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Abstract
Predicting the macroscopic properties of thin fiber-based porous materials from their 
microscopic morphology remains challenging because of the structural heterogeneity of 
these materials.  In this study, computational fluid dynamics simulations were performed 
to compute volume air flow based on tomographic image data of uncompressed and 
compressed paper sheets. To reduce computational demands, a pore network model was 
employed, allowing volume air flow to be approximated with less computational effort. 
To improve prediction accuracy, geometric descriptors of the pore space, such as porosity, 
surface area, median pore radius, and geodesic tortuosity, were combined with predictions 
of the pore network model. This integrated approach significantly improves the predictive 
power of the pore network model and indicates which aspects of the pore space morphol-
ogy are not accurately represented within the pore network model. In particular, we illus-
trate that a high correlation among descriptors does not necessarily imply redundancy in a 
combined prediction.
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Articlehighlights

•	 Air flow through paper sheets has been determined by computational fluid dynamics 
and pore network model simulations

•	 Geometric descriptors of pore space are used in regression models to improve the pre-
diction of pore network model simulations

•	 Structure–property relationships indicate descriptors complementary to pore network 
modeling for different paper grades

Keywords  Porous medium · Air permeance · Computational fluid dynamics · Pore network 
model · Statistical image analysis

1  Introduction

Predicting the macroscopic flow of gasses through a heterogeneous porous material 
requires knowledge of the size, shape, and connectivity of the pores involved, regard-
less of whether the flow is diffusive, laminar, or turbulent. Although methods for trans-
port simulations exist that use 3D image data to take the geometry of the pore space into 
account  (Torquato 2022), it remains difficult to establish relationships between morphol-
ogy and transport for flow through thin, sheet-like structures. Prominent examples of such 
structures are fibrous membranes encountered in paper, gas diffusion layers, or filters. In 
such sheets, the pore structure often exhibits strong local heterogeneities. To understand 
the flow through the total sheet area, it is necessary to capture the local flow variations 
across many different realizations of the pore space. This requires an enormous amount of 
simulations, which, in turn, requires transport simulation methods that are accurate and, 
simultaneously, can be performed with reasonable computational effort.

The choice of the simulation method depends on whether diffusive, laminar, or turbulent 
transport is considered. In the case of laminar flow, there a several possible methods that, by 
and large, have in common that they represent different routes to predict the flow originat-
ing from the Navier–Stokes equation, reducing the transport problem to the simpler Stokes 
equation  (Leal 2007). Computational fluid dynamics (CFD) and lattice Boltzmann simula-
tions are suitable and well-established methods to determine local flows from the actual pore 
space Chung (2002; Succi et  al. 1991). In CFD simulations, the pore phase, as supplied by 
tomographic image data, is represented by a surface mesh on which the Stokes equation is 
solved. This simulation method allows for readily considering specific situations such as sta-
tionary or incompressible flows. Lattice Boltzmann simulations track the motion by monitor-
ing the velocity components along a given set of directions in a cubic grid. With increasing 
complexity of the pore space morphology, more velocity components and smaller time steps 
are required to accurately solve the Boltzmann equation that is equivalent to the stationary 
Navier–Stokes equation. Each of these methods is computationally demanding  (Yang et  al. 
2016). On the other hand, ready-trained deep learning methods do not offer a route to evade the 
computational costs yet, as they exclusively act on the material classes they were trained for and 
cannot be universally applied to all types of materials, at least not without supplying costly sim-
ulations for retraining (Morgan and Jacobs 2020). However, the modeling of pore networks is a 
promising and computationally cheaper alternative (Blunt et al. 2013). In partitioning the pore 
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space into distinct components, pore network modeling (PNM) preserves the transport-relevant 
local connections and bottlenecks between the pores. Transport is considered locally by solving 
the transport equation through neighboring pores assuming a simplified geometry of involved 
pores. In order to estimate the total flow through the entire pore space, the local transport pro-
cesses are consistently connected with each other by enforcing mass conservation.

It is highly desirable to interpret or even predict the fluxes using geometric descrip-
tors associated with the pore space, as these can be reliably determined from tomographic 
image data without the need of performing physical transport simulations. Using methods 
from spatial statistics and mathematical morphology, it is possible to quantitatively charac-
terize the complex morphology of the pore space (Chiu et al. 2013; Jeulin 2021; Ohser and 
Schladitz 2009). In particular, to quantify local heterogeneities in paper-based materials, 
methods have been developed to quantify the variance and correlation of multiple local 
geometric descriptors computed from tomographic image data (Neumann et al. 2024). This 
methodology has recently been applied to quantify local heterogeneities in polymer-based 
batteries (Neumann et al. 2022; Ademmer et al. 2023; Dodell et al. 2025).

Predicting effective properties, such as permeability, based on such sets of descriptors is 
fundamental in many studies. The selected geometric descriptors of the pore space are usually 
inspired by the properties used to interpret the permeability of the material, for laminar flow in 
the framework of Darcy’s law (Whitaker 1986). Prominent transport-relevant descriptors are 
the volume fraction of the pore space (porosity), the local thickness of the material, the inter-
nal surface area per unit volume, and the mean geodesic tortuosity to quantify the winding of 
transportation paths. However, determining how many and which descriptors are truly relevant 
for a given porous material is not straightforward. Particularly problematic is the commonly 
encountered situation that these descriptors depend on each other, i.e., varying the value of one 
descriptor immediately affects the values of all other descriptors. The specific consequences of 
correlations between descriptors depend on the material, since the actual degree of correlation 
between descriptors can vary strongly from material to material (Neumann et al. 2024).

In the present study, we investigate the problem of modeling laminar flow using the 
example of two paper samples with different morphologies. These paper sheets originate 
from the same paper grade whose structure is considered before and after compression in 
thickness direction. For both samples, the air fluxes have been determined experimentally 
and the microstructures have been acquired by means of μ-CT measurements  (Neumann 
et  al. 2021). Local variations in the microstructures are quantified via transport-relevant 
descriptors of pore space that were computed based on the tomographic image data. Fur-
thermore, the correlation structure between transport-relevant descriptors has already been 
quantified in previous works by means of R-vine copulas (Neumann et al. 2024, 2021).

For each paper sample, we relate the fluxes obtained from CFD simulations to the fluxes 
determined by PNM simulations and various geometric descriptors, using several power-
law models. It must be emphasized that such fits do not suggest physically motivated 
expressions, i.e., the fitted exponents of the geometric descriptors cannot guarantee trends 
that reveal the underlying transport physics. However, by means of these models, we can 
study microstructure–property relationships between geometric descriptors of pore space 
and the volumetric flux as determined by CFD simulations. Furthermore, we can evaluate 
the quality of the PNM simulations and monitor which descriptors improve the prediction 
of effective properties and thus hint toward details in pore space morphology that are not 
captured in PNM simulations. In order to improve the agreement between the results of 
CFD and PNM simulations, we use combinations of various geometric descriptors of pore 
space, such as the mean geodesic tortuosity, the surface area per unit volume, or scalar 
quantities derived from the continuous pore size distribution.
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2 � Materials, Tomographic Imaging, and Transport Regime

First, in Sect. 2.1, we give a short overview of the materials investigated in this study and 
the tomographic image data measured for these materials. In Sect. 2.2, we introduce the 
transport regime considered in the present study that will be solved by means of CFD and 
PNM simulations, as will be explained later in Sect. 3.

2.1 � Materials and Their Tomographic Imaging

Our study is based on two data sets of tomographic image data for two different paper 
sheets. One sample type represents a paper sheet compressed in thickness direction, and 
one represents a sheet of the paper grade before compression (Neumann et al. 2021). The 
latter, uncompressed sample is commercial, unbleached paper with a specific basis weight 
of 100 g/m2 . Compressed samples are obtained via hard-nip, steel–steel calendering of 
the uncompressed paper sheets with a line load of 90Nm−1 . The 3D microstructures of 
both samples are resolved by μ-CT image data with a voxel size of 1.3 μm as described 
in  (Neumann et  al. 2021). The binarization of the uncompressed paper sheets was per-
formed based on absorption contrast using indicator (kriging Oh and Lindquist 1999) as 
described in  (Machado  Charry et  al. 2018), whereas the binarization of the compressed 
paper sheets was obtained using a random forest classifier within the Fiji Weka segmenta-
tion plugin  (Schindelin et  al. 2012; Arganda-Carreras et  al. 2017) as described in  (Neu-
mann et al. 2021), see Fig. 1.

For determining the boundary of the paper sheets, which particularly allows for comput-
ing the thickness, a rolling ball approach  (Sternberg 1983) is used as already performed 
in (Neumann et al. 2022; Machado Charry et al. 2018). Exemplary slices of the segmented 
tomographic image data are shown in Fig. 2.

Fig. 1   Slices of raw gray scale (top) and binarized (bottom) μ-CT data for compressed paper sheets

Fig. 2   Slices of μ-CT data for uncompressed (a) and compressed (b) paper sheets (from cutouts 
500 μm × 500 μm × height ). The solid and pore phase are depicted in black and gray, respectively
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Since both types of (CFD and PNM) simulations performed in this study require spa-
tially resolved 3D information of the pore phase, our common starting point is to predefine 
cutouts of the 3D stack of tomographic image data, where each cutout has a cross-sectional 
area of

and contains all voxels in thickness direction. For each of the uncompressed and com-
pressed paper sheets, we selected twelve cutouts to cover a large range of variations in the 
pore space morphology. In both cases, the cutouts were chosen such that eight of them have 
a local porosity close to the mean (global) porosity obtained for the entire microstructure 
data of the sample. Two cutouts represent realizations of particularly dense sheets (smaller 
porosity) and two further particularly open sheets (higher porosity). To facilitate a later 
interpretation of the simulation results, all cutouts have been chosen such that their mean 
thicknesses are approximately equal. Note that one of these cutouts from the compressed 
sample has not been used in the following analysis, because the CFD-determined porosity 
of this cutout was implausibly large and possibly indicates an artifact in the mesh generated 
from the microstructure, see Sect. 3.1 below.

2.2 � Transport Regime

We turn to air flow in thickness direction through porous paper sheets under excess pres-
sure. In this transport regime, we expect that chemical interactions of the molecules in air 
with the solid matrix are negligible. To get laminar flow rather than turbulent flow, the pres-
sure difference between both sides of the sheet must be small enough. The pressure differ-
ence required for the standardized, experimental characterization of volume flows through 
paper sheets (Gurley test (ISO 5636-5:2013 2013)) is small enough to warrant laminar flow. 
Hence, we will use the pressure difference from the Gurley test in our flow simulations. This 
gives us the opportunity to check whether the simulations are in line with the experimen-
tally obtained air fluxes (Leitl et al. 2023). Considering air transport rather than liquid fur-
ther eases the comparison, because typical liquid-relevant complications such as capillary 
uptake, wetting in angular pores (Valvatne and Blunt 2004; Zhao et al. 2022) and associated 
slip-stick motion (Aslannejad et al. 2017; Fischer et al. 2021) do not appear.

2.2.1 � Navier–Stokes Equation

We briefly show how the formulation of the Navier–Stokes equation of laminar trans-
port of gases such as air can be simplified for the use of CFD transport simulations. 
Recall that the Navier–Stokes equation determines the time-dependent velocity field 
u∶ Ω × [0,∞) → ℝ

3 on a given domain Ω ⊂ ℝ
3 under the influence of a given pressure 

field p∶ Ω × [0,∞) → [0,∞) and negligible gravitational forces for each time t ≥ 0 and 
position x = (x1, x2, x3) ∈ Ω , where the domain Ω contains the (connected) space of pores. 
It is common to add to Ω additional void volumes above and below the sample, i.e., an inlet 
and outlet region, such that boundary conditions can be assumed on planar surfaces. As the 
considered pressure difference in our problem is high enough to assume incompressible 
flow (Bernabé 2018), the Navier–Stokes equation reads

(1)Aseg = 500 × 500 μm2
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where 𝜂 > 0 is the dynamic viscosity and 𝜌 > 0 is the mass density  (Sohr 2012). At the 
boundary between the pore and the solid phase, no-slip boundary conditions ensure that 
the velocity of the gas is equal to that of the rigid solid phase at the wall, which is 0. This 
also ensures that the flow through the pores cannot penetrate the solid matrix. As flows 
through porous media usually have very small Reynolds numbers, the so-called inertial 
contribution on the left-hand side of Eq. (2) is neglected. Thus, we assume that

such that the steady-state Stokes equation

remains. Then, CFD simulations are performed to determine a solution of Eq. (4) together 
with the continuity equation

for a given pressure difference at the boundaries to obtain the velocity field u and the local 
pressure, see Sect.  3.1 below. The volume flow rate �V∕�t through a plane A ⊂ ℝ

3 that 
intersects the pore space Ω is then given by

where nA is the surface normal vector of A pointing in the direction of the flow, ⟨⋅, ⋅⟩ denotes 
the scalar product between two vectors, and H2 is the two-dimensional Hausdorff measure. 
Note that we consider the steady state, in which the flow rate �V∕�t does not depend on 
the time t. In the case of the total flow rate through a paper sheet in thickness direction, the 
volume flow rate is typically determined at a plane that is oriented normally to the pressure 
difference and is placed in the outlet region.

2.2.2 � Hagen–Poiseuille Equation

Within the pore network model, the pore space is represented by a graph, in which connec-
tions between neighboring pores are geometrically modeled by a cylinder. The volume flow 
rate of every such connection is determined individually by assuming steady-state, laminar 
flow through a long, narrow pipe (Xu et al. 2022; Gombosi 1994; Zhao et al. 2020). In this 
setting, the flow rate can be modeled using the Hagen–Poiseuille equation (Hutten 2015). 
This yields that

where Δp denotes the pressure difference between the two ends of the pipe, 𝜂 > 0 is the 
dynamic viscosity, L > 0 is the length of the pipe, and R > 0 is the pipe radius. Note that 
the volume flow rate �V∕�t of a given segment is directly proportional to the difference in 
pressure between the beginning and the end of the segment. Finally, the flow through the 
entire network must obey a mass balance equation at every vertex. For more details on how 

(2)�

(
�u

�t
+ (u ⋅ ∇)u

)
= −∇p + �Δu inΩ × (0,∞),

(3)
(
�

�t
+ (u ⋅ ∇)

)
u = 0 inΩ × (0,∞),

(4)−∇p + �Δu = 0

(5)∇ ⋅ u = 0

(6)
�V

�t
= ∫A∩Ω

⟨nA, u⟩ dH2,

(7)
�V

�t
=

�R4

8�L
Δp,
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the graph is constructed in the pore network model and how the linear factors in Eq. (7) are 
determined, see Sect. 3.2.

3 � Methods to Simulate Transport

We now provide more detailed information on the two approaches used to simulate vol-
ume air flow through paper sheets. In Sect. 3.1, we describe the CFD simulation proce-
dure and compare the resulting values to experimental data. In Sect. 3.2, the pore net-
work model is described in multiple steps. First, Sect. 3.2.1 describes the construction 
of the graph representing the pore space morphology. Then, in Sect. 3.2.2, we show how 
the graph is used for volume air flow simulations. Sect. 3.2.3 discusses the impact of the 
chosen conduit shape used to approximate the volume between two neighboring pores 
within the pore network model.

3.1 � CFD Simulations

The ANSYS code was used to numerically solve the Stokes equation (see Eq.  (4)) in 
the pore space of the paper sheets as described in Sect. 2.2, where the simulations were 
prepared as follows (Leitl et al. 2023). The microstructure of each cutout was provided 
as a stack of 2D binary images containing voxels corresponding either to the pore or 
to the solid phase. This volume data was triangulated to obtain the surface mesh of 
the pore space, since this surface mesh encloses the pore volume in which the Stokes 
equation will be solved. To arrive at a good compromise between high resolution and 
uniform coverage of surface triangles, we stretched the volume data in thickness direc-
tion by a factor of five, loaded this stretched volume data as images in (Fiji Schindelin 
et al. 2012) to perform the triangulation, and stretched the resulting surface mesh by a 
factor of 0.2 in thickness direction. This is done in order to compensate for the differ-
ence in lengths between thickness and lateral direction, and arrive at a surface triangula-
tion whose typical side lengths are more proportional to the difference between thick-
ness and lateral size. As ANSYS relies on a finite volume approach, the pore volume 
enclosed by the surface mesh was discretized using Numeca Hexpress Hybride. More 
details can be found in (Leitl 2020). The surface meshing closes all pores that are not 
connected to the exterior, i.e., either to an inlet or outlet. Air permeance was obtained 
for boundary conditions that correspond to the standardized test to assess the porosity of 
paper (ISO 5636-5:2013 2013). The pressure at the top surface was pinlet = 102.545 kPa , 
and poutlet = 101.325 kPa at the bottom surface. At the remaining side walls, symmetry 
boundary conditions are used. Also the external conditions were chosen to match the 
standardized conditions. The temperature was T = 298K , so that the density of air was 
�air = 1.184 gm−3 , and the dynamic viscosity was � = 1.838 ⋅ 10−5 Pas . For each cutout, 
the CFD simulations yield the spatially resolved air pressure and air velocity, and at the 
outlet side the volume flow rate �V∕�t (via Eq.  (6)) and the volume flux per unit area 
vCFD , which is given by

where Aseg is defined as in Eq. (1).

(8)vCFD =
1

Aseg

�V

�t
,
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Figure  3 compares the volume fluxes per unit area computed in this way with the 
fluxes vexp obtained from experiments for uncompressed (center) and compressed paper 
(right). In the experiment, the time required to press a standard volume of 100mL air 
through a paper sheet of a standardized area of 645.2mm2 is measured. (According to 
norm TAPPI T 460, this corresponds to a 1.0 square inch circular area.) For each paper 
grade, these times have to be measured at least five times at different positions and again 
at least five times with flow penetrating the paper in the opposite direction, i.e., with the 
paper sheet flipped. The measured times tG (in seconds) are then converted to volume 
flow rates per unit area via vexp = 0.155m∕tG . As the measured area of this experiment 
largely exceeds the area of the cutouts in the CFD simulations, the variations seen in the 
experiment stem from probing different positions. The fluxes vexp and vCFD differ by a 
scaling factor between four and five, which is consistent with a previous comparison for 
a paper made from the same pulp and a porosity comparable to the uncompressed sam-
ple  (Leitl et al. 2023), whose simulated and experimentally obtained fluxes are shown 
for comparison in the left part of Fig. 3. However, the trends seen in the experiments are 
captured by the simulations for both samples, in terms of mean values and variations. 
Hence, in the context of the present study, we consider the CFD-calculated fluxes as the 
ground truth. They will serve as a reference for the pore network simulations.

3.2 � PNM Simulations

The PNM approach seeks to predict transport in a geometrically simplified, graph-like rep-
resentation of the pore space. The pore network representation of a pore space contains the 
positions and sizes of distinguishable pore regions, and the positions and sizes of the cross-
sectional contact areas between neighboring regions.

In the network, each vertex represents the center of a pore region. Vertices correspond-
ing to centers of connected pore regions receive an edge in the graph. A pore space analy-
sis step, described in detail in Sect. S.3 of the Supplementary Information, determines and 
labels the pore regions and augments the vertices in the graph with information such as the 

Fig. 3   Violin plots to compare the fluxes obtained experimentally by the Gurley method (purple, left axis) 
and the fluxes obtained from CFD simulations (gray, right axis) for a paper sample from (Leitl et al. 2023), 
uncompressed, and compressed paper. To ease the comparison, plots of corresponding fluxes are superim-
posed at the common symmetry axis of the violin plot and a half of each violin plot is hidden. In each plot, 
the short horizontal bars represent the median and the quartiles, and the long horizontal bar the mean
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position (center of gravity) and volume of the original pore, and the diameter of the largest 
sphere that can be inscribed into the pore. Each edge is marked with information related to 
the “bottleneck” between two connected pores, i.e., the position and extension of the con-
tact area between neighboring pore regions.

The transport between two vertices that are connected by an edge is modeled by solv-
ing a transport problem on an approximating conduit shape that is constructed based on 
the geometric information of each vertex and edge mentioned above. Correspondingly, the 
transport simulation is approximated in two steps: (i) determine a pore network representa-
tion of the pore space and (ii) perform simulation of Stokes flow on neighboring pores by 
use of approximating conduit shapes. These steps are explained in Sects. 3.2.1 and 3.2.2, 
respectively. Section 3.2.3 discusses the impact of the conduit shape on the fluxes predicted 
by PNM.

3.2.1 � Constructing the Pore Network Graph

The pore network of each cutout was determined with the SNOW algorithm as imple-
mented in the python package PoreSpy (Gostick et al. 2019). First, the SNOW algorithm 
divides the pore space of the segmented 3D image into non-overlapping regions, see 
Fig.  4a–c. Subsequently, an undirected geometric graph G = (V, E) is constructed, where 
each vertex 𝜇 ∈ V ⊂ ℝ

3 corresponds to the centroid of a region in the segmented image, 
see Fig. 4b. Then, edges e = {�, �} ∈ E are added between vertices � und � corresponding 
to neighboring regions, i.e., between those that share a common boundary.

These vertices and edges receive geometric information deduced from the tomographic 
image data of the pore regions. The volume of a pore region is the total volume of all vox-
els in a region. The associated pore radius is the maximum value of the Euclidean distance 
map (Soille 2003; Maurer et al. 2003) within each pore region, i.e., it corresponds to the 
radius of the largest possible sphere that is fully contained in the pore region. The pore 
surface area is given by the number of solid–pore interface voxels of the region multiplied 

Fig. 4   Pore space before (a) and after (b) partitioning in distinct pore regions, where each pore region is 
represented by a vertex, and edges mark adjacent, connected pore regions. Analysis of the pore regions 
provides the positions of the pores, the diameters d1 and d2 of inscribed spheres of maximum diameter, the 
positions in which the pore regions touch and the largest Euclidean distance dth therein (c). Example for a 
straight pore-throat-pore conduit between two connected vertices in the pore network (d), where the conduit 
consists of the pores simplified as truncated cones, whose inlet and outlet diameters are given by d1 and d2 , 
respectively, and a central cylinder with diameter dth
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by the area of a single voxel face. Each edge receives a diameter that corresponds to the 
largest Euclidean distance found in the cross-sectional area of two adjacent pore regions 
and a length, that corresponds to the Euclidean distance between the two connected pore 
centroids (Gostick 2017), see Fig. 4c. A more detailed description of how the pore network 
graph was determined is given in Sect. S.3 of the Supplementary Information.

While the pore network graph is constructed based on the morphology of the original 
pore space of the material, the geometry of the resulting graph differs markedly from the 
original microstructure due to its simplified representation. In fact, even defining a poros-
ity of the pore network graph is difficult, as information the solid phase is completely dis-
carded. A more detailed discussion on this can be found in Sect. S.4 of the Supplementary 
Information.

3.2.2 � Flow Simulation on the Network

Based on the pore network graphs stated above, the OpenPNM (Gostick et al. 2016) pack-
age was used to determine the stationary air flow for the same excess pressure and external 
conditions as used for the CFD simulations (ISO 5636-5:2013 2013). The flux through the 
network has to obey the mass balance equation at every vertex � ∈ V in the graph (Ioan-
nidis and Chatzis 1993), i.e., for the net flow rate (�V∕�t)� through vertex � it holds that

where N� = {� ∈ V∶ {�, �} ∈ E} is the set of neighbors of vertex � and (�V∕�t)�� is the 
flow rate between adjacent vertices � and � , which is positive when the flow is directed 
toward the vertex � , and negative when the flow leaves the vertex �.

We assume here that the gas behaves like an incompressible liquid with a constant mass 
density. The disregard of compressibility has been shown to have little impact provided 
that the excess pressure driving the flow is high enough (Bernabé 2018). Hence, conserv-
ing mass is equivalent to conserving volume.

The flow between adjacent vertices �, � ∈ V is driven by the difference in pressures 
p� − p� within the pore regions and adopts a form inspired by the Hagen–Poiseuille equa-
tion for laminar flow in pipes (Xu et al. 2022; Gombosi 1994; Zhao et al. 2020) given by

where g𝜇𝜈 > 0 is the local conductivity of the conduit between the adjacent vertices � and 
�.

Note that the local conductivity depends on the size and the geometric shape of the con-
duit. More precisely, the local conductivity (denoted by g in this paragraph) quantifies the 
ease with which a gas or fluid can pass through a conduit. For the hydraulic conductance 
considered here, g is fully determined by the shape of the conduit and the dynamic viscos-
ity � . Fig. 5 illustrates a general, axial-symmetric conduit with a flow along the z-axis. We 
assume that the conduit is placed within the positive quadrant of the coordinate system, 
with one of its sides aligned with the x-y-plane, so that its extension along the z-axis is 
from 0 to L for some length L > 0 . For each z ∈ [0, L] , let C(z) ⊂ ℝ

3 be the circular conduit 
cross-section perpendicular to the flow axis, and H2(C(z)) the area of C(z), given by means 
of the two-dimensional Hausdorff measure H2 . Then, it holds that

(9)
(
�V

�t

)

�

=
∑

�∈N�

(
�V

�t

)

��

= 0,

(10)
(
�V

�t

)

��

= g��(p� − p�),
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where I∗
p
(z) is the specific polar moment of inertia, defined as integral over the cross sec-

tion C(z) by

where ‖x‖ denotes the Euclidean norm of x = (x1, x2) ∈ ℝ
2 . In Eq. (11), both H2(C(z)) and 

I∗
p
 essentially depend on the geometry of the conduit. Thus, analytical descriptions of the 

shape of the cross sections along the flow axis often allow to derive analytical expressions 
for the conduit flow  (Sochi 2013; Akbari et  al. 2011). More details on this are given in 
Sect. S.5 of the Supplementary Information.

In this study, we assume that the conduit shape is the same throughout the network, 
where we choose the shape shown in Fig. 4d, i.e., a cone-cylinder-cone conduit consisting 
of three segments. The inlet segment starts from the pore center with opening diameter d1 
and narrows in a conical fashion until the smallest diameter dth is reached (pore). A second 
(straight) segment of cylinder shape with diameter dth (throat) follows and connects to a 
conical-shaped outlet segment with smallest diameter dth and final diameter d2 . Note that 
conduit shapes can be selected from a wide range of shapes as long as local conductiv-
ity through the conduit can be provided to satisfy Eq.  (10), see (Zhao et al. 2020; Sochi 
2013; Akbari et al. 2011; Miao et al. 2017) for examples. A more detailed discussion of the 
choice of conduit shape will be given in Sect. 3.2.3 below.

For a conduit between connected pores (represented by the vertices �, � ∈ V ) consist-
ing of multiple elements, such as the one shown in Fig. 4d, the local conductivity g�� is 
obtained from the conductivities of the individual conduit elements (Rodriguez de Castro 
et al. 2023), i.e.,

with gP,� and gP,� being the conductivities associated to the pore volumes (half-cones in 
Fig. 4d), and gth,�� is the conductivity of the throat, where all three conductivities gP,�, gP,� 
and gth,�� are determined by Eq. (11).

With the local conductivities g�� in hand, Eq. (9) defines a system of linear equations 
that is solved for the pressure p� in each pore with the boundary conditions pinlet = 1.22 kPa 

(11)1

g
= 16�2� ∫

L

0

I∗
p
(z)

H2(C(z))
2
dz,

(12)I∗
p
(z) =

1

H2(C(z)) ∫C(z)

‖x‖2 dH2(x),

(13)
1

g��
=

1

gP,�
+

1

gth,��
+

1

gP,�
,

Fig. 5   Axial-symmetric conduit with varying radius r(z) and cross section C(z) along the z-axis. The inlet 
is at pressure p1 and the outlet at p2 , respectively. The diameter of the inlet and the outlet corresponds to the 
diameter dp of the inlet and outlet pore, respectively. The smallest diameter is given by the extension of the 
bottleneck dth between inlet and outlet pore
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at all inlet pores and poutlet = 0 at all outlet pores. Once the pressures p� are determined, 
Eq. (9) provides the flow rates through each conduit. Then, the total flow rate through the 
network is the sum over all local volume flow rates entering the network at the inlet pores, 
i.e.,

where Vinlet ⊂ V is the set of all inlet vertices, which are determined as described in Sect. 
S.3 of the Supplementary Information. In analogy to Eq. (8), the volume flux per unit area 
vPNM is given by

3.2.3 � Impact of Conduit Shape

Since the true morphology of the pore space region that connects two different pores is 
too complex, it must be approximated by using a simplified geometry in PNM to simulate 
the flow between neighboring pores. As there are many options for doing so, the values of 
local conductivities and, hence, of the overall flux vPNM , depend on the choice of the con-
duit shape, see Fig. 6.

To assess the extent to which the predicted flows may vary, we consider the results of 
our simulations using the conduit shape shown in Fig.  4d as reference and compare the 
related fluxes to pore network simulations using two other conduit shapes. The associated 

(14)
(
�V

�t

)

inlet
=

∑

�∈Vinlet

(
�V

�t

)

�

=
∑

�∈Vinlet

∑

�∈N�

g��(p� − p�),

(15)vPNM =
1

Aseg

(
�V

�t

)

inlet
.

Fig. 6   Impact of the conduit 
shapes on the fluxes predicted by 
PNM for the cutouts of uncom-
pressed (orange diamonds) and 
compressed (blue circles) paper. 
The fluxes obtained for half 
pore-throat-half pore conduits 
as shown in Fig. 4d (horizontal 
axis) are compared to predictions 
using mirror- and axis-symmetric 
converging–diverging conduits 
with diameters dmax = d1 and 
dmin = dth assuming a cone a 
and hyperbolic cosine b shape. 
To ease the comparison, two 
additional lines correspond-
ing to a direct correspondence 
v = vcone−cyl and a doubling in 
value v = 2vcone−cyl are inserted



Predicting Air Flow in Calendered Paper Sheets from μ‑CT… Page 13 of 28     15 

conduits assume a converging–diverging shape that are chosen to be mirror-symmetric, 
i.e., the diameters along the conduit fulfill d�,max = d�,max = dP,� and dmin = dth,�� . Using 
the notation v instead of vPNM , Figure 6a shows the flux values of v obtained for conically 
shaped conduits for uncompressed (blue diamonds) and compressed (orange circles) paper, 
and compares them to the reference values (denoted by vcone−cyl ) provided on the horizontal 
axis.

Although conically shaped conduits tend to show the largest deviations from cylindrical 
conduits (cf. Fig. 6a), the obtained values of v are practically proportional to the reference 
values of vcone−cyl with a slope of two. The same qualitative behavior is obtained for hyper-
bolic cosine shaped conduits, see Fig. 6b. Also here, the values of v are proportional to the 
reference values of vcone−cyl , but with a reduced slope of 1.5.

The flux through individual conduits of conical and hyperbolic cosine shapes is com-
pared to that of cylindrical conduits in Figure S4 of the Supplementary Information.

3.3 � Volume Flow Rates Obtained by CFD and PNM Simulations

In this section, we compare the volume flow rates per unit area obtained from CFD and 
PNM simulations, see Fig.  7. The values of the volume flow rates vCFD and vPNM differ 
by more than an order of magnitude. The actual difference in magnitude is determined, 
at least in part, by the choice of the conduit geometry, as explained above. Nevertheless, 
the flows predicted by PNM resemble the trends in the flows obtained by CFD. While the 
fluxes through the uncompressed sample tend to exceed the fluxes in the compressed sam-
ple, there is a common pattern regardless of which sample is considered: A higher porosity 
tends to give a larger flux. For comparable porosities, CFD and PNM simulations predict 
a marked spread in the flow values, see Fig. 7. This spread in flow rates must originate 
from the details of the pathways realized in each of the cutouts. Hence the question arises, 
whether other microstructure descriptors are capable of explaining this spread because they 
inherently consider these pathway details.

Fig. 7   Volume flux per unit area obtained by CFD (a) and PNM (b) simulations versus the local porosity of 
the cutouts from the 3D image data for uncompressed (diamonds) and compressed (circles) paper
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4 � Geometric Descriptors of Pore Space Morphology

Based on the segmented μ-CT image data, we can quantitatively analyze the pore space 
morphology within the measured paper sheets by means of various geometric microstruc-
ture descriptors. In particular, in a previous study (Neumann et al. 2024), we showed that 
the differences between uncompressed and compressed paper are heavily reflected in an 
altered interdependence between pairs of geometric descriptors of the pore space morphol-
ogy. As we now aim at linking descriptors that characterize the pore space morphology 
to the volume flow determined by CFD simulations, as described in Sect. 3.1, we select 
an appropriate set of these geometric descriptors. Namely, we consider the porosity � , the 
specific surface area S of pore space, the mean value �(�) and standard deviation �(�) of 
geodesic tortuosity of paths through the pore space, and the median radius rmax of the con-
tinuous pore size distribution. It is well known that each of these descriptors is relevant for 
transport in porous media (Holzer et al. 2013; Barman et al. 2019; Neumann et al. 2020).

4.1 � Computation of Geometric Descriptors

In the following, we briefly explain each of the geometric descriptors considered in the pre-
sent study and give information on how they can be computed from grid-based 3D image 
data.

Porosity The most fundamental and widely used geometric descriptor of pore space 
is the porosity � ∈ [0, 1] . Formally, � is defined as the volume fraction of the pore space, 
which can be determined by computing the number of voxels associated with pores divided 
by the total number of voxels that do not belong to the background. Thus, � can be com-
puted in a straightforward manner, simply by counting voxels in the image data.

Specific surface area Another fundamental descriptor is the surface area of pore space. 
In particular, we consider the specific surface area S, i.e., the surface area of pore space 
per unit volume. In order to compute the value of S from voxelized image data, an algo-
rithm stated in (Schladitz et al. 2006) is used, which is based on local weighted 2 × 2 × 2 
configurations. More precisely, the original binary image is convoluted with a 2 × 2 × 2 
mask, resulting in a gray scale image where each possible gray scale value corresponds to 
a unique configuration of the 2 × 2 × 2 neighborhood of that voxel. These configurations 
have their own weightings, which are then summed up over the whole image in order to 
obtain an estimate for the surface area.

Geodesic tortuosity The general notion of tortuosity aims to quantify the length of 
transportation paths through a porous medium in relation to its thickness. Note that there 
are many different definitions of tortuosity  (Holzer et al. 2023). However, in the present 
study, we focus on the concept of geodesic tortuosity. This requires the selection of starting 
and target planes of the image data, for which the geodesic tortuosity shall be computed. 
As we are interested in flow that traverses the paper sample vertically, we chose our start-
ing and target planes as the pore space voxels that belong to the upper- and lower-most 
layers of voxels in y-direction, respectively. In addition, our goal is to quantify only the 
lengths of paths that use pores with a certain minimum local volume, so that we ensure 
that the considered paths contribute to volume flow in a significant way. We therefore first 
determine the pore space that can be filled by spheres of radius 1.5 μm . This value was 
found to be suitable in a previous study (Neumann et al. 2021). Then, for every pore voxel 
of the starting plane, a shortest path to the target plane is computed twice by the use of 
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Dijkstra’s algorithm (Dijkstra 1959), where once the path is only allowed to traverse the 
pore space, while the second time it is also allowed to pass through voxels that belong to 
the solid phase. The geodesic tortuosity � ≥ 1 is then defined as the ratio of the lengths of 
these two shortest paths for every pore voxel of the starting plane. This yields a distribution 
of values, of which we consider the sample mean �(�) and sample standard deviation �(�).

Continuous pore size distribution In order to capture the distribution of 
pore widths across the sample, we consider the continuous pore size distribution 
CPSD∶ [0,∞) → [0, 1] , which is defined using morphological opening (Soille 2003; Serra 
1982). More precisely, for each r ∈ [0,∞) , the value of CPSD(r) is given by the volume 
fraction of that part of the pore space that can be covered by spheres of radius r which are 
completely contained in the pore space. To compute CPSD(r) from voxelized image data, 
we consider the subset P ⊂ W of voxels associated with pores within our sampling window 
W ⊂ ℤ

3 . Then, we put

for any r ≥ 0 , where ⊖ and ⊕ denote the morphological operations of erosion and dila-
tion  (Soille 2003; Serra 1982), respectively, B

ℤ3 (o, r) = B(o, r) ∩ ℤ
3 is the discretized 

open ball of radius r centered at the origin, and |B| denotes the number of elements of 
any set B ⊂ ℤ

3. Note that the numerator on the right-hand side of Eq.  (16) can be effi-
ciently computed by means of the Euclidean distance transform  (Soille 2003; Maurer 
et al. 2003). In particular, we are interested in the median rmax of CPSD, which is given by 
rmax = max{r ≥ 0∶ CPSD(r) ≥ 1∕2} . This quantity is used in the definition of constrictiv-
ity, which is a useful descriptor in quantifying the strength of bottleneck effects  (Holzer 
et al. 2013).

4.2 � Correlations Between Pairs of Geometric Descriptors

Figure 8 shows scatter plots of the results which we obtained for the geometric descriptors 
stated in Sect. 4.1, for the cutouts of both uncompressed and compressed paper sheets. It 
also shows the Pearson correlation coefficients for each pair of displayed descriptors, where 
we can see that some descriptor pairs show a rather strong correlation. Namely, the pairs 
� and �(�) (Fig. 8b) as well as � and rmax (Fig. 8d) are strongly correlated in both samples.

In line with this, the associated fluxes, imposed by color in Fig. 8, tend to be higher the 
higher the porosity � and the median radius rmax , and the lower the mean geodesic tortuos-
ity �(�) , which can be seen best in Fig. 8b and d. In contrast to this, � and S only show a 
significant correlation for the cutouts of the compressed sample, see Fig.  8a, as also found 
in our previous work (Neumann et al. 2024).

Figure 8 also shows that at least half of the data points per sample share a practically 
identical local porosity � . Although our pick of cutouts with similar local porosity may 
adversely affect the estimation of the Pearson correlation coefficient for the interrelations 
representing the whole sample, it will boost the importance of the other geometric descrip-
tors in explaining variations in the flow. Note that the fact that the geometric descriptors 
considered in the present study are correlated affects the variance and interpretability of 
the estimated coefficients in the regression models that we will present in Sect. 5.1 below. 

(16)CPSD(r) =
||
(
P⊖ B

ℤ3 (o, r)
)
⊕ B

ℤ3 (o, r)||
|P| ,
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However, the presence of correlation among explanatory variables does not in general 
influence the ability to obtain a good fit (Kutner et al. 2004), see also Sect. 6.1.

4.3 � Influence of the Characteristic Bottleneck

While the descriptors introduced in Sect. 4.1 are both easy to compute and also intuitive to 
interpret and to link to effective transport properties, the list is clearly not exhaustive and 
there exist many further interesting geometric descriptors that are not considered in our 
regression models, but can still be linked to fluid flow. In particular, the size of the char-
acteristic bottleneck was found to correlate with permeability predictions (Neumann et al. 
2020). A short introduction to the definition and computation of this descriptor is given in 
Sect. S.7 of the Supplementary Information. In our paper samples, this descriptor shows a 
significant correlation with the absolute prediction error |vCFD − vPNM| in volume flow rates 
between CFD and PNM simulations, which suggests that it could carry meaningful infor-
mation to further improve the volume flow rate prediction of PNM simulations. However, 
the descriptor also assumes only few discrete values, see Figure S5 of the Supplementary 
Information. This is likely because the size of the typical pore is close to the resolution of 
the image data. Higher resolved image data would be necessary to differentiate between 
microstructures that exhibit identical values for the size of the characteristic bottleneck at 
the current resolution. Thus, for the image data considered here, this descriptor is not suit-
able for the incorporation in a continuous prediction model, such as the linear regression 
models deployed in this study.

Fig. 8   Scatter plots visualizing the interdependence of geometric descriptors for the cutouts of uncom-
pressed (diamonds) and compressed (circles) paper sheets. The color coding indicates the values of the vol-
ume flow obtained by CFD simulations. Additionally, the corresponding values of the Pearson correlation 
coefficient are displayed on each figure
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5 � Structure–Property Relationships

In this section, we present six empirically derived regression models that will be used to 
predict the volume flow vCFD as determined by CFD simulations, from geometric descrip-
tors of pore space morphology introduced in Sect. 4, or from the volume flow prediction 
vPNM of PNM simulations. In the following, the target variable of each regression will be 
denoted by v(i) for i ∈ {1,… , 6} , which will be used to predict the value of vCFD.

5.1 � Regression Models for Structure–Property Relationships

The regression models that we consider are all of power-law type. Such models are easy to 
implement, and their predictions do not fundamentally differ from predictions using more 
complex relations (Hommel et al. 2018). The accompanying disregard of a critical poros-
ity, often needed to describe media of small porosity (Hommel et al. 2018; Gebart 1992; 
Nabovati et al. 2009), is justified, as measured and simulated fluxes never vanished and the 
considered interval of porosity values is rather narrow, see Fig. 8a and b.

5.1.1 � Regression Models using only Geometric Descriptors

The simplest and most well-known relationship is given by

for some c0, c1 ∈ ℝ , where only the porosity � is considered as an explanatory variable. 
This relation is widely used, as porosity is by far the most accessible geometric descriptor. 
With the next regression model, we add further geometric descriptors to capture the pore 
space morphology in more detail. It is given by

for some c0, c1, c2, c3, c4 ∈ ℝ . We can expect that v(1)(�) ≠ v(2)
(
�,�(�), �(�), S

)
 , since the 

distribution of the lengths of transportation pathways through the material has a significant 
impact on the resulting volume flow rate. We also remark that the specific surface area S is 
not a dimensionless descriptor such as porosity or geodesic tortuosity. In order to analyze 
the improvement provided by the additional geometric descriptors considered in Eq. (18), 
it will be useful to additionally investigate the two simplified models

for some c0, c1, c2, c3 ∈ ℝ and

for some c0, c1, c2 ∈ ℝ.

(17)v(1)(�) = c0�
c1 ,

(18)v(2)
(
�,�(�), �(�), S

)
= c0�

c1�(�)c2�(�)c3Sc4 ,

(19)v(2,1)
(
�,�(�), �(�)

)
= c0�

c1�(�)c2�(�)c3 ,

(20)v(2,2)(�, S) = c0�
c1Sc2 ,
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5.1.2 � Regression Models Including the Results of PNM Simulations

Power laws in the form presented above are a helpful tool to test which descriptors indicate 
local intricacies of the pore space geometry that may have been oversimplified in the PNM 
simulations described in Sect. 3.2. On the other hand, we can assess the predictive power 
of the PNM itself with the relation

for some c0, c1 ∈ ℝ . This formulation allows for a comparison to vCFD beyond strictly lin-
ear relations and automatically accounts for the difference in scale of the CFD and PNM 
predictions. By extending the relation given in Eq. (21) with geometric descriptors as addi-
tional factors, the improvement of the prediction depending on the considered descriptors 
indicates to which extend the descriptors "correct" the original PNM prediction. A combi-
nation of the models stated in Eqs. (17) and (21) is given by

for some c0, c1, c2 ∈ ℝ . Moreover, using the geometric descriptor rmax , we can further 
extend the relationship given in Eq. (22) and obtain

for some c0, c1, c2, c3 ∈ ℝ . Note that the median radius rmax and the specific surface area S 
have a physical unit, which introduces information on the typical length scale of the pore 
space. Finally, we consider a combination of Eqs. (18) and (21), which leads to

for some c0, c1, c2, c3, c4, c5 ∈ ℝ . The latter relationship contains five explanatory variables 
and, therefore, will likely provide the best fit simply by having the largest degree of free-
dom. Its purpose is primarily to serve as a reference when assessing the improvement of 
adding a particular descriptor.

5.2 � Fitting and Validation of Regression Models

We briefly explain the fitting procedure for the models proposed in Sect. 5.1 and the cri-
teria that we use to assess the goodness of fit. All models that we consider in the present 
study are power-type models of the general form

for some n ∈ {1,… , 5} , where x1,… , xn ∈ ℝ are explanatory variables, c0,… , cn ∈ ℝ 
are coefficients that need to be determined, and v ∈ ℝ is the prediction of the volume 
flow determined by CFD simulations as described in Sect. 3.1. The explanatory variables 
x1,… , xn are either geometric descriptors as presented in Sect. 4 or the volume flow deter-
mined by PNM simulations as described in Sect. 3.2. Applying the natural logarithm to 
both sides of Eq. (25) yields

(21)v(3)(vPNM) = c0v
c1
PNM

,

(22)v(4)(�, vPNM) = c0�
c1v

c2
PNM

,

(23)v(5)(�, rmax, vPNM) = c0�
c1r

c2
maxv

c3
PNM

,

(24)v(6)
(
�,�(�), �(�), S, vPNM

)
= c0�

c1�(�)c2�(�)c3Sc4v
c5
PNM

,

(25)v = c0x
c1
1
… xcn

n
,
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which is a linear regression problem with explanatory variables log(x1),… , log(xn) , 
response variable log(v) , and coefficients log(c0), c1,… , cn ∈ ℝ . We determine the coeffi-
cients of this linear regression problem by means of the function ����� in MATLAB (The 
MathWorks Inc 2022), which uses least square estimation. We then receive a prediction v 
of vCFD by applying the exponential function to the prediction log(v) obtained by Eq. (26).

In order to quantify the goodness of fit, we consider both the coefficient of determi-
nation (denoted by R2 ) and the mean absolute percentage error (denoted by MAPE ). If 
m ∈ ℕ = {1, 2,…} is the number of data points available for the considered regression, 
these quantities are defined as

where log(vCFD,1)… , log(vCFD,m) are the (logarithmic) ground truth values resulting from 
CFD simulations as described in Sect. 3.1, log(v1),… , log(vm) are the corresponding pre-
dicted (logarithmic) values of the linear regression given in Eq. (26), and vCFD is the sam-
ple mean of log(vCFD,1)… , log(vCFD,m).

Note that the coefficient of determination R2 aims to quantify how much of the 
variance in the data is explained by the model fit, where, to ensure the proper inter-
pretability of this quantity, it is crucial that the regression problem considered is lin-
ear (Spiess and Neumeyer 2010). Although we basically consider regressions of power 
type, the logarithmic transformation applied in Eq. (26) yields a linear regression prob-
lem. Therefore, we always use logarithmic values to evaluate both R2 and MAPE . That 
is, the ground truth values log(vCFD,1)… , log(vCFD,m) are given by the logarithms of 
the simulated volume flows, computed as described in Sect.  3.1, and the predictions 
log(v1),… , log(vm) are the predicted volume flows obtained from the linear regression 
problem described by Eq.  (26). In this way, we ensure that the resulting values allow 
for an adequate comparison between the regression models stated in Sect. 5.1. However, 
due to the limited amount of available data, we always use the same data to fit the coeffi-
cients log(c0), c1,… , cn ∈ ℝ in Eq. (26) as we do to evaluate the statistics R2 and MAPE 
defined in Eq. (27).

6 � Results and Discussion

We now present the results we obtained for the fitted regression models stated in 
Sect. 5.1. At first, all regression models are fitted separately to both data sets of uncom-
pressed and compressed paper sheets, yielding two separate sets of coefficients for each 
regression model. In this way, we can analyze the predictive power of the involved 
descriptors in a sample-specific manner, yielding insights into how the dependency 
structure between geometric descriptors and the volume flow rates obtained by CFD and 
PNM simulations changes between different samples.

In Sect. 6.1, we consider regression models that involve only purely geometric descrip-
tors of pore space. Afterward, in Sect. 6.2, we show how incorporating the results of PNM 

(26)log(v) = log(c0) +

n∑

i=1

ci log(xi),

(27)

R2 = 1 −

∑m

k=1

�
log(vCFD,k) − log(vk)

�2

∑m

k=1

�
log(vCFD,k) − vCFD

�2 and MAPE =
100
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m�

k=1

�����
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log(vCFD,k)
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simulations can be used to improve the predictions of the volume flow rate. Finally, in 
Sect. 6.3, we analyze how well the considered regression models generalize across uncom-
pressed and compressed paper sheets, by using only one set of coefficients for each regres-
sion model that has been jointly determined from both data sets. The analysis of these 
regression models, and the comparison to the separately fitted regression models discussed 
before, will provide insight into how to formulate general relationships that apply to vary-
ing grades of paper sheets with different morphologies. The values determined for each of 
the coefficients c0,… , cn of the regression models considered are listed in Tables S1 – S3 
of the Supplementary Material.

6.1 � Regression Models Using Only Geometric Descriptors

In this section, we only consider the purely geometric regression models stated in 
Sect. 5.1.1. These will give insights into predicting volume flow rates by CFD simula-
tions based only on geometric information of the pore space morphology. The results of 
the fits are visualized in Fig. 9, where the predictions of the corresponding regression 
models are plotted against the flow rates of CFD simulations.

Fig. 9   Scatter plots of volume flow rates obtained by CFD simulations versus the values predicted by the 
respective regression models. Separate fits of regression models have been determined for the data points of 
the uncompressed (orange diamonds) and compressed sample (blue circles). The coefficient of determina-
tion R2 and the mean absolute percentage MAPE are displayed for both samples on each plot. As a guide 
to the eye, the black line highlights the diagonal on which the results of CFD simulation and regression 
coincide
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As mentioned above, for each of the regression models, two sets of coefficients c0,… , cn 
have been determined separately for uncompressed and compressed paper sheets. There-
fore, Fig.  9 also shows two values for the coefficient of determination R2 and the mean 
absolute percentage error MAPE , displayed in orange and blue for the uncompressed and 
compressed sample, respectively.

We start by considering the simplest model v(1) given in Eq.  (17), which attempts to 
establish a direct connection between porosity � and volume flow rate vCFD obtained by 
CFD simulations, see Fig.  9a. While v(1) predicts the overall trend quite well, it cannot 
distinguish samples with a similar porosity, which results in clusters of vertically arranged 
data points in Fig.  9a. This effect results in the low value of R2 = 0.62 in the uncom-
pressed case, but is less detrimental in the compressed sample, where we receive a value of 
R2 = 0.87.

The vertically clustered points in Fig. 9a clearly indicate that there are factors influenc-
ing the volume flow that cannot be explained by porosity alone. This is consistent with 
the situation found in similar paper sheets  (Leitl et al. 2023). Therefore, our next step is 
to consider three further descriptors of pore space morphology that are all incorporated 
in the model v(2) given in Eq.  (18). The first two descriptors relate to the distribution of 
geodesic tortuosity � , which enters v(2) in the form of its mean value �(�) and standard 
deviation �(�) , while the third is the specific surface area S. The fit with respect to v(2) 
substantially improves the fit by v(1) regardless of the sample, see Fig. 9b. In particular, for 
the compressed sample a value of R2 = 0.98 and for the uncompressed sample, a value of 
R2 = 0.71 is achieved.

Obviously, it is not surprising that we achieve an improved fit in both cases when refin-
ing the model through additional descriptors. However, individual descriptors improve the 
fit by varying degrees in a sample-specific way. To make this clear, we consider the regres-
sion models v(2,1) and v(2,2) given in Eqs.  (19) and (20), which both use a subset of the 
descriptors considered in v(2) , see Fig. 9c and d. For the uncompressed sample (orange dia-
monds in Fig. 9), the accuracy of v(2,1) is almost identical to that of v(2) , with a coefficient of 
determination of R2 = 0.70 for v(2,1) , compared to R2 = 0.71 for v(2) . Thus, for the data set 
of this sample, one can argue that information on the specific surface area S is redundant 
to predict the volume flow rate vCFD obtained by CFD simulations, while information on 
the geodesic tortuosity is more relevant. On the other hand, for the compressed sample, the 
regression model v(2,2) yields a value of R2 = 0.97 in comparison with a value of R2 = 0.98 
for the more complex model v(2) . Thus, in this case, information on the specific surface area 
S provides an enormous improvement compared to the regression model v(1) , while the 
information on geodesic tortuosity seems redundant.

Intuitively, one might assume that any new descriptor, which is highly correlated with 
already present descriptors, would not provide enough new information and therefore can-
not significantly improve the fit. However, as shown in Fig. 8a, the porosity � and the spe-
cific surface area S are significantly correlated in the compressed case, with only a low cor-
relation coefficient in the uncompressed case. Nevertheless, the compressed case benefits 
more from knowledge on the specific surface area S, while the uncompressed case sees 
more improvement by incorporating information on the geodesic tortuosity.

This illustrates that a descriptor cannot be deemed as redundant or not, just based on 
its correlations with other (already present) descriptors. Note that the presence of correla-
tions among explanatory variables affects the variance and interpretability of the values of 
the estimated coefficients c0,… , cn provided in Tables S1 – S3. In particular, we cannot 
formulate a quantitative statement that a certain increase of an explanatory variable would 
have a certain effect on the predictor variable, as it might not be possible to increase an 
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explanatory variable without affecting the others. However, these correlations do in gen-
eral not influence the quality of the obtained fit (Kutner et al. 2004). In turn, the absence 
of correlations among explanatory variables does not generally guarantee an improved fit. 
In many machine learning approaches, feature selection is performed according to a so-
called maximum-relevance-minimum-redundancy criterion, which aims to weigh the cor-
relation between a given feature and the target observation against the correlation between 
the given feature and other, already present, features  (Peng et  al. 2005; van  der Linden 
et al. 2016). However, such a systematic approach requires an accurate estimation of the 
probability distributions of involved features, which is not feasible in our case due to the 
small data base. Instead, we follow the same idea by manually evaluating our metrics for 
the goodness of fit and analyzing the correlation between the present descriptors.

6.2 � Combining Geometric Information with PNM Simulations

We now consider the regression models v(3) to v(6) stated in Sect. 5.1.2, which all involve 
the volume flow rate vPNM as determined by PNM simulations. The model v(3) uses 
only vPNM , while v(4) , v(5) , and v(6) combine information from geometric descriptors and 
PNM simulations. The analysis of these models provides insight about the accuracy 

Fig. 10   Scatter plots of volume flow rates obtained by CFD simulations versus the values predicted by 
regression models v(3) to v(6) (panels  10a to 10d) aiming at correcting the flow rate predictions obtained by 
PNM simulations. Separate fits of the regression model to the uncompressed (orange diamonds) and com-
pressed sample (blue circles). The coefficient of determination R2 and the mean absolute percentage MAPE 
are displayed for both samples on each plot. As a guide to the eye, the black line highlights the diagonal on 
which the results of CFD simulation and regression coincide
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of predicting the results of CFD simulations based on those of PNM simulations, and 
whether it is possible to find geometric descriptors of pore space morphology that 
mitigate the discrepancies between the two predictions. Similarly to the previous sec-
tion, all the models considered use two sets of coefficients c0,… , cn , which have been 
estimated separately based on the data of uncompressed and compressed paper sheets, 
respectively.

Figure 10a shows how well flow rates obtained from PNM simulations predict the CFD 
flow values, using the regression model v(3) . The overall fit is clearly better for the uncom-
pressed case than for the compressed case, with a higher R2-value and lower MAPE . How-
ever, the lack of accuracy in the compressed case ( R2 = 0.39 ) is mainly due to an outlier 
associated with a CFD volume flow of vCFD = 0.05m/s, see Fig. 10a.

The regression model v(4) considers porosity as an additional descriptor that can correct 
flow rates determined by PNM simulations. With the additional descriptor, the model can 
correct for the above mentioned outlier, increasing the coefficient of determination from 
R2 = 0.39 to R2 = 0.89 in the compressed case, see Fig. 10b. Furthermore, a comparison 
between the fits of v(4) and v(1) also shows that incorporating PNM simulations already sig-
nificantly improves the classical approach of predicting volume flow rates only by means 
of porosity.

The regression models v(5) and v(6) reveal, in analogy to the transition from v(1) to v(2) , 
which geometric descriptors in addition to � significantly correct the PNM-predicted flow 
rates and whether a strong correlation of a descriptor with porosity (or the absence thereof) 
controls the extent of improvement. Recall that v(5) considers the porosity � and the median 
pore radius rmax , obtained from the continuous pore size distribution. Here we observe a 
similar phenomenon as in the previous section. The median pore radius rmax is strongly 
correlated with porosity � for both samples, see Fig. 8d. Despite this strong correlation, the 
model provided by v(5) fits the data of the CFD volume flows significantly better than v(4) 
for both samples, see Fig. 10c. Finally, v(6) considers all geometric descriptors that were 
already used in v(2) as explanatory variables, in addition to the PNM-predicted flow rate. 
In comparison with v(2) , the additional information of vPNM still leads to an improvement of 
an already highly accurate prediction, i.e., from an R2-value of 0.98 to 0.99, see Fig. 10d. 
Most notably, the models v(5) and v(6) yield nearly identical precisions in the uncompressed 
case, although v(6) uses the three descriptors �(�) , �(�) , and S to replace only the one 
descriptor rmax in v(5) . Yet again, this is in contradiction to our expectations, given that the 
porosity � and the median pore radius rmax have a high correlation coefficient of � = 0.89 in 
the uncompressed case.

6.3 � Generalizing Relationships Across Different Paper Grades

With the regression models at hand, the question arises whether the models would also sat-
isfactorily predict the CFD volume flow rates for a wider range of microstructures. To test 
this, we now determine a single set of coefficients for each of the regression models stated 
in Sect. 5.1, which is jointly determined from all data points of both the combined uncom-
pressed and compressed samples. As we want to compare the performance of these jointly 
fitted models to the separately fitted models of the previous sections, we also require the 
metric for the goodness of fit to be comparable. Therefore, we again determine the values 
of the coefficient of determination R2 and the mean absolute percentage error MAPE for 
each regression. More precisely, we evaluate these metrics once only on the data points of 
the uncompressed sample and once only on the compressed sample. In this way, we obtain 



	 P. Gräfensteiner et al.   15   Page 24 of 28

a value of R2 and MAPE for each sample and each of the jointly fitted models that are 
directly comparable to the R2 - and MAPE-values of the separately fitted models.

Figure 11 collects the MAPE-values for all jointly fitted and separately fitted models, 
evaluated for both data sets of the uncompressed and the compressed sample. Bars with a 
light shading indicate the MAPE-values of the jointly fitted model, while the narrow bars 
with darker shading show the MAPE-values from the previous sections, in which separate 
sets of coefficients c0,… , cn were used for each sample. Corresponding scatter plots for 
these regression models are shown in Figure S1 of the Supplementary Information.

The models v(1),… , v(6) considered in Fig. 11 are ordered with increasing complexity 
(from top to bottom): Regression models v(1), v(2) exclusively contain geometric descriptors 
of the pore space, while regression models v(3),… , v(6) are associated with comparison and 
corrections of the predictions by means of PNM simulations. Obviously, with increasing 
complexity of the models, the values of MAPE are decreasing. However, we can see that 
in some cases the added complexity leads only to an improved model if it can specialize 
to certain types of microstructures. For example, this is the case for v(6) in the compressed 
case, see Fig.  11. In general, the more complex the model, the greater the discrepancy 
between the separately fitted models and the jointly fitted model. In particular, we see that 
for both samples, the jointly fitted models v(4),… , v(6) all show very similar performance, 
indicating that the additional complexity of v(5) and v(6) can only be capitalized on when fit-
ting to specific data sets, but not when generalizing across different grades of paper. How-
ever, the decrease in MAPE between v(1) and v(4) is consistent between both samples, indi-
cating that combining the results of the PNM simulations with geometric descriptors yields 
an improvement regardless of the specific paper grade considered.

In general, using porosity � as a correction factor in model v(4) for the prediction 
obtained by PNM simulations helps to better explain the flow rates in the compressed 
sample, i.e., the denser sample. The descriptor rmax also has a significant impact for the 
compressed sample. However, it remains unclear whether this is due to sample-specific 
details of the pore network model. To decide this, the structures harboring local flows need 
to be resolved in more detail. In such a local analysis, the structure of the pore network 
model could also play a role, as PNM simulations on conduits of the same shape tend to 
neglect too many details of the actual shape of the interface formed between connected 
pores (Zhao et al. 2020).

Fig. 11   Mean average percent-
age error (MAPE) between 
CFD-predicted volume flow rates 
and predictions of the regression 
models v(1),… , v(6) , each fitted 
to the combined data points of 
uncompressed and compressed 
paper (wide bars), or separately 
to uncompressed paper and 
compressed paper, respectively 
(narrow bars)
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7 � Summary and Conclusion

In this study, the volume fluxes of air through various cutouts of two different samples 
of porous paper sheets were determined by using CFD and PNM simulations. The fluxes 
from CFD simulations serve as ground truth in our study, while PNM simulations provide 
a simplified and computationally much less demanding alternative. In addition to volume 
fluxes, various geometric descriptors of the pore space have been determined for each of 
the cutouts based on the tomographic μ-CT image data. In particular, we focused on ana-
lyzing the performance of the PNM simulations in comparison with CFD simulations and 
investigating whether additional information on the pore space morphology through geo-
metric descriptors can be used to improve the fluxes predicted by PNM simulations. We 
also directly analyzed structure–property relationships between geometric descriptors and 
volume fluxes of CFD simulations. This was done by fitting six different regression mod-
els of power-law type to the data obtained for the cutouts of both samples. These regres-
sion models were fitted separately to the two data sets of compressed and uncompressed 
paper samples to analyze the performance of the models in a sample-dependent way. Sub-
sequently, we also fitted the models to the joint data set of both samples to see how well the 
individual models generalize across both samples.

Our analysis showed that, while volume fluxes determined by PNM simulations qualita-
tively resemble the fluxes determined by CFD simulations, involving additional geometric 
descriptors significantly improves the accuracy of the predictions. From the sample-spe-
cific analysis, we see that the ideal choice of geometric descriptors depends on the chosen 
sample, which is in line with previous results showing altered correlation structures of geo-
metric descriptors in paper sheets after compression (Neumann et al. 2024). However, even 
simply including porosity in the regression model already yields an improvement for both 
samples. In particular, the regression model using only porosity and PNM fluxes in some 
cases outperforms more complex relationships that directly model the CFD fluxes by mul-
tiple geometric descriptors of pore space, which underlines the potential of PNM as a more 
cost-efficient simulation tool.
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