverse momentum for muons from ete” — M+ woy
for runs from experiment 26. The statistical uncertainties are correlated as the same
measured data is evaluated for both algorithms.
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E.4 Bhabha Resolution

E.4.1 Momentum Resolution

The momentum resolution for electrons from ete™ — ete™ following the selection in
Section 8.3.2 is shown in Fig. E.16.
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Figure E.16: The momentum resolution as the difference between the transverse momentum
in the center-of-mass frame between the e~ and e for the three algorithms Baseline Finder
(left), CAT Finder (middle), and CAT B Finder (right) for experiment 22 (top) and
experiment 26 (bottom).

E.4.2 PXD and SVD extrapolation confirmation using d, and z; resolu-
tion

+

The resolution of the impact parameters for electrons from e e~ — ete™ following the

selection in Section 8.3.2]is shown in Fig. [E.17 and Fig. E.18.
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Figure E.17: The d, difference of the e~ and e for the three algorithms Baseline Finder
(left), CAT Finder (middle), and CAT B Finder (right) for experiment 22 (top) and
experiment 26 (bottom).
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Figure E.18: The z, difference of the e~ and e for the three algorithms Baseline Finder
(left), CAT Finder (middle), and CAT B Finder (right) for experiment 22 (top) and
experiment 26 (bottom).



Appendix F

Backgrounds for the sensitivity study

The backgrounds without the PID|selection on the S candidate daughters given in Fig. F.1l
The backgrounds used to calculate the expected limits in Section 9.4] are given in Fig. [F.2,
with the scaled Baseline Finder backgrounds used for the CAT Finder.
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(Glossary

BabaYaga@NLO A Monte Carlo generator for Bhabha scattering and photon pair pro-

duction in electron-positron collisions. See [42, 134]. 25

Belle IT A second-generation B factory and the successor of the Belle experiment. [1-6,
8, 13115, 17, 23, [25, 28-30, [35, 36, 3941, 46, 55, [57, 58, 66, 68, 84, [85,
87, 93, 99, 101, 109, 110, 141, 151, (159, 175-177, 179, 180, 182, [185, [197,
198

EvtGen A Monte Carlo Generator suited for the decay of heavy flavour particles. See [38].
20), 23, 25, 30

GEANT4 A toolkit for simulating the passage of particles through matter using a wide
variety of phenomenological models. See [135]. 13, 60, 64, 180

GENFIT2 An experiment-independent framework for track reconstruction in particle and
nuclear physics. See [51|. 76, 77, 79, 190

KKMC A Monte Carlo generator specifically for lepton and quark pair production at
lepton colliders. See [40]. 25, 126

POCA The point of closest approach (POCA) is a tracks’ signed distance to the z axis as
determined by the tracking algorithm. 41

PYTHIA8 A general-purpose Monte Carlo generator used to describe hard and soft
interactions, parton distributions, initial- and final-state parton showers, multiparton

interactions, fragmentation and decay. See [39]. 25

SuperKEKB An upgrade of the KEKB electron-positron collider and the accelerator at
which the Belle II experiment is located. 1, 3, 4, &

Tauola A Monte Carlo generator suited for the decay of 7 leptons. See [41]. 25

zfit A python-based model fitting library optimised for simple and direct manipulation of
probability density functions. See [107]. [112
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ADC Analog-to-Digital Converter. 9, 36, 41-43, 56, 143, 180

ARICH Aerogel Ring-Imaging Cherenkov detector. [7, [100, [103-[105

basf2 Belle II Analysis Software Framework. 2, (13, 35, [56, 58, 103, 107, 109, (136,
143, 179, (184, 186, [190, 193

BDT Boosted Decision Tree. 38, |184

BNL Batch Norm Layer. |44-46

CDC Central Drift Chamber. Wiii, [2, 3, 5, 6, 8, 10, [13-15, [17-21, 23, 24, 26-
28, 31, 32, 35137, 139, 40, 46, F6- 62, 66, [72, 82, 85, 8791, 94, 95, 97
102, 107, [T09- 111, [115, [TI8 (123, (128, [136- 142, (144, [147- (149, (151, [154-
156, (160, (163, [179, (180, 182, [183, (185, (186, [189- [191, (193, 194, [197, [198,
920, 221, 244- 251, 253- 255, 259- 264, [267- 275

CKF Combinatorial Kalman Filter. 35, 56, 58, 91, 99, 141, (180, 190
cms center-of-mass system. (3, 25, 29, 40, 147, 150, (154, 160
CNN convolutional neural network. [38], 39

CP Charge Parity. 93

DAF Deterministic Annealing Filter. |36
DAQ Data Acquisition. 8, [190
DM dark matter. (1, 28, 29, (159

DSCB Double Sided Crystal Ball. 112, 117, 127, 130, 134, (150, 151, [166, (169, 170

ECL Electromagnetic Calorimeter. |7, 8, 2628, |58, 60, [66, 99, 100, 104, 105, 148,
160

FPGA field-programmable gate array. 8
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FSP Final State Particle. 23, 32, 68, 99, (100, 113

GNN graph neural network. 2, 13, 135, (39, 40, 44, 45, 47, |52, 87, 96, 107, [115,
143, 156, (159, 179, [181], 183, [186, [189-192, 195

HEP high energy physics. 38, 39
HER High-Energy Ring. 3
HL-LHC High Luminosity LHC. 39

HLT High Level Trigger. &, |15, 26128, 39, 58, 109, (110, 129, (147, 154, |186
IP Interaction Point. 4, |5, 20, 29, 36-38, |41, 147, 148, |154
KLM K% and muon detector. (7, 8, 26, 27, 58, 99, 100, (105, 106

L1 trigger Level 1 trigger. 8, |15
LER Low-Energy Ring. 3
LHC Large Hadron Collider. 39, [181

LL Linear Layer. |45, 46, |49, 53

MadGraph5 MadGraph5 aMCQ@NLO. Glossary: MadGraph5 aMCQNLO
ML machine learning. (38, 39, |[185

MVA multivariate analysis. 58], 143

PDF probability density function. (112, [113, (165, 166, [170

PID particle identification. [58, (99, 100, [103, [107, 108, [111, [163-165, [177, 182,
279, [280

POCA Point of closest approach. [41-43, Glossary: POCA

PXD Pixel Detector. 5, 6, 8, 36, 58, 90, 91, 99, |151, |[155, 190, |193

run I data taking from 2018-2022. 6, [15, [17-[19, ©0, [159, 170, [180, [194

run IT data taking starting from 2024. 6, 18, (19, 84, 180, [194

SM Standard Model of particle physics. |1, 29, 30, 159, (160, (165, {170, |175

SVD Silicon Vertex Detector. [5, 6, 8, 20, 56 58, 60, 87, 8992, 99, 100, 102,
130, (131, [136, (14T, [142, (144, [151, (155, (156, (159, (179, T90- 194, 255- 258
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TDC Time-to-Digital Converter. 9, [36, 4143, 56, 143, 180
TOP Time-Of-Propagation counter. 68, 60, 66, 67, (100, 103- 105, 182

TOT Time over Threshold. (9, 36, |41, 56, 180, 181
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