KIT | KIT-Bibliothek | Impressum | Datenschutz

Training Neural Networks by Optimizing Neuron Positions

Erb, Laura 1; Boccato, Tommaso ; Vasilache, Alexandru ORCID iD icon 2; Becker, Jürgen E.; Toschi, Nicola
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)
2 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The high computational complexity and increasing parameter counts of deep neural networks pose significant challenges for deployment in resource-constrained environments, such as edge devices or real-time systems. To address this, we propose a parameter-efficient neural architecture where neurons are embedded in Euclidean space. During training, their positions are optimized and synaptic weights are determined as the inverse of the spatial distance between connected neurons. These distance-dependent wiring rules replace traditional learnable weight matrices and significantly reduce the number of parameters while introducing a biologically inspired inductive bias: connection strength decreases with spatial distance, reflecting the brain’s embedding in three-dimensional space where connections tend to minimize wiring length. We validate this approach for both multi-layer perceptrons and spiking neural networks. Through a series of experiments, we demonstrate that these spatially embedded neural networks achieve a performance competitive with conventional architectures on the MNIST dataset. Additionally, the models maintain performance even at pruning rates exceeding 80% sparsity, outperforming traditional networks with the same number of parameters under similar conditions. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-07448-5_23
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-07448-5
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000189878
Erschienen in Biomimetic and Biohybrid Systems – 14th International Conference, Living Machines 2025, Sheffield, UK, July 15–18, 2025, Proceedings. Ed.: A. Jiménez Rodríguez
Veranstaltung 14th International Conference on Biomimetic and Biohybrid Systems (Living Machines Conference 2025), Sheffield, Vereinigtes Königreich, 15.07.2025 – 18.07.2025
Verlag Springer Nature Switzerland
Seiten 269 - 280
Serie Lecture Notes in Computer Science ; 15582
Vorab online veröffentlicht am 25.11.2025
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page