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Abstract

Human body motion is a rich source of information. Capturing motion data opens up a
range of many new applications in mixed reality, robotics, and medicine. With the prolif-
eration of inexpensive motion tracking hardware, such as mixed reality headsets, motion
tracking suits, and smartphones, this source of information is becoming increasingly acces-
sible in our everyday lives. Combined, this data can be used to create an accurate motion
profile of the person captured, allowing for the creation of digital twins, the motion control
of robots, and for more accurate diagnoses in medicine. However, motion data is also an
inherently sensitive source of information, as it is behavioral biometric data that allows for
many privacy sensitive inferences about the captured individual. An attacker with access
to someone’s motion data could identify that person by their unique motion patterns, infer
the presence of diseases, such as Parkinson’s, or infer private attributes such, as sex and
weight.

In this thesis, we seek to understand the privacy problems of motion data and how we
can solve them to enable the privacy preserving usage of motion data.

Since privacy for motion data is a new research topic, we began our investigation with an
extensive literature review of privacy-preserving techniques for behavioral biometric data.

The main findings of the literature review are that there are only preliminary approaches
to anonymizing motion data, that the methodology for evaluating biometric data anony-
mization is limited and needs improvement, and that there are few datasets suitable for
evaluating the efficiency of motion data anonymization.

Next, we investigated motion anonymization using various simpler techniques and their
combinations to better understand which techniques would be effective for anonymizing
motion data. Using gait data, we found that identifying individuals is very resilient and
difficult to prevent, even when data utility is severely degraded. Due to the high number of
correlations in motion data, anonymizing it is a hard problem. We also investigated the pri-
vacy issues surrounding motion data by collecting FacialMotionlID, the first comprehensive
dataset of facial motions. Using this dataset, we demonstrated that facial motion data can
also be used to identify individuals.

We addressed the lack of a strong evaluation methodology for biometric data anonymi-
zation. We developed a stronger attacker model based on stronger assumptions about
the attacker’s capabilities. This makes our evaluation methodology more rigorous and
produces more reliable privacy results.

In order to address the lack of motion datasets, we collected the gait sequences of 50
people using an IMU motion capture suit to create CeTl-Locomotion.

Lastly, we present Pantomime, the first general anonymization technique for full-body
motion data that can maintain high utility while removing most identifiable information.
Pantomime demonstrates that meaningful anonymization of motion data is possible, while
keeping the utility of the data high.
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1. Introduction

Human motion data is a rich source of information with applications in many different fields,
including medicine, robotics, and mixed reality. In medicine, for example, motion data
has been used for the diagnosis of diseases like Parkinson’s from gait data [2] or for the
monitoring of therapy progress [15, 315]. In robotics, human motion data is important
because it can be used for transfer learning, in which humans perform motions that are
mimicked by robotic agents [64, 349]. Using human examples speeds up the learning
process and makes it is easier to generate training data to teach the robots. Lastly, in the
field of mixed reality, human motion data is an indispensable means to control the devices
(e.g. hand motion control [232, 17]) and to enrich its applications (e.g. mixed reality
chats with body motions [368]). These mixed reality applications have even spawned a
new streaming subgenre: virtual YouTubers (VTubers)'. VTubers use motion tracking to
animate digital avatars (often anime characters) that they act out online. This trend is
ongoing and, for the first time, surpassed 500 million hours watched in the first quarter of
20252,

In the past, motion tracking was complicated and expensive, limiting its use to expert
applications, like movie production and medical labs. Now, new technologies like inside-out
tracking using RGB cameras and the usage of Inertial-Measurement-Unit (IMU)-sensors
for full body tracking [312, 241], combine reliability, a low price tag (below 300€), and ease
of use. These advances have led to a fast proliferation of motion tracking and puts motion
tracking capabilities into the hands of consumers around the world. Furthermore, today’s
machine learning-driven extraction capabilities can be used to extract 3D motion data from

1h‘c‘cps://en .wikipedia.org/wiki/VTuber
2h‘c‘cps ://streamscharts.com/news/vtubers-ql-2025-report

This chapter is based on the contributions:

» Simon Hanisch, Patricia Arias-Cabarcos, Javier Parra-Arnau, and Thorsten Strufe. "Anony-
mization Techniques for Behavioral Biometric Data: A Survey". In: ACM Computing Surveys.
2025. DOI: 10.1145/3729418.

* Simon Hanisch, Evelyn Muschter, Admantini Hatzipanayioti, Shu-Chen Li, and Thorsten
Strufe. “Understanding Person Identification Through Gait”. In: Proceedings on Privacy En-
hancing Technologies. 2023. DOI: 10.56553/popets-2023-0011.

* Simon Hanisch, Loreen Pogrzeba, Evelyn Muschter, Shu-Chen Li, and Thorsten Strufe. “A
kinematic dataset of locomotion with gait and sit-to-stand movements of young adults”. In:
Scientific Data 11.1 2024. DOI: 10.1038/s41597-024-04020-6.

« Simon Hanisch, Julian Todt, Jose Patino, Nicholas W. D. Evans, and Thorsten Strufe. “A False
Sense of Privacy: Towards a Reliable Evaluation Methodology for the Anonymization of Biomet-
ric Data”. In: Proceedings on Privacy Enhancing Technologies. 2024. DOI: 10.56553/popets-
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» Simon Hanisch, Julian Todt, and Thorsten Strufe. "Pantomime: Towards the Anonymization of
Motion Data using Foundation Motion Models". 2025. DOI: 10.48550/arXiv.2501.07149
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1. Introduction

simple RGB videos [306]. This means that any type of video can be used as a source of
motion data.

Figure 1.1.: Variety of recent motion capturing devices recording gait of
individuals in public and private spaces from video or inertial
measurement units (cf. OpenPose, VFXVoice, Virtuix).

With motion data leaving specialized fields, we must increasingly consider its disadvan-
tages, as it poses an inherent privacy risk to people captured. Motion data is behavioral bio-
metric data that can be used to identify individuals based on how they walk [115, 134, 369]
(gait), how they move their eyes [173], or how they move their head and arms [250, 240].
Using gait data, individuals can be identified from both low resolution 2D RGB videos [369],
as well as 3D motion captures [115], showcasing that gait recognition poses a similar threat
to privacy as face recognition. Besides identification, motion data can be used to infer pri-
vate attributes about individuals. For example, the motion data of individuals can be used
to infer their age [365], sex [365], or medical status [186].

These privacy problems are all the more pressing when we consider how motion data
will be used. Take, for example, the field of mixed reality, where motion data is used for the
animation of digital avatars. When these avatars are used on platforms like the Metaverse®
motion data is shared both with the platform, app providers and all the people who can see
the animated avatar. Here, the motion data is implicitly published and malicious actors can
gain access to it.

In order to address these privacy problems anonymization techniques are required when
motion data is shared with services or other people. An anonymization technique is a
privacy enhancing technique that modifies original data to reduce the risk of privacy infer-
ences, such as identification and attribute inferences, while retaining the data’s usefulness
for its intended purpose. Hence, an anonymization always seeks to achieve two goals, pri-
vacy and utility. As these goals are often contrary to each other, a privacy-utility trade-off
must be made during the design of an anonymization.

3ht‘cps ://en.wikipedia.org/wiki/Metaverse
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In this thesis we investigate the two problems of building and evaluating anonymizations
for motion data. First, we survey the literature of existing behavioral biometric data anon-
ymizations to understand which solutions already exist and to see which techniques from
other behavioral biometric traits can be adapted for motion data. For this we follow the
methodology of Kitchenham at al. [166] to perform a systematic literature survey for the
behavioral biometric traits of gait, hand motions, eye gaze, voice, brain activity, and heart-
beat. To allow for a better comparability between behavioral biometric traits, we propose a
unified taxonomy for behavioral biometric anonymizations based on how they modify the
original data to ensure privacy.

We then study how robust the identifying information in gait data is, and how difficult
it is to remove. To this end, we apply different simple anonymization techniques, as well
as combinations thereof, to features that could potentially allow identification in the data.
Our goal is to anonymize motion data by focusing only on features that are important
for identification. We conducted further research into identifying individuals from abstract
facial motion data. To this end, we collected the first facial motion dataset using Mixed
Reality (MR) headsets.

We further improved the evaluation methodology for anonymization techniques for bio-
metric data and, therefore, for motion data as well. Our evaluation methodology focuses on
creating a strong adversary that seeks to identify individuals in anonymized data. Different
to prior work, the adversary is aware of the anonymization in place and adapts their attack
to it. Additionally, the attacker reduces the number of individuals and selects the ones that
are the most difficult to anonymize, creating a more challenging evaluation scenario for the
anonymization under test.

After reviewing the literature on identifying individuals through gait and determining
which features are important, we focus on collecting motion data from different sources,
as this is necessary for developing anonymization techniques. We conducted a gait study
in which the motions of 50 people in Karlsruhe (+30 people in Dresden) were recorded
using IMU-suits. The participants had to perform four different gait task (e.g., carrying a
crate, walking fast) and one sit-to-stand task with a high number of repetitions.

Lastly, we propose Pantomime, an approach for anonymizing body motion data using
foundation motion models. Pantomime first transforms the body motion data from various
sources into a normalized format. Then, it anonymizes the data in the latent space of a
foundation motion model by adding noise to the original latent code. Due to the anonymi-
zation occurring in the latent space of a foundation model, the resulting anonymized latent
code decodes back to a valid human motion.

Our contributions in this thesis are as follows:

* We perform a survey of the current anonymization techniques for behavioral biomet-
ric data and propose our own taxonomy to classify the anonymization techniques
based on how they modify the original data across behavioral biometric traits.

* We investigate which features enable the identification of individuals via gait recogni-
tion.

* We were the first to investigate the use of abstract facial motion data for identification
purposes.

* We improve the evaluation methodology for biometric data anonymization by creating
a more challenging anonymization scenatrio.



1. Introduction

» We collect a gait dataset to evaluate behavioral biometric data anonymizations.

» We propose Pantomime, a full-body motion anonymization that uses foundation mo-
tion models to anonymize motion data.

The thesis is structured as follows: Chapter 2 introduce the background and Chapter 3
presents our survey. In Chapter 4 we investigate which features contribute to the identifi-
cation of individuals via gait. In Chapter 5 we present a novel study on identifying people
via abstract facial motions. We then describe our improvements to the evaluation method-
ology in Chapter 6. Next, we present our motion data collection in Chapter 7. Lastly, we
present Pantomime in Chapter 8, before drawing our conclusion in Chapter 9.

1.1. Collaborations

During my thesis work, | had the opportunity to collaborate with many co-authors on var-
ious papers. In this work, | will use the academic "we" to honor these collaborations
because | would not have been able to conduct my research without them. Here, | clarify
which collaborations contributed to which parts of the papers on which this thesis is based.

Thorsten Strufe, my supervisor, collaborated with me on all but one paper("Side-Channel
Attacks on Query-Based Data Anonymization”) and helped me with discussions of my
research, gave countless feedback on my ideas, and editing and writing advice for my
papers.

Julian Todt was a student of mine and is now a valued colleague. We worked closely
together to improve the evaluation methodology for biometric data anonymization. He
ran parallel experiments on face recognition approaches for our methodology papers and
helped develop the selection strategies, which were a key part of our work. Julian also
assisted me with writing and editing many of my papers.

Evelyn Muschter is a co-author of my first paper on biometric data anonymization. Com-
ing from the field of neuroscience, she helped me understand how humans identify people
by their motion cues. She also helped with my data collection study, in which we recorded
the gaits of 50 people performing various exercises. Loreen Pogrzeba also helped prepare
the user study, process the data, and write the paper.

Both Patricia Arias-Cabarcos and Javier Parra-Arnau contributed to the survey on the an-
onymization of behavioral biometric data. They assisted in writing the introduction, method-
ology, heartbeat, and brain activity sections. They also helped edit and improve the rest of
the survey.

Adriano Castro did a bachelor’s thesis with me, which focused on identifying people
based on their facial motions. Together, we designed the study, and he implemented the
apparatus for data collection and helped with post-processing the data.



2. Background

In this chapter, we provide an overview of the terminology used throughout the thesis. We
also introduce the most important metrics and machine learning concepts that we will use
in this thesis. Lastly, we describe the human gait cycle and introduce point-light displays.

2.1. Terminology

Biometric traits (also called biometric characteristics [143]) are properties of a human that
either capture the physiology of a human (e.g. face, iris, fingerprint) or their behavior (e.g.
voice, gait, heartbeat). Human motion, while also containing some physiology information
like height, is primarily a behavioral biometric trait, that is is recorded as a time series.

Due to the unique nature of biometric traits for each human being they can be used
for privacy-invasive inferences. We distinguish between two privacy threats. By the term
identity inference, we mean that the identity of an individual is inferred. By the term
attribute inference, we mean that only a specific private attribute (e.g. age, sex, medical
condition) is inferred.

In biometric recognition, identity inference and attribute inference are made operative
in a system that learns an inference on representative samples for each class. For each
biometric sample to be classified, the biometric recognition system returns a list of possible
classes, where each class has been assigned its own separate likelihood. In closed-set
recognition, the sample must belong to one of the classes in the dataset, while in open-set
recognition the sample may belong to an unknown class.

To prevent biometric recognition privacy enhancing technologies (PETs) are employed
which obfuscate the private information in the data from internal and external observers.
The specific term of anonymization refers to PETs which aims to remove all identifiers
that directly identify individuals. Anonymization takes biometric clear data as input and
outputs anonymized data.

The aim of anonymization is to protect an individual’s identity. During the process of
anonymization, information is removed or perturbed that is specific to an individual. Hence,
anonymization prevents an adversary from using the data to infer the class corresponding
to an individual (i.e. identification). In contrast to anonymization, pseudonymization is

This chapter is based on the contributions:

» Simon Hanisch, Patricia Arias-Cabarcos, Javier Parra-Arnau, and Thorsten Strufe. "Anony-
mization Techniques for Behavioral Biometric Data: A Survey". In: ACM Computing Surveys.
2025. DOI: 10.1145/3729418.
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Motion Data using Foundation Motion Models". 2025. DOI: 10.48550/arXiv.2501.07149
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2. Background

aimed at retaining some connection between identity and data in order to link the data to
an alternative identifier.

We shall employ the term utility to quantify the degree of functionality maintained con-
cerning a service for which the behavioral biometric data is intended. The utility is kept
despite the implementation of a PET that may hide or perturb part of the data which may
degrade the quality of the service. We stress that utility in this context does not refer to
user-interface design. Depending on each application, the behavioral biometric data is uti-
lized for a variety of purposes. For example, in an application for biometric authentication,
an evident measure of utility is the ability to verify the identity of an individual. Likewise, in
an application based on human computer-interaction, we may require the behavior to still
work as reliable input modality for computer systems. In a healthcare, application we may
be interested in detecting abnormal behavior patterns, and monitoring specific aspects of
the behavior such as counting steps or inferring the preferences of a user for personaliza-
tion. The utility of the provided service may be assessed as the performance in carrying
out those tasks.

As pointed out above in the introduction, any PET poses a trade-off between privacy
and utility. The optimization of the privacy-functionality (or privacy-utility) trade-off will re-
fer to the design and tuning of PETs in order to maximize privacy for a desired functionality,
or vice versa.

2.2. Machine Learning

Since we are investigating the anonymization of motion data, we often rely on biometric
recognition systems to evaluate the privacy of the anonymizations. These systems, in turn,
are based on machine learning algorithms that perform a classification task by separating
biometric samples into user classes. For Pantomime, our proposed motion data anony-
mization, we use foundation models with an autoencoder structure. Below, we provide a
brief overview of the necessary concepts.

2.2.1. Metrics

Here, we define the metrics used to measure the performance of classification evaluations
of privacy using biometric recognition systems. These metrics are defined in terms of the
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). Accuracy is defined as:

TP+TN
FN+FP+TP+TN

Due to imbalanced classes in some datasets, we also use balanced accuracy, which
treats every class equally. It is defined as follows:

accuracy =

1 TP N TN
2\TP+FN TN+FP

balanced accuracy =

As an alternative we also use the F; score, which is defined as follows:

2TP

Fi=oo—r
2TP+FP+TN



2.2. Machine Learning

For authentication evaluations, the Equal Error Rate (EER) is often used to understand
how well a system performs when the false rejection rate and false acceptance rate are
equal. It is defined as follows:

FpP FN
TP+FP TN+FN

EER = -

+ min
2\TP+FP TN+FN

t

1 Fp FN )
at

A common loss function to use for training Autoencoder (AE) is Mean Squared Error
(MSE), which is defined as follows:

1 N
MSE = > (yi = 0)°
i=1

Given the number of samples N, the original sample y; and the output sample ;.

2.2.2. Principal Component Analysis

A principal component analysis (PCA) is a linear dimension reduction technique that repre-
sents data in a lower-dimensional space that captures the greatest variance. PCA is based
on a covariance matrix, which captures the covariance between each pair of data points.
In simple terms, the covariance matrix captures the total linear variance of the dataset.
To perform PCA, the covariance matrix is decomposed using an eigenvector analysis to
obtain the matrix’s principal components. The first vector captures most of the variance
in the data. The second vector captures the main variance after removing the first vector,
and so on. The original data is represented as a linear combination of these components,
which reduces the dimensionality of the data to the number of components used in PCA.
Due to its focus on variance between data points and reduced dimensionality, PCA is a
common preprocessing step for classification tasks.

2.2.3. Support Vector Machines

A Support Vector Machine (SVM) is a supervised machine learning algorithm that is primar-
ily used for classification tasks. It classifies points by fitting a hyperplane to separate points
of two different classes. An SVM attempts to identify the maximum distance between the
hyperplane and the support vectors, which are the points closest to the hyperplane. To
separate data points that cannot be separated linearly, an SVM uses kernels. These are
functions that map the data points to a higher-dimensional space in which the points can
be separated. This process is known as the kernel trick. In this thesis, we use a radial ba-
sis function (RBF) kernel, which computes the squared Euclidean distance between two
points, multiplies the result by a free parameter —y, and then computes the exponential
function of the result. Since SVMs can only separate two classes of points, n — 1 binary
one-vs-all classifiers must be trained to apply them to multi-class classification problems.

2.2.4. Autoencoders

For our proposed motion data anonymization method, Pantomime, we rely on foundation
models that use variants of AE architectures and some of their features. This is because
the anonymization process takes place in latent space. Here, we focus on the important
features of AE and its variants for Pantomime.



2. Background

An Autoencoder (AE) [171] is a machine learning architecture consisting of an encoder
and a decoder. The encoder translates the data into a much smaller latent space, and
the decoder translates it back into the original data space. In other words, the encoder
compresses the data, and the decoder decompresses it. The model’s overall goal is to
learn an efficient encoding of the input data. Because the model's output should match
the input, it can be trained unsupervised using a reconstruction loss (e.g., MSE) between
the encoder input and the decoder output.

A Variational Autoencoder (VAE) [164] is a type of AE that instead of learning a discrete
latent code for a given input, maps the input to the parameters of a probability distribution.
From this probability distribution a discrete latent code is then drawn and decoded to the
input space by the decoder. Often when training a VAE the shape of the learned latent
distribution is regularized by using a Kullback-Leibler divergence [175] to be similar to a
normal distribution. In this case the learned latent space can be interpreted as a mixture
of normal distributions.

There exist different variants of VAEs. p-VAEs [124] use a weighted Kullback-Leibler
divergence to increase its influence in the loss and by that force a disentanglement of the
dimensions of the latent code [337, 43]. Another type of VAE is a Conditional Variational
Autoencoder (CVAE) [337], which uses an additional label to constrain the latent code
of an input to be deterministic. In this way, only the label can be fed to the decoder to
generate a sample that belongs to the class of the input label.



3. Literature Survey

The ongoing digital transformation is leading to an increasingly comprehensive data col-
lection on citizens. Ever improving peripherals, like augmented reality (AR)/virtual reality
(VR) goggles, motion capturing suits and gloves, force-feedback input devices, sensor-
rich cell phones, smart watches, and other wearables drastically increase the coverage
and resolution at which biometrics and behavioral data of individuals become available for
processing.

Preserving the privacy, and ultimately the dignity of individuals who come in the range of
sensors and are captured in their behavior requires more sophisticated approaches than
removing direct identifiers (IP address, social security number (SSN), blurring a face) or
intuitive quasi identifiers (gender, age, ethnicity) in databases.

Anonymizations techniques for biometric traits have long been a topic of research with
a large focus on anonymization of physical biometric traits such as faces, or irises. Un-
surprisingly, today a large corpus of literature exist on the topic with multiple literature
surveys [311, 227, 331] cataloging and summarizing the current state-of-the-art. However,
human motion data is not a physical biometric trait but a behavioral one, differing the impor-
tant fact that instead of only being captured at a single point in the time but as a time-series
which captures change. While some anonymization techniques, such as blurring or pixe-
lation, can be adapted to be used for behavioral biometric traits often new techniques are
required which accommodate to the specific requirements of behavioral biometric traits,
such as the consistency across every timestep. Hence, new anonymization techniques
have been developed for behavioral biometric traits.

A growing corpus of studies is addressing this challenge of anonymizing behavioral
data. They focus on a variety of different human traits, ranging from the voice, over gait,
to less prominent examples like gestures, heartbeat, and others. A systematic review of
all these approaches, which bridges the attempts in extracting the shared conceptual and
methodological similarities is missing, to the best of our knowledge. Further, we want
to highlight both differences between approaches, their conceptual properties, as well as
future research opportunities.

For this chapter, we hence set out to systematize the corresponding literature. We
are interested in anonymizations for scenarios in which behavioral data is collected by or
shared with third parties to perform a specific operation. As we are interested more in
privacy than confidentiality we do not consider approaches in which an entity encrypts its
own data to hide it from access by unintended audiences. We are rather interested in
approaches that protect from unintended revelation of information contained in data [61].

This chapter is based on the contribution:
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We deem ‘confidential computing’, processing based on homomorphic cryptography, or
similar approaches in which the data owner is the only entity that learns anything from the
data, out of scope of our analysis. For our study, we followed Kitchenham’s guidelines [166]
to systematically discover and survey the current state of the art, comprising of 142 distinct
studies, extracted from a corpus of 364 initially discovered publications.

We identify common applications that process behavioral data, to extract sensible mea-
sures of utility, as well as common privacy threats with corresponding adversary models.
We define two taxonomies of anonymization approaches. The first is defined by how the
anonymization transforms the data and the second by which anonymization goal it seeks
to protect. Next, we provide a detailed overview of the different anonymization approaches,
sorted by the trait they aim to protect. We provide insight into the corresponding applica-
tions that define the utility, and into the privacy threats, privacy goals, applied anonymi-
zation concepts, and the evaluation the corresponding scientists performed, together with
the data they chose for their studies.

As a main findings we show how the underlying anonymization concepts are indepen-
dent of the biometric trait. In consequence, we identify biometric traits for which specific
anonymization concepts have not yet been tested. Further, we find that the general eval-
uation methodology for behavioral biometric anonymization implies a weak adversary and
must be improved to convincingly assess the efficacy of protective measures.

The main contributions of this work are as follows:

 Following Kitchenham’s guidelines [166] we systematically discovered a corpus 364,
which we filtered to 142 distinct proposals for the privacy protection of behavioral
biometrics.

» We categorized the works by using two novel taxonomies, allowing the comparison
of anonymizations across biometric traits.

» Further, we find that the underlying privacy protection concepts and the general
evaluation methodology for behavioral biometrics are independent of biometric traits.
This allows novel behavioral biometric traits, such as human motion data, to adapt
concepts and methodologies from more established ones like voice.

3.1. Scenario

() o
capture anonymize publish &

user clear data anonymized data service

Figure 3.1.: The data-publishing scenario of this thesis.

In this thesis, we assume a data publishing scenario (see Figure 3.1) in which data
is first anonymized, then published or processed by a service or application, or shared
with one. This includes involuntary publication, which can occur when, for example, the
biometric templates of an authentication system are leaked or fitness tracker data is sold.
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3.2. Methodology

We assume that the utility of the modified, protected data is preserved, so that the received
service (e.g., a personalized recommendation or a played virtual reality game) remains
meaningful.

Examples of this scenario include Metaverse applications, in which users represent
themselves in digital worlds with animated avatars. In these applications, users’ motion
data is captured and streamed to the platform (the Metaverse service provider) as well as
to other users in the same digital space. Therefore, the motion data is implicitly published
to the service provider and third-party users.

In general, the field of human-computer interaction captures and processes behavioral
biometric data because each input over time comprises a behavior. Today, touch gestures,
keystroke patterns and mouse movements are the main input modalities for computer
systems; however, new input modalities, such as voice, and gestures, are on the rise
and will likely become more relevant in the coming years. Mixed reality is important in
this regard because it combines many of these input modalities and requires constant
monitoring of its users.

Another area in which behavioral data is useful is healthcare and the quantified self. Ad-
vances in sensors and machine learning techniques have enabled the development of ac-
tivity recognition, fall detection, and remote health monitoring applications that facilitate the
care of elderly, sick, or disabled individuals and ease diagnosis [267, 286, 186]. Typically,
data collected includes gait and motion information from accelerometers and gyroscopes
embedded in user devices, as well as biosignals such as heartbeat and brain activity. This
data can also be processed to provide users with health-related feedback. For example,
it can guide users through relaxation exercises or detect and signal cognitive states, such
as stress, so users can address them.

3.2. Methodology

We performed a systematic literature review following Kitchenham’s guidelines [166] to
identify relevant studies on privacy techniques for behavioral data, as it is depicted in
Figure 3.2.

Our guiding research question is “What techniques are applicable to protect be-
havioral data privacy?” From this starting point, the goal is to understand how these
techniques work, what is the level of protection provided, and what are the limitations and
existing open challenges. To answer these questions, we first explored the literature on bio-
metrics [14, 63, 230, 206, 384, 281, 6, 107] to determine what kind of behavioral traits can
be used to identify a person. The complete list of behavioral traits we searched includes:
brain activity (also referred to as cognitive biometric), eye gaze, facial expression, gait,
gesture, handwriting, haptic, heartbeat, keystrokes, lip, motion, mouse, thermal, touch,
and voice. Next, we used this list of traits combined with the keyword “privacy” and the
semantically similar terms “anonymization” and “de-identification”, as search strings
in the main academic databases for computer science. Based on these search terms,
we compiled works with no constraints on publication date, obtaining a set of 364 papers
spanning from 2007 to October 2024, after filtering duplicates. During pre-screening, we
built a taxonomy of privacy solutions and decided to narrow-down the scope of the survey
to anonymization techniques focused on protecting the publication of behavioral data from
identity and attribute disclosure attacks. We consider approaches that assume collection,
sanitization, and subsequent publishing of data, which must be anonymized but also keep
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Identification of Research > Selection & Screening of Studies
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Figure 3.2.: Summary of the procedure for identifying and selecting relevant studies on

behavioral data privacy techniques. We first analyzed the literature on bio-
metrics to determine behavioral traits for person identification. We then used
these traits as key terms to search for privacy-related publications, following
Kitchenham’s guidelines for systematic literature reviews [166]. The complete
list of behavioral traits we searched includes: brain activity, eye gaze, facial ex-
pression, gait, gesture, handwriting, haptic, heartbeat, keystrokes, lip, motion,
mouse, thermal, touch, and voice.

a level of utility to provide behavioral data driven services. Accordingly, the down-selection
of primary studies to be analyzed in this survey considered the following criteria. Docu-
ments were excluded if:

. The publication format was other than peer-reviewed academic journal or conference
paper.

. The paper could not be retrieved using IEEE Explore, ACM Digital Library, DBLP, or
Google Scholar.

. The publication language was not English.

. Another paper by the same authors superseded the work, in which case the most
complete work was considered.

. The privacy protection technique was other than identity or attribute anonymization
with data utility.

. The anonymization approach was described at a high level and not enough details
were provided to properly address the guiding research question.

The search and selection protocol yielded a final corpus of 142 peer-reviewed works on
behavioral data anonymization, which we clustered according to the behavioral trait being



3.3. Taxonomy

protected: gait, brain activity', heartbeat, eye gaze, voice, and hand motions (handwrit-
ing, keystrokes, mouse movements, and hand gestures). We found no papers on facial
expression, lip, touch, and haptic traits that fulfill our criteria.

3.3. Taxonomy

Based on our collected literature corpus and scenario, we identify two main privacy threats
that apply to behavioral data collected/processed by a third party and can be explained in
terms of the related attacker model:

+ ldentity Disclosure: The attacker’s goal is to use the behavioral data to identify the
user. In this threat, we assume that the attacker is able to link the target’s behavioral
data to the target’s identity and now wants to identify them in another scenario. For
example, linking the user account and data in a work-related application to their
account in an entertainment application. This linkage would allow the attacker to
learn more about the user activity. An example of this type of attacker, as presented
in [340], could be a VR headset user entering a federated Metaverse offering several
services (e.g., games, adult content, professional training apps). Even if the user
tries to use a pseudonym when entering a foreign server, the server and other users
can use transmitted behavioral data (e.g., controller/headset motions, eye-tracking)
to identify the user across different pseudonyms. Moreover, it is not uncommon that
behavioral data is sold to third parties or released unintentionally through a breach
or hack?.

+ Attribute Disclosure: In this threat, the attacker goal is not to re-identify the user
across accounts, but to derive sensitive attributes included within the available behav-
ioral data that the user did not intend to disclose, such as sex, medical conditions,
or personal interests. The attacker might have had previous access or could have
collected a dataset on which to train the machine learning model for targeted infer-
ence. For example, based on publicly available electroencephalogram datasets of
alcoholic and non-alcoholic persons [258, 157], it could be possible to build a classi-
fier that determines if newly gathered data from an entertainment application using
a brain-computer interface (BCl) belonged to a user with an alcohol problem.

From the privacy threats, we can derive the two anonymization goals with which tech-
niques can be categorized, i.e., focused on protecting user identity and focused on pro-
tecting specific attributes, as depicted in Figure 3.3.

* Identity Protection: The process of transforming the behavioral biometric data
of a person in such a way that their identity can no longer be linked to the data.
Pseudonymization replaces the identifier of a person with a new one and anonymi-
zation aims to prevent identification altogether. Given that behavioral biometric data

Brainwave signals are a manifestation of both its physiological structure and the behavioral way it processes
information, for example in reaction to stimuli. In the context of this survey, we refer to EEGs as behavioral
data, given that this is our main focus of study, but we acknowledge that physiological components are
present.

2https ://www.zdnet.com/article/over-60-million-records-exposed-in-wearable-fitness-tracking-data-
breach-via-unsecured-database/
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privacy goal

| |

identity protection attribute protection

Figure 3.3.: Taxonomy of anonymization techniques for behavioral data protection accord-
ing to the privacy goal.
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Figure 3.4.: Taxonomy of anonymization techniques for behavioral data protection accord-
ing to the type of data transformation applied.

is inherently a time-series, the identity of the person is typically maintained through-
out the entire time-series. Hence, anonymization of behavioral biometric data usually
refers to breaking the link between the identity and a time-series.

« Attribute Protection: The process of transforming the behavioral biometric data of
a person in such a way that specific private attributes of the person can no longer
be inferred from the data. This encompasses both long-living attributes such as age
or gender and short-living attributes such as mental state or temporary health condi-
tions. An extreme version of attribute protection is template protection. For template
protection, the identity verification of the person, in the context of an authentication
system, should be still possible while all attributes are protected.

Based on the study of state-of-the-art protection methods, we have conducted a classi-
fication of methods that expectedly is not entirely exclusive to the field of behavioral data
privacy, as it shares similarities with other classifications in more mature privacy fields,
such as statistical disclosure control (SDC). In this section, we elaborate on this classi-
fication and establish correspondences with anonymization techniques widely studied in
SDC.

Our taxonomy, as depicted in Figure 3.4, of anonymization solutions for behavioral bio-
metric data is based on the type of transformation applied to the original data, to derive
anonymized, protected data. We include only fundamental concepts, some of the anony-
mization techniques combine multiple of them. The basic and shared characteristic of all
anonymization methods is that they aim to provide irreversible transformations, i.e. it is
impossible to transform the data back to the original data.

14
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The first distinction of our taxonomy is if they are deterministic or randomized techniques.
Non-Deterministic methods rely on randomness in their transformation, which can yield
different results for the same input, and deterministic methods always give the same
result for the identical input. There are several methods under these two approaches, as
we detail as follows.

* Non-Deterministic methods:
— Random perturbations: A random transformation into a different domain.

— Noise injection: Methods that add random noise to the data points. We find
that the corresponding method in the literature of SDC is referred to as additive
noise masking [141], a perturbative technique that allows for the release of an
entire microdata set, where the modified values rather than exact values are
released. We would like to emphasize that additive noise masking is combined
typically in this field with deterministic transformations.

» Deterministic methods are further split into removal and conversion. The removal
method eliminates data points from the data such that the data points do not have an
influence on the anonymized result. Conversion methods transform the data points
into a new representation, which typically depends on the original domain. The con-
version methods are often generalizations of the data.

— Removal can be performed in two ways: coarsening and feature removal.
Coarsening refers to removing parts of each data point or removing detail from
the data. Feature removal refers to removing data points belonging to a spe-
cific feature altogether. This removal technique is called suppression [141] in
the SDC field. There, when a microdata set contains too few records sharing a
combination of quasi-identifier values, it is termed an “unsafe combination” due
to the risk of potential re-identification. To address this concern, specific val-
ues of individual variables are deliberately suppressed, and effectively replaced
with missing values. This suppression strategy aims to expand the number of
records that conform to each combination of key values, thereby eliminating
unsafe combinations and enhancing privacy protection.

— Conversion can be discrete or continuous, depending if the result of the con-
version is a discrete or continuous value. As mentioned above in the noise
injection technique, SDC also employs transformations of this kind.

3.4. Anonymizations

We have found anonymizations for the behavioral biometric traits of voice, gait, hand mo-
tions, eye gaze, brain activity, and heartbeat. Due to our main focus on human motion data
we only describe the anonymization techniques for gait and hand motions here in detail.
The remaining traits can be found in the Appendix A. For each trait, we look at the utility,
threat space, anonymization techniques, and evaluation methodology.

3.4.1. Gait

The human gait is the pattern in which humans move their limbs during locomotion, mul-
tiple manners of gait exist such as trotting, walking, or running. Gait can be broken down
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into individual gait cycles [342] which is the shortest repetitive task during the gait. The
gait cycle spans from a specific gait event of one foot until the same foot reaches the same
gait event. It consists of a stance phase, in which the foot is on the ground, and a swing
phase, in which the foot is in the air. The two phases alternate for each foot.

Due to its usefulness as a behavioral biometric trait for identifying individuals, gait has
long been a research interest of both computer science and psychology. For example,
Yovel et al. [395] find that it plays an important part for humans to identify people at a
distance, and Pollick et al. [288] show that it is possible for humans to infer the gender of
a walker, even when the walker is only shown as a set of points, as so-called point-light-
display. The following section deals with the anonymization of gait patterns.
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Figure 3.5.: The phases of the gait cycle, source: [342].

Gait recognition methods have been an active research topic in the past, hence a large
set of different methods for various capture methods exists. Wan et al. [369] performed a
recent survey on the subject and listed recognition methods for cameras, accelerometers,
floor sensors, and radars. The main portion of the works focuses on camera based gait
recognition which is classified by Wan et al. as either model-based or model-free. Model-
based methods use a specific model of the walker, for example, a pendulum model of the
legs, to then match the walker to it. Model-free methods, however, do not have an explicit
model but rather use the entire capture of the gait to perform the recognition, for example
by averaging the silhouette of the walker over time as a gait energy image. Accelerometer-
based systems also average the gait into a feature representation either by segmenting
the gait into its gait cycles or by using frames with a fixed size.

Utility

Gait recordings are important for medical diagnosis of gait abnormalities [165]. Another
more casual example would be the recording of the gait pattern to count the steps a person
has performed during a day [336]. Further, gait patterns are often recorded in videos
unintentionally, for example when people walk in the background of a recording. Here, the
utility of the gait is to appear natural and convincing to the viewer of the video [144].

Threat space

Due to its omnipresence in everyday life, human gait is easy to capture, especially be-
cause most capturing methods are unintrusive and do not require the participation of the
victim. Additionally, it has been shown that gait recognition is very robust to video quality
and obfuscation making it very much suited for surveillance systems [369]. Besides iden-
tifying humans it has also been shown that gait can be used to infer private attributes like
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gender [288]. Considering all this the threat to gait biometrics is already large. What’s
more, with recent developments in richer capturing methods such as LiDAR [96] or cheap
motion capture suits, it is to be expected that the threat space for gait will even increase in
the coming years.

Anonymization Techniques

In the following, we present the gait anonymization methods found in the literature, sorted
by our taxonomy.

Random Perturbation Hoang et al. [128] propose a fuzzy commitment scheme based
on Bose—Chaudhuri-Hocquenghem (BCH) codes for storing accelerometer gait templates.
After the feature extraction and binarization of the accelerometer data the reliable bits are
extracted. These bits are then XORed with the BCH encoded secret key to gain the secure
y- Additionally to the y, the hash of the secret key and some helper data are stored. During
the authentication phase, the extracted reliable bits are XORed with the secure y and then
decoded with BCH. The result can then be hashed and compared to the hash of the secret
key. While the false accept rate is promising the false reject rate of this scheme must be
improved to be more user friendly.

Noise Injection The influence of noise injection on the performance of accelerome-
ter/gyroscope authentication systems was studied by Matovu et al. [219]. For their ap-
proach, they generate a time series of noise values drawn from a uniform distribution and
then merge the original time series with the generated one.

A noise injection approach for gait in videos was developed by Tieu et al. [352]. They
use a convolutional neural network (CNN) to mix the gait of a second person (noise gait)
into the original gait. In the first step, the silhouette for both the original and noise gait
is extracted from a black and white representation of the input videos. The noise gait is
selected hereby to have the same size and view angle as the original gait to achieve a
more natural result. The silhouettes are then fed into the CNN which uses shared weights
networks to abstract them and then merges the abstracted representations via a third
network. In a post-processing step, the original gait is replaced with the newly merged
gait. Depending on the view angle they achieve identification rates between 20% and 1%.
The authors further improve their method in a follow up paper [353]. Here the noise gait
is generated via a generative adversarial network (GAN) that takes Gaussian noise as
input and outputs noise silhouette. Instead of using a CNN they then use a self-growing
and pruning GAN (SP-GAN) to fuse the noise and original gait. Here the identification
accuracy was between 30% and 10%. Further, they propose an approach to colorize
the resulting black and white silhouette [354]. Hanisch et al. [115] investigated multiple
anonymization techniques to protect identity and gender of walkers recorded via motion
capture suits. One of their techniques was to add Laplace noise to all body positions
of the walker, however their results show that effectively anonymizing was not possible
without destroying the utility (measured as naturalness via a user study). Another paper
that performs simple noise injection is by Meng et al. [231], they also show that the noise
level required for effective anonymization destroys the utility of the data.

Coarsening Nair et al. [252] experiment with coarsening the frame rate, positional ac-
curacy, and dimensionality of VR motion data. They find that while these techniques can
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reduce identification rates for individual motion sequences, they do not allow effective an-
onymization on a per-session basis and are therefore not effective for anonymizing motion
data.

Feature Removal A feature removal approach for privacy-preserving activity recognition
via accelerometers is proposed by Jourdan et al. [154]. They extract various temporal
and frequency features from the accelerometer data such as mean, correlation, energy,
or entropy. Via experiments, they then determine the influence of each feature for activity
and identity recognition. They find that the temporal features contribute more to identity
recognition and frequency features more to activity recognition, therefore they remove the
temporal features. Their results show a good trade-off between activity recognition (96%
reduced to 87%) and identification (90% reduced to 40%). Debs et al. [69] do a similar
simple feature removal approach, but they first transform the signal using a short-time
Fourier transformation before randomly removing 10% to 90% of the data. Garofalo et
al. [99] propose a temporal convolutional network as feature extractor which is trained via
adversarial training. After the feature extractor created a feature vector it is evaluated
by an identity verifier and an attribute classifier which results are then used as the loss
function for the feature extractor training. Rouge et al. [313] developed an anonymization
technique for accelerometer motion data. Their technique is to first extract appropriate
features from the raw data using a short-time Fourier transform. They then train a random
forest classifier to perform action and identity recognition. Using the trained random forest
model, they then determine the importance of the features for both classification tasks and
remove those that are only important for identification.

Another technique tested by Hanisch et al. [115] was to remove body parts from gait
motion capture data to see their impact on the recognition of identity and gender. They
found that the gait data is very redundant and even when only the data for the head is kept
identification success remains close to 60%.

Continuous Conversion A continuous conversion approach is blurring, in which per-
sons in videos, including their gait, should be de-identified. As a first step, the silhouettes
of the persons in the videos are tracked and segmented to then apply the blur. Agrawal
et al. [9] proposed two blurring approaches exponential blur and line integral convolution
(LIC). Exponential blur regards the video as a 3D space with the time as the z-axis and
then calculates a weighted average of the neighbors of each voxel to blur via an exponen-
tial function. LIC works with the bounding box of the walker silhouette and maps it onto a
vector field which is then used to calculate the output pixels. To counter reversal attacks
against the blur randomization of the blurring functions at each pixel is proposed. Another
blurring approach is proposed by Ivasic-Kos et al. [144]. They apply a Gaussian filter to
blur the silhouettes of walkers. The filter calculates a weighted average of the color of the
neighboring pixels, with the weights decreasing monotonically from the central pixel.

Halder et al. [112] work on gait anonymization in videos. They first extract the gait
silhouettes from a large number of videos. They then perform a k-means approach to
cluster the silhouettes to generate a database of key gait poses. To anonymize a given
gait sequence, they also extract the gait silhouette and match it to the closest key pose in
the database. The key pose sequence is then used to generate a new video sequence
using a GAN. Their evaluation results show that their approach only slightly reduces the
identification rate against multiple recognition systems.

Moon et al. [244] investigate the use of adversarial training for anonymizing motion data.
They train different machine learning models on 3D pose data to maximize action recog-
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nition while minimizing the identification. Their evaluation on the ETRI-activity [147] and
NTUG60 [188] datasets shows that they can achieve both a high utility for the action recog-
nition and identification rates close to chance. Nair et al. [251] also propose an adversarial
approach for the anonymization of VR motion data using a Siamese architecture for the
training of the anonymization. Instead of using only the motion sequence as input they also
add a random vector. As before they train their model to achieve good action recognition
and low identification.

Thapar et al. [350] consider the anonymization of gait in egocentric videos, which are
videos that are recorded from a first-person perspective. They first learn the identities of
gallery videos via the rotation of the camera which is then transformed into the camera
rotation signature via guided backpropagation. This camera signature is then applied to
the target video, mixing the gallery identity and the target identity. In their evaluation they
test the identification of persons and find that the EER increases from around 20% to
around 50% while the activity recognition is reduced by about 10%.

Continuous Conversion + Discrete Conversion An approach that combines both con-
tinuous and discrete conversions for walkers in videos is proposed by Hirose et al. [127].
First, they extract the silhouette and the gait cycle of the walker. The silhouette is then
transformed via a deconvolutional neural network encoder into a silhouette code. The
code is converted by using a k-same approach in which the k-nearest neighbors of the
input code are selected and then a weighted average is computed. The gait cycle is trans-
formed via a continuous, differentiable, and monotonically increasing function. In the last
step, the new video is generated by feeding the perturbed silhouette code and gait cycle
into the convolutional neural network decoder. Their evolution shows that the gait recog-
nition drops from about 100% down to 29%, 21%, and 4% depending on the recognition
model.

Evaluation

Gait de-identification is evaluated in the literature via gait recognition systems or human
observers with the recognition accuracy as the main metric, but there are also usages of
the F1 score, equal error rate (EER), or false acceptance rate (FAR). To access the utility
loss there is a larger variety of metrics, usually to either quantify the naturalness of the
de-identified gait or to perform another kind of recognition, such as activity. One specific
evaluation method we observed was by Matovu et al. [219] in which the authors used the
biometric menagerie to observe the de-identification influence on different types of users
in biometric authentication systems.

3.4.2. Handmotions

We use the term hand motions as an umbrella for all hand motion related biometric traits,
including handwriting, keystrokes, mouse movements, and hand gestures. These traits
mostly differ by how they are recorded and what kind of hand motions are performed.
Handwriting can be captured offline or online, depending on if only the resulting written
text or a real-time capturing of the hand while writing is being used. For this survey, we
only consider the uniqueness of one writing style and not the linguistic style (Stylometry)
of the written text. In modern life, handwriting has been mostly replaced by typing on
keyboards which also is an important biometric factor as individuals can be identified by
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the timings of their key presses. Besides keyboards also the usage of computer mice
creates unique patterns, as their trajectories and clicks are again a biometric factor. Lastly,
hand motions can be directly captured using optical or accelerometer tracking techniques.

Hand motion recognition encompasses multiple recognition techniques for different cap-
ture modalities, here we give an overview of handwriting, mouse movements, keystrokes,
and gestures. For handwriting bases hand motion recognition the input handwriting se-
quence is often adjusted for its baseline, scaled to a normal writing style, and segmented
to meet the demands of the classifier [283]. Handwriting is further dependent if it was cap-
tured while the person was writing (online handwriting), for example with a digital pen, or
only handwriting itself is captured after the person has finished (offline handwriting). The
recognition for mouse movements relies on the trajectory, speed, single, and double clicks
performed with a mouse as features. Keystroke-based hand motion recognition is based
primarily on the timing differences between key up, down, and hold events. Besides in-
dividual events, the differences between two successive events or even three successive
events are also used as features [408]. Hand motion recognition via gestures can be split
into 2D gestures which are performed on a flat surface (e.g. on a smartphone) and 3D
gestures which are performed in mid-air. Sherman et al. [330] use the trajectories of each
finger and first resamples them using a cubic spline interpolation to get a lower sampling
rate, removing unwanted jitter. To calculate the distance between two gestures dynamic
time warping is employed with various distance metrics.

Utility

The utility range for hand motions is large and diverse. For handwriting the resulting text
must be readable either by humans or computers, the particular handwriting style is usually
not important. This is different for signatures, as their main purpose is to facilitate the
identification and verification of the signer’s identity, hence their particular style is important,
while the readability of the name is less important. Since the other hand motions mostly
serve as input modalities for computer systems their utility as input modality [401] must be
kept precise and timely to keep their utility. For hand gestures [320], there is additionally
its utility for non-verbal communication.

Threat Space

The threat space for hand motion is diverse as the usage of our hands is unavoidable in
most everyday tasks and as we often use digital devices the recording of hand motions
happens most of the time without us realizing it. As many studies have shown hand mo-
tions can be used to identify individuals by their handwriting [283], keystroke dynamics [13],
mouse movements [308], and gestures [387]. Besides identification our hand motions also
often convey meaning such as when we write a text on a keyboard, the semantics of hand
motions can be sensitive too, such as when we enter passwords or write private messages.
Specific medical conditions manifest themselves in hand motions, such as hand tremors in
Parkinson’s patients [148]. Further, hand motions convey information about our emotional
state [339].

20



3.4. Anonymizations

Anonymization Techniques

In the following, we present the suitable methods for hand motion anonymization, with the
exception of mouse movements as we did not find any suitable papers for it.

Random Perturbation Maiorana et al. [209] propose a template protection method for
online handwriting which splits a handwriting sequence into segments and then randomly
mixes the segments before convoluting them. The same shuffling approach is taken by
Maiti et al. [210] to prevent keystroke inference attacks via wrist-worn accelerometers,
however, they do not convolute the segments. The approach was only evaluated with
4 participants. Another study investigating the permutation of keystrokes is performed by
Vassallo et al. [367], in their evaluation they only investigate the utility reduction. Goubaru
et al. [105] propose a template protection scheme for online handwriting templates. They
extract the pattern ID for a user by using a common template. The pattern ID is then
XORed with a secret that was encoded by an error-correcting code. The result is stored as
the template. For the verification, the pattern ID is again extracted and then XORed with
the template.

Noise Injection Migdal et al. [237] add delays to keystroke timings. Shahid et al. [325]
propose to use the Laplace mechanism on the 2D coordinates of handwritten text to
achieve local differential privacy.

Coarsening Vassallo et al. [367] explore suppression of keystrokes to preserve the con-
tent of the typed text in a continuous authentication scenario. Maiti et al. [210] also focus
on keystrokes privacy and propose two coarsening methods to prevent keystroke inference
attacks via wrist-worn accelerometers. In their first approach, they simply detect if a user is
typing via several features and then block the access to the accelerometer data to prevent
attacks. Their second method reduces the sampling rate of the accelerometer.

Discrete Conversion For discrete conversion we found the following techniques aimed
at template protection. An online handwriting template protection scheme is proposed by
Sae-Bae et al. [317] which decomposes signatures into histograms on which the authen-
tication is performed. They use one-dimensional histograms to capture the distribution of
single features and two-dimensional histograms to capture the dependence between two
features. Migdal et al. [238] propose a template protection scheme for multiple modalities,
including keystrokes. Their scheme combines multiple pieces of information, such as ip
addresses, with the keystroke information and then computes a biohash on it. Leinonen
et al. [180] investigate the anonymization of keystroke timing data using two rounding ap-
proaches which effectively sort the timings into buckets. Their approach appears to be
effective as the identification drops from close to 100% to below 10%. Vassallo et al. [367]
explore substitution of keys with a random nearby key to preserve the content of the typed
text in a continuous authentication scenario.

Figueiredo et al. [92] have developed a modeling language that can be used to design
new gestures for applications. The gestures can then be recognized on the recording
hardware, eliminating the need to give the application access to the clear data. No privacy
evaluation was performed. For privacy friendly gesture recognition Mukojima et al. [249]
designed a system which illuminates the hand with a random pixel pattern and captures
the remaining light on the opposite site of the hand with a detector. From this reduce data
collection the shape of the hand is reconstructed via machine learning. The authors did
not evaluate the privacy protection of their approach.
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Continuous Conversion Maiorana et al. [209] propose two continuous conversions for
online handwriting templates: A baseline conversion which first splits a handwriting se-
quence into multiple segments based on a secret key and then convolutes the segments.
And a shifting transformation that applies a shift to the initial sequence. The template
matching is performed on the protected template. For the anonymization of gestures which
have been captured via inertia measurement unit (IMU) sensors Malekzadeh et al. [213]
propose two separate auto encoders. The first auto encoder is supposed to replace se-
quences in the data which have been classified as sensitive with a generated neutral se-
quence. While the second one should minimize the mutual information between the data
and the identity of the user. Their approach reduces the identification from 96% accuracy
down to 7%. Fan et al. [87] also propose using two encoders, they use one for task en-
coding and one for identity encoding and then feed both encodings into the decoder. This
system is trained in an adversarial approach to reduce identity recognition and increase
action recognition using a small sEMG dataset.

Another auto encoder based approach is proposed by Saunder et al. [320] in which the
sign language motions of one person are transferred onto another one. Their technique
is two fold they first extract the pose of the source video and encode this to a set of pose
features. Secondly they encode the style of the target appearance using an appearance
distribution. The encoded pose and style are then combined to generate a new image.
It was not evaluated if the persons can be identified by their hand motions only. A sec-
ond approach to perform sign language anonymization was proposed by Xia et al. [380].
They use an estimation of the motion regions and then use optical flow in combination
with a confidence map to encode the motions of the source and driving video. Then the
anonymized video is generated via an auto encoder from the source video, optical flow
and confidence map. To keep the utility of the sign language high they use a loss func-
tion which especially focus on the difference between hand and face motion of the driving
and anonymized video. Again no evaluation if the persons can be identified by their hand
motions was performed.

Evaluation

Hand motion anonymization is mostly evaluated in the context of authentication and as
such the false positive rate (FPR), false negative rate (FNR), and equal error rate (EER)
are important metrics for evaluating the performance. But there is also the usage of recog-
nition approaches for the evaluation which uses the accuracy of identity, age, gender, and
handedness inference. A unique evaluation approach we found was used by Goubaru et
al. [105] who used the randomness of the template bits via occurrences and autocorre-
lation to evaluate their approach. Again we find that more critical evaluation approaches
are possible, as the EER will most likely overestimate the anonymization performance as
it tries to achieve a low false positive rate.

3.5. Discussion

All reviewed behavioral biometric traits have in common that they are captured as a time-
series tracking the change of the trait over time. Most traits, such as gait, hand motions,
voice, and eye gaze are overt traits that can be observed from a distance and do not
require the participation of the subject. These traits are often captured as a byproduct for

22



3.5. Discussion

other recordings, for example, video recordings. EEG and ECG on the other hand are
secret traits that can mostly only be recorded by directly attaching sensors to the subject
to measure them. We found the most anonymization methods for voice and the least for
EEG. For the traits touch, thermal, and lip-facial we could not find any mechanisms.

The utility of these traits is very diverse and is mostly unique to each trait and the
application using it. It ranges from utilities such as the naturalness of a motion to the
intelligibility of utterances.

Regarding their threat space, the traits are similar to each other, as due to the per-
vasiveness of digital capturing devices more instances of them are captured. Wearables
and mobile devices are of especial interest as they are attached to the subject and can
therefore allow continuous capture of behavioral data. As our literature review has shown
all traits can be used for both identity and attribute inference, which then can be abused
for a wide variety of privacy threats such as surveillance, identity theft, or private attribute
inference. The privacy goals, identity protection, and attribute protection are also the same
for all the traits. However, voice has an additional privacy goal in which the content of the
speech should be made unintelligible.

For the techniques (see Table A.2 and Table A.3) that we reviewed, we found that
most of them fall into the category of continuous conversion, followed by feature removal
and noise injection. Next are random perturbation and discrete conversion, with most
discrete conversion methods aiming at template protection. Coarsening is the category
with the least amount of methods. We observe several differences for the categories of
our taxonomy, for the removal methods we find that the removal is not directly reversible,
however, due to the high redundancy in behavioral biometric data it still might be possible
to reconstruct the removed data. For the conversion methods, we often observe that the
parameter space for the anonymizations is often rather small, making it possible that an
attacker can link clear and anonymized data by brute forcing the parameters when the
anonymization technique is known. In general, we find that the reversibility of conversion
techniques still has to be evaluated better. For noise injection techniques we find that the
strong dependency both temporal and physiological is a problem since they can be used
to filter out the noise.

With regard to the techniques providing differential privacy, we have observed that
none of them can be used continuously over time without completely compromising user
privacy. The reason lies in that the privacy budget is necessarily finite, which means, by
the sequential composition property of differential privacy [226], that it will be consumed
completely at some time instant. Surprisingly, this appears to be in contradiction to the
intended use of most of the applications where differential privacy is guaranteed, namely,
continuous monitoring in healthcare scenarios, and identification and authentication ser-
vices (which clearly are not single-use services). In that respect, the use of related privacy
notions intended for continuous observations (e.g., w-event differential privacy [159]) may
come in handy. In general, more research is needed on how to effectively apply differential
privacy to behavioral data.

We made the observation that most methods do not manipulate the temporal aspect
of their data. Notable exceptions are Hirose et al. [127] and Maiti et al. [210]. Since all
traits result in time series data manipulating the temporal order or time differences between
events could lead to some general anonymization techniques which work for multiple traits.
For attribute protection we find anonymizing intrinsic attributes (e.g., age, sex) to be diffi-
cult as it is not clear which part of the behavioral data is relevant for these attributes. We
therefore find generative machine learning approaches a promising approach to address
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this problem as the machine learning models can learn the intrinsic dependencies between
data and attributes. Further, we noticed a lack of even basic understanding of users’ pri-
vacy awareness and concerns about behavioral privacy. These are necessary to design
protection techniques that consider user needs and requirements.

We found that the evaluation methodology between the traits and methods is rather
similar. In general, an inference/recognition system is being used on the clear and on the
anonymized data and then the difference in accuracy is reported, often without retraining
the inference system on the anonymized data. We find this methodology too simple as the
underlying assumption is that the attacker is not aware of the anonymization. A notable
exception are more recent voice anonymization techniques which now mostly rely on the
benchmarking framework of the VoicePrivacy Challenge to evaluate the privacy and utility
of their techniques. This shows that community initiatives can provide a common basis for
comparison and improve the overall evaluation methodology of a field.

Only a small number of articles compare their own methods to that of others, and due to
the differences in attacker models and data sources, they are difficult to compare for the
readers. We also found that there are not many approaches [402, 299] to formalize the
privacy of behavioral biometric anonymization methods and most of the evaluations rely
on empirical privacy estimations. Another problem is that the evaluation methodology is
too close to the recognition system evaluation methodology which seeks to infer persons
in a large dataset with poor data quality, while an anonymization method should also work
on a small group size with high data quality. To reliably estimate the level of protection that
anonymization provides, we believe it is important to assume the worst-case scenario, in
which identifying individuals is easy and anonymization is most difficult. We believe that the
lack of available datasets is one of the main problems which keeps the less researched
behavioral biometric traits back. For possible future work, we see the anonymization of
eye-gaze and motion data as promising areas of research, as many challenges remain,
like achieving good utility and real-time applicability. Similar to the VoicePrivacy Challenge,
most behavioral biometrics would benefit from community-driven evaluation frameworks
to increase the comparability and rigor of privacy and utility evaluations. One area where
many behavioral biometric traits are combined is the creation of digital twins, where it is
an open question whether anonymizing the behavioral traits independently of each other
is sufficient to create privacy-friendly digital twins, e.g. for mixed reality.

3.6. Problem Statement

Our survey on anonymizing behavioral biometric data revealed that, although there are
many different behavioral traits, there are also many similarities in the problems encoun-
tered and their solutions. In this thesis, we address the most pressing problems we iden-
tified in the anonymization of motion data. Below, we provide an overview of the main
issues we will address.

» The privacy issues associated with motion data have received some initial attention,
as evidenced by the many gait recognition approaches that have been developed.
However, these approaches only require identification to work; a deeper understand-
ing of why it works is unnecessary. Anonymization is different in that we only want to
remove personally identifiable information from the data while leaving the rest intact.
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Therefore, we will study which features allow individuals to be identified from gait
motion data.

Advances in mixed reality technology have made more types of motion tracking pos-
sible. One new type of motion tracking that has become available in recent years
is tracking facial expressions. Mixed reality headsets capture their users’ facial ex-
pressions and transform them into abstract representations, which are then used to
animate digital avatars’ faces. While it is already established that gait can be used to
identify individuals, this remains an open question for facial motion data. Therefore,
we study the privacy issues posed by facial motion data.

Our comparison of evaluation methodologies for behavioral biometric anonymiza-
tions showed us that the same methodology can be used to evaluate the privacy of
anonymizations across traits. However, we found that this methodology is not up
to par as most evaluations assume weak attackers who are unaware of the anony-
mization process. This can result in unreliable reports on the effectiveness of the
evaluated anonymizations. Therefore, we work on improving the methodology for
evaluating biometric data anonymization.

An important precondition for conducting meaningful research on anonymizing hu-
man motion data is having access to the data. As our survey showed, most current
human motion data is video data, which is not suitable for anonymization research
because it requires larger sample sizes per person. Furthermore, with the rise of
mixed reality, motion tracking is becoming more detailed. This results in people be-
ing captured as 3D motion captures, rather than from one perspective as in 2D video.
Since datasets can stimulate new research in their respective fields, we aim to collect
new and novel motion dataset to develop anonymization techniques.

Although there are many anonymization methods for behavioral biometric traits, most
of these solutions focus on voice data, and few focus on motion data. Anonymizing
motion data is a complex task because identification from motion data is very robust,
and identifiable information is contained in almost all aspects of the data. Therefore,
we will pursue an anonymization approach that considers all dependencies included
in motion data.
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4. Investigating the Privacy Issues of
Motion Data

Before we start working towards developing an anonymization to protect motion data from
privacy inferences we must first understand what makes the privacy inferences possible.
In this chapter, we seek to investigate the problem of person identification through motion
data. For this we specifically look at human gait (i.e. human walking motion), as it is
one of the most identifiable human motions and Examples from China' show that gait is
very much suited to be used for surveillance purposes alongside face recognition. Further,
there is a wide variety of techniques to capture human gait via sensors.

When compared to person identification via faces, gait has advantages as it can be done
from distances at which the face is not yet recognizable or occluded by objects such as
face masks. It is believed that distinguishing individuals from afar was an important human
survival mechanism in the past, as it allowed to recognize if an individual was a friend or
foe before the person was close enough to be a potential threat [395].

As a starting point for finding categories of features for our computational experiments,
we look at the literature on human gait perception. This line of research has long been a
topic of cognitive science and investigates how humans identify other humans by their gait
(e.g., [151, 361, 59]). We would like to emphasize that we are not interested in designing
a novel attack, and we are less interested in investigating the robustness of specific anon-
ymization schemes. Instead, we are interested in the question of which features in precise
gait data yield identity or attribute disclosure of the individuals, if they coincide with those
known from psychological research on gait and person perception—and to which extent
they are inter-dependent and hence cannot independently be suppressed/perturbed for
anonymization.

For a systematic analysis we use machine learning (ML) to get an estimate of how much
identification potential gait data has. We then design perturbations for each of the feature
categories that remove specific features in the gait data, to then measure how much the
recognition performance drops. Where possible, we try to manipulate a feature alone, so
that we can estimate how much identifying information the feature contains, as well as
how much it shares with other features. To establish how much utility is retained after
anonymization, we perform a user study in which the participants rate the naturalness of
the resulting gaits. Key contributions of this chapter are as follows:

Thttps://apnews.com/article/bf75dd1c26c947b7826d270al6e2658a [apnews], accessed: 17.08.2022

This chapter is based on the contribution:

« Simon Hanisch, Evelyn Muschter, Admantini Hatzipanayioti, Shu-Chen Li, and Thorsten
Strufe. “Understanding Person Identification Through Gait”. In: Proceedings on Privacy En-
hancing Technologies. 2023. DOI: 10.56553/popets-2023-0011.
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4. Investigating the Privacy Issues of Motion Data

» We categorize human gait features using categories extracted from the literature of
cognitive science.

* We systematic study feature contribution for gait recognition for both identification
and sex classification.

+ We propose simple gait perturbation techniques.

» We presented a utility evaluation via perceived naturalness of the anonymized gait.

4.1. Background and Related Work

In the following section we provide background on current motion capturing including the
human and automatic recognition tasks based on gait, and the state of the art with regards
to anonymization and explainability-based analyses of identifying features in gait.

4.1.1. Motion Analysis

Humans can recognize and identify biological traits visually through the use of static infor-
mation such as shape or other cues. Biological motion is one additional important factor.
Human newborns, infant monkeys, and even freshly hatched, visually naive chicks show a
preference for motion cues that move in motion patterns suggesting animacy [198].

Figure 4.1.: Example of a human walker represented as a point-light display (PLD).

An established and reliable method of investigating biological motion processing with-
out other potential sensory information or cues (e.g., color, texture, or form-based fea-
tures such as facial configurations, hairstyle, or clothing) is the use of point-light dis-
plays (PLDs) [151] (see Fig. 4.1). This method of using impoverished moving dot dis-
plays helps to isolate motion information from other cues. Thereby, a small number of
dots represent the head and major joints of a human body in various scenarios such as
social interactions [28, 214] or—as the focus of this work—during gait [361]. Indeed, many
identifying features of a human walker can be recognized from such PLDs.

Gait analysis is the study of human locomotion (walking and running) and defines walk-
ing as a series of gait cycles. A gait cycle (stride) is the period when one foot contacts
the ground to when that same foot contacts the ground again (see Fig. 4.2). Each gait
cycle has two phases: the stance phase, when the foot is in contact with the ground; and
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Figure 4.2.: A schematic representation of the gait cycle.

the swing phase when the foot is not in contact with the ground. In vision-based gait anal-
ysis such as PLDs, kinematic data such as position and velocity are captured. These are
used to relate motion parameters, such as joint angles and joint velocity, with qualitative
gait parameters, such as step length, walking speed, the pace and rhythm of steps, stance
and swing times, as well as arm swing, vertical head movement, pelvic rotation and the
extension and flexion of the limbs and shoulders. As walking consists of a series of mul-
tiple gait cycles, gait data typically also contains fluctuations. These are small variations
such as asymmetry and variability in step and stance time, step velocity, or step length [71].
These gait parameters can subsequently be used to extract statistical features (e.g., mean,
standard deviation, skewness) for gait analysis.

4.1.2. Human Gait Perception

Human observers have no trouble making sense of the very limited information presented
through PLDs disconnected dots, representing actions such as the specific categorical
biological motion content [395, 268] of human gait (walking or running). Research has
suggested that humans are especially tuned to recognizing conspecifics and this prefer-
ence is likely to already emerge in the visual system. Psychophysical and neuroscientific
studies have shown that at least two processes play a role in person perception (here
defined as the recognition of human bodies and their biometric features based on vision).

On the one hand, form-from-motion cues [332, 395] are cues that are rooted in basic
perceptual abilities to see structure from motion. That is, the shape and form of an object
or person are revealed more clearly through motion. The human visual system benefits
from the motion direction information in order to extrapolate the overall shape of an object
or person. These cues provide time-invariant information about body form by enhancing
the shape presentation of a person [395] and are susceptible to violations of the hierar-
chical body form structure [41, 279] as well as to inversion effects [97]. That is, inverting
a body in the image plane (i.e., placing it upside-down) results in perceptual impairments.
Previous research has proposed that inversion is deleterious to normal human whole-body
perception, causing observers instead to rely on local part-based visual features [97]. Ev-
idence for first order configural processing has shown that visual perception of bodies is
mediated by spatial configurations of body parts, such as the general body layout (e.g.,
legs attached to the hip, arms attached to the shoulders), and thus providing intact spatial
configurations of bodies [41].

On the other hand, dynamic identity signature [332, 395], describes the idiosyncratic
motion pattern of an individual. These features describe the change over time during a
walking cycle and rely on nuanced, person-specific motion variations (e.g., the way Charlie
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Chaplin walks). Furthermore, research has provided evidence for a two-stream processing
of biological motion perception in the brain. That is, biological motion perception relies on
both dynamic and static features through motion processing in the dorsal pathway (i.e.,
area V5 of visual cortex in the brain) in combination with bodily form and appearance
information in the ventral pathway in the brain (see Peng et al. [279] for further details on
visual recognition of biological motion). In addition to action recognition, human observers
are able to identify soft biometric features of actors in PLDs, including sex [242, 97, 170],
age [409, 242], weight [247], height [247], handedness [191], in addition to attractiveness
[242, 247], identity [62], emotions [242, 153] and causal intentions [214]. Specifically,
Kozlowski and Cutting [170] showed that the biomechanical factor center of moment, which
is derived from the relative movement of both — the shoulders and hips, plays a crucial role
in sex perception in PLDs.

Finally, person recognition depends on familiarity and might take time for the human
observer to learn, but is useful for recognizing a familiar person from a distance [62, 361].
Studies have shown that human observers are more sensitive to PLDs of themselves and
friends [62, 200], or could learn to identify a small number of individuals based on their
motion [361]. Guided by these insights, we aim to investigate if the removal of the certain
features will reduce recognition rates, and to which extent.

Specifically, we focus on the features that are easy to extract from existing data sets.
Namely, macro and micro features (i.e., statistical features, see Section 4.1.1), perturba-
tions of intact bodies in natural spatial configurations, as well as dynamic (i.e., temporal
information) and static (i.e., structural) features.

4.1.3. Automatic Gait Analysis

Current human movement analyses are based on biometric measurements and motions.
They are captured vision-based, via pressure plates, or using wearables with integrated in-
ertial measurement units (IMUs). A gait cycle is thereby composed of a chain of individual
2D (video) or 3D (optical marker/IMU tracking) samples at each given time point (pose).

Gait recognition using machine learning models is most commonly based on video
data [369]. Video, providing rich information about subjects, facilitates high recognition
rates and hence is frequently used for surveillance purposes [26].

Also explicit motion capturing frequently uses video: High-quality vision-based motion
capturing uses specialized cameras to track reflective markers on the subject’s body. The
position of these markers is later reconstructed into 3D position time series, converted
into joint angles as a function of time, and subsequently analyzed according to specific
research or clinical needs. However, recently, approaches of using a single commodity
camera in combination with keypoint detection algorithms and neural networks (e.g., Open
Pose or DeepLabCut) have generated convincing results [163, 228, 217].

Gait recognition is also possible based on motion capturing data [25]. Indeed, even sim-
ple kinematic features obtained from IMU systems (e.g., position, velocity, and acceleration-
based features) or kinetic data from force plates and electromyography (e.g., ground or
muscle force parameter) have been shown to yield high recognition rates (see [59] for an
overview).

Anonymizing individuals in video surveillance footage for multiple moving object detec-
tion and tracking algorithm (e.g., human action tracking) by representing their bodies as
simplified objects such as PLDs thus cannot protect their identities. Further, gait can also
be used to infer personal attributes like sex [396] and age [409, 85]. Being interested in
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those gait features that carry information for identification and attribute disclosure of individ-
uals, in the present work we rely on marker-based motion capture data as it is considered
the gold standard in the field.

4.2. Methods
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Figure 4.3.: The full data processing pipeline.
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The question we sought to answer is how much specific features in the data contribute
to the overall gait recognition performance of identity and sex using machine learning. Our
overall approach was to first train & test a gait recognition system for each of the recog-
nition goals on clear data to obtain baseline accuracy. Next we obfuscated a feature at a
time in the data by either perturbing or removing it to investigate its impact on anonymiza-
tion. We then repeated the training & testing process and report the resulting recognition
performance. The difference in recognition between baseline and perturbed data gives
us an approximation of the unique amount a feature contributes to the overall recognition
performance. Further, we also measured each feature independently from the other fea-
tures. However, this is only possible for features we can remove from the data and not for
features we only perturb. The full process is shown in Fig. 4.3.

In the following, we provide details about the data set, applied feature perturbations, the
implementation of the recognition system, and utility evaluation.

4.2.1. Data Set

As our main goal was to understand the important features of human gait, we chose the
highest quality of gait data and used optical 3D marker-based motion capture data for
our experiments. This data is considered the gold standard for motion capturing and is
recorded using multiple infrared cameras which capture markers on the anatomic land-
marks of participants. The benefit of the 3D representation is that there is no dependency
on the recording angle like in video recordings. The data consists of multiple samples per
participant which are a time series of poses. Each pose contains the 3-dimensional coor-
dinates of each marker (placed on the participant) at a given point in time (i.e., PLDs). The
data is also more appropriate for our purpose, as we focus on gait features in the absence
of potential additional information (e.g. video recordings).
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We used the open-source data set by Horst et al. [133, 134] which consists of full-body
kinematic and kinetic data of 57 individuals (29 female, 28 male; 23.1+2.7 years; 1.74+0.10m;
67.9 + 11.3kg). An optical motion capture system and a full body marker set (62 markers
corresponding to anatomical landmarks), as well as two force plates, recorded self-paced
walking trials at 250Hz (motion capture) and 1000Hz (force plates). For each participant
20 samples containing a full gait cycle have been recorded (for further details on the data
acquisition protocol see Horst et al. [134]).

4.2.2. Data Pre-processing

Our biometric recognition system requires gait sequences to contain exactly one gait cy-
cle. However, the raw sequences in the dataset start at different stages of the gait cycle.
Therefore, we pre-process the sequences.

Following the methodology of Horst et al. [134], we trimmed the gait samples to contain
only a single stride by using the kinetic force signals of the force plates, using a ground
force threshold of 20N. This way all samples are aligned and start at the same point in the
gait cycle. The data was then normalized, in order to obtain an equal number of poses for
each individual, by resampling each sample to 100 frames. Each frame represents one
discrete pose of the individual while walking, the 100 poses then constitute one stride.

4.2.3. Retained and Masked Features

We will now explain the retained and masked features for our experiments, as well as their
respective categories. We base our feature categories on previous work in gait analysis
and human perception as described in Sections 4.1.1 and 4.1.2. The category name
always gives the kind of feature we sought to retain, while the perturbation techniques
employed are aimed at removing the other features from the data. For each technique, we
strove to design an inverse perturbation technique that only removes the specific feature,
while keeping all the others (micro vs. macro, dynamic vs. static). This way we sought
to understand how much each feature contributes to the overall recognition rate and if it
contains information that is unique to this feature. Since there is interdependence between
features, some of the features are partially overlapping for example the walking frequency
is dependent on the walking speed and the length of the legs. Table 4.1 gives a brief
overview, while the used and obfuscated features are described in detail in the following.

Our macro features describe the general characteristics of the walker, such as walking
speed, general movement trajectories, walking amplitude, the most significant parts of the
walker positions, and overall body parts. Its counterparts are the micro features which
contain the small variations of the trajectories that remain when the overall trajectories
are removed, the walker without its walking speed and step length equalized over all walk-
ers, the least significant parts of the walker positions, and individual body parts. Besides
macro and micro, we also investigated the dynamic parts of the gait motion. For this we
have two contrary feature categories static and dynamic. The static features contain the
time-invariant features, such as the average pose of the walker, or the first pose of the
walker. The dynamic features contain the features describing the motion of the walker,
including the differences between the recorded poses, and walker where the static frame
(body proportions) has been removed. The following section describes the used pertur-
bation techniques for each feature category. The parameter values have been chosen to
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match the used data set. In the end, we briefly detail how we combined the perturbation
techniques.

Table 4.1.: Used and obfuscated features

Macro Micro Static Dynamic
. Step '/eng th, asymmgtry and Shape and Time course
definition walking speed, variability
cadence in the macro features | ¢ eneral body layout | of changes
Perturbation 1 | Remove variations | Remove trajectories Static pose Motion extraction
Amplitude/

Perturbation 2 Resampling Normalization

frequency equalization
Perturbation 3 | Coarsening macro | Coarsening micro
Perturbation 4 | Remove body parts | Keep body parts

We provide a sample video rendering? of all perturbation methods.

Macro Features

The macro features keep the overall characteristics of the walker and remove its smaller
variations from the data. We used three perturbation techniques for this: remove variations,
coarsening macro, and remove body parts.

Remove variations: In order to extract the ideal trajectory from the gait data we removed
the small variations that deviate from the ideal trajectory. The ideal trajectory is here
calculated by two different methods: either using a moving window on the marker poses
and then calculating a rolling average, or an interpolation. The difference between the two
is that the rolling average takes all poses in the window to calculate an average, while the
interpolation only uses the poses at the edge of the moving window. The moving window
size is given as the distance to the pose which is calculated and is either one or three
additional pose(s) before and after e.g., spanning three poses in total or spanning seven
poses in total, respectively. This strategy follows a similar idea to low-pass filtering, as it
retains the main movement but removes detailed deviations.

Coarsening macro: As we were interested in the most significant information of the walker
position, we removed the least significant part of each marker position in a pose for all
poses. The effect is that the grid on which the walker moves is becoming more coarse.
We removed all digits either below the thousandth (1000) or the hundredth digit (100).
Remove body parts: We measured how much ‘the motion of an individual body part
(head, torso, hip, arms, legs) contributes to the overall recognition performance. This was
done by removing the body part from the data by setting its marker positions to zero.

Micro Features

The micro features are the counterparts to the macro features. Here we kept the small
variations of the gait cycle and the least significant parts of the marker positions.

Remove trajectories: Contrasting remove variations, we removed the ideal marker tra-
jectories from the data by calculating the ideal trajectory as described in remove variation
via either rolling average or interpolation with a window size of 1 or 3. The ideal trajectory
was then subtracted from the real trajectory, which leaves us with the distances of the

2https ://9ithub.com/kit-ps/understanding-person-identification-through-gait-popets-2023
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ideal marker positions to the real ones. This strategy resembles high-pass filtering, as it
removes the main movement and only retains the minor specifics of the current sample.
Coarsening micro: We eliminated the most significant part of the walker positions by re-
moving the most significant parts of each marker position value. We removed all digits
above the hundredth (100), tenth (10), or first digit (1) position

Keep body part: We measured how much recognition performance the individual body
parts have alone without the rest of the body. All remaining other body parts are set to
zero.

Amplitude/Frequency equalization: The walking amplitude and frequency were equal-
ized between all individuals to perturb their influence on the recognition. Informed by
previous studies [361], we calculated a gait representation of each individual by using the
average pose, the first four components of a principal component analysis (PCA), and a
sinus function fit on these components to represent the gait cycle of a person. We then
equalized the frequency or amplitude of the fitted sinus function by means of the group-
level average.

Static Features

The static features capture the time-invariant features of the walker by removing the dy-
namic part of the gait motion. We therefore kept the proportions of the walker.

Static pose: We used only an average pose or the first pose of each sample, thus remov-
ing the dynamic component of the gait data.

Resampling: We downsampled the data to 10 frames, and therefore removed most of the
dynamic content from the data.

Dynamic Features

The dynamic features are the counterpart to the static features and aim to only retain the
dynamic part of the motion.

Motion extraction: Instead of using the individual poses, we used their difference (i.e.,
keeping only the variations between poses) and hence removed the static features.
Normalization: We normalized the static features in a sequence by either normalizing the
height axis (y-axis), all axes or normalizing each dimension over the entire sequence of
poses.

Combinations of Perturbations

Besides evaluating each of the features alone, we also investigated their combinations.
Two perturbation techniques were combined by applying them sequentially to the data.
Due to some techniques (first pose, average pose) not returning a time series, not all
combinations of methods are possible. As the overall number of combinations is quite high,
we focused on representatives of each class of features. We picked those representatives
by their anonymization impact on the data.

4.2.4. Recognition System

To test the impact of omitting features from human gait, and hence their contribution to
inference, we implemented a gait recognition system to perform closed-set identification.
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We opted for a simple gait recognition system that can be quickly trained, since we train
the system using perturbed data for each perturbation. We adapt the gait recognition
system by Horst et al. [134] using Python 3.8.3 [296], Scikit-learn 0.23.1 [278], and NumPy
1.18.5 [119]. We used two feature vectors to represent a data sample: flatten which
concatenates all poses of a sample into a single vector, and reduced angles which first
calculates a reduced representation of 17 markers representing the main body parts and
then calculated 10 joint angles from this representation.

Next, the data was split into train (75%) and test (25%) data. Here we differentiated
between the identity and sex recognition. For identity recognition, we split the samples for
each identity so that we have every identity in both sets. While for sex recognition we spilit
the samples identity-wise, making sure that every identity is only in one of the sets. We
did so to make sure that the classifier cannot learn the identity to perform sex recognition.
Following the split, we then scaled the data in each set by subtracting the mean and then
scaling with the standard deviation before we performed a principal component analysis
(PCA) to reduce the dimensions of the samples. As a classifier, we used a support vector
machine (SVM) using a radial basis function (RBF) kernel. For the training of the SVM we
used 10-fold cross-validation with the train set before we tested the best performing model
on the test set. In order to account for the random splitting of the data, we ran the entire
process 10 times.

4.2.5. Utility

Besides investigating the identity and sex recognition performance of our features we also
sought to understand how much the features contribute to the utility of envisioned appli-
cations. As our use case is to transfer the gait motion onto a digital avatar, the goal is
to retain as much naturalness in the motion data as possible. In order to measure the
corresponding effect, we performed an online survey with 22 human participants (13 male,
age: 18-60 years) which we asked to rate the naturalness of the perturbed gait sequences.
Participants were shown renderings of two gait sequences for each perturbation in which
the walkers (one male and one female walker, individually) were shown from the side 45
degrees rotated around the z-axis towards the camera. The renderings are identical to the
example videos we provided in Section 4.2.3. All sequences were shown in random order.
The participants then rated on a scale from 1 (worst) to 5 (best) how natural looking the
gait sequence appeared to them. The survey data collection is under the umbrella of the
project ("Privatsphare von Kérperbewegungen") approved on 30.09.2021 by the ethical
committee of KIT and was conducted in accordance with the Declaration of Helsinki. The
survey data was collected in anonymized form.

4.3. Results

In this section we present the results of our obfuscation experiments, by reporting the
recognition performance of the chosen feature categories. The results for identity and sex
recognition in two contrasting feature categories (macro vs. micro, dynamic vs. static) are
reported each. Note, that we report the body part removals (body parts vs. rest body)
separate from the macro and micro features for easier comparability.

As we conducted recognition experiments and the classified classes (for both identity
and sex recognition) have nearly the same number of samples per class, we selected
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accuracy as our metric. Accuracy is defined as the number of correctly classified samples
divided by the number of all classified samples.

In Section 4.2 we described the two feature vectors we used in our recognition system.
Since we were interested in how much identifiable information remains in the data after the
perturbation has been applied, we always report the values of the best performing feature
vector.

4.3.1. Macro vs. Micro Features
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Figure 4.4.: Boxplots of accuracy results for micro and macro features for identity (left) and
sex (right) recognition given in percent.

We start by comparing macro to micro features. For both, identity and sex recognition
(Fig. 4.4), we can see similar effects for the macro features: The variation removal via
rolling average and interpolation shows no effect on the accuracy. The coarsening of all
digits below the 100th digit has no effect, while coarsening from the 1000th digit position
leads to a drop in accuracy for sex recognition to 91% and identity recognition to 77%.
For the micro features, we see a difference between identity and sex recognition. Only
trajectory removal using an interpolation window of 1 drops the accuracy of the identity
recognition, while all of the others lead to a drop in sex recognition to about 90%. For
the micro coarsening methods we again see that identity recognition is not affected by
coarsening everything higher than the 100th digit, while for sex recognition we see a drop
of accuracy to 90%. Then coarsening the digits above the 10th digit leads for both, identity
and sex recognition, to chance level accuracy. The results show that sex recognition is
more dependent on the macro feature than on the micro features, while the identity can be
perfectly inferred from both of them.

4.3.2. Individual Body Parts in Isolation vs. Reduced Whole Bodies

Next, we evaluate perturbations of individual isolated body parts in contrast to reduced
whole body configurations (i.e., certain body parts were removed) (see Fig. 4.5). On the
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Figure 4.5.: Accuracy boxplots of results for individual body parts and all of the remaining
body parts for identity (left) and sex (right) recognition given in percent.

one hand, only the specified body part is used for the recognition (“keep”), while on the
other hand, the whole body minus the specific body part (“remove”) is employed. Fig. 4.5
shows that the removal of the legs slightly reduces the identity recognition accuracy to 97%.
At the same time, it is the only body part that achieves 100% recognition accuracy alone.
In contrast, keeping only the head as the standalone body part achieves the strongest
prevention from identity recognition, reducing the accuracy to less than 60%. Only slightly
improved performance is achieved by the standalone body parts torso or hip.

For the sex recognition, we find the same small reduction in accuracy for the removal of
the legs as we saw for identity recognition, while it is again the only body part to achieve
the full recognition accuracy as a standalone body part. However, for the other body parts,
we find that their removal does not impact the sex recognition score. Additionally, our
data shows only small effects on using only individual body parts in isolation. Comparing
identity to sex recognition, head, hip, and torso alone fare much better for sex than for
identity recognition. These results suggest that even the limited form information which is
integrated over time into dynamic form information is sufficient to identify biological traits
such as sex or even identity.

This finding is in line with human perception research. For example, Kozlowski et
al. [170] found that longer strides are perceived as more masculine. Center of moment
contains sex information (see also Section 4.1.2; [170, 242]). That is, as long as the stim-
uli contains information about certain body parts, sex and identity recognition is possible.

4.3.3. Dynamic vs. Static Features

Thirdly, we investigate the effects of dynamic and static feature perturbation on recognition
performance. In the case of identity recognition, depicted in Fig. 4.6, we observe that
only using the average pose or the first pose reduces the recognition accuracy slightly to
91% and 94% respectively, while other feature manipulations show no effect on identity
recognition. For sex recognition, our results show that while static features have close to
no effect on accuracy, all dynamic features appear to do so. So we can conclude that the
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Figure 4.6.: Boxplots of accuracy results for dynamic and static features for identity (left)
and sex (right) recognition given in percent.

static features are more important for the sex recognition than the dynamic ones.

4.3.4. Combination of Features
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Figure 4.7.: Accuracy boxplots of results for legs and head in combination with the other
categories for identity (left) and sex (right) recognition given in percent.

Here, we evaluate the combination of selected perturbation techniques from each cat-
egory. Due to the further removal of data, we expected to see larger reductions in the
classification accuracy for both identity and sex recognition. We also expected that with
fewer data available the classification process becomes more unsteady and therefore the

variance between the results will be larger.
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simplification of the data, which then is easier to classify. First, we describe the results for
body parts alongside other features, before moving on to micro and macro combinations.

The combination of body parts head and legs with the static, dynamic, micro, and macro
categories for identity recognition are shown in Fig. 4.7. Most of the legs combinations
remain at 100% accuracy. Only in combination with average pose and coarsening micro
(100), a slight decrease in accuracy can be observed. When the legs are combined with
coarsening macro (1000) we observe a large decrease in accuracy to close to 40%, while
both of these perturbations alone do not have an effect on the accuracy. The head (head
alone achieves 60% identity recognition) combinations are more of a mixed bag. While
average pose and coarsening macro further reduce the accuracy; resampling, coarsening
micro, and remove variations do not have an additional effect on the accuracy. However,
motion extraction, time normalization, and remove trajectory lead to an increase in the
recognition accuracy. All three methods focus more on the smaller variations in the data,
providing an indication that the identification of individuals via their head motion is more
dependent on the dynamic parts than the general movement.

Focusing on the combinations with head and legs for sex recognition, we find that while
there is no effect on accuracy in combination with static features, the combination with dy-
namic features has deleterious effects on accuracy. Specifically, the combination of head
and motion extraction results in a drop of accuracy to 75%. For the micro combinations, we
again find that the combinations with the head suffer the largest accuracy reduction. Here
the combination with micro coarsening nearly reaches chance level, while the same com-
bination with the legs stays above 90%. When we compare this with the macro coarsening
of the macro features, we find that the legs drop to a lower accuracy than the head. This
leads us to conclude that the sex recognition via the head data is much more dependent
on the macro part of the head position, while the sex recognition via the legs depends
more on the micro part of the positions.
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Figure 4.8.: Accuracy boxplots of results for macro, micro, dynamic, and static combina-
tions for identity (left) and sex (right) recognition given in percent.

The results of macro, micro, dynamic, and static feature combinations for identity recog-

nition are shown in Fig. 4.8. The macro-static combinations show accuracy decreases for
the combinations that contain macro coarsening. We also see these decreases when we
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look at the combination of macro dynamic features in which the macro coarsening leads
to a decrease in performance. The last combinations show an accuracy decrease in the
removal of the trajectory plus average pose which drops the recognition accuracy to 45%.
Comparing the removal of variations and trajectory in combination with the average pose,
show that the general trajectory of the walker contains much identifiable information in their
overall characteristic, while the small variations from the trajectories are only meaningful
when their dynamic features are preserved.

Lastly, we look at the same feature combinations as before but this time for sex recogni-
tion (see Fig. 4.8). In the case of the combination of macro and static features, the removal
of the variations does not lead to a drop in accuracy, while both combinations with coarsen-
ing macro drop to the same accuracy level of about 90%. This suggests that obfuscations
in combination with macro features have a bigger impact on the accuracy in comparison
to combinations with static features. All macro-dynamic combinations result in a decrease
of performance to about 90%.

Furthermore, removing the variations plus macro coarsening increases the performance
slightly when compared to just performing the same macro coarsening alone (see Fig. 4.4).
In the micro-static combinations, we find the removal of the trajectory average pose com-
bination to create a large drop in accuracy.

4.3.5. Utility
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Figure 4.9.: Boxplots of the naturalness rating scores for the perturbation techniques that
retained utility.

Finally, we report the results of the naturalness evaluation for all perturbation techniques
that have a median rating score which is greater than 1 (all techniques that retain some
utility; on the 1-5 scale described in Sect. 4.2.5) and are shown in Fig. 4.9. Perturbations
that resulted in a median score below that, were assumed to retain no utility and are
therefore not plotted. First, we note that none of the micro feature perturbations retained
any gait naturalness. In the static category only average and first pose managed to appear
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minimally natural, with median naturalness scores of 2. The exclusion of body parts of the
walkers had deleterious effects on the perceived naturalness, while still maintaining some
level of naturalness depending on the specific removed body part. Interestingly, keeping
only the arms or legs of the walker was rated as still somewhat natural, whereas all other
individual body parts in isolation were rated as non-natural.

The normalization of all axes and the normalization of the y-axes achieve the same level
(median of 5) of naturalness as the clear data. The only other techniques that achieve
the same naturalness ratings are the remove variation techniques. In general, these re-
sults are within our expectations, as perturbing the data should either maintain the same
level of naturalness or decrease it. The fact that most of the macro features retained the
naturalness of the walker is also unsurprising, as they preserve the majority of the gait
variations while the small variations we kept in the micro features are not perceived as
natural anymore. We did not evaluate the naturalness of the combinations, however, we
assume that a combination will at most reach the minimum naturalness rating score of its
two used perturbation techniques.

4.4. Discussion

Using ML for gait recognition based on motion capture data, we investigated the impor-
tance of features based on findings in psychology for identity and sex recognition. The
findings reported here, suggest that all of the features reported by psychology are trans-
ferable to ML approaches in identification performance based on walking motion. The
identification procedure is robust as even when large parts of the data are removed the
identification rates are high, only when multiple features are removed from the data a
significant impact on the accuracy can be observed. Consistent with previous studies in
psychology and neuroscience [279, 395, 361], we found that dynamic and static features
contain much identifiable information, hinting at strong temporal and physiological depen-
dencies in the data.

We anticipate that for the development of suitable anonymization techniques for gait
data the dependencies between the features have to be accounted for, as otherwise, the
reconstruction of the clear data is likely possible. For example, noise applied to marker
positions could be removed by smoothing the trajectories over time, since the general gait
cycle remains intact. Therefore, when changing the position of markers, the subsequent
time steps must also be considered. Alternatively, when removing a marker from a pose, it
can be reconstructed from the positions of the remaining markers. Wang et al. [371] have
convincingly demonstrated this, showing how adding noise does not effectively perturb
correlated data.

Interestingly, the removal of body parts and the subsequent performance accuracy alone
indicates a high redundancy in the data, and as such focusing on a single feature for anon-
ymization is unlikely to achieve a meaningful anonymization effect. This effect, albeit in a
much weaker form, has previously been shown in human person and biological perception
studies: The elimination of some local information, for example by removing point-light
display (PLD) dots corresponding to body parts, does not affect the recognition as long as
a certain degree of global form revealing dynamic posture changes is preserved [27, 176].

Both, the overall trajectories of the gait as well as small variations in the data, allow for
recognition of individuals. Thus, making it necessary to adjust the overall gait trajectory
for anonymization purposes. The overall pattern of results here provides converging evi-
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dence for the need to consider gait motion capture a strong personal identifiable trait, even
when recorded at low resolution or low frame rate. Many features, as investigated here
— macro, micro, dynamic and static features as well as individual body parts — contain
strong identifiable information about both, the identity and the sex of a human walker. With
our simple ML-based feature perturbation approach we found that coarsening the marker
positions precision, with the respective recognition performances of 45% and 2% for sex
and identity exhibited the strongest reduction of classification accuracy while removing
dynamic & static features generally only reduced recognition slightly. However, our utility
evaluation of the features shows that the perceived naturalness of the perturbed data is
diminished when the general motion or body structure of the walkers is removed. Thus we
see a strong indication that in order to develop strong anonymization for gait data, while
keeping its utility intact, a holistic approach is required. Such an approach should take the
dependencies in the data and the requirement for natural-looking results into account, for
example by generating synthetic gait trajectories.

4.4.1. Limitations and Future Work

The present study is based on data from 57 young adults. As such, it may be possible
to achieve better anonymization results with larger samples, as it becomes difficult to dis-
tinguish between individuals. However, as we have shown gait data does contain a large
amount of identifiable information, so larger effects from bigger samples are unlikely. The
present work presents results on one sole gait cycle per sample, future work should in-
clude multiple sequential gait cycles or gait data from multiple sessions. Furthermore, as
all individuals were from a similar age cohort, we believe that having a cohort of individuals
who are very similar to one another also strengthens the recognition results, as it becomes
more difficult to distinguish between them. It is possible that with the improvements of ma-
chine learning approaches, better classification results can be achieved on our perturbed
data. As such our approach only gives a lower bound how much identifiable information
remains in the perturbed data. This fact is also shown by some of the combinations of per-
turbation techniques where the combinations achieved higher recognition accuracy than
the individual techniques alone.

With regards to the user study we would like to point out that our definition of utility
only takes into account how natural other people perceived the anonymized PLD gait se-
quences shown to them. We did not investigate if the original walker themself would find
their perturbed gait to be natural. We did so because we assumed that the device used
in our system-and-threats-model is trusted by the user and therefore would display the
real gait (pre-transfer to the service provider described in Sect. 3.1; labeled "clear" in the
present work) to the user as it is recorded locally in real-time, instead of an anonymized
version of the user’s gait. Furthermore, we based our present investigation on an exist-
ing open-source dataset and therefore have no access in an ethical and legal way to the
original walkers due to inter alia data protection and privacy reasons. Future studies that
obtain their own motion capture recordings could include an evaluation of utility by ask-
ing the recorded walkers themselves to evaluate their perturbed gait or other movements
recorded with motion capture.

For additional future work we propose to conduct the same set of experiments with
human observers to directly compare human and machine gait recognition, in order to
gain insight into how both differ in regards to identifying individuals and their sex. Although,
the human ability to process biological motion such as gait-based person perception and
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recognition is susceptible to viewer-specific influences such as age [35], social factors
(e.g., interpersonal context, stereotypes) [36, 153], neurodevelopmental disorders (e.g.,
autism, schizophrenia) [36], and other potential experimental , concomitant, and individual
factors[93, 122, 411, 59, 153, 191]. Thus, utilizing machine gait recognition provides a
more objective evaluation method for different anonymization techniques.

4.5. Chapter Summary

In this chapter, we addressed the question of how much specific features of human gait
contribute to the ability to discern the identity or sex of different human individuals in gait
data. Here, we found that overall identification performance was indeed very robust. Re-
moving large parts of the data, either by omitting body parts or reducing spatial and tem-
poral resolution, did have little effect on the recognition performance.

One possible interpretation of the findings is that gait is idiosyncratic and very redundant.
Moreover, gait can be considered an individual trait that shows little variability over time
and even lifespan. Studies reported that major adult gait emerges already at the age of
five years, although age-related effects such as slower gait or shorter steps as well as
age-related body proportion changes have been found as well [242].

Our results suggest that gait will be very hard to anonymize effectively. This entails that
anonymization cannot be achieved with simple means, but will require intricate approaches
that take the inter -dependency of the connected body, as well as the overall generating
process of the walking human into consideration. Utility can only be retained when the
macro structure of the walker and its dynamic are largely kept intact.
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5. Investigating the Privacy Issues of Facial
Motion Data

Figure 5.1.: A user wearing a mixed reality headset with facial motion tracking. Their avatar
mimics their facial expressions. This image was generated with ChatGPT-4.5.

Mixed Reality (MR) promises to fuse the real and digital worlds. This implies the univer-
sal tracking of MR users to create precise digital twins of them. Their appearance, voice,
and motions are captured and streamed onto digital avatars. The newest generation of
MR headsets (e.g., Apple Vision Pro' and Meta Quest Pro?) already integrate face and
eye tracking to animate the faces of these digital avatars (see Figure 5.1 for an example).
In this process, the videos captured by the headsets are transformed into abstract repre-
sentations of facial motion data known as ’‘blendshapes’. Integrating facial and eye motions
improves social interactions in MR, as subtle non-verbal cues can now be transmitted to a
dialogue partner. Currently, we are still in the early adopter stage of this technology as only
a handful of applications such as VRChat® or virtual YouTubing (using a virtual character

1 https://www.apple.com/apple-vision-pro/
2https ://www.meta.com/de/en/quest/quest-pro/
3https ://hello.vrchat.com/

This chapter is based on the contributions:

« Adriano Castro, Simon Hanisch, Matin Fallahi, and Thorsten Strufe. “FacialMotionID: Identi-
fying Users of Mixed Reality Headsets using Abstract Facial Motion Representations”. 2025.
DOI: 10.48550/arxiv.2507.11138.
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to create videos) make use of facial motions. Nonetheless, with the advancement of MR,
facial motion tracking is expected to become a standard feature of future MR devices.

However, sharing facial motion data in MR poses a potential privacy risk because facial
motions are a behavioral biometric trait. It may yield both identity and attribute disclo-
sure risks: An attacker could use the facial motion data from the avatar shared in MR to
perform privacy inferences like identification or employ attribute inferences, like emotion
recognition.

Imagine a user visiting a digital store in the Metaverse wearing an MR headset. The
user has a generic avatar that does not reveal their identity, and the avatar’s facial motion
tracking is turned on by default. Without the user’s knowledge, the store owner can collect
their facial motion data by observing the avatar’s facial animations. The store owner can
use this data to identify the user, determine if they have visited the store before, and
recognize their facial expressions to see which items they like. Thus, the user shares
much more private information than they realize.

Although many behavioral biometric traits, such as gait [115], voice [53], and eye gaze [173],
are already known to be privacy sensitive, this remains an open question for facial motions.
Therefore, we seek to understand whether individuals can be identified from facial motion
data and whether emotional states can be inferred.

The main contributions of this chapter are as follows:

* We recorded a novel facial motion dataset, which for the first time allows the investi-
gation of associated privacy risks.

+ We demonstrate that the identification of individuals is possible from facial motion
data alone.

* We show that re-identifying people across sessions and different MR headsets is
possible.

» We confirm that emotion recognition from abstract facial motion data can be per-
formed with high accuracy.

5.1. Related Work

In the following section, we will present the related research on identifying individuals in MR
through analysis of facial motion. The primary focus of our research lies in the development
and analysis of methodologies for the identification of facial motion from video data, the
detection of facial expressions, the identification through eye gaze, and the identification
of individuals from MR motion data.

Facial Motion Identification Some preliminary studies have been conducted on the
identification of individuals based on facial motion, with the majority of these studies fo-
cusing on video data.

Benedikt et al. [29] employed 3D videos of faces to assess the distinctiveness of facial
motion for biometric authentication. The trajectory of these facial motions is then repre-
sented within the Eigenvector space of diverse facial expressions. Their findings indicate
that non-verbal tasks may not be as effective in terms of identification from facial motions
as verbal tasks. Zhang et al. [403] performed a similar study, in which they collected 3D
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videos of participants speaking a passcode 10 times. The system demonstrates an impres-
sive capacity to identify the participant from the dynamic features of the video, achieving
a 96% accuracy rate with 77 participants. Haamer et al. [110] collected a video dataset of
61 participants performing various emotion tasks. They then show that participants can be
identified using the videos recorded.

Moreira et al. [246] utilized a heuromorphic sensor, an advanced device capable of cap-
turing precise alterations in individual pixels, to record the facial expressions of 40 partic-
ipants while reciting nursery rhymes. They can show that identification is possible with
accuracies as high as 96%.

The existing literature suggests that the identification of individuals through facial motion
is feasible for both facial expression and speaking tasks. However, given that the majority
of studies employ video data, it remains uncertain whether identification can be achieved
exclusively through the analysis of facial movements alone, since face recognition is possi-
ble on static face images. Additionally, the question remains open whether individuals can
be identified across multiple sessions via facial motion data.

Facial Expression Recognition One field of study that has focused on facial motion
analysis is facial expression recognition. The objective of facial expression recognition is
to categorize the emotions displayed by the individual captured on video [169]. Zhao et
al. [406] propose a lightweight model to extract the displayed emotion from face images.
Wen et al. [374] use an attention network to perform emotion recognition and achieve
state-of-the-art performance. Furthermore, Chen et al. [51] have employed the differences
between a neutral face and an expressive face to enhance the learning of different face
expressions. To improve generalization in their face recognition model, Zhang et al. [405]
propose learning an identity-independent representation of facial expressions using devia-
tion learning. This involves subtracting a person’s identity, established by a face recognition
model, from their facial expression embedding.

Lee et al. [179] investigate facial expression recognition using a face mask that mea-
sures facial deformation, rather than via videos.

Facial expression recognition has also already been investigated in the context of MR
by Chen et al. [50] in a study in which extra cameras have been integrated into an existing
MR headset. Additionally they used an external camera to capture the part of the face
which is not hidden behind the MR headset. They then show that they can achieve a facial
expression recognition accuracy of 95%.

Facial expression recognition shows that facial motion data is useful for more than just
direct social interactions between people. However, this information should also be con-
sidered private, and individuals should have the choice of when and how they share their
emotions.

Eye Gaze Eye gaze was recognized as a privacy-sensitive topic some time ago and has
also drawn attention as a possible behavioral biometric trait for authentication. Lohr et
al. [193] showed that they could identify 269 subjects with a mean EER of 4.72% using the
SBA-ST dataset [94], which was captured with a dedicated eye tracker. They further im-
proved their method in EyeKnowYouToo [194], which is the current state-of-the-art model
for user authentication based on eye gaze. They achieved an EER of 3.66% at a sam-
pling rate of 1000 Hz and an EER of 8.77% at a sampling rate of 125 Hz. In a later study,
Raju et al. [302] investigated the performance of eye gaze authentication on the Gaze-
BasedVR [192] dataset and showed that short-time authentication works well but that the
EER increases to 10% for longer sessions.
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Figure 5.2.: The data sharing pipeline of facial motion data captured by MR headsets.

Shao et al. [328] aim to create an eye-gaze identification system in MR that is indepen-
dent of the content shown to users. They use two encoders: one for content and one for
eye gaze. They achieved an F-score of 92%. Asish et al. [20] use eye gaze features of 34
people performing four different tasks for identification in Virtual Reality (VR).

As the privacy-sensitive nature of eye gaze data has been recognized, the first stud-
ies [187, 307, 375] seeking to anonymize it have emerged. Common methods of anonymi-
zation include adding noise or smoothing the eye gaze trajectories.

Eye gaze is useful not only for authentication, but also for foveal rendering. Foveal
rendering is a selective rendering process that increases the level of detail in the section
of the image at which the user is looking. Several studies [18, 138, 75] attempt to predict
eye gaze to enable foveal rendering.

The research on eye gaze data showcases the dual nature of behavioral biometric data,
as both privacy inferences, as well as desired applications like authentication and foveal
rendering are possible with it.

Mixed Reality Identification In recent years, the subject of identifying people using mo-
tion data recorded by MR headsets has gained traction, and multiple studies have been
published on the topic. Among the first of these studies, Miller et al. [240] recorded 511
participants watching 360-degree videos in VR. The researchers demonstrated a high
identification rate of 95% using the head and controller motions. Liebers et al. [184] demon-
strated that identifying individuals is possible by combining the head orientation and eye
gaze of 12 people captured with a MR headset. Moore et al. [245] investigated which VR
tasks are most effective for identification, once again using headset and controller motions.
They found that identification success depends on the VR content used. Nair et al. [250]
used a large-scale dataset of people playing Beat Saber* and demonstrated their ability to
identify players in a pool of over 50,000 people with 94% accuracy using 100 seconds of
headset and controller motion data.

5.2. Background

Here, we briefly describe the background for MR motion tracking required for this work.
Facial Motion Tracking: The MR headsets used in our study rely on camera-based

face tracking. Inward-facing infrared cameras capture the eyes and mouth of the person

wearing the headset. This video data is then transformed into a symbolic representation

4https ://www.beatsaber.com/
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MouthRight = 0.0 MouthRight = 0.5 MouthRight = 1.0

Figure 5.3.: A blendshape named “MouthRight” being activated on an MR avatar from 0 to
1 through interpolation.

which is shared via applications on the MR headset. See Figure 5.2 for the full data sharing
pipeline of facial motion data. For facial motions, the data is represented as blendshapes.
Blendshapes are a type of interpolated animation, also known as morph target animation.
In this type of animation, the neutral state and deformed version of an object are stored
for each blendshape. Then, for each frame of the animation, the object’s vertices are inter-
polated between the neutral and deformed versions. An example of a blendshape for an
MR avatar is the right part of the mouth (see Figure 5.3). In the neutral state, the mouth is
symmetrical; in the deformed state, it is pulled to the right side of the face. All intermediate
states can be created via interpolation. The blendshapes defined by the MR headsets
are usually based on the Facial Action Coding System (FACS) [83, 132]. The former is a
system that defines and describes all distinguishable facial movements, so-called action
units. These action units are derived from anatomy, and with them complete expressions
can be recognized objectively. Two examples of such action units are “Cheek Raiser” and
“Lip Corner Puller” that together can be interpreted as the expression of happiness.

Eye Tracking: The user’s eye gaze is captured via infrared cameras positioned inside
the MR headset. The video is then converted into gaze direction and eye position data.

Motion Tracking: For the motion tracking in MR headsets there exist two main ap-
proaches. Inside-out tracking describes the approach in which multiple cameras on the
outside of the headset are used to establish its position. The second approach is light
house tracking in which one or multiple static light houses emit sequences of infrared light
which are registered by infrared sensors on the surface of the headsets and the controllers.
The headset and controllers can then compute their distance and orientation in relation to
the light houses. When comparing the two approaches, inside-out tracking is less precise
but easier to use than lighthouse tracking.

5.3. Study Design

In this section, we describe the design of our study to investigate identity and attribute
disclosures from abstract facial motion data. We first explain the general rationale before
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providing a more detailed explanation of the tasks used and the selected recording sched-
ule.

Design Rationale The main goal of our study is to investigate whether identifying indi-
viduals from their facial motion data is possible. To allow biometric recognition systems to
train on the data and recognize identifying patterns, we require a large number of samples.
Therefore, we require numerous repetitions and task executions involving a diverse group
of participants. Additionally, we aim to determine whether facial motion data is a stable
biometric factor over time; therefore, we will record multiple sessions with each participant.
Lastly, we want to investigate whether facial motion data generalizes well when different
devices are used to capture facial expressions. Therefore, we record our participants using
multiple device types that integrate facial motion tracking.

We see the main application of facial motion data for animating digital avatars as speak-
ing to other people and displaying emotions. Consequently, we focus on tasks involving
two types of categories, namely speech and emotional expression for data collection. As
mentioned in Section 5.1, emotion recognition has been shown to work previously. Hence,
we integrate it into the study to test collected data and to compare results. Since facial
motion data will likely be used in combination with eye gaze and head motion data—and
as these are readily available in the common MR headsets—we also collect these.

Recording Procedure We chose to record our participants over the course of three
separate sessions, with each session being approximately a week apart from each other.
In the first session, participants first answer a short questionnaire about demographics
before the actual recording starts. During each session, we record each participant per-
forming the same set of tasks with two different MR headset types. We chose to keep
one headset type the same throughout all sessions, whereas the respective other headset
was alternated between the remaining two in each session. This allowed us to record all
participants using three different headsets. Due to the change in the second headset, we
split our participants into two groups, A and B, to keep track of which second headset had
to be used in each session.

Tasks We designed a task-based study in which participants performed predefined tasks
sequentially. An overview can be seen in Table B.1. At the beginning of the study, one
tutorial task was performed for each task type. To cover the described applications, we
selected verbal tasks, in which participants read a given text aloud, and non-verbal tasks, in
which participants mimic a facial expression. Studies such as [29, 246] have demonstrated
that verbal tasks contain the most identity cues in facial motion, unlike non-verbal tasks.
Therefore, the predominant task category we selected is verbal tasks.

First, the participant is shown the current task. Then, the participant starts the actual
recording phase for the task by pressing a button. During the recording phase, the partici-
pant performs the task. The recording phase is ended by pressing the same button again.
All tasks and their repetitions are presented to the participant in a random order. There
are four repetitions for each task in the first session and five repetitions for each task in the
second and third sessions. The reduction of repetitions in the first session allows time for
the questionnaire.

Non-verbal Tasks: We presented the non-verbal tasks using emoticons that displaying
three different facial expressions: happiness, anger, and fear. See Figure 5.4+5.5 as an
example for a non-verbal task. This abstract representation should encourage participants
to perform the facial expressions as they normally would rather than closely mimicking

50



5.3. Study Design

Figure 5.4.: The participant performs the Figure 5.5.: The participant performs the
expression starting with a neu- expression fear, after doing
tral face. the neutral face .

the avatars shown to them. Therefore, we did not use high-fidelity digital avatars. We in-
structed participants to mimic the non-verbal tasks shown to them by starting with a neural
facial expression and to then transition into the shown facial expression. An animation of
the emoticon changing from neutral to the target expression illustrates this process.

Figure 5.6.: An example of a verbal task in which the participant is uttering the nursery
rhyme “Sing a Song of Sixpence”.

Verbal Tasks: During the verbal tasks (see Figure 5.6), participants are asked to utter
words and sentences. Lu et al. [201] have shown that words and groups of sentences
that contain a large number of phonemes are best suited for identification. A phoneme
is the smallest unit of sound which makes a lexical difference in a language. Additionally,
Moreira et al. [246] have already shown that reciting nursery rhymes are suitable for facial
motion identification. Therefore, we selected nursery rhymes for the verbal tasks because
they contain various repetitive phonemes. To select the nursery rhymes, we used a list®

5https ://www.bbc.co.uk/teach/school-radio/articles/z4ddgwx
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of common English nursery rhymes. To keep the verbal task short, we prepared the list
by splitting all rhymes, such that each part is at most four lines long. Next, we counted
the phonemes of each nursery rhymes and selected the top three with the highest count.
Out of these selected nursery rhymes, we selected one word of each that contained the
highest amount of phonemes, constituting the word tasks.

5.4. Study Implementation

The study was conducted between January 22 and February 14, 2025. It took place in the
kd2lab that contains multiple small booths specifically designed for user studies, and an
office for their supervision. We divided each study day into 12 slots, with each day ranging
from 8:30 am to 6:15 pm. Since we aimed for a study duration of approximately 30 minutes,
an equal time allocation was assigned to each slot. To compensate for unexpected dura-
tion times, we added a 15-minute break between each slot. At each slot, two individuals
participated simultaneously — one from group A and another from group B. As each booth
contained a door, each participant could perform the study without any disturbances.

Ethics The data collection was approved by the ethics commission of the Karlsruhe In-
stitute of Technology (research project "Privacy of Facial Motions”) and was conducted in
accordance with the Declaration of Helsinki. Participants were paid based on their time
of participation at an hourly rate of 14€. Additionally, participants received a flat bonus
of 2€ or 3€ for participating in the second and third sessions, respectively. We obtained
informed consent from all participants for the data collection and processing.

Apparatus During the study, we used four MR devices, namely two Meta Quest Pros,
one Pico 4 Enterprise®, and one HTC Vive Pro Eye’ with the Facial Tracker add-on2. All of
these devices support eye and facial tracking in addition to standard head and controller
tracking. Moreover, the devices and their tracking are supported by Unity, the Game En-
gine that we used to implement the application for our study. While the first device type is
designed for both augmented and virtual reality, the other two are purely VR devices. Since
we only require VR, the three types of devices were deemed suitable for our experiments.

The study was implemented as a Unity application since all selected MR devices sup-
ported it. Unity Engine v2021.3.32f1 was utilized for development, as it was the most
recent long-term support version supported by all headsets and their tracking APIs. We
created a scene for each device, as they required individually configured XR cameras and
device specific code to activate their motion tracking.

To be able to access the motion data of the devices and store them, we utilized sev-
eral Unity packages that allowed the interaction with the APIs of the devices. For the
Meta Quest Pro we used the Meta Movement SDK v71.0.1 including the Meta XR Core
v71.0.0 and the Meta XR Interaction SDKs v71.0.0%. For the Pico 4 Enterprise we used
the PICO Unity Integration SDK v2.5.0'°. And for the HTC Vive Pro Eye we used the
VIVE OpenXR Plugin v2.0.0'" with addition of the VIVE SRanipalRuntime v1.3.1.1 and

6https://www.picoxr.com/global/products/pico4e
7https://www.vive.com/sea/product/vive—pro—eye/overview/
8https://developer.vive.com/us/hardware/facial—tracker/
9https://developers.meta.com/horizon/documentation/unity/move—overview/
1Ohttps://developer.picoxr.com/document/unity/?v=2.5.0
11https://github.com/ViveSoftware/VIVE—OpenXR—Unity
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5.4. Study Implementation

the OpenXR Plugin v1.9.1 for the facial tracker. Both our Meta Quest Pros used during
the study had identical software and runtime as well as OS versions, namely v71.0.0 and
SQ3A.220605.009.A1 respectively. The Pico 4 Enterprise ran on version v5.9.9, and the
Vive’s eye and lip camera versions were v2.41.0-942.e3e4 and v50100 in corresponding
order.

Recruitment We recruited 116 participants (45 female, 71 male; age mean 23.6 years,
std 4) with the help of the KD2Lab panel of the Karlsruhe Institute of Technology. The
distance between two subsequence sessions was between 4-16 days (participants per
session 1: 116, session 2: 83, session 3: 49). Of the participants, 67 were native German
speakers, while the rest reported a different mother tongue. 67 describe themselves as
ambiverts, 26 as extroverts, and the remaining 23 as introverts.

The participants were assigned to their respective group at random. While group A used
the HTC Vive Pro Eye in addition to their assigned Meta Quest Pro in the first session,
group B started with the Pico 4 Enterprise. In the second session, group A then received
the Pico 4 Enterprise instead of the HTC Vive Pro Eye, and group B vice versa. In the third
session, group A and B each returned to their first headsets. Thus, each participant who
participated in all sessions used each device at least once and the Meta Quest Pro three
times.

Figure 5.7.: A participant performing the tasks with the HTC Vive Pro Eye.

Session Procedure For the first session, our participants required more thorough guid-
ance and support. We began by introducing the study and explaining the procedure, em-
phasizing the data collection process and its purpose. Then, we started a timer to keep
track of their study duration, which was relevant for their payment at the end. Then, we
assigned each participant a random pseudonym to be used for the remainder of the study.

Next, we escorted each participant to their assigned room. Each participant was given
an information sheet with details about the study, a data protection agreement, and a
survey. The survey collected information about the participants’ age, sex, origin, self-
assessed personality traits, English proficiency, and mother tongue. After completing the
survey, the participants watched a short introductory video showing them how to use the
MR headsets and their respective calibration procedures.
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After watching the tutorial videos, the participants were brought to the booth with their
first headset. We helped them become accustomed to the headset and to perform the eye
calibration. Thereafter, the participants started the Unity application and, thus, performed
the tasks shown through their MR headset. When they completed the tasks with the first
headset, they were brought to the second one, where we repeated the procedure. At the
end, the participants filled in a short online survey to receive their payment with their own
payout token assigned through the experiment organization. To reduce any possible bias
in the data due to headset order, the order of the headsets was inverted for each group of
participants. See Figure 5.7 for an example how the participants performed the study.

In subsequent sessions, participants did not have to fill out the survey or data protection
sheet again. Although we asked the participants if they wanted to watch the eye calibration
tutorial videos again, they usually skipped them since they remembered how to perform
the tasks. Additionally, the subjects usually skipped reading the study information sheet
from the first session. They were usually brought directly to the headsets and performed
the study as described above.

Troubleshooting During the study, there were some difficulties. For the first recording
day (22.01.2025) we encountered a problem for the facial motion recording of the HTC
Vive, and as a consequence the HTC Vive recordings for the first day contain less blend-
shapes then the following recordings. Another problem we encountered with the HTC Vive
was that for some of the audio recordings the recording frequency was higher than con-
figured, though this was unproblematic since our data processing approach presented in
Section 5.5 is robust against it. The eye calibration of the Meta Quest Pro devices turned
out to be challenging, as it would regularly finish unsuccessfully. This seemed to be more
frequent with participants wearing glasses, yet it also happened with non-glasses wearers.
In such problematic cases, we helped the participants adjust the lenses and the position
of the headset on their heads — it did help a relative number of cases, but not all of them.
Due to these problems, the quality of the eye tracking for the Meta Quest Pro suffered.
Another challenge was that both the eye and face tracking of the Meta Quest Pro devices
tended to suddenly malfunction in between participants. This happened once per Meta
Quest Pro device, and was unfortunately only discovered at the end of the day. Due to this
issue, we lost 19 recordings.

5.5. Data Processing

Upon the completion of each participant’s session, our Unity project generated a unique
directory containing the relevant data and metadata gathered during it. This included
the unsegmented face, eye, and head motion data, as well as the execution order and
timestamp range of each task repetition, a microphone recording along with its metadata,
and a log file.

Since the facial and eye motion data formats exported by the MR devices are not exactly
the same, a unification step was necessary. See Table B.2 for the exact mapping for each
MR headset. For n-to-1 mappings from the devices to the unified format, we use the mean
of the directions. One example of this is the CheekPuff blendshape. The HTC Vive and
Meta Quest Pro support CheekPuff for both sides of the face, while the Pico 4 Enterprise
only returns one CheekPuff blendshape.
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Table 5.1.: Overview of the dataset regarding the amount of samples it comprises.

Per Group Per Device Per Session
Segmentation Total
A B Vive Pico Meta 0 1 2
Recordings 499 232 267 132 127 240 229 150 120
Tasks 19296 8883 10413 5175 4905 9216 8136 6750 4410
Words 197255 | 88477 | 108778 | 45087 | 51631 | 100537 | 82814 | 67362 | 47079

As our study consisted of tasks, we partitioned the unsegmented data of each partic-
ipant into individual task-level segments. Moreover, we segmented the aforementioned
task-level segments which belonged to text tasks further into word- and phoneme-level seg-
ments. The word- and phoneme-level segmentation can be found in the Appendix B.2.2.

Task-Level Segmentation: First, the data was segmented by task. To achieve this, we
used the timestamp ranges stored during each task repetition. When a participant started
a task, a timestamp was saved to mark the start of execution. Then, when the participant
finished the task, a second timestamp was saved to mark the end. Since we stored the
timestamp of when each sample of motion data was collected, we could identify which
samples belonged to which task repetition in each motion data file.

Data Availability In total, we recorded 259 sessions. 19 of these sessions were missing
one headset recording, resulting in a total of 499 individual headset recordings. Table 5.1
provides an overview of the number of samples segmented as described above.

5.6. Evaluation

Here, we present the evaluation that we performed on the dataset. Our main goal is
to investigate the types of privacy inferences that can be made from facial motion data.
However, we also perform the same experiment on eye gaze and head motion data to
allow for comparison. First, we present the experiments we performed. Next, we detail
the methodology for the biometric recognition system. Lastly, we present the results of the
experiments.

Experiments First, we want to establish whether identification from facial motion data
collected using MR headsets is possible. Prior work on facial motion videos (see Sec-
tion 5.1) and on eye gaze identification (see Section 5.1) has demonstrated the feasibility
of identifying individuals. Therefore, we expect identification from facial motion data to be
possible. For Experiment E1, we will investigate the identification for each headset sepa-
rately, as well as all headsets together. Next, we want to know if the identification is stable
over time. For Experiment E2, we use the first two sessions for training the biometric
recognition system and then only test on the third session. Then, in Experiment E3, we
examine whether we can re-identify individuals when they start using different headsets.
This gives us insight into how dependent identification is on headset type, and whether it
can be generalized across MR headset types.

Besides identification, the related work (see Section 5.1) suggests that it should be
possible to infer the facial expression and therefore we expect that it is possible to infer the
emotion displayed in the non-verbal tasks. In Experiment E4, we test how good we can
recognize the emotions displayed in our non-verbal tasks. Further, we also test if we can
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correctly classify which verbal task was performed. More experiments and their results
can be found in the Appendix B.2.3.

Data Preparation & Splitting For our evaluation, we use task-level segmentation of our
dataset in the unified data format. We filter out the recordings performed on January 22,
2025, as some of the Vive’s facial motion data values are missing. We then remove the
timestamp column from the remaining samples and resample each one to 100 frames,
normalizing the size of all samples.

Next, we split the data into training and testing datasets for the biometric recognition
model. The testing dataset is used exclusively to calculate the model’s final performance.
Since different experiments require different data splits, we use multiple splits:

Random: For the random split type, we randomly split all samples, allocating 80% to
the training dataset and 20% to the testing dataset.

Session: For the sessions split-type, we use the recordings from the first two sessions
from each participant as the training dataset and the last session as the testing dataset.

Leave-one-headset-out-per-participant (LHPP): The LHPP split type uses two MR
headsets per participant for the training dataset and one MR headset for the testing dataset.
This allows the biometric recognition model to learn to recognize specific participants and
to use data from each MR headset type.

Participant: The participant split type allocates 80% of participants to the training
dataset and 20% to the test dataset. This type of split is used for attribute inference exper-
iments to prevent cross-contamination of the results, e.g. the model learning to recognize
attributes by identifying the specific participant.

Biometric Recognition Models As identification using facial motion data is a new field, it
is unclear which machine learning approach will perform best for the biometric system. For
our experiments, we therefore use three commonly employed machine learning models as
a biometric recognition system. The first is a simple fully connected neural network that
receives each sample as a single vector. This neural network consists of at least two fully
connected linear layers and a variable number of hidden layers, which are determined
via hyper parameter optimization. After each linear layer, we use a Rectified Linear Unit
(ReLu) activation function, as well as a dropout layer, to prevent overfitting. The second
model is a Long Short-Term Memory (LSTM) that processes each sample frame-by-frame.
To determine the most likely class, we first use a linear layer to reduce the size of the
output vector to the number of classes. The third model is EKYT [194], a DenseNet-based
architecture. Between each convolution block, the network uses batch normalization and
the ReLu activation function. All networks use log softmax to perform the final classification
step.

The training dataset is randomly split into a main training dataset and a validation dataset
for model training. The main training dataset contains 90% of the data, and the validation
dataset contains 10%. Each model is trained for a maximum of 100 epochs with early
stopping if the validation accuracy does not increase for 10 epochs. We use negative log
likelihood loss as the loss function and 1280 samples as the batch size.

We determine the best model parameters for each experiment by performing parameter
optimization for 100 steps. See Table B.3 for the optimized parameters. After optimization,
we use the model with the best performance on the validation dataset and run it on the
testing dataset to determine the final accuracy for each experiment.
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Table 5.2.: Identification accuracy using a random split

Data Type | Model | Vive | Pico | Meta | All Chance
Simple | 0.78 | 0.83 0.02
Facial LSTM 0.77 0.02
EKYT | 094 | 0.98 | 0.88 0.9 | 0.02
Simple | 0.87 0.02
Eye LSTM | 0.86 0.02
EKYT | 1.0 0.87 | 0.92 0.78 | 0.02
Simple | 0.99 | 0.88 | 0.76 0.02
Head LSTM 0.94 0.78 0.76 0.8 0.02
EKYT | 1.0 0.95 | 0.98 0.95 | 0.02

Table 5.3.: Identification accuracy using a session split
Data Type

Facial 0.11  0.11
0.14 0.23

0.14 0.03 0.03
Eye 0.12 0.02 0.07
0.1 0.06 0.1

0.0 002  0.16 ‘0.08‘

Head 0.0 001 0.5 ‘0.06‘
0.0 001 0.16

Implementation We implemented the biometric recognition models using Python (3.12)
and PyTorch (2.6.0). As learning optimizer, we used Adam, and for the parameter opti-
mization we used Optuna (4.3).

Results Here, we present our evaluation results. As a metric, we always use the accu-
racy, which is defined as the correct classifications divided by all classifications. Further,
we also always give the percentage of the largest class in the experiment-specific data
split as the chance level.

For our Experiment E1 (see Table 5.2), we used the random split to gain general un-
derstanding of how well the identification works. For the facial data, we find that the Pico
achieves the highest identification of 98%, the Vive achieves 94%, the Meta achieves 88%,
and using all headsets together we achieve 90%. This fulfills our expectation that identifi-
cation on facial motion data is possible.

Comparing to the eye and head data types, we find that for both we achieve 100% identi-
fication for the Vive and the EKYT model. In general, we can observe that the identification
works for all data types, and all headsets, with the head motion data performing the best
in general, though the facial and eye motions are not far behind.

Moving on to Experiment E2 (see Table 5.3), we now split the data according to their
sessions into training and testing dataset. In general, we can see for the face data that all
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Table 5.4.: Identification accuracy using the LHPP split for all headsets

Data Type Model | simple | LSTM | EKYT | Chance
Facial 0.02
Eye 0.02
Head 0.02

Table 5.5.: Emotion recognition accuracy using a participant-wise split for all headsets

Model .
Data Type Simple | LSTM | EKYT | Chance

Facial 0.86 0.86 0.86 0.33
Eye 0.33
Head 0.33

headsets and model combinations exceed the chance level for identification. The best re-
sult is 43% balanced accuracy for the face data of the Meta when using the EKYT model.
We conclude that the identification across sessions is possible, but most of the learned
features from E1 identify the specific session and are not general for the individual. Com-
paring E1 and E2 results, it is also interesting to see that in E2 the Meta performs far better
for facial motions, while in E1 it has the worst performance of all three headset types.

Next, we test if we can recognize participants across different MR headsets in Experi-
ment E3 (see Table 5.4). The LHPP split leaves for every participant one headset type for
which the model has not seen any data, hence, we simulate that the user switches to a
new type of MR headset. The best accuracy for facial motion data is achieved by EKYT
with 63%, showing that identifying individuals across headsets is possible, however, at a
lower rate than in our baseline E1.

In our Experiment E4, we tested emotion recognition using only emotion tasks (see Ta-
ble 5.5). As expected, facial motion data was the most effective for emotion recognition,
with 86% accuracy. However, eye and head motions also enabled some emotion recogni-
tion, with accuracy rates of 59% and 58%, respectively.

Summary of Results
» We are able to show that persons can be identified from their facial motions.

» The identification across different sessions is possible, however, the achieved accu-
racy is not on a level that is usable for any real-world system at the moment.

» We are able to show identification across different MR headset types.

» We are able to infer the displayed emotion.

5.7. Discussion

Facial motion data is a behavioral biometric factor that can be used for identification, so it
should be treated as such when sharing it online. However, our results indicate that facial
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motion might not be stable enough to reliable identify individuals over long periods of time.
Only larger studies with longer intervals between sessions can determine whether facial
motion data poses a long-term privacy threat to individuals. We expect MR headsets to
improve their ability to record facial motion data in the future, so we also expect privacy
problems with facial motion data to increase.

When we compare our eye gaze and head motion results to those of previous studies,
such as GazebaseVR [192] for eye gaze data and Nair et al. [250] for VR data, we find
that our identification results are are not as good, especially when considering multiple
sessions. We believe this is because the tasks in our dataset are designed primarily to
capture facial motion data. For example, GazebaseVR uses specific eye-tracking tasks,
such as following a dot with one’s eyes or reading tasks. In contrast, we only record data
after participants read the tasks and push the button to start recording; therefore, we do
not expect much eye motion during recording. Additionally, none of our tasks require head
motion, so little variance is expected.

5.8. Chapter Conclusion

In this chapter, we present the results of the first comprehensive study into identifying
individuals via abstract facial motion data. We demonstrate that identification rates of up
to 90% are possible in a single session. In the multi-session scenario, some identification
clues remain, but it is not possible to reliably identify individuals. Our results demonstrate
that facial motion data is privacy-sensitive and must be protected accordingly. We expect
the collected dataset to be a valuable resource for future research into privacy protections
for facial motion data.
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6. Improving the Evaluation Methodology
for the Anonymizations of Biometric Data

As we found in our survey of behavioral biometric data anonymization (see Chapter 3), the
evaluation methodology is flawed. It often implicitly uses an evaluation scenario that does
not assume a worst-case scenario, which leads to an overestimation of the anonymization
performance. Here, we address this problem.

Reliable evaluation begins at the assumptions made about an attacker. These assump-
tions must be robust, because otherwise the evaluation methodology will likely deliver
grossly inaccurate estimates of anonymization performance. The result will be a false
sense of privacy, and the consequence will be the erosion of user trust when anonymi-
zations, perceived as reliable, do not deliver the expected protection. Moreover, any in-
accuracy or even error in an evaluation methodology will detrimentally affect advances
in research. Flaws in the methodology may feed into future research and thus hinder or
even arrest the development of advanced anonymization techniques. The upshot is this:
Only when a biometric anonymization technique has been convincingly evaluated can re-
searchers improve on existing techniques or provide privacy-preserving applications to
users.

In this chapter, we assess the state-of-the-art evaluation methodology for the anonymi-
zation of biometric data. In particular, we assess the evaluative methods for face anony-
mization and gait anonymization. Our choice for face anonymization is based on the fact
that there are many widely-employed techniques in application. We acknowledge that the
comprehensive evaluation of any anonymization technique is only possible when utility is
also taken into consideration. However, for this chapter, we have narrowed our scope to
the improvement of the methods evaluating privacy protection of anonymization only.

Our assessment of the state-of-the-art in evaluation for the anonymization of biometric
data shows that these methods often fail at convincingly evaluating the performance of the
privacy protection.

The state-of-the-art methods have been uncritically adopted from the evaluation method-
ology for biometric recognition. In biometric recognition, the problems employ many iden-
tities and difficult biometric samples (e.g., profile photos or nearly indistinguishable iden-
tities). In anonymization, on the other hand, a difficult problem has a small nhumber of
identities which are very diverse, thus making the identities easier to differentiate but more
difficult to anonymize.

This chapter is based on the contribution:

» Simon Hanisch, Julian Todt, Jose Patino, Nicholas W. D. Evans, and Thorsten Strufe. “A False
Sense of Privacy: Towards a Reliable Evaluation Methodology for the Anonymization of Biomet-
ric Data”. In: Proceedings on Privacy Enhancing Technologies. 2024. DOI: 10.56553/popets-
2024-0008.
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Furthermore, the state-of-the-art methods rely on weak adversary models. These meth-
ods assume that the attacker is unaware of the anonymization mechanisms in place. For
example, a method will use pre-trained recognition models which perform well on clear
data. However, such models prove incapable of adapting to data modifications performed
by an anonymization technique. Consider this straightforward scenario: An anonymiza-
tion technique for a face image performs consistently the same block permutation. This
anonymization can easily be removed with the inverse permutation. However, the permu-
tation will go unnoticed by a recognition model pre-trained on the clear data. Moreover, if
only a single recognition is used, then that will jeopardize the reliability of the evaluation.
Although a given anonymization technique may successfully degrade the performance of
one recognition system, other systems classifying other feature vectors may be more ro-
bust or even largely unaffected. However, the use of just a single recognition system is the
norm among state-of-the-art evaluation methods.

The contributions in this chapter are as follows:

* We assess the current state-of-the-art evaluation methodology for biometric data
anonymization and point to fatal flaws in the evaluation methodology.

» We update the state-of-the-art evaluation methodology. Our methodological improve-
ments involve (1) retraining the recognition system on anonymized data, (2) using
multiple recognition systems to evaluate the anonymization, and (3) generating eval-
uation datasets that are challenging to anonymize and consequently reliable for the
evaluation of the anonymization performance.

» We test our methodological improvements on the biometric traits face and gait with
extensive experimentation. Our evidence supports the conclusion that our improved
methodology delivers reliable evaluations of biometric data anonymization.

6.1. Related Work

Biometric recognition spans dozens of biometric traits and hundreds of techniques, but the
methodology for evaluating the performance of these techniques has been assessed by
only a very few works. First, we will examine the proposed improvements to the stylome-
try evaluation methodology. Next, we discuss works on the evaluation of face and voice
anonymization, which are more closely related to our goals.

Goga et al. [102] assess the methodology for evaluating matching techniques of profiles
from different social media platforms. They find that evaluation commonly overestimates
the performance of the approaches by using an unrealistic methodology. Granger and
Gorodnischy [106] describe the methodology that should be applied to evaluate the per-
formance of biometric recognition for video surveillance applications. For the evaluation of
stylometric authorship attribution, Stolerman et al. [343] make the case that an open-set
model should be applied since in a realistic scenario the actual author might not be on the
suspect list. Brennan et al. [42] propose adding attacks to the methodology of stylometry
evaluation because most methods cannot defend against attacks. These investigations of
the evaluation methodology in different fields have shown that wrong assumptions lead to
an overestimation of performance. In the case of anonymization, overestimation of per-
formance may give users false assurances of privacy because, in fact, their identities are
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actually left unprotected. In this chapter we similarly look at a current evaluation method-
ology, highlight issues and propose solutions.

Le et al. [178] discuss how to evaluate privacy-utility trade-offs for face anonymization,
but their focus is exclusively on measuring the utility and not privacy.

Recent works [348, 117, 355] propose attacks on biometric data anonymization that
use machine learning to reverse the obfuscation of images. These results show that the
method is highly effective even when a human observer cannot recognize anything at all in
the image. The reversal of anonymization is indeed comparable to the training of a recog-
nition system on anonymized data. However, we consider training recognition systems
on anonymized data the more straightforward way to test whether identifying information
remains in the anonymized data. Further, we also consider the reduction of the dataset.

In the context of the VoicePrivacy challenge [356], other recent works have investigated
the evaluation methodology of speaker anonymization. Noé et al. [261] also propose a
framework to evaluate and compare speech pseudonymization approaches using ZEBRA
[254] and voice similarity matrices [260]. ZEBRA aims at creating a worst-case metric to
evaluate speaker anonymization and voice similarity matrices allow to compare how well
specific identities are anonymized. Bonastre et al. [38] propose a benchmarking method-
ology to test speaker recognition against spoofing and anonymization. We investigate
whether some of the methodological improvements to the evaluation of speaker anonymi-
zations, like training recognition systems with anonymized data, can be applied to a wider
range of biometrics like face and gait data.

In sum, many improvements to the evaluation methodologies of different research fields
have been proposed. However, for the anonymization of biometric data, we find that multi-
ple improvements can still be made to evaluation methodology, such as anonymized data
in the training dataset and a more challenging anonymization scenario.

6.2. Improving the Evaluation Methodology

In this section, we aim to achieve a reliable evaluation methodology for the anonymization
of biometric data. Our premise is that an evaluation methodology for anonymization tech-
niques should be pessimistic and assume a strong adversary based on the worst-case
performance of the anonymization technique.

6.2.1. State-of-the-Art Evaluation Methods for the Anonymization of
Biometric Data

We began by gaining an overview of the problems of the state-of-the-art evaluation meth-
ods. To this end, we assessed the papers covered in our survey (see Chapter 3) plus
the papers of another survey by Ribaric et al. [311] on the topic of biometric data an-
onymizations. Next, to gain a closer perspective on the field of face anonymization, we
analyzed works published from 2018 [301, 88, 152, 370, 140, 223, 327], and one work
from 2005 [259]. We included as many works as we could find which appeared at USENIX
Security, Privacy Enhancing Technologies Symposium (PETSs), and Data and Applications
Security and Privacy. As a recent work [177] of 2023 testifies to the persistence of the said
methodological flaws to this day.

Our survey shows that the methods for evaluating techniques of biometric recognition
or anonymization use the same recognition systems, the same datasets, and the same
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evaluation scenarios. This unquestioned reuse of the same attacker model, dataset, and
scenario is highly problematic and will undermine the reliability of any evaluation of anony-
mization performance. Our reasoning is as follows. In biometric recognition, an evaluation
method presents challenging scenarios to the recognition system. Identities are hard to dis-
tinguish from one another, the number of identities to be distinguished is high, the biometric
samples are poor in quality, an open-set scenario is used, and imposters are introduced
to mislead recognition systems. However, in biometric anonymization by contrast, these
same conditions do not pose a challenge. In fact, for example the high number of identities
makes anonymization much easier, because the more identities we have, the more likely
it is that for each identity there is another similar identity in the dataset. This makes it
harder to distinguish between identities, which makes anonymization easier. We conclude
that anonymization performance will not be accurately evaluated by methods designed to
evaluate the performance of recognition systems.

Our analysis shows that the reusing of evaluation methods from recognition and anony-
mization causes three main problems.

The first problem we identified is that reuse of the scenario for the evaluation of recogni-
tion makes for an unrealistically weak adversary model for the evaluation of anonymization.
Since in most papers the recognition system is trained on clear data and not on anony-
mized data (e.g. [177, 140, 301]), obviously the implicit assumption being made is that
the adversary is unaware of the anonymization in place. However, an adversary which is
aware of the anonymization can adapt to the anonymization and thus will present a greater
threat. Consider, for example, an anonymization that performs a deterministic block per-
mutation on a face image. The modification of the data would most likely cause the trained
recognition model to break down, and therefore report a high performance. That report,
however, will be based on flawed premises and is false.

The second problem we identified is that most evaluation methods assume that the
recognition model which works best on clear data will also be the best model for recog-
nizing people in anonymized data (e.g. [351, 23, 89]). We challenge this assumption.
Recognition models are developed on clear data. No consideration is given to tampering
with the data. Therefore, we doubt whether the recognition model which works best on the
clear data is also the best for anonymized data.

The third problem we identified is that the same datasets are used to evaluate anony-
mization as are used to evaluate recognition (e.g. [177, 223, 301]). Consequently, anony-
mization techniques are evaluated almost exclusively on large numbers of identities. We
argue that it is more challenging for anonymization techniques when there are low num-
bers of identities in the dataset. Furthermore, a low number of identities is more realistic
because biometric data seldom exists alone and additional individuating information (e.g.
device ids, soft biometrics, etc.) can be used to further reduce the number of identities in
the group.

6.2.2. Our Improvements to State-of-the-Art Evaluation Methods

Now that we have identified the problems, we will explain our improved evaluation method-
ology and how it addresses the issues.

We use closed-set recognition for our general scenario to have a stronger attacker. Our
adversary possesses a list of identities and consequently may simply test samples against
the list to select the most likely identity for a given sample. We use two different biometric
recognition system architectures for the gait and face recognition systems. For our gait
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recognition systems, we use an architecture which only uses data specific to the target
identities, and for our face recognition systems, we use an architecture that uses additional
background data not specific to the target identities (see Fig. 6.1). Both architectures split
the samples of each identity contained in the evaluation dataset into frain set and test
set. The train set is used to learn a representation for each identity which is then used
to infer the identity of the samples in the test set. In addition to this, the face recognition
systems are pre-trained prior to training on the train set. During pre-training, an additional
background dataset representative of the general population is used to learn the features
which can be used to differentiate between identities.
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Figure 6.1.: Dataset use through the phases of our recognition systems for face and gait
recognition.

Training Recognition Systems with Anonymized Data

In line with previous work [259, 225, 338, 359], we propose that recognition systems be
trained on anonymized data so that a more reliable assessment of the anonymization
performance is achieved. The idea of retraining recognition systems was first proposed
for face recognition by Newton et al. [259]. Their model is trained with anonymized data
and then tested on anonymized data. The authors call this scenario parrot recognition, as
opposed to training with clear data, which they call naive recognition. The authors report
much better performance for parrot recognition compared to naive recognition. Due to
training on anonymized data, the biometric recognition system can learn to use features
for identification, making this approach more effective than training the system on clear
data.

Parrot recognition is another term for an informed attacker, as defined by Srivastava et
al. [338]. In the evaluation of voice anonymization, Srivastava et al. [338] propose three
attackers who differ in their awareness of the anonymization. The ignorant attacker is
unaware of the anonymization (as in black-box assumptions), the semi-informed attacker
knows the anonymization algorithm (as in gray-box assumptions), and the informed at-
tacker knows the algorithm plus the given parameters (as in white-box assumptions).
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The VoicePrivacy challenge [359, 357] used anonymized data to train a speaker verifi-
cation system. The system was then tested against anonymized voice samples. It was
found that training with anonymized data already improved recognition performance; how-
ever, performance improvement was greater when the recognition was pre-trained with
anonymized data. The results of the VoicePrivacy challenge show that (pre-)training the
recognition system with anonymized data leads to a much stronger evaluation of the pri-
vacy performance of a technique. Therefore, we recommend training and (where in use)
also pre-training recognition systems with anonymized data. But even when a complete
pre-training of the model is not possible, just training with anonymized data can already
pose a more difficult challenge to an anonymization.

Test Against Different Recognition Systems

Most evaluation methods rely on the state-of-the-art recognition system currently available
for the targeted biometric trait. However, during the design and development of recogni-
tion systems, anonymization is not considered. Consequently, recognition systems are not
optimized to operate on anonymized data. For this reason, we challenge the assumption
that the state-of-the-art recognition systems will also be the one that performs best on the
anonymized data. Obviously, for practical reasons, not all types of recognition systems can
be used in an evaluation. However, at least a few conceptually different recognition sys-
tems should be tested in order to assess which techniques work best on the anonymized
data. The aim here is to approximate worst-case performance of the anonymization.

Use a More Challenging Evaluation Dataset

The datasets currently being used for the evaluation of biometric recognition are, as ex-
plained, recorded and designed to pose a challenging recognition problem. It is our propo-
sition, though, that evaluators of anonymization use an easy recognition problem in order
to create a challenging anonymization scenario. Since the recording of biometric datasets
is time-consuming and expensive (not to mention complicated by legal regulations like
GDPR), we propose that existing recognition datasets be adapted so that the easy recog-
nition problem becomes a hard anonymization problem. In particular, instead of using the
entire dataset, we propose that the identities in the dataset be reduced in number. In
smaller groups, it is easier to distinguish individuals because the likelihood of finding sim-
ilar ones decreases. To further decrease similarity among individuals, we propose basing
identity selection on the criterion of easy distinguishability. For the reduced dataset, our
identity selection strategies are as follows:

+ Random: As our baseline selection strategy, we use a random selection of identities.
We repeat the selection multiple times to account for the variability of the selection.

+ Classification: We use a biometric recognition system on the anonymized data to
select the identities which have the highest identification accuracy.

* Metadata: We operationalize the fact that most biometric datasets also contain meta-
data about the identities, such as age and sex. Such metadata will typically be
extractable via a recognition system. Our rationale is that identities with diverse at-
tributes can be distinguished more easily when images are anonymized. We do this
in three steps. First, we normalize each point of metadata information between 0
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and 1, and then we calculate the pair-wise Euclidean distance between the points.
Second, we obtain a subset of identities by locating pairs of identities at the great-
est distances from one another. And third, we calculate the average of distances
between the identities in our subset, and then we consistently select the identity
located at the maximum distance to the average.

Feature-space: Many recognition systems work by projecting the biometric data into
a feature space and then calculating distances between the feature vectors. The ra-
tionale is that the recognition system is trained to project datapoints from the same
identity onto similar features and as well, to project datapoints from different identi-
ties onto contrasting features. However, misclassification occurs when the feature
of a datapoint belonging to one identity is farther from the correct feature and closer
to a feature belonging to another identity. Therefore, we propose that recognition
performance be improved by the intentional selection of identities whose feature vec-
tors are distant from one another on anonymized data. In other words, we choose
identities who are very different to one another when anonymized. We use this idea
to develop two selection strategies:

— Distinctive: Inspired by the Biometric Menagerie [383], we calculate for each
identity a genuine score and an imposter score (illustrated in Fig. 6.2). The
genuine score of an identity is the furthest Euclidean distance of any feature
vector of this identity to the average of all feature vectors of this identity. The
imposter score is the shortest Euclidean distance of the average of all feature
vectors of this identity to a feature vector of any other identity. Thus the genuine
score is effectively an intra-class distance; conversely, the imposter score is
effectively an inter-class distance. If the inter-class distance is high and the intra-
class distance low, then the identity is less likely to be misclassified because the
features of other identities lie farther away. In sum, we select identities that have
the best average of genuine and imposter scores.

— Center: Our purpose is to create a subset of identities lying at the greatest
distances from one another. As with the metadata vector above, we begin by
selecting the two identities whose average feature vectors have the largest Eu-
clidean distance. Then we consistently select the identities whose average fea-
ture vectors lie at maximum distances from the average feature vector of our
subset of identities.

6.3. Experiments

Our evaluation is based on the physiological biometric face and behavioral biometric gait.
We begin by stating our hypotheses, and then we describe the experiments and present
the results.

6.3.1. Hypotheses

Our aim in the evaluation is to test our three methodological proposals for improvements
to the evaluation of biometric anonymization. We have proposed, first, that recognition
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Figure 6.2.: Simplified example for Genuine and Imposter scores of an identity A in a 2D
projection of the feature space.

systems also be trained on anonymized data; second, that multiple recognition systems
be used; and third, that a more challenging dataset be used.
We begin our testing by formulating five hypotheses:

H1 Training the recognition system on anonymized data achieves more reliable anonymi-
zation performance than training on clear data.

H2 Training the recognition system on data in which a part of the samples is anonymized
achieves more reliable anonymization performance than training on clear data.

H3 No single recognition system simulates worst-case performance on all anonymizations.

H4 A reduction in the number of identities in the evaluation dataset more robustly chal-
lenges the privacy protection of the anonymization.

H5 The identities selected by our selection strategies are a more robust challenge to the
privacy protection of anonymization.

Our Hypotheses H1 and H2 hold that training recognition systems on anonymized data
will achieve higher recognition performance. For our H1, we expect that (pre-)training
recognition systems with anonymized data of the respective anonymization will result in
higher recognition accuracies compared to (pre-)training on clear data. Further, for H2,
we expect also that (pre-)training on partial anonymized datasets will perform better com-
pared to (pre-)training on clear data. Further, we expect that increasing the amount of
anonymized data in the train set will increase the recognition performance. We reason
that the models we test must necessarily generalize more suitably to data that are noisier.

Our Hypothesis H3 holds that no single recognition system will achieve the best perfor-
mance on every anonymization. Our prediction for H3 is that, independent of results on
clear data, some recognition systems will outperform others when using anonymized data.
We reason that some recognition systems will better learn features from the anonymized
data.

Our Hypothesis H4 holds that reducing the number of identities in the evaluation dataset
will present a more robust challenge to the performance of the anonymization. Our H5
builds on H4. For H5, we expect that selecting an evaluation dataset with our proposed
selection strategies will pose a bigger challenge to the anonymization, and hence result in
higher recognition performance then selecting random identities.
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6.3.2. Experiments

We set an optimal performance bound by using chance-level performance of the anony-
mization as our baseline. We reason that perfect anonymization would leave adversaries
with such a negligible advantage that their most effective strategy would be to guess identi-
ties at random. To approximate worst-case performance of the anonymization, we use the
performance of clear level recognition, that is, the performance of the recognition system
on clear data.

To test H1, we follow the same procedure for each anonymization technique: the recog-
nition system is trained on the respective anonymized training data, and where possible,
the system is also pre-trained on the anonymized data. To test H2, we (pre-)train the
recognition system on different compositions of anonymized and clear training data using
25%, 50%, and 75% anonymized training data. Hence, we assess our H1 and H2 each
with parrot and naive recognition.

For our H3, we use different recognition systems and perform parrot recognition for each
anonymization.

For our H4, we again perform parrot recognition. However, instead of using the full
evaluation dataset, we use only a random subset of identities of 50%, 25%, 12.5%, ...,
until three of the original identities remain. For each number of identities, the sampling is
repeated ten times to account for the variability of the random selection. Finally, in our last
experiment for H5, we use the same numbers of identities as in the experiments for H4, but
instead of randomly selecting, we choose identities according to the strategies described
above in our methodology: Random, Classification, Metadata, Distinctive, and Center (see
Subsection 6.2.2). We repeat the classification of the reduced dataset ten times to account
for the randomness of the test/train split.

6.3.3. Datasets

For the face recognition, we use the CelebA [190] dataset because it is popular for face
recognition and for anonymization evaluation, and we use the WebFace260M [410] dataset
because its images are realistic. From both datasets we randomly select 1,000 identities as
evaluation set and another 9,000 identities as background dataset for retraining. We only
select identities with at least eight images, and we limit the maximum number of images
per identity to 20. We crop all images to the face region, with images containing multiple
faces cropped to the largest face. We resize all images to 224x224 pixel and rotate them
until the eyes are level.

For gait we use the dataset of the gait patterns of 57 identities by Horst et al. [134].
The dataset represents the most comprehensive publicly available dataset that contains
multiple gait samples per identity, and this, in particular, recommends the dataset to the
evaluation of anonymization performance. For each identity in the dataset there are 20 gait
sequences, and we resample these to be 100 frames long. The dataset has used optical
markers to capture motion. The motion capture covers 52 tracked points, each given as
absolute 3D position (see Fig. 6.3).

6.3.4. Evaluation Framework

In order to run our experiments, we implemented the evaluation framework depicted in
Fig. 6.4.
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Figure 6.3.: Sample pose of motion-captured gait information, represented as point-light
walker.

First, the clear dataset is copied and anonymized with a specific anonymization tech-
nique. Second, the selector performs a selection strategy to reduce the dataset to the
configured numbers of identities. Third, the splitter splits the samples per identity into two
sets, with 75% of samples going into the train set and 25% going into the test set. Depend-
ing on the configuration, either the clear samples or the anonymized samples go into the
respective datasets.

Fourth and last, the recognition system is trained with the train set and evaluated with
the test dataset. The resulting likelihood for a given test sample is recorded and saved for
each identity.
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Figure 6.4.: Schematic overview of the evaluation framework architecture, excluding pre-
training for simplicity

6.3.5. Recognition Systems

For face recognition, we use the DeepFace [324] library because it covers the entire face
recognition pipeline and includes pre-trained models for ArcFace [73], Facenet [323], and
VGG-Face [269]. Additionally, we use the face recognition model (frknn) [101], which
uses a pre-trained feature extractor and k-nearest neighbors for classification. In order to
also test non-deep-learning approaches, we use a scalar, principal component analysis
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(PCA) and support vector machines (SVM) pipeline as described in a scikit tutorial’ and
a recognition method that uses Google Al's mediapipe? to extract 478 3-dimensional face
landmarks before using a scalar, PCA and SVM pipeline on their coordinates. We also pre-
train multiple models of ArcFace, which thereafter we referred to as Retrained ArcFace. For
ArcFace pre-training, we used the remaining identities in CelebA or WebFace260M with
the respective anonymization technique under evaluation applied to the samples. For %-
parrot recognition approaches, we anonymized only the corresponding percentage of the
samples in the background dataset. We validated Retrained ArcFace on clear data and
achieved similar identification accuracy as the regular pre-trained ArcFace.

For gait recognition, we use two types of feature vectors. The flatten feature vector
simply flattens all poses of a gait sequence into a single vector, as proposed by Horst et
al. [134]. The simple feature vector does a PCA over all poses of a walking sequence and
then concatenates the 4 first components of the PCA with an average over all poses of
the sequence. For classification, we use SVM, random forest, and k-nearest neighbors.
Unless stated otherwise, we used the combination SVM+flatten for gait recognition.

6.3.6. Anonymization Techniques

In the following, we present the anonymization techniques we use for our evaluation. For
face anonymization, we select simple anonymization techniques such as blurring and state-
of-the-art machine learning anonymizations such as CIAGAN [223]. For gait anonymiza-
tion, we use a subset of the anonymizations used in Chapter 4. If the anonymization is pa-
rameterized, we select the parameters in such a way that initially a low level of recognition
accuracy is achieved. In this way, we can observe how our methodological improvements
increase the recognition accuracy. Note that since we are investigating the efficiency of
our methodological improvements, our selection of parameters does not allow a fair com-
parison of the anonymizations.

Face Anonymization

For face anonymization we choose a wide variety of different anonymizations, ranging from
basic approaches like eye masking to deep learning approaches like DeepPrivacy [140].
For an example of each face anonymization see Figure 6.5. The Eye Masking anonymiza-
tion uses a black strip with 140 pixels height to cover the eye area of the face. Gaussian
Blur applies a gaussian blur with a kernel size of 101. The anonymization k-randomized
transparent overlays (k-RTIO) (« = 0.4, blocksize = 18, k = 3) by Rajabi et al.[301] add
a block-permuted semi-transparent overlay to the face image. The three methods DP
Pix [88] (¢ = 2, b = 12, m = 16), DP Snow [152] (d = 0.01), and DP Samp [370] (e = 5,
k = 24, m = 12) use differential privacy (DP) to provide formal privacy guarantees. We
adapted these three methods from Reilly et al. [305] for RGB images. Our adaptation to
RGB images prevents us from providing the formal guarantees given for grayscale images.
Another formal privacy framework is k-anonymity, as used in the anonymization k-Same-
Pixel (k = 10) by Newton et al. [259]. k-Same-Pixel expects a static dataset with a single
image per identity. This does not apply to our scenario because we anonymize image by
image and have multiple images per identity. Therefore, we use a separate background

1 https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
2https ://developers.google.com/mediapipe/solutions/vision/face_landmarker

71


https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html
https://developers.google.com/mediapipe/solutions/vision/face_landmarker

6. Improving the Evaluation Methodology for the Anonymizations of Biometric Data

Original image Eye Masking Gaussian Blur ~ k-RTIO

DP Pix

‘\\

Fawkes DeepPrivacy  CIAGAN

Figure 6.5.: Example image for each of the face anonymization techniques we assess.

dataset with 200 identities. This means that the formal guarantees do not apply to our
implementation. In Fawkes [327] (mode = high), adversarial machine learning is used to
poison face recognition training data and thereby protect the identity in the picture. Both
DeepPrivacy [140] and CIAGAN [223] anonymize faces by replacing them with new syn-
thetic ones and then fitting them into the original background.

Gait Anonymization

For our gait experiments, we use simple anonymization techniques (see Chapter 4) to se-
lect precisely the information to be perturbed in the samples. First, we suppress parts of
the samples: Keep(legs) and Keep(head) both keep only the captured points for legs or
head, respectively, while all other points are set to zero. Second, we perturb the samples:
Noise(x) applies to each captured point normal (¢ = 0, o = 1) distributed noise, which
is scaled by 3, 10, or 100. Third, we generalize: Motion Extraction captures the differ-
ences between each next pose in order to extract only the dynamic parts of the data. The
structure of the walkers is, then, effectively removed.

6.3.7. Selection Strategies

For our selections of face data using the Classification strategy, we use ArcFace to cal-
culate the identification accuracy for each identity. We also use ArcFace to extract the
feature vectors for the Center and Distinctive strategies. For gait, we use SVM+flatten for
the Classification strategy and a PCA with four components over all samples as feature
vector for Center and Distinctive.
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6.3.8. Framework Implementation

Our evaluation framework was implemented using python (version 3.8) with numpy (1.19.5),
scikit-learn (0.23), and DeepFace[324] (0.0.65) libraries.

6.4. Results

We report here the results of our experiments. We assess, in turn, the validity of each of
our hypotheses: whether recognition systems trained on anonymized data improve evalu-
ation performance (H1, H2), whether no single recognition system performs best on every
anonymization (H3), and lastly whether a reduction in the number of identities (H4) and
whether a selection of identities in the evaluation dataset actually pose real challenges to
the privacy protection of the anonymization (H5).

6.4.1. Recognition Systems Trained on Anonymized Data Improve
Evaluation Performance

In Fig. 6.6 and Fig. 6.7, we present the results of our experiments for H1 and H2 on the
anonymization of face data and for gait data.

For face images, we find that, except for CIAGAN and k-Same-Pixel, all parrot recogni-
tion systems perform better than naive recognition. For k-Same-Pixel, all recognition sys-
tems have nearly the same performance, while for CIAGAN, naive recognition performs
best. This anomaly in CIAGAN makes sense when we consider how CIAGAN performs
the anonymization: every face is replaced by another face which shares the same soft
biometrics. Therefore, we assume that CIAGAN’s replacement of the face on each training
image makes it harder for ArcFace Retrained to learn useful feature vectors.

We find significant results for parrot recognition of face anonymization. The performance
of full parrot recognition and of all %-parrot recognition cluster close together for most
anonymizations. In fact, %-parrot recognition often achieves the same performance as the
full parrot recognition, and for DP Snow, the 75%-parrot recognition even outperforms the
full parrot recognition.

In contrast to our results for face anonymization, the results for gait anonymization show
full parrot recognition outperforming %-parrot recognition, with the exception of all Noise
anonymization (cf. Fig. 6.7). For all gait anonymizations, naive recognition performs only at
the chance-level. The %-parrot results for Noise(3) and Noise(10) are interesting because
25% performs best, 50% performs second best, 75% performs third best, and full parrot
performs worst.

In our results for both face and gait anonymization, one thing defied our predictions.
In the face and gait anonymization of DP Snow, Noise(3), and Noise(10) anonymization
performance improves when the model is trained solely on a portion of anonymized images
rather than on the full anonymized training set. We draw attention to the fact that all
three anonymizations perform noise injection either by adding noise to each datapoint or
by randomly removing pixels from the image. That portion of noisy data samples in the
training set enables the recognition systems to adapt to DP Snow, Noise(3), and Noise(10)
while still learning the features required for the classification from the clear data. We
conclude, therefore, that there is a tipping point where more noisy data no longer improves
training performance but begins impairing it.

73



6. Improving the Evaluation Methodology for the Anonymizations of Biometric Data

accuracy of face anonymizations

100
80
X ’ , + *  25% parrot recognition
c 60 # 50% parrot recognition
; L 4 4@ 75% parrot recognition
& * 4 naive recognition
5 + * ~  parrot recognition
g 40 —— chance level
© ® —— clear data
«
¥ *
20 + .
t 3
0 . 4
. >
S & ¢ & & &R @SS
¢ R R A e e
< N < (,)’b@ &
N i\

anonymization technique

Figure 6.6.: Accuracy for face anonymizations using ArcFace retrained on the CelebA
dataset with naive, %-parrot, parrot recognition. A lower accuracy means bet-
ter privacy protection.
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Figure 6.7.: Accuracy for gait anonymizations using SVM+simple with naive, %-parrot, par-
rot recognition. A lower accuracy means better privacy protection.

6.4.2. No Single Recognition System Performs Best on All Anonymizations

We present the results of our experiments for H3 for the anonymization of face data in
Fig. 6.8 and for the anonymization of gait data in Fig. 6.9.

All face anonymizations, except Fawkes, achieve a performance below 30% for all recog-
nition systems except ArcFace Retrained. Fawkes achieves between 30% and 60% (ex-
cept with Eigenfaces). The results for ArcFace Retrained differ significantly. With ArcFace
Retrained, most anonymization techniques achieve much higher recognition rates. Only
CIAGAN, DP Samp, and k-Same-Pixel are still below 30%, while Blur, DP Snow, and
Fawkes are even above 60%. An interesting observation is that while Eigenfaces performs
worst on clear data it performs better on DP Pix and Blur than most other recognition
systems.
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For the gait data, all combinations of techniques perform between 80% and 98% on
clear data, with SVM+flatten performing best on the clear data. The gait anonymization
techniques across recognition systems perform in the same order, that is, we find the
worst performance for Noise(100) and we find the best performance for either Keep(legs)
or Motion Extraction.

We note that the differences between the gait anonymization techniques across the
recognition systems can be quite large. For example, SVM+simple Noise(100), Noise(10),
and Noise(3) score much higher when compared to the other recognition systems. How-
ever, among the anonymizations that do not use noise injection, SVM+simple scores lower
than SVM-+flatten. In sum, we observe that no single gait recognition system outperforms
the others.
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Figure 6.8.: Accuracy of face anonymization over different recognition systems using par-
rot recognition on the CelebA dataset. A lower accuracy means better privacy
protection.

6.4.3. Reducing the Number of Identities in the Evaluation Dataset
Increases the Challenge for the Anonymization

We present the results of our experiments for H4 for the anonymization of face data in
Fig. 6.10 and for the anonymization of gait data in Fig. 6.11.

For the face data, we assess the accuracy of our H4 by comparing the performances of
parrot recognition on different numbers of identities in the evaluation dataset (see Fig. 6.10).
For each number of identities (except the number of the full dataset), we selected 10 ran-
dom subsets and calculated average performance and standard deviation. Every decrease
in the number of identities increases the chance-level performance for the recognition sys-
tems. In short, the decreases make it easier for the recognition system to randomly guess
an identity. We observe this increase in performance for all anonymization techniques.
In particular, Fawkes attains the same performance plateau as initially on the clear data.
Eyemask, Blur, and k-RTIO also start at high performance, but need longer to approach
clear-level performance. k-Same-Pixel is the best performing anonymization. k-Same-
Pixel stays close to the chance-level while mimicking the same increase in accuracy. In
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accuracy of gait anonymizations using parrot recognition
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Figure 6.9.: Accuracy of gait anonymization over different recognition systems using parrot
recognition. A lower accuracy means better privacy protection.

sum, we observe that decreases in numbers of identities increase the standard deviation
of accuracy. From this, we reason that the selection of identities for the evaluation group is
an decisive factor in evaluation accuracy.

For the gait data (Fig. 6.11), we observe a similar increase in recognition performance,
except for the anonymization techniques Noise(10) and Noise(100), which stay close to the
chance-level. The techniques Noise(10) and Noise(100) increase the standard deviation of
the performance as the number of identities decreases. For the other gait anonymizations,
we do not observe the same relation in the standard deviation.

average accuracy of face anonymizations using parrot recognition
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Figure 6.10.: Mean accuracy of face recognition over ten random selections (excluding
1000 identities) from decreasing numbers of identities. The standard devi-
ation of the random selection is given as error bars. ArcFace Retrained is
used with parrot recognition on the CelebA dataset. A lower accuracy means
better privacy protection.
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average accuracy of gait anonymizations using parrot recognition
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Figure 6.11.: Mean accuracy of gait recognition over ten random selections (excluding 57
identities) for decreasing numbers of identities. The standard deviation of
the random selection is given as error bars. SVM+flatten is used with parrot
recognition. A lower accuracy means better privacy protection.

We present the results of our experiments for H5 for the anonymization of face data in
Fig. 6.12 and for the anonymization of gait data in Fig. 6.13.

Our selection strategies compare to random selection as follows: our strategies outper-
form when the number of identities is greater than 62, and under 62 Metadata starts per-
forming worse than the best random selections, while the remaining techniques continue
outperforming the best random selections down to 3 identities. Our Center and Classi-
fication strategies perform best across all numbers of identities, even matching the per-
formance of random selection for 3 identities. What is more, for 500 to 15 identities, our
Center and Classification strategies increases over 10% in performance compared to the
best random selection.

For the gait data (Fig. 6.13), our results are not as good as for the face data. In general,
we find that none of our selection strategies outperforms the best random selections. The
strategy that performs consistently best is Classification. It always scores close to the
best random selections. The strategy Metadata performs worst, as it does too in the face
results. The strategies Center and Distinctive show varying results for different numbers
of identities. Our explanation for the contrast between face and gait runs as follows: It
is probable that the significant difference between the number of identities in the full face
dataset (n = 1,000) and the number in the full gait dataset (n = 57) results in less identities
to pick from.

The accuracy we achieve with our Classification selection strategy deserves further at-
tention here, because it performs best across anonymizations for both face and gait. We
will examine Classification more closely by comparing it to the initial results for our de-
creases in numbers of identities.

For the face data (see Fig. 6.14), we observe that clear and Fawkes reach an early
plateau close to 100% and that Eyemask, Blur, and k-RTIO begin scoring near the 80%
mark and not near the 60% mark. For 125 identities, Eyemask, Blur, and k-RTIO also
plateau earlier. DP Samp increases in accuracy steadily from 500 identities to 31 identi-
ties, and from there DP Samp accelerates in performance ultimately to achieve 100% at 3
identities. k-Same-Pixel achieves the lowest accuracies compared to the other anonymi-
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Figure 6.12.: All accuracies are given as the average across all face anonymization tech-
niques. The green area indicates the accuracy range of the previous ten
random selections of identities. ArcFace Retrained is used with parrot recog-
nition on the CelebA dataset. A lower accuracy means better privacy protec-
tion.
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Figure 6.13.: All accuracies are given as the average across all gait anonymization tech-
niques. The green area indicates the accuracy range of the previous ten
random selections of identities. SVM-+flatten is used with parrot recognition.
A lower accuracy means better privacy protection.

zation techniques. However, k-Same-Pixel follows the same trend as the other techniques
by steadily increasing as the identities decrease in number. When we compare to the
random selection (see Fig. 6.10), we see an increase from around 60% to 90% for 3 iden-
tities. Similar increases can also be found for the other anonymization techniques. We
conclude that the Classification strategy is effective in selecting identities that are hard for
the anonymization techniques to anonymize.

For the gait data (see Fig. 6.15), we again find results similar to face. All anonymizations,
except Noise(100), score higher. We consider this to be additional evidence that our Clas-
sification strategy is highly successful. Furthermore, we find that the Noise(100) results
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show that anonymization techniques exist which can achieve near perfect anonymization
even in this challenging scenario.
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Figure 6.14.: Accuracy of face anonymizations across decreasing numbers of identities.
The strategy Center was used to select the identities. The error bars give the
standard deviation over 10 test-train-splits. ArcFace Retrained is used with
parrot recognition on the CelebA dataset. A lower accuracy means better
privacy protection.
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Figure 6.15.: Accuracy of gait anonymizations across decreasing numbers of identities.
The strategy Classification was used to select the identities. The error bars
give the standard deviation over 10 test-train-splits. SVM+flatten is used with
parrot recognition. A lower accuracy means better privacy protection.

6.4.4. Summary of Results

Here, we give a short summary of our most important results:

* Recognition performance increases when the system is trained or especially pre-
trained on anonymized data.

79



6. Improving the Evaluation Methodology for the Anonymizations of Biometric Data

» Recognition performance increases when a reduction is made in the number of iden-
tities in the evaluation dataset.

» Our Classification selection strategy provides reliable evaluation of anonymization.
When, however, the number of identities in the evaluation dataset is very small, Clas-
sification might be outperformed by best-case random selections.

» Anonymization techniques perform differently across recognition systems. As a di-
rect consequence, it remains unclear which anonymization technique performs best
in conjunction with which recognition system.

» For some anonymization techniques which use noise injection, it is crucial to deter-
mine the optimal proportion of anonymized data for both training and pre-training.

6.5. Discussion, Limitations, and Future Work

The results of our three experiments confirm all five of our hypotheses. We see ourselves
justified in drawing the overall conclusion that our methodological recommendations will
improve the state-of-the-art in the evaluation of the anonymization of biometric data.

Our results for the Hypotheses H1 and H2 clearly show that training and also pre-training
with anonymized data significantly improves the performance of the recognition and thus
opens the door to improved evaluation of face and gait anonymization. As demonstrated for
face anonymization, even a small amount of anonymized data greatly improves the training
process. However, our results also indicate that an excess of noisy training data may
decrease the performance. Therefore, for anonymization by noise injection (e.g. Laplace
mechanism), we conclude that care should be taken to determine the right amount of
anonymized training data. Nonetheless, we draw the final conclusion that training with
anonymized data significantly improves the validity of the evaluation methodology. Without
anonymized data in the train set, the performance of the anonymization is bound to be
overestimated.

Our results for the Hypothesis H3 show that the recognition systems which perform
comparably to one another on clear data may perform differently from one another on
anonymized data. Since the performance on clear data is not a good predictor of per-
formance on anonymized data, we conclude that the recognition system which seems
to perform at the state-of-the-art on clear data might not accurately evaluate anonymiza-
tion performance. This holds especially for anonymizations which use noise injection, as
demonstrated by our results for gait anonymization. Therefore, we consider it the minimum
that multiple recognition systems be used with different model architectures. Furthermore,
we recommend designing recognition systems to be more resistant to anonymization. Our
reason is clear: there is no single recognition system that performs best in all cases, not
for face anonymization and not for gait anonymization. Understanding which recognition
system architecture works best for which anonymization together with training the system
on anonymized data will help to achieve more reliable evaluation results.

Our results for the Hypothesis H4 confirm that for most anonymization techniques, a re-
duced number of identities in the evaluation dataset increases the recognition performance
more than what the increase in chance-level can explain. This reduction in the number of
identities presents a more challenging scenario for the anonymization. Our results for H4
also show that, as the number of identities decreases, the run-to-run variation of possible
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results increases. We conclude that the selection of identities for the subset is a significant
task in the evaluation of anonymization performance.

Our results for the Hypothesis H5 clearly indicate that a more challenging dataset is
generated when our Classification selection strategy is used to select the identities for
a reduced evaluation dataset. However, it appears that for very small datasets, multiple
random selections can still outperform our Classification selection strategy. Hence, we
recommend performing Classification and additionally the random selections in order to
determine which performs best at identity selection for the evaluation dataset.

All'in all, our proposed improvements will evaluate biometric anonymization techniques
much more convincingly than these techniques are currently being evaluated. Further
research, however, is clearly necessary. For example, our methodological improvements
will need to be validated on other biometric traits. In addition, it remains an open research
question precisely which types of recognition systems perform best on which types of
anonymization. Answers here will help decide whether, in fact, a systematic approach
exists for building recognition systems that perform well on specific anonymizations.

6.6. Chapter Summary

Biometric recognition technologies, such as face recognition systems, pose a real threat
to privacy. Therefore, a crucial technique for privacy protection is anonymization, and
likewise, evaluation is crucial to anonymization. This chapter assesses the state-of-the-art
methodologies used for the evaluation of anonymization techniques, finds flaws in those
methodologies, and proposes how the methodologies can be improved.

We find several major flaws in the state-of-the-art methodologies for the evaluation of
biometric anonymization. The state-of-the-art evaluation is based on weak and unrealistic
assumptions about the adversary. These adversaries act in ignorance of the anonymiza-
tion in place and are accordingly unable to adapt their recognition systems. These are not
realistic adversaries of anonymization techniques. Therefore, the state-of-the-art method-
ologies largely fail to assess accurately the performance of the recognition.

To begin the work of correcting such flaws, we have proposed to improve the evaluation
methodology for the anonymization of biometric data.

* Itis our recommendation that recognition systems which are trained not only on clear
data but also on anonymized data be used to evaluate anonymization performance.

» Furthermore, we argue that the use of a variety of different recognition systems will
improve the rigor of the evaluation. The use of merely a single classifier trained only
on clear data might result in unreliable, overoptimistic estimates of anonymization
performance. Hence, we recommend using multiple recognition systems trained on
anonymized data.

* And lastly, we recommend using a more challenging evaluation dataset to approxi-
mate worst-case performance. Our results indicate that such a dataset can be con-
structed by reducing the number of identities and selecting the easy-to-distinguish
identities with our proposed Classification strategy.

We have proposed improvements to the state-of-the-art in evaluation methodologies that
will pre-empt overestimations of biometric anonymization performance. We have backed
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this finding with strong experimental evidence. Thus, we conclude that our proposed im-
provements lay the cornerstone of a more reliable evaluation methodology for the anony-
mization of biometric data.
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7. Collecting Motion Data For Motion
Anonymization

To facilitate our motion anonymization research, we collected CeTl-Locomotion [116],
a large motion dataset. We captured 50 young people performing different gait tasks
using IMU-motion-capture suits. Additionally, during the capturing of the CeTl-Age [287]
datasets another 30 people (old and young) have been captured performing the same
tasks.

In order to contribute to both the medical and biometric aspects of using motion data,
we recorded a new dataset in a young adult sample. Our dataset has the advantages
of capturing motion of the entire body with good precision in a relatively large sample of
young adults performing four different types of gait movements and multiple repetitions of
the sit-to-stand task. Such data allow intra-individual variability and its variations across
individuals be taken into account for training machine learning methods. These features
are better suited for medically relevant applications for which full body motion capture with
a good accuracy are necessary for assessing functional status of different body parts.
Further, having a large of number of participants in performing different types of tasks with
high numbers of repetitions is important to train machine learning algorithms in identifying
biometric features of individuals.

For motion tracking, we utilized an IMU mocap suit as it is @ good compromise between
setup complexity and tracking quality for full body motion. An IMU sensor consists of an
accelerometer, gyroscope, and magnetometer that estimate the position and orientation
of the IMU sensor. IMU based motion tracking offers a good accuracy of relative move-
ments of the individual body parts. However, compared to optical marker-based tracking
as the gold standard of motion capture, IMU motion capture is less accurate for positions
and orientations. The difference between the two approaches is nevertheless slight (e.g.,
around +/-2 degrees, see Mihcin [239] and later in discussions). An important benefit of
IMU based tracking over optical tracking is that it is not limited by a certain spatial volume
in which the recording takes place, which makes it easier to capture longer sequences (e.qg.
Horst et al. [134] capture only a single gait cycle per recording) or to avoid the need of us-
ing treadmills (e.g. Troje et al. [360]). In addition, the setup time of a recording session is

This chapter is based on the contributions:

» Simon Hanisch, Loreen Pogrzeba, Evelyn Muschter, Shu-Chen Li, and Thorsten Strufe. “A
kinematic dataset of locomotion with gait and sit-to-stand movements of young adults”. In:
Scientific Data 11.1 2024. DOI: 10.1038/s41597-024-04020-6.

 Loreen Pogrzeba, Evelyn Muschter, Simon Hanisch, Veronica Y.P. Wardhani, Thorsten Strufe,
Frank H.P. Fitzek, and Shu-Chen Li. "A Full-Body IMU-Based Motion Dataset of Daily Tasks
by Older and Younger Adults". Scientific Data 12, 531 (2025). https://doi.org/10.1038/s41597-
025-04818-y "The CeTl-Age-Kinematics Dataset: Fully-body kinematic IMU Data of the Elderly
and Young Adults in Daily Tasks". 2024. Figshare 10.6084/m9.figshare.26983645.

83


https://doi.org/10.1038/s41597-024-04020-6
https://doi.org/10.6084/m9.figshare.26983645

7. Collecting Motion Data For Motion Anonymization

much shorter, as putting on an IMU suit is much faster than sticking a full set of markers to
the bodily landmarks of a participant and the calibration of the IMU system requires also
less time.

7.1. Methods

Participants

Data was recorded from 50 young adults (28 male, 22 female; age mean 24.3 years,
std. 4.7 years; mass mean 73.5 kg, std. 16.2 kg; height mean 175.5 cm, std. 9.8 cm).
An overview of the demographics can be seen in Figure 7.1. All participants gave written
informed consent and agreed to the publication of the study data. The study was approved
by the Ethics Committee of the Technical University of Dresden (SR-EK-5012021) and
was conducted in accordance with the tenets of the Declaration of Helsinki. Data were
pseudonymized and a unique ID was assigned to each participant.
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Figure 7.1.: Overview of the demographics of the participants as histograms. Panel A
shows the age distribution in years, Panel B shows the mass distribution in kg,
and Panel C shows the height distribution in cm.

Acquisition Setup

The dataset was recorded for each participant individually in the laboratory of Karlsruhe In-
stitute of Technology. The single recording session on average lasted for about 60 minutes.
Before the recording started, we marked the walking area of 3.5 m with two red crosses
on the floor.

Anthropometric Data Anthropometric data was recorded for all participants using an
anthropometric grid [121] for total height and arm span of the participants. Additionally, key
anthropometric body measurements (i.e., shoulder height, shoulder width, pelvis height,
pelvis width, knee height, foot length, and manus length) were taken manually with a
generic measuring tape and ruler (stated accuracy £0.9 mm) following the anthropometric
measurement template of the manufacturer of the motion capture (mocap) suits. This data
was then used to create a body profile for each participant. Finally, a standard personal
scale (Huawei AH100) was used to determine the weight of each participant (wearing a
mocap suit and without shoes). The weight values are given with the mocap suit (about
1.2 kg) included.
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Kinematic Data Motion data were collected using the Smartsuit Pro 1 (see Figure 7.2
left and middle panel) and Rokoko Studio (version 1.20.5r) mocap technology provided by
Rokoko (Rokoko, Denmark, https://www.rokoko.com). The mocap suit contains a total of
19 IMU sensors (see Figure 7.2 right), with one sensor each on the foot, shin, thigh, hand,
forearm, upper arm, shoulder, and head. The remaining sensors are located on the torso,
with two sensors each on the lower back and hips. The sensors are held in place by Velcro
and the fabric of the suit. Mocap data is recorded at 100 Hz and transmitted via WiFi to
the recording computer and then applied to the participants’ skeletal rig. The skeletal rig is
a representation of the key body parts with the proportions of the participants’ body profile
(described above).

Number | Sensor Location | Segment Label | Joint Label
1 head Head Neck
o1 2 right pelvis Pelvis Pelvis
16® o1 3 right upper leg RightUpperLeg | RightHip
4 right lower leg RightLowerLeg | RightKnce
170 812 5 right foot RightFoot RightAnkle
15 10 6 left pelvis Pelvis Pelvis
180 013 7 left upper leg LeftUpperLeg LeftHip
e e 8 left lower leg LeftLowerLeg LeftKnee
190 6 2 014 9 left foot LeftFoot LeftAnkle
10 right chest Chest Thorax
70 03 11 right shoulder RightShoulder RightScapula
12 right upper arm | RightUpperArm | RightShoulder
13 right fore arm RigthForeArm RightElbow
14 right hand RightHand RightWrist
8 4 15 left chest Chest Thorax
3 16 left shoulder LeftShoulder LeftScapula
left 5 r ’gh t 17 left upper arm LeftUpperArm | LeftShoulder
18 left fore arm LeftForeArm LeftElbow
back 19 left hand LeftHand LeftWrist

Figure 7.2.: Participant wearing Rokoko Smartsuit Pro 1 in calibration pose (left) and
schematic sensor locations (middle and right) on the suit depicted from a pos-
terior view. The sensors are color-coded, with light blue sensors (4, 5, 8, 9)
positioned anteriorly. The segment and joint labels, provided by Rokoko Elec-
tronics Inc., are named according to the tracked centers of body segments,
with rotation axes conforming to the standardized Joint Coordinate System
(JCS) defined by the International Society of Biomechanics (ISB) [376, 377].
A full overview of the channels of each recording can be found in the *_chan-
nels.tsv files.

Acquisition Procedure

Figure 7.3 offers a schematic overview of the study protocol. Before the data acquisition
started, participants were asked to change in a thin layer of sports garments, over which
they wore the mocap suit. A private changing room was provided. Participants were asked
to perform the exercises without shoes, wearing socks only. The mocap suit’s sensor loca-
tions on the limbs were carefully adjusted to the participants’ individual body morphologies
according to the manufacturer’s guidelines. Next, participants were familiarized with the
mocap suit and technology and given a general overview of the types of movements they
had to perform. They were informed about how the movements and anthropometry of
their body would be recorded. We then proceeded with the collection of anthropometric
measurements.
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The data acquisition started with the actor profile set up in Rokoko Studio where participant-
specific ID, demographics, and anthropometric measurements were recorded and the sys-
tem was calibrated. The calibration pose (straight pose with legs, arms, hands and fingers
straightened, feet hip-wide apart) was used to set up the initial sensor position to ensure
correct motion tracking. The neutral pose (stand upright with upper body straight, feet
foot-width apart, weight evenly distributed on both feet, arms hanging loosely) served as a
neutral reference pose from which the movements for all walking exercises were initiated.
While the calibration pose places great emphasis on the correct alignment and rotation
of body segments, the neutral pose should reflect a natural and comfortable resting pose.
Participants then performed a series of control movements covering the range of motion
of multiple body parts (e.g., shoulder abduction and flexion, wrist flexion and extension,
ankle plantar flexion and dorsiflexion) to ensure best mocap quality. If necessary, sensors
were re-positioned and the calibration was restarted. For two participants (sub-K15 and
sub-K35) minor recording errors persisted for their arms, as specified in the metadata of
the participants.
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i i includi icipan m remen .
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N\ J J L J L J
data acquisition
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end of recording check and adjust
session < (_tracking of mocap suit
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5RSTST recording [« gait recording

Figure 7.3.: The study protocol.

Next, the participants were guided through the recording session, starting with the se-
quence of gait trials and finishing with the 5SRSTST trials, in a predefined order (see also
Table 7.1). Prior to each task, a mandatory calibration procedure was conducted to ensure
accurate motion tracking. In order to capture potential intra-individual and inter-individual
differences in gait movements, our comprehensive dataset includes kinematic data col-
lected under four distinct conditions of walking. The first condition involved recording the
natural walking speed and gait style of each participant at their preferred pace. In the sec-
ond condition, participants were instructed to imagine being in a hurry, simulating a fast
walking scenario. The third and fourth conditions focused on walking with an additional
load at the participant’s preferred speed. Participants either carried a 5 kg backpack (to-
tal weight) or transported a standard bottle crate (measuring 400 mm x 300 mm x 270
mm, with a total weight of 5 kg evenly distributed). For all gait movements, participants
were provided with explicit instructions to initiate from a neutral pose and walk between
two points marked on the ground with red tape, positioned 3.5 m apart (see Figure 7.4
left). Additionally, participants were instructed to maintain a forward gaze aligned with
their walking direction. Participants were given specific instructions to execute a controlled
turn at the marked points before commencing the return walk. Each gait task consisted
of five back-and-forth walks between the designated points. The experimenter verbally
counted the number of trials completed during each task. In the final round, participants
were instructed to execute an additional turn, ensuring they returned to the original starting
position and faced the initial direction.
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Following the completion of the walking sequence, data collection proceeded with the
5 times sit-to-stand test (BRSTST) trials (see also Figure 7.3). The sit-to-stand test is
a widely used motion test that should reveal significant differences between age groups.
Participants were provided with specific instructions to sit on a chair, crossing their arms
in front of their chest, and perform rapid repetitions of standing up and sitting down (see
Figure 7.4 right) five times consecutively, without any intervals of rest. The execution time
of each 5RSTST exercise was measured using a stopwatch, while the kinematic data was
simultaneously captured using a mocap suit. Each participant performed this exercise
twice.

Figure 7.4.: Schematic representation of a gait trial (left) shown from the top and 1RSTS
trial (right) shown from the side.

Data Processing

As part of the Rokoko Studio data recording pipeline, the position and orientation data was
processed using the following filters. This involved the locomotion filter for all recordings
that automatically aligns the feet sensor to the ground plane for movement phases with
(assumed) ground contact. Additionally, a drift filter was applied for all gait trials to cor-
rect for position drift in the gait trajectories. Since IMU sensors only record the relative
motion of each body part, the global position of the suit is estimated by summing up all rel-
ative movements beginning from the initial position (established during calibration). Over
recording time, this method can lead to increasing positional inaccuracy, known as global
drift. Since the start and end point of the walking course in the gait tasks was at the same
position, this information was used to correct for global drift. Data was then exported in
CSV format. The data includes the absolute positions (x, y, z) of the center of mass of all
17 body segments in meters and the relative orientation of each joint as recommended by
the International Society of Biomechanics (ISB) [376, 377]. The ISB standard defines the
local axis system of joints in degrees with two fixed axes and one "floating" axis. In total,
the data contains 17 6-dimensional (6D) points per time frame.

Finally, the data was processed using a custom Python script [116] (see Figure 7.5).
The data was visually inspected for noisy data segments and sensors. Anomalous sensor
behavior was identified at individual time points within the position data of two participants
(sub-K8, sub-K58), characterized by abrupt signal increases in multiple orders of magni-
tude. To remedy these artifacts, an interpolation approach utilizing the neighboring data
points was implemented. Subsequently, we proceeded with cutting the recordings into in-
dividual segments. For the gait task a segment is a single gait cycle (as defined by Perry
et al. [145]), and for the 5SRSTST task it is a single 1RSTS repetition. A 1RSTS repetition
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begins with a participant sitting upright in a chair and ends with the participant reaching
the same sitting position after standing up. This segmentation step allowed for a more
granular analysis and examination of specific movements within each segment.

Gait

. . - rotate participant to
remove turning from cut segments into translate participant have the same
segments single strides to start at (0,0,0) . -
walking direction
A

5RSTST

cut segments into -
fix position anomalies single sit-to-stand ranslate participant save segment
motions to start at (0,0,0)

Figure 7.5.: Data processing pipeline in custom Python script.

Data segmentation was based on the characteristics of the positional data signal. For
tailoring the segmentation approaches to the characteristics of the different tasks, selected
positional values of the signal were processed and searched for distinct events, e.g., peak
values, to subsequently crop the signal into segments. The positional values are mapped
to a coordinate system with the starting point of the movement is set to the coordinate
origin (set during calibration), with the x-axis reflecting the position in the transverse plane
(e.g., shoulder positions left and right to the median plane), the y-axis describing the
heights of body parts (e.g. the head height), and the z-axis displaying the translation
in the median plane (e.g., a forward step). While straight walking, the distance between
the shoulder x positions (reflecting the approximate width of the shoulder girdle) stays con-
stant. The distance changes at the turning points of the walking course as the participant
rotates around its own body axis, from positive to negative or vice versa.

The resulting segments were then cut into single gait cycles, i.e., the feet end in the same
position as they started. We chose gait cycles as they contain all gait phases performed
while walking. The gait cycles were identified by detecting the largest distance between the
absolute z-positions of the participants’ feet. As a final processing step, we normalized all
gait cycle segments to start at the same coordinate point by setting the positional data of
the hip at the starting frame of the segment as the new coordinate origin of the coordinate
system (with translating all positional values accordingly). Next, we applied a rotation step
to the positional values of each segment so that all segments reflected the same walking
direction. This processing step was necessary, since the participants were walking back
and forth at the walking course, resulting in different walking directions and corresponding
positional values.

For the 5RSTST, we identified a single segment by observing the participant’s head
position. We detected peak values in the (y, z) values of the head position, since these
can be used to distinguish the sitting from the standing position. We automatically sliced
them into five repetitions (integrating the standing and sitting phases into one repetition).
As with the gait data, we used the first hip position of each segment as the coordinate
origin for this segment.

An overview of the resulting number of segments processed can be found in the Ta-
ble 7.1. Note that the resulting amount of segments for each participant and task varies
due to several factors: faster walking results in fewer segments per participant, individ-
ual physiology affects the number of segments per person, and because we excluded
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incomplete gait cycles we also remove incomplete ones which increases the differences
between participants. For 5SRSTST, we also found an incorrect execution of the task, as

one participant performed more repetitions than instructed.

Table 7.1.: Overview of the resulting number of segments (N) per task after processing.

task Niotal | Naverage P€r participant | Npin per participant | Npax per participant
gait normal 1178 | 23.56 12 35
gait fast 846 16.92 9 23
gait bottle crate | 1120 | 22.4 15 33
gait backpack 1029 | 20.58 11 30
1RSTS 499 9.98 9 11

7.2. Data Records

We provide the CeTl-Locomotion dataset [116] on the figshare data exchange platform
(https://figshare.com/). The dataset is formatted according to the BIDS [104, 149] stan-
dard (version 1.9) and is provided in both raw format (as exported from Rokoko Studio)
and processed format (as described above). The repository contains a readme, license,
BIDS dataset descriptor, and the Python code used for processing and technical validation.
The participants.tsv file stores the metadata for all participants, including their age, mass,
height, anthropometric data, and 5RSTST completion time. Each subject folder contains
the raw motion data for all tasks. The motion data is stored as a tab-separated values file
(*_motion.tsv) accompanied by a metadata file (*_motion.json) and a channel descriptor
of the motion file (*_channels.tsv). The processed data is located in the derivatives folder
and follows a similar structure, but split into the processed segments. See Appenix B.1.2
for the coda availability and Appendix B.1.1 for the usage notes.

7.3. Technical Validation

Figure 1 A - 0OX 3 Figure 1 A - DOX
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Figure 7.6.: Example of a visual inspection rendering of a gait (left) and 5RSTS (right)
recording.
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In general, the suitability of using the Rokoko Smartsuit for motion data recording has
been validated by previous work. Mihcin et al. [239] reported good agreement between the
Smartsuit and an optical tracking system, with a maximal bias range -1.48 — 2.22 degrees
for knee flexion and for hip abduction-adduction. We performed two types of validation,
one prior to recording our data. Here, we visually inspected the tracking performance of
the Rokoko Smartsuit by having participants perform static control poses, such as a T-pose
(with 90 degrees shoulder abduction) or lifting their legs. Only when we found the tracking
to be accurate, we did start recording the mocap data. The second validation was done af-
ter exporting and processing the data into Python. In a first step, we rendered the position
data of a random selection of segments to visually inspect a natural-looking motion execu-
tion within the anatomically possible range of motion (ROM) (see Figure 7.6). Following
this initial manual inspection, we evaluated whether the minimal and maximal joint angles
fell within the anatomically feasible ROM. For each participant, we first calculated the min-
imal/maximal joint angles across all motion segments, for each of the six raw recordings
separately (5RSTS is split into two recordings). We then averaged the minimum and maxi-
mum joint angles for each participant across recordings. Figure 7.7 depicts the distribution
of mean minimal (in blue) and mean maximal (in orange) joint angles for all participants
in comparison to reference range of motion values from Ryf and Weymann [316] (in gray).
Note, that we only plot joint angles for which reference values are available. For most joints
the values fall within the expected ROM. Outliers in knee flexion, hip external/internal rota-
tion, and ankle inversion/eversion could be attributed to inaccurately executed calibration
poses or faulty sensor measurements (e.g., for elbow flexion in sub-K9). Additionally, joint
angles for wrist abduction exceeded the normal ROM for some participants, likely due to
inconsistent positioning of the wrist during calibration.

Range of Motion
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Wrist Flex A »—0—:- +
Wrist Abd - i |
Shoulder Flex A '—r—c
Shoulder Ext-Rot - —— |
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Figure 7.7.: Distribution of average minimum and maximum joint angles for all participants,
as calculated across all raw recordings per participant. Anatomically typical
range of motion (ROM) values reported in prior research [316] are shaded in

gray.

In addition, a classification analysis was performed to assess the suitability of the pro-
cessed data for machine learning applications. Our model setup is comparable to Horst
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et al. [134] and we have provided the our source code as part of this Data Descriptor
(see Section Code Availability). For classification, we employed a support vector machine
(SVM) [60, 322]. The SVM was utilized to classify the movement tasks, the sex of the
participants, and the participants’ identities. We chose a SVM with a radial basis function
(RBF) kernel, a regularization parameter (C) of 1, gamma which is 1/ (n_features«Var(X)).
As a preprocessing step for machine learning, we standardized the length of each motion
segment by resampling them to contain exactly 100 frames. Additionally, we concatenated
the time frames, which consisted of 17 6D points, into a single vector representation, result-
ing in a vector of size 10200. To further prepare the data for machine learning algorithms,
we applied scaling techniques to normalize the values within each dimension of the data.
By scaling the values to a range between 0 and 1, we ensured that all features contributed
equally to the learning process, regardless of their original magnitude. To reduce the
dimensionality of the dataset and capture the most relevant information, we employed prin-
cipal component analysis (PCA) [277]. This technique transformed the high-dimensional
feature space into a lower-dimensional representation while preserving the most signifi-
cant variation in the data. This resulted in a segment vector of 3342 to 3363 elements
(depending on how the split was performed), with the first 10 PCA components explaining
69%-68% of the variance. The kinematic data was split into a test (20%) and a training
(80%) dataset. For the identification classification we split segment-wise, i.e. 80% of a
participant’s segments are in the training dataset and the remaining 20% are in the test
dataset. For sex and modality classification, we split participant-wise, with all segments of
a participant in either the training or test dataset, with 80% of the participants in the train-
ing and 20% in the test dataset. On the training dataset we performed a stratified 10-fold
cross-validation using balanced accuracy (mean of the recall per class) as the metric to
select the most appropriate model before testing it on the test dataset.

The metrics accuracy (number of correct predictions divided by total predictions) and
F1-scores [91] were used to evaluate the performance of classification models and are
reported in Table 7.2. As both metrics achieve comparable results we only discuss the
accuracy in the following. Our classification model achieves 97% identification accuracy,
a 81% sex recognition accuracy, and a 84% action recognition (gait normal: 90%, gait
fast: 93%, gait backpack: 88%, gait bottle create: 97%, and 1RSTS: 100%). For action
recognition, a similar result can be found when we plot the actions in two dimensions us-
ing t-SNE [366](perplexity 30), see Figure 7.8. t-SNE is a stochastic method for visualizing
high dimensional data as two dimensional data points while preserving the similarity of the
data points. The clusters of the TRSTS and gait bottle crate segments are clearly distin-
guishable from the remaining task segments. The clusters for the remaining task segments
overlap and cannot be clearly separated, showing their similarity. Note that for each gait
modality we see two clusters. The plot is in line with the results of the classification experi-
ments, as 1RSTS and bottle crate gait are easily separated from the other modalities due
to their uniqueness, while the separation of the remaining gait modalities is more difficult.

7.4. Related Datasets

Comparing our dataset (cmp. Table 7.3) with other IMU-based datasets, we have a high
number of tracked body points. Furthermore, our number of participants, tasks, and sam-
ples are in the middle between the high and low number datasets. The category where
we score the lowest compared to the other datasets is the total recording time, as we only
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Table 7.2.: The classification results given as accuracy and F1-score for different attributes,
we also report the number of classes (C) and number of segments per class (N)
used for the classification.

classification accuracy | f1score | C | Naverage | Nmin | Nmax
identity 97% 97% 50 | 93.44 61 129

sex 81% 81% 2 | 2336 2046 | 2626
action all 84% 85% 5 | 9344 499 1178
1RSTS 100% 100% 2 | 2336 499 | 4173
gait normal 90% 83% 2 | 2336 1178 | 3494
gait fast 93% 78% 2 | 2336 846 | 3826
gait backpack 88% 72% 2 | 2336 1029 | 3643
gait bottle crate | 97% 94% 2 2336 1120 | 3552

modality
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gait fast
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Figure 7.8.: t-SNE plot colored for different motion tasks.

Table 7.3.: Overview of related gait datasets using IMU sensors for motion tracking, sorted
by publication year

Source IMU Tracked Points | Participants | Tasks | Samples Recorded Time | Publication
Khandelwal et al. [162] 4 20 7 51 6h 2017
Chereshneve et al. [54] 6 18 12 2111962 10h 2018
Truong et al. [362] 2 230 1 40.000 8.5h 2019
Loose et al. [195] 3 108 6 1080 30h 2019
Luo et al. [202] 6 30 9 1710 8h 2020
Losing et al. [199] 17 20 3 180-300 | Sh 2022
CeTl-Locomotion [116] | 17 50 5 4672 1.5h 2024

record 1.5 hours in total. The comparison shows the trade-off we chose for these datasets,
instead of maximizing a single category of the dataset, we decided to spread our resources
across all categories to get a good variety in all of them.
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7.5. Chapter Conclusion

In this chapter, we presented the CeTl-Locomotion datasets. Due to its large number
of repetitions and high-quality data, it is an ideal dataset for studying the identification
of individuals from motion data. We demonstrated that individuals can be identified with
97% accuracy. This further illustrates that motion data is a privacy-sensitive behavioral
biometric factor that must be protected. The collected data will be a valuable resource for
future research on identification risks and privacy protections for human motion data.
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8. Pantomime: Motion Data Anonymization
using Foundation Motion Models

In this chapter, we propose Pantomime, the first anonymization for full-body motion se-
quences that is robust against re-identification while enabling high utility. Pantomime uses
foundation motion models to hide the identity of people captured in motion data, which
makes it applicable to different motion data formats and eliminates the requirement to train
on the data it should anonymize. The use of foundation motion models allows Pantomime
to project the motion data into the motion space. Pantomime then anonymizes the motion
data in the motion space by adding random noise to it before decoding the motion data
back into its original space.

The advantage of this approach is that by adding noise to the motion sequence in the
motion space, we create a new plausible motion that is similar to the original. By increasing
the noise, the new motion can be further away from the original motion, and thus anony-
mization can be increased at the expense of motion utility, allowing us to configure the
privacy-utility tradeoff of Pantomime.

Furthermore, using foundation motion models has the advantage that they are trained
on general motion data and therefore generalize well to different motions [306]. Because
of this, Pantomime does not require the enrollment of specific users or the tuning of the
model to specific datasets, as in previous work [251]. Furthermore, Pantomime is applied
to the motion data time-step by time-step, making it flexible in its application to motion data
(e.g., when animating an avatar in a MR chat application).

We investigate the privacy-utility tradeoff of Pantomime by measuring the utility via natu-
ralness and by comparing the similarity of the anonymized sequence to the original using
a user study. To measure the privacy protection we measure the person identification
accuracy with a state-of-the-art biometric recognition system [134].

Furthermore, we investigate how much of the individual components (e.g., body shape,
joint rotations, etc.) of the motion data contribute to person identification. To better under-
stand which component requires anonymization. The contributions of this chapter are as
follows:

* We propose Pantomime, the first general technique for anonymizing motion data
that does not require training on the dataset to be anonymized and can configure its
privacy-utility tradeoff.

» We evaluate Pantomime’s privacy protection using two full-body motion capture datasets.

This chapter is based on the contribution:

» Simon Hanisch, Julian Todt, and Thorsten Strufe. "Pantomime: Towards the Anonymization of
Motion Data using Foundation Motion Models". 2025. DOI: 10.48550/arXiv.2501.07149
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» We conduct a user study to investigate the naturalness and action similarity of the
anonymized motion sequences.

8.1. Terminology & Background

In the following, we introduce the SMPL body model, and foundation models used in this
chapter. A foundation model is, as defined by Bomasan et al. [37]: ".. any model that is
trained on broad data (generally using self-supervision at scale) that can be adapted (e.qg.,
fine-tuned) to a wide range of downstream tasks". In this chapter, we adapt motion models
trained on a broad motion corpus for the encoding and decoding of motion sequences for
the task of anonymization.

8.1.1. SMPL Body Model

The Skinned Multi-Person Linear Model (SMPL) [196] model is a body shape model that
uses blend shapes to represent the human body shape for different poses. The SMPL
decomposes the body shape into a fixed identity-based body shape and a variable shape
that depends on the body pose, which is represented as joint rotations. Due to this de-
composition into static and dynamic body pose, the SMPL model respects the body shape
deformation that occurs in different poses, i.e. soft tissue deformations when a person is
moving compared to when the person is standing still. The SMPL model has been trained
to minimize the reconstruction error of high-resolution 3D body scans.

For the remainder of the chapter, the SMPL model will be defined as the differentiable
function M(r,®,®, ) which maps the root translation r € R3, root rotation ® € RR®, body
pose as joint angles ® € R**?! and identity-based body shape parameters g € R to the
vertices V € R*%°. The joint positions J € R3*?? can be calculated from the vertices by
using a regressor matrix.

To find the SMPL model representation of a given body pose, we perform 3D body fitting.
The goal of the fitting is to find the best parameters for the SMPL model to fit the given
data of the body pose (e.g. all limb positions of a person).

8.1.2. Foundation Models

In the following, we will introduce the two basic motion models VPoser and HuMoR that
we use for Pantomime.

VPoser

VPoser [276] is a VAE that has learned the probability distribution of plausible human body
poses. It takes a single body pose (represented as the 21 SMPL joint angles ©) as input
and tries to output the identical body pose. Since it models plausible poses, it can be used
to judge whether a given pose is plausible or not. This is used to fit the SMPL body model
to given motion data by using the model as a loss.

VPoser was regularized with a Kullback-Leibler divergence during training using a nor-
mal distribution as prior. Hence, the individual dimensions of VPosers latent space a
normal distributed (N (g, 0)). The VPoser encoder takes body poses as joint angles ©
as defined by the SMPL body model and outputs a latent code z.The latent code is then
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mapped back into the original pose space by the decoder to get the reconstructed pose
;.

HuMoR

HuMoR [306] is a CVAE that has learned the transition from one pose to the next. Unlike
VPoser, it uses two successive poses as input to its encoder and then tries to output the
transition from the first to the second pose with its decoder. With its focus on pose tran-
sitions, HuUMoR effectively models the distribution of human motion. Like VPoser, HuMoR
can be used to fit body models to motion sequences.

HuMoR represents the state of a moving person as a matrix x € R® consisting of root
translation, root orientation, body joint angles, body joint positions, and the velocities of
root translation, root orientation, and joint positions. The encoder of HuMoR takes two
sequential states x; and x;_; as input and generates a latent code z;. The decoder of
HuMoR takes the latent code z; and first pose x;_; as input and outputs the reconstructed
transition A from x,_; to x;. Using the reconstructed transition A we get the reconstructed
pose X; = x;—1 + A.

8.2. Related Work

Below is an overview of research in the emerging field of motion anonymization that at-
tempts to prevent identification. We categorize the works according to the type of motion
data they anonymize.

8.2.1. Body Shape anonymization

Sattar et al. [319] investigated the privacy of body shapes extracted from single images.
They show that a person’s body shape is considered private information by performing a
small user study, and propose an adversarial perturbation to prevent the automatic extrac-
tion of shape information from images. While this work is not motion anonymization, it
highlights the need for anonymizing the body shape information that is implicitly contained
in motion data.

8.2.2. Motion Capture Anonymization

Malek-Pdjaski and Deligianni [212] developed an anonymization technique for 3D motion
capture that extracts features that do not allow identification but can still be used for affect
recognition. They attempt to separate the information needed for affect recognition from
the information used for identification by using two AE. One AE is trained to be subject-
specific and one AE is trained to be affect-specific. The disadvantage of this approach
is that the AEs have to be trained on the dataset to be anonymized. Moon et al. [244]
proposed an adversarial anonymization scheme for 3D motion capture data in which a
machine learning model is trained to minimize the identity recognition and maximize the
action recognition. Both approaches are not suitable for preserving the naturalness of the
motion data (as determined by a user study), since the benefit must be quantifiable so that
it can be used as a loss in the training of these approaches.
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Simple Anonymizations Moore et al. [245] suggest using only the velocities of the mo-
tion sequences and Miller et al. [240] suggest using only the joint rotations to reduce
identifiability. Meng et. al. [231] additional propose adding noise to the joint rotations.

Mixed Reality Anonymizations Nair et al. investigate how the (motion) data collected
by VR headsets can be anonymized. They proposed a framework called MetaGuard [253]
which claims to protect various attributes collected by VR headsets. Their second proposal
Deep Motion Masking (DMM) [251] is a machine learning approach which reduces identity
similarity while maintaining action similarity. The evaluation of the approaches performed
in [251] shows that DMM is effective and can anonymize motion sequences of different
datasets against different attackers, but MetaGuard is not effective and does not provide
sufficient protection. The drawback of DMM is that it requires a large training dataset and
is application specific for the data it was trained on.

8.2.3. Summary

In summary, previous work is limited in several ways. They either require large amounts of
training data, are action specific (gait only), cannot be applied to full body motion data, do
not preserve the utility of the data, or are simply not effective.

8.3. Methodology

As our Chapter 4 and prior work [251] have shown, anonymizing motion data is a challeng-
ing task. The main problem is that motion data contains a large number of dependencies
between the individual tracked points, and constraints such as the maximum degree of
flexion of certain joints. In addition, the physiology of the person performing the motion is
important, as it strongly influences how motions are executed to perform the same action.
For example, a tall person will bend their shoulder joint differently to grab an object from
a table than a shorter person in the same situation. Because of all these dependencies,
directly modifying the data is either not effective because the dependencies can be used
to reconstruct the original data, or the modification has to be very strong, which greatly
reduces the utility of the motion data. Another interpretation of the dependencies is that
they represent redundancy in the data, since the true dimension of the motion data, which
can be changed independently, is much smaller than the recorded positions.

The main idea of Pantomime is to remove as many of the dependencies described above
as possible before performing anonymization, and then reintroduce the dependencies after
anonymization to generate a new sequence of motion data. We perform the dependency
removal by mapping a motion sequence into the motion space of a foundation motion
model. We then anonymize the motion sequence in the motion space by adding noise to
it. Finally, we map the anonymized motion sequence back to its original position space.

8.3.1. Requirements

The two main goals of motion anonymization are to prevent the identification of an indi-
vidual from their respective motion sequences, and to preserve the utility of the motion
sequences for the application for which they are intended. For Pantomime, the utility goals
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are naturalness and action similarity. Naturalness means that the motion sequence ap-
pears as a genuine motion sequence to a human observer. And action similarity means
that the action in the anonymized sequence should be as similar as possible to the original
one. We chose naturalness because for many applications of full-body motion data, such
as social interactions in MR, it is important that the motions appear believable and realistic.
The action similarity should prevent our anonymized motion sequences from deviating too
much from the original ones, otherwise we could just generate random motion sequences
to satisfy the naturalness goal. In addition, it would be beneficial to meet the following
requirements derived from common applications of motion data. The first application re-
quirement is the applicability of anonymization to full-body tracking, since even from sparse
input data, such as tracking from MR devices, the full-body pose can be estimated. The
second is that the anonymization should be general with respect to the format in which
the motion data is captured, since motion capture systems vary in the number of points
tracked and the specific body landmarks that are captured.

8.3.2. Anonymizing Human Motion

We now explain Pantomimes approach and design. Note that for Pantomime, we only
focus on the anonymization of the body pose, the © parameter of the SMPL body model.
We do not consider the anonymization of the body shape, the root translation, and the
root orientation and remove them by setting their respective parameters to zero. We do
this because we assume that a person who wants to be anonymous will choose a digital
body that does not resemble them, including the body shape. The root translation and
orientation can be estimated from the resulting motion sequence.

As a first step, we unify different motion capture formats into the format of the SMPL
model by performing a fitting step. This step is necessary because we want Pantomime
to be general enough to work with different formats of motion data. After transforming
the original data into SMPL data, we map the data into the motion space of a foundation
motion model and then perform anonymization by adding noise to the data. The intuition
here is that since the motion space encodes plausible motions, by modifying the input data
in this space, we end up with a plausible motion for the output of the anonymization. In
contrast, performing anonymization by adding noise to the original position data quickly
leads to implausible motions because the individual points are modified without adhering
to the given physiology of the body or physics. The final step is to decode the anonymized
motion space data back into the SMPL model format and then back into the original motion
data format.

In the following, we describe the different steps of our anonymization pipeline for Pan-
tomime, an overview of the whole process can be seen in Figure 8.1.

- leng to Foundatlon Motion Foundatlon Motion SMPL rendenn
Position SMPL Model SMPL Model Encodlng Latent Model Decodlng SMPL 9 Position
Data Data Data Data Data

Figure 8.1.: The Pantomime anonymization pipeline.
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SMPL Model Fitting

To unify the motion data formats, we perform a fitting of our original motion sequence to
the SMPL body model using the HuMoR [306] fitting method. This way all of our motion se-
quences have the same format and can be used with the same foundation motion models.
The fitting process is a function optimization that is performed for each pose of a motion
sequence to find the best SMPL parameters to represent that pose.

Given an observed motion sequence, we try to find the parameters of the SMPL body
model M(r,®, ®, §) that best describe the sequence. To perform this function optimization,
three loss terms must be minimized. The first is the plausibility of the motion. Here we use
either VPoser or HUMoR as a prior to measure the plausibility of a given pose (VPoser) or
the plausibility of a given pose transition (HuMoR). The second loss term is a reconstruc-
tion loss comparing the original with the found SMPL joint positions using MSE. Since the
skeletons between motion data representations may have different kinematic structures,
we define a mapping between the SMPL body model skeleton and the dataset we are
trying to fit to compute this reconstruction loss. The third loss is a regularization term that
enforces consistency of bone length, ground contact, ground position, and body shape
across the entire motion sequence (i.e., bone length and body shape should not change
much during a single motion sequence). The weighting of the three loss parts is dataset
specific and is determined by performing a hyperparameter optimization to find the optimal
values. A more detailed description of the loss terms can be found in [306].

This first step can also be seen as a decoupling of the dependencies, since the original
position data is split into the body shape § and the joint angles O, effectively decoupling
these two aspects of the data.

Encoding the Motion Sequences:

Next, we encode the motion sequences into the latent space of a foundation motion model.
The foundation model used for this step is interchangeable, as Pantomime only requires
that it be a VAE that encodes from the SMPL parameters to a latent space of plausible
poses or pose transitions and back to the SMPL parameters. The rationale behind this
requirement is that VAEs compress the original data by removing dependencies [337, 43]
(i.e., correlations) between data points, and thus our anonymization no longer needs to
adhere to these dependencies for effective anonymization. In other words, by performing
anonymization in the space of plausible motions, the resulting anonymized motion is itself
plausible, thus preserving the utility of the data. In this chapter, we use VPoser and HuMoR
as two possible foundation motion models that satisfy this requirement. However, it is
important to note that VPoser only takes the body pose (joint angles ©) as input, while
HuMoR also requires the root orientation, root translation, and body shape.

Anonymizing the Latent Code:

Now we anonymize the latent code. To do this, we draw a noise vector p from a normal
distribution N(y, o) with p = 0 and ¢ = 1 and add it to the latent code z; at time step
t. We chose normal distributed noise because VAEs regularize their latent space to be
normal distributed and adding two normal distributed random variables results in a normal
distributed sum [181]. Since the decoder expects a normally distributed random variable
as input, this should result in the least utility loss. We chose the mean p to be 0 and

100



8.4. Evaluation

the o to be 1 because we do not want to introduce a bias into the anonymized motion
sequences. With a mean of 0, the resulting distribution of anonymized motion sequences
will cluster around the original motion sequence. The noise vector p is scaled by the scalar
y to make the anonymization configurable by increasing the distance in motion space to
the original sequence. We expect that, as the value of y increases, the anonymization
will become stronger, and the utility of the data will decrease accordingly. There are two
different modes for adding the noise. In variable we draw a new noise vector p, for each
time-step z;, giving us a; = yp; + z; for the anonymized latent code a,, while in static we
add the same noise vector p to each z;, giving us a; = yp + z;.

Decoding the Motion Sequence:

The last step is to decode the anonymized latent code a, into the parameters of the SMPL
body model using the motion model, and from there back into the original position format.

8.4. Evaluation

We now evaluate the privacy-utility tradeoff of Pantomime to understand how much noise
must be added for effective anonymization and how much utility is retained. We also test
the assumptions we made when designing Pantomime.

8.4.1. Datasets

We select our datasets to include a large number of full body motion capture sequences
with a preference for the gait task, as this has been shown to be highly identifiable. We
specifically did not select the AMASS [207] dataset, or any of the datasets included in it,
because AMASS was used to train VPoser and HuMoR.

For our evaluation, we use our own CeTl-Locomotion dataset (see Chapter 7) and Horst-
DB [134] dataset. CeTl-Locomotion includes a variety of walking modalities as well as sit-
to-stand exercises in which participants stand up and then sit down as quickly as possible.
The dataset was recorded from 50 healthy participants using an IMU suit that captures the
relative motion of each body part. In combination with the anthropocentric measurements
of the participants, the 17 body segment positions are calculated. Horst-DB contains only
one walking modality and was recorded using optical motion tracking with 54 reflective
markers attached to body landmarks such as joints or the iliac crest. The resulting data are
scalar values for the x,y,z positions of each of the markers. The main difference between
the two datasets is that CeTl-Locomotion includes several different walking modalities (nor-
mal, fast, carrying a backpack, and carrying a bottle crate) plus an additional sit-to-stand
exercise. Also, IMU tracking is less accurate than optical marker tracking, which is con-
sidered the gold standard of motion tracking. See Table 8.1 for a comparison of the two
datasets.

Table 8.1.: Overview numbers of the used evaluation dataset

Name Points | Participants | Tasks | Samples
CeTl-Locomotion | 17 50 5 4672
Horst-DB 54 57 1 1140
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8.4.2. Implementation

Here we describe the implementation details for both Pantomime and the biometric recog-
nition systems we will use for our experiments.

Data preparation

We preprocess both our evaluation datasets to have a frame rate of 30 Hz, same as prior
work [306]. For the Horst-DB dataset we also additionally cut the samples to exactly one
gait cycle (see Section 4.1.1) using the additional force plate data and a threshold to iden-
tify the first and the last pose of the cycle, as described by Horst et al. [134].

SMPL parameter fitting

For the translation from the original data format of the datasets to the SMPL format, we
perform a fitting step for each motion sequence. Overall, the goal of the fitting is to find the
parameters of the SMPL model (M(r, ®, ®, §)) that match the positions of the input data as
closely as possible, as well as to achieve a high plausibility with the used foundation motion
model (here HUMoR or VPoser). The foundation motion model is used here to enforce the
generation of only plausible motions for the SMPL poses. To fit our two evaluation datasets
we use the code of HuMoR [306], which implements the whole process in three steps. In
the first stage, the root translation and rotation are optimized using VPoser as a prior, in
the second stage, the entire SMPL parameters are optimized using VPoser as a prior, and
in the third stage, HuUMoR is used as a prior for the optimization. Since the code performs
the optimization first with VPoser and then with HuMoR, we use it to generate both fits.

To perform the fitting, we need a mapping from our motion data joint positions to the
SMPL joint positions (i.e., which positions in our data correspond to which position in the
SMPL joints). We created the mapping manually as follows. For CeTl-Locomotion this
mapping is undercomplete because CeTl-Locomotion has only 17 joints while the SMPL
model has 21. For the Horst DB, it is the other way around because the datasets tracked
54 points, some of which are ignored while others are combined to better match the joint
positions of the SMPL body model. Joint positions for which there is no matching position
in the original data are set to infinity. To obtain good fitting results, we perform hyperpa-
rameter optimization on both datasets to find the weights for the fitting losses described
in section 8.3.2. Due to the length of the fitting process, we perform the hyperparameter
optimization on 10 random motion sequences of each dataset and then use the found
parameters for all of them. For both datasets we had some motion sequences for which
the SMPL fitting process failed (producing NaN values at some stage of the fitting process)
and we were unable to obtain an SMPL body model representation, these sequences were
excluded from the datasets. In both datasets this was less than 1% of the total motion se-
quences.

As Pantomime removes the root translation from the sequences, we estimate a new root
translation for the anonymized sequences by using the absolute trajectory of the right foot
as the root translation.
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Biometric recognition system

For the biometric recognition system, we adapt a state-of-the-art method used in Chapter 4,
in which the motion sequence is resampled to a fixed 100 frames and then flattened into
a single vector. The samples are then divided into 80% training data and 20% test data in
a stratified fashion, while keeping the same percentage of samples per identity class. We
use the same system for action recognition, but there we split the data so that a single
participant’s samples are either in the test data or in the training data. This should prevent
the system from learning actions for specific people and help with generalization. The two
datasets are then processed independently. Each dimension of the feature vector is min-
max normalized before its dimensionality is reduced using a PCA. As a classifier, we use
a SVM with a radial basis function (RBF) kernel, which is trained in a 5-fold stratified cross-
validation procedure using balanced accuracy as a metric. The final result is obtained
by running the SVM on the test data. The recognition system is always trained on the
anonymized data of the anonymization we are testing, as defined by our adversary model.

Code Availability

We implemented the biometric recognition system using python, scikit-learn, and PyTorch.
Pantomime itself is implemented in python on top of the existing HuMoR code [306].

8.4.3. Experiments

Here we detail the experiments we performed to investigate our underlying assumptions
in designing Pantomime, and then to evaluate Pantomime’s privacy-utility tradeoff.

Assumptions & Baseline

Baseline Identification & Action Recognition First, we establish an identification and
action recognition baseline on the original position data, against which we will later com-
pare the anonymization results of Pantomime. This will allow us to evaluate how good
Pantomime’s privacy protection is and how much utility we lose as a result. In our base-
line identification experiment E1, we train and test the biometric recognition system on the
dataset to perform person identification. To do this, we split the dataset into a test and a
training part of the dataset, with each person having different samples in both partitions.
We then train the biometric recognition system on the training dataset in a supervised man-
ner. We then determine the identification performance on the test set. In the action recog-
nition baseline experiment E2, we determine the baseline action recognition performance.
We now train and test an action recognition system. Unlike for person identification, we
split the dataset so that a person is either in the test or training dataset to avoid the system
learning the unique action performance of a person and to better generalize. We then
measure how well the system can identify the action performed in the sample.

Identification Potential SMPL Parameters The unification of the motion data in the
SMPL body format splits the data into motion data (poses as joint angles ©), body shape S,
root translation r, and root orientation ®. Pantomime focuses only on anonymizing the
motion data of the poses. For the remaining SMPL parameters, we test how much identifi-
cation potential they have on their own.

103



8. Pantomime: Motion Data Anonymization using Foundation Motion Models

For E3 we use the SMPL body model fits from both VPoser and HuMoR for our motion
data where specific components are removed by setting them to zero. We then generate
new position data for the classification. We expect the body shape and poses alone to
carry a high identification potential, as has been shown in previous studies [115, 319].
For the root translation and especially for the root rotation we expect a lower identification
potential, because these are single vectors, which should carry less information than the
body poses.

Dependency Reduction It is our assumption that by encoding our motion sequences us-
ing the SMPL body model and then foundation motion models, the dependencies between
the individual data dimensions of a pose or pose transition are reduced due to the VAE
architecture used in the foundation models. For E4 we measure the linear dependence
of the pose dimensions on each other. We do this by measuring the average absolute
covariance between all dimensions of a pose and then averaging them over the number of
poses per motion sequence. This gives us a single comparable linear dependency mea-
sure per motion sequence. We then compare the dependency for the different encodings
of the motion sequence (original and latent code) to see if the dependency is reduced by
the encoding of the foundation motion models.

Noise Mode Comparison We assume that adding the same noise vector to all poses of
a motion sequence (static noise mode) will perform better than adding a new noise vector
to each pose (variable noise mode). In our noise mode comparison experiment E5, we run
both modes with different values of the noise scaling y on the original motion data to test
this assumption. We then measure privacy by performing identification with our biomet-
ric recognition system. We expect that the static noise mode will always outperform the
variable noise mode. Since a motion sequence is a time series of poses, two consecutive
poses will be very similar to each other because a person cannot move much in a single
time step. Adding different noise vectors to two similar poses makes it easier to separate
the noise from the underlying data, since much of the difference between the two poses
after the noise is added is the noise. If we add the same noise vector to both poses, then
the difference between the two poses is still the same as it was before anonymization, and
we cannot distinguish noise from data.

Privacy-Utility Evaluation

In our privacy-utility experiment E6 we evaluate the privacy and utility of Pantomime. For a
better comparison, we not only study how noise injection into the latent space affects the
privacy-utility tradeoff, but also test applying noise directly to the original data and the fitted
SMPL representation. Due to the different representation of the motion sequence (original,
SMPL fit, latent code), the noise parameters of our different anonymization techniques are
not directly comparable. For example, adding the same amount of noise to the position
of a joint will have a different effect than adding noise to the joint rotations of an SMPL
fit. In order to achieve comparability between where we apply noise, we define protection
targets. A protection target is a given value of recognition accuracy, for example 20%. We
then tune the noise parameters of our anonymization to achieve the given target (+2%).
In this way, the anonymization performance of our techniques is the same, and we can
directly compare the utility of our approaches to judge which anonymization has the better
tradeoff. An overview of all combinations of motion representation, anonymization, and
protection target is given in Table 8.2.
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Table 8.2.: The combinations of motion representations, anonymizations, and protection
targets which we use in our privacy-utility tradeoff.

motion rep. anonymization protection targets

original direct 10%, 20%

SMPL (VPoser) | direct, VPoser, HuMoR | 10%, 20%

SMPL (HuMoR) | direct, VPoser, HuMoR | 10%, 20%

We investigate utility by performing action recognition on the CeTl-Locomotion dataset
and by conducting a user study on both datasets. We investigate two utility goals in our
user study, the first is the naturalness of an anonymized motion sequence, and the sec-
ond is the motion similarity between an original and corresponding anonymized motion
sequence.

VPoser only works on a single pose at a time, while HuMoR works on the pose tran-
sition and thus on pose pairs. Due to this, and the better overall performance for pose
fitting reported by HuMoR [306], we expect HUMoR to do a better job of removing the
dependencies, and therefore Pantomime to achieve better utility. Furthermore, we expect
Pantomime to achieve better utility than adding noise to the original pose data, regardless
of the foundation motion model chosen.

8.4.4. Utility / User Study

Figure 8.2.: Example rendering of a motion sequence used during the user study.

For utility, we investigate how natural the anonymized motion sequences appear and
how similar the actions are compared to the original motion sequence. We do this by
conducting a user study similar to another study [355] we performed on the evaluation of
biometric anonymizations. We use two tasks to evaluate our objectives. In the first task,
we show participants a single motion sequence. The participants then rate how natural
the sequences appear by answering the question "Is this a natural human motion? The
rating is done on a 5-point Likert scale from "very unnatural" (1) to "very natural" (5). In
the second task, we show the original sequence next to an anonymized version of the
sequence. Participants then answer the question "How similar are the motions performed
in the two videos?" by rating on a 5-point Likert scale from "very dissimilar" (1) to "very
similar" (5).
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We conducted an online survey in which participants were shown different motion se-
quences from the CeTl-Locomotion and Horst-DB datasets as short video sequences (see
Figure 8.2 for an example) rendered at 20 frames per second. We reduced the rendering
from 30 to 20 frames per second to allow users to better judge the execution of the motion.
The motion is rendered as point-light displays to reduce the influence of appearance and
to focus on the motion. From the Horst DB, we randomly select 4 motion sequences,
two from male participants and two from female participants. From CeTIl-Locomotion,
we randomly select two male and two female motion sequences for the modalities gait-
normal, gait-fast, gait-bottle-crate, and sit-fo-stand. These 20 motion sequences were an-
onymized with a subset (original+direct, HuMoR+direct, HuMoR+HuMoR, VPoser+direct,
and VPoser+VPoser) of the combinations described above (see Table 8.2) for the protec-
tion targets of 10% and 20%. Since we perform two tasks (naturalness and similarity see
above) and add the original sequences, this results in 440 unique questions. From this
question pool, each participant answers 40 random questions.

8.4.5. Ethical Considerations

The user study data collection was approved by the ethics commission of the Karlsruhe
Institute of Technology (research project "Utility of Anonymized Motion Sequences") and
was conducted in accordance with the Declaration of Helsinki. All data was collected in
an anonymous online survey in December 2024 using an online recruitment platform ' to
recruit 224 participants (112 male, 112 female; mean age 30.8, std 9.57). Participation
took a median of 7:47 minutes and participants were paid an average of 10.71£ per hour.

The CeTl-Locomotion and Horst-DB dataset used in this study both had approval by
their respective ethics commissions and their participants gave informed written consent
to participate in the data collection.

8.5. Results

Here, we describe the results of our experiments, similar to the evaluation section, where
we start with the results of testing the underlying assumptions for Pantomime before de-
scribing the results of the privacy-utility evaluation.

8.5.1. Assumptions & Baseline

We start with the baseline identification experiment E1 and the action recognition exper-
iment E2. For both CeTl-Locomotion and Horst-DB we observe that the identification
recognition accuracy for the original data is high with 83% and 96%, respectively. For
the CeTl-Locomotion dataset, we also perform action recognition to classify which of the
5 actions was performed in a motion sequence, achieving an accuracy of 80%. Overall,
these results are in line with prior work and show that the recognition systems used for
identification and action recognition work.

For E3 we look at the difference in identification accuracy when using only certain parts
of the data in their SMPL representation. In Table 8.3 we report the identification accuracy
for the data when using positions generated from the SMPL representation with only the

1 https://prolific.com
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Table 8.3.: The influence of the individual parameters of the VPoser and Humor SMPL fits
on the identification given as accuracy
datasets

CeTl-Locomotion | Horst-DB

SMPL para.

shape (f)
joint poses (©)

VPoser
root trans. (r)

root orient. (®)

shape (p)
joint poses (©)

HuMoR

root trans. (r)

root orient. (®)

Table 8.4.: Average absolute linear correlation between all of the dimensions of the respec-
tive encoding of a motion sequence.
CeTl-Locomotion | Horst-DB

SMPL Fit VPoser | HuMoR | VPoser | HuMoR
positions 0.55 0.62 0.64

0.46
0.39

VPoser lat. enc.
HuMoR lat enc. [OEF

0.37

| |
joint poses 0.55 ‘ 0.55 . ‘
05 (052 041 046
052 034 039

specific parameter intact, while the rest of the parameters are set to zero. We find that
most parameters have a high identification potential (greater than 50%) on their own. The
lowest identification potential is observed for the SMPL fit of the CeTI-Locomotion data us-
ing HuMoR. But even here, the individual parameters have significantly more identification
potential than the chance level (2%) for CeTl-Locomotion. This leads us to conclude that
anonymizing only the SMPL joint poses in the latent space is not sufficient, as the remain-
ing components of the SMPL body model can be used for identification. This justifies our
decision to set the remaining parameters to zero.

For E4 we hypothesized that using the foundation motion models will reduce the de-
pendency between the individual data dimensions. In Table 8.4 we report the average
absolute correlation between the different data dimensions for different representations of
the motion sequences. We find that the data represented as positions (generated from
the respective SMPL fit) has the highest average absolute correlation, with the exception
of the Horst-DB VPoser fit. The data represented as joint poses has the second highest,
followed by the latent encodings of VPoser and HuMoR. This decrease in correlation is
in line with our expectations, and especially HuUMoR seems to achieve a high decoupling
of the latent dimensions. However, the remaining high correlations for the VPoser latent
encoding show that the effects of decoupling can be much smaller than expected.

Next we report the results for our noise mode experiment E5, see Figure 8.3. For both
datasets it can be seen that when using the same noise scaling y the variable noise mode
always is outperformed by the static noise mode. When visually inspecting the resulting
motion sequences using a rendering of the sequence it can also be seen that the approach

107



8. Pantomime: Motion Data Anonymization using Foundation Motion Models

noise mode comparison
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Figure 8.3.: Comparison of the static noise vs. variable noise mode of directly applying
noise to the original data of both CeTl-Locomotion and Horst-DB over different
y noise scaling choices.

leads to a very visible shaking of the joint points, the injected noise becomes visible in the
motion execution.

Since two consecutive poses are very similar to each other, changing the noise vector
for each pose makes it easier to distinguish what is the real data and what is the noise
addition. Our conclusion from this experiment is that the static noise mode is the better
mode to add the noise to the data as it always outperforms the variable noise for the
identification reduction.

action vs identification: CeTl-Locomotion

direct original positions

o A VPoser ]

B 037 HuMoR I
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1
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c 04T
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Figure 8.4.: The action recognition vs identity recognition accuracy for CeTl-Locomotion.

To investigate the privacy-utility tradeoff E6, we first report the action recognition results
for the CeTl-Locomotion dataset, see Figure 8.4, before doing the main comparison using
our user study. Comparing the direct anonymization on the original data with all the an-
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onymizations on the adjusted data, we see that the adjusted data drops faster in person
identification than in action recognition. For example, at 60% action recognition accuracy,
the original data is still at about 15% identification accuracy, while the fitted data is much
lower and close to 5% accuracy. Surprisingly, there does not seem to be a difference if the
anonymization on the fitted data is performed directly on the positions, the SMPL joints, or
the latent encoding, as all these anonymizations perform similarly. At least for action recog-
nition, it does not seem to matter in which data space the anonymization is performed. We
conclude that action recognition is a simple task that is still successful on heavily distorted
data, which leads to similar performance of the anonymizations.
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Figure 8.5.: The scaling of the noise parameter y in comparison to the achieved recognition
accuracy of different anonymization combinations for CeTl-Locomotion.
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Figure 8.6.: The scaling of the noise parameter y in comparison to the achieved recognition
accuracy of different anonymization combinations for Horst-DB.
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For the main privacy-utility tradeoff, we first report the scaling of the noise parameter
versus the achieved recognition accuracy, see Figure 8.5 and Figure 8.6. We use these
results to pick the noise scaling values which fulfill the specific protection targets (shown
as green line). We find that the direct application of noise to the position data requires
less noise scaling than when we apply the noise in the latent space or directly to the
joint rotations of the SMPL model. For both datasets, we choose the anonymizations that
achieve 10% or 20% (+2%) for the direct comparison of utility in the user study.
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Figure 8.8.: Average similarity rating per question of the user study as a box plot per anon-
ymization.

For our user study, we first calculate the average of the ratings for each question, and
then use the averages to create a box plot for each anonymization technique. Compar-
ing the naturalness results (see Figure 8.7) we see that the original motion sequences
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score the highest for both datasets, indicating that the participants consider the selected
datasets to be representative of natural motion. For the direct addition of noise to the
original position data, we see that both datasets have very low naturalness ratings, close
to very unnatural, showing that the naturalness of the motion data is destroyed. The an-
onymizations using HuMoR as a foundation model achieve more utility than the direct
anonymization, but also all are rated close to unnatural. The best natural ratings we see
for the anonymization using VPoser, for the CeTl-Locomotion dataset an intermediate rat-
ing is achieved, while for the Horst-DB the rating is even above natural. We conclude that
using VPoser as a foundation model during anonymization helps to achieve natural motion
sequences that are close to the naturalness of the original.

For the similarity results (see Figure 8.8), we generally see a similar pattern as for nat-
uralness, with the original data rated as very similar to itself. Direct anonymization on
the original data achieves almost no similarity, HuMoR achieves intermediate to unsimi-
lar results, and VPoser again delivers the best similarity on the Horst-DB datasets. This
again shows that using VPoser, Pantomime can successfully anonymize while keeping the
motion sequence similar to the original, thus preserving utility.

8.5.2. Summary of Results

Here, we give a short summary of the main results of our evaluation:

« Pantomime is able to successfully anonymize motion data by anonymizing it in the
latent space of a foundation motion model.

+ All components of the SMPL representation of the motion sequences contain identi-
fiable information.

* The latent encodings of motion sequences using foundation motion models only
slightly reduce the correlations between the data dimensions.

» Applying a fixed random vector to the entire motion sequence instead of varying it for
each pose is the better mode for anonymizing motion sequences.

* For the action recognition we do not see a significant difference between the anony-
mization techniques.

» Using a VPoser fitting with a VPoser latent encoding achieves the best privacy-utility
tradeoff.

8.6. Discussion, Limitations & Future Work

In general, we find that Pantomime’s approach of using foundation motion models to first
fit the position data to the SMPL body model and then anonymize the data in the latent
space of the model is a viable approach to anonymize full-body motion data in a plausible
manner. Because of the plausibility constraints added by the foundation models, the data
can retain the utility of the motion data while performing effective anonymization.

In comparison with prior work, Pantomime has some key advantages. It anonymizes
full-body motion capture data, it is not designed to work only with specific motions (such
as gait), it does not require a large corpus of specific application data to train, and it
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is configurable via its noise scaling, allowing its privacy-utility tradeoff to be adjusted for
specific applications. Furthermore, it is general as it performs a unification of motion data
formats by fitting to the SMPL body model.

The same foundation models that we use to anonymize can also be used to generate
synthetic motion data, by using the original data as an anchor in the latent space and
then shifting it by adding noise, we essentially generate synthetic data that is similar to the
original data. Thus, Pantomime can be considered as synthetic data generation. Similar
to face anonymization [140], which generates new faces to anonymize facial images that
have similar characteristics such as ethnicity or age.

Pantomime also has some limitations that need to be addressed. Its main drawback is
the poor fitting quality for some of the motion sequences, especially when HuMoR is used
for fitting. Another problem with fitting is that it does not work well for certain actions, such
as the stand-to-sit tasks in CeTl-Locomotion. Furthermore, the current implementation
of the fitting process is slow (it takes about 1.5 weeks to process CeTl-Locomotion on
a single GeForce RTX 3090). However, the anonymization process itself is much faster.
It takes only about 16 minutes to anonymize the entire CeTl-Locomotion dataset, which
contains about 1.5 hours of recorded sequences.

Pantomime’s approach to anonymization is very general and could be promising for
other complex data types that are difficult to anonymize, such as trajectories or other bio-
metric features. The only requirement would be that the foundation models use a VAE
structure. Furthermore, it should be investigated how the approach can be realized in a
faster fashion to allow for applications like the real-time streaming of motion data.

8.7. Chapter Summary

We have presented Pantomime, a full-body motion anonymization that uses foundation
motion models to anonymize in a plausible way. Different from prior work Pantomime does
not require the training of a specialized anonymization model for a specific dataset but
uses existing foundation motion models. Another key advantage of Pantomime is that its
anonymization strength can be configured via its noise scaling. Our results show that using
the VPoser model it is possible to achieve identification rates as low as 10% while keeping
the anonymized motions natural and similar to the original ones. This is an important
step towards a more privacy-preserving use of motion tracking in applications such as MR,
robotics, or medicine.
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Human motion data is a rich source of information with a wide range of applications. In
medicine, for example, it can be used to diagnose diseases and monitor patient recovery.
In robotics, motion data can be used to teach robots new skills. In MR, captured motion
data allows for the animation of digital avatars, creating better social interaction between
users. As these application fields continue to develop, the use of motion capture technol-
ogy will likely become a normal part of everyday life.

However, motion data has the downside of being a behavioral biometric trait, which
poses a privacy risk to the person being recorded. Individuals can be identified by their
gait or how they use MR headsets. Furthermore, private attributes can be inferred, such
as sex, age, and medical status. This thesis focused on the privacy risks and mitigations
associated with the usage of motion data.

We started by conducting the first literature survey on the anonymization of behavioral
biometric data, comparing anonymization techniques across multiple behavioral traits. For
the classification of the found techniques we developed a new general taxonomy which
enables the comparison of different anonymization independent of their behavioral trait.
This helps with identifying suitable anonymizations for one trait that can be adapted for
another one, in our case motion data. Further, our survey found that the largest corpus of
literature focus on anonymizations for voice recordings. Unsurprisingly the state-of-the-art
of voice anonymization is much more advanced then for other traits. One example of this
is the VoicePrivacy challenge, a community benchmark that seeks to establish a common
protocol and datasets for the evaluation of voice anonymizations. Many other behavioral
biometric traits would benefit from having such a benchmark, as most performance re-
sults are not comparable between different studies. Additionally, our review of evaluation
methodologies showed that they are similar across traits and that they suffer from the
same unrealistic assumption about the attacker, and hence the reported anonymization
protection is likely not reliable. We addressed this by proposing suitable improvements to
the evaluation of anonymizations for behavioral biometric data in this thesis.

We investigated which features of gait motion data contribute to identifying individuals
and recognizing sex. Our main finding was that identification and sex recognition are both
very robust, and no simple perturbation can prevent this without drastically decreasing the
data’s utility. One possible interpretation of this finding is that gait data is idiosyncratic and
redundant. This suggests that effectively anonymizing gait data is a hard problem and
requires an approach that considers the interdependence of gait data. Modifying a single
feature or data point without adjusting the others accordingly will produce unrealistic results
and weaken anonymization, as modifications can be spotted and distinguished from real
data. While this effect is strong with motion data, we expect to see similar effects with
other complex data types, where all data points are interconnected.

To further study the privacy risks of motion data, we collected the first comprehensive
dataset of facial motions using MR headsets. Using this data, we demonstrated that facial
motion can be used to identify individuals with up to 98% accuracy in a single session. For
identification across multiple sessions, accuracy is much lower, but still much higher than
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chance level at 43%. Since we used different types of MR headsets, we also demonstrated
that identification is possible across different headset types. This highlights that switching
to a new headset type will not protect users’ privacy. Overall, we conclude that facial
motion data poses a significant privacy risk to the person who was recorded and should
be treated as personally identifiable information.

We proposed improvements to the methodology for evaluating biometric data anony-
mization to address the major flaws that we identified in our survey. We demonstrated
the importance of retraining the biometric recognition model, as this allows the model to
adapt to the anonymized data. This results in more reliable outcomes when the assumed
attacker is stronger. Furthermore, we demonstrated the importance of using different bio-
metric systems because the system that performs best with clear data is not necessarily
the best with anonymized data. Finally, we demonstrated that decreasing the number
of identities in the evaluation dataset and carefully selecting which identities to include
simulates a worst-case anonymization scenario. These improvements to the evaluation
methodology result in a more rigorous evaluation of anonymization performance and more
reliable results.

To study the anonymization of motion data further, we collected the CeTl-Locomotion
dataset. The dataset was collected from 50 participants performing five different motion
tasks while wearing motion capture suits. Due to the large number of repetitions for each
task, this dataset is ideal for identifying individuals and testing anonymization approaches.

Lastly, we proposed Pantomime, the first anonymization technique for full-body motion
data that enables high utility while protecting against re-identification. Pantomime first
moves the motion data into the latent space of foundation motion models to anonymize it
before adding noise. Due to the addition of noise in the latent space, the resulting anony-
mized data is a valid motion sequence similar to the original. Our user study showed that
the anonymized data achieves high naturalness and similarity. This makes Pantomime the
first anonymization method that can effectively anonymize motion data while maintaining
high utility.

Open Challenges Although we addressed important questions regarding the anonymi-
zation of motion data, some questions remain unanswered.

The most pressing issue we currently face is the applicability of motion anonymization,
including Pantomime, to real-world scenarios. Many applications of motion data would
benefit from real-time anonymization capabilities. This would allow for the anonymization
of motion data streams. For example, it could be used for the real-time animation of
digital avatars in MR. In principle, Pantomime can process streams because it anonymizes
one pose at a time. However, its current implementation uses a slow fitting process that
prevents this use case.

Furthermore, motion data should be anonymized as early as possible to reduce the
potential attack surface. Therefore, the best place to anonymize motion data is on the
recording device. However, Pantomime and other machine learning approaches require
dedicated GPUs and much processing power. For this reason, we need more lightweight
approaches that can be deployed on mobile devices, such as MR headsets.

As we have demonstrated in this thesis, facial motion data is a behavioral biometric trait
that can be used for identification purposes. Currently, there is no anonymization method
for facial motion data. While Pantomime can be adopted for this task in principle, there are
currently no foundation models for facial motion that could be used for anonymization.
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In this thesis, we examined motion data captured using 3D motion capture technology.
However, most motion data is still recorded in the form of 2D videos. Anonymizing this
type of data comes with the additional challenge of producing visually believable results
that fit well into the rest of the video. Some early works address this problem; however,

many open questions remain.
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A. Behavioral Data Anonymizations

A.1. Voice

Voice processing and analysis [21] have long been performed and hence a large set of
specific terminology exists to describe it. The sound of the human voice is created by the
Larynx and then travels via the vocal tract, which transforms and filters the sound before it
leaves the mouth. Due to its approximate tube shape, the vocal tract produces resonances
of the sound which are dependent on the length of the vocal tract. A Phoneme is the
smallest unit of sound that distinguishes one word from another and an utterance is a unit
of speech between two clear pauses. The log-spectrum is an important representation of
sound as it is closer to human perception. By using a domain transformation (fast Fourier
transform (FFT) or cosine) on the log-spectrum we get the cepstrum (see Figure A.1). The
cepstrum is useful because it allows easy estimation of the fundamental frequency (f0) of
the signal. The perceived fundamental frequency by humans is known as pitch. A widely
used scale to transform the fundamental frequency to the pitch is the Mel scale. Using the
Mel scale the cepstrum can be sampled at frequencies with the same perceived distance
using weighted sums. Applying an FFT on those sums gives the Mel-frequency cepstral
coefficients (MFCC). The MFCCs are an approximate quantification of the signal spectrum
that focuses on the macrostructure of the signal.

Amplitude
°
Absolute Magnitude
o

0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16 18 20
Time (ms) Quefrency (ms)

Figure A.1.: A windowed speech segment (left) and its corresponding Cepstrum (right),
Source: https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC.

The following gives a short overview of the field of speaker recognition (i.e., identification)
which aims to establish the identity of a speaker. Gaussian mixture models [309] (GMM)
represent speakers as the distribution of their feature vectors. The feature vectors are
extracted from the speech (most often represented as MFCC) of the speaker and then
modeled as Gaussian mixture density. A GMM assumes that the data points are generated
by a finite number of Gaussian distributions with unknown parameters. Each feature vector
is represented as a linear combination of Gaussian densities. A universal background
model (UBM) is a GMM that models a wide variety of non-target speakers, representing
possible impostors. The means of the UBM are then adjusted to the target speaker by
using a maximum a posteriori adaption [310] resulting in a GMM for the target speaker.
The benefit of this approach is that the Gaussians used to model the target speaker are
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the same as in the UBM. For the classification of a speaker, the log-likelihood of the target
speaker GMM is compared to that of the UBM to determine if the speaker should be
accepted. An alternative to the log-likelihood approach is to get a GMM for each speaker
recording through a maximum a posteriori probability (MAP) adaptation of the UBM and
then map these GMM to a new feature vector, called Supervector [44]. Supervectors
can be classified using traditional methods like support vector machines. An extension
of Supervectors is the total variability (TV) [70] approach. This maps the Supervectors to
a low-dimensional space that models both the speaker and the channel variability. The
resulting vector is called i-vector and is the de facto state-of-art in speaker identification.
An alternative to i-vectors are x-vectors [335] which are extracted for each utterance via a
deep neural network (DNN).

A.1.0.1. Utility

The main usage of voice recordings is the transmission of information between humans,
however, in recent years voice also became an important input modality for computer sys-
tems [292]. In both cases, it is important that the content of the speech is intelligible for
the intended listeners. But also the mere detection of speech in audio samples can be
useful, for example for crowd detection [57]. Further, voices uniquely identify their speaker,
making them suitable both for authentication and recognition purposes [314].

A.1.0.2. Threat Space

The privacy threats for human voices range from the identification of individuals, over the
inference of private attributes, to identity theft via fake recordings. The identification of
individuals via their voice has long been apparent to humans. But voices convey more
information than just identity, they also allow us to infer attributes such as gender [84],
or emotional state [382]. Further, modern speech synthesis methods allow the creation
of fake voice recordings for a target speaker, enabling identity theft or the circumvention
of speaker authentication systems. Unlike other behavioral biometric traits, voice and its
resulting speech can also carry a semantic meaning, which can be sensitive to privacy.

A.1.0.3. Additional Privacy Goal

Voice has speech blurring as an additional privacy goal, which aims at destroying the
intelligibility of the speech to protect its semantic content from unintentional listeners.

A.1.0.4. Anonymization Techniques

We now present the surveyed anoymization techniques that deal with protecting human
voices.

Random Perturbation Parthasarathi et al. [270] extend their feature removal methods [271]
by additionally shuffling the voice blocks for adding randomness. Mtibaa et al. [248] pro-
pose a template protection scheme that relies on shuffling the feature vector of a GMM-
UBM speaker identification system.
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Noise Injection Tamesue et al. [347] propose a very simple method to make speech
unintelligible by simply playing pink noise between 180 and 5630 Hz with various dBs.
Ma et al. [204] also try to make speech unintelligible but focus on smartphone record-
ings. Their device creates two ultrasound waves whose interaction creates random low
frequency waves that noise the microphone of a smartphone but cannot be heard by hu-
mans. In their evaluation, they found that they can block smartphone recordings up to 5
meters, depending on the type of smartphone. Hashimoto et al. [120] propose a system
to preserve speaker privacy in physical spaces. The core idea is to add white noise to
prevent recordings of speakers from being used for identity theft. They conclude that pre-
venting speaker identification is possible (equal error rate (EER) from 2% to 17%) while at
the same time keeping the intelligibility of the speech at a high level (short-time objective
intelligibility [346] from 1 to 0.9).

Ohshio et al. [265] train multiple so-called babble maskers from pre-recorded speakers
by segmenting the speech and then averaging the segments. When a speaker should be
de-identified the babble masker is selected based on the fundamental frequency and the
pitch of the person. Vaidya et al. [364] proposes to add random noise to four features:
pitch, tempo, pause, and MFCC. We found the descriptions of their approach to be rather
short. Sharma et al. [329] use a self attention channel combinator to add noise to voice
signals.

Two methods have been proposed that rely on differential privacy for noise injection.
Hamm et al. [113] propose a differential private min-max filter. The min-max filter mini-
mizes the privacy risk while maximizing utility risk with a given utility and private task. The
differential privacy is achieved by adding noise either in front of the filter or after the filter.
Han et al. [114] rely on X-vectors as speaker representation and formally define voice-
indistinguishably a privacy metric using differential privacy. As a measurement of similarity
between x-vectors, the angular distance is used and the overall scheme gives an upper
limit of this distance until which two x-vectors cannot be distinguished.

Feature Removal Parthasarathi et al. [272] propose three feature removal methods for
privacy-aware speaker change detection. Adaptive filtering assumes that the excitation
source is independent of the vocal tract response. They perform short-term linear predic-
tion analysis to estimate an all-pole model [185](representing the vocal tract), a residual
(representing the excitation source), and the gain. Then the residual is used to estimate
its real cepstrum. Their second method is to remove all subbands except the one from
1.5 kHz to 2.5 kHz and from 3.5 kHz to 4.5 kHz. They represent the two subbands as
MFCC coefficients and log-energy from a single filter. Their last method only uses the
spectral slope of the speaker represented as cepstral coefficients. In another work [271]
Parthasarathi et al. also propose similar feature removal methods for speaker diarisation
using the real cepstrum and MFCC as features. Their analysis finds that MFCC works bet-
ter than real cepstrum. Agarwal et al. [8] propose a similar scheme. They first transform
the segmented speech signals into the frequency domain, then select the n most important
peaks and interpolate a new signal before transforming it back into the speech domain.
Wyatt et al. [379] propose a feature removal method for speaker segmentation and con-
versation detection. They split the audio into segments and save for each the non-initial
maximum autocorrelation peak, the total number of autocorrelation peaks, the relative
spectral entropy, and the energy of the frame. Zhang et al. [404] use the same features
as proposed by Wyatt et al. except for the energy of the frame and then use an HMM to
perform the conversation detection. An evaluation of privacy is missing in both works.
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Ditthapron et al. [76] have investigated how speech from non-target speakers can be
removed in a speech assessment scenario. To separate the speakers they first extract
speaker representations from the MFCC of the speech via an encoder. The speaker rep-
resentation is then concatenated with the original MFCC before all but the target speakers
are filtered out in the speaker matching network. We are missing a convincing evaluation
of privacy.

Nelus et al. [255] propose to train a DNN via adversarial learning to extract features from
a speaker that allow gender recognition but not speaker identification. Their evaluation
shows a drop in identification from 61% to 26% while the gender recognition only drops
by 1%. They also proposed a similar system [256] which removes speaker identities from
urban sound recordings. Cohen-Hadria et al. [57] also use a neural network and use it
to extract the voices from recordings that consist of both background and voice noise in
which the voices should be anonymized. They remove attributes with two methods. The
first method simply low-pass filters the voice at 250 Hz. The second method extracts the
MFCC from the voice and then uses the first 5 components to create a new voice. In
the end, the blurred speech is recombined with the background noise. Evaluating with a
speaker identification system they were able to reduce the identification down to 29% from
43%.

Discrete Conversion For discrete conversion, we found multiple template protection
schemes.

Pathak et al. [274] present a hashing algorithm to protect voice data for authentication
purposes. The supervector of a speaker is gained by performing the MAP adaptation of
a universal background model for each utterance of the speaker and concatenating the
means of the adapted model. The locality sensitive hashing is then performed with the
supervector which transforms it into a low dimensional space, which is referred to as a
bucket. This operation is an approximation of the nearest neighbors algorithm allowing the
comparison of buckets to authenticate the individual.

Portelo et al. [290, 291] propose a template protection scheme based on secure binary
embeddings. The authors use a speaker identification system that uses supervectors
and i-vectors to represent the features of a speaker’s voice. The feature vectors are then
encoded with secure binary embeddings which have the property that if the Euclidean
distance of the two vectors is below a certain threshold then the hamming distance of the
resulting hashes is proportional to the Euclidean distance. This allows the comparison of
the encoded vectors by using a support vector machine (SVM) with a hamming distance
based kernel.

Billeb et al. [34] propose a template protection scheme that is based on fuzzy commit-
ment. They first extract the frequency spectrum via an FFT and then extract features from
the magnitude spectrum. Then the MAP adaptation of a GMM-UBM speaker identification
system is applied and additional statistics are extracted. The template is then stored as a
combination of error-correcting code and hash algorithm.

Continuous Conversion Most voice anonymization techniques fall into the category of
continuous conversion, since they attempt to create an anonymized speech recording. We
have found the following techniques.

Speaker transformation is the process of manipulating the voice characteristics of a
speaker (not the linguistic features) to make the voice sound like a target speaker. A target
speaker can be either a specific natural speaker or a synthetic speaker. For the synthetic
speaker, either an existing speaker is used or a new one is generated, for example by
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averaging multiple speakers into one. The general approach of speaker transformation is
that the voice characteristics of the source speaker are extracted and then transformed to
match the target speaker. In the last step, the new speaker is synthesized. The following
methods perform speaker transformation.

Jin et al. [150] evaluate four methods for speaker transformation for identity protection.
Their base method uses a GMM-mapping based speaker transformation system to transfer
speakers to a target synthetic voice called kal-diphone. Further, they test duration transfor-
mation in which the length of utterances of the source speaker is scaled to match the ones
of the target speaker. Lastly, they try an extrapolated transformation in which they use
the linear mapping of the source to the target to extrapolate beyond the target. Pobar et
al. [285] also use a speaker transformation system based on GMM mapping but combine
it with a harmonic stochastic model. The system is trained on a set of speakers to learn
the transformation functions. Instead of retraining the system for a new speaker one of the
existing transformation functions is applied. This removes the need for a parallel corpus
for the speakers that should be protected. The target speaker is a synthetic speaker which
reduces the identification accuracy from 97% down to 9%.

Justin et al. [155] investigate the intelligibility of transformed speakers. They test with a
diphone speech synthesis system and an HMM-based speech synthesis system to trans-
form speakers into a synthetic speaker. They performed a survey with human listeners to
evaluate the intelligibility of the protected speakers, measuring the word error rate. Abou-
Zleikha et al. [4] do not propose a speaker transformation method themselves but explore
how to select a target speaker to achieve the lowest identification rate and have good re-
sults when the speaker is transformed back to the source speaker. They formulate this
as an optimization problem and measure the distance between two speakers with a con-
fusion factor, for which they evaluate entropy and Gini index as metrics. Pribil et al. [295]
propose a speaker de-identification method that relies on modifying several features of the
source speaker. In the first step, the prosodic and spectral features are extracted from the
source speaker. They then modify the features to make the speaker sound older, younger,
more female, and more male by using manually defined transformation functions and fea-
ture differences for each class. After the features are modified the de-identified speaker is
synthesized.

Bahamanienezhad et al. [23] have developed a speaker transformation method that uses
a convolutional encoder/decoder network. They, first extract spectral features and excita-
tion features (f0) from the source speaker. The spectral features are then mapped via the
encoder/decoder framework to a target speaker. The resulting speech is fused either via
taking the average or via a gender-based average to create an average speaker. From the
excitation features, only the fundamental frequency is transformed via linear transforma-
tion, the remaining features stay the same. Both spectral and excitation features are used
to synthesize the de-identified speaker.

Fang et al. [89] use a similar averaging approach but rely on x-vectors. They extract
the x-vector of a speaker and then use a set of random x-vectors of unrelated speakers to
calculate a mean x-vector. In their evaluation, they demonstrate EER up to 34% for their an-
onymization. Mawalim et al. [221] propose to improve the system by Fang et al. by scaling
the f0O frequency either up or down, increasing the length of the speech utterances by 1.2,
and using singular value modification for the combination of the x-vectors. Their EER im-
proved up to 54%. Further improved was this system by Prajapati et al. [293] who added
a CycleGAN to modify the speakers. Cheng et al. [52] propose another speaker trans-
formation which uses one encoder for content and one for the speaker identity and then
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recombines them in a single decoder into the anonymized utterance. Panarielle et al. [266]
use neural audio codecs (NAC) for the speaker transformation. Similar to other speaker
transformation techniques, they independently encode the content and the speaker iden-
tity and then combine them using transformer models before decode them using the NAC
decoder.

As more speaker transformations appear, some of them focus on specific subproblems
of speaker transformation. Miao et al. [235] developed a speaker transformation that is
language independent. The architecture of the system is based on the B1 baseline of the
VoicePrivacy [358] challenge and they are able to show that their system works on both
English and Mandarin speaker datasets. Hintz et al. [125] investigate how to anonymize
stuttering speakers using a GAN to preserve the pathology of the stuttering intact while
removing the speaker identity. Yang et al. [386] have developed a low-latency speaker
transformation technique. Yao et al. [389] attempt to improve the distinctiveness of anon-
ymized speakers by scaling the formant and pitch information. Meyer et al. [234] propose
a speaker transformation method that preserves the prosody of the speaker. Nespoli et
al. [257] propose to use two speaker transformation systems in a row to achieve better
anonymization results.

Several papers investigate how the target speaker for speaker transformation can be
either selected or created using the original speaker as a starting point. Chang et al. [47]
and Meyer et al. [233] investigate different averaging strategies. Yuan et al. [397] train an
autoencoder and use it for synthetic data generation to generate random speakers. Lv et
al. [203] use autoencoders to obtain a latent representation of the speaker and then se-
lect similar latent representations from a pool using k-means. Yao et al. [388] encode the
speaker as a matrix. This matrix is then decomposed using singular value decomposition
(SVD) into eigenvectors and a matrix that stores the importance of each eigenvector. They
then use a logarithmic transformation to make the importance values more similar before
reconstructing the speaker identity matrix. Miao et al. [236] extend their method [235] by
removing the speaker pool and using an adversarial perturbation to transform the speaker
vector. Perero-Codosera et al. [280] also propose an approach using an adversarial pertur-
bation for anonymizing the original speaker X-vector, and Yao et al. [390] propose removing
random dimensions of an X-vector to create a new speaker identity.

Adversarial Perturbation: In recent years, the technique of adversarial perturbation
has become popular. The general idea is that the anonymization is performed by a ma-
chine learning system which is trained with two losses. One loss is for the privacy attribute
to be protected and should be minimized while the other loss is for the desired utility and
should be maximized.

Cheng et al. [48] propose VoiceCloak, which trains a convolutional perturbation injector
to take the room impulse response and the original voice signal as input and outputs an
anonymized voice. Deng et al. [72] present V-Cloak, which uses a convolutional autoen-
coder trained to minimize identification while preserving the timbre and intelligibility of the
utterance high. Unique to the system is that it feeds the down-sampled speech into most of
the layers of the autoencoder. In their evaluation, they can show that their system can be
used for real-time anonymization and performs better or as good as other state-of-the-art
voice anonymizations.

Chouchane et al. [56] address fairness concerns in speaker verification. They use adver-
sarial training to create a speaker verification system that produces speaker embeddings
that can still be used for speaker verification but no longer work for sex recognition. Xiao et
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al. [381] have developed a microphone module that anonymizes the speaker by adding an
adversarial perturbation to the sound signal encoded by a generic code excitation linear
prediction (CELP) codec. An interesting distinction from other adversarial perturbations is
that they use a genetic algorithm to find the adversarial perturbation rather than gradient
descent. They also show that their approach adds very little latency overhead. Ravi et
al. [304] developed an adversarial perturbation for the utility goal of depression detection
in speakers.

Ali et al. [10] also propose an autoencoder to anonymize at the network edge specifically
for the input of voice assistants. Their idea is to extract privacy friendly features by training
classifiers on the latent code of the voice samples. They use the trained classifier to per-
form gradient reversal on the encoder to unlearn the features learned for identity, gender,
and language. Yoo et al. [394] use a CycleGAN for speaker anonymization which uses
a variational autoencoder as its generator. They train against a DNN speaker recognition
system as the discriminator.

Frequency warping is a technique that is similar to speaker transformation, the main
difference is that frequency warping focuses on transforming the frequency spectrum of a
speaker and usually does not try to transform the source into a specific target speaker. It
is mostly used for identity and gender protection. A common goal of frequency warping is
vocal tract length normalization in which the resonances that are specific to an individual’'s
vocal tract length should be removed or altered.

Faundez-Zanuy et al. [90] explore two approaches for gender protection: Phase vocoder
and vocal tract length normalization. The vocoder approach detects peaks in the voice sig-
nal. For each peak, a bin is defined and compared to its two neighbors to define a region
of influence. Then the peak and its region of influence are shifted by a peak specific fre-
quency. For both genders they can reduce gender recognition to chance level, however the
identity recognition is also close to chance level. Valdivielso et al. [1] present a speaker pro-
tection approach that transforms the pitch and the frequency axis. Lopez-Otero et al. [197]
rely on frequency warping and amplitude scaling for speaker protection in the context of
depression detection. They implement both operations as an affine transformation in the
cepstral domain and manually define piece-wise linear transformation functions. They
demonstrate an increase of the EER from 9.7% to up to 44% for the speaker identification,
while the depression detection stays similar to the clear data.

Magarinos et al. [205] also rely on frequency and amplitude warping for speaker protec-
tion. First, they extract the cepstral voice vectors from the speaker and then convert them
into a discrete spectrum. Then dynamic frequency warping (DFW) is applied to map the
source spectrum bins to the target spectrum. As multiple source bins can have the same
target bin, all source bins that map to the same target bin are averaged. Additionally to
the frequency and amplitude warping the fundamental frequency is adjusted regarding its
mean and variance. They demonstrate an identification reduction from 99% to 4%.

Aloufi et al. [12] try to hide the emotional state of speakers before their speech is sent to
a voice-based cloud service. They first extract the fundamental frequency, spectral enve-
lope, and aperiodicity. The features are then transformed via a CycleGAN from emotional
speech to neutral speech. Their framework has three modi, the first removes private at-
tributes, the second removes the identity, and the third removes the intelligibility of the
speech. Specific to this approach is that two separate encoders are used, one to encode
the speech and one to encode the speaker. Their results for hiding the emotional state
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show a reduction from over 70% to about 20% and for hiding sex a reduction from up to
99% to the chance level of 50%.

Srivastava et al. [338] evaluate multiple speaker protection methods against an informed
attacker. They work with three attacker models: An ignorant attack that is not aware that
the voice data is de-identified, a semi-informed attacker that knows that the data is de-
identified, and an informed attacker that knows the de-identification method and its param-
eters. The first method is a vocal tract length normalization approach. The speaker is
represented as a set of centroid spectra. The algorithm then calculates the closest path
between the source set and the target set to get the parameters for the warping. The
second method uses a neural net encoder/decoder approach to transform the speaker.
They found large differences for the different attacker models, while the ignorant attacker
can achieve EER of up to 50% the informed attacker only achieves 11% as its highest
EER. This finding highlights how important strong attacker models are for the evaluation
of anonymization techniques.

Patino et al. [275] pseudonymize speakers by transforming their McAdam coefficients.
In the first step linear predictive coding (LPC) is applied to an input speech frame. The co-
efficients of the LPC are then transformed into poles and the poles which have a nonzero
imaginary part are shifted according to the angle between the real and imaginary part
of the pole. Their evaluation shows that this approach performs well against an ignorant
attack that is not aware of the anonymization increasing ERR from 3% to 26% while an in-
formed attacker still achieves 5% ERR. Gupta et al. [109] further, improve on transforming
the McAdams coefficients by not only changing the angle of the complex poles but also
modifying their radius.

Mawalim et al. [222] propose two frequency modifications for voice anonymization. Their
first technique segments the speech signal and then resamples the segments to raise or
lower the pitch. They then use a Hann window function to combine the segments into
the speech signal. Their second technique uses a different recombination technique by
recombining the overlapping segments using phase propagation. Gaznepoglu et al. [100]
modify the B1 baseline of the VoicePrivacy challenge [358] to produce better anonymized
fundamental frequencies by first extracting them from X-vectors and then using a mask to
anonymize them.

Continuous Conversion + Random Perturbation Canuto et al. [46] proposes a new
method for template protection in which the feature vector is shuffled via a randomized sum.
For each feature vector, the elements are shuffled based on a secret key. Two random
vectors of the same length are derived from the key. These vectors give the position of the
attributes that should be summed. The reorganized feature vector is summed up with the
vectors resulting when the position vectors are applied to the original feature vector.

Prajapati et al. [294, 333] first use a regular voice conversion system and then perturb
the speed of the speech sequence by changing the length of the sequence. They also
adjust the tempo of the sequence by cutting the sequence into segments and making
them randomly shorter or longer. They recombine the segments by using a overlap-add
method. Their evaluation shows that the speed perturbation makes the anonymization
stronger.

Continuous Conversion + Noise Injection Kondo et al. [167, 168] create so-called
babble maskers by segmenting speech into ten second segments and then averaging them
into babble maskers. Besides speaker-dependent maskers, they also create gender-based
babble maskers based on multiple speakers of the same gender. The babble masker is
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then applied to the recording of the speaker. Qian et al. [297] present a method to sanitize
speech before it is sent to the server of a virtual assistant. Their main method is to perform
vocal tract length normalization via a compound frequency warping function consisting of
a bilinear and a quadratic function to avoid re-identification attacks. Additionally, they add
Laplace noise after the warping function to make the anonymization more robust. For the
result, they claim to achieve differential privacy. In a follow up work [298] the same authors
further investigate the security of their scheme. Srivastava et al. [338] also investigate the
security of the scheme with stronger attackers.

Shmsabadi et al. [326] aim to provide theoretical privacy guarantees for speaker trans-
formation. They do this by adding differential privacy to the pitch and context features used
in speaker transformation. Both features are encoded by a specific autoencoder network,
which transfers them into their latent space. For the pitch they then add Laplace noise and
then perform a clipping of the latent vector values before decoding back to pitch space.
For the context features they first normalize the latent vector and then add the Laplace
noise before normalizing again and then decoding back. Due to the correlations between
speech segments, it is unclear whether the differential privacy guarantees hold.

A.1.0.5. Evaluations

Most of the reviewed works evaluate the quality of the de-identification by comparing the
recognition rates of attributes or identities on unmodified and de-identified data. The recog-
nition is done via machine learning models or human listeners. As metrics to measure the
recognition rate the papers mostly rely on the equal error rate (EER), false positive rate
(FPR), false negative rate (FNR), recall, precision, and F1 score. Abou-Zleikha et al. [4]
also use entropy and the Gini index to evaluate the de-identification performance. We be-
lieve that the prevalence of EER shows that the underlying scenario focuses on speaker
verification scenarios, but we believe that speaker identification is a more appropriate sce-
nario for evaluating speaker anonymization.

Additionally to the de-identification, some works evaluate the loss of utility. One impor-
tant goal in regard to human listeners is to achieve a natural-sounding de-identified voice.
The naturalness is evaluated by human listeners using the mean opinion score. Another
important aspect is the intelligibility of the de-identified speech. Intelligibility can be evalu-
ated via human listeners or machine learning models using the word error rate, phoneme
error rate, or short-time objective intelligibility. A common limitation we observed is that
most evaluations use the clear data to train the recognition model and then test it against
the anonymized data. This approach implicitly assumes that the attacker is not aware of
the anonymization and hence does not try to circumvent it.

It's worth noting the VoicePrivacy challenge [358], an initiative to improve the method-
ology of speaker anonymization. They use EER and the log-likelihood-ratio cast function
(ClIr) to evaluate speaker verifiability and word error rate to evaluate speech intelligibility.
In a post evaluation, they also retrained their speaker verification systems with anony-
mized speech data to test against an informed attack. In recent years (since 2020), the
VoicePrivacy Challenge framework has become a popular choice for evaluating voice an-
onymization. The baselines of the challenge have also often been used as the basis for
new anonymization techniques.

Qian et al. [299] present a framework to reason about the privacy and utility of voice
anonymization techniques. They present the measure of p-leak limit that should give a
maximum privacy leakage per speaker for a published dataset. Zhang et al. [402] propose
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a theoretical framework to quantify the privacy leakage risk and utility loss for speech data
publishing.

A.2. Eye Gaze

Eye gaze involves two types of movements: fixations and saccades. Our eyes alternate
between them during visual tasks, such as reading (see Figure A.2). Fixations refer to
maintained visual focus on a single stimulus, while saccades are rapid eye movements
between fixations to reorient our gaze. Besides, even during fixations, our eyes are not
completely still, but constantly producing involuntary micro movements (hundreds per sec-
ond) known as microsaccades [5].
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Figure A.2.: Fixation and saccades while reading, from a study of speed reading made by
Humanistlaboratoriet, Lund University, in 2005. Source:http://en.wikipedia.
org/wiki/File:Rea.

Eye-tracking technologies are becoming increasingly available in the consumer and re-
search market. The most common type of tracking technology works by illuminating the
eye with an array of non-visible light sources that generate a corneal reflection. These
reflections are sensed and analyzed to extract eye rotation from changes in reflections.
There is a wide range of hardware configurations for eye-tracking, including embedded
cameras in computers, smartphones and virtual reality headsets, dedicated external hard-
ware, or mobile eye-wear. These sensors allow to extract measurements not only regard-
ing movement data related to fixations and saccades (speed, gaze angle, attention spots,
scan path), but also additional features, such as pupil size variations and blink behavior.
Combinations of these features provide valuable information to implement eye gaze driven
applications.

A.2.0.1. Utility

Eye movements have been studied, analyzed and used for more than a century in differ-
ent research domains. In the medical field, gaze provides useful information about our
cognitive and visual processing [118, 22], which can be used for diagnosing different dis-
eases. In computer science, eye gaze is used as a form of human computer interaction
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to improve accessibility, user experience, and to adapt system behavior [211, 289, 58].
More recently, security and privacy researchers have focused on analyzing stable unique
features of eye movement to build biometric authentication systems [158]. Behavioral eye
biometrics have been subject of intense investigation in the last decade, showing EERs
as low as 1.8% [82]. Across all these different domains, the utility to be preserved would
depend on the underlying application, e.g., accuracy in predicting the next eye movement,
in diagnosing a mental disease, in detecting the focus of user attention, or in recognizing
a user.

A.2.0.2. Threat Space

Eye movement data is rich in information that can be exploited by malicious entities or cu-
rious service providers to uncover user sensitive attributes beyond those disclosed inten-
tionally and required for the purpose of the service or to directly identify a person. Besides
the biometric information carried by eye movement data, research has also documented
their correlation with multiple disorders and mental conditions, such as Alzheimer’s [142],
schizophrenia [182, 130], Parkinson [174] bipolar disorder [98], mild cognitive impairment [385]
multiple sclerosis [74], Autism [39, 372], or psychosis [86], to name a few. Furthermore,
pupil size is known to be an indicator of a person’s interest in a scene [123] and a proxy for
detecting cognitive load [220, 172]. Other recent works demonstrated that eye data can
be used to infer gender and age, or even personality traits [173, 31]. Given the richness
of eye data and the increased availability of consumer tracking devices and the advent
of eye gaze driven applications, there is a significant and imminent privacy threat poten-
tial [7]. The privacy threats of eye-tracking technologies have also been recognized by
hardware makers like Apple, which disallow the usage of eye-tracking information for third
party applications in their Vision Pro Headset.

The two main threats that endanger eye privacy are re-identification and attributes’ infer-
ence.

A.2.0.3. Anonymization Techniques

We found multiple recent proposals to protect the privacy of eye movement data, with many
of them using noise injection to achieve differential privacy (DP).

Random Perturbation David-John et al. [65] adapt the task-based marginal model for
eye gaze, in which for each feature vector dimension a distribution of the values is built
to then random sample new synthetic data from these distributions. The identification
accuracy of the generated synthetic data is close to chance level.

Noise Injection Steil et al. [340] propose a DP-based technique to protect eye movement
data collected while users read different types of documents (comic, newspaper, textbook)
in a VR setting. The utility goal is to accurately predict the type of document to provide
enhanced features in the reader application. Additionally, the privacy goals are to avoid
gender inferences from eye movement data and to protect against re-identification when
the attacker has prior knowledge of a data set including the target user’s eye data and
identity. To achieve these goals, the exponential mechanism [81] is applied to a database
of users’ eye features by a trusted curator prior to its release. This sanitized database
can be then used for training classifiers to provide the enhanced reader functionality. The
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experiments testing at various noise levels shows that utility with regard to document clas-
sification can be partly preserved (~55-70%) while reducing gender accuracy inference to
the level of random guesses (~50%).

Based on Steil et al’s data set, Bozkir et al. [40] evaluate two types of DP-based per-
turbations, the standard Laplacian perturbation algorithm (LPA) [80] and the Fourier per-
turbation algorithm (FPA) [303]. They also propose a modification of the FPA algorithm
that splits eye data in chunks before adding noise, in order to reduce temporal correlations,
which is a source of reduced utility as more noise is required to protect privacy. With this
modification, they obtain document type classification results similar to those used by Steil
et al. [340] for the case of 50% gender classification, while adding more noise to the data
(better privacy guarantee).

Liu et al. [187] present a DP-based solution to anonymize eye tracking data aggregated
as a heatmap. A heatmap, or attentional landscape, is a popular method for visualizing
eye movement data that represents aggregate fixations [79]. This means that the intensity
of every pixel is adjusted relative to the number of fixations over that region. The privacy
goal in this case is to protect individual gaze maps while preserving the utility of the aggre-
gated heatmap. Their experiments with random selection and additive noise (Gaussian,
Laplacian) show that Gaussian noise is the best option to obtain good privacy guarantees
for the individuals’ gaze maps without visually distorting the hotspots in the aggregated
heatmap, i.e., keeping a certain utility.

David-John et al. [67] worked on protecting eye tracking data recorded in VR/AR head-
sets. They propose two different interface models for how data can be shared with a third
party and propose three anonymization techniques, Gaussian noise injection, temporal
down sampling, and spatial down sampling for one of the interface models. The noise
injection approach was found to be the most effective as it reduced the identification rate
of the subjects the most with high variance values for the Gaussian distribution. Wilson
et al. [375] also proposed adding Gaussian noise to eye tracking data, showing similar
results.

Hu et al. [136] proposed a local differential private mechanism for generating synthetic
eye movement trajectories called Otus. Their technique first separates the field of view
into tiles and then constructs a graph that encodes the gaze duration of each tile and the
transition probability between the tiles. The graph is then perturbed using the Laplacian
mechanism before it is sent to the server. The server then averages all users graphs and
uses random walks on the graph to generate new eye movement trajectories.

Li et al. [183] proposed Kaleido a plugin system that can be used to anonymize eye gaze
trajectories with differential privacy guarantees. The authors extend geo-indistinguishability [16]
and w-event privacy [159] to take into account the area of interest with radius r a user is
looking at. The intuition of their guarantee is that all gaze positions within the area are
indistinguishable. They note that they only protect against spatial information and not tem-
poral information. Further, they define an adaptive algorithm to allocate the privacy budget
of a user depending on the total privacy budget of each time window. Their results show a
reduction of the identification of users to near chance level, however, the utility of the data
is also close to chance level.

Coarsening The temporal and spatial down sampling proposed techniques by David-
John et al. [67] are both coarsening based techniques. For the temporal down sampling
only a very small reduction in the identification accuracy can be recorded while the spatial
down sampling has a bigger effect but must be scaled very high to do so. Wilson et al. [375]
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proposed a spatial down-sampling approach for the eye gaze angle. They first map the
180°to 2160 points and then coarsen the gaze angle to these points. In their evaluation,
the spatial down-sampling seems to be more effective than temporal down-sampling.

Continuous Conversion Wilson et al. [375] propose smoothing the eye gaze using a
sliding window approach. They show that using a large enough window reduces the iden-
tification rate.

David-John et al. [65] applied k-anonymity to eye movements by grouping the trajectories
of users and then averaging them. They were able to show that even with small numbers
of k the identification accuracy drops significantly. Due to them processing the feature
vectors of each task separately their reported high utility is questionable. In a follow up
paper, David-John et al. [66] propose two synthetic data generation approaches for eye
gaze. Their k-same synth approach applies k-anonymity to the fitted parameters of a
Gaussian mixture model before using it to generate fixations and saccades. Their event-
synth-PD approach uses a conditional variational autoencoder to generate new data with
given characteristics. They show that their event-synth-PD approach achieves plausible
deniability. They compare both methods to Kaleido and achieve comparable results for
privacy and utility.

Fuhl et al. [95] perform eye gaze anonymization by using an auto encoder in combination
with reinforcement learning. The auto encoder is trained on the eye gaze trajectories to
learn a latent representation of the data. Then a manipulation agent modifies the latent
vector of the trajectories to prevent for example gender classification. After the decoding
of the latent vector, a classifier tests how good the manipulation was and its result is used
as the loss for the training of the manipulation agent.

A.2.0.4. Evaluation

The proposals by Steil et al. [340] and Bozkir et al. [40], measure the quality of their an-
onymization techniques for attribute inference protection using the classification accuracy
metric for the main task and the attribute inference task. For the re-identification protec-
tion case, it is assumed that the attacker has previous knowledge of a database of users’
eye data and their identities. To simulate this knowledge, they train the classifiers on the
clean data and test them on the anonymized data, using also the accuracy metric to report
privacy protection. Besides, these works also report the so called privacy loss parameter
(or €) from DP theory, which quantifies the maximum difference between the data points of
two individuals in the data set. Furthermore, Bozkir et al. use the inverse of the normalized
mean square error (NMSE) between the actual eye feature values and the perturbed ones
as a utility metric. However, the interpretation and implications of these privacy loss and
utility metrics are not developed.

Liu et al. [187] analyzed the privacy-utility trade-off of anonymized heatmaps using the
correlation coefficient (CC) and mean square error (MSE) of noisy heatmaps under differ-
ent privacy levels (different values of ¢). The CC and MSE give an idea of the similarity
between the original and the anonymized heatmaps and the e provides information about
the privacy guarantee (the smaller, the better privacy). These metrics are accompanied by
the visual representation of the noisy heatmap, in order to aid the relevant stakeholders in
deciding what level of noise is acceptable for a given application.

Regarding datasets, the largest dataset available is GazeBaseVR [192], which captured
407 participants performing 5 tasks with up to 6 sessions. As recording device they used
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a VR headset. Steil et al. [340] collect data from 20 participants (10 male, 10 female,
aged 21-45) while reading documents using a VR headset. Each recording is divided into
three sessions (reading a comic, newspaper, or textbook), lasting 30 minutes in total. They
extract 52 eye movement features related to fixations, saccades, blinks, and pupil diameter.
The dataset has been publicly released ! by the authors and Bozkir et al. [40] use it as the
basis to evaluate their proposal.

The Ehtask [137] dataset contains the recordings of 30 people performing 4 different
eye gaze tasks using a VR headset. Another VR headset dataset is DGaze [78], which
captures 43 people in 5 different scenes. In the heatmaps anonymization study, Liu et al.
use a synthetic simulated dataset to illustrate their privacy analysis. Besides the technical
privacy analysis, Steil et al. [340] is one of the few works considering user privacy con-
cerns regarding behavioral data collection. They conduct a large scale user survey (with
N=164 participants) to explore with whom, for which services, and to what extent users
are willing to share their gaze data. Their report shows that people are uncomfortable
with inferences (gender, race, sexual orientation) and would object to sharing their data
if these attributes can be leaked. The results also show that people generally agree to
share their eye tracking data with a governmental health agency or for research purposes,
but would object to doing so if the data owners are companies. These insights are a first
step towards understanding user privacy awareness and privacy needs, but more work is
required in this field to guide the design of user-centered privacy protective techniques for
behavioral data.

A.3. Brain Activity

Brainwaves are patterns of measurable electrical impulses emitted as a result of the in-
teraction of billions of neurons inside the human brain. Since the first human electroen-
cephalogram was recorded in 1924 [111], both the hardware devices to measure brain
activity and the analysis techniques to process these signals have significantly improved.
Current technologies to measure brainwaves can be classified as invasive and noninva-
sive methods. Invasive methods record signals within the cortex by directly implanting
electrodes near the surface of the brain [156]. These methods are far too risky for us-
age under noncritical circumstances and are only used in clinical applications. Instead,
non-invasive methods are most frequently used and applicable to many areas other than
the medical realm, such as brain-controlled interfaces. The most portable and commonly
used of these techniques is electroencephalograpy (EEG), which records electrical activity
through sensors placed on the scalp surface.

An EEG signal is a combination of different brainwaves occurring at different frequencies.
Every type of wave carries different kinds of information, which can be used to gain insights
about the current state of the brain [11]. Researchers have tried to identify certain mental
states associated to each brainwave. Table A.1 presents a summary of the most important
wave types, their respecttive frequencies, their originating location in the brain, and their
associated mental state.

Brain-computer interface (BCI) technologies mostly work on continuous EEG data record-
ings, i.e., time series data. But there are also many applications based on the extraction

1 https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/research/visual-
privacy/privacy-aware-eye-tracking-using-differential-privacy
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of time-locked brain variations that appear in reaction to external stimuli. These variations,
called event related potentials (ERPs), are widely used to detect neurological diseases.
In both cases, either using ERPs or a longer EEG series, features are computed for the
brainwave data-driven application built on top. These features can belong to the time
and/or frequency domain and to one or multiple channels. Examples of commonly used
features include Autoregressive coefficients, Fourier and Wavelet transforms.

Table A.1.: Overview of EEG brainwaves - based on [11] and [3].

Wave Type T;fz(; Originating Location Mental State
Active information processing,
Gammay |30-100 Somatosensory cortex strong response to visual stimuli
[3]
. Increased alertness, anxious
Beta 13-30 | Both hemispheres, frontal lobe thinking, focused attention
Posterior regions, both Resting, eyes closed, no attention
Alpha a 8-13 hemispheres; [161];
High amplitude waves Most dominant rhythm
N . . ldling, dreaming, imagining, quiet
Theta 6 4-8 No special location focus, memory retrieval
3 Frontal regions; Dreamless and deep sleep,
Delta 5 0.5-4 High amplitude waves unconsciousness

A.3.0.1. Utility

The utility that should be preserved when processing brainwave data is highly dependent
on the application. For clinical applications, for example, the raw information could be
needed for a proper diagnosis or a safe brain controlled prosthesis. In these cases, regula-
tions like the HIPAA Privacy Rule [126] are usually in place to protect personal identifiable
information. When moving to other less regulated fields of application, the need for full raw
EEG data is not necessarily justified. The most prominent EEG applications include user
authentication, personalization of gaming experiences, and brain controlled-interfaces. In
these cases, the utility to be preserved should be enough to provide a useful application,
i.e., recognize the user, and offer personalized options and responsive interfaces all with a
tolerable error that does not hamper the security and usability of the service.

A.3.0.2. Threat space

Brain activity is rich in information. It can be used to uniquely identify individuals given
their unique characteristics and, in fact, several biometric systems based on brainwaves
have been proposed [108]. Besides, the acquisition of EEG signals raises privacy issues
because brainwaves correlate, among others, with our mental states, cognitive abilities,
and medical conditions [345]. Martinovic et al. [216] demonstrated that by manipulating
the images presented to the users, their EEG signals could reveal private information, e.g.,
bank cards, PIN numbers, area of living, or if the user knew a particular person.

A.3.0.3. Anonymization Techniques

We found that a large number of anonymization rely on machine learning methods to per-
form the anonymization of the data, with approaches like Generative Adversarial Networks
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(GANs) and adversarial perturbation scheme dominating the field. With the availability of
EEG datasets the anonymization of brain activity data is gaining some traction.

Feature removal Matovu et al. [218] explore how to reduce the leakage of private in-
formation from EEG user authentication templates. They assume an insider type of at-
tacker, such as an unscrupulous database administrator, who misuses their privilege to
maliciously exploit the templates. The attacker wants to infer, specifically, if the user as-
sociated with a template is an alcoholic. Their envisioned anonymization technique aims
at concealing the alcoholism information while still providing good authentication accuracy.
It is, therefore, an attribute protection mechanism. Conceptually, it lies on the hypothe-
sis that different template designs (features, channels, frequencies) will have an impact
on the amount of non-authentication information (emotions, health conditions) that can be
inferred. The authors demonstrate this hypothesis by choosing two different templates
and calculating the predictive capability to authenticate users and determine their alcohol
consumption behavior.

Continuous Conversion In the same direction of feature selection, Yao et al. [391] pro-
pose the usage of Generative Adversarial Networks (GANs) [103] to filter sensitive infor-
mation out of EEG data. Their goal is to reduce the possibility of inferring alcoholism
while keeping the brain activity recordings useful to detect mental tasks, specifically to pre-
dict which visual stimulus the user is looking at. The GAN-based proposed filter involves
deep neural networks that perform domain transformation, that is, translating EEGs from
a source domain distribution X with both desired and privacy-related features to a target
domain distribution Y with desired features only. Their results after applying the filtering
technique show a significant reduction in the percentage of EEG sequences from alcoholic
users that can be classified as such (from 90.6% to 0.6%). At the same time, the mental
task classification accuracy does not drop significantly (4.2% less). However, the original
mental task classifier accuracy was not strong before filtering the privacy-sensitive features
and it remains to be studied if this technique would work in other classification scenarios.
Pascual et al. [273] use a GAN to generate synthetic EEG data to train an epilepsy
monitoring system as sharing large amounts of medical EEG is a privacy problem. The
authors focus on inter-ictal EEG signals (signals between two seizures) as these are eas-
ier to record than the actual seizures. As generator a convolutional auto encoder is used
but instead of decoding an inter-ictal the latent code is translated into an ictal sample. The
discriminator then compares the synthetic ictal to a real one. Their results show that the
synthetic data reaches identification rates which are close to chance level, even when only
two patients are in the test set. However, this is only a pseudonymization of the patients
as all synthetic ictal values generated for a specific patient can still be linked to each other.

Bethge et al. [32] proposed privacy encoders to remove the sensitive information from
each of the brain activity data streams before they are used in a classification task. For
each data set a convolutional neural network is trained as encoder using the maximum
mean discrepancy (MMD) between the different encoded data sets as loss function. This
way the encoders should learn a domain-invariant representation of the data. They test
their approach on four data sets finding that the classification from which data set a sam-
ple originated drops from 99% to 52%, while the emotion classification is only reduced
from 51% to 49%. It remains an open question how well the identity of a subject would be
preserved by this approach. A similar approach is being proposed by Meng et al. [229],
instead of using a neural network for the transformation, they learn a perturbation vector

166



A.4. Heartbeat

that is added to the EEG signal. The perturbation is learned via an adversarial scheme
using an action classifier to establish the utility and a biometric recognition system for the
privacy. In addition to learning one perturbation vector per EEG sample they show that
it is possible to learn such a perturbation vector for each user, allowing for fast anonymi-
zation of unseen EEG samples of known users. Another adversarial approach is being
proposed by Singh et al. [334]. The main difference from the previous approaches is that
an autoencoder is used for the transformation.

Continuous Conversion + Noise injection Debie et al. [68] also use a GAN to generate
new synthetic data from the original one. They differ from Yao et al. and Pascual et al.
in that they use differentially private stochastic gradient descent on the discriminator of
the network. This method reduces the influence of each individual to the computation of
the gradients. They evaluated their GAN on the Graz data set A with EEG data from 9
subjects. Their results show that the utility of the synthetic data is well preserved, however,
no additional privacy evaluation was performed.

A.3.0.4. Evaluation

The reviewed works, similar to the proposals for anonymizing gait, evaluate the quality of
inference protection by comparing the prediction accuracy for the protected attribute before
and after modifying the EEG data. The metrics used for this analysis are typical machine
learning metrics, including accuracy, false positive rates, and false negative rates. Similarly,
the loss of utility is evaluated by measuring the reduction in classification accuracy when
using the original and anonymized EEG data.

For their evaluations, the works use a variety of different EEG datasets. The largest
dataset is the Temple University Hospital EEG data corpus [263] which contains 579 sub-
jects, followed by the BCI2000 dataset [321] with 106 subjects. Specifically recorded for
authentication was the dataset of Arias et al. [19] which recorded 56 people. A special
dataset is the SUNY medical dataset with EEG data of 25 alcoholic subjects and 25 con-
trol subjects while looking at visual stimuli [258, 157]. Further, there exist a couple of
smaller datasets [341, 373, 129].

A.4. Heartbeat

An electrocardiogram (ECG) is a graph of voltage over time that captures the electrical
activities of cardiac muscle depolarization followed by repolarization during each heartbeat.
Shown in Figure A.3, the ECG graph of a normal beat is composed of a sequence of
waves: a P-wave reflecting the atrial depolarization process, a QRS complex representing
the ventricular depolarization process, and a T-wave denoting the ventricular repolarization.
Other portions of the ECG signal encompass the PR, ST, and QT intervals [407].

Like other biometric systems applied to identification tasks, ECGs are typically converted
into abstract, compressed representations, typically referred to as biometric templates, be-
fore the task is conducted. Biometric-template methods can be classified depending on
the exploited features of the ECG data. The most popular ones are fiducial-based, non-
fiducial-based and hybrid methods [264]. On the one hand, fiducial-based techniques
utilize characteristic points on the ECG signal to extract temporal, amplitude, envelope,
slope and area features. Characteristic points are the locations that correspond to the
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Figure A.3.: Waveform of an ECG signal with normal cardiac cycle. Source:
https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/
function/normal_duration.php.

peaks and boundaries of the P, QRS and T-waves of the ECG signal. On the other hand,
the non-fiducial-based methods do not rely on the ECG characteristic points, and exam-
ples include autocorrelation coefficients, Fourier and wavelet transforms. Hybrid methods
combine both fiducial-based and non-fiducial-based features.

A.4.0.1. Utility

ECG data find application in healthcare and biometrics systems, the latter being intended
for identification and authentication [363]. In healthcare, ECGs are utilized for diagnosis
of heart diseases [189]. Typically, there is a stand-alone service or a complete e-health
system where the service provider, in addition to offering a repository of personal medical
data, may allow to remotely process such data. In any case, the aim is to provide real-time
feedback to patients and hospitals, either as a warning of impending medical emergency
or as a monitoring aid during physical exercises.

A.4.0.2. Threat Space

Regardless of the application (i.e., identification, authentication or healthcare), ECGs are
health data and, as such, are considered sensitive by data-protection regulations and
need to be protected. Consider the case, for example, of a user who might see their
insurance premium increased or suffer discrimination during a job application due to a
medical condition inferred from their ECGs.

Although it is well known that ECG data may help diagnose a patient’s physiological or
pathological condition, other probably lesser-known inferences include cocaine use [135]
and stress [284], which may be sensitive to the patient and obviously should be kept private.
The fact that the very same time series data allows drawing both desirable inferences (i.e.,
for healthcare) and sensitive inferences (that need to be protected) poses a dilemma of
great practical relevance.

A.4.0.3. Anonymization Techniques

Next we survey the most relevant privacy-protection techniques for ECG data.
Another approach based on compressive sensing (CS) [45] is proposed by Djelouat et al
in [77]. CS is a signal processing technique that combines both sampling and compression
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through random projections. Building on this technique, the authors propose compressing
the ECG signal by sampling it at the time of sensing. This reduces the need to even store
the sensitive ECG data at the wearable device, thereby providing protection against that
entity. The theoretical properties of this compression technique ensure that, under certain
assumptions on the random projection, a good reconstruction of the original ECG signal
can be obtained at the provider side.

Feature Removal Kalai et al. [398] present a template protection scheme for ECG data.
In a first phase, the authors propose computing the discrete cosine transform (DCT) of
the ECG signal’s autocorrelation coefficients, and then removing those DCT coefficients
with the lowest energy. The remaining DCT coefficients constitute the biometric template.
In a second phase, two keys are obtained from the template. One is transmitted to the
target application the user wishes to authenticate. The other functions as a private key,
which is derived from the complete DCT already stored in the server. A similar approach is
presented by Zaghouani et al. [399] that uses a quantization step once the DCT-template
is obtained. This latter approach is evaluated on the PTB dataset but no experimental
comparison is conducted between the two proposed solutions.

Another similar proposal is made by Mahmoud et al. [208], which decomposes the ECG
signal into its wavelet transform, eliminates the low-frequency coefficients and reconstructs
the ECG signal for release. At the provider side, only authorized personnel with access
to a secret key (derived from the wavelet-transform template) is able to reconstruct the
original ECG from the released, protected signal. To which extent these released data
may safeguard patients’ privacy is evaluated through the percentage root mean square
difference (PRD), a simple and widely used distortion measure in ECG signal processing
applications [215] that quantifies the difference between the original ECG and its protected
version.

Continuous Conversion Bennis et al. [30] proposed a simple k-anonymity scheme for
ECG data. In their first step they transform the signal into the frequency domain. Next
they pick the k closest neighbours of the signal and then aggregate those into a new signal
before transforming it back into the time domain.

Piacentino et al. [282] used a GAN to generate synthetic ECG data by first normalizing
the data and then arranging it into a matrix. For the arranging of the data multiple pro-
posals are made sorting the data values by their type. No evaluation of the privacy of the
synthetic data was performed. Jafarlou et al. [146] also propose to use a GAN to generate
anonymized ECG data samples. Their approach differs from Piacentino et al. in that they
use the original ECG sequence as input to the GAN and use the identification accuracy as
part of the training loss for the GAN. Their evaluation shows lower identification accuracies
while still allowing arrhythmia detection. Nolin-Lapalme et al. [262] also use a GAN for the
ECG anonymization, but they aim at generating sex neutral ECG samples and use the sex
classification as part of the GAN loss.

Random Perturbation + Noise Injection Although encryption based on the idea of CS
can achieve a computational notion of secrecy through the random projection step, it has
been shown this technique is vulnerable from an information-theoretic perspective [300].
To address this problem, Chou et al. [55] propose using principal component analysis and
SVD on a CS scheme, where the ECG data is encrypted at the wearable sensor by adding
signal-dependent noise. They measure privacy as the mutual information between the
original ECG signal and its encrypted version, and show that high classification accuracy
can be achieved while providing privacy beyond computational secrecy.
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Discrete Conversion + Noise Injection Unlike the works surveyed previously, the goal
of Zare-Mirakabad et al. [400] is to publish suitable representations of ECG data with cer-
tain privacy guarantees. To do this, Zare-Mirakabad et al. propose converting ECG time
series into symbolic representations over time. They use the popular Symbolic Aggregate
approXimation (SAX) to replace continuous numerical values with strings of symbols (see
Figure A.4). With this new symbol representation, the proposed anonymization technique
first builds an n-gram model from the complete time-series string, and then ensures that
each n-gram has a minimum frequency of occurrence, similar to the k-anonymity criterion.
To ensure this version of k-anonymity is satisfied over the string of symbols, the authors
contemplate adding fake n-grams to the original string. Experimental results on the Ea-
monn Discord Dataset show that (a measure of) information loss is hardly affected for
values of k up to 20.

Continuous Conversion + Random Perturbation Chen et al. [49] and subsequent
work by Wu et al. [378], address the problem of making ECG-based biometric templates
revocable, exactly as keys or passwords, a property they consider indispensable in order
for ECGs to be used in practice. To enable template revocability, the common practice is
to associate distinct templates with the same biometrics by perturbing them in a different
manner. To protect user privacy, however, this process needs to ensure the recovery of
the original biometric from its template is either infeasible or computationally hard.

Essentially, cancelable templates are obtained as random projections of a user's ECG
data block. Unlike common approaches, however, Wu et al. put no restrictions on the gen-
erator matrix. Accordingly, the idea is that each realization of this matrix allows cancelling
their corresponding templates. Reidentification is then conducted with the multiple-signal
classification algorithm [33], reporting rates of over 95% in the Physikalisch Technische
Bundesanstalt Database.

A distinct approach by Hong et al. [131], proposes a template-free identification system
to prevent any privacy issue from compromised or stolen templates. The system converts
ECG-data into images through various spatial and temporal correlations methods and uses
deep-learning techniques to train a classifier. The authors conduct experiments on the
Pysikalisch-Technische Bundesanstalt database and report identification rates of over 90%
with sampling rates of 1 000 Hz.

Continuous Conversion + Noise Injection Sufi et al. [344] propose building templates
of the waves P, QRS and T through cross-correlations of the ECG signal. Each of those
templates are then obfuscated in a concatenated fashion with additive noise generated
synthetically, so that the obfuscation of a wave serves as input to obfuscate the next wave.
The upshot are noisy forms of the three waves and noisy templates thereof. All this informa-
tion constitutes the key available to authorized personnel, who will be able to reconstruct
the original ECG from the noisy version (which is shared or made publicly available by the
patient or user themselves). Unauthorized personnel, per contra, will only have access to
the noisy ECG signal, which, according to the authors, may prevent identity and attribute
disclosure.

Huang et al. [139] propose an authentication system that protects the privacy of ECG
templates in a database with differential privacy. The authors assume the interactive set-
ting of this privacy notion, where an analyst queries the database to obtain ECG data.
Specifically, the analyst is supposed to ask for the coefficients of a Legendre polynomial,
that the anonymization system utilizes to fit and compress the ECG signal. Laplace noise
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Figure A.4.: A time series is converted into the string “acdbbdca”. Source: https://cs.gmu.
edu/~jessica/sax.htm.

is calibrated to the sensitivity of those coefficients and added to them, and the noisy re-
sponse is returned to the analyst. The ¢ parameter of DP therefore regulates the trade-off
between user privacy and authentication accuracy, the latter aspect depending on two
sources of error: the polynomial fitting approximation and the injected noise. The authors
evaluate the system in the MIT-BIH ECG and MIT-BIH Noise Strees databases, reporting
decent authentication accuracy. However, they appear to misunderstand how the sensitiv-
ity of the coefficients is computed and therefore their results seem to have been obtained
incorrectly.

Saleheen et al. [318] investigates if sensitive inferences from segments of time series
data can be drawn by a dynamic Bayesian network adversary. The adversary is assumed
to estimate a range of behavioral states about the user, including, for example, whether
or not they are in a conversation, running, smoking and stress, at the time the data is
gathered. When the adversary is likely to infer sensitive aspects of a user, the correspond-
ing segments of data are substituted for most-plausible, non-sensitive data. To estimate
the privacy provided by these substitutions of data, the authors propose a variation of
the differential-privacy notion that bounds the information leaked resulting from the sub-
stitutions. In other words, the proposed metric ensures that the information leaked about
a sensitive inference from a substituted segment is always bounded. Utility loss is, on
the other hand, computed as the absolute difference between the probability of inference
about each non-sensitive behavioral state from actual data, and the same probability from
released data. Although experimental results show relatively small values of utility loss for
€ € [0.05,0.65], the proposed solution has two main limitations: first, protection is provided
only for dynamic Bayesian network adversaries; and secondly, it assumes all time-series
data are available beforehand, which precludes its application in real-time scenarios.

A.4.0.4. Evaluation

The reviewed techniques measure how service functionality is degraded due to anonymi-
zation with common machine learning metrics like precision, recall and accuracy, and less
frequently with the DTW and PRD quantities, which assess the similarity between original
and protected time series. As for privacy, the level of protection is assessed through a va-
riety notions and measures, including the accuracy of a membership inference attack, the
¢ parameter of differential privacy, the mutual information between the original ECG signal
and its encrypted version, the probability of correct inferences on sensitive attributes with
and without protection, and through a notion similar to k-anonymity. A common dataset
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used is the MIT-BIH arrhythmia database [243] which contains the ECG samples of 47
people.

A.5. Discussion
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Table A.2.: An overview of all found methods classified by trait and method. Papers that
propose multiple methods can appear in multiple rows. Papers that combine
multiple methods are marked the following: * plus noise injection, ™ plus random
perturbation, * plus discrete conversion.

Trait
Voice Gait | Hand Eye- | Heartbeat | Brain
Method motion | Gaze activity
random [270] [248] [329] [128] | [209] [65] [55]*
perturbation [105]
[210]
[367]
noise [347] [120] [113] | [352] | [237] [340]
injection [265] [364] [204] | [353] | [325] [187]
[114] [219] [183]
[115] [67]
[231] [136]
[375]
coarsening [252] | [210] [67]
[367] [375]
feature [272] [271] [379] | [154] [398][399] | [218]
removal [404] [255] [57] [76] | [99] [208] [391]
[256] [8] [115]
[69]
[313]
discrete [274] [290] [291] [34] [817] [400]*
conversion [180]
[238]
[367]
[92]
[249]
continuous [150][285][340] [9] [209] [65] [30][282] [273]
conversion [155][4][295][23] [144] | [213] [95] | [146] [32]
[89][160][90][1] [350] | [320] [375] | [262] [49]" | [229]
[205][197][338][109] | [112] | [380] [66] [378]" [334]
[12][394][293][10] [244] | [87] [131]° 681
[275][221][52][266] | [251] [344]*
[235][125][386][389] | [127]F [139]
[234][257][47][233] [318]*
[397][203][388][236]
[235][280][390][48]
[72][56][381][304]
[222][100][294]
[333]7[326]*[46]"
[167]*[168] [297]*
[298][338]"
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Table A.3.: An overview over which privacy goals the different techniques try to achieve.
Trait

Voice Gait | Hand Eye- | Heartbeat | Brain
Priv. Goal motion | Gaze activity
Attribute [248][113][204] [128] | [209] [340] | [398][399] | [218]
[274][290][291] [99] | [105] [40] | [208][49] [391]
[34][295][90] [115] | [210] [95] | [378][131] | [32]
[12][46][56][125] [367] [344][139] | [68]
[317] [318]
[238]
[209]
Identity [270][271][120][113] | [219] | [237] [65] | [30][282] [273]

[204][265][364][114] | [352] | [325] | [340] | [55] [400] | [68]
[272][379][404][255] | [353] | [180] | [40] | [146][262] | [229]

[256][57][150][285] | [354] | [92] [187] [334]
[340][155][4][295] [154] | [249] | [67]

[23][89][221][293] [99] | [213] | [136]

[160][1][197][205] [9] | [320] |[183]

[12][338][10][394] [144] | [380] | [65]
[275][109][167][168] | [350] | [87] [95]

[297][298][329][8] [127] [375]
[52][266][235][125] | [115] [375]
[386][389][234][257] | [231] [375]
[47][233][397][203] | [252] [66]

[388][236][235][280] | [69]

[390][48][72][381] [313]
[304][222][100][294] | [112]
[333][326] [244]
[251]
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B.1. CeTl-Locomotion

B.1.1. Usage Notes

The motion data and additional metadata are stored as tab-separated values (.tsv) and
JSON (.json) files, and are as such compatible with a wide range of software applications
and programming languages, thus promoting interoperability and seamless integration in
different environments, as well as data processing efficiency. We recommend to use the
processed data in derivates/cut_segments for analysis and classification, as the single
repetitions already contain a lot of information. For the comparison of the classification of
the identity or the actions performed, the code provided for the verification experiments can
be used as a simple baseline. For the BIDS standard [104] there are specialized libraries,
such as PyBIDS [392, 393], for importing and processing the data.

B.1.2. Code availability

The custom code used for processing and technical validation are available along with
the associated dataset [116]. The required libraries to execute the custom scripts have
been included in the files requirements.txt and requirements.yaml. These files allow for
the installation of the necessary libraries either directly via The Python Package Index
(PyPN)! or via the Anaconda?® software distribution (2020.11). The script preprocess -
data.py encompasses all the data processing steps that were performed subsequent to the
export from Rokoko studio. To facilitate the replication of the technical validation, the script
verification_experiments.py has been provided. This script allows for the execution of the
technical validation on the processed data. Furthermore, the script render_sequence.py
allows for the rendering the position data from *_motion.tsv files for visual analysis and
verification. For additional details on the usage and execution of the custom code, please
refer to the README file, which provides comprehensive instructions and guidelines.

B.2. FacialMotionID

B.2.1. Additional Tables
B.2.2. Text-Level Segmentation

We further segmented the verbal tasks into words (nursery rhymes only) and phonemes.
To accomplish this, we aligned the speech recordings collected during task execution with
the transcript of the performed task. We used a force alignment model to automatically

1https://pypi.org
2https ://www.anaconda.com
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Table B.1.: Overview of the different tasks which the participants performed in the study. v:

Table B.2.: Mapping from the device-dependent motion data attributes to the unified data
format. For n-to-1 mappings from the devices to the unified format we use the

verbal, nv: non-verbal
ID | Type | Task Repetitions
0 | v sixpence (word) 4/5
1 v dinosaurs (word) 4/5
2 | v muffin (word) 4/5
3 | v Sing a Song of Sixpence (rnhyme) | 4/5
4 |v Dinosaurs (nrhyme) 4/5
5 |v The Muffin Man (nrhyme) 4/5
6 | nv happiness 4/5
7 | nv anger 4/5
8 nv fear 4/5

mean of the directions.

Type Unified Vive Pico Meta Direction (*)

Facial CheekPuff Cheek_Puff_* CheekPuff CheekPuff* left/right
EyeClosed* Eye_*_Blink EyeBlink_* EyesClosed* left/right
Eyelook* Eye * * EyelLook* EyesLook* left/right, down/up, in/out
Jaw Jaw_* Jaw* Jaw* forward/thrust, left/right, open/drop
LidTightener* Eye_*_Squeeze EyeSquint_* LidTightener* left/right
UpperLidRaiser* Eye_*_Wide EyeWide_* UpperLidRaiser* left/right
LipCornerDepressor* Mouth_Sad_* MouthFrown_* LipCornerDepressor* left/right
LowerLipDepressor* Mouth_Lower_Down* MouthLowerDown_* LowerLipDepressor* left/right
UpperLipRaiser* Mouth_Upper_Up* MouthUpperUp_* UpperLipRaiser* left/right
LipCornerPuller* Mouth_Smile_* MouthSmile_* LipCornerPuller* left/right
LipPucker* Mouth_Pout MouthPucker LipPucker* left/right
LipSuckB Mouth_Lower_Inside MouthRollLower LipSuck*B left/right
LipSuckT Mouth_Upper_lInside MouthRollUpper LipSuck*T left/right
Mouth* Mouth_*_* Mouth* Mouth* lower/upper
TongueOut Tongue_LongStep* Mouth* Mouth* lower/upper

Eye LookDirection* Gaze_Direction_* LookDirection* LookDirection* X,Y,Z; left, right
Position* Gaze_Origin_MM_* Position* Position* XY, Z; left, right

Head DevicePosition* DevicePosition* DevicePosition* DevicePosition* X,Y,Z; left, right
DeviceRotation* DeviceRotation* DeviceRotation* DeviceRotation* X,Y,Z,W; left, right

Table B.3.: Overview of the optimized parameters

Parameter Range Note

Layer Size 10-256 Only Simple & LSTM
Hidden Layers 0-2 Only Simple & LSTM
Learning Rate Step Size | 10-100 All

Learning Rate Alpha 0.01-1 All

Optimizer Learning Rate | 0.0001-0.1 All

Weight Decay 0.00001-0.01 | All

perform this process on all verbal tasks and obtain the offset times for each word and
phoneme uttered by the participant.

Due to synchronization problems between the audio recording and the recorded motion
data, we first create a transcript of the entire recording by using WhisperX [24], an Auto-
matic Speech Recognition (ASR) model, instead of aligning the recordings exclusively with
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Table B.4.: Device type recognition accuracy using a participant-wise split for all headsets

Model .
Data Type Simple | LSTM | EKYT | Chance

Facial 1.0 1.0 1.0 0.48
Eye 1.0 1.0 1.0 0.48
Head 1.0 1.0 1.0 0.48

Table B.5.: Verbal task recognition accuracy using a participant-wise split for all headsets

Model .
Data Type Simple | LSTM | EKYT | Chance

Facial 0.78 0.89 0.96 0.17
Eye 0.68 0.17
Head 0 0 0.17

the text of the verbal tasks. Another benefit of this approach is that we can also account for
unforeseeable words that were possibly uttered at the beginning of the recording, and for
which we did not have a transcript before. Then, we locate the verbal tasks in the transcript
and correct any errors using the text of the specific task.

These transcriptions were then used as input for the Montreal Forced Aligner (MFA) [224],
along with the full recordings. By being given the full transcriptions, the model accurately
aligned them to the audio recordings and returned the offsets of when each word and
phoneme was uttered.

As a last step, we had to convert the alignment offsets in the audio recordings to the
actual timestamp ranges in the motion data files. To do this effectively, we interpolated the
start and stop timestamps of the text tasks in the data with the start and stop alignment
offsets of the same text tasks obtained from MFA. As a result, we could segment the text
task data into word and phoneme segments.

B.2.3. Additional Experiments

In Experiment E5, we investigate if the MR headset type can be inferred from the data
collected. All headset data has the same format due to the unified data format, however,
we expect that it is easy to infer which headset is being used due to device specific quirks.
Then, we look at the inference of sensitive attributes about the user of the MR headset in
Experiment E6. Here, we seek to infer the sex, English level, and personality trait of the
user.

Lastly, we perform two experiments to better understand the identification from facial
motion data. In Experiment E7, we perform the identification only on the verbal tasks or
only on the non-verbal tasks to see which task type works better for identification. And in
Experiment E8, we test how good we can identify individuals when we combine the facial
motion data with the eye gaze and head motion data.

Results Since we have multiple devices, we tested whether we could identify which head-
set was used to record the data for Experiment E5 (see Table B.4). Unsurprisingly, we can
achieve 100% recognition accuracy for all data types.
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B. Motion Data Collection

Table B.6.: English level recognition accuracy using a participant-wise split for all headsets

Data Type Model | simple | LSTM | EKYT | Chance
Facial 0.73
Eye 0.73
Head 0.73

Table B.7.: Personality recognition accuracy using a participant-wise split for all headsets

Data Type Model | gimple | LSTM | EKYT | Chance
Facial 0.49
Eye 0.49
Head 0.49

In addition to recognizing emotions, we test whether the text task can be identified from
the recorded data (see Table B.5). The best recognition accuracy of 96% is again achieved
using facial motion data.

We examine the results of the attribute inferences tested in Experiment E6. Table B.6
shows the results for English level recognition, and Table B.7 shows the results for classify-
ing whether someone is an ambivert, extrovert, or introvert. For both attributes, the results
are close to the level of chance, so we do not believe they can be inferred from the data.
For sex recognition, shown in Table B.8, there appears to be some information which can
be extracted. Since the EYKT model achieved significantly less than chance level, and
with only two classes (everyone identified as either male or female) in the dataset, we can
simply invert the labeling.

To better understand which task type is better for identifying individuals, we ran identifi-
cation Experiment E7 on only the verbal and non-verbal tasks. See Tables B.9 and B.10
for a comparison. Our results show that verbal tasks perform better than non-verbal tasks.
However, it also does not appear that a reliable sex recognition can be implemented with
facial motion data for now.

Lastly, we further investigated the identification potential of the data we collected. In
Experiment E8 (see Table B.11), we tested the identification accuracy using all data types
simultaneously. We found that combining the three data types increased identification
accuracy to 99%, thereby outperforming the best all-headset result from Experiment E1
(see Table 5.2).

Table B.8.: Sex recognition accuracy using a participant-wise split for all headsets
Model

Data Type Simple | LSTM | EKYT | Chance

Facial

Eye
Head
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B.2. FacialMotionID

Table B.9.: Identification accuracy using a random split for only verbal tasks for all headsets

Data Tyrs Model | Simple | LSTM | EKYT | Chance
Face 0.93 0.01
Eye 0.83 0.01
Head 0.95 0.01

Table B.10.: Identification accuracy using a random split for only non-verbal tasks for all
headsets

Data Type

Facial

Eye
Head

Table B.11.: Identification accuracy using a random split for all headsets

Model .
Data Type Simple | LSTM | EKYT | Chance

Facial + Eye + Head 0.89 0.83 0.99 0.01
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