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Abstract: The problem of joint state and parameter estimation for adaptively coupled
Kuramoto oscillators consisting of the oscillator phases and coupling strengths is addressed,
focusing on the analysis of underlying identifiability and observability properties required for
convergence of the estimates. In particular, we focus on a solution provided by an Extended
Kalman Filter, and characterize the state space in terms of regions for which local observability
can be guaranteed - and thus the estimator should be able to reconstruct the actual state and
parameter values - and those, in which local observability cannot be ensured. It turns out that
trajectories typically cross through these regions several times. Furthermore, it is shown that for
the case of oscillator phase locking local observability can not be guaranteed and an observer can
at most estimate a ratio of parameters that characterizes the dynamics of the coupling strengths.
The theoretical findings are illustrated for different scenarios using numerical simulation.
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1. INTRODUCTION

Networks of adaptively coupled oscillators are used to
model the behaviour of various systems in nature (Berner
et al., 2023; Proulx et al., 2005; Jain and Krishna, 2002;
Sawicki et al., 2022, 2023). They are specifically used as a
paradigm for neuronal activity (Ermentrout, 1994). Neu-
ronal networks are able to encode information in synchro-
nization of neuronal groups or in the temporal behaviour
of neuronal activity. This ability for coding information is
assumed to enable features correlated with human intelli-
gence such as memory, learning and consciousness (Singer,
1999). The adaption of the coupling in interconnected
oscillator networks enables us to mimic the reaction to
external and internal stimuli of synaptic connections be-
tween neurons (Ermentrout, 1994).

One way to model the evolution of the synaptic connec-
tions is through spike-timing dependent plasticity (Capo-
rale and Dan, 2008). Here the change in synaptic weight
depends on the time difference between the spikes of the
pre- and the post-synaptic neuron (Abbott and Nelson,
2000). Spike-timing dependent plasticity is also used in
the memristive devices (Du et al., 2015) designed for neu-
rocomputing (Ignatov et al., 2015; Birkoben et al., 2020).
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One common framework that has been used to describe
neuronal activity is the Kuramoto network with adaptive
couplings (Cabral et al., 2011; Deco et al., 2009; Menara
et al., 2019; Feketa et al., 2021, 2020). The difference
in spike timing between two neurons is represented by
the phase difference between two Kuramoto oscillators
(Montbrió et al., 2015). The adaptivity of the coupling is
therefore dependent on the phase difference between the
two oscillators connected by the coupling.

The synchronization in Kuramoto networks has been stud-
ied intensively in the last years. In addition to neuro-
inspired applications (Cattai et al., 2021; Menara et al.,
2019; Röhr et al., 2019; Feketa et al., 2021) this includes
studies about, distributed power generation (Balaguer
et al., 2010; Berner et al., 2021) and power systems (Pa-
ganini and Mallada, 2019) as well as biochemical networks
(Scardovi et al., 2010).

The control of specific temporal behaviour in oscillator
networks has been confined to creating different synchro-
nization states like complete synchronization(Sun et al.,
2023; Zhang and Zhu, 2019; Ha et al., 2016), cluster syn-
chronization (Berner et al., 2019; Feketa et al., 2023) or
frequency synchronization (Ha et al., 2016; Berner et al.,
2019).
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The goal of this work consists in understanding the un-
derlying mechanisms and properties that enable a set
of adaptively coupled oscillators to mimic a prescribed
dynamical behavior of oscillator phases by automatically
adjusting its parameters based on phase information only.
A common approach to estimate these parameters is based
on an observer or state estimator for the system dynamics
extended by the parameters.

We follow this approach in the present paper for the
simplest case of two oscillators. It is shown that the system
consisting of two adaptively coupled Kuramoto oscillators
is not fully observable and trajectories cross through
regions in which local observability is not guaranteed
several times, or can even stay within these regions for
all future times.

We propose an Extended Kalman Filter (EKF) (Reif
et al., 2000) to estimate both the states and parameters
of the system. A local observability analysis is conducted
to derive sufficient conditions for the EKF to converge.
Additionally, the analysis gives insight on conditions under
which no observer exists.

The contribution of this work is threefold:

• Sufficient conditions for the observability and specifi-
cally for the identifiability of the coupling parameters
of two coupled Kuramoto oscillators are derived.

• Necessary conditions under which a state and pa-
rameter estimation scheme is able to estimate these
parameters are determined. This creates the basis for
parameter estimation in larger networks of Kuramoto
oscillators.

• The parameters are estimated using an EKF and the
derived conditions are demonstrated.

2. PROBLEM STATEMENT

In this work we study the observability of two adaptively
coupled Kuramoto oscillators. We reconstruct the coupling
strengths and identify the parameters describing their
evolution from a continuous exact measurement of the
phases. The system is the two oscillator case of the general
network used in (Feketa et al., 2020) and is given by

θ̇1 = ω1 + k12 sin(θ2 − θ1) =: f1(x) (1a)

θ̇2 = ω2 + k21 sin(θ1 − θ2) =: f2(x) (1b)

k̇12 = −γ12k12 + µ12Γ(θ2 − θ1) =: f3(x) (1c)

k̇21 = −γ21k21 + µ21Γ(θ1 − θ2) =: f4(x) (1d)

γ̇ij = 0 (1e)

µ̇ij = 0 (1f)

x = [θ1 θ2 k12 k21 γ12 γ21 µ12 µ21]
T

(1g)

y = [θ1 θ2]
T
=: h(x), (1h)

where θi(t) ∈ R is the phase of the ith oscillator, kij(t) ∈ R
is the adaptive coupling strength and γij, µij > 0 are
unknown parameters with i ̸= j ∈ {1, 2}. The natural
frequencies of the oscillators are given by constants ωi ∈
[ωmin, ωmax] and can be assigned arbitrarily. The known
coupling function Γ : R → [Γmin,Γmax] is bounded.

Assumption 1. The coupling function Γ ∈ C∞ and all
partial derivatives are bounded.

Often Γ(θj − θi) is taken to be cos(θj − θi) or sin(θj − θi).
As the cosine has its highest value for a phase difference of
zero it modulates the weight the most if there is no phase
difference. This corresponds to hebbian learning, whereas
the sine behaves in the opposite way corresponding to anti-
hebbian learning (Letzkus et al., 2006).

In the following, an observer shall be designed which
estimates kij, γij and µij from the output y. The evolution
in (1) is summarized as

ẋ = f(x) (2a)

= [f1(x) f2(x) f3(x) f4(x) 0 0 0 0]
T

y = h(x). (2b)

with x ∈ X := R4 × R4
+. The function f is globally

Lipschitz with respect to x, so that for any initial condition
x0 ∈ X a unique solution Φ(x0, t) exists for all t ≥ t0.

3. LOCAL OBSERVABILITY

Given the local observability map O(x) ∈ R8 set up for
system (1) as

O(x) =
[
OT

1 OT
2

]
,

OT
i =

[
hi(x) Lfhi(x) L2

fhi(x) L3
fhi(x)

]
(3)

with Lfh the Lie derivative of h(x) in the direction of
the vector field f . The system is locally observable around
x ∈ X if O(x) is a diffeomorphism (Isidori, 1999; Jerono
et al., 2021).

Lemma 1. For any ϵ > 0 the system (1) is locally observ-
able at any x ∈ Xo with

Xo := {x ∈ X | |sin(θj − θi)| > ϵ ∩ |Dij(x)| > ϵ} , (4)

with

Dij(x) := kij(Lfhj(x)− Lfhi(x))
∂

∂∆θij
Γ(θj − θi)

− k̇ijΓ(θj − θi)

= kij(ωj − ωi

+ (kji + kij) sin(θj − θi))
∂

∂∆θij
Γ(θj − θi)

− (−γijkij + µij sin(θj − θi))Γ(θj − θi) (5)

with

∆θij = θj − θi. (6)

Proof. For the observability map given in (3) it reads
with l0i (x) := hi(x), l

1
i (x) := Lfhi(x), l

2
i (x) := L2

fhi(x)

and l3i (x) := L3
fhi(x), e.g.

l01(x) = θ1 (7a)

l11(x) = f1(x) (7b)

l21(x) = f3(x) sin(θ2 − θ1)

+ k12 cos(θ2 − θ1)(f2(x)− f1(x)) (7c)

l31(x) = κ3(x) sin(θ2 − θ1)

+ 2f3(x) cos(θ2 − θ1)(f2(x)− f1(x))

− k12 sin(θ2 − θ1)(f2(x)− f1(x))
2

+ k12 cos(θ2 − θ1)(κ2(x)− κ1(x)) (7d)

using the shorthand

κ1(x) = f3(x) sin(θ2 − θ1)

+ k12 cos(θ2 − θ1)(f2(x)− f1(x)) (8a)
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The goal of this work consists in understanding the un-
derlying mechanisms and properties that enable a set
of adaptively coupled oscillators to mimic a prescribed
dynamical behavior of oscillator phases by automatically
adjusting its parameters based on phase information only.
A common approach to estimate these parameters is based
on an observer or state estimator for the system dynamics
extended by the parameters.

We follow this approach in the present paper for the
simplest case of two oscillators. It is shown that the system
consisting of two adaptively coupled Kuramoto oscillators
is not fully observable and trajectories cross through
regions in which local observability is not guaranteed
several times, or can even stay within these regions for
all future times.

We propose an Extended Kalman Filter (EKF) (Reif
et al., 2000) to estimate both the states and parameters
of the system. A local observability analysis is conducted
to derive sufficient conditions for the EKF to converge.
Additionally, the analysis gives insight on conditions under
which no observer exists.

The contribution of this work is threefold:

• Sufficient conditions for the observability and specifi-
cally for the identifiability of the coupling parameters
of two coupled Kuramoto oscillators are derived.

• Necessary conditions under which a state and pa-
rameter estimation scheme is able to estimate these
parameters are determined. This creates the basis for
parameter estimation in larger networks of Kuramoto
oscillators.

• The parameters are estimated using an EKF and the
derived conditions are demonstrated.

2. PROBLEM STATEMENT

In this work we study the observability of two adaptively
coupled Kuramoto oscillators. We reconstruct the coupling
strengths and identify the parameters describing their
evolution from a continuous exact measurement of the
phases. The system is the two oscillator case of the general
network used in (Feketa et al., 2020) and is given by

θ̇1 = ω1 + k12 sin(θ2 − θ1) =: f1(x) (1a)

θ̇2 = ω2 + k21 sin(θ1 − θ2) =: f2(x) (1b)

k̇12 = −γ12k12 + µ12Γ(θ2 − θ1) =: f3(x) (1c)

k̇21 = −γ21k21 + µ21Γ(θ1 − θ2) =: f4(x) (1d)

γ̇ij = 0 (1e)

µ̇ij = 0 (1f)

x = [θ1 θ2 k12 k21 γ12 γ21 µ12 µ21]
T

(1g)

y = [θ1 θ2]
T
=: h(x), (1h)

where θi(t) ∈ R is the phase of the ith oscillator, kij(t) ∈ R
is the adaptive coupling strength and γij, µij > 0 are
unknown parameters with i ̸= j ∈ {1, 2}. The natural
frequencies of the oscillators are given by constants ωi ∈
[ωmin, ωmax] and can be assigned arbitrarily. The known
coupling function Γ : R → [Γmin,Γmax] is bounded.

Assumption 1. The coupling function Γ ∈ C∞ and all
partial derivatives are bounded.

Often Γ(θj − θi) is taken to be cos(θj − θi) or sin(θj − θi).
As the cosine has its highest value for a phase difference of
zero it modulates the weight the most if there is no phase
difference. This corresponds to hebbian learning, whereas
the sine behaves in the opposite way corresponding to anti-
hebbian learning (Letzkus et al., 2006).

In the following, an observer shall be designed which
estimates kij, γij and µij from the output y. The evolution
in (1) is summarized as

ẋ = f(x) (2a)

= [f1(x) f2(x) f3(x) f4(x) 0 0 0 0]
T

y = h(x). (2b)

with x ∈ X := R4 × R4
+. The function f is globally

Lipschitz with respect to x, so that for any initial condition
x0 ∈ X a unique solution Φ(x0, t) exists for all t ≥ t0.

3. LOCAL OBSERVABILITY

Given the local observability map O(x) ∈ R8 set up for
system (1) as

O(x) =
[
OT

1 OT
2

]
,

OT
i =

[
hi(x) Lfhi(x) L2

fhi(x) L3
fhi(x)

]
(3)

with Lfh the Lie derivative of h(x) in the direction of
the vector field f . The system is locally observable around
x ∈ X if O(x) is a diffeomorphism (Isidori, 1999; Jerono
et al., 2021).

Lemma 1. For any ϵ > 0 the system (1) is locally observ-
able at any x ∈ Xo with

Xo := {x ∈ X | |sin(θj − θi)| > ϵ ∩ |Dij(x)| > ϵ} , (4)

with

Dij(x) := kij(Lfhj(x)− Lfhi(x))
∂

∂∆θij
Γ(θj − θi)

− k̇ijΓ(θj − θi)

= kij(ωj − ωi

+ (kji + kij) sin(θj − θi))
∂

∂∆θij
Γ(θj − θi)

− (−γijkij + µij sin(θj − θi))Γ(θj − θi) (5)

with

∆θij = θj − θi. (6)

Proof. For the observability map given in (3) it reads
with l0i (x) := hi(x), l

1
i (x) := Lfhi(x), l

2
i (x) := L2

fhi(x)

and l3i (x) := L3
fhi(x), e.g.

l01(x) = θ1 (7a)

l11(x) = f1(x) (7b)

l21(x) = f3(x) sin(θ2 − θ1)

+ k12 cos(θ2 − θ1)(f2(x)− f1(x)) (7c)

l31(x) = κ3(x) sin(θ2 − θ1)

+ 2f3(x) cos(θ2 − θ1)(f2(x)− f1(x))

− k12 sin(θ2 − θ1)(f2(x)− f1(x))
2

+ k12 cos(θ2 − θ1)(κ2(x)− κ1(x)) (7d)

using the shorthand

κ1(x) = f3(x) sin(θ2 − θ1)

+ k12 cos(θ2 − θ1)(f2(x)− f1(x)) (8a)

κ2(x) = f4(x) sin(θ1 − θ2)

+ k21 cos(θ1 − θ2)(f1(x)− f2(x)) (8b)

κ3(x) = γ2
12k12 − γ12µ12Γ(θ2 − θ1)

+ µ12(f2(x)− f1(x))
∂

∂∆θ12
Γ2(θ2 − θ1). (8c)

Through calculating the formal inverse O−1(x) it can be
shown that the inverse exists if and only if

sin(l0j (x)− l0i (x)) ̸= 0 (9a)

Dij(x) ̸= 0, (9b)

where Dij(x) is the determinant of the matrix that needs
to be inverted to calculate the parameters γij and µij from
the states.

All entries of the inverse of the observability map consist
of trigonometric and polynomial functions and therefore
the inverse is a smooth function at any point

x∗ ∈ {x ∈ X | |sin(θj − θi)| > ϵ ∩ |Dij(x)| > ϵ} , (10)

concluding that (3) is a diffeomorphism for all ϵ > 0 and
therefore sufficient conditions for local observability are
fulfilled. �

Note that x ∈ Xo is a sufficient and not a necessary
condition for local observability.

4. INVARIANCE OF Xo

The occurence and persistance of states outside the set Xo

have to be analyzed, as observability cannot be guaranteed
for such states.

Condition (9a) is always fulfilled except if

∆θ12 mod 2π = 0. (11)

With (1) it follows that

∆θ̇12 = θ̇2 − θ̇1 = ω2 − ω1 = ∆ω12. (12)

If ∆ω12 ̸= 0 then either ∆ω12 > 0 (hence ∆θ12 can only
grow) or the opposite holds true. Hence (11) is only fulfilled
point wise.

We will handle the specific case of phaselocking here,
i.e. θ̇i = θ̇j and k̇ij = 0. This is a persistent state, in
the sense that the associated subset of X , for which the
condition (9b) is not fulfilled and local observability is not
guaranteed, is positively invariant. The coupling strength
kij reaches a constant value if

kij =
µij

γij
Γ(θj − θi), (13)

which allows for estimation of the ratio
µij

γij
but not the

individual values of γij and µij from kij. Phaselocking,
however, is an asymptotic phenomenon for this system as
both k̇ij and ∆θ̇ij have to converge to zero simultaneously,
which is further analyzed in Section 5.2.

In order for phaselocking to persist x has to be such that
kij and ∆θij are constant. With

∆θ̇ij = θ̇j − θ̇i = ωj − ωi + (kji + kij) sin(θi − θj) (14)

the derivative of the phase difference ∆θ̇ij can not reach
zero if

|kji + kij| ≤ |ωj − ωi|. (15)

Therefore phaselocking can be prevented through the
choice of adequate natural frequencies.

Definition 1. A trajectory Φt(x0) ⊂ X is the ordered
subset Φt(x0) = {x ∈ X |x = Φ(x0, τ), τ ≤ t}.

As the trajectory can enter and leave Xo repeatedly it
has to be ensured that the parts of the trajectory Φt(x0)
for which the system is observable are not traversed in
an arbitrarily short time. If this does not hold a possible
observer would have to converge infinitely fast during the
time periods in which the system is observable. This is
established by the following Lemma.

Lemma 2. Given x0 ∈ X let τs < τ < τe be
such that x(τs),x(τe) ̸∈ Xo and all x(τ) ∈ Xo and
x(τs),x(τe),x(τ) ∈ Φt(x0) with t > τe then there exists a
time δ > 0 such that ∆τ = τe − τs > δ.

Proof. δ can be defined as the infimum of all possible
∆τ . δ > 0 therefore holds, if there is a lower bound
on ∆τ . The existence of this lower bound can be shown
through contradiction. Assume that no lower bound exists,
then there has to exist a trajectory Φτe(x(τs)) ⊂ Φt(x0)
between the unobservable starting point x(τs) and the
unobservable point x(τe). The trajectory by assumption
includes at least one observable point x(τo) ∈ Xo and
∆τ = τe − τs has to be arbitrarily small. This can either
be fulfilled through an arbitrarily short trajectory or an
arbitrarily large traversal speed along the trajectory. We
will show that neither of these cases is possible for the
given system (1).

In order for the traversal speed along the trajectory to be
arbitrarily large ∆θij or Dij have to change arbitrarily fast.
The first derivative of ∆θij is

∆θ̇ij = ω2 − ω1 − (k21 + k12) sin(θ2 − θ1). (16)

With ω1 and ω2 being the freely chosable inputs and
|sin(θ2 − θ1)| ≤ 1 these terms are all bounded if kij is also
bounded. The maximum value |kij,max| for |kij| is reached
for the case |Γ(θj− θi)| = |Γm| := max(|Γmin|, |Γmax|) with

k̇ij = −γijkij ± µij|Γm|, (17)

leading to the equilibria

k∗ij = ±µij

γij
|Γm|. (18)

Therefore, there exists a bound on kij with

|kij,max| = max(|k0|, |k∗ij|), (19)

which is therefore also bounded by design. ∆θij can there-
fore not return to zero arbitrarily fast and can therefore
not cause the trajectory to leave Xo in an arbitrarily short
time.

The second derivative is given by, e.g.

Ḋ12 = f3(x)(f2(x)− f1(x))
∂

∂∆θ12
Γ(θ2 − θ1)

+ k12(κ2(x)− κ1(x))
∂

∂∆θ12
Γ(θ2 − θ1)

+ k12(f2(x)− f1(x))
∂2

∂∆θ212
Γ(θ2 − θ1)

− κ3(x)Γ(θ2 − θ1)

− f3(x)(f2(x)− f1(x))
∂

∂∆θ12
Γ(θ2 − θ1). (20)

and accordingly for Ḋ21. As all terms defining Ḋij are
multiplications and summations of the system states which
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are all bounded as well as Γ(θj−θi) and its first two partial

derivatives, Ḋ is bounded as long as ∂
∂∆θij

Γ(θj − θi) and

∂2

∂∆θ2
ij

Γ(θj−θi) are bounded. This is ensured by Assumption

1.

In order for Φτe(x(τs)) to be arbitrarily short, ∆θ̇ij or Ḋ
would have to change sign after an arbitrarily short time.
For this ∆θ̈ij or D̈ would have to be unbounded. Using

the same aproach as above one can show that both ∆θ̈ij
and D̈ are bounded if in addition to the above conditions
∂3

∂∆θ3
ij

Γ(∆θij) is bounded which is also given by Assumption

1.

Therefore, δ serves as a lower bound to ∆τ . ∆τ can thus
not be arbitrarily small. �

5. EXTENDED KALMAN FILTER

The EKF estimates the state vector while at the same
time estimating the associated estimation error covariance.
The error covariance estimation is based on a Gaussian
probability density function. This approach has the upside
of not depending on an inversion of the observability map
in any way. Due to these reasons the EKF was chosen as
an observer to demonstrate observer convergence. Given
the previous analysis the EKF should converge as long as
no phaselocking occurs.

In the following two cases are considered. In Section 5.1
parameters were chosen so that no phaselocking occurs and
the observer is able to minimize the observation error to
the level allowed by numerical precision. In Section 5.2
the system parameters were chosen so that the system
begins to asymptotically approach phaselocking at some
point and the convergence of the observer states slows
down faster than the states converge. In both cases the
same parameters for the EKF were used. The covariance
matrices of the process noise Q and the measurement
noise R as well as the starting values for the estimated
covariance matrix P0 were all chosen as diagonal matrices
with entries

Qdiag =
[
0.1 0.1 0.1 0.1 104 104 103 103

]
,

P0,diag =
[
1 1 10 10 103 103 103 103

]
,

Rdiag =
[
10−5 10−5

]
. (21)

The coupling function Γ(θj − θi) = sin(θj − θi) was chosen
for both cases. The measurements y are assumed to be
available continuously. All simulations were carried out
with the scipy.integrate.ode vode solver using default
parameters.

5.1 No Phaselocking

The initial values of the system and observer states were
chosen at random with the resulting values shown in Table
1. The natural frequencies were ω1 = 54.88 and ω2 =
71.52. These values lead to the system not approaching
phaselocking. The convergence of the observer states to
the actual states are shown in Figure 1.

5.2 Phaselocking

The system and the observer were initiated with the values
from Table 2. The natural frequencies were ω1 = 41.70 and

Table 1. Initial parameter values for the system
and observer states to avoid phaselocking.

x x̂

θ1 2.75 6.05
θ2 5.60 2.41
k12 0.79 0.57
k21 0.53 0.93
γ12 60.27 7.10
γ21 54.49 8.71
µ12 42.37 2.02
µ21 64.59 83.26
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Fig. 1. The observation errors for γ and µ in the scenario
without phaselocking. γ̂12 and µ̂12 converge at t ≈ 163
and γ̂21 and µ̂21 at t ≈ 118.

ω2 = 72.03. This leads to the system approaching phase-
locking. At t ≈ 17 the system is so close to phaselocking
that the actual values for γ̂12, γ̂21, µ̂12 and µ̂21 are no
longer updated in a visible manner. The errors for these
are shown in Figure 2. The ratio µ21

γ21
has converged as

shown in Figure 3 which matches the the prediction from
Section 4.

Figure 4 shows the behaviour of the phases and the
observed phases. The change in behaviour at t ≈ 17
can be seen as the oscillators start to asymptotically
approach phaselocking. In Figure 5 the coupling strengths
are shown. The asymptotical approach of phaselocking is
visible more clearly here. Both the phases and the coupling
strengths are estimated well by the observer.

The observability conditions from (4) are shown in Figure
6. Both sin(θ1 − θ2) and D12 are shown to pass through
zero multiple times before the asymptotic approach to
phaselocking begins. The system is therefore shown to
enter Xo and leave it again repeatedly.

Table 2. Parameter values for the system and
observer states to approach phaselocking.

x x̂

θ1 1.17 2.49
θ2 2.17 3.39
k12 0.42 0.20
k21 0.69 0.88
γ12 0.01 2.74
γ21 30.23 67.05
µ12 14.68 41.73
µ21 9.23 55.87
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are all bounded as well as Γ(θj−θi) and its first two partial

derivatives, Ḋ is bounded as long as ∂
∂∆θij

Γ(θj − θi) and

∂2

∂∆θ2
ij

Γ(θj−θi) are bounded. This is ensured by Assumption

1.

In order for Φτe(x(τs)) to be arbitrarily short, ∆θ̇ij or Ḋ
would have to change sign after an arbitrarily short time.
For this ∆θ̈ij or D̈ would have to be unbounded. Using

the same aproach as above one can show that both ∆θ̈ij
and D̈ are bounded if in addition to the above conditions
∂3

∂∆θ3
ij

Γ(∆θij) is bounded which is also given by Assumption

1.

Therefore, δ serves as a lower bound to ∆τ . ∆τ can thus
not be arbitrarily small. �

5. EXTENDED KALMAN FILTER

The EKF estimates the state vector while at the same
time estimating the associated estimation error covariance.
The error covariance estimation is based on a Gaussian
probability density function. This approach has the upside
of not depending on an inversion of the observability map
in any way. Due to these reasons the EKF was chosen as
an observer to demonstrate observer convergence. Given
the previous analysis the EKF should converge as long as
no phaselocking occurs.

In the following two cases are considered. In Section 5.1
parameters were chosen so that no phaselocking occurs and
the observer is able to minimize the observation error to
the level allowed by numerical precision. In Section 5.2
the system parameters were chosen so that the system
begins to asymptotically approach phaselocking at some
point and the convergence of the observer states slows
down faster than the states converge. In both cases the
same parameters for the EKF were used. The covariance
matrices of the process noise Q and the measurement
noise R as well as the starting values for the estimated
covariance matrix P0 were all chosen as diagonal matrices
with entries

Qdiag =
[
0.1 0.1 0.1 0.1 104 104 103 103

]
,

P0,diag =
[
1 1 10 10 103 103 103 103

]
,

Rdiag =
[
10−5 10−5

]
. (21)

The coupling function Γ(θj − θi) = sin(θj − θi) was chosen
for both cases. The measurements y are assumed to be
available continuously. All simulations were carried out
with the scipy.integrate.ode vode solver using default
parameters.

5.1 No Phaselocking

The initial values of the system and observer states were
chosen at random with the resulting values shown in Table
1. The natural frequencies were ω1 = 54.88 and ω2 =
71.52. These values lead to the system not approaching
phaselocking. The convergence of the observer states to
the actual states are shown in Figure 1.

5.2 Phaselocking

The system and the observer were initiated with the values
from Table 2. The natural frequencies were ω1 = 41.70 and

Table 1. Initial parameter values for the system
and observer states to avoid phaselocking.

x x̂

θ1 2.75 6.05
θ2 5.60 2.41
k12 0.79 0.57
k21 0.53 0.93
γ12 60.27 7.10
γ21 54.49 8.71
µ12 42.37 2.02
µ21 64.59 83.26
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Fig. 1. The observation errors for γ and µ in the scenario
without phaselocking. γ̂12 and µ̂12 converge at t ≈ 163
and γ̂21 and µ̂21 at t ≈ 118.

ω2 = 72.03. This leads to the system approaching phase-
locking. At t ≈ 17 the system is so close to phaselocking
that the actual values for γ̂12, γ̂21, µ̂12 and µ̂21 are no
longer updated in a visible manner. The errors for these
are shown in Figure 2. The ratio µ21

γ21
has converged as

shown in Figure 3 which matches the the prediction from
Section 4.

Figure 4 shows the behaviour of the phases and the
observed phases. The change in behaviour at t ≈ 17
can be seen as the oscillators start to asymptotically
approach phaselocking. In Figure 5 the coupling strengths
are shown. The asymptotical approach of phaselocking is
visible more clearly here. Both the phases and the coupling
strengths are estimated well by the observer.

The observability conditions from (4) are shown in Figure
6. Both sin(θ1 − θ2) and D12 are shown to pass through
zero multiple times before the asymptotic approach to
phaselocking begins. The system is therefore shown to
enter Xo and leave it again repeatedly.

Table 2. Parameter values for the system and
observer states to approach phaselocking.

x x̂

θ1 1.17 2.49
θ2 2.17 3.39
k12 0.42 0.20
k21 0.69 0.88
γ12 0.01 2.74
γ21 30.23 67.05
µ12 14.68 41.73
µ21 9.23 55.87
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Fig. 2. The observation errors for γ in the scenario ap-
proaching phaselocking. γ̂21, µ̂12 and µ̂21 stop con-
verging at t ≈ 17. Due to the logarithmic scale the
continued convergence of γ̂12is visible however clearly
slowed down compared to the non-phaselocking con-
dition in Figure 1.
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Fig. 4. The progressions of θ for the system and the
observer are shown projected to [0, 2π). At t ≈ 17
the phases start to behave similarly for θ1 and θ2 due
to the approach of phaselocking.

6. CONCLUSIONS

In this work we have shown that in a system of two
adaptively coupled Kuramoto oscillators it is possible to
jointly estimate states and parameters as long as certain
conditions are satisfied. As it turns out that trajectories
cross several times through regions in which no local ob-
servability can be ensured, these conditions in particular
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Fig. 5. The coupling strengths oscillate until t ≈ 17.
From there on they start asymptotically approaching
phaselocking.
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Fig. 6. The observability conditions over time. The chosen
value for ϵ is shown.

involve the existence of minimum time interval lengths for
which the states remain locally observable. A particular
case for which these conditions are not satisfied consists
in phaselocking, implying that in this condition identifi-
ability only of ratios can be guaranteed and not of the
parameters themselves. Based on this work, the problem
of observability and identifiability analysis as well as joint
state and parameter estimator design for more complex
networks of Kuramoto oscillators can be addressed. These
introduce new observability maps, which include higher-
order derivatives. The basic problem of loss of observability
discussed in this paper, however, remains.

One way this approach can already be used with only two
connected oscillators is, to estimate the device parameters
of memristive devices. The memristive device can be
connected to two oscillators which can be described by the
Kuramoto model. From the measured oscillator phases the
device parameters can then be identified.
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Montbrió, E., Pazó, D., and Roxin, A. (2015). Macroscopic
description for networks of spiking neurons. Physical
Review X, 5(2), 021028.

Paganini, F. and Mallada, E. (2019). Global analysis of
synchronization performance for power systems: Bridg-
ing the theory-practice gap. IEEE Transactions on
Automatic Control, 65(7), 3007–3022.

Proulx, S.R., Promislow, D.E., and Phillips, P.C. (2005).
Network thinking in ecology and evolution. Trends in
Ecology & Evolution, 20(6), 345–353.

Reif, K., Gunther, S., Yaz, E.E., and Unbehauen, R.
(2000). Stochastic stability of the continuous-time ex-
tended Kalman filter. IET Control Theory and Appli-
cations.
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