KIT | KIT-Bibliothek | Impressum | Datenschutz

Residual Based Error Estimator for Chemical-Mechanically Coupled Battery Active Particles

Schoof, Raphael ORCID iD icon 1; Flür, Lennart 1; Tuschner, Florian 1; Dörfler, Willy ORCID iD icon 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Adaptive finite element methods are a powerful tool to obtain numerical simulation results in a reasonable time. Due to complex chemical and mechanical couplings in lithium-ion batteries, numerical simulations are very helpful to investigate promising new battery active materials such as amorphous silicon featuring a higher energy density than graphite. Based on a thermodynamically consistent continuum model with large deformation and chemo-mechanically coupled approach, we compare three different spatial adaptive refinement strategies: Kelly-, gradient recovery- and residual based error estimation. For the residual based case, the strong formulation of the residual is explicitly derived. With amorphous silicon as example material, we investigate two 3D representative host particle geometries, reduced with symmetry assumptions to a 1D unit interval and a 2D elliptical domain. Our numerical studies show that the Kelly estimator overestimates the error, whereas the gradient recovery estimator leads to lower refinement levels and a good capture of the change of the lithium flux. The residual based error estimator reveals a strong dependency on the cell error part which can be improved by a more suitable choice of constants to be more efficient. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-01279-1_10
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-01279-1
ISSN: 2194-1009
KITopen-ID: 1000189879
Erschienen in Applications of Mathematics in Sciences, Engineering, and Economics – MathSEE Symposium, Karlsruhe, September 27–29, 2023. Ed.: A. Ott
Veranstaltung 2. MathSEE Symposium (2023), Karlsruhe, Deutschland, 27.09.2023 – 29.09.2023
Verlag Springer Nature Switzerland
Seiten 197 - 219
Serie Springer Proceedings in Mathematics & Statistics ; 515
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page