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Abstract

Predicting the macroscopic properties of thin fiber-based porous materials from their
microscopic morphology remains challenging because of the structural heterogeneity of
these materials. In this study, computational fluid dynamics simulations were performed
to compute volume air flow based on tomographic image data of uncompressed and
compressed paper sheets. To reduce computational demands, a pore network model was
employed, allowing volume air flow to be approximated with less computational effort.
To improve prediction accuracy, geometric descriptors of the pore space, such as porosity,
surface area, median pore radius, and geodesic tortuosity, were combined with predictions
of the pore network model. This integrated approach significantly improves the predictive
power of the pore network model and indicates which aspects of the pore space morphol-
ogy are not accurately represented within the pore network model. In particular, we illus-
trate that a high correlation among descriptors does not necessarily imply redundancy in a
combined prediction.
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Articlehighlights

e Air flow through paper sheets has been determined by computational fluid dynamics
and pore network model simulations

e Geometric descriptors of pore space are used in regression models to improve the pre-
diction of pore network model simulations

e Structure—property relationships indicate descriptors complementary to pore network
modeling for different paper grades

Keywords Porous medium - Air permeance - Computational fluid dynamics - Pore network
model - Statistical image analysis

1 Introduction

Predicting the macroscopic flow of gasses through a heterogeneous porous material
requires knowledge of the size, shape, and connectivity of the pores involved, regard-
less of whether the flow is diffusive, laminar, or turbulent. Although methods for trans-
port simulations exist that use 3D image data to take the geometry of the pore space into
account (Torquato 2022), it remains difficult to establish relationships between morphol-
ogy and transport for flow through thin, sheet-like structures. Prominent examples of such
structures are fibrous membranes encountered in paper, gas diffusion layers, or filters. In
such sheets, the pore structure often exhibits strong local heterogeneities. To understand
the flow through the total sheet area, it is necessary to capture the local flow variations
across many different realizations of the pore space. This requires an enormous amount of
simulations, which, in turn, requires transport simulation methods that are accurate and,
simultaneously, can be performed with reasonable computational effort.

The choice of the simulation method depends on whether diffusive, laminar, or turbulent
transport is considered. In the case of laminar flow, there a several possible methods that, by
and large, have in common that they represent different routes to predict the flow originat-
ing from the Navier—Stokes equation, reducing the transport problem to the simpler Stokes
equation (Leal 2007). Computational fluid dynamics (CFD) and lattice Boltzmann simula-
tions are suitable and well-established methods to determine local flows from the actual pore
space Chung (2002; Succi et al. 1991). In CFD simulations, the pore phase, as supplied by
tomographic image data, is represented by a surface mesh on which the Stokes equation is
solved. This simulation method allows for readily considering specific situations such as sta-
tionary or incompressible flows. Lattice Boltzmann simulations track the motion by monitor-
ing the velocity components along a given set of directions in a cubic grid. With increasing
complexity of the pore space morphology, more velocity components and smaller time steps
are required to accurately solve the Boltzmann equation that is equivalent to the stationary
Navier—Stokes equation. Each of these methods is computationally demanding (Yang et al.
2016). On the other hand, ready-trained deep learning methods do not offer a route to evade the
computational costs yet, as they exclusively act on the material classes they were trained for and
cannot be universally applied to all types of materials, at least not without supplying costly sim-
ulations for retraining (Morgan and Jacobs 2020). However, the modeling of pore networks is a
promising and computationally cheaper alternative (Blunt et al. 2013). In partitioning the pore

@ Springer



Predicting Air Flow in Calendered Paper Sheets from p-CT... Page30of28 15

space into distinct components, pore network modeling (PNM) preserves the transport-relevant
local connections and bottlenecks between the pores. Transport is considered locally by solving
the transport equation through neighboring pores assuming a simplified geometry of involved
pores. In order to estimate the total flow through the entire pore space, the local transport pro-
cesses are consistently connected with each other by enforcing mass conservation.

It is highly desirable to interpret or even predict the fluxes using geometric descrip-
tors associated with the pore space, as these can be reliably determined from tomographic
image data without the need of performing physical transport simulations. Using methods
from spatial statistics and mathematical morphology, it is possible to quantitatively charac-
terize the complex morphology of the pore space (Chiu et al. 2013; Jeulin 2021; Ohser and
Schladitz 2009). In particular, to quantify local heterogeneities in paper-based materials,
methods have been developed to quantify the variance and correlation of multiple local
geometric descriptors computed from tomographic image data (Neumann et al. 2024). This
methodology has recently been applied to quantify local heterogeneities in polymer-based
batteries (Neumann et al. 2022; Ademmer et al. 2023; Dodell et al. 2025).

Predicting effective properties, such as permeability, based on such sets of descriptors is
fundamental in many studies. The selected geometric descriptors of the pore space are usually
inspired by the properties used to interpret the permeability of the material, for laminar flow in
the framework of Darcy’s law (Whitaker 1986). Prominent transport-relevant descriptors are
the volume fraction of the pore space (porosity), the local thickness of the material, the inter-
nal surface area per unit volume, and the mean geodesic tortuosity to quantify the winding of
transportation paths. However, determining how many and which descriptors are truly relevant
for a given porous material is not straightforward. Particularly problematic is the commonly
encountered situation that these descriptors depend on each other, i.e., varying the value of one
descriptor immediately affects the values of all other descriptors. The specific consequences of
correlations between descriptors depend on the material, since the actual degree of correlation
between descriptors can vary strongly from material to material (Neumann et al. 2024).

In the present study, we investigate the problem of modeling laminar flow using the
example of two paper samples with different morphologies. These paper sheets originate
from the same paper grade whose structure is considered before and after compression in
thickness direction. For both samples, the air fluxes have been determined experimentally
and the microstructures have been acquired by means of p-CT measurements (Neumann
et al. 2021). Local variations in the microstructures are quantified via transport-relevant
descriptors of pore space that were computed based on the tomographic image data. Fur-
thermore, the correlation structure between transport-relevant descriptors has already been
quantified in previous works by means of R-vine copulas (Neumann et al. 2024, 2021).

For each paper sample, we relate the fluxes obtained from CFD simulations to the fluxes
determined by PNM simulations and various geometric descriptors, using several power-
law models. It must be emphasized that such fits do not suggest physically motivated
expressions, i.e., the fitted exponents of the geometric descriptors cannot guarantee trends
that reveal the underlying transport physics. However, by means of these models, we can
study microstructure—property relationships between geometric descriptors of pore space
and the volumetric flux as determined by CFD simulations. Furthermore, we can evaluate
the quality of the PNM simulations and monitor which descriptors improve the prediction
of effective properties and thus hint toward details in pore space morphology that are not
captured in PNM simulations. In order to improve the agreement between the results of
CFD and PNM simulations, we use combinations of various geometric descriptors of pore
space, such as the mean geodesic tortuosity, the surface area per unit volume, or scalar
quantities derived from the continuous pore size distribution.
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Fig.2 Slices of p-CT data for uncompressed (a) and compressed (b) paper sheets (from cutouts
500 pm X 500 pm X height). The solid and pore phase are depicted in black and gray, respectively

2 Materials, Tomographic Imaging, and Transport Regime

First, in Sect. 2.1, we give a short overview of the materials investigated in this study and
the tomographic image data measured for these materials. In Sect. 2.2, we introduce the
transport regime considered in the present study that will be solved by means of CFD and
PNM simulations, as will be explained later in Sect. 3.

2.1 Materials and Their Tomographic Imaging

Our study is based on two data sets of tomographic image data for two different paper
sheets. One sample type represents a paper sheet compressed in thickness direction, and
one represents a sheet of the paper grade before compression (Neumann et al. 2021). The
latter, uncompressed sample is commercial, unbleached paper with a specific basis weight
of 100 g/m*. Compressed samples are obtained via hard-nip, steel-steel calendering of
the uncompressed paper sheets with a line load of 90 Nm~!. The 3D microstructures of
both samples are resolved by p-CT image data with a voxel size of 1.3 um as described
in (Neumann et al. 2021). The binarization of the uncompressed paper sheets was per-
formed based on absorption contrast using indicator (kriging Oh and Lindquist 1999) as
described in (Machado Charry et al. 2018), whereas the binarization of the compressed
paper sheets was obtained using a random forest classifier within the Fiji Weka segmenta-
tion plugin (Schindelin et al. 2012; Arganda-Carreras et al. 2017) as described in (Neu-
mann et al. 2021), see Fig. 1.

For determining the boundary of the paper sheets, which particularly allows for comput-
ing the thickness, a rolling ball approach (Sternberg 1983) is used as already performed
in (Neumann et al. 2022; Machado Charry et al. 2018). Exemplary slices of the segmented
tomographic image data are shown in Fig. 2.
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Since both types of (CFD and PNM) simulations performed in this study require spa-
tially resolved 3D information of the pore phase, our common starting point is to predefine
cutouts of the 3D stack of tomographic image data, where each cutout has a cross-sectional
area of

Aqeq = 500 X 500 pm” 1

and contains all voxels in thickness direction. For each of the uncompressed and com-
pressed paper sheets, we selected twelve cutouts to cover a large range of variations in the
pore space morphology. In both cases, the cutouts were chosen such that eight of them have
a local porosity close to the mean (global) porosity obtained for the entire microstructure
data of the sample. Two cutouts represent realizations of particularly dense sheets (smaller
porosity) and two further particularly open sheets (higher porosity). To facilitate a later
interpretation of the simulation results, all cutouts have been chosen such that their mean
thicknesses are approximately equal. Note that one of these cutouts from the compressed
sample has not been used in the following analysis, because the CFD-determined porosity
of this cutout was implausibly large and possibly indicates an artifact in the mesh generated
from the microstructure, see Sect. 3.1 below.

2.2 Transport Regime

We turn to air flow in thickness direction through porous paper sheets under excess pres-
sure. In this transport regime, we expect that chemical interactions of the molecules in air
with the solid matrix are negligible. To get laminar flow rather than turbulent flow, the pres-
sure difference between both sides of the sheet must be small enough. The pressure differ-
ence required for the standardized, experimental characterization of volume flows through
paper sheets (Gurley test (ISO 5636-5:2013 2013)) is small enough to warrant laminar flow.
Hence, we will use the pressure difference from the Gurley test in our flow simulations. This
gives us the opportunity to check whether the simulations are in line with the experimen-
tally obtained air fluxes (Leitl et al. 2023). Considering air transport rather than liquid fur-
ther eases the comparison, because typical liquid-relevant complications such as capillary
uptake, wetting in angular pores (Valvatne and Blunt 2004; Zhao et al. 2022) and associated
slip-stick motion (Aslannejad et al. 2017; Fischer et al. 2021) do not appear.

2.2.1 Navier-Stokes Equation

We briefly show how the formulation of the Navier—Stokes equation of laminar trans-
port of gases such as air can be simplified for the use of CFD transport simulations.
Recall that the Navier—Stokes equation determines the time-dependent velocity field
u: Qx[0,00) - R3on a given domain Q C R? under the influence of a given pressure
field p: QX [0, 00) — [0, 00) and negligible gravitational forces for each time ¢ > 0 and
position x = (x,x,,x3) € Q, where the domain Q contains the (connected) space of pores.
It is common to add to Q additional void volumes above and below the sample, i.e., an inlet
and outlet region, such that boundary conditions can be assumed on planar surfaces. As the
considered pressure difference in our problem is high enough to assume incompressible
flow (Bernabé 2018), the Navier—Stokes equation reads
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p(% +(u-V)u> =—-Vp+nAu inQ X (0, o0), )
where n > 0 is the dynamic viscosity and p > 0 is the mass density (Sohr 2012). At the
boundary between the pore and the solid phase, no-slip boundary conditions ensure that
the velocity of the gas is equal to that of the rigid solid phase at the wall, which is 0. This
also ensures that the flow through the pores cannot penetrate the solid matrix. As flows
through porous media usually have very small Reynolds numbers, the so-called inertial
contribution on the left-hand side of Eq. (2) is neglected. Thus, we assume that

(%+(MV))M=O IHQX(0,00), (3)

such that the steady-state Stokes equation
-Vp+nAu=0 4)

remains. Then, CFD simulations are performed to determine a solution of Eq. (4) together
with the continuity equation

Vou=0 (5)

for a given pressure difference at the boundaries to obtain the velocity field « and the local
pressure, see Sect. 3.1 below. The volume flow rate 0V /ot through a plane A C R that
intersects the pore space €2 is then given by

aV
E = / <nA,M>dH2, (6)
ANQ

where n, is the surface normal vector of A pointing in the direction of the flow, (-, -) denotes
the scalar product between two vectors, and H, is the two-dimensional Hausdorff measure.
Note that we consider the steady state, in which the flow rate 0V /dr does not depend on
the time ¢. In the case of the total flow rate through a paper sheet in thickness direction, the
volume flow rate is typically determined at a plane that is oriented normally to the pressure
difference and is placed in the outlet region.

2.2.2 Hagen-Poiseuille Equation

Within the pore network model, the pore space is represented by a graph, in which connec-
tions between neighboring pores are geometrically modeled by a cylinder. The volume flow
rate of every such connection is determined individually by assuming steady-state, laminar
flow through a long, narrow pipe (Xu et al. 2022; Gombosi 1994; Zhao et al. 2020). In this
setting, the flow rate can be modeled using the Hagen—Poiseuille equation (Hutten 2015).
This yields that

oV _ zR*

o = SiL D, N

where Ap denotes the pressure difference between the two ends of the pipe, # > 0 is the
dynamic viscosity, L > 0 is the length of the pipe, and R > 0 is the pipe radius. Note that
the volume flow rate 0V /ot of a given segment is directly proportional to the difference in
pressure between the beginning and the end of the segment. Finally, the flow through the
entire network must obey a mass balance equation at every vertex. For more details on how
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the graph is constructed in the pore network model and how the linear factors in Eq. (7) are
determined, see Sect. 3.2.

3 Methods to Simulate Transport

We now provide more detailed information on the two approaches used to simulate vol-
ume air flow through paper sheets. In Sect. 3.1, we describe the CFD simulation proce-
dure and compare the resulting values to experimental data. In Sect. 3.2, the pore net-
work model is described in multiple steps. First, Sect. 3.2.1 describes the construction
of the graph representing the pore space morphology. Then, in Sect. 3.2.2, we show how
the graph is used for volume air flow simulations. Sect. 3.2.3 discusses the impact of the
chosen conduit shape used to approximate the volume between two neighboring pores
within the pore network model.

3.1 CFD Simulations

The ANSYS code was used to numerically solve the Stokes equation (see Eq. (4)) in
the pore space of the paper sheets as described in Sect. 2.2, where the simulations were
prepared as follows (Leitl et al. 2023). The microstructure of each cutout was provided
as a stack of 2D binary images containing voxels corresponding either to the pore or
to the solid phase. This volume data was triangulated to obtain the surface mesh of
the pore space, since this surface mesh encloses the pore volume in which the Stokes
equation will be solved. To arrive at a good compromise between high resolution and
uniform coverage of surface triangles, we stretched the volume data in thickness direc-
tion by a factor of five, loaded this stretched volume data as images in (Fiji Schindelin
et al. 2012) to perform the triangulation, and stretched the resulting surface mesh by a
factor of 0.2 in thickness direction. This is done in order to compensate for the differ-
ence in lengths between thickness and lateral direction, and arrive at a surface triangula-
tion whose typical side lengths are more proportional to the difference between thick-
ness and lateral size. As ANSYS relies on a finite volume approach, the pore volume
enclosed by the surface mesh was discretized using Numeca Hexpress Hybride. More
details can be found in (Leitl 2020). The surface meshing closes all pores that are not
connected to the exterior, i.e., either to an inlet or outlet. Air permeance was obtained
for boundary conditions that correspond to the standardized test to assess the porosity of
paper (ISO 5636-5:2013 2013). The pressure at the top surface was p;,,, = 102.545kPa,
and p,,ue = 101.325kPa at the bottom surface. At the remaining side walls, symmetry
boundary conditions are used. Also the external conditions were chosen to match the
standardized conditions. The temperature was T = 298 K, so that the density of air was
P = 1.184 gm™3, and the dynamic viscosity was # = 1.838 - 1073 Pas. For each cutout,
the CFD simulations yield the spatially resolved air pressure and air velocity, and at the
outlet side the volume flow rate dV /dr (via Eq. (6)) and the volume flux per unit area
Verp, Which is given by

perry = 9V
= T (®)

seg

where A, is defined as in Eq. (1).
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Fig.3 Violin plots to compare the fluxes obtained experimentally by the Gurley method (purple, left axis)
and the fluxes obtained from CFD simulations (gray, right axis) for a paper sample from (Leitl et al. 2023),
uncompressed, and compressed paper. To ease the comparison, plots of corresponding fluxes are superim-
posed at the common symmetry axis of the violin plot and a half of each violin plot is hidden. In each plot,
the short horizontal bars represent the median and the quartiles, and the long horizontal bar the mean

Figure 3 compares the volume fluxes per unit area computed in this way with the
fluxes vy, obtained from experiments for uncompressed (center) and compressed paper
(right). In the experiment, the time required to press a standard volume of 100mL air
through a paper sheet of a standardized area of 645.2 mm? is measured. (According to
norm TAPPI T 460, this corresponds to a 1.0 square inch circular area.) For each paper
grade, these times have to be measured at least five times at different positions and again
at least five times with flow penetrating the paper in the opposite direction, i.e., with the
paper sheet flipped. The measured times #; (in seconds) are then converted to volume
flow rates per unit area via v, = 0.155m/#;. As the measured area of this experiment
largely exceeds the area of the cutouts in the CFD simulations, the variations seen in the
experiment stem from probing different positions. The fluxes v, and vcgp, differ by a
scaling factor between four and five, which is consistent with a previous comparison for
a paper made from the same pulp and a porosity comparable to the uncompressed sam-
ple (Leitl et al. 2023), whose simulated and experimentally obtained fluxes are shown
for comparison in the left part of Fig. 3. However, the trends seen in the experiments are
captured by the simulations for both samples, in terms of mean values and variations.
Hence, in the context of the present study, we consider the CFD-calculated fluxes as the
ground truth. They will serve as a reference for the pore network simulations.

3.2 PNM Simulations

The PNM approach seeks to predict transport in a geometrically simplified, graph-like rep-
resentation of the pore space. The pore network representation of a pore space contains the
positions and sizes of distinguishable pore regions, and the positions and sizes of the cross-
sectional contact areas between neighboring regions.

In the network, each vertex represents the center of a pore region. Vertices correspond-
ing to centers of connected pore regions receive an edge in the graph. A pore space analy-
sis step, described in detail in Sect. S.3 of the Supplementary Information, determines and
labels the pore regions and augments the vertices in the graph with information such as the
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position (center of gravity) and volume of the original pore, and the diameter of the largest
sphere that can be inscribed into the pore. Each edge is marked with information related to
the “bottleneck” between two connected pores, i.e., the position and extension of the con-
tact area between neighboring pore regions.

The transport between two vertices that are connected by an edge is modeled by solv-
ing a transport problem on an approximating conduit shape that is constructed based on
the geometric information of each vertex and edge mentioned above. Correspondingly, the
transport simulation is approximated in two steps: (i) determine a pore network representa-
tion of the pore space and (ii) perform simulation of Stokes flow on neighboring pores by
use of approximating conduit shapes. These steps are explained in Sects. 3.2.1 and 3.2.2,
respectively. Section 3.2.3 discusses the impact of the conduit shape on the fluxes predicted
by PNM.

3.2.1 Constructing the Pore Network Graph

The pore network of each cutout was determined with the SNOW algorithm as imple-
mented in the python package PoreSpy (Gostick et al. 2019). First, the SNOW algorithm
divides the pore space of the segmented 3D image into non-overlapping regions, see
Fig. 4a—c. Subsequently, an undirected geometric graph G = (V, £) is constructed, where
each vertex u € V C R3 corresponds to the centroid of a region in the segmented image,
see Fig. 4b. Then, edges e = {u, v} € £ are added between vertices u und v corresponding
to neighboring regions, i.e., between those that share a common boundary.

These vertices and edges receive geometric information deduced from the tomographic
image data of the pore regions. The volume of a pore region is the total volume of all vox-
els in a region. The associated pore radius is the maximum value of the Euclidean distance
map (Soille 2003; Maurer et al. 2003) within each pore region, i.e., it corresponds to the
radius of the largest possible sphere that is fully contained in the pore region. The pore
surface area is given by the number of solid—pore interface voxels of the region multiplied

a) b)
/’\Er})ex 2
vertex 1 eedeids?
C)

din | d) dtn
d1J( Vs ds ds

Fig.4 Pore space before (a) and after (b) partitioning in distinct pore regions, where each pore region is
represented by a vertex, and edges mark adjacent, connected pore regions. Analysis of the pore regions
provides the positions of the pores, the diameters d; and d, of inscribed spheres of maximum diameter, the
positions in which the pore regions touch and the largest Euclidean distance d;, therein (c¢). Example for a
straight pore-throat-pore conduit between two connected vertices in the pore network (d), where the conduit
consists of the pores simplified as truncated cones, whose inlet and outlet diameters are given by d, and d,,
respectively, and a central cylinder with diameter d,;,
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by the area of a single voxel face. Each edge receives a diameter that corresponds to the
largest Euclidean distance found in the cross-sectional area of two adjacent pore regions
and a length, that corresponds to the Euclidean distance between the two connected pore
centroids (Gostick 2017), see Fig. 4c. A more detailed description of how the pore network
graph was determined is given in Sect. S.3 of the Supplementary Information.

While the pore network graph is constructed based on the morphology of the original
pore space of the material, the geometry of the resulting graph differs markedly from the
original microstructure due to its simplified representation. In fact, even defining a poros-
ity of the pore network graph is difficult, as information the solid phase is completely dis-
carded. A more detailed discussion on this can be found in Sect. S.4 of the Supplementary
Information.

3.2.2 Flow Simulation on the Network

Based on the pore network graphs stated above, the OpenPNM (Gostick et al. 2016) pack-
age was used to determine the stationary air flow for the same excess pressure and external
conditions as used for the CFD simulations (ISO 5636-5:2013 2013). The flux through the
network has to obey the mass balance equation at every vertex 4 € V in the graph (Ioan-
nidis and Chatzis 1993), i.e., for the net flow rate (0V /0r) . through vertex y it holds that

(%)M =2 (%)M =0, ©)

VEN,

where N, = {v € V: {u,v} € £} is the set of neighbors of vertex u and (0V/0t),, is the
flow rate between adjacent vertices u and v, which is positive when the flow is directed
toward the vertex y, and negative when the flow leaves the vertex .

We assume here that the gas behaves like an incompressible liquid with a constant mass
density. The disregard of compressibility has been shown to have little impact provided
that the excess pressure driving the flow is high enough (Bernabé 2018). Hence, conserv-
ing mass is equivalent to conserving volume.

The flow between adjacent vertices u,v € V is driven by the difference in pressures
p, — p, within the pore regions and adopts a form inspired by the Hagen-Poiseuille equa-
tion for laminar flow in pipes (Xu et al. 2022; Gombosi 1994; Zhao et al. 2020) given by

0
(a—‘;)m =8P, — P (10)
where g, > 0 is the local conductivity of the conduit between the adjacent vertices u and
V.

Note that the local conductivity depends on the size and the geometric shape of the con-
duit. More precisely, the local conductivity (denoted by g in this paragraph) quantifies the
ease with which a gas or fluid can pass through a conduit. For the hydraulic conductance
considered here, g is fully determined by the shape of the conduit and the dynamic viscos-
ity n. Fig. 5 illustrates a general, axial-symmetric conduit with a flow along the z-axis. We
assume that the conduit is placed within the positive quadrant of the coordinate system,
with one of its sides aligned with the x-y-plane, so that its extension along the z-axis is
from O to L for some length L > 0. For each z € [0, L], let C(z) C R3 be the circular conduit
cross-section perpendicular to the flow axis, and H,(C(z)) the area of C(z), given by means
of the two-dimensional Hausdorff measure H,. Then, it holds that
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C(z) r(z)

L

P+ T P2

Fig.5 Axial-symmetric conduit with varying radius r(z) and cross section C(z) along the z-axis. The inlet
is at pressure p, and the outlet at p,, respectively. The diameter of the inlet and the outlet corresponds to the
diameter d, of the inlet and outlet pore, respectively. The smallest diameter is given by the extension of the
bottleneck dy;, between inlet and outlet pore

1 /L @
- =16 —— dg, 11
PR A TATCE v

where I'(z) is the specific polar moment of inertia, defined as integral over the cross sec-
tion C(z) by

1

rQ)=———
V=50 Jeo

llx1> dH, (x), (12)
where ||x|| denotes the Euclidean norm of x = (x,,x,) € R2 In Eq. (11), both H,(C(z)) and
I; essentially depend on the geometry of the conduit. Thus, analytical descriptions of the
shape of the cross sections along the flow axis often allow to derive analytical expressions
for the conduit flow (Sochi 2013; Akbari et al. 2011). More details on this are given in
Sect. S.5 of the Supplementary Information.

In this study, we assume that the conduit shape is the same throughout the network,
where we choose the shape shown in Fig. 4d, i.e., a cone-cylinder-cone conduit consisting
of three segments. The inlet segment starts from the pore center with opening diameter d,
and narrows in a conical fashion until the smallest diameter d,,, is reached (pore). A second
(straight) segment of cylinder shape with diameter d,;, (throat) follows and connects to a
conical-shaped outlet segment with smallest diameter d,;, and final diameter d,. Note that
conduit shapes can be selected from a wide range of shapes as long as local conductiv-
ity through the conduit can be provided to satisfy Eq. (10), see (Zhao et al. 2020; Sochi
2013; Akbari et al. 2011; Miao et al. 2017) for examples. A more detailed discussion of the
choice of conduit shape will be given in Sect. 3.2.3 below.

For a conduit between connected pores (represented by the vertices p, v € V) consist-
ing of multiple elements, such as the one shown in Fig. 4d, the local conductivity g, is
obtained from the conductivities of the individual conduit elements (Rodriguez de Castro
et al. 2023), i.e.,

1 1 1 1

—=—+ +—, 13
gyv gP”u gth,uv 8py ( )

with gp, and gp , being the conductivities associated to the pore volumes (half-cones in
Fig. 4d), and g, ,,, is the conductivity of the throat, where all three conductivities gp . 8p,,
and g, ,,, are determined by Eq. (11).

With the local conductivities g, in hand, Eq. (9) defines a system of linear equations
that is solved for the pressure p, in each pore with the boundary conditions p;,, = 1.22kPa
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at all inlet pores and pe = 0 at all outlet pores. Once the pressures p,, are determined,
Eq. (9) provides the flow rates through each conduit. Then, the total flow rate through the
network is the sum over all local volume flow rates entering the network at the inlet pores,
i.e.,

B LG, Z T

EVintet HUEVipie VEN,,

where V., C V is the set of all inlet vertices, which are determined as described in Sect.
S.3 of the Supplementary Information. In analogy to Eq. (8), the volume flux per unit area
VpnM 1S given by

N L(ﬂ)
PNM Aseg ot inlet. (15)

3.2.3 Impact of Conduit Shape

Since the true morphology of the pore space region that connects two different pores is
too complex, it must be approximated by using a simplified geometry in PNM to simulate
the flow between neighboring pores. As there are many options for doing so, the values of
local conductivities and, hence, of the overall flux vpy,,, depend on the choice of the con-
duit shape, see Fig. 6.

To assess the extent to which the predicted flows may vary, we consider the results of
our simulations using the conduit shape shown in Fig. 4d as reference and compare the
related fluxes to pore network simulations using two other conduit shapes. The associated

Fig.6 Impact of the cond.uit a) 19 PN b) [ ]
shapes on the fluxes predicted by :

PNM for the cutouts of uncom-
pressed (orange diamonds) and x 2 X 2
compressed (blue circles) paper.
The fluxes obtained for half
pore-throat-half pore conduits Z s X
as shown in Fig. 4d (horizontal ©

axis) are compared to predictions

using mirror- and axis-symmetric ¢ 0.8¢ N [
converging—diverging conduits (S *

with diameters d,,,, = d, and ; <§ 4
To ease the comparison, two X1 <8
additional lines correspond- Y
ing to a direct correspondence 0.4 L? $

din = dy, assuming a cone a ¢
and hyperbolic cosine b shape. 067 °
<
(Y
V = Veone—cy and a doubling in
value v = 2v g, are inserted &

02 04 06 04 06
Vcone-cyl/ mS_1 Vcone-cyI/ mS_1
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conduits assume a converging—diverging shape that are chosen to be mirror-symmetric,
i.e., the diameters along the conduit fulfill d, .« = d, nax = dp,, and dy, = dyy, ,,,- Using
the notation v instead of vpyy, Figure 6a shows the flux values of v obtained for conically
shaped conduits for uncompressed (blue diamonds) and compressed (orange circles) paper,
and compares them to the reference values (denoted by v o) provided on the horizontal
axis.

Although conically shaped conduits tend to show the largest deviations from cylindrical
conduits (cf. Fig. 6a), the obtained values of v are practically proportional to the reference
values of Voo, With a slope of two. The same qualitative behavior is obtained for hyper-
bolic cosine shaped conduits, see Fig. 6b. Also here, the values of v are proportional to the
reference values of vy, but with a reduced slope of 1.5.

The flux through individual conduits of conical and hyperbolic cosine shapes is com-

pared to that of cylindrical conduits in Figure S4 of the Supplementary Information.

3.3 Volume Flow Rates Obtained by CFD and PNM Simulations

In this section, we compare the volume flow rates per unit area obtained from CFD and
PNM simulations, see Fig. 7. The values of the volume flow rates vepp and vpyy differ
by more than an order of magnitude. The actual difference in magnitude is determined,
at least in part, by the choice of the conduit geometry, as explained above. Nevertheless,
the flows predicted by PNM resemble the trends in the flows obtained by CFD. While the
fluxes through the uncompressed sample tend to exceed the fluxes in the compressed sam-
ple, there is a common pattern regardless of which sample is considered: A higher porosity
tends to give a larger flux. For comparable porosities, CFD and PNM simulations predict
a marked spread in the flow values, see Fig. 7. This spread in flow rates must originate
from the details of the pathways realized in each of the cutouts. Hence the question arises,
whether other microstructure descriptors are capable of explaining this spread because they
inherently consider these pathway details.

(a) (b)
¢ uncompressed 6+ -
- 197 o compressed N
o o _
: s 5 *
= - — €
E10 . £ o
9 ¢ \2 4 § ® N
o g g P
5 s ¢ B 1A -
8 ®
T‘ ° 1 1 5 e 1
0.3 04 0.5 0.3 04 0.5
& &

Fig.7 Volume flux per unit area obtained by CFD (a) and PNM (b) simulations versus the local porosity of
the cutouts from the 3D image data for uncompressed (diamonds) and compressed (circles) paper
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4 Geometric Descriptors of Pore Space Morphology

Based on the segmented p-CT image data, we can quantitatively analyze the pore space
morphology within the measured paper sheets by means of various geometric microstruc-
ture descriptors. In particular, in a previous study (Neumann et al. 2024), we showed that
the differences between uncompressed and compressed paper are heavily reflected in an
altered interdependence between pairs of geometric descriptors of the pore space morphol-
ogy. As we now aim at linking descriptors that characterize the pore space morphology
to the volume flow determined by CFD simulations, as described in Sect. 3.1, we select
an appropriate set of these geometric descriptors. Namely, we consider the porosity &, the
specific surface area S of pore space, the mean value u(r) and standard deviation o(z) of
geodesic tortuosity of paths through the pore space, and the median radius r,,,, of the con-
tinuous pore size distribution. It is well known that each of these descriptors is relevant for
transport in porous media (Holzer et al. 2013; Barman et al. 2019; Neumann et al. 2020).

4.1 Computation of Geometric Descriptors

In the following, we briefly explain each of the geometric descriptors considered in the pre-
sent study and give information on how they can be computed from grid-based 3D image
data.

Porosity The most fundamental and widely used geometric descriptor of pore space
is the porosity € € [0, 1]. Formally, € is defined as the volume fraction of the pore space,
which can be determined by computing the number of voxels associated with pores divided
by the total number of voxels that do not belong to the background. Thus, € can be com-
puted in a straightforward manner, simply by counting voxels in the image data.

Specific surface area Another fundamental descriptor is the surface area of pore space.
In particular, we consider the specific surface area S, i.e., the surface area of pore space
per unit volume. In order to compute the value of S from voxelized image data, an algo-
rithm stated in (Schladitz et al. 2006) is used, which is based on local weighted 2 X 2 X 2
configurations. More precisely, the original binary image is convoluted with a 2 X2 X 2
mask, resulting in a gray scale image where each possible gray scale value corresponds to
a unique configuration of the 2 X 2 X 2 neighborhood of that voxel. These configurations
have their own weightings, which are then summed up over the whole image in order to
obtain an estimate for the surface area.

Geodesic tortuosity The general notion of tortuosity aims to quantify the length of
transportation paths through a porous medium in relation to its thickness. Note that there
are many different definitions of tortuosity (Holzer et al. 2023). However, in the present
study, we focus on the concept of geodesic tortuosity. This requires the selection of starting
and target planes of the image data, for which the geodesic tortuosity shall be computed.
As we are interested in flow that traverses the paper sample vertically, we chose our start-
ing and target planes as the pore space voxels that belong to the upper- and lower-most
layers of voxels in y-direction, respectively. In addition, our goal is to quantify only the
lengths of paths that use pores with a certain minimum local volume, so that we ensure
that the considered paths contribute to volume flow in a significant way. We therefore first
determine the pore space that can be filled by spheres of radius 1.5 pum. This value was
found to be suitable in a previous study (Neumann et al. 2021). Then, for every pore voxel
of the starting plane, a shortest path to the target plane is computed twice by the use of
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Dijkstra’s algorithm (Dijkstra 1959), where once the path is only allowed to traverse the
pore space, while the second time it is also allowed to pass through voxels that belong to
the solid phase. The geodesic tortuosity 7 > 1 is then defined as the ratio of the lengths of
these two shortest paths for every pore voxel of the starting plane. This yields a distribution
of values, of which we consider the sample mean u(z) and sample standard deviation (7).

Continuous pore size distribution In order to capture the distribution of
pore widths across the sample, we consider the continuous pore size distribution
CPSD : [0, 00) — [0, 1], which is defined using morphological opening (Soille 2003; Serra
1982). More precisely, for each r € [0, 00), the value of CPSD(r) is given by the volume
fraction of that part of the pore space that can be covered by spheres of radius r which are
completely contained in the pore space. To compute CPSD(r) from voxelized image data,
we consider the subset P C W of voxels associated with pores within our sampling window
W c Z3. Then, we put

P © B, (o, B, (o,
CPSD(r) = |(P© By(o |2|)ea (0 r)|’ 16

for any r > 0, where © and @ denote the morphological operations of erosion and dila-
tion (Soille 2003; Serra 1982), respectively, Bys(o,r) = B(o,r) N Z3 is the discretized
open ball of radius r centered at the origin, and |B| denotes the number of elements of
any set B C Z3. Note that the numerator on the right-hand side of Eq. (16) can be effi-
ciently computed by means of the Euclidean distance transform (Soille 2003; Maurer
et al. 2003). In particular, we are interested in the median r,,,, of CPSD, which is given by
Fmax = Max{r > 0: CPSD(r) > 1/2}. This quantity is used in the definition of constrictiv-
ity, which is a useful descriptor in quantifying the strength of bottleneck effects (Holzer
et al. 2013).

4.2 Correlations Between Pairs of Geometric Descriptors

Figure 8 shows scatter plots of the results which we obtained for the geometric descriptors
stated in Sect. 4.1, for the cutouts of both uncompressed and compressed paper sheets. It
also shows the Pearson correlation coefficients for each pair of displayed descriptors, where
we can see that some descriptor pairs show a rather strong correlation. Namely, the pairs
€ and u(7) (Fig. 8b) as well as € and r,,,,, (Fig. 8d) are strongly correlated in both samples.

In line with this, the associated fluxes, imposed by color in Fig. 8, tend to be higher the
higher the porosity € and the median radius r,,,,, and the lower the mean geodesic tortuos-
ity u(z), which can be seen best in Fig. 8b and d. In contrast to this, € and S only show a
significant correlation for the cutouts of the compressed sample, see Fig. 8a, as also found
in our previous work (Neumann et al. 2024).

Figure 8 also shows that at least half of the data points per sample share a practically
identical local porosity €. Although our pick of cutouts with similar local porosity may
adversely affect the estimation of the Pearson correlation coefficient for the interrelations
representing the whole sample, it will boost the importance of the other geometric descrip-
tors in explaining variations in the flow. Note that the fact that the geometric descriptors
considered in the present study are correlated affects the variance and interpretability of
the estimated coefficients in the regression models that we will present in Sect. 5.1 below.
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Fig.8 Scatter plots visualizing the interdependence of geometric descriptors for the cutouts of uncom-
pressed (diamonds) and compressed (circles) paper sheets. The color coding indicates the values of the vol-
ume flow obtained by CFD simulations. Additionally, the corresponding values of the Pearson correlation
coefficient are displayed on each figure

However, the presence of correlation among explanatory variables does not in general
influence the ability to obtain a good fit (Kutner et al. 2004), see also Sect. 6.1.

4.3 Influence of the Characteristic Bottleneck

While the descriptors introduced in Sect. 4.1 are both easy to compute and also intuitive to
interpret and to link to effective transport properties, the list is clearly not exhaustive and
there exist many further interesting geometric descriptors that are not considered in our
regression models, but can still be linked to fluid flow. In particular, the size of the char-
acteristic bottleneck was found to correlate with permeability predictions (Neumann et al.
2020). A short introduction to the definition and computation of this descriptor is given in
Sect. S.7 of the Supplementary Information. In our paper samples, this descriptor shows a
significant correlation with the absolute prediction error [vegp — Vpay| in volume flow rates
between CFD and PNM simulations, which suggests that it could carry meaningful infor-
mation to further improve the volume flow rate prediction of PNM simulations. However,
the descriptor also assumes only few discrete values, see Figure S5 of the Supplementary
Information. This is likely because the size of the typical pore is close to the resolution of
the image data. Higher resolved image data would be necessary to differentiate between
microstructures that exhibit identical values for the size of the characteristic bottleneck at
the current resolution. Thus, for the image data considered here, this descriptor is not suit-
able for the incorporation in a continuous prediction model, such as the linear regression
models deployed in this study.
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5 Structure-Property Relationships

In this section, we present six empirically derived regression models that will be used to
predict the volume flow vqpp as determined by CFD simulations, from geometric descrip-
tors of pore space morphology introduced in Sect. 4, or from the volume flow prediction
vpam Of PNM simulations. In the following, the target variable of each regression will be
denoted by v fori € {1, ...,6}, which will be used to predict the value of vcgp.

5.1 Regression Models for Structure—Property Relationships

The regression models that we consider are all of power-law type. Such models are easy to
implement, and their predictions do not fundamentally differ from predictions using more
complex relations (Hommel et al. 2018). The accompanying disregard of a critical poros-
ity, often needed to describe media of small porosity (Hommel et al. 2018; Gebart 1992;
Nabovati et al. 2009), is justified, as measured and simulated fluxes never vanished and the
considered interval of porosity values is rather narrow, see Fig. 8a and b.

5.1.1 Regression Models using only Geometric Descriptors

The simplest and most well-known relationship is given by
vi(e) = e, 17)

for some c(,c; € R, where only the porosity € is considered as an explanatory variable.
This relation is widely used, as porosity is by far the most accessible geometric descriptor.
With the next regression model, we add further geometric descriptors to capture the pore
space morphology in more detail. It is given by

v® (5, u(r), o(r), S) = e u(7)20 (1) 8%, (18)

for some ¢, ¢y, ¢5, ¢3, ¢, € R. We can expect that vD(e) # v (e, u(r), 6(z), S), since the
distribution of the lengths of transportation pathways through the material has a significant
impact on the resulting volume flow rate. We also remark that the specific surface area S is
not a dimensionless descriptor such as porosity or geodesic tortuosity. In order to analyze
the improvement provided by the additional geometric descriptors considered in Eq. (18),
it will be useful to additionally investigate the two simplified models

VD (e, u(2), 6(1)) = cet u(r) 20 ()%, (19)
for some ¢y, ¢y, ¢,,c3 € Rand
v2(g,S) = c 9154, (20)

for some ¢y, ¢y, ¢, € R.
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5.1.2 Regression Models Including the Results of PNM Simulations

Power laws in the form presented above are a helpful tool to test which descriptors indicate
local intricacies of the pore space geometry that may have been oversimplified in the PNM
simulations described in Sect. 3.2. On the other hand, we can assess the predictive power
of the PNM itself with the relation

VO (Vprm) = CoVanars 1)

for some ¢, ¢c; € R. This formulation allows for a comparison to vrp beyond strictly lin-
ear relations and automatically accounts for the difference in scale of the CFD and PNM
predictions. By extending the relation given in Eq. (21) with geometric descriptors as addi-
tional factors, the improvement of the prediction depending on the considered descriptors
indicates to which extend the descriptors "correct" the original PNM prediction. A combi-
nation of the models stated in Eqgs. (17) and (21) is given by

v (e, Vo) = CoE Vi (22)

for some ¢, c;,c, € R. Moreover, using the geometric descriptor r,,,,, we can further
extend the relationship given in Eq. (22) and obtain

€ 03

5
VO(E, Fnaxs Vo) = CoE  Trnax Vo (23)

for some ¢, ¢y, ¢, c; € R. Note that the median radius r,,,,, and the specific surface area §
have a physical unit, which introduces information on the typical length scale of the pore
space. Finally, we consider a combination of Egs. (18) and (21), which leads to

VO (&, u(),0(2), S, voam ) = e u(r) 20 (1) SV (24)
for some ¢, ¢y, ¢,, c3, ¢4, c5 € R. The latter relationship contains five explanatory variables
and, therefore, will likely provide the best fit simply by having the largest degree of free-
dom. Its purpose is primarily to serve as a reference when assessing the improvement of
adding a particular descriptor.

5.2 Fitting and Validation of Regression Models

We briefly explain the fitting procedure for the models proposed in Sect. 5.1 and the cri-
teria that we use to assess the goodness of fit. All models that we consider in the present
study are power-type models of the general form

V= coxi‘ ...xz", (25)

for some n € {1,...,5}, where x,,...,x, € R are explanatory variables, c,...,c, € R
are coefficients that need to be determined, and v € R is the prediction of the volume
flow determined by CFD simulations as described in Sect. 3.1. The explanatory variables
X1, ..., X, are either geometric descriptors as presented in Sect. 4 or the volume flow deter-
mined by PNM simulations as described in Sect. 3.2. Applying the natural logarithm to
both sides of Eq. (25) yields
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log(v) = log(cy) + ) ¢;log(x,), (26)

i=1
which is a linear regression problem with explanatory variables log(x,),...,log(x,),
response variable log(v), and coefficients log(c), ¢y, ..., c, € R. We determine the coeffi-

cients of this linear regression problem by means of the function £it1m in MATLAB (The
MathWorks Inc 2022), which uses least square estimation. We then receive a prediction v
of vcpp by applying the exponential function to the prediction log(v) obtained by Eq. (26).
In order to quantify the goodness of fit, we consider both the coefficient of determi-
nation (denoted by R?) and the mean absolute percentage error (denoted by MAPE). If
me N={1,2,...} is the number of data points available for the considered regression,
these quantities are defined as
_ et (log(verp,) = IOg(Vk))Z and MAPE = 100 i log(vepp 4) — log(vy)
Y, (log(vepp,) — ?CFD)Z moia log(verp 4)

R =1 ,
27
where log(vegp 1) --- - 10g(Vepp ) are the (logarithmic) ground truth values resulting from
CFD simulations as described in Sect. 3.1, log(v,), ... ,log(v,,) are the corresponding pre-
dicted (logarithmic) values of the linear regression given in Eq. (26), and Vgp, is the sam-
ple mean of log(vegp 1) -+ » 10g(Vepp )-

Note that the coefficient of determination R? aims to quantify how much of the
variance in the data is explained by the model fit, where, to ensure the proper inter-
pretability of this quantity, it is crucial that the regression problem considered is lin-
ear (Spiess and Neumeyer 2010). Although we basically consider regressions of power
type, the logarithmic transformation applied in Eq. (26) yields a linear regression prob-
lem. Therefore, we always use logarithmic values to evaluate both R> and MAPE. That
is, the ground truth values log(vcgp ) ---»102(Vepp,,) are given by the logarithms of
the simulated volume flows, computed as described in Sect. 3.1, and the predictions
log(v,), ...,log(v,,) are the predicted volume flows obtained from the linear regression
problem described by Eq. (26). In this way, we ensure that the resulting values allow
for an adequate comparison between the regression models stated in Sect. 5.1. However,
due to the limited amount of available data, we always use the same data to fit the coeffi-
cients log(cg), ¢y, ... » ¢, € Rin Eq. (26) as we do to evaluate the statistics R? and MAPE
defined in Eq. (27).

6 Results and Discussion

We now present the results we obtained for the fitted regression models stated in
Sect. 5.1. At first, all regression models are fitted separately to both data sets of uncom-
pressed and compressed paper sheets, yielding two separate sets of coefficients for each
regression model. In this way, we can analyze the predictive power of the involved
descriptors in a sample-specific manner, yielding insights into how the dependency
structure between geometric descriptors and the volume flow rates obtained by CFD and
PNM simulations changes between different samples.

In Sect. 6.1, we consider regression models that involve only purely geometric descrip-
tors of pore space. Afterward, in Sect. 6.2, we show how incorporating the results of PNM
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simulations can be used to improve the predictions of the volume flow rate. Finally, in
Sect. 6.3, we analyze how well the considered regression models generalize across uncom-
pressed and compressed paper sheets, by using only one set of coefficients for each regres-
sion model that has been jointly determined from both data sets. The analysis of these
regression models, and the comparison to the separately fitted regression models discussed
before, will provide insight into how to formulate general relationships that apply to vary-
ing grades of paper sheets with different morphologies. The values determined for each of
the coefficients ¢y, ..., ¢, of the regression models considered are listed in Tables S1 — S3
of the Supplementary Material.

6.1 Regression Models Using Only Geometric Descriptors

In this section, we only consider the purely geometric regression models stated in
Sect. 5.1.1. These will give insights into predicting volume flow rates by CFD simula-
tions based only on geometric information of the pore space morphology. The results of
the fits are visualized in Fig. 9, where the predictions of the corresponding regression
models are plotted against the flow rates of CFD simulations.
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Fig.9 Scatter plots of volume flow rates obtained by CFD simulations versus the values predicted by the
respective regression models. Separate fits of regression models have been determined for the data points of
the uncompressed (orange diamonds) and compressed sample (blue circles). The coefficient of determina-
tion R? and the mean absolute percentage MAPE are displayed for both samples on each plot. As a guide
to the eye, the black line highlights the diagonal on which the results of CFD simulation and regression
coincide
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As mentioned above, for each of the regression models, two sets of coefficients ¢y, ..., c,
have been determined separately for uncompressed and compressed paper sheets. There-
fore, Fig. 9 also shows two values for the coefficient of determination R? and the mean
absolute percentage error MAPE, displayed in orange and blue for the uncompressed and
compressed sample, respectively.

We start by considering the simplest model vV given in Eq. (17), which attempts to
establish a direct connection between porosity € and volume flow rate v obtained by
CFD simulations, see Fig. 9a. While v(V predicts the overall trend quite well, it cannot
distinguish samples with a similar porosity, which results in clusters of vertically arranged
data points in Fig. 9a. This effect results in the low value of R* = 0.62 in the uncom-
pressed case, but is less detrimental in the compressed sample, where we receive a value of
R?>=0.87.

The vertically clustered points in Fig. 9a clearly indicate that there are factors influenc-
ing the volume flow that cannot be explained by porosity alone. This is consistent with
the situation found in similar paper sheets (Leitl et al. 2023). Therefore, our next step is
to consider three further descriptors of pore space morphology that are all incorporated
in the model v® given in Eq. (18). The first two descriptors relate to the distribution of
geodesic tortuosity 7, which enters v in the form of its mean value u(z) and standard
deviation o(r), while the third is the specific surface area S. The fit with respect to v®
substantially improves the fit by v(!) regardless of the sample, see Fig. 9b. In particular, for
the compressed sample a value of R? = 0.98 and for the uncompressed sample, a value of
R? = 0.711is achieved.

Obviously, it is not surprising that we achieve an improved fit in both cases when refin-
ing the model through additional descriptors. However, individual descriptors improve the
fit by varying degrees in a sample-specific way. To make this clear, we consider the regres-
sion models v and v>? given in Egs. (19) and (20), which both use a subset of the
descriptors considered in v, see Fig. 9c and d. For the uncompressed sample (orange dia-
monds in Fig. 9), the accuracy of v>! is almost identical to that of v®, with a coefficient of
determination of R? = 0.70 for v>D, compared to R?> = 0.71 for v®. Thus, for the data set
of this sample, one can argue that information on the specific surface area S is redundant
to predict the volume flow rate vy, obtained by CFD simulations, while information on
the geodesic tortuosity is more relevant. On the other hand, for the compressed sample, the
regression model v?? yields a value of R? = 0.97 in comparison with a value of R* = 0.98
for the more complex model v@_ Thus, in this case, information on the specific surface area
S provides an enormous improvement compared to the regression model v(), while the
information on geodesic tortuosity seems redundant.

Intuitively, one might assume that any new descriptor, which is highly correlated with
already present descriptors, would not provide enough new information and therefore can-
not significantly improve the fit. However, as shown in Fig. 8a, the porosity € and the spe-
cific surface area S are significantly correlated in the compressed case, with only a low cor-
relation coefficient in the uncompressed case. Nevertheless, the compressed case benefits
more from knowledge on the specific surface area S, while the uncompressed case sees
more improvement by incorporating information on the geodesic tortuosity.

This illustrates that a descriptor cannot be deemed as redundant or not, just based on
its correlations with other (already present) descriptors. Note that the presence of correla-
tions among explanatory variables affects the variance and interpretability of the values of
the estimated coefficients c, ..., c, provided in Tables S1 — S3. In particular, we cannot
formulate a quantitative statement that a certain increase of an explanatory variable would
have a certain effect on the predictor variable, as it might not be possible to increase an
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explanatory variable without affecting the others. However, these correlations do in gen-
eral not influence the quality of the obtained fit (Kutner et al. 2004). In turn, the absence
of correlations among explanatory variables does not generally guarantee an improved fit.
In many machine learning approaches, feature selection is performed according to a so-
called maximum-relevance-minimum-redundancy criterion, which aims to weigh the cor-
relation between a given feature and the target observation against the correlation between
the given feature and other, already present, features (Peng et al. 2005; van der Linden
et al. 2016). However, such a systematic approach requires an accurate estimation of the
probability distributions of involved features, which is not feasible in our case due to the
small data base. Instead, we follow the same idea by manually evaluating our metrics for
the goodness of fit and analyzing the correlation between the present descriptors.

6.2 Combining Geometric Information with PNM Simulations

We now consider the regression models v® to v stated in Sect. 5.1.2, which all involve
the volume flow rate vpyy as determined by PNM simulations. The model v uses
only vpay» While v, v®) | and v combine information from geometric descriptors and
PNM simulations. The analysis of these models provides insight about the accuracy

3 4
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Fig. 10 Scatter plots of volume flow rates obtained by CFD simulations versus the values predicted by
regression models v to v© (panels 10a to 10d) aiming at correcting the flow rate predictions obtained by
PNM simulations. Separate fits of the regression model to the uncompressed (orange diamonds) and com-
pressed sample (blue circles). The coefficient of determination R? and the mean absolute percentage MAPE
are displayed for both samples on each plot. As a guide to the eye, the black line highlights the diagonal on
which the results of CFD simulation and regression coincide
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of predicting the results of CFD simulations based on those of PNM simulations, and
whether it is possible to find geometric descriptors of pore space morphology that
mitigate the discrepancies between the two predictions. Similarly to the previous sec-

tion, all the models considered use two sets of coefficients ¢, ..., c,, which have been
estimated separately based on the data of uncompressed and compressed paper sheets,
respectively.

Figure 10a shows how well flow rates obtained from PNM simulations predict the CFD
flow values, using the regression model v®. The overall fit is clearly better for the uncom-
pressed case than for the compressed case, with a higher R>-value and lower MAPE. How-
ever, the lack of accuracy in the compressed case (R? = 0.39) is mainly due to an outlier
associated with a CFD volume flow of vcpn = 0.05m/s, see Fig. 10a.

The regression model v® considers porosity as an additional descriptor that can correct
flow rates determined by PNM simulations. With the additional descriptor, the model can
correct for the above mentioned outlier, increasing the coefficient of determination from
R? =0.39 to R?> = 0.89 in the compressed case, see Fig. 10b. Furthermore, a comparison
between the fits of v and vV also shows that incorporating PNM simulations already sig-
nificantly improves the classical approach of predicting volume flow rates only by means
of porosity.

The regression models V> and v® reveal, in analogy to the transition from v(V to v®,
which geometric descriptors in addition to € significantly correct the PNM-predicted flow
rates and whether a strong correlation of a descriptor with porosity (or the absence thereof)
controls the extent of improvement. Recall that v® considers the porosity € and the median
pore radius r,,,,, obtained from the continuous pore size distribution. Here we observe a
similar phenomenon as in the previous section. The median pore radius r,,, is strongly
correlated with porosity € for both samples, see Fig. 8d. Despite this strong correlation, the
model provided by v® fits the data of the CFD volume flows significantly better than v
for both samples, see Fig. 10c. Finally, v® considers all geometric descriptors that were
already used in v® as explanatory variables, in addition to the PNM-predicted flow rate.
In comparison with v, the additional information of vpyy still leads to an improvement of
an already highly accurate prediction, i.e., from an R*-value of 0.98 to 0.99, see Fig. 10d.
Most notably, the models v and v® yield nearly identical precisions in the uncompressed
case, although v® uses the three descriptors u(z), o(r), and S to replace only the one
descriptor r,,,, in V. Yet again, this is in contradiction to our expectations, given that the
porosity € and the median pore radius r,,,, have a high correlation coefficient of p = 0.89 in
the uncompressed case.

6.3 Generalizing Relationships Across Different Paper Grades

With the regression models at hand, the question arises whether the models would also sat-
isfactorily predict the CFD volume flow rates for a wider range of microstructures. To test
this, we now determine a single set of coefficients for each of the regression models stated
in Sect. 5.1, which is jointly determined from all data points of both the combined uncom-
pressed and compressed samples. As we want to compare the performance of these jointly
fitted models to the separately fitted models of the previous sections, we also require the
metric for the goodness of fit to be comparable. Therefore, we again determine the values
of the coefficient of determination R? and the mean absolute percentage error MAPE for
each regression. More precisely, we evaluate these metrics once only on the data points of
the uncompressed sample and once only on the compressed sample. In this way, we obtain
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Fig. 11 Mean average percent-

age error (MAPE) between
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a value of R? and MAPE for each sample and each of the jointly fitted models that are
directly comparable to the R?- and MAPE-values of the separately fitted models.

Figure 11 collects the MAPE-values for all jointly fitted and separately fitted models,
evaluated for both data sets of the uncompressed and the compressed sample. Bars with a
light shading indicate the MAPE-values of the jointly fitted model, while the narrow bars
with darker shading show the MAPE-values from the previous sections, in which separate
sets of coefficients cy, ..., c, were used for each sample. Corresponding scatter plots for
these regression models are shown in Figure S1 of the Supplementary Information.

The models vV, ..., v©® considered in Fig. 11 are ordered with increasing complexity
(from top to bottom): Regression models v(, v exclusively contain geometric descriptors
of the pore space, while regression models v, ..., v® are associated with comparison and
corrections of the predictions by means of PNM simulations. Obviously, with increasing
complexity of the models, the values of MAPE are decreasing. However, we can see that
in some cases the added complexity leads only to an improved model if it can specialize
to certain types of microstructures. For example, this is the case for v® in the compressed
case, see Fig. 11. In general, the more complex the model, the greater the discrepancy
between the separately fitted models and the jointly fitted model. In particular, we see that
for both samples, the jointly fitted models v, ..., v all show very similar performance,
indicating that the additional complexity of v and v® can only be capitalized on when fit-
ting to specific data sets, but not when generalizing across different grades of paper. How-
ever, the decrease in MAPE between v(!) and v is consistent between both samples, indi-
cating that combining the results of the PNM simulations with geometric descriptors yields
an improvement regardless of the specific paper grade considered.

In general, using porosity € as a correction factor in model v® for the prediction
obtained by PNM simulations helps to better explain the flow rates in the compressed
sample, i.e., the denser sample. The descriptor r,,,, also has a significant impact for the
compressed sample. However, it remains unclear whether this is due to sample-specific
details of the pore network model. To decide this, the structures harboring local flows need
to be resolved in more detail. In such a local analysis, the structure of the pore network
model could also play a role, as PNM simulations on conduits of the same shape tend to
neglect too many details of the actual shape of the interface formed between connected
pores (Zhao et al. 2020).
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7 Summary and Conclusion

In this study, the volume fluxes of air through various cutouts of two different samples
of porous paper sheets were determined by using CFD and PNM simulations. The fluxes
from CFD simulations serve as ground truth in our study, while PNM simulations provide
a simplified and computationally much less demanding alternative. In addition to volume
fluxes, various geometric descriptors of the pore space have been determined for each of
the cutouts based on the tomographic p-CT image data. In particular, we focused on ana-
lyzing the performance of the PNM simulations in comparison with CFD simulations and
investigating whether additional information on the pore space morphology through geo-
metric descriptors can be used to improve the fluxes predicted by PNM simulations. We
also directly analyzed structure—property relationships between geometric descriptors and
volume fluxes of CFD simulations. This was done by fitting six different regression mod-
els of power-law type to the data obtained for the cutouts of both samples. These regres-
sion models were fitted separately to the two data sets of compressed and uncompressed
paper samples to analyze the performance of the models in a sample-dependent way. Sub-
sequently, we also fitted the models to the joint data set of both samples to see how well the
individual models generalize across both samples.

Our analysis showed that, while volume fluxes determined by PNM simulations qualita-
tively resemble the fluxes determined by CFD simulations, involving additional geometric
descriptors significantly improves the accuracy of the predictions. From the sample-spe-
cific analysis, we see that the ideal choice of geometric descriptors depends on the chosen
sample, which is in line with previous results showing altered correlation structures of geo-
metric descriptors in paper sheets after compression (Neumann et al. 2024). However, even
simply including porosity in the regression model already yields an improvement for both
samples. In particular, the regression model using only porosity and PNM fluxes in some
cases outperforms more complex relationships that directly model the CFD fluxes by mul-
tiple geometric descriptors of pore space, which underlines the potential of PNM as a more
cost-efficient simulation tool.
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