KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparison of Model Output Statistics and Neural Networks to Postprocess Wind Gusts

Primo, Cristina ; Schulz, Benedikt ORCID iD icon 1; Lerch, Sebastian ORCID iD icon 2; Hess, Reinhold
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)
2 Institut für Volkswirtschaftslehre (ECON), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Wind gust prediction plays an important role in warning strategies of national meteorological services due to the high impact of its extreme values. However, forecasting wind gusts is challenging because they are influenced by small-scale processes and local characteristics. To account for the different sources of uncertainty, meteorological centers run ensembles of forecasts and derive probabilities of wind gusts exceeding a threshold. These probabilities often exhibit systematic errors and require postprocessing. Model output statistics (MOS) is a common operational postprocessing technique, although more modern methods such as neural network-based approaches have shown promising results in research studies. The transition from research to operations requires an exhaustive comparison of both techniques. Taking a first step into this direction, our study presents a comparison of a postprocessing technique based on linear and logistic regression approaches with different neural network methods proposed in the literature to improve wind gust predictions, specifically distributional regression networks and Bernstein quantile networks. We further contribute to investigating optimal design choices for neural network-based postprocessing methods regarding changes of the numerical model in the training period, the use of persistence predictors, and the temporal composition of training datasets. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-01279-1_8
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-01279-1
ISSN: 2194-1009
KITopen-ID: 1000189880
Erschienen in Applications of Mathematics in Sciences, Engineering, and Economics – MathSEE Symposium, Karlsruhe, September 27–29, 2023. Ed.: A. Ott
Veranstaltung 2. MathSEE Symposium (2023), Karlsruhe, Deutschland, 27.09.2023 – 29.09.2023
Verlag Springer Nature Switzerland
Seiten 153 - 180
Serie Springer Proceedings in Mathematics & Statistics ; 515
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page