
IFAC PapersOnLine 59-26 (2025) 329–334

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2025.12.056

10.1016/j.ifacol.2025.12.056 2405-8963

Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Parameter Tuning Under Uncertain Road
Perception in Driver Assistance Systems

Leon Greiser ∗ Christian Rathgeber ∗ Vladislav Nenchev ∗∗
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Abstract: Advanced driver assistance systems have improved comfort, safety, and efficiency of
modern vehicles. However, sensor limitations lead to noisy lane estimates that pose a significant
challenge in developing performant control architectures. Lateral trajectory planning often
employs an optimal control formulation to maintain lane position and minimize steering effort.
The parameters are often tuned manually, which is a time-intensive procedure. This paper
presents an automatic parameter tuning method for lateral planning in lane-keeping scenarios
based on recorded data, while taking into account noisy road estimates. By simulating the lateral
vehicle behavior along a reference curve, our approach efficiently optimizes planner parameters
for automated driving and demonstrates improved performance on previously unseen test data.
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1. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) promise
to improve driving comfort, safety, and energy effi-
ciency (Prado et al., 2024). With the increasing number
of ADAS features, a unified underlying architecture is
often used to reduce complexity and development costs.
This architecture typically includes an environment model,
which estimates information relevant for the motion of
the vehicle, such as the lane center. Based on this, a
Trajectory Planner (TP) computes a motion trajectory for
the vehicle. The planning problem is typically formulated
in Model Predictive Control (MPC) fashion, where the
deviation of the states from a reference, as well as the
control input, is minimized over a defined time horizon.
It is then solved online in a receding horizon manner to
adapt to changes in the environment.

Tuning the parameters of an MPC-based TP is often
done manually by an expert to achieve the desired driving
behavior. The parameters, i.e. the cost function weights,
depend not only on the specific vehicle but also on the
scenario. With ADAS covering progressively more scenar-
ios, this approach becomes too costly or even infeasible.
In addition, MPC has been reported to present challenges
in tuning, mainly because one unified parameter set might
not get the desired performance across different scenario
clusters (Zarrouki et al., 2024).

To save computational costs and simplify the design, the
planning and following of the trajectory is often divided
into a longitudinal and a lateral part (Rajamani, 2012).
This work focuses only on the lateral movement. For lateral

planning, the tracked reference is usually the lane center.
It is detected using a camera, sometimes in combination
with map data. As map data is not always available,
accurate lane detection remains a challenging task. Poor
light and visibility conditions or degraded markings lead
to inaccurate estimates of the lane center (Ding et al.,
2020). These inaccuracies, however, result in a suboptimal
trajectory with respect to the true lane center. To improve
driving behavior, the noisy estimates have to be taken into
account when tuning the parameters of the TP.

This paper studies the tuning of the parameters of the
existing TP, while retaining its structure. We propose
a method to find a set of parameters for lane-keeping
scenarios that, given an inaccurately estimated reference,
leads as closely as possible to the desired driving behavior.
To this end, we make the following contributions.

(1) We derive a TP-agnostic formulation of the parameter
optimization problem.

(2) We optimize by re-simulating without noise distri-
bution assumptions and utilize reference trajectories
from recorded data instead.

(3) We demonstrate the generalization of the optimized
parameters by showing an improved cost on test data.

The remainder of the paper is organized as follows: In
Section 1.1 we discuss related work on tracking noisy
references. In Section 2 we present the TP formulation
used, as well as the general problem statement. In Sec-
tion 3 we derive our parameter optimization approach. The
effectiveness of this approach is shown in Section 4 using
real-world data. In Section 5 we present our conclusions.
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1.1 Related Work

The availability of large datasets has driven the interest
in data-driven approaches across many domains, includ-
ing ADAS. A variety of TP approaches have emerged
that often rely on neural networks or other black-box
architectures (Ganesan et al., 2024; Reda et al., 2024).
These approaches result in satisfactory performance in
scenarios similar to those included in the training sets but
lack explainability (Tampuu et al., 2022) and generaliza-
tion (Qureshi et al., 2021) to unseen scenarios.

A common approach to deal with noise are robust control
approaches such as tube-based (Lee and Jeong, 2024)
or min-max (Raimondo et al., 2009) MPC. Although
these approaches have strong stability guarantees under
bounded noise, they can be conservative and lead to in-
sufficient performance (Liu et al., 2023). Unlike robust
MPC, we implicitly leverage the noise properties in the
parameter optimization process through the training data.
If the probability distribution of the noise is known,
stochastic MPC can often be a better performing alterna-
tive (Heirung et al., 2018). Probabilistic information on the
road course can be integrated into the TP using a target
funnel to enhance steering behavior (Bogenberger et al.,
2025). In this work, we assume no explicit knowledge of
the noise distribution, a requirement for stochastic MPC.

Another technique for dealing with reference signal noise
is filtering with simple low-pass filters or more application-
specific filters, such as a curvature corrected moving aver-
age (Steinecker and Wuensche, 2023). Spline fitting and
interpolation are especially common in lane detection
systems (Nuthong and Charoenpong, 2010) as these ap-
proaches are well suited to remove high-frequency noise
components. In our experiments, we use reference data
that has already been smoothed using spline fitting.

Due to computational restrictions and transparency, tun-
ing is often preferred over advanced algorithms in prac-
tice (Maciejowski, 2009). Therefore, we focus on offline
tuning of the cost parameters, leaving the controller struc-
ture itself unaltered. Wu et al. (2024) performed parame-
ter optimization of the lateral TP using different local opti-
mization techniques and showed improved performance on
the training data. In contrast, we use a global optimization
approach and show the generalization of the result by
validation with test data. Further, we provide a formula-
tion as a single bilevel optimization problem, making the
optimization applicable to different TPs.

2. PROBLEM STATEMENT

We introduce the state representation used for the TP,
followed by the TP formulation. Based on this, we present
our problem statement.

2.1 Vehicle Kinematics

The state of the vehicle is usually expressed in Carte-
sian coordinates as the position (x(t), y(t)), the velocity
v(t), the orientation θ(t), and the driven curvature κ(t).
Because embedded hardware in vehicles provides limited
computing power, the kinematics are commonly linearized
along a reference curve (Gutjahr et al., 2016) as shown in
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Fig. 1. States with reference r(s) (Gutjahr et al., 2016).

Figure 1. This allows the TP to be divided into longitudi-
nal and lateral parts. Typically, the reference curve used
is the lane center, expressed in Euclidean space as r(s).

The arc length of the reference curve to the point of the
vehicle is s(t). The vector from that point to the vehicle
is orthogonal to the reference curve. The length of this
vector is equal to the absolute value of the lateral offset
d(t). The orientation and curvature of the curve at that
point are θref(t) and κref(t). Using these coordinates, the
kinematics of the lateral movements can be linearized and
discretized (Gutjahr et al., 2016) with sample time Ts. The
input is the second derivative of the curvature uk = κ̈k to
obtain a sufficiently smooth trajectory. The orientation of
the reference curve is treated as the disturbance zk = θref,k
to the system. With the state vector xk = [dk, θk, κk, κ̇k]
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2.2 Lateral Planning

The goal of the TP is to find a feasible and comfortable
trajectory. Therefore, the kinematics (1) are used to opti-
mize the inputs over a limited time horizon in an MPC
fashion with the goal of minimizing the control input
as well as the deviation of the states from a reference.
Boundary conditions for control input, safety, or comfort
can be formulated as additional constraints. The resulting
optimization problem is a Quadratic Programming (QP)
problem that can be solved efficiently online. In this work,
we discard most of the boundary conditions for simplicity.
In this case, the trajectory planning problem at time step
k can be formulated using the cost function

Ĵŵ =
N

τ=0 ||x̂k+τ − x̂
(k)
des,k+τ ||2Q̂τ

+
N−1

τ=0 ||ûk+τ ||2R̂τ
(2)

as the optimization problem
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1.1 Related Work

The availability of large datasets has driven the interest
in data-driven approaches across many domains, includ-
ing ADAS. A variety of TP approaches have emerged
that often rely on neural networks or other black-box
architectures (Ganesan et al., 2024; Reda et al., 2024).
These approaches result in satisfactory performance in
scenarios similar to those included in the training sets but
lack explainability (Tampuu et al., 2022) and generaliza-
tion (Qureshi et al., 2021) to unseen scenarios.

A common approach to deal with noise are robust control
approaches such as tube-based (Lee and Jeong, 2024)
or min-max (Raimondo et al., 2009) MPC. Although
these approaches have strong stability guarantees under
bounded noise, they can be conservative and lead to in-
sufficient performance (Liu et al., 2023). Unlike robust
MPC, we implicitly leverage the noise properties in the
parameter optimization process through the training data.
If the probability distribution of the noise is known,
stochastic MPC can often be a better performing alterna-
tive (Heirung et al., 2018). Probabilistic information on the
road course can be integrated into the TP using a target
funnel to enhance steering behavior (Bogenberger et al.,
2025). In this work, we assume no explicit knowledge of
the noise distribution, a requirement for stochastic MPC.

Another technique for dealing with reference signal noise
is filtering with simple low-pass filters or more application-
specific filters, such as a curvature corrected moving aver-
age (Steinecker and Wuensche, 2023). Spline fitting and
interpolation are especially common in lane detection
systems (Nuthong and Charoenpong, 2010) as these ap-
proaches are well suited to remove high-frequency noise
components. In our experiments, we use reference data
that has already been smoothed using spline fitting.

Due to computational restrictions and transparency, tun-
ing is often preferred over advanced algorithms in prac-
tice (Maciejowski, 2009). Therefore, we focus on offline
tuning of the cost parameters, leaving the controller struc-
ture itself unaltered. Wu et al. (2024) performed parame-
ter optimization of the lateral TP using different local opti-
mization techniques and showed improved performance on
the training data. In contrast, we use a global optimization
approach and show the generalization of the result by
validation with test data. Further, we provide a formula-
tion as a single bilevel optimization problem, making the
optimization applicable to different TPs.

2. PROBLEM STATEMENT

We introduce the state representation used for the TP,
followed by the TP formulation. Based on this, we present
our problem statement.

2.1 Vehicle Kinematics

The state of the vehicle is usually expressed in Carte-
sian coordinates as the position (x(t), y(t)), the velocity
v(t), the orientation θ(t), and the driven curvature κ(t).
Because embedded hardware in vehicles provides limited
computing power, the kinematics are commonly linearized
along a reference curve (Gutjahr et al., 2016) as shown in
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θ(t)

κ(t)

s(t)
r(s)

d(t)
θref(t)

κref(t)x

y

Fig. 1. States with reference r(s) (Gutjahr et al., 2016).

Figure 1. This allows the TP to be divided into longitudi-
nal and lateral parts. Typically, the reference curve used
is the lane center, expressed in Euclidean space as r(s).

The arc length of the reference curve to the point of the
vehicle is s(t). The vector from that point to the vehicle
is orthogonal to the reference curve. The length of this
vector is equal to the absolute value of the lateral offset
d(t). The orientation and curvature of the curve at that
point are θref(t) and κref(t). Using these coordinates, the
kinematics of the lateral movements can be linearized and
discretized (Gutjahr et al., 2016) with sample time Ts. The
input is the second derivative of the curvature uk = κ̈k to
obtain a sufficiently smooth trajectory. The orientation of
the reference curve is treated as the disturbance zk = θref,k
to the system. With the state vector xk = [dk, θk, κk, κ̇k]

⊤

at time step k, the kinematics are
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2.2 Lateral Planning

The goal of the TP is to find a feasible and comfortable
trajectory. Therefore, the kinematics (1) are used to opti-
mize the inputs over a limited time horizon in an MPC
fashion with the goal of minimizing the control input
as well as the deviation of the states from a reference.
Boundary conditions for control input, safety, or comfort
can be formulated as additional constraints. The resulting
optimization problem is a Quadratic Programming (QP)
problem that can be solved efficiently online. In this work,
we discard most of the boundary conditions for simplicity.
In this case, the trajectory planning problem at time step
k can be formulated using the cost function

Ĵŵ =
N

τ=0 ||x̂k+τ − x̂
(k)
des,k+τ ||2Q̂τ

+
N−1

τ=0 ||ûk+τ ||2R̂τ
(2)

as the optimization problem

û∗(k)|k+N−1
k =

argmin
û|k+N−1

k

Ĵŵ(x̂|k+N
k , x̂

(k)
des|

k+N
k , û|k+N−1

k )

s.t. x̂k+τ+1 = Â
(k)
k+τ x̂k+τ + B̂

(k)
k+τ ûk+τ + D̂

(k)
k+τ ẑ

(k)
k+τ

x̂k = x
(k)
k

umin ≤ ûk+τ ≤ umax

(3)

over the planning horizon of N time steps. This formu-
lation assumes that the longitudinal planning problem
is already solved at time step k and that the planned
velocity, as well as the planned position along the refer-
ence curve, is known for each time step in the planning

horizon. The system matrix Â
(k)
k+τ , input matrix B̂

(k)
k+τ ,

and disturbance matrix D̂
(k)
k+τ depend on the planned

velocity. The time step of planning is expressed in the

superscript. The expected disturbance ẑ
(k)
k+τ depends on

the estimated reference curve and the planned positions
along that curve. Here, the superscript also expresses the
time step of estimation of the reference curve. The desired

state x̂
(k)
des,k+τ is derived from the reference curve as

x̂
(k)
des,k+τ =

[
0 θ

(k)
ref,k+τ κ

(k)
ref,k+τ κ̇

(k)
ref,k+τ

]⊤
. (4)

The state cost matrix Q̂τ ∈ R4×4
≥0 and the control cost

weight R̂τ ∈ R>0 are defined as

Q̂τ = diag([ŵd,τ ŵθ,τ ŵκ0,τ ŵκ1,τ ]
⊤
)

R̂τ = ŵκ2,τ .
(5)

For simplicity, we limit Q̂τ to a diagonal matrix, although
off-diagonal entries could be used. Both can vary over the
planning horizon and are parametrized by

ŵτ = [ŵd,τ ŵθ,τ ŵκ0,τ ŵκ1,τ ŵκ2,τ ]
⊤
, ŵτ ∈ R5

>0

ŵ =
[
ŵ⊤

0 ŵ⊤
1 . . . ŵ⊤

N

]⊤
with ŵτ = βτ ŵ0,

(6)

which we refer to as the Cost Function Parameters (CFP)
in the following. In this paper, we constrain the weights ŵτ

over the TP horizon using the decay β ∈ [0, 1] to reduce

the number of parameters. The state x
(i)
k at time step k

is relative to the reference curve estimated at time step i.

Therefore, the initial planning state x̂k = x
(k)
k is the state

at time step k and relative to the reference curve estimated
at time step k.

2.3 Problem formulation

We consider a discrete-time system

xk+1 = Akxk +Bkuk +Dkzk (7)

with the state vector xk ∈ Rn and the input uk ∈ R.
We aim to find a value for ŵ of cost function Ĵŵ such
that a defined cost Jw(x|k+M

k ,xdes|k+M
k , u|k+M−1

k ) over

a horizon M is minimal. The state trajectory x|k+M
k

is generated from the inputs u|k+M−1
k using (7). The

inputs are generated by minimizing the cost function

Ĵŵ(x̂|k+N
k , x̂

(k)
des|

k+N
k , û|k+N−1

k ) with (7) over N < M in a

receding horizon manner. The noise η
(i)
k , sampled at step i,

of the desired state x̂
(i)
des,k = xdes,k + η

(i)
k is of unknown

distribution. The goal is for ŵ to compensate for noise that
is state-specific and varies over the prediction horizon.

In the context of the lateral TP, we aim to find a value
for ŵ of the TP cost function Ĵŵ that minimizes the
distance between the driven trajectory x|k+M

k and the

true lane center xdes|k+M
k according to Jw. To this end,

we use recorded data of the inaccurately estimated lane

center x̂
(i)
des,k and the true lane center.

3. OPTIMIZATION-BASED PARAMETER TUNING

In this section, we derive a compact formulation for
the discussed parameter optimization problem using a
simulation of the kinematics with respect to a reference
curve. To this end, we present a method to solve the
planning problem with a reference curve that is different
from that used for the simulation.

Since we focus on the lateral motion, we also use (1)
for simulation. We assume that the tracking error of the
planned trajectory is low in comparison to the inaccuracies
of the estimated reference curve, as the vehicle dynamics
are mostly compensated by a lower-level controller. This
way, we can focus on the TP and close the loop using
the linearized kinematics (1). This model depends on the
velocity. Since only lateral motion is simulated, we assume
that all longitudinal states are known a priori. For these,
as well as for the reference curves, we used recorded data
in our experiments in Section 4.

3.1 Switching the Reference Curve of a State

When simulating along a reference curve, states with
different reference frames are used. Besides the estimated
reference curves for each time step k, i.e. the lane center,
that are used to solve the MPC problem, another reference
curve is used for simulation. This requires translating the
simulation state into a new reference frame for the initial
state of the MPC. The only part of the state vector xk

that depends on the reference curve is the lateral offset

dk. To transform the simulation state x
(sim)
k to the initial

state of the MPC x
(k)
k , only the lateral offset has to

be transformed. We define a state offset to switch the
reference curve as

x
(k)
k = x

(sim)
k +∆x

(sim→k)
k

∆x
(sim→k)
k =

[
∆d

(sim→k)
k 0 0 0

]⊤
.

(8)

Under the assumption that both curves are sufficiently
smooth and parallel, we estimate the change in lateral
offset using the small-angle approximation as

∆d
(sim→k)
k ≈ d

(k)
pt (r

(sim)(s
(sim)
k )). (9)
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Here, s
(sim)
k is the arc length to the vehicle along the

simulation reference curve r(sim)(·) at time step k. For

a point p, d
(k)
pt (p) is the lateral offset of that point from

the reference curve estimated at time step k. Hence,

d
(k)
pt (r

(sim)(s
(sim)
k )) is the lateral offset of the current point

on the simulation reference curve relative to the reference
curve estimated at time step k. With the reference curve
used for simulation known a priori and the longitudinal
data, as well as the estimated reference curves obtained

from real-world recordings, ∆d
(sim→k)
k can be calculated

in advance of the optimization.

3.2 Optimization Problem Formulation

Equation (8) can be used to simulate the lateral vehicle
movement along the true reference curve and solve the
planning problem at each time step along the reference
curve estimated at that time. This allows us to formulate
the parameter optimization problem as

min
ŵ0,β

Jw(x|k+M
k ,xdes|k+M

k , u|k+M−1
k )

s.t. xk+1 = Akxk +Bkû
∗(k)
k +Dkzk

(3), (8) with x
(sim)
k = xk

(10)

using the simulation cost function

Jw =
∑M

k=0 ||xk − xdes,k||2Q +
∑M−1

k=0 ||û∗(k)
k ||2R. (11)

The resulting problem is a bilevel optimization problem
and is visualized in Figure 2. The upper-level optimization
task is to minimize the distance between the simulated
states xk and the desired states xdes,k. The desired states
are chosen analogously to (4) from the simulation reference
curve. Since this work focuses on the lane-keeping scenario,
we choose the true lane center as the simulation reference
curve. For the lower level, there are multiple optimization
tasks. Equation (3) has to be solved for every time step k
in the simulation horizon M . The optimization variables
are the MPC CFP ŵ0, β used in (6).

For the upper-level optimization problem, we use the
diagonal state cost matrix Q ∈ R4×4

≥0 and the control cost
weight R ∈ R>0

Q = diag([wd wθ wκ0 wκ1]
⊤
)

R = wκ2.
(12)

These define the desired behavior with regard to the true
reference curve and can be chosen arbitrarily in reasonable
bounds. Given that they are defined for a finite receding
horizon, we assume this horizon to be sufficiently large,
such that the behavior approximately matches a trajectory
optimized over the M steps, as done here. Q and R are
parametrized by the vector

w = [wd wθ wκ0 wκ1 wκ2]
⊤
, w ∈ R5

>0, (13)

which will be referred to as the Desired Cost Function
Parameters (DCFP) in the following.

TP with Ĵŵ

Model

Estimated References

Cost

True Reference

w

Jwŵ0, β

Simulated
Trajectory

Fig. 2. Block diagram of our bilevel optimization problem
formulation. The parameters (green) of the TP are
tuned such that the simulated trajectory minimizes
Jw. Reference trajectories (red) and DCFP (blue) are
inputs to the optimization.

The lower-level tasks of (10) are convex QPs and can be
solved in polynomial time. The upper-level optimization
task is non-convex as it contains non-convex constraints.

4. EXPERIMENTAL EVALUATION

We demonstrate the effectiveness of tuning the CFP in
simulation, using the optimization problem formulation
presented. We optimize multiple sets of CFP on training
data, starting with arbitrarily chosen DCFP w. We com-
pare the simulation cost using a TP with the optimized
CFP and a TP with the unaltered DCFP on a test dataset.
In Section 4.1 we first provide details on the implementa-
tion and data used. In Section 4.2 we present our results,
which we discuss in Section 4.3.

4.1 Implementation

As described in the previous sections, we used data col-
lected on a real-world vehicle. For the reference curve of
the TP, we used the lane center of the online estimated
road model, which includes a spline fitting. In practice,
it is difficult to measure the true lane center. In order
to get a good estimate, the vehicle was driven in the
center of the lane and the driven trajectory was extracted
from the recorded odometry. This data does not include
the curvature derivative κ̇(t). It was estimated using a
Kalman filter followed by a Rauch-Tung-Striebel filter.
For the longitudinal data, e.g. the planned and simulated
velocity, the recorded trajectory was used as well. All data
was interpolated and resampled to Ts = 0.1 s. A planning
horizon of N = 30 steps was used.

The dataset we used has a total length of 927 s. It was
recorded on various types of roads with varying curvatures
and conditions. The velocity ranges from 40 kmh−1 to
100 kmh−1. For training we used 795 s and for testing 132 s
of data. The data consists of multiple continuous sections
that vary in length from 6 s to 60 s. Training and test data
were split such that their state distributions match.

There are multiple methods to solve a bilevel optimiza-
tion problem. We used a nested evolutionary algorithm,
which is a popular approach. We solved the lower-level
problems using the OSQP solver (Stellato et al., 2020). For
the upper-level problem, we used differential evolution, a
gradient-free heuristic (Storn and Price, 1997).

Because any set of cost function weights can be arbitrarily
scaled without affecting the control law, we set ŵκ2,0 = 1.
This leaves ŵd,0, ŵθ,0, ŵκ0,0, ŵκ1,0, and β as optimiza-
tion variables. We initialized β = 1 and the remain-
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Here, s
(sim)
k is the arc length to the vehicle along the

simulation reference curve r(sim)(·) at time step k. For

a point p, d
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pt (p) is the lateral offset of that point from

the reference curve estimated at time step k. Hence,

d
(k)
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(sim)(s
(sim)
k )) is the lateral offset of the current point

on the simulation reference curve relative to the reference
curve estimated at time step k. With the reference curve
used for simulation known a priori and the longitudinal
data, as well as the estimated reference curves obtained

from real-world recordings, ∆d
(sim→k)
k can be calculated

in advance of the optimization.

3.2 Optimization Problem Formulation

Equation (8) can be used to simulate the lateral vehicle
movement along the true reference curve and solve the
planning problem at each time step along the reference
curve estimated at that time. This allows us to formulate
the parameter optimization problem as

min
ŵ0,β

Jw(x|k+M
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(3), (8) with x
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using the simulation cost function

Jw =
∑M

k=0 ||xk − xdes,k||2Q +
∑M−1

k=0 ||û∗(k)
k ||2R. (11)

The resulting problem is a bilevel optimization problem
and is visualized in Figure 2. The upper-level optimization
task is to minimize the distance between the simulated
states xk and the desired states xdes,k. The desired states
are chosen analogously to (4) from the simulation reference
curve. Since this work focuses on the lane-keeping scenario,
we choose the true lane center as the simulation reference
curve. For the lower level, there are multiple optimization
tasks. Equation (3) has to be solved for every time step k
in the simulation horizon M . The optimization variables
are the MPC CFP ŵ0, β used in (6).

For the upper-level optimization problem, we use the
diagonal state cost matrix Q ∈ R4×4

≥0 and the control cost
weight R ∈ R>0

Q = diag([wd wθ wκ0 wκ1]
⊤
)

R = wκ2.
(12)

These define the desired behavior with regard to the true
reference curve and can be chosen arbitrarily in reasonable
bounds. Given that they are defined for a finite receding
horizon, we assume this horizon to be sufficiently large,
such that the behavior approximately matches a trajectory
optimized over the M steps, as done here. Q and R are
parametrized by the vector

w = [wd wθ wκ0 wκ1 wκ2]
⊤
, w ∈ R5

>0, (13)

which will be referred to as the Desired Cost Function
Parameters (DCFP) in the following.
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Jwŵ0, β

Simulated
Trajectory

Fig. 2. Block diagram of our bilevel optimization problem
formulation. The parameters (green) of the TP are
tuned such that the simulated trajectory minimizes
Jw. Reference trajectories (red) and DCFP (blue) are
inputs to the optimization.

The lower-level tasks of (10) are convex QPs and can be
solved in polynomial time. The upper-level optimization
task is non-convex as it contains non-convex constraints.

4. EXPERIMENTAL EVALUATION

We demonstrate the effectiveness of tuning the CFP in
simulation, using the optimization problem formulation
presented. We optimize multiple sets of CFP on training
data, starting with arbitrarily chosen DCFP w. We com-
pare the simulation cost using a TP with the optimized
CFP and a TP with the unaltered DCFP on a test dataset.
In Section 4.1 we first provide details on the implementa-
tion and data used. In Section 4.2 we present our results,
which we discuss in Section 4.3.

4.1 Implementation

As described in the previous sections, we used data col-
lected on a real-world vehicle. For the reference curve of
the TP, we used the lane center of the online estimated
road model, which includes a spline fitting. In practice,
it is difficult to measure the true lane center. In order
to get a good estimate, the vehicle was driven in the
center of the lane and the driven trajectory was extracted
from the recorded odometry. This data does not include
the curvature derivative κ̇(t). It was estimated using a
Kalman filter followed by a Rauch-Tung-Striebel filter.
For the longitudinal data, e.g. the planned and simulated
velocity, the recorded trajectory was used as well. All data
was interpolated and resampled to Ts = 0.1 s. A planning
horizon of N = 30 steps was used.

The dataset we used has a total length of 927 s. It was
recorded on various types of roads with varying curvatures
and conditions. The velocity ranges from 40 kmh−1 to
100 kmh−1. For training we used 795 s and for testing 132 s
of data. The data consists of multiple continuous sections
that vary in length from 6 s to 60 s. Training and test data
were split such that their state distributions match.

There are multiple methods to solve a bilevel optimiza-
tion problem. We used a nested evolutionary algorithm,
which is a popular approach. We solved the lower-level
problems using the OSQP solver (Stellato et al., 2020). For
the upper-level problem, we used differential evolution, a
gradient-free heuristic (Storn and Price, 1997).

Because any set of cost function weights can be arbitrarily
scaled without affecting the control law, we set ŵκ2,0 = 1.
This leaves ŵd,0, ŵθ,0, ŵκ0,0, ŵκ1,0, and β as optimiza-
tion variables. We initialized β = 1 and the remain-

ing optimization variables with the DCFP. We limited
ŵ0 ∈ [10−8, 108] for numerical stability and β ∈ [0.5, 1].
To evaluate a set of CFP, we calculated the cost for each
continuous section of the dataset and added them together.

4.2 Results

Table 1 shows the ten sets of DCFP A-J that we used.
The DCFP were randomly generated. We used various
reasonably chosen CFP sets to obtain an estimate of the
variance of the error between the simulated and the desired
states. We used the inverse of these variances as a set of
neutral CFP. We then multiplied these neutral CFP with
pseudo-random factors of [0.25, 4].

Table 2 shows the optimized CFP. To improve compara-
bility, we scaled each set to a magnitude similar to DCFP.
It can be seen that for ŵd,0, ŵκ1,0, and ŵκ2,0, the weights
have similar orders of magnitude. In contrast, outliers with
significantly lower values can be observed for ŵθ,0 and
ŵκ0,0. Most of ŵκ1,0 are higher than wκ1. This is because
the derivative of the curvature has significantly more noise
when estimated using a Kalman filter as opposed to the
estimate from the fitted spline. For β, all values are higher
than 0.97. With this decay, the weights are reduced by
60% at the end of the TP horizon. Lower values would
significantly shorten the effective length of the horizon.

Table 3 shows the simulation cost on the test dataset using
the DCFP and the optimized CFP for the TP. The right
column further shows the relative change with a negative
value showing an improvement. Except for E, F, and G,
all optimized CFP show an improvement, with C showing
the most significant. The average relative change across all
ten sets is −4.13%.

Figure 3 shows the simulated trajectories for a part of the
test data. A TP using the optimized CFP and the DCFP
of set C are compared. The lateral offset d(t) using the
optimized CFP is closer to the desired value most of the
time. For the orientation θ(t), no large deviations can be
observed. In the case of the curvature κ(t) and curvature
deviation κ̇(t), the trajectory based on the optimized CFP
is smoother. Further, in both cases, the desired states
are being followed more accurately. Lastly, in case of the
control input κ̈(t), a smaller amplitude can be observed,
leading to the overall smoother trajectory.

The average absolute deviation of the states from their
desired values over the test dataset are 0.119, 0.005 86,
0.591 × 10−3, and 1.33 × 10−3. The maximum absolute
deviations are 0.646, 0.0472, 6.59× 10−3, and 11.9× 10−3.
The input values are constrained by the MPC. Although
we do not perform a formal stability analysis, these values
indicate that with the optimized MPC parameters, the
states remain close to their reference over the test dataset.

4.3 Discussion

The results in Section 4.2 show that for most of the chosen
DCFP, the optimized CFP show improved performance
over the DCFP when used in a TP with an inaccurate
reference. While a cost reduction can be expected on the
training dataset, we also showed a cost reduction on the
test dataset. This indicates a generally better performance
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Fig. 3. Simulation on part of the test data using the
TP with optimized CFP (green) C and with DCFP
(red). The desired trajectory (blue), i.e. lane center,
is included for reference.

of the optimized CFP in scenarios covered by the test
data. Further, we have shown that the optimization of
the CFP works for a variety of desired cost functions
if they are chosen in reasonable bounds. However, for
a deeper understanding of the relationship between the
desired cost function and performance gain, more DCFP
sets would have to be evaluated. If the assumptions posed
in this work hold, these improvements can be expected to
transfer to the real-world. We matched Ts and N to the
real system in this work, although variations may affect
performance. While we provide a value for the average cost
improvement, its impact on perceived driving dynamics is
unclear. With an average optimization runtime of 2.5 h this
approach is faster than manual tuning, although it is not
yet scalable to large amounts of data.

5. CONCLUSIONS

In this work, we studied the optimization of the parameters
of the cost function of an optimal controller to compensate
for inaccuracies in its reference trajectory. Specifically,
we investigated this problem for the lateral trajectory

Table 1. Desired Cost Function Parameters

Set
wd wθ wκ0 wκ1 wκ2

×101 ×104 ×106 ×105 ×104

A 1.49 3.38 1.61 2.34 0.846
B 0.811 0.284 2.33 2.36 3.91
C 0.557 3.56 2.13 0.803 0.908
D 0.875 0.563 0.906 1.48 1.23
E 2.87 0.356 0.475 1.23 1.94
F 2.84 0.388 0.253 6.19 7.98
G 0.738 0.956 0.233 5.55 1.12
H 7.74 2.08 2.86 5.33 2.88
I 1.55 0.514 2.10 1.20 1.20
J 2.37 0.358 1.95 0.548 8.46
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Table 2. Optimized Cost Function Weights

Set
ŵd,0 ŵθ,0 ŵκ0,0 ŵκ1,0 ŵκ2,0 β×101 ×104 ×106 ×105 ×104

A 1.96 0.442 2.58× 10−6 6.33 0.143 1.00
B 0.821 0.150 0.278 6.16 1.47 1.00
C 1.29 0.813 7.61× 10−6 6.28 0.0637 0.992
D 1.78 0.196 0.202 6.02 0.742 0.997
E 3.53 2.87× 10−5 0.126 4.56 1.34 0.976
F 1.96 2.91× 10−4 0.228 4.28 3.07 0.974
G 1.34 0.129 0.248 6.76 0.327 0.998
H 2.92 0.156 1.84× 10−10 5.48 0.841 0.997
I 1.89 1.58× 10−7 0.434 6.22 0.230 1.00
J 1.58 0.0152 0.196 3.74 4.18 1.00

Table 3. Cost Jw on Test Dataset

Set
TP with TP with Relative
DCFP optimized CFP Change

A 7135.3 6480.6 −9.18%
B 5621.0 5386.5 −4.17%
C 6923.8 5863.5 −15.32%
D 3047.7 2968.7 −2.59%
E 3040.3 3066.5 +0.86%
F 6810.1 6870.7 +0.89%
G 4622.1 4688.5 +1.44%
H 11 622 11 589 −0.28%
I 4530.8 4266.6 −5.83%
J 6249.8 5806.9 −7.09%

planning of a vehicle in a lane-keeping scenario, with
the lane center as the reference. We derived a compact
bilevel optimization problem formulation for the lateral
movement of the vehicle to reduce the value of the desired
cost function with respect to the true reference. Using
collected real-world data, we performed multiple optimiza-
tions with different desired cost functions. With a reduced
cost on the test dataset, we showed a general improvement
toward the desired driving behavior in simulation. The
main advantage of our approach is its practical relevance
and simplicity. Instead of adding complexity by modifying
the controller itself, it leverages offline optimization on
collected data.
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