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Abstract—Machine learning for optimization of the physical
layer is currently a popular research topic. To aid research in this
field, we introduce our Python library MOKka. We summarize
the currently available signal processing modules in the library
and explain our design rationale. In order to showcase the utility
of this library, we have implemented a demo on joint geometric
and probabilistic constellation shaping with a switchable channel
model and interactive plotting and controls.

I. INTRODUCTION

In many fields of communications engineering research,
machine learning has been introduced to optimize existing
algorithms and methods, or to tackle problems which were
previously considered infeasible challenges [1]–[8]. Many
researchers have developed their own tools for these tasks.
Frequently, the solutions are isolated to a particular problem
and need to be redeveloped to be applicable to similar prob-
lems in other contexts. We identified the need for an extensible
toolbox with pluggable modules for communications engineer-
ing research with machine learning and we are introducing
the Python package MOKka (German: Maschinelles Lernen
und Optimierung für Kommunikationssysteme) [9]. Recently,
other software packages implementing toolboxes for machine
learning research in communications have been introduced,
most prominently Sionna [10], which is based on the Tensor-
Flow machine learning framework and CommPlax [11], which
is based on the JAX machine learning framework.

The goal of MOKka is to provide standard processing
blocks for operations at the transmitter and receiver of com-
munication systems implemented using the PyTorch machine
learning framework. If possible, all processing blocks imple-
ment their operations using differentiable functions to allow
for end-to-end optimization of complete communication sys-
tems with methods based on gradient descent.

We also provide compatible open-source channel model
implementations such as the split-step Fourier method for
optical fiber communications research.

II. THE MOKKA PACKAGE

We believe that a separation of available processing blocks
into logical units will improve the usability and extensibility
of MOKka. Therefore, we split the package into multiple
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independent Python modules. Within MOKka we provide the
following modules:

• channels – Channel models
• e2e – End-to-end system simulation
• equalizers – Channel reversal and equalization
• functional – Signal processing functions
• inft – Information theoretic functions
• mapping – Bit-to-symbol and symbol-to-bit conversion
• normalization – Signal normalization
• pulseshaping – Filters and windowing functions
• synchronizers – Receiver synchronization algo-

rithms
• utils – Various utilities not necessarily related to signal

processing
Each of these modules has either further submodules which

implement a particular aspect of the processing functions or
a submodule named torch or numpy. Within the torch
and numpy submodules, the functions are implemented with
the respective underlying Python package. This split is made
such that it is possible in the future to support other computa-
tional frameworks by means of merely adding another Python
submodule to the respective part.

In order to tie in with the methods provided by the PyTorch
framework, all processing blocks are implemented as a Py-
Torch module and it is possible to chain their operations by
means of the ‘forward()’ method. To allow non-experts to
use signal processing blocks, all implemented blocks should
keep their implementation details within their class and not
rely on outside interaction, if possible. This of course excludes
special operations like reconfiguration or necessary adjust-
ments during training, e.g., providing the newly optimized
constellation to synchronization or equalization algorithms.

We believe that with this approach MOKka can be useful
for covering a wide range of research areas on the topic of
machine learning for the physical layer.

III. DEMO: END-TO-END OPTIMIZATION OF JOINT
GEOMETRIC AND PROBABILISTIC SHAPING

In this demo, we show the usefulness of our published
MOKka library for the end-to-end optimization of constel-
lation shaping. The centerpiece of the demo is a bitwise
auto-encoder as shown in Fig. 1. The mapping from bits to
symbols is performed by a neural network, so is the demap-
ping. Between the mapper and demapper, we insert various



Tx-NN

...
...

...
...

...




bk,1
bk,2

...
bk,m




AWGN

Phase Noise

Optical Channel

Rx-NN

...
...

...
...

...




L̂k,1

L̂k,2
...

L̂k,m




Fig. 1. Bit-wise auto-encoder model for end-to-end optimization of geometric constellation shaping with switchable channel models.

Fig. 2. Screenshot of the prototype GUI for end-to-end optimization of constellation shaping on varying channels.

differentiable channel models to showcase the optimization of
constellation shaping on different channels.

From the current version of the library, we make available
a list of switchable channels to perform the optimization: An
additive white Gaussian noise (AWGN) channel, a Wiener
phase noise channel, and a full fiber-optical channel model
with a wavelength division multiplexing transmission can be
enabled. The neural networks are retrained for each selected
channel model.

This demo allows visitors to easily control the parameters of
the simulation. This includes the constellation size, the type of
constellation shaping to optimize (geometric, probabilistic, or
joint), channel parameters (signal-to-noise ratio (SNR), launch
power, number of channels, etc.), and the sizes of the neural
networks. Additionally, we display the trained constellation
and its parameters in an interactive constellation plot as shown
in Fig. 2. To allow for the evaluation of the optimized con-
stellation, a plot of the achieved bit-wise mutual information
(BMI) for the chosen SNR and other channel parameters
interactively updates, displaying the progress during training.
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