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Abstract
In recent years, the automotive industry has striven to introduce auto-
mated driving functions (ADFs) of increasing complexity and capability.
Traditional statistical validation methods like endurance runs, which were
previously applied to prove automotive safety, reach their limits and become
infeasible since society poses increasingly challenging safety demands to
increasingly complex and capable ADFs. Simulations promise to deliver a
valuable contribution to the resulting unsolved validation challenge, since
they show beneficial properties like being reproducable, safe, controllable
and fast. This thesis addresses some of the most pressing issues hindering
the usage of simulations for validation purposes.

Firstly, a sufficiently well performing ADF fails seldomly. Hence, critical
scenarios occur very rarely in statistical simulations and a high amount
of simulation runs is needed to generate results with acceptable accuracy.
Importance sampling (IS) was previously used to tackle this problem. IS
skews the sampling of simulation runs to the areas of the parameter space
which the ADF cannot handle, but allows determining unskewed statistical
results. A typical approach to identify such critical areas in the context of
IS is the cross-entropy method (CE). CE’s optimization procedure scales
badly with the complexity of modeled scenarios. This thesis introduces a
new framework which allows identifying and limiting the CE optimization
on relevant parts of parameter space. It is shown, that this enables scalable
application of IS to complex scenarios as found on public roads.

Secondly, simulations require statistical models which represent the scenes
in the surrounding of the tested ADF. Previously available scene models con-
centrated on simple road topologies like straight highways sections. Within
this thesis, existing models are generalized to more complex topologies as
intersections. Initially, the proposed model is based on Bayesian networks
(BN). However, BNs scale badly with the number of learned parameters.
Thus, the model is adapted to the usage of sum-product networks (SPNs).
The proposed scene model is statistically evaluated and it is shown that
SPNs increase the model’s scalability.

Thirdly, it is shown how the proposed scene model can be combined
with IS. The scene model’s structure is adapted to incorporate parameters
which address a scene’s criticality. As it is proven, that enables CE to skew
the model’s inherent statistics in order to sample predominantly critical
scenes and to quickly generate statistical evidence about an ADF’s safety.



Kurzfassung
In den letzten Jahren war es das stete Bestreben der Automobilindustrie,
immer komplexere Automatisierungsfunktionen (ADF) zu entwickeln. Bish-
erige Methoden der statistischen Validierung sind nicht mehr ausreichend,
da gesellschaftliche Sicherheitsansprüche mit der Komplexität der ADF
ansteigen. Simulative Methoden versprechen Abhilfe, da sie reproduzierbar,
sicher, kontrollierbar und effizient sind. Diese Arbeit beschäftigt sich mit
einigen der größten Hürden bei der Anwendung von Simulationen.

Der erste Teil behandelt die geringe Fehleranfälligkeit zulassungsfähiger
ADF. Bei der Anwendung statistischer Simulationen führt dies zu nur
selten auftretenden kritischen Szenarien. Somit wird eine große Anzahl an
Simulationsdurchläufen benötigt, um statistische Aussagen mit hinreichen-
der Genauigkeit zu berechnen. Importance Sampling (IS) wurde bereits
zur Lösung derartiger Probleme verwendet. IS verschiebt die Statistik der
Simulationsdurchläufe in kritische Bereiche des Parameterraums, kann aber
unverschobene statistische Aussagen berechnen. Eine typische Methode, um
solch kritische Bereiche im IS-Kontext aufzufinden, ist die Cross-Entropy
Methode (CE). Der von CE benutzte Optimierungsansatz skaliert schlecht
mit steigender Komplexität eines Szenarios. Diese Arbeit führt ein neues
Framework ein, welches es ermöglicht relevante Parameterraumbereiche zu
identifizieren und die CE Optimierung auf diese zu beschränken. Es wird
gezeigt, dass dadurch die Anwendung von IS auf komplexe Szenarien, wie
sie auf öffentlichen Straßen auftreten, möglich wird.

Der zweite Teil der Arbeit beschäftigt sich mit der statistischen Mod-
ellierung von Szenen in der Umgebung einer ADF. Bisherige Modelle
beschäftigen sich mit einfachen Topologien wie geraden Autobahnabschnit-
ten. Die vorhandenen Modelle werden hier auf die Modellierung komplexer
Topologien wie Kreuzungen erweitert. Initial basiert das vorgeschlagene
Modell auf Bayesschen Netzwerken. Aufgrund deren schlechten Skalier-
barkeit mit steigender Parameterzahl werden sie durch Summen-Produkt
Netwerke (SPNs) ersetzt. Das vorgeschlagene Modell wird ausgewertet und
es wird gezeigt, dass SPNs die Skalierbarkeit signifikant erhöhen.

Im dritten Teil wird das vorgeschlagene Szenenmodell mit IS kom-
biniert. Hierfür wird es mit Parametern, welche die Kritikalität einer Szene
beschreiben, ergänzt. Sie ermöglichen es, das Sampling von Szenen durch
CE auf hauptsächlich kritische Szenen zu verschieben, was die schnelle
Berechnung statistischer Aussagen zur Sicherheit einer ADF ermöglicht.
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Nomenclature

Common abbreviations

Abbreviation Description
ACC Adaptive cruise control
ADF Automated driving function
BM Behavior model
BN Bayesian network
CE Cross entropy method
ConvLSTM Convolutional long short term memory network
DAG Directed acyclic graph
DCE Distance-of-closest-encounter
DDT Dynamical driving task
Destatis German Federal Statistical Office (statist. Bundesamt)
HiL Hardware in the loop
IB Implemented behavior
IDM Intelligent driver model
invTTC Inverse TTC
IS Importance sampling
KBL Kullback-Leibler divergence
LSPN LearnSPN is an algorithmic scheme to learn SPNs
MAE Mean-absolute error
MCMC Markov chain Monte Carlo
MCS Monte Carlo simulation
MISE Mean-integrated-squared error
MOBIL Minimizing overall braking induced by lane changes
MSPN MSPN is an augmentation of LearnSPN.
ODD Operational design domain
OEDR Object and event detection and response
OSSPN OnlineSearchSPN is an online version of SearchSPN.
PET Post-encroachment-time
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Nomenclature

Abbreviation Description
PGM Probabilistic graphical model
PRA Proper response action
RB Required behavior
RDC Randomized dependency coefficient
RMSE Root-mean-square error
RSS Responsibility-sensitive safety
SB Specified behavior
SSPN SearchSPN is an algorithmic scheme to learn SPNs.
SiL Software in the loop
SPN Sum-product networks
STL Signal temporal logic
SUMO Simulation of Urban MObility
TSP Time since intersection point
TTBo Time to boundary
TTB Time-to-brake
TTCE Time-to-closest-encounter
TTC Time-to-collision
TTP Time to intersection point
TVD Total variation distance
VeHiL Vehicle hardware in the Loop
VRU Vulnerable road user
WTTC Worst-time-to-collision
XiL X in the loop

Letters
Latin Letters

Symbol Description
a Integer describing the light phase of an intersection.
B Euler beta function
b The rear end of the (virtual or real) predecessor vehicle

when sampling between virtual vehicles.
b0 The rear end of the last vehicle in the predecessor lane

section.
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Nomenclature

Symbol Description
C Set of causality groups used to focus importance sampling

on relevant simulation parameters.
C Confidence level
db Distance between the front boundary of the current lane

(section) and the first vehicle
di Distance between (i−1)th and ith vehicle in a lane (section).

dpre Distance to predecessor when sampling in the gaps between
virtual vehicles.

d
(i)
rel Relevant distance to virtual vehicle i.
dright,i Distance between the predecessor in the lane on the right

of the ith vehicle of a lane and its successor.
d

(ego)
right,i Distance of a lane’s ith vehicle to the predecessor in the

lane on its right.
d∗ Distance to the next sampled vehicle when sampling be-

tween virtual vehicles.
d

(i)
tot Distance to virtual vehicle i.
dTSP The distance of the last vehicle after an intersection to the

same intersection point.
dTTBo The distance of the first vehicle in a combining lane to the

combining lane’s front boundary.
dTTP The distance of the first vehicle before an intersection to

the intersection point.
FfL Transformation of global coordinates in lane-related Frenet

coordinates spanned by the centerline fL of lane L
fL A function describing the 2-dimensional trajectory of the

centerline of lane L.
Funit Transformation into the unit range. Applied for Sensitivity

Analysis.
gcrit. Microscopic safety metric usable to assess a simulation.
gpair Element of microscopic safety metric which is applied onto

a relevant vehicle pair.
h All simulation parameters in total. Includes properties with

and without physical meaning.
i Incidents
I (ξ; γ) Indicator function which defines an event set.
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Nomenclature

Symbol Description
K Relation between the original probability distribution and

the skewed one when executing importance sampling.
kadd Number of additional iterations for the cross entropy algo-

rithm which are performed after the desired safety level is
reached.

kmax Maximal number of iterations for the cross entropy algo-
rithm.

Lilog Log likelihood
li Length of the ith vehicle in a lane (section).
M Computational model used for sensitivity analysis.
m All information which are required to describe a map and

the traffic participants which populate it.
n Distance in km
N Number of simulation runs per iteration in algorithm 1.
N Number of simulation runs.
N0 Seed SPN for Search SPN and Online Search SPN
Nadd Number of simulation runs which are performed for each

of the kadd additional CE iterations which are executed
after the desired safety level is reached.

Nadd Number of extra distributions added during the iterative
cross entropy procedure to enable a more stable optimiza-
tion.

n
(φξ )
veh The number of vehicles involved in simulation run ξ.
nφξ

Number of time steps for simulation run ξ

q (•|φv) Family of functions used to approximate the optimal im-
portance sampling distribution.

r Reliability
R Reliability estimation
R (i, j, ξ, t) Checks a relation between vehicles i and j for simulation

run ξ at time step t. It returns 1 when the relation is valid,
otherwise 0.

s Arc length position in the Frenet frame of a lane.
S The set of ego vehicles which are relevant for the evaluation

of a simulation run.
T φξ

Set of all time steps {0,∆t, ..., nφξ
· ∆t} included in a

simulation run ξ.
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Nomenclature

Symbol Description
ta The time since the traffic lights in the intersection have

changed their phase.
vi Velocity of the ith vehicle in a lane (section).
vpre Velocity of predecessor when sampling in the gaps between

virtual vehicles.
v∗ Velocity of the next sampled vehicle when sampling between

virtual vehicles.
vTSP The velocity of the last vehicle after the intersection point

on an intersecting lane.
vTTBo The velocity of the first vehicle in a combining lane.
vTTP The velocity of the first vehicle before the intersection point

on an intersecting lane.
wi Width of the ith vehicle in a lane (section).
xt Set of parameters defining a scene at time step t
z0 Scaling factor for filtering when addressing the numerical

instability of the weightings for importance sampling
z1 Share of weightings around the median which are con-

sidered to be at least relevant when filtering to address
the numerical instability of the weightings for importance
sampling

z2 Factor defining the relative distance to the next smaller
neighbor which must be exceeded at the position of the
filter cut when addressing the numerical instability of the
weightings for importance sampling

Greek Letters

Symbol Description
α Threshold of significance for dependency measure.
βi Weighting of ith extra distribution which is added during

the iterative cross entropy procedure to enable a more
stable optimization.

χt (i) Set of parameters defining vehicle i at simulation step t
δi,j Kronecker delta
∆ Smoothing parameter for Laplace smoothing.
δTVD Total variation distance
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∆t Time between two steps of a simulation
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Γ (•) Gamma distribution
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1 Introduction
This chapter gives an introduction to the thesis at hand. Section 1.1 provides
a short summary of the motivation of the work. Section 1.2 gives an overview
of the developed methodological framework, section 1.3 shortly lists the
work’s contributions to the state of the art and section 1.4 describes the
structure and contents of the remaining chapters.

1.1 Motivation
In recent years strong technical and scientific progress towards the intro-
duction of automated driving functions (ADF) has been made. However,
the validation of these systems remains one of the key challenges since
they must satisfy strong safety requirements. The existence of these strong
requirements severely increases the efforts needed to validate an ADF by
traditional methods like statistical testing on real roads by performing
endurance runs. These traditional statistical approaches even seem to be-
come infeasible (for more details see section 2.3) since an ADF must be
able to handle all scenarios which it can possibly encounter. However for
a safe system, the relevant critical scenarios are met very rarely when
operating in the real world and large distances must be traveled in order to
encounter enough of them for a reliable validation of the system. Hence, it is
necessary to develop new holistic validation frameworks which again render
the validation aims feasible. Since simulations possess positive properties
like being reproducable, safe, controllable and fast, and since they include
an omniscient observer for ground truth data, it is desirable and necessary
to incorporate them into such new validation approaches.

However, there are strong hurdles to the application of simulations itself.
One of the most prominent ones is the modeling of the highly complex
surrounding of an ADF. The main reason for this challenge is, that the
ADF must be able to operate in an environment which cannot be controlled
by the ADF’s manufacturer, which alters permanently and for which the
total amount of possible events can never be fully specified. Hence, it

1



1 Introduction

seems very difficult, especially when using simple parametric approaches,
to statistically model this complexity. In the remainder, it is referred to the
open context challenge of the ADF. This work tackles some of this problem’s
aspects by developing a machine-learning based method which enables the
statistical modeling of time snapshots of the vehicle configuration in the
surrounding of an automated vehicle. This method thereby can be used to
create initial scenes for simulations of an ADF.

Another prominent challenge is inherent to the simulation-based creation
of statistical evidence (see Definition 3.2) of ADF safety. As already men-
tioned, when testing an ADF on real roads, relevant critical scenarios will
be encountered very rarely. This problem translates to the simulation-based
creation of statistical evidence: For instance, when applying the very pop-
ular Monte-Carlo simulation (MCS) approach, one usually samples from
probability density distributions which try to describe reality. Hence, a
lot of the sampled scenarios will, as in reality, not be critical for the ADF
and therefore the simulation’s information density regarding the ADF’s
handling of critical scenarios will be very low. As a result, a very large
number of simulation runs must be performed for stable statistical results.
A popular procedure to resolve this problem is the application of Impor-
tance Sampling (IS) which emphasizes the sampling from critical parameter
regions. IS maximizes the information density and the necessary simulation
costs are therefore reduced. In literature, IS usually is affected by several
limitations, especially by its bad scaling to the size of a simulation’s pa-
rameter space. This work presents an IS approach which allows considering
only the relevant parts of a simulation run and which thereby enables the
application of IS to large and complex parameter spaces. The compatibility
of the developed IS approach to the presented machine-learning based
method to model time snapshots of the ADF’s environment is then shown.

1.2 Concept overview
As already mentioned in the previous section, this work develops methods for
efficient application of simulations to the challenge of generating statistical
evidence for automated driving functions. The work is based on the concept
of MCS. The blue parts of fig. 1.1 show the basic structure needed to
execute MCS.

A normal MCS starts with a stochastical scenario description model.
This model firstly parameterizes all elements which are necessary to fully

2
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Figure 1.1 Modular structure of Monte Carlo simulations and illustration of application
of importance sampling. The basic parts of MCS are marked in blue, whereas the parts
related to IS are displayed in purple. The red circles in the sampling modules of MCS
and IS mark critical scenarios which challenge the automated driving function under test.
The same holds for the red bars in the “Evaluation” and “Skewed evaluation” modules.
p describes the real probability distribution, p

∗ is the skewed importance sampling
distribution which emphasizes critical scenarios.
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1 Introduction

specify a simulation run and secondly contains all necessary statistical
information about the occurrence of the resulting parameter sets. These
statistical information are usually encoded in (multivariate) parameter
distributions p over the parameters. As far as this work is concerned, the
stochastical scenario description model is separated into two sub-models:
the scene model and the behavior model. The scene model statistically
represents the initial time snapshot from which a simulation run starts,
whereas the behavior model includes all the statistical information about
the development and behavioral actions of the dynamic participants of a
simulation run. As already mentioned earlier, this thesis discusses methods
to represent the scene model. Since these methods must be able to represent
an open context, the usage of non-parametric models which are not limited
to pre-defined functional shapes is beneficial. This work therefore uses
probabilistic graphical models (PGMs) since they allow modeling non-
parametric multivariate probability distributions in a memory-efficient way
and allow performing inference. That means they allow the derivation of
conditional probability distributions in the form p(a|b). As shown later in
chapter 6, this is a basic requirement of our approach. Two distinct types
of PGMs are discussed throughout this work: Bayesian networks (BNs)
and sum-product networks (SPNs).

In the Sampling step of the MCS pipeline, parameter sets are sampled
by using p. These parameter sets are then utilized to execute simulation
runs which are used during the evaluation step to assess the criticality met
during each simulation run. For that, metrics which quantify the level of
criticality/safety are needed. Eventually in the stochastic results step, all
simulation runs together are employed to extract statistical statements
about the ADF under test.

For rare event simulations like the validation of a safe ADF, the MCS
approach is well-known to be inefficient [12]. When having a look at the
described pipeline the cause of this problem can be located in the sampling
module. Since it is sampled from p which represents reality, only very few
critical parameter sets are created as illustrated by the red circles in the
sampling module in fig. 1.1. Thus, the information density concerning the
system’s behavior in critical scenarios is very low and in the evaluation
module only little knowledge about safety critical behavior of the ADF can
be gained (shown by the low red bars). As a result, the stochastic-results-
module’s statistical output will have a large variance unless a very large
amount of samples from p are simulated. However, this would lead to high
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costs and is inefficient (for details, see section 5.1.1).
A popular solution to this problem is importance sampling (IS) as

described by the purple part of fig. 1.1. For IS, the Sampling module does not
sample from p, but from a skewed distribution p∗ which emphasizes critical
parameter ranges. As a result, a lot of parameter sets which correspond
to critical simulation runs are created. Hence, one will obtain a high
information density and during the skewed evaluation step it is possible to
obtain a lot of knowledge about the ADF’s behavior in critical scenarios. At
this point, the evaluation will of course be skewed and will not represent the
stochastics of the real world represented by p. IS allows solving this problem
by defining a weighting p

p
∗ of the simulation runs. The application of the

weighting transforms the skewed results back to results of the unskewed
distribution p. While this allows the calculation of an unskewed result,
the variance of the stochastical estimations will still remain small since
more critical simulation runs have been observed. More information to
the mathematical foundations and to the application of IS is given in
section 5.1.2.

1.3 Contributions
The initial aim of this thesis was to contribute to the research regarding
simulation-based methods for the validation of ADF. Therefore, it was
essential to firstly gain insights how to formally describe the validation
procedure, so that it can be evaluated which parts of the same can be
supported by simulations. The 3-circles model published by Stellet et al.
[138] gives such a formal description and categorizes validation into multiple
sub-tasks.

Contribution 1 (Applicability of simulations to validation sub-tasks)
In order to formally understand how to apply simulations on the vali-
dation sub-tasks derived from the 3-circles model (see section 3.1.3), a
translation between the terms of the 3-circles model and the technical
terms of a simulation is derived in section 3.1.2.

To proceed further and to detect open challenges in the current state of
the art, information from the formal understanding of validation were then
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used to categorize and modularize the technical process of simulations for
validation purposes. For each of the resulting modules an overview of the
relevant literature was extracted.

Contribution 2 (Taxonomy of simulation pipeline)
A formal, modular description of the technical process of applying
simulations for validation is given and an overview of the state of the
art is discussed for each of the description’s modules. See section 3.2.

The first concrete open challenge extracted from the state of the art is the
modeling of scenes (time snapshots) in the surrounding of an ADF. The
main challenge is the complexity of real traffic environments. The already
existing models have a limited scope especially regarding the road topology.
A more detailed discussion on the current limitations will later be given in
section 3.3.1 (especially in section 3.3.1.5 for the chosen approach). This
thesis is focused on logical parts of the ADF’s surrounding. That means,
no sensor noise or failures are included. However, it is of course possible to
add imperfect sensor models in the methodological framework.

Contribution 3 (Extension of PGM scene model to intersections)
A PGM-based method for the construction of statistical scene models for
the surrounding of an ADF [119] is extended to intersections and should
in principle now be applicable to arbitrary road topologies. Section 6.2
covers this contribution.

In the beginning, the scene models were constructed by using BNs as
proposed by Wheeler et al. [119]. This approach has significant limitations
with regard to scalability to large and complex scenes since for Bayesian
networks exact inference scales badly with an increasing number of param-
eters. A promising solution approach is the usage of sum-product networks
since exact inference on the latter scales only linearly with the network size
[32, Theorem 1].
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Contribution 4 (Increase of efficiency of PGM-based scene model)
To the knowledge of the author, SPNs are firstly applied to the problem
of scene generation. A comparison between SPNs and BNs concerning
their efficiency and accuracy when representing a scene model is pro-
duced. For the comparison, several SPN learning algorithms are tested.
It is shown that SPNs are much faster in producing scenes than BNs.
This contribution is handled in section 6.3.

For the sake of efficiency, it is not sufficient to just sample from a statistical
model which represents the real probability distribution p. In order to be
able to sample from the IS distribution p∗, it is necessary to modify the
PGM-based method to predominantly sample critical scenes.

Contribution 5 (Creation of scenes with a predefined criticality)
The PGM-based approach to the scene model is modified by adding a
set of safety metrics to the learned probability distributions. Inference
now allows sampling the scene’s parameter set conditioned on the added
safety metrics. By setting the safety metric parameters to a certain safety
level, scenes with a certain criticality can then be sampled. Multiple
safety metrics are compared. Special attention is paid to the sampling
of critical scenes since they are most relevant for safety validation. More
information in section 7.1.

As already described, IS is a popular method to enhance the efficiency
of MCS for rare events. However, IS scales badly with an increasing size
of the simulation’s underlying parameter space. For instance the scenario
illustrated in fig. 1.2 consists of an automated vehicle – which in the
remainder is denoted as ego vehicle – and ten vehicles in its surrounding
which are governed by a behavior model. Let the used behavior model
be a simple parametric model, e.g. the intelligent driver model (IDM)
[104] which includes seven parameters. When a skewed distribution p∗

shall be approximated by a parametric family of functions consisting of
truncated Gaussian distributions with three summands per behavior model
parameter, an optimization to find a good approximation of p∗ must be
conducted in a space with 10 vehicles ·7 parameters

vehicle ·3 summands
parameter ·3 dimensions

summand =
630 dimensions which will not be feasible. By inclusion of other properties
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ego

Figure 1.2 Scaling problem of IS. The number of parameters which must be optimized
explodes with increasing complexity of a scenario. In this example ten vehicles are
distributed in the near surrounding of the automated ego vehicle.

besides the behavior model, the number of dimensions will further increase.
Contribution 6 circumvents this by introducing a methodology which allows
limiting the IS optimization on selected parts of a simulation run.

Contribution 6 (Scalability of IS)
The problem of scalability of IS is tackled by the development of a
method which allows limiting the IS optimization to find p∗ on selected
relevant parts of a scenario. As it is shown in sections 5.2 and 5.3, this
method can strongly reduce the dimension of the optimization.

In order to apply this scalable method to IS optimization, it becomes
necessary to assess which parts of a scenario are relevant with respect to
the applied understanding of the ADF’s safety.

Contribution 7 (Find relevant parts of a scenario)
The application of Screening methods from the area of sensitivity analysis
should enable finding the relevant parts of a scenario. In section 5.4,
it is shown that the Elementary Effects method is able to detect the
relevant parameters of the stochastical scenario description model.

If the PGM-based scene generation method and the IS approach shall be
combined, it must be shown that they are compatible and that IS can
optimize the scene model towards the required critical parameter ranges.
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Contribution 8 (Combination of PGM scene model and IS)
Section 7.2 shows that the developed scalable approach to IS is compat-
ible to the developed PGM-based scene model in its advanced version
resulting from contribution 5. A strategy to include the PGM-based
scene model in the IS optimization is developed.

Quantitative metrics are essential for the definition of the terms “criti-
cality” or “safety” which are assessed in the evaluation modules of the
simulation pipeline. Until now, most metrics usually used in simulations are
pure physics-based metrics which only assess physical criticality. However,
behavior-based metrics which assess who is to blame for a safety violation
are required (see also section 3.2.3). The model of responsibility-sensitive
safety (RSS) [97] formalizes the allocation of blame. However, it does not
directly give a metric whose derivation is therefore the next contribution.

Contribution 9 (Behavior-based metric)
A new behavior-based metric which considers blame, is derived from
RSS in section 4.4.3. It is shown that the metric fulfills the requirements
needed for application to IS. This is experimentally verified by applying
the metric to the developed scalable IS framework in section 5.3.

A detailed comparison of the contributions 3 to 9 to the current state of
the art is presented in section 3.3.

1.4 Outline
This work is structured into eight chapters. The chapters’ placement in
the overall context of the thesis is illustrated in fig. 1.3. Chapter 2 defines
basic terms and concepts which are essential for the understanding of the
work’s aims and procedures. In detail, the terms “scenes” and “scenar-
ios” (section 2.1) are explained. Additionally, an overview about the SAE
categorization of automated driving functions is presented (section 2.2).
Besides, the validation problem for highly automated driving functions and
thereby this work’s necessity is discussed (section 2.3).

In chapter 3, it is discussed how simulations can be used to support
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Figure 1.3 Rough placement of the chapters in the overall context.

solving this validation problem (section 3.1). In this relation, validation
is formalized by using the 3-circles model. This allows identifying several
validation sub-tasks which can be supported by simulations. Afterwards,
the structure of a simulation is examined (section 3.2). That is, several
required sub-modules of simulations are identified and described. Last but
not least, the current state of the art with regard to this work’s main
concepts is analyzed which then directly illustrates the scientific relevance
of the proposed concepts (section 3.3).

The evaluation module of simulations as identified in chapter 3 requires
the definition of metrics to assess the safety of a simulation run. Therefore,
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chapter 4 formally discusses safety metrics and their requirements (sec-
tion 4.2). Four exemplary safety metrics are then introduced (sections 4.3
and 4.4). They will further be used in the remainder of the work.

Efficiency, which is one of the main challenges for executing rare-event
simulations, is discussed in chapter 5. For that, a new scalable method for
applying the cross-entropy method to find a good importance sampling
distribution is introduced (sections 5.1 and 5.2). The method works by
focusing on the relevant parts of a simulation run which have the greatest
influence on an ADF’s safety. The method is illustrated on a simulation
framework which draws its initial scenes from a dataset and which uses
simple parametric behavior models to describe the simulation runs’ dynam-
ics (section 5.3). Additionally, a method to identify the relevant parts of a
scenario is given (section 5.4).

In chapter 5 it turns out that drawing the initial scene of a simulation
run from a pure dataset implies severe disadvantages. Hence, in chapter 6, a
scene model which allows generating these initial scenes is introduced. The
discussed model, which is based on already existing work (section 6.1), is
extended to be applicable to complex roadway topologies like intersections
(section 6.2). Furthermore, a more efficient procedure to model the required
probability distributions by sum-product networks is proposed (section 6.3).

Chapter 7 modifies the initial scene model from chapter 6 to make it
possible to sample predominantly critical scenes (section 7.1). This allows
its incorporation into chapter 5’s IS framework. That mitigates certain
disadvantages since the entire simulation run including the initial scene can
now be optimized by the cross-entropy approach in order to find critical
scenarios (section 7.2). This then enables getting more information about
an ADF’s safety in fewer simulation runs.

Chapter 8 summarizes the thesis and gives an outlook on still open
questions and on possible future work.

Appendix A gives insights into the derivation of the formulas required
in section 2.3 and appendix B gives an overview about the datasets which
were utilized throughout this thesis.
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2 Basics
In this chapter basic facts which are needed for further understanding of
this work shall be discussed. In detail, definitions of the terms “scene” and
“scenario” are given in section 2.1, a description of the common classification
of automated driving functions into 6 levels is included in section 2.2 and a
detailed derivation of the validation problem for highly automated driving
systems is discussed in section 2.3.

2.1 Scenes & scenarios
Simulations for validation of automated driving functions typically consist
of single simulation runs. It is necessary to describe accurately the contents
of such a simulation run. In principle, a simulation run must include the
environment which is relevant for the tested automated vehicle and starts
with a scene and in total forms a scenario. In the following, the terms scene
and scenario shall be defined as proposed by Ulbrich et al. [109].

Definition 2.1 (Scenes)
“A scene describes a snapshot of the environment including the scenery
and dynamic elements, as well as all actors’ and observers’ self-repre-
sentations, and the relationships among those entities. Only a scene
representation in a simulated world can be all-encompassing (objective
scene, ground truth). In the real world it is incomplete, incorrent,
uncertain, and from one or several observers’ points of view (subjective
scene).” (Ulbrich et al. [109])

Following definition 2.1, a scene is a representation of the state of the
relevant environment at one single time step (of a simulation). This rep-
resentation includes information about all the static objects like trees,
buildings,... (scenery), all the objects which have the ability to move like
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footballs, buggies, ... as well as information about the states of the traf-
fic participants (actors) and sensoric elements of the scene (observers).
According to Ulbrich et al., the actors’ and observers’ self-representation
even contain information which are not perceivable from the outside of
the respective element. That can for example be information about skill
levels or internal system states. As a result, it is obvious that an objective
scene description can only be gathered in simulations where an “omniscient
observer” (Ulbrich et al. [109]) is available.

Definition 2.2 (Scenarios)
“A scenario describes the temporal development between several scenes
in a sequence of scenes. Every scenario starts with an initial scene. Ac-
tions & events as well as goals & values may be specified to characterize
this temporal development in a scenario. Other than a scene, a scenario
spans a certain amount of time.” (Ulbrich et al. [109])

Ulbrich et al. [109] define a scenario to be a concatenation of scenes
with certain actions and goals causing the transition between these scenes.
In their definition a scenario does not necessarily have to be defined in
every detail. In the extreme case they accept a scenario consisting of a
detailed defined initial scene which then can develop based on set goals of
the relevant actors.

However, for the purposes of this thesis, a scenario shall be viewed as
a consecutive entry of fully defined scenes. Simulations usually consist
of single, time-discrete simulation steps. The transition between these
simulation steps will be governed by certain pre-defined behavior models
which determine the dynamical behavior of the relevant actors. In this
nomenclature, scenes are equivalent to a single simulation step and a
scenario describes the fully defined, omnisciently viewed progress of a
simulation run. Furthermore, the actions and events are handled by the
actors’ behavior models. An illustration of this connection is illustrated in
fig. 2.1.
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Figure 2.1 Illustration of correspondence of scenes/scenarios and the technical simula-
tion procedure. The upper part shows the iteration of scenes and the lower part of the
figure shows the corresponding simulation steps. BM is an abbreviation for behavior
model, and ∆t is the time length of one simulation step.

2.2 SAE levels
In 2014, SAE International (previously known as Society of Automotive
Engineers) published a taxonomy on automated driving functions [47, last
revision: 2021]. This taxonomy focuses on the subtasks of

lateral/longitudinal motion control,

object and event detection and response (OEDR) and

providing a fallback to a malfunctioning ADF

which are necessary to ensure the correct execution of a dynamical driving
task (DDT) [47, section 3.10]. Note, that in contrast to motion control and
OEDR, the fallback function is not part of the DDT itself. Figure 2.2 gives
a simple schematic overview of DDT’s loop.

Motion control executes the longitudinal and lateral steering of the
vehicle. It’s outputs are based on interpreted and processed information
about the vehicle’s position and surrounding which are compared to the
vehicle’s operational goals. The outputs of motion control are quantitative
steering commands which are sent to the vehicle’s actuators.

The OEDR subtask encompasses the monitoring of the vehicle’s envi-
ronment by detecting, recognizing and classifying objects and events. In
addition, it is responsible for reacting appropriately to these objects and
events [47, section 3.19].

The fallback function acts if a monitor detects an issue in the ADF’s
behavior which endangers the fulfillment of the DDT. It must be able to
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Figure 2.2 Schematic view of the DDT. The image is based on [47, figure 2]. For a
definition of the terms strategic, tactical and operational, see [47, section 8.11].

Table 2.1 Overview over different levels of automated driving. This table is based on
[47, table 1]. ODD is short for operational design domain which describes the area and
driving modes the automated system can handle. Driver corresponds to a human being
while system corresponds to a technical realization of a certain task.

level Name motion control OEDR fallback ODD
0 No Driving Automation driver driver driver -
1 Driver Assistance both driver driver limited
2 Partial Driving Automation system driver driver limited
3 Conditional Driving Automation system system driver limited
4 High Driving Automation system system system limited
5 Full Driving Automation system system system unlimited

solve appearing safety critical situations. The primary focus of the fallback
function is the safety of all traffic participants. It therefore aims to bring
the system into a minimum risk condition. This could for example be
implemented by doing a safe stop on a street’s shoulder [47, section 3.12].
An illustration of these principles is given in fig. 2.3.

In the mentioned SAE taxonomy, automated driving functions are
grouped into six levels of autonomy. An overview is given in table 2.1.
For SAE-level 0 no automation takes place at all. That means the complete
DDT is performed by a human driver. The driver obviously also has to
supply the fallback and the complete OEDR. For level 1 the driving task is
split. Either the longitudinal or the lateral motion control is executed by
the system. For level 2, the system takes over both lateral and longitudinal
control of the vehicle. However, for levels 1 and 2 at least parts of OEDR
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Figure 2.3 Simplified scheme of the functioning of a monitor. Let an ADF execute
the DDT, possibly together with a driver. If the monitor detects some kind of fail-
ure/performance issue during the normal operation of the ADF, it activates the output
of the fallback function, which is responsible to transition the vehicle into a minimum
risk condition. ADF, monitor and fallback may get sensoric input from the environment.
The ADF and fallback output control signals for the actuatoric layer of the vehicle.

and the fallback function must still be provided by the human driver. Hence,
the driver must still monitor the correct functioning of the system.

This changes fundamentally at SAE level 3. Starting with level 3, the
automated driving system itself must be able to execute the complete DDT
by itself. Therefore, it must also be able to monitor itself and recognize
(performance) issues and failures in advance. Having recognized a critical
situation or operational design domain (ODD) limits, the system must
inform the driver at an early stage, so that there is enough time for the
driver to take over and to solve the situation. Consequently, the human
driver still acts as fallback, but s/he doesn’t have to actively monitor the
execution of the DDT if not notified by the system. Hence, the driver is
allowed having his focus on something different than driving if he is not
explicitly alerted. Beginning at level 4, the system provides the fallback
function of the driving task. No driver interference is needed anymore. For
the levels 1-4, the ODD of the automated driving system is limited by a
certain ADF-specific set of criteria. In contrast to that, level 5 allows the
automated driving system to perform all driving, monitoring and fallback
tasks at all possible locations and for all possible driving modes.

In recent years a lot of progress has been made regarding the implemen-
tation of automated driving functions in production vehicles. Currently,
level 2 systems are in the market. The first level 3+ systems are following.
However, as already mentioned, the implementation of level 3+ systems
corresponds to a large paradigm shift: The system must execute the com-
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plete DDT by itself for the first time. This corresponds with the ability to
take over the monitoring of its own performance from the human driver.
Therefore, the responsibility for the safe operation of the vehicle partly
passes from the driver to the system and thereby to the developer of the
vehicle.

It is of great importance for the introduction of newly developed auto-
mated driving functions, that these functions are thoroughly validated and
tested. Therefore, the mentioned paradigm shift between level 2 and 3 and
the associated increase of responsibility introduces great challenges to the
validation of systems of level 3 and higher. The next section will give an
overview over these challenges.

2.3 Validation problem for SAE levels 3+
As already mentioned in the previous chapter, the paradigm change between
SAE level 2 and 3 introduces new challenges to the validation procedure.
For level 1 and 2 functions the responsibility for the safe operation of the
system lies purely with the driver. Therefore, these types of functions can
be seen as comfort functions. Naturally, societal demands regarding the
safety of comfort functions are way lower than demands towards systems
of higher levels of autonomy. This allows a significant reduction in the
necessary testing effort and enables the release of these low level functions
by the use of traditional validation methods. Such traditional validation
methods for example comprise testing vehicles for a certain distance on
real roads (endurance runs) or testing a system on fully controlled test
tracks. Since it is sufficient to test comfort functions for their operation
in the most common scenarios, the distance necessary for release is still
feasible.

This changes fundamentally when a safety critical function of SAE levels
3 and higher shall be introduced. Here, it is essential to test and validate
the system to be able to handle all scenarios it could run into with a certain
degree of reliability. One of the main challenges here is based on the fact,
that the traffic environment the function must be able to operate on, is an
almost infinitely large open context. That means one cannot fully specify
and describe all the scenarios an automated vehicle could come across.
That makes it very time-consuming if not even infeasible to assess the
reliability of a driving function’s handling of all these scenarios. Up to
now, the question for the required level of reliability is not solved. Perhaps
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this question should not fully be answered by the manufacturers of the
automated driving functions themselves since it is a societal question of
how much risk we are willing to tolerate.

Several approaches for a quantitative estimation of the effort required to
traditionally validate a level 3+ driving function by using endurance runs
have been given [51, 112]. The approach by Kalra and Paddock [51], which
shall now be discussed, assumes that a requirement societies might demand
from automated vehicles is at least, that they are more reliable respectively
safer than current vehicles driven by human drivers (this is known as
GAMAB principle, see section 2.2.3 in [50]). At this point, it is necessary to
be very thorough with the analysis and distinguish several accident classes.
For example, the German Federal Statistical Office (Destatis) distinguishes
between 6 different classes of accidents1 [110], which are

1. accident with persons killed (fatalities),

2. accident with seriously injured persons (heavily injured),

3. accident with slightly injured persons (slightly injured),

4. severe accident involving material damage in the narrow sense (se-
vere),

5. other accident involving material damage,

6. other accident involving material damage under the influence of
intoxicating substances.

The validation of an automated vehicle’s reliability should be done sep-
arately for the accident classes. Otherwise, if only the total reliability of
all accident classes together was considered, this could lead to an overall
increase of reliability but a decrease for highly critical accident classes,
e.g. the number of accidents involving material damage could be strongly
decreased, however the number of accidents with persons killed could be
increased at the same time and the total statistics would not show this.
Society probably would not accept such an exchange of occurrences (in
this context, ISO 26262 defines risk as the “combination of the probability
1 This classification is not perfectly suitable for the assessment of safety. Especially

class number 6 is not necessarily relevant. However, the first four classes are sufficient
to get an estimate of the effort needed for traditional validation methods as shown
later in fig. 2.4.
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of occurrence of harm and the severity of that harm”, therefore risk and
occurrence probability cannot be considered separately).

Kalra and Paddock [51] address this point by separately calculating
the number of necessary miles automated vehicles must be driven to get
statistically significant statements about their safety for the accident classes
of fatalities, injuries and total crashes. They utilized numbers from the
US Bureau of Transportation Statistics. In the following, their procedure
is transferred to numbers of Destatis. Their rough principle is to apply
“success run statistics based on the binomial distribution” [79].

To execute the success run statistics a per-km reliability rate r is defined.
The probability distribution of the expected amount of incidents i when
driving n kilometers is given by the binomial distribution

p
(
φi

∣∣φn , φr

)
=
(
φn

φi

)
φ

φn −φi

r ·
(
1− φr

)φi . (2.1)

Formally, i, n and r are random variables. Throughout this work φX ∈
V al (X) in general describes a numerical assignment to the respective
random variables in X. The confidence level of the estimation R of the
reliability rate based on this n driven kilometers can now be estimated by
(see appendix A)

C (R|φn , φi) =
1ˆ

R

p
(
φr

∣∣φn , φi

)
dφr = 1−

φi∑

j=0

(
φn

j

)
(1−R)jRφn −j . (2.2)

Kalra and Paddock [51] assume that during testing φi = 0 incidents happen.
The number of kilometers φn which must be driven to achieve confidence
level C can then be calculated by

φn =
ln
[
1− C (R|φn , 0)

]

ln(R) . (2.3)

Equation (2.3) shall now be used to calculate the necessary number of
kilometers for different accident classes and for different desired confidence
levels C. Since it shall be shown, that the automated vehicles are at least as
save as a human driver, statistical values for accident rates on real streets
and for the different accident classes are required in order to determine R.
The values which are used in the following are given in table 2.2. The results
of the calculations which give the necessary test distances are displayed in
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Table 2.2 Accident rates as calculated by the values published by Destatis [110]. For the
total mileage 757 × 109 km, as given in [93], is used. For the calculation of the accident
rates it was further assumed, that on average two vehicles are involved in an accident.

accident class rel. amount of accidents accident rate
(in total 2 685 661) 1−R in 1

km

fatalities 0.1 % 7.10× 10−9

heavily injured 2.1 % 1.40× 10−7

slightly injured 9.0 % 6.39× 10−7

severe 2.6 % 1.84× 10−7

fig. 2.4. The necessary amount of driven kilometers grows strongly with
increasing confidence level. For a confidence level of 1, it diverges. However,
even for lower confidence levels, n is already very high. For the fatalities,
n encompasses several hundred million of kilometers.
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Figure 2.4 Number of necessary driven kilometers to reach a certain confidence level.
For C → 1, the necessary test distance diverges. The lower the accident rate, the higher
n must be.

As already discussed by Kalra and Paddock [51], executing endurance
runs over a distance of 108 km is not feasible. Not only might endurance
runs of this length take several decades and be very expensive, it would also
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be required to repeat them for each software version. For these reasons, it
is absolutely essential to develop new holistic validation procedures which
allow reducing these infeasible costs. Simulations have the potential to
be part of such procedures since they offer several useful properties like
reproducibility, controllability, efficiency, knowledge about the ground truth
and safety during testing. This potential as well as still open questions
concerning simulation-based procedures shall be discussed in the remainder
of this work.
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3 Simulations for Validation
In section 2.3 it was shown, that the validation of highly automated driving
functions faces a feasibility challenge. In this chapter, it shall now be
discussed how simulations could be used to form a part of the solution to
this feasibility challenge. Section 3.1 recapitulates the 3-circles model and
uses it to derive statements about the areas of application of simulations,
section 3.2 discusses the different models and parts which are required
to run a simulation and section 3.3 debates the current state of the art
and shows still open questions, which shall partly be addressed in the
later chapters of this work. The work in sections 3.1 and 3.2 was already
published by Jesenski et al. [133]; © 2019 IEEE.

3.1 Possible areas of application
Validation is a complex task and therefore a thorough description of the
validation process becomes necessary. In this work, the validation process
shall be described by utilizing the 3-circles model introduced in [82, 138]
(see section 3.1.1). This abstract description of the validation process is used
to give a short, abstract overview how to implement simulations within the
validation process. This is accomplished by discussing translations between
the terms of the 3-circles model and the technical terms of a simulation run
(see section 3.1.2). Additionally, the formal description of the validation
process allows characterizing several validation subtasks (see section 3.1.3).

3.1.1 3-circles model
In this chapter, the 3-circles model [138] is shortly recapitulated and
extended to the application on simulation-based methods. In total, the
complex task of building a valid automated driving system can be charac-
terized by the validation triangle as given in fig. 3.1. An automated driving
system is valid if the validation triangle is consistent, i.e. the system’s
realization must fulfill its purpose on its context. The context of a system is
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context

realizationpurpose

interdependency

Figure 3.1 A validation triangle consists of three interdependent elements: Context,
purpose and realization. The aim of validation is to show that the validation triangle
is consistent. That means it is essential to show that a system’s realization fulfills its
purpose within the context it operates on. The three elements are highly interdependent
on each other.

the domain, i.e. the relevant parts of the environment, the system must be
able to operate on. As an example, that could be the relevant information
about one lane streets in a city where a robotaxi shall be deployed. In the
same example, the purpose of a system could be to provide a robotaxi
service and the realization would be the technical implementation of the
robotaxi itself. These elements are strongly interdependent. A system’s
realization is of course dependent on its purpose, e.g. a vehicle which shall
transport a large number of people might look like a bus, whereas a vehicle
which should only transport few people might be much smaller. The same
is also valid for the realization’s relation to the context. A vehicle which
aims to transport people over a river must look different than a vehicle
transporting them through a forest. Of course, the same also holds for the
purpose of a system, which strongly depends onto context and realization.
Even the context of a system is dependent on the other two elements. As
an example, the relevant contextual information about the environment
strongly change when using different sensors for the realization. When
using a camera, colors matter a lot, however when using a Lidar sensor
they won’t even be recorded.

Another challenge included in the validation triangle is the complexity
of its constituents. It will probably not be possible to explicitly describe
either of them. The reasons for that are eclectic. Firstly, the context a real
world system must be able to operate on will be very complex, since the
world is unstructured and one just cannot completely describe everything
which could happen on real roads. Additionally, the context will change
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since infrastructure, traffic participants and other influences will change
over the years of operation. The same also holds for the purpose of a system
since implicit assumptions are often included in a system’s definition. A
reason for that is for example that basic working principles are given
qualitatively and not quantitatively and these statements can often be
strongly correlated to the situation a system is running into. Exemplarily, it
is not easy to translate a purpose like “drive safe and fast to the destination
your passenger wants to reach” into quantitative instructions. A similar
argument for the system’s realization is its emergent behavior [138]: Since
a driving system will be very complex and consists of different subsystems,
it will not be enough to analyze the subsystems since the system’s behavior
will be shaped by (unexpected) interactions between these subsystems.

As a result of these deficiencies, it becomes necessary to distinguish
different types of behaviors. A behavior describes the interactions between
the system and its environment [138] which is given by the entirety of a
validation triangle. Stellet et al. [138] distinguish between three different
types of behavior which are

required behavior (RB),

specified behavior (SB), and

implemented behavior (IB).

RB describes the infinitely complex behavior which the developer tries
to achieve. It is the behavior which is required in reality. SB gives the
formalized part of the RB, which was explicitly understood and is written
down in e.g. a specification which is used during the development process.
IB characterizes the behavior which eventually was achieved after the
implementation of the system. Because of the possible emergent behavior
and the complexity of the system, the implemented behavior will deviate
from the system’s specification. Each of the behavior types contains a
validation triangle by itself.

The elements of the validation triangle of RB shall be called ∞-complex
context, aimed purpose and required realization. Since the aimed purpose
strongly relies on implicit assumptions and the ∞-complex context must
describe an infinitely complex ODD, they cannot be described in a formally
complete way. It is important to note that a valid system is not allowed
to leave its ODD. The elements of the validation triangle of SB are called
”expected to be relevant“ context, intended purpose and specified realization.
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Figure 3.2 3-circles model describing the important entities necessary for validation
of ADFs. The figure is based on a figure from [138] but was extended by additional
information on the relations between validation triangles and behavior sets. Image
published by Jesenski et al. [133], © 2019 IEEE.

Of course, these elements can be expressed explicit and complete since
they are a specified and simplified approximation of the incomprehensible
elements of the triangle of RB. Equivalently IB comprises the effective
context, the effective purpose and the implemented realization.

The aim of the validation procedure must be to show that the overlap of
these three behaviors, which is represented by cut-set 3 in fig. 3.2, is large
enough. All the other cut-sets and areas represent failures. The areas 1, 5
and cut-sets 4, 6 probably will have the worst effects since here the system
is not implemented as required. However, also cut-set 2 and area 7 can
have bad effects since here the correct/false behavior was implemented/not
implemented by chance and not as a result of good system knowledge. This
can at least have bad implications in later system revisions. As will be shown
in the next sections, it might be possible to get information about the size
of cut-set 3 by using simulations to generate evidence about the consistency
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Figure 3.3 Relationship of the terms of the validation triangle to the technical terms
of a simulation-based procedure. The simulation procedure describes the elements of
one simulation run and is simplified. For a more elaborate discussion on simulations see
section 3.2.

of certain validation triangles. In order to proceed, an understanding of
the different types of evidence and how it can be generated by the use of
simulations becomes necessary.

3.1.2 Types of evidence
Simulations are useful to generate evidence that a validation triangle
is consistent. As already discussed, consistency implies that a certain
realization can fulfill its purpose on the relevant context of the validation
triangle. In order to apply simulations, it is first of all necessary to translate
the terms used in the 3-circles model to the technical terms and modules
available in simulations. The translations are given in fig. 3.3. Therefore,
evidence is generated by sampling scenarios (test cases) from a test space
(representation of context). These test cases are then used to evaluate a
test object (representation of realization) by applying a test metric (checks
the fulfillment of the purpose for the context). It is possible to distinguish
two types of evidence: System knowledge and statistical evidence.
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Definition 3.1 (System knowledge)
To gain system knowledge means to understand how an automated
vehicle reacts and behaves in different scenarios. Therefore, in order
to generate evidence of this kind, it is essential to simulate as many
diverse test cases as possible since the main aim is to find the areas of
the test space which are the most critical. System knowledge can be
gained by the application of microscopic metrics (see section 3.2.3).

Definition 3.2 (Statistical evidence)
Statistical evidence allows deriving statistical statements about the
appearance of errors in the validation triangle of an automated system.
As an example, it could be the aim to derive a collision rate which then
could be compared to the collision rates of human drivers. Statistical
evidence can be generated by the application of macroscopic metrics
(see section 3.2.3).

3.1.3 Areas of application
As already mentioned, simulations can be used to generate evidence about
the consistency of a validation triangle. However, which validation triangles
are relevant and can be used to give hints about the overlap of the behaviors
as illustrated in fig. 3.2? To understand this, it is necessary to analyze
which validation sub-tasks are implied by the 3-circles model. As a result
of fig. 3.2, it is necessary to perform

1. Verification (SB =⇒ IB),

2. Validation of the specification (RB =⇒ SB), and

3. Validation of implementation (RB =⇒ IB).

Each of these sub-tasks addresses the overlap of two of the three types of
behavior.

Verification is a well-known problem in the development of complex
systems. It is used to show that the implemented system fulfills the explicit
specification used for development. Formally, such a simulation tests the
consistency of the triangle of implemented realization, “expected to be
relevant” context and intended purpose, as displayed in fig. 3.4. That means,
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Figure 3.4 Validation triangle used by simulations in the verification sub-task.
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Figure 3.5 Validation triangle which is utilizable for the validation of the specification.

a validation triangle newly constructed from parts of the triangles of the
behaviors is simulated and validated.

The validation of the specification must find evidence that the explicitly
described specification of the system matches the stakeholders’ implicit
expectations. In other words, it must be shown that the system’s specifica-
tion is in accordance with the requirements of the ∞-complex reality and
therefore specifies a truly “useful” and “safe” automation. Analogous to the
verification task, the validation triangle shown in fig. 3.5 can be assigned
to this subtask. The simulations must provide evidence that the validation
triangle of specified realization, ∞-complex context and aimed purpose is
consistent.

The validation of the implementation sub-task is equivalent to the clas-
sical validation approach. Here, it is assessed if an implemented system
fulfills the real needs of the stakeholders, whereas these needs might not be
expressed explicitly. In summary, the system implementation is compared
to the demands of reality as given by RB. Figure 3.6 shows the associated
validation triangle. The aim is to show the consistency of the triangle
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Figure 3.6 The Validation triangle applied to the validation of implementation.

of implemented realization, ∞-complex context and aimed purpose. In
addition, it is possible to use simulations for further tasks like showing the
consistency of the specification itself.

A more detailed assessment of the validation sub-tasks with their scopes,
limitations and challenges goes beyond the scope of this work. The interested
reader may have a look at the discussion published by Jesenski et al. [133]
in 2019.

3.2 Structure of simulations & related work
Simulations which can be used to generate evidence for the consistency
of the validation triangles of the validation sub-tasks exhibit a certain
structure. In this section this structure and the relevant properties of
the simulations are highlighted. The basic structure used in this work
to differentiate the simulations is presented in fig. 3.7. In principle, it is
possible to distinguish three phases in the entire simulation procedure.
During the test case generation phase a sampling method is used to sample
a parameter combination from the parameter ranges of the models which
describe the test space. During the simulation run, the test case defined
by the parameter combination is used to check the response of the test
object. The response of the test object is then assessed in the evaluation
phase. The evaluation of a single simulation run is achieved by the use
of a microscopic test metric. If a stopping criterion is met, a total final
statement on all simulation runs is determined by a macroscopic test metric
and the simulation is stopped. Otherwise, the phases are repeated and
another simulation run is conducted. Due to the emergent behavior of an
automated vehicle, simulations considering the entire driving stack could be
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Figure 3.7 Simulation-based procedure for validation. A simulation run can be cate-
gorized into the three phases of test case generation, simulation run and evaluation.
Simulation runs are conducted until a stopping criterion is fulfilled. This stopping
criterion could be a statement about the completeness of the tested space or a statement
about the accuracy of a statistical result. Graph based on Figure 4 published by Jesenski
et al. [133], © 2019 IEEE.

highly beneficial. For this reason, the following discussion of the parts of the
procedure focuses on the consideration of system-level simulations. Each of
the following subsections debates one of the three simulation phases.

3.2.1 Test case generation
3.2.1.1 Sampling methods

A sampling strategy is needed to make sure that the results of the simulation
have a sensible meaning and are calculated efficiently. For highly automated
driving functions, which are usually open context systems, it probably will
not be possible to sample the test space exhaustively. Hence, the sampling
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strategy must be able to select relevant test cases/samples which allow
determining high fidelity simulation results with as few samples as possible.
In particular, the sampling methods can be divided into two categories:
Coverage-based sampling and statistical sampling.

Coverage-based sampling is based on the principle to sample as many
different parameter sets as possible. Consequently, this approach allows
generating system knowledge (see definition 3.1). That means, one generates
insights into the system and explores possible interactions with the system’s
environment. Lots of different designs for sampling strategies of this type
are possible. In principle, one can sample

1. evenly distributed or in some other geometrical order over the whole
test space, or

2. restricted to interesting critical parts of parameter space.

Regarding the first approach, an overview about suitable combinatorial
methods and coverage criteria, especially for the field of software testing
is presented by Grindal et al. [37]. Schuldt [94] utilizes combinatorial
methods in combination with equivalence classes and boundary value
analysis. Rocklage et al. [87] and Tuncali et al. [107] apply combinatorial
t-wise sampling approaches which make sure that all combinations of t-sized
parameter subsets are tested.

In relation to the second approach, that means when aiming to restrict
the sampling to error-prone areas of parameter space,

optimization-based [13, 106, 107],

learning-based [48], and

search-based [2, 4]

methods can be used to find relevant, critical parameter combinations.
These search/optimization-based methods usually require a high number
of computationally expensive simulation runs. Therefore, surrogate models
can be used to approximate the criticality-related results of simulation runs
[101, 106]. Hence, the number of directly executed simulation runs might be
significantly reduced and the search for critical behavior can be fastened.

Recently, implementations which try to find error-prone parameter areas
based on the usage of dynamic programming [22], on exploration via
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rapidly-exploring random trees [60, 105] and on the application of adaptive
stress testing [59] have been proposed. Especially adaptive stress testing
has drawn a lot of attention [23, 49, 57–59]. Here, the problem of finding
collision scenarios is solved based on the description of a simulation run
as a Markov decision process. Optimization algorithms are then used to
find a policy which optimizes a specific reward function on this decision
process. This reward function is related to the probability of actions leading
to a collision and thereby allows the optimization of the most probable
collisions. In addition to these approaches, methods utilizing reachability
analysis are also viable [7, 53]. Besides, methods to find feature interaction
failures [3], methods to find the safety boundaries of error-prone regions of
parameter space [11, 75, 130], methods to vary real, recorded scenes [131]
and approaches to derive test cases from test models [43] exist. Furthermore,
Corso and Kochenderfer [21] define an optimization-based approach which
enables finding human-interpretable signal-temporal-logic-based failure
descriptions. Abbas et al. [1] propose the combination of optimization-
based test approaches and formal verification.

It is often hard to define a stopping criterion for such coverage-based
sampling methods since a metric which defines when “enough” samples
have been drawn is difficult to find [94]. Without the addition of some
statistical representations, coverage-based methods usually do not allow
generating statistical evidence (see definition 3.2). Another disadvantage is
that these approaches often work by falsification which means that only
single failures, often the most probable failure, and not the entire range of
errors is investigated.

Statistical sampling methods are applicable when one desires to determine
statistical evidence (definition 3.2) like accident rates of an automated
system. Statistical sampling methods sample from probability distributions
which must be defined by test space models (section 3.2.1.2). A strong
challenge with statistical sampling methods is that they usually sample
mostly in highly probable areas of the test space. However, these areas
usually are understood quite good because they happen very often in the
real world. That means, the amount of samples which are necessary to
get new insights into the system and its critical areas, which mostly lie in
very unlikely sections of the test space, is pretty high. Consequently, the
argumentation described in section 2.3 partly also holds for simulations.

Different techniques which allow to mitigate this challenge have been
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developed [12]. Examples are importance sampling [30, 33, 127] or subset
sampling [78, 124]. The basic idea behind these algorithms is that they allow
sampling from skewed probability distributions which especially emphasize
critical parts of parameter space and include a procedure to calculate the
generated statements back to the original, unskewed distribution. For IS this
skewed distribution is denoted as optimal importance sampling distribution.
The Cross-Entropy method [15, 89] is often used to optimize the optimal
importance sampling distribution [80, 91, 126]. Detailed information on the
mathematical formulation and the ideas behind IS and the cross-entropy
method can be found in section 5.1. Wang et al. [116] use reachability analy-
sis to define the criticality of parameter ranges of a crosswalk scenario. This
allows creating an importance sampling distribution which emphasizes only
“feasible test cases” which are caused at least partially by the automated
ego vehicle. Wheeler and Kochenderfer [121] present a method to cluster
critical scenes and model them by utilizing factor graphs. By sampling
from these critical factor graphs, importance sampling becomes possible.
Huang et al. [45] propose a method to use surrogate functions based on
Kriging models to further enhance importance sampling. Uesato et al. [108]
estimate the optimal importance sampling distribution by using failures
happening during the training procedure of machine learning agents. By
doing so they exploit the fact that during training the agents will still cause
more failures than when they are properly trained. Using this to validate
the fully trained agent however necessitates the assumption that the types
of possible failures do not change during the training procedure.

In principle, these methods all pursue the same objective: the reduction
of variance of the estimations of the statistical values when the simulation
is limited to a certain budget of simulation runs.

A stopping criterion for statistical sampling methods can be based on
the variance of the statistical results of the simulation [33]. On top of the
discussed variance reduction methods, Huang et al. [46] propose a method
to estimate the input uncertainty – which is caused by the variability of
training data – of the statistical models used as inputs for Monte-Carlo
simulations.

3.2.1.2 Test space

The test space describes the entirety of test cases/scenarios which the
system under test might encounter. System-level simulations’ test space
mainly considers the surrounding of an automated vehicle. As already
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mentioned, the surrounding of automated vehicles (∞-complex context,
RB) usually implies an open context problem. Thereby, it is only possible
to model an approximation of the context. The open context includes a
large variety of static and dynamic entities in the vehicle’s surrounding.
To handle this variety, Schuldt et al. [95] introduce a model which allows
structuring and categorizing these entities into 4 different hierarchical layers.
The model later was extended to 6 layers [92].

The creation of models which describe the test space usually requires the

1. selection of features/parameters which shall be modeled [38],

2. decision about parameter ranges and distributions over these param-
eters which can be used for the sampling,

3. handling of the continuum of values, possibly the discretization of the
parameter ranges. In the simplest case equidistant bins can be used
[119]. Chen et al. [20] discuss a more elaborate scheme applicable
especially to Bayesian networks.

Schuldt [94] also gives a high-level discussion of the generation of the test
space and the inherent demands. The literature on test space modeling can
be distinguished into the two categories of generic modeling and maneuver-
based modeling (these terms will be discussed in the next paragraphs).
Another important property which strongly influences the structure of a
test space model is the availability of statistical information about the
parameter values enclosed in the models and the structural organization
(e.g. distribution-based vs distribution-free) of the same.

Since the validation of automated vehicles benefits by the use of closed-
loop simulations (see section 3.2.2), test space models often decompose
into a static scene model (e.g. [119]), which creates the initial scene of
a simulation run and behavior models (e.g. [104]), which describe the
dynamics of objects in the surrounding of the automated vehicle under
test. Some works also attempt to use hybrid models which unify scene
and behavior models. However, such hybrid approaches often are not as
generic and flexible as the separated approach, e.g. the hybrid approach
in [127] only models one particular scenario. Another possible method to
tackle the infeasability-problem of the open context is the concept of the
so-called “shadow mode” as described by Koenig et al. [55], Rocklage [86],
and Wachenfeld and Winner [111]. Here an automated driving function is
implemented, but is only running passively in the background to analyze
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the scenarios the car experiences. Hence, it is possible to select relevant
scenarios where the function would possibly fail. The open loop of the
analysis of the scenarios can be closed by utilizing offline simulations.

Maneuver-based modeling describes the creation of models which only
model one particular type of traffic maneuver. For instance, that can be
models of car-following scenarios [30, 127], cut-in scenarios [126, 128, 129],
lane departure events [115] or parking scenarios [18]. Such maneuver-based
models can be advantageous since they are easier to design and need
less parameters than generic models and they usually have an expressive
meaning. However, a large disadvantage is that it is necessary to define
an extra model for each maneuver type included in reality. That is, the
∞-complex context is not represented by one model c but by a union
c =

⋃
i ci. Because of the open context, the number of necessary models is

very high. Hence, it is essential to create some sort of scenario catalog which
comprises all relevant scenarios [27, 30]. However, the creation of a complete
scenario catalog may be time-consuming or may even be impossible. Basic
approaches to scenario catalogs are documented in [103, 129]. Additionally,
there are data-driven methods [66, 125] and formal approaches, eg. based
on ontologies [10, 54], for catalog creation.

Generic modeling approaches enable the modeling of the test space
without being limited to certain maneuver types. As a result, a scenario
catalog is not necessary since it should be possible to obtain scenarios of
different maneuver types by just sampling from the model’s parameter
space. Possible disadvantages of a generic modeling approach are parameter
explosion, less expressive parameters and the difficulty to be accurate
and complete on the ∞-complex context. Examples for generic modeling
techniques are given by [64, 80, 118, 119]. A more detailed discussion on
the state of the art regarding the generic modeling of scenes is included in
section 3.3.1.

The availability of statistical information is essential when a test space
model shall be used for statistical sampling as defined in section 3.2.1.1.
The development of statistical models is a large challenge and requires
the availability of large amounts of data targeting the operational design
domain of the automated driving function under test.
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In general, it is possible to distinguish statistical models relying on a
particular parametric family of probability distributions and statistical
models which work distribution-free.

Distribution-based statistical models usually benefit from few, but
expressive parameters. Besides, the models’ output usually is comprehensi-
ble. As a disadvantage, the structure of such models is fixed and thereby
limited in its ability to represent the open context in the surrounding of the
automated system. Distribution-based models often are split up into models
for lane-following [36, 104, 122], lane change [28, 52] and gap acceptance.
Bonsall et al. [16] discuss these models and some of their main parameters.

Distribution-free statistical models are not limited to a certain family
of distributions. That means, they are more flexible in their structure.
Since it might be hard to find a certain class of functions which sufficiently
represents the open context of an automated function under test, the usage
of distribution-free methods is indicated. A comparison of the accuracy of
distribution-based and distribution-free models regarding speed prediction
is given by Lefevre et al. [65]. Distribution-free models often contain a
larger number of parameters which cannot be understood semantically,
e.g. it is generally not possible to naively understand how a change in the
weighting of a specific neuron of a large neuronal network influences the
network’s output.

For instance, distribution-free models can be created by Bayesian net-
works [35, 119, 120] (see section 6.1.2), sum-product networks (see sec-
tion 6.1.3), factor graphs [118], tree diagrams [120] and neuronal networks
[74].

When handling sequential decision problems like the behavior of traffic
participants, specific distribution-free techniques like generative adversarial
imitation learning should be used. In contrast, when naively using tradi-
tional supervised learning methods which are trained on (input, output)
tuples for each single decision in a sequential decision process, small er-
rors in each decision can sum up and hence the entire modeled decision
sequence can produce catastrophically false results. As already mentioned,
this problem of cascading errors can be addressed by specific methods like
adversarial imitation learning and reinforcement learning [63, 64] since
these methods do not train on single decisions, but on the entire sequences
at once.
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3.2.2 Simulation run
3.2.2.1 General properties

Dependent on the test object and the aims of the simulation several general
properties of a simulation run can be adjusted.

Granularity: The Granularity is one of the most important properties of
a simulation run. One distinguishes macroscopic, mesoscopic, microscopic
and sub-microscopic simulation granularity [62, 67]. For the validation of
automated systems usually a sub-microscopic granularity is desirable since
it allows considering vehicle sub-structures like single hardware components.
In contrast, macroscopic simulations only consider “thermodynamic-like”
sizes as traffic flows. Microscopic simulations scope single vehicles but not
their sub-structures and mesoscopic simulations are made up from a mix
of microscopic and macroscopic models.

Closed loop vs. open loop: A simulation run can be conducted in an
open loop or a closed loop manner. Within open loop simulations, the
system under test is affected by its surrounding, however the surrounding
does not react to the system’s actions. In closed loop simulations, both
the vehicle and its surrounding affect each other in both directions. One
particular instantiation of open loop simulations is the augmented replay
of measured data [131]. Since in reality an automated driving function
will heavily influence its surrounding it is preferable to use closed loop
simulations.

Inclusion of reality in simulations: It can be quite demanding to model
the test object of a simulation with proper accuracy. Hence, the inclusion
of parts (hardware/software) of real vehicles in the simulation run can
be highly beneficial. This approach in general is denoted as X in the
loop (XiL). Within X in the loop methods, parts of the models in the
simulation run are replaced by reality. As an example, it is possible to
replace parts of the automated driving function in the test object by real
software (software in the loop; SiL). If some real hardware components
(e.g. software running on a real control unit) is included, the approach is
usually described as Hardware in the loop (HiL) testing. The replacement
of model components by real software and hardware can be applied on
different scales. An extreme example is the Vehicle Hardware in the Loop
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(VeHiL) technique. Here, the whole test object (the entire vehicle which is
controlled by the ADF) and even nearby surrounding vehicles are replaced
by real hardware [34]. Generally speaking, the more model components
are replaced by real implementations, the more accurate the simulation
results will become. However, the simulation speed will decrease with an
increasing share of replaced models. For VeHiL it will even be limited to
real time.

3.2.2.2 Test object

In principle, the test object can be described by white-box and black-
box models. A white-box model allows insights into internal states of the
test object, a black-box model does not. A test object model contains
several modular components. Firstly, models for the sensors used by the
tested driving function must be modeled. These models can become quite
complicated depending on their accuracy. Physical low-level models and
phenomenological high-level models exist [98]. It is also possible to utilize
sensor hardware in an X in the loop manner. Additionally, models for
electronic control units and models for the vehicle dynamics such as steering
and braking are needed. Especially for the modeling of the vehicle dynamics,
a wide variety of models has been developed. There are simple single-track
models and more advanced and more accurate and complicated multi-track
ones [70]. Last but not least, it is of course very important to represent the
functional chain of the tested ADF itself. This can be realized by models
or again by the use of software and/or hardware components. Since the
development of accurate test object models is not in the scope of this work,
simple rule-based mathematical models will be used for the test object’s
description in the remainder.

3.2.3 Evaluation/test metrics
For the evaluation of simulation runs, it is necessary to assess their criticality.
Therefore, safety metrics must be defined. Helmer [42] has introduced a
classification for metrics which consists of two axes: A first distinction
between microscopic and macroscopic metrics and a second distinction
between metrics working only on accident cases or also on non-accidents
as shown in table 3.1. Microscopic metrics evaluate single simulation runs,
whereas macroscopic metrics determine statistical results regarding multiple
runs. These statistical results usually can be expressed by occurrence rates
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Table 3.1 Specification of safety metrics based on [42], p.53. Table was already published
by Jesenski et al. [133], © 2019 IEEE.

Metrics for accident severity Metrics for criticality

m
ic

ro
sc

op
ic

physical metrics (colli-
sion speed, delta of ve-
locity (DV) [77], ...)

physiological metrics
(injury severity [127],
...)

economic metrics

physical metrics
(PET [6, 77] ,
WTTC [113], TTX
(TTC [40], TTB
[44], ...), time
headway, DCE [26],
more metrics sur-
veyed by Mahmud
et al. [69] ...)

Metrics on accident cases Metrics on all cases

m
ac

ro
sc

op
ic injury rate [127]

fatality rate

...

accident rate [130]

prevention rate

conflict rate [127]

...

of different types of events. Microscopic metrics concerned with accidents
can work on three levels: They can assess physical properties of an accident,
they can have a look on the physiological effects the accident has on
the passenger or pedestrians involved in the accident and it is of course
possible to have a look at monetary/financial aspects of an accident. In
contrast, metrics which evaluate the criticality of non-accident events
without a collision can only be assessed with regard to physical measures.
For instance, microscopic measures to evaluate the criticality of a simulation
run can be defined by the post encroachment time (PET), several time-
to-X (TTX) metrics like time-to-collision (TTC) or time-to-brake (TTB),
the worst-time-to-collision (WTTC) and the time headway. This list of
metrics is of course a long way from being complete. An extensive study
discussing different metrics was for example realized by Mahmud et al. [69].
In addition to these deterministic metrics, probabilistic metrics have been
developed. As an example, a risk-based framework which generalizes the
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TTC to a time-to-closest-encounter (TTCE) which measures the time to a
distance-of closest-encounter (DCE) is given by Eggert [26]. In addition to
metrics which purely assess the safety implications of automated driving
functions, metrics which evaluate other types of effects might be beneficial
and necessary. As an example, the application of traffic quality metrics as
discussed in [39] might be advantageous.

All the previously mentioned microscopic metrics are united in having
the same problem: They evaluate the criticality of a scenario, but they do
not allow assessing which traffic participant is to blame for the causation of
the same. These metrics shall therefore be called to be purely physics-based
metrics. The question of blame is essential since the introduction of ADFs
will not be able to prevent the occurence of all accidents since the world is
complex and a certain number of accidents caused by environment vehicles
will affect the ADF-vehicle even if its behavior is ideal. Therefore, behavior-
based metrics assessing the blame are required. A model for responsibility-
sensitive safety (RSS) was published recently [97]. The creators of RSS
define minimal safe lateral and longitudinal distances between two vehicles.
These safe distances are based upon dynamical worst case assumptions. In
the case of an undercut of the distances, RSS demands the affected vehicles
to execute certain proper responses. The failure to react according to these
pre-defined rules results in the assignment of blame for a possibly happening
accident to the misbehaving vehicle. Although RSS defines minimal safe
distances and requires vehicles to handle them in a certain way, it does not
directly introduce qualitative metrics which can be used for the assessment
of safety. Hence, Arechiga [9] and Hekmatnejad et al. [41] translate RSS
into a formal signal temporal logic (STL) description. Besides, the authors
discuss the use of a formal approach to STL robustness [29] which makes
it possible to automatically derive robustness metrics based on the STL
descriptions. Alternatively defined RSS-based metrics are presented by
Wishart et al. [123].

3.2.4 Metrics for model validation
As already mentioned in section 3.1.1, it is impossible to exactly reproduce
RB. Therefore, it is of utmost importance to find good approximations
of the ∞-complex context and the aimed purpose. In order to show the
accuracy of these models which are usually created using large datasets, it
becomes necessary to develop metrics quantifying
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the accurateness of the models when reproducing the relations learned
from the dataset and,

the completeness of the underlying dataset used for model creation.

Commonly used metrics for the evaluation of the models’ accurateness are
based on comparisons between distributions in the dataset and distribu-
tions in the scenarios sampled by the learned models. These comparisons
can scope “emergent” behavior parameters [64, 119, 120] or parameters
directly learned from the dataset. Mathematically, the comparisons can
be executed using for example Kullback-Leibler divergence (KBL) [64, 74],
cross-validated likelihoods [120], root-mean-square error (RMSE) [35, 65]
and mean-absolute error (MAE) [65].

In contrast to comparisons applicable to the assessment of accuracy,
metrics evaluating the completeness of a dataset must directly work on
the dataset itself. Hence, the development of such metrics requires a good
theoretical and methodological foundation. For instance, Gelder et al. [31]
use the mean-integrated-squared error (MISE) to measure the quality of
distributions estimated from a dataset of limited size which then can be
used to derive information about the “completeness” of the dataset.

3.3 State of the art in comparison to performed
research

As already discussed in chapter 1 and reflected in the contributions listed
in section 1.3, this thesis comprises three methodological main concepts:
The creation of a scene model, work on methods for IS and the proposition
of a new behavior-based safety metric. In the following, it shall be analyzed
how these new concepts compare to the current state of the art.

3.3.1 Scene generation
The PGM-based scene model in this work’s scope shall be able to statisti-
cally create scenes without the limitation on distinct maneuvers. Hence, the
aimed model must belong to the generic modeling approach as discussed in
section 3.2.1.2. Wheeler [117, p. 86-90] categorizes statistical generic scene
generation approaches into the classes of Scene Database (section 3.3.1.1),
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Generation via Simulation (section 3.3.1.3), Incremental Roadway Popula-
tion (section 3.3.1.5) and Factor Graph Models (section 3.3.1.4). In addition
to Wheeler’s taxonomy, knowledge-based (section 3.3.1.2) scene creation is
considered in the following.

3.3.1.1 Scene database (data-driven)

The most obvious way to generate the initial scene for a simulation run
is by drawing it from a dataset. This approach is problematic since the
required size of a dataset needed to represent a test space quickly explodes
with an increasing number of scene parameters [117, p.87]. To give a lower
boundary to the extent of the needed dataset, it is possible to approximate
the combinatorics when considering the dynamical traffic participants in
the 3. layer of Schuldt’s 4-layer model [95, p. 7]. For an estimation of the
lower boundary, let every dynamical traffic participant be fully specified by
the four parameters of lateral position, longitudinal position, velocity and
heading angle. Then the combinatorics N of the complete scene description
for n vehicles is given by

N = d4·n, (3.1)

if it is further assumed that d is a sufficiently large number of discrete
levels in the parameter ranges. By way of example, for d = 20 and n = 6
the number of possible scenes already increases to N ≈ 1.68× 1031. When
considering all 4 layers and needing a larger number of discrete levels per
parameter range, this number will increase dramatically. Hence, it is unlikely
that databases with a reasonable size will ever be able to comprehensively
represent the statistics of even simple scenes. In addition, a scene database
is not capable of giving the global likelihood of a scene as required by
methods like IS. It is also not possible to optimize on critical samples
without adding a model-based approach to the dataset.

3.3.1.2 Knowledge-based scene generation

Another possibility to generate scenes is based on the usage of expert
knowledge. However, due to the open context environment ADFs operate
in, expert knowledge runs into the same curse of dimensionality as the
database approach. Additionally, a knowledge-based approach without
the use of data-driven methods does not allow to extract the statistics
of scene parameters. However, expert knowledge can definitely support
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source
sink

Figure 3.8 A scene is generated via simulation. Vehicles spawn at the sources and vanish
at the sinks. During the burn-in time the vehicles drive into the topology according to
behavior models. Afterwards the created scene is said to statistically represent the real
scene distribution.

the development and release of ADFs by identifying and testing certain
known-to-be-critical scene types.

3.3.1.3 Generation via simulation

It is also possible to generate scenes by spawning vehicles at certain points
(sources) and deleting them at different points (sinks) in the road topology.
Figure 3.8 illustrates the approach. As also discussed by Wheeler [117, p. 88],
this method requires a burn-in time which allows the vehicles to dispense
on the whole road topology. They accomplish that by applying behavior
models which define their dynamics. In principle, the source positions of
the vehicles can be chosen as desired, but often positions at the border of
the road topology are chosen. The application of generation via simulation
does not only require fine-granular and well performing behavior models,
but also a good statistical representation of the vehicles to be spawned
at the source locations. Additionally, it is of course necessary to generate
the intents of the vehicles. That is, the behavior models must know which
endpoints of the road topology a vehicle wants to reach. This information
then can be used to calculate a route for each vehicle.

The simulation tool SUMO [67] for example uses this scene generation
method. SUMO hereby offers different tools to determine the flows of
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vehicles entering at the sources and leaving at the sinks. Usually SUMO
uses rather simple distributions, e.g. the probability of vehicles entering the
road topology at a distinct source can be modeled by a binomial distribution.
Speed distributions can be modeled by truncated Gaussian distributions.
SUMO also provides tools to generate the intents/routes of the vehicles.
For instance SUMO is able to automatically determine them by only being
given the flow rates at the sources and sinks of a specific road topology. For
more information see also SUMO’s online documentation [100]. Wheeler
[117, p. 88] further notes that tools like MITSIM and PreScan use similar
spawning methods as SUMO.

Since SUMO focuses on the modeling of large road networks with even
hundreds of vehicles and not on modeling the environment of a single
ADF as accurate as possible, these procedures seem to be appropriate.
However, when a highly accurate scene description is required the used
simple approaches might run into certain limitations.

The described approach is challenged by the necessity of finding good
locations for sinks and sources and the difficulty to create good performing
statistical models for the spawning at each source. For the sake of complexity,
distribution-free models would be advantageous. Besides, it would be highly
beneficial to learn models which condition the distributions of the spawning
parameters of new vehicles on properties of already spawned vehicles and on
conditions of the road topology. Assume for example that the road topology
gets jammed within the burn-in time. If the spawning at the sources does
not acknowledge that, vehicles might be spawned at high velocities and
directly crash into the end of the traffic jam at a very high frequency.
The statistics of the spawned vehicles then are obviously not realistic and
non-representative scenes might be created. However, if a highly detailed
and conditional modeling of vehicle spawning statistics becomes necessary,
other methods which also need such models – e.g. see section 3.3.1.5 – and
which do not require a burn-in time, vehicle intention models or behavior
models, should be a better choice.

Depending on the size of the simulated road topology, the burn-in time
could potentially become very large since it is necessary to wait at least for
the first vehicles to completely transit the whole topology. The needed burn-
in time might even be longer since the first vehicles driving in the roads
might not behave fully consistent since they do not have any predecessors
which influence their dynamics (e.g. they do not have to wait at fully
populated intersections).
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Another problem is caused by the inaccuracies included in behavior mod-
els. For increasing predicted time periods, the deficiencies of the behavior
models should stronger affect the statistical representations. The reason
is their sequential application which might lead to the accumulation of
deviations. Similarly, the creation of intention models can be challenging
and needs high-level data about the whole road topology.

Last but not least, depending on the accuracy and conditionality of the
statistical spawning models, it might never be possible to reach good scene
representations at the borders of the topology near to the sources. This is
caused by the newly spawned vehicles not having enough time to reach a
good statistical state near the borders. Especially for small road networks,
this might invalidate a large proportion of the created scenes.

As already discussed, the simulation-based validation of ADFs will be
highly inefficient if the statistical sampling methods do not emphasize
critical parameter ranges/critical scenarios. This adds to the hurdles of the
generation via simulation approach, since this approach does not allow to
push certain parts/vehicles of the final scene (e.g. vehicles which relate in
a certain way with the ADF under test) into critical states since at the
sampling time the end positions of the vehicles are not (fully) known yet.
In addition, the approach is not capable of giving global likelihoods for a
generated scene (since multiple generation via simulation paths might lead
to the same resulting scene).

3.3.1.4 Factor graph models

Wheeler and Kochenderfer [118] recently published a statistical scene
generation method based on factor graphs. This method augments initial
scenes drawn from a dataset to statistically represent learned distributions.
For that, the joint probability distribution p(φx0

) – with x0 describing the
set of parameters necessary to define a scene – is factorized by

p
(
φx0

)
= 1
Z

∏

i

F typei
i (3.2)

into a set of factors
{
F typei

i

}
. φX denotes a numerical value assigned to the

random variable(s) in X. This set of factors contains elements of different
types such as factors considering the relations of a vehicle to following and
neighboring vehicles or to the lane itself. The factorization is illustrated in
fig. 3.9. Each of these factors’ scope consists of a subset of scene parameters.
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F lane F lane

F lane F lane

F lane

F foll.

F foll.

Fneigh.
Fneigh.

Fneigh.

Figure 3.9 Illustration of factor graphs. The total joint probability distribution is
factorized into factors considering the relation of a vehicle to the road topology (F lane),
to the predecessor/successor in its own lane (F foll.) and to the nearest vehicles in the
neighbouring lanes (Fneigh.).

Wheeler and Kochenderfer [118] for example define the following-factor
F foll. to be dependent on the relative speed ∆v and the distance headway
d between consecutive vehicles. They fit the factor graph distributions to a
dataset by a gradient-descent-based procedure.

The scene generation always starts by drawing a scene from the dataset.
MCMC methods like the Metropolis-Hastings algorithm are then used
to statistically augment this drawn initial scene by formulating the aug-
mentation procedure as a Markov chain (the drawn initial scene is the
first element in the chain). Note, that for each step in the Markov chain,
one vehicle in the scene is selected with uniform probability, updated as
described by a transition distribution and this update is then accepted or
rejected as described by an acceptance ratio which is dependent on p (see
algorithm 1, [118]). After a sufficiently high number of burn-in steps – that
means after a Markov chain of sufficient length – the scenes as elements of
the Markov chain change into a stationary distribution representing the
learned statistics p

(
φx0

)
.

On the one hand, factor graphs have the strength, that they are quite
flexible regarding the topology of the modeled road. It is straight forward to
add new factors and to model different types of correlations. Additionally,
the factor graph approach allows to fuse information in a dataset and
information inherent to a learned model. Wheeler [117, p. 115] argues,
that the usage of scenes drawn from a dataset as initial elements of the
Markov chain ensures realistic roadway populations. Wheeler additionally
shows that factor graphs can well reproduce a dataset’s marginal parameter
distributions.
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On the other hand, there are major challenges inherent to this approach.
Firstly, a quite large burn-in time for the MCMC algorithm may be needed.
Wheeler and Kochenderfer [118] use 1000 steps. Secondly, it’s not possible
to modify or adapt a learned road topology since a dataset to draw the
initial scenes from is required. In this connection, for the sampling it is
also required to handle a possibly very large dataset even after having
trained the model. Thirdly, it is not possible to use this approach in order
to calculate a global likelihood for a scene [117, p. 116]. The model only
includes local likelihoods within scenes generated from the same initially
drawn dataset scene. As it will become clear later, this causes problems
regarding the application of other methods like IS which require knowledge
of global likelihoods. With regard to IS, the absence of global likelihoods
makes it necessary to introduce a clustering of scenes which includes major
flaws as discussed later in section 3.3.2. Fourthly, the method requires the
manual selection of features and parametric shapes for the factors of the
probability distribution. This limits the expressiveness of the whole model.
Besides, dependent on the chosen features in the single factors, certain
independence assumptions between parameters are automatically included.
For instance, the following-factors between the first, second and third
vehicle in a lane have the form of F foll.(φd1,2

, φ∆v1,2
) · F foll.(φd2,3

, φ∆v2,3).
This results in (d1,2,∆v1,2) ⊥⊥ (d2,3,∆v2,3). Fifthly, it has not been shown
yet, that it is really possible to apply the approach to arbitrary road
topologies. It seems questionable that the current state of the approach
works for inhomogeneous topologies like intersections since there exist
different statistic correlations at different locations within a road topology.
Therefore, the assumption that the factors’ shape is the same everywhere
should cause problems. By way of example, it is not clear how to apply
the approach in the surrounding of a stopping line in an intersection. Last
but not least, Wheeler [117, p. 112-116] mentions that depending on the
size of the dataset, the scenes modeled by the factor graph approach might
not be able to completely represent all possible scenes. This is rooted in
the fact that certain properties like number of vehicles, vehicle widths,
lengths, orderings etc. are always set by the drawn initial scene and cannot
be augmented by the MCMC procedure. Hence, it might be beneficial to
improve the factor graph model by drawing the initial scenes using an
incremental roadway population model as discussed in the next chapter.
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Figure 3.10 Illustration of incremental roadway population. In this example, the vehicles
are conditioned on the predecessor in the same lane and on the predecessors in the
neighboring lanes. The set χi (0) describes all parameters necessary to completely define
vehicle i. The vehicles are then generated incrementally by sampling χi (0) ∼ pi.

3.3.1.5 Incremental roadway population

Another possibility to statistically model scenes are incremental roadway
population models. These models, similar to factor graphs, work by split-
ting up the joint distribution of scene parameters into several factors by
utilizing certain independency assumptions. However, incremental roadway
population models enable modeling with conditional distributions which
allow considering important correlations between vehicles.

Rule-based sampling order: The independency assumptions for incremen-
tal roadway population models can be based on the scene configuration/the
road topology. This dependency on the road topology shall be expressed
by the term rule-based sampling. An exemplary way to factorize the total
probability distribution in a rule-based fashion is shown in fig. 3.10. Dur-
ing rule-based sampling one lane after another is sampled which allows
setting vehicles’ properties in relation to the lane and to predecessors and
successors. To the author’s best knowledge, the method has previously only
been applied to straight highway sections [119]. Significant methodological
improvements are necessary to apply it to more complex topologies.

In comparison to the factor graph approach, the incremental roadway
population method has some weaknesses and some strengths. On the side
of the strengths, no burn-in time is required. It is further possible to sample
in changed road topologies as long as all required types of correlations
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have already been learned by the conditional probability distributions. For
instance, if the length of the straight highway displayed in fig. 3.10 was
doubled it still could be populated as long as the correlations remain the
same throughout the whole length (that means, the conditional dependence
on the first predecessor in the same lane and on the neighbor lanes).
Consequently, when having learned all necessary correlations it should be
possible to combine them into new topologies which are modifiable by a
certain degree. When using suitable distribution-free models, it should
additionally be possible to learn the conditional distribution without being
limited to a distinct functional shape. In contrast to the factor graph model,
the incremental roadway population does not only allow the generation of
initial scenes for a simulation, but should be further applicable to sample
new vehicles which enter the simulated topology during the dynamics part
of the simulation. That means, properly learned conditional distributions
could in principle also be used as the statistical models required at the
sources for the approach discussed in section 3.3.1.3. As another advantage,
after having trained the models, the dataset is not needed anymore for scene
generation. Furthermore, the incremental approach allows to determine
global likelihoods for each scene which is important for the application of
certain statistical simulation methods. In this connection, it is also possible
to modify specific parts of a scene which are in particular critical for an
ADF-vehicle since it is already known at sampling time which vehicles are
located next to the ADF-vehicle.

The greatest weakness of this rule-based approach is that it strongly
relies on the concepts of predecessor and successor which correlate to the
definition of lanes. Therefore, with regard to the road topology type this
approach is not as flexible as the factor graph method since the splitting of
the joint probability distribution requires to consider the different types
of relations between different lanes. In this context, it is straight forward
to condition the probability distributions on vehicles positioned in the
same lane as the vehicle which is sampled [119]. However as it is shown
in section 6.2, it is more complicated to apply this method to topologies
which include splitting, merging and intersecting lanes. Also the modeling
of neighboring lanes requires further effort. In particular, it may also be
challenging to model scenes which include multiple vehicles located laterally
next to each other in the same lane, e.g. a parking vehicle located in a
certain lane which is bypassed by another vehicle in the very same lane.
Another challenge is the modeling of pedestrians since the concept of lanes
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Figure 3.11 Alternative incremental roadway population approach as introduced in
[102]. In this example, the vehicles are conditioned on the vehicles which were previously
sampled in a left to right, top to bottom ordering. Again, the set χi (0) describes all
parameters necessary to completely define vehicle i. m includes all the information
required to completely describe the road topology. The vehicles are generated incremen-
tally by sampling χi (0) ∼ pi.

does not necessarily apply to them.
In summary, there are several arguments which render this method to

be the best choice for the purpose of this thesis: Firstly, the incremental
approach can model the global likelihood of a scene. Secondly, since it is
already known at sampling time which vehicles are located next to the
ADF-vehicle, it is possible to bias them to be critical. Thirdly, the absence
of a burn-in time is beneficial. For the model to be useful, it is however
necessary to show its applicability on more general road topologies than the
straight highway sections implemented by Wheeler et al. [119] (section 6.2),
to increase the efficiency by reducing the sampling time (section 6.3) and
to show how to use it to create predominantly critical scenes (section 7.1).

Rule-free sampling order: For the sake of completeness it shall be men-
tioned, that after the experimental work in this thesis was performed, Tan
et al. [102] proposed in 2021 an alternative sampling order in order to
overcome the strict dependency on the concepts of predecessor, successor
and lane. In their work, a scene was not incrementally filled by following
lanes, as illustrated in fig. 3.10, but rule-free ( that means the sampling
order is independent from the road topology) from the left to right, top to
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Figure 3.12 Rough neuronal network structure used to model
pi

(
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)
. NN is short for neuronal network.

the bottom in the considered road topology as shown in fig. 3.11. Since this
alternative sampling order does not implicitly consider the road topology
m, it becomes necessary to explicitly condition on it. Tan et al. [102]
modeled the required probability distributions

pi

(
φχi(0)

∣∣∣φχ1(0) . . . φχi−1(0), φm

)

=
nprops∏

k=1
pi,k

(
φχi,k(0)

∣∣∣φχ1(0) . . . φχi−1(0), φχi,<k(0), φm

)
(3.3)

which describe the next sampling step i by a neuronal network architecture.
This neuronal network architecture is roughly given in fig. 3.12. Variable
χi,k (0) gives the kth property of the vehicle sampled in the ith iteration.
χi,<k (0) gives the first k − 1th properties and pi,k is used to sample the
kth property. A convolutional LSTM (ConvLSTM) network was used as
an entrance point for the iterative sampling. For each sampling step i, a
new multi-channel image Xi which describes the already sampled vehicles
χ1 (0) . . .χi−1 (0) and the road topology m is input into ConvLSTM. In
order to do so, each property of the road topology and of the already sampled
traffic participants is encoded within one of the channels of Xi (the complete
region of interest of the scene is discretized and the pixels are assigned the
properties at a certain point within the scene). The hidden layer output
hi of ConvLSTM is then delivered to a convolutional neuronal network
(CNN) which extracts some baseline features f i. The baseline features
contain information about the current scene and all vehicles which have
already been sampled. Since ConvLSTM remembers about the iterations
1...i− 1 via the recurrent usage of cell state ci−1 and hidden state hi−1 of
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iteration i− 1, information from the complete sampling procedure will be
summarized in f i. The features f i are then used as an input to several
neuronal networks which predict the parameterization of the probability
distributions pi,k which are necessary to sample the next vehicle.

Since this sampling order does not care about lanes, it is more flexible and
can be used to sample lane-independent traffic participants like pedestrians.
However, there are certain disadvantages.

Firstly, this kind of rule-free sampling induces a high possibility to create
invalid scenes. For example, vehicles can easily be sampled at positions
which cannot be accessed by them, vehicles can be sampled overlapping with
already existing traffic participants and so on1. Tan et al. [102] prevented
such cases by manually adapting the learned probability distributions after
the training (e.g. not allowed locations are manually set to zero) and by
rejecting the sampling of vehicle who collide with already existing vehicles.
In addition, for each iteration i they sampled multiple times (10 times)
and only accepted the sample with the highest likelihood to get rid of
invalid outliers. Obviously, these measures change the learned probability
distribution especially in its “tail” section. However, when using scene
generation models for validation, especially these tails may be of great
interest since the interesting scenes which challenge an ADF usually occur
quite seldomly. They are therefore located in the tails of the distributions.
Hence, a skew in the distribution’s tail may have strong negative impacts
on validation. When considering lanes by applying rule-based sampling,
these problems are automatically solved since the consideration of the road
topology during the sampling procedure and the sampling along a lane
inherently prevents degenerate scenes.

Secondly, it is quite hard to model the conditional part of the conditional
distributions pi,k with this neuronal network architecture. Tan et al. [102]
try to mitigate this problem e.g. by using different networks for different
vehicle classes and by scoping the baseline feature vector to the respective
pixel where the vehicle is sampled. However, this measures do not scale
and cannot solve the problem in general. E.g. Tan et al. [102] had to ignore
the conditioning on the vehicles’ bounding boxes when sampling a vehicle’s
velocity. In the future, when even more vehicle properties might be needed
the problem will become even more prominent.

1 of course the conditioning on the map and already existing vehicles should lower the
probability for such degenerate cases, but the learned distributions typically have
long tails
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Thirdly, in reality lane-dependent traffic participants will always adapt
their behavior based on surrounding traffic participants which relate to
them in a certain rule-based fashion. The rule-based sampling approach
allows the explicit training/fitting of the distributions on these relations
which are most relevant for the safety of an ADF by cleverly selecting the
random variables2 used to build up the scene. Consequently, the explicit
training of these safety-relevant, rule-based relations should be more precise
than if the relations are implicitly obtained when sampling rule-free3.

Fourthly, rule-based sampling further allows finding good statistical
independencies between traffic participants and random variables when
modeling the joint probability distribution, whereas during rule-free sam-
pling, the distributions must be conditioned on all previously sampled
vehicles (see fig. 3.11).

Fifthly, statistical methods as IS necessitate the sampling of predom-
inantly critical scenes. In this context, it is of great benefit to use some
kind of safety metric to assess scenes (see section 7.1). However, such safety
metrics usually consider some road-topology based rules 4. That makes
it much easier to apply safety metrics to the rule-based sampling proce-
dure, which will be illustrated in section 7.1. Note also, that no method to
statistically sample predominantly critical scenes was given in [102].

Sixthly, in order to implement the rule-free sampling procedure, one
still must completely understand the underlying traffic rules within a road
topology since they must be encoded in the respective channels of Xi.
Therefore, the effort to implement the sampling of lane-base traffic partici-
pants on complex road topologies will be similar to the effort of applying
the generalized rule-based sampling procedure developed in section 6.2.

As a conclusion, the main advantage of this new, rule-free sampling
procedure is its capability to sample lane-independent traffic participants
like pedestrians. For these cases it is however easily possible to first sample
the lane-based traffic participants in the rule-based manner and sample
the pedestrians rule-free afterwards. For that, the properties mlbT P of

2 e.g. enable explicit training by clever selection of directly sampled random variables
like distance to predecessor when sampling a lane in rule-based fashion. When sampling
rule-free one would have to use a more generic variable like an absolute position
during the sampling since there would be no predecessor one can refer to

3 direct training of distance between two consecutive vehicles vs training of two absolute
positions which will implicitly result in a certain distance.

4 or more precisely: lane-dependent relations between vehicles
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lane-dependent traffic participants can just be added in the conditional
part of

pi

(
φχped.,i(0)

∣∣∣φχped.,1(0) . . . φχped.,i−1(0), φm , φmlbT P

)
. (3.4)

3.3.2 Importance sampling
As already discussed in section 3.2.1.1, methods to enhance the efficiency
of statistical sampling methods are highly desirable. In the framework
developed in this thesis, importance sampling is applied for this purpose.
Due to the scaling issues discussed in section 1.3, recent work on IS is
limited to scenarios of restricted complexity or a specific maneuver type.
Exemplarily, IS was applied to maneuver-based models for lane change
[126], lane following [30, 127] and for pedestrian crosswalk scenarios [116].

O’Kelly et al. [80] generalize the application of IS to highway scenarios
with surrounding vehicles governed by a generic behavior model based on
generative adversarial imitation learning (compare section 3.2.1.2 for a
classification). However, the scenario is limited to highway scenes with five
environment vehicles, the parameter space of the behavior model is strongly
restricted for feasibility and all the environment vehicles are controlled by
the same parametrization of the behavior model. Especially the last fact is
a limitation to IS since critical behavior of different environment vehicles
should differentiate a lot. For example, the predecessor of the ADF vehicle
could brake strongly, whereas the successor could do the opposite and drive
as fast as possible in order to challenge the ADF. The authors refine their
framework by applying subset simulation methods to a real commercial AV
system [78]. Subset sampling has the advantage, that – in contrast to IS –
no assumptions about the parametric form of the distribution describing
critical events are required. However, subset sampling does not natively
describe a distribution of critical scenes and therefore it is harder to get
more insights into the system’s failure regions. Additionally, the work done
by Norden et al. [78] still shows the same limitations regarding the scenario
as the original work [80], as already mentioned before.

Recently, Wheeler and Kochenderfer [121] implemented importance sam-
pling based on factor graphs and clustering of critical scenes which should
in principle be scalable to scenarios of higher complexity. The approach
works as follows: Firstly, scenarios are drawn by MCS from the unbiased
scenario distribution. Secondly, scenarios ending in a collision within this
unbiased sampling are detected and recorded. These collision scenarios can
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be used to find scenarios with a certain collision criticalitiy/probability.
This is achieved by conducting numerous simulations/finite-horizon MCS
runs starting at scenes at different time-steps before the collision. The
criticality of a scene at a certain time step in the forerun of the collision
is then given by the share of simulation runs started at this time step
which result in a collision. The scenarios/scenes at time steps which were
found to exceed a defined criticality value are automatically clustered into
collision classes with different collision causes. Thirdly, factor graphs are
learned to represent the scene distributions for each of these critical sce-
nario clusters. Fourthly, by stochastically sampling scenarios from these
clusters it is now possible to deduct an importance sampling distribution
which should enable the accelerated calculation of statistical evidence about
the system. However, this approach has a major drawback: The detection
of the clusters and the MCS-based generation of a sufficient number of
critical cluster scenarios requires a very high amount of simulation runs.
Since the IS distribution must be properly represented, the costs should
be similar to naive MCS-based generation of statistical evidence. If the
created clustering and factor graphs could be reused multiple times for
different ADFs and development states of an ADF, the approach could still
be beneficial. However, due to the great influence of active ADFs on their
surrounding, the shape of the critical scenario distributions will be strongly
dependent on the tested ADF and its development progress. Therefore,
calculated clusters and factor graphs cannot be reused for different ADFs or
development states. Wheeler [117, p. 167] confirms this by stating, that “it
is important to ensure that the optimized candidate safety system does not
affect the critical clusters. Introducing an active safety system may change
the frequency of critical scenarios, or may change the critical scenario
categories altogether. The autonomous emergency braking system typically
activates after the risk exceeds the critical transition threshold, and thus
it is unlikely that the critical situation clusters would change if generated
with simulations involving vehicles equipped with AEBs.” Consequently,
the high cost factor graph generation process would have to be repeated for
each active driving function’s development state and the approach seems to
be limited to the validation of reactive ADFs like an automated emergency
braking function.

To overcome the discussed IS scalability problem and the mentioned
limitations, this thesis proposes a framework which allows applying IS
selectively only onto the parts of a scenario which are relevant for the
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safety/criticality of the ADF, e.g. a vehicle 400 m behind the ADF-vehicle
should not be very relevant for safety and therefore should not be included
in the IS optimization. Depending on the share of the relevant parts of the
scenario, the resulting IS optimization problem may be (strongly) reduced
(section 5.2).

3.3.3 Behavior-based metric
Section 3.2.3 discusses the necessity and different types of metrics to evaluate
the outcome of a simulation run. As it was also discussed, behavior-based
metrics based on STL formulations of RSS recently were introduced in
order to mitigate the problem of not being able to evaluate the assignment
of blame [9, 41]. The usage of STL allows the automatic derivation of
metrics based on formal robustness definitions [29].

In general, the STL semantics operate on traces s(t) which give the state
s of a system at time t. The most basic STL element is a statement of
type ϕ = (f(s(t)) > c) with robustness ρ(ϕ) = f(s(t))− c. Conjunctions of
several statements can be expressed by AND and OR operations (∧/∨).
The robustness values are calculated by ρ (ϕ1 ∨ ϕ2) = max (ρ (ϕ1) , ρ (ϕ2))
and ρ(ϕ1 ∧ ϕ2) = min(ρ(ϕ1), ρ(ϕ2)). This leads to a first point of criticism:
If the physical dimensions of ϕ1 and ϕ2 are not the same, e.g. the STL
formulation of RSS contains conjunctions of m and m

s2 , this is no natural
applicable relation, similar to a possible comparison of units km and m.
Analogously, the operator □Iϕ, which states that the statement ϕ is valid
during the whole interval I, is as robust as given by ρ(□ϕ) = min

t∈I
ϕ. That

implies a second point of criticism: The minimization does only consider
the time point with the worst robustness to calculate the total robustness
of a whole interval. In contrast, in reality the probability of an accident will
dependent significantly on the length of the time span in which robustness
is low. Take for example the attentiveness of a driver. The likelihood to
cause an accident will be way smaller for a driver who is inattentive for
a fraction of a second than for a driver who is not watching the vehicle’s
surrounding for several seconds. As a third point of criticism it is hard to
interpret the numerical criticality values generated by the automatically
generated STL robustness formulas, e.g. there is not necessarily a direct
correspondence to accidents (it may for example not be clear which value
corresponds to an accident or other qualitative events).

Besides, as also mentioned in section 3.2.3, Wishart et al. [123] have
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introduced an RSS motivated behavior-based metric called proper response
action (PRA). PRA analyzes if the minimal safe distance defined by RSS is
undercut and if the vehicles do not show the required response demanded
by RSS. If both is true, PRA returns 1, otherwise it returns 0. PRA is
therefore a binary metric and not sufficient for applications such as IS
(compare section 4.2) which require continuous criticality values.

In order to solve these limitations in the state of the art, section 4.4.3
uses RSS to derive a continuous behavior-based metric which does not
only consider the absolute value of the criticality/robustness, but also the
time span a scene was critical. Additionally the metric omits unnatural
comparisons.
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Section 3.2.3 shows that without well-defined microscopic metrics, which
evaluate the safety and other aspects of a simulation run, it would not be
possible to extract sensible information of a performed simulation. Hence,
this chapter centrally considers the microscopic metrics in use within the
scope of this work. In detail, section 4.1 mathematically formalizes the
notion of a simulation run and section 4.2 discusses the required properties
and construction of microscopic metrics. Sections 4.3, 4.4.2 and 4.4.3
describe the specific metrics applied throughout the remainder. While the
metrics given in sections 4.3 and 4.4.2 are conventional physics-based ones,
the metric proposed in section 4.4.3 is a behavior-based metric uniquely
contributed by this thesis. It is designed to satisfy the requirements in
section 4.2 and to address the limitations of the current state of the art
outlined in section 3.3.3. For that, section 4.4.1 recaps the basic RSS
formulas.

4.1 Mathematical description of a simulation
run

As already described in section 2.1, a simulation run is equivalent to a
scenario and thereby is a sequence of scenes. Hence, a simulation run ξ can
mathematically be expressed by the tuple

φξ =
(
φx0

, ..., φxnφξ

)
withφξ ∈ Ω = V al (ξ) . (4.1)

Here, xt describes a scene at time step t. Note, that φξ and φxt
mathemati-

cally describe full assignments of random variables ξ and xt. In chapter 5, it
will become clear why they are grasped as random variables. A simulation
run can have a variable time horizon (number of steps) nφξ

. Let the time
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between two time steps be given by ∆t. Therefore, the scenes’ timestamps
are given by

t ∈ T φξ
= {0,∆t, ..., nφξ

·∆t} (4.2)

The set

νφξ
=
{

1, ..., n(φξ )
veh

}
(4.3)

gives the vehicles involved in simulation run φξ . Therefore, each assigned
simulation step

φxt
=
{

χi (t)
∣∣∣i ∈ νφξ

}
(4.4)

is determined by the results of n(φξ )
veh multidimensional functions

χj : T φξ
→ Rnprops , (4.5)

that describe the nprops properties of vehicle j at time t.

4.2 Requirements and definition of microscopic
metrics

A microscopic safety metric shall define a mapping of type

gcrit. : ζ → R, (4.6)

with ζ =
⋃

φξ ∈Ω

{(
φξ ,S

)∣∣∣S ∈ P
(

νφξ

)}
. Note, that P (•) determines a

power set. S ⊆ νφξ
gives the set of vehicles whose relations and criticalities

shall be assessed in a simulation run. Think for example of a simulation
run with only one ego vehicle which is governed by an ADF. In this case S
would only contain this single automated vehicle.

There are multiple requirements to the definition of the mapping gcrit.:

1. Since a different number of time steps nφξ
and vehicles n(φξ )

veh are
possible in each simulation run, the metric must be able to operate
on a set of variable size

∣∣(φξ ,S
)∣∣ = nφξ

· n(φξ )
veh · nprops + |S |.
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2. Since the metric values will be discretized later in this work and since
it is essential that the value of the criticality of different simulation
runs can be compared to each other, the safety metrics should not
return infinite values. Otherwise, if infinite values can happen, there
must be a technical way of handling them (e.g. by mapping them to
the largest occurring value in a dataset).

3. The IS approach works iteratively. Hence, the metrics are required to
be continuous. A binary metric which can only distinguish between
an event ε taking place (φξ ∈ ε) and not taking place (φξ /∈ ε) will
not be sufficient. For IS, the assessment of sub-criticality, that means
the “distance” to the event occurring is essential (see section 5.1).

4. In a mathematical sense, gcrit. shall define a total preorder1 on ζ.
By convention, the following discussion of gcrit.

(
ξ = φξ ,S

)
assumes

that a lower metric value corresponds to a more critical scenario.
However, it is of course also possible to define metrics whose values
increase with increasing criticality.

This mapping gcrit. of tuples
(
φξ ,S

)
with variable length |φξ | + |S | is

realized by pairwise comparisons of the vehicles in S and related vehicles.
It is

gcrit.

(
ξ = φξ ,S

)
= min

t∈{0,...,nφξ
}


 min

p∈A(φξ)
t

(
gpair

(
p, t, ξ = φξ

))

 , (4.7)

with A(φξ)
t =

{
(a, b) |a ∈ S , b ∈ νφξ

, a ̸= b,R
(
a, b, φξ , t

)
= 1
}

.
R
(
a, b, φξ , t

)
verifies a relation between vehicles a and b at time step t.

In the simplest case R
(
•, •, φξ , t

)
might for example check if two vehicles

are consecutive vehicles in the same lane. R
(
•, •, φξ , t

)
returns 1 if the

relation is valid and otherwise 0. The pair-wise metric gpair is calculated

over all relevant vehicle pairs A(φξ)
t existent at a time step. The smallest

1 The definition of a preorder requires the proper handling of possibly arising infinite
metric values as demanded in the 2. requirement. Otherwise, reflexivity and totality
cannot be guaranteed.
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pairwise metric minimized over all vehicle pairs and all time steps then
gives the total metric result for the entire simulation run2.

In the next sections, possible choices for the mapping

gpair :
⋃

φξ ∈Ω

{(
p, t, φξ

)∣∣∣p ∈ νφξ
× νφξ

, t ∈ T φξ

}
→ R (4.8)

are discussed.

4.3 TTC & inverse TTC
A very popular and often used metric is the time-to-collision (TTC) [40].
Since TTC is used later on in this work, this chapter shall shortly give an
overview over it and also shall describe how it can be incorporated in the
microscopic metric approach of section 4.2. It is defined by

g
(TTC)
pair

(
p, t, φξ

)
= d

vp0
− vp1

for vp0
̸= vp1

, (4.9)

with p = (p0, p1). p0 is the successor vehicle of vehicle p1. vp1
and vp0

give
the velocities of the predecessor and the successor vehicle. d is their distance.
Intuitively, TTC gives the time left until two consecutive vehicles would
collide if they maintained their current state of movement. The situation
is illustrated in fig. 4.1. TTC is very sensitive on the relative velocity
∆v = vp0

− vp1
. In the border case ∆v = 0 m

s , it diverges independently of
the vehicles’ distance d. The most critical TTC value is TTC = 0 s. Negative
TTC values are not critical since the predecessor vehicle drives faster than
the successor vehicle in that case. Since the properties in section 4.2 require
the metric to be finite and negative values are not dangerous, all negative
TTC values and all infinite values found in a dataset are replaced by
the largest finite TTC value found in the same dataset for the matter of
ordering. The set of relevant vehicle pairs is chosen by

A(φξ)
t =

⋃

i∈S
{(i, pre [i, t]), (suc [i, t] , i)} . (4.10)

2 In section 3.3.3, the second point of criticism was that current metrics only consider
one time point for assessing criticality, which neglects the influence of the duration of
dangerous behavior. This point will be addressed in section 4.4.3 by defining a metric
for gpair (p, t, ξ) which considers such durations.
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p0 p1
d

vp1
vp0

Figure 4.1 Relevant values for the calculation of TTC between the predecessing vehicle

(p1) and the successor (p0). It is p = (p0, p1) ∈ A
(

φξ

)

t .

pre[i, t] and suc[i, t] give the predecessor respectively successor vehicle to
vehicle i at time step t. Another option to handle TTC’s divergence is to
define the inverse TTC (invTTC) by

g
(invTTC)
pair

(
p, t, φξ

)
=
(
g

(TTC)
pair

(
p, t, φξ

))−1
=
vp0
− vp1

d
. (4.11)

invTTC has the advantage that it rarely diverges since d = 0 m is not
occurring often in real-world datasets. In contrast, ∆v ≈ 0 m

s occurs quite
often. However, metrics shall be applied to assess critical situations and
since d = 0 m is a very challenging situation, invTTC diverges rarely, but
at the most interesting scenarios. In order to handle diverging, infinite
invTTC values during ordering, these diverging values are replaced by the
largest finite values found in the same dataset. Analogously, all negative,
uncritical invTTC values are replaced by the smallest positive invTTC
value found in the same dataset. Please note, that deviating from the
previously mentioned convention, higher, positive invTTC values are more
critical than smaller positive ones. When applying (4.7) this requires the
replacement of the min by max operators.

TTC and invTTC are both limited to the assessment of longitudinal
vehicle pair relations. For the evaluation of lateral relations between vehicles,
additional metrics are required.

4.4 RSS-based metrics
Section 3.3.3 discusses the application of RSS to define metrics which assess
which vehicle is to blame for the causation of a critical situation. As also
discussed there, the state of the art is limited with regard to unnatural
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comparisons, the weighting of critical time spans, the formulation of a
continuous metric and the interpretability. To develop a behavior-based
metric which fulfills these requirements, section 4.4.1 shortly recaps RSS
and section 4.4.2 gives an approach for a physics-based metric derived by
RSS which can be used as foundation of the final behavior-based metric
derived in section 4.4.3. Parts of this section were already published by
Jesenski et al. [134]; © 2020 IEEE.

4.4.1 Responsibility-sensitive safety
In 2017, Shalev-Shwartz et al. [97] introduced responsibility-sensitive safety
(RSS). RSS is a framework which does not only allow assessing the criticality
of a scenario but also includes an assignment of blame should an accident
occur. RSS works by the definition of lateral and longitudinal safe distances
which are constructed based on physical worst case assumptions. The
minimal safe longitudinal distance [97, p. 7] is given by

d
(long)
min (vsuc, vpre) = max

[
vsucρ+ 1

2amax,accelρ
2

+
(
vsuc + ρamax,accel

)2

2amin,brake
− v2

pre
2amax,brake

, 0
]
. (4.12)

The minimal safe lateral distance [97, p. 11] is analogously given by

d
(lat)
min (vlat,left, vlat,right) = µ+ max

[
sright(vlat,right)− sleft(vlat,left), 0

]
,

(4.13)

with

sright/left(vlat,right/left) = vlat,right/leftρ±
1
2alat,max,accelρ

2

±
(
vlat,right/left ± alat,max,accelρ

)2

2alat,min,brake
. (4.14)

For a quantitative determination of the safe distances multiple parameters
must be defined. Their meaning is given in table 4.1. vsuc and vpre are the
velocities of the preceding and the succeeding vehicle in the longitudinal
related case. Analogously vlat,left and vlat,right are the lateral velocities of the
vehicle on the left and the right when considering their lateral relationship.
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Table 4.1 Description of parameters of RSS. These parameters must be chosen in
accordance to public agreements in order to make sure that the understanding of safety
required by all stakeholders is consistent. Otherwise, RSS will not give comparable
guarantees for safety. Based on table published by Jesenski et al. [134]; © 2020 IEEE.

Parameter Description
ρ response time (driver-dependent)

amax,accel maximally allowed longitudinal acceleration
amin,brake minimal longitudinal braking after ρ
amax,brake maximally allowed longitudinal braking
alat,max,accel absolute of maximally allowed lateral acceleration
alat,min,brake absolute of minimal lateral braking after ρ

µ minimally allowed lateral distance

suc

pre
vpre,left

vsuc,right
d

(long)
min

d
(lat)
min

Figure 4.2 Longitudinal and lateral minimal safe distances demanded by RSS. If a pair
of vehicles undercuts these minimal distances – that is pre gets into the green marked
safety area around suc – both vehicles must respond accordingly. Failing to respond in
accordance to RSS leads to the assignment of blame.

The safety area spanned by the lateral and longitudinal minimal safe
distances is illustrated in fig. 4.2. If the vehicles get into this safety area
both must react accordingly. That is, RSS defines a situation to be dan-
gerous if both the lateral and longitudinal safe distance are undercut. The
time when the second distance is undercut is called blame time tblame.
Depending on which of the both safe distances becomes undercut later,
the vehicles must respond laterally or longitudinally [97, Definition 10]. If
a longitudinal response becomes necessary, both vehicles can act mostly
unconstrained during the response time ρ as long as they are accelerat-
ing with a ∈

[
−amax,brake, amax,accel

]
. After the response time suc must

decelerate with a ∈
[
−amax,brake,−amin,brake

]
[97, Definition 4]. If a lateral

reaction is required both vehicles are allowed to act constrained only by
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a ∈
[
−alat,max,accel, alat,max,accel

]
during the response time. Afterwards,

both vehicles must accelerate laterally away from each other with at least
alat,min,brake and at most alat,max,accel[97, Definition 8]. Both types of re-
actions must endure until the relevant safe distance is again satisfied. If a
vehicle does not comply with these demanded reactions, it gets the blame
for a possible collision.

4.4.2 Physics-based metric based on RSS
Based on the definition of the minimal safe distances, a physics-based RSS
metric can be constructed by

g
(RSS Dist)
pair

(
p, t, φξ

)
= max

κ∈{long,lat}
dκ − d(κ)

min

d
(κ)
min

. (4.15)

dκ is the current lateral/longitudinal distance between the vehicles in pair p.
Hence, g(RSS Dist)

pair
(
p, t, φξ

)
= −1 corresponds to a 100% undercut of both

minimal safe distances and thus represents a collision. A metric value of 0
is the border between an RSS violation and the satisfaction of the minimal
safe distances. That means, all metric values larger 0 indicate safe scenes
with satisfied safety areas (fig. 4.2). The range of the metric is [−1,∞). In
order to handle infinite metric values during ordering, these values can be
mapped to the largest finite values found in a dataset. Wishart et al. [123]
have published a similar metric called Minimum Safe Distance Factor. The
set of relevant vehicle pairs A(φξ)

t is given by the relevant vehicles in S
and its direct neighbors in the orange area as illustrated in fig. 4.3. In the
next section, the physics-based metric in (4.15) will be used to define a
behavior-based metric which considers blame.

4.4.3 Behavior-based metric
A behavior-based metric which solves the described limitations and require-
ments (section 3.3.3) can be expressed by

g
(RSS Beh)
pair

(
p, t, φξ

)
=
[
α+ βrfrac(p, t, φξ)l(p, t, φξ)

]
·g(RSS Dist)

pair
(
p, t, φξ

)
.

(4.16)

α and β are parameters. Throughout the remainder it is set α = 1 and
β = 9. rfrac gives the fraction of time steps since tblame(p, t, φξ) + ρ for
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1 i 4

6 5

2 3

Figure 4.3 The vehicle pairs (i, 1), (i, 2), ... in A
(

φξ

)

t related to i ∈ S . The relevant
vehicle pairs containing vehicle i are constrained to the green marked vehicles lying at
least partly in the orange area which is defined by the direct predecessor and successor
of i.

Table 4.2 Empirically selected parameter values for a full definition of the behavior-
based metric given in (4.16) and (4.17).

Parameter Ξ k η ∆ α β

Value 1 0.6 0.8 0.48 s 1 9

which the ego vehicle does not respond as demanded by RSS. In order to
solve the second point of criticism in section 3.3.3, l(p, t, φξ) is assessing the
length t− tblame of the dangerous scenario (how long have both distances
been undercut?). For that, a weight of

l(p, t, φξ) = Ξ
1 + exp

(
−k · Ξ · t−tblame(p,t,φξ )−∆

∆t

)
·
(

Ξ
η − 1

) (4.17)

is utilized. Table 4.2 gives the selected values for the metric parame-
ters. The weighting l is depicted in fig. 4.4. If the scene is not critical
(g(RSS Dist)

pair ≥ 0) it follows that rfrac(p, t, φξ) = 0 and l(p, t, φξ) = 0. The sum[
α+ βrfrac(p, t, φξ)l(p, t, φξ)

]
therefore is necessary to make sure that the

metric is still able to assess uncritical scenarios with g(RSS Dist)
pair

(
p, t, φξ

)
> 0.

In this case, g(RSS Beh)
pair

(
p, t, φξ

)
= α · g(RSS Dist)

pair
(
p, t, φξ

)
.

The third point of criticism in section 3.3.3 is also solved since it is possible
to interpret different intervals in the range g(RSS Beh)

pair ∈ [−α− β,∞) of the
metric as follows: The most critical value of −α−β corresponds to a scenario
with a colliding vehicle pair. Additionally, the ego vehicle is to blame in
100 % of critical time steps (however that does of course not imply that

67



4 Metrics
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Figure 4.4 Illustration of l(p, t, ξ) with parameters as given in table 4.2. The weighting
l starts at 0 and increases to 1 after about 0.7 s.

the other vehicle in p is not to blame partially) and the critical situation
endured longer than the characteristic time span encoded in l(p, t, φξ).
For instance, with the parameters given in table 4.2, this characteristic
time span needs to last about 0.8 s (see fig. 4.4). For the parameter range
g

(RSS Beh)
pair ∈ [−α− β,−α) the ego vehicle must have reacted improperly

at least once during the critical scenario after tblame + ρ (r · l > 0). For
(−α, 0) this can be the case, but does not necessarily need to be so. As
long as g(RSS Beh)

pair (p, t, ξ) < 0, both safety distances are undercut between
the vehicles in p at time step t. For g(RSS Beh)

pair ≥ 0 the scene is not critical
and the safety area is satisfied at the selected time step.

Since (4.16) does not contain any (unnatural) comparisons it also fulfills
the first point of criticism in section 3.3.3. Besides, the metric is continuous
and therefore applicable to IS (section 5.3). The set of relevant vehicle pairs
A(φξ)

t is chosen similar to g(RSS Dist)
pair .
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5 Importance sampling
The simulation-based testing of ADFs requires the execution of rare event
simulations. Section 1.2 already introduced the problem of efficiency when
executing such simulations. As a possible solution, IS was discussed. How-
ever, as mentioned in section 3.3.2, in the current state of the art, importance
sampling is still limited to scenarios of restricted complexity or a specific
maneuver type. This chapter overcomes this challenge by focusing the
importance sampling optimization onto the relevant parts of a scenario. In
order to do so, section 5.1 shortly recapitulates the basic theory behind IS
and section 5.2 proposes a new method which enables focusing on the rele-
vant scenario parts during IS optimization. This should enable scalability of
IS to highly complex scenarios. In section 5.3 the proposed method is then
illustrated by implementing it on a simulation which is based on simple
behavior models for time dynamics and which draws initial scenes from a
dataset. Section 5.4 tackles the challenge to find the parts of a scenario
which are relevant and therefore must be included into the respective IS
optimization. This chapter is based on a publication by Jesenski et al. [134];
© 2020 IEEE.

5.1 Theory of importance sampling
In this section, IS is introduced mathematically. For that, section 5.1.1
formally discusses the efficiency of naive rare event simulations. Section 5.1.2
mathematically describes IS and its capability to mitigate the efficiency
problem. Finally, section 5.1.3 introduces the CE method and how it can
be used to find the optimal IS distribution which is required to perform IS.

5.1.1 Efficiency problem of rare event simulations
The aim of simulations which apply statistical sampling (see section 3.2.1.1)
is to calculate statistical evidence (see definition 3.2) e.g. about the safety

69
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of an ADF. Mathematically, this can be expressed by the search for

Pcrit (ξ ∈ ε) = Eph (h) [I (ξ; γ)] =
ˆ

Ω×Φ

I
(
φξ ; γ

)
ph

(
φh

)
dφh , (5.1)

with random variables h = (ξ,ϕ). The random variable ξ with φξ ∈ Ω =
V al (ξ) are the physical properties of a fully parameterized simulation run h
as already described in section 4.1. The random variables ϕ with φϕ ∈ Φ =
V al (ϕ) are the additional non-physical parameters which are necessary to
fully describe a simulation. As will be discussed in section 5.3.1.1, that might
be the parameters of the used behavior models. A fully assigned value φh =(
φξ , φϕ

)
is then an element of space V al (h) = Ω ×Φ. The distribution

ph

(
φh

)
models the real occurrence rate of h. It must be extracted from

measurements in reality. Pcrit (ξ ∈ ε) then gives the probability that a
critical set ε occurs. The critical event set ε whose probability of occurrence
shall be calculated, is defined by

ε =
{
φξ ∈ Ω : gcrit.

(
φξ ,S

)
≤ γ

}
. (5.2)

Thus, the indicator function defined by

I
(
φξ ; γ

)
=
{

1 forφξ ∈ ε

0 otherwise
(5.3)

allows selecting the relevant critical simulation runs. For that, a safety
metric gcrit. as introduced in chapter 4 becomes necessary.

By running MCS, the required expectation value Eph (h) [I (ξ; γ)] can be
approximated by the random variable

YN = 1
N

N∑

i=1
I (ξi; γ) ; hi = (ξi,ϕi) ∼ ph , (5.4)

since

EpYN
(YN )

[
YN

]
= Eph (h) [I (ξ; γ)] . (5.5)

The random variables {ξ1, ..., ξN} are obviously independently and identi-
cally (i.i.d) distributed. The parameter N gives the number of performed
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simulation runs drawn from ph . The central limit theorem [96, section 1.2.2]
can be used to show that for N →∞ the distribution pYN

(
YN

)
of YN is

determined by a Gaussian distribution with relative standard deviation1

[12] of

σdev,rel
[
YN

]
=

√
VarpYN

(YN )
[
YN

]

EpYN
(YN )

[
YN

] =

√√√√1− Eph (h) [I (ξ; γ)]
Eph (h) [I (ξ; γ)] ·N . (5.6)

Since the denominator in (5.6) is proportional to the probability of occur-
rence Pcrit (ξ ∈ ε) = Eph (h) [I (ξ; γ)], a rarely occurring event ε will cause
large relative standard deviations in the results obtained by simulations.
Hence, in order to get stable results, the number of samples N must be
chosen very large. This however, will cost a lot of resources and simulation
time. In the next section, IS is discussed in detail. It is shown, that IS is able
to strongly reduce the relative standard deviation and thereby the number
of samples required to obtain statistically valid results can be minimized.

5.1.2 Importance sampling
IS can be applied in order to reduce the size of the relative standard
deviation in (5.6). This can be achieved by reducing the sampling of
uncritical and irrelevant simulation runs and thus by focusing on critical
scenarios. For that, the original distribution ph

(
φh

)
is skewed to the more

critical distribution p∗
h

(
φh

)
. By using

K∗
(
φh

)
=
ph

(
φh

)

p∗
h

(
φh

) (5.7)

in

Pcrit (ξ ∈ ε) = Ep
∗
h (h) [I (ξ; γ) · K∗ (h)]

=
ˆ

Ω×Φ

I
(
φξ ; γ

)
K∗
(
φh

)
p∗

h

(
φh

)
dφh , (5.8)

1 The relative standard deviation is defined to be the standard deviation of a random
variable divided by the random variable’s expectation value.
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it is still possible to get statistical statements about the original distribution
ph . (5.8) can be approximated by the random variable

Y ∗
N = 1

N

N∑

i=1
I (ξi; γ)K∗ (hi) ; hi = (ξi,ϕi) ∼ p∗

h . (5.9)

The original results are reproduced since

Ep
Y

∗
N

(Y
∗

N )
[
Y ∗

N

]
= Ep

∗
h (h) [I (ξ; γ) · K∗ (h)]

= Eph (h) [I (ξ; γ)] . (5.10)

The benefit is, that for N → ∞, pY
∗

N

(
φY

∗
N

)
also has a Gaussian shape

with a relative standard deviation [12] of

σdev,rel
[
Y ∗

N

]
=

√
Varp

Y
∗
N

[
Y ∗

N

]

Ep
Y

∗
N

[
Y ∗

N

]

=

√√√√√√
1
N
·


 λ
(
Eph (h) [I (ξ; γ)]

)2 − 1


, (5.11)

with λ = Ep
∗
h (h)

[
I (ξ; γ)2 · K∗ (h)2

]
. If the optimal IS distribution

p∗
h,opt

(
φh

)
=

ph

(
φh

)

Eph (h) [I (ξ; γ)] · I
(
φξ ; γ

)
(5.12)

is used, then λ =
(
Eph (h) [I (ξ; γ)]

)2
and the relative standard deviation

vanishes and perfect results would be obtained from one evaluation of Y ∗
N .

Since it is not possible to find this optimal IS distribution (Eph (h) [I (ξ; γ)]
is the result of simulations), the challenge is to find a good approximation
of the optimal IS distribution which minimizes σdev,rel

[
Y ∗

N

]
. One of the

most often used methods to find such an approximation is the cross entropy
(CE) method.
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5.1.3 Cross entropy method
A popular approach to approximate the optimal IS distribution (5.12) is
the cross entropy method (CE) [15, 89]. In general, CE tries to find the
optimal member q

(
φh

∣∣v∗) within a family of functions q
(
φh

∣∣φv

)
whose

“deviation”, as defined by the KBL, to (5.12) is minimal. It can be shown
[15], that the optimal parameter values v∗ can be found by optimizing

v∗ = arg max
φv

D (φv,ω, γ) (5.13)

with

D (φv,ω, γ) = Eq(h|v=ω) [I (ξ; γ)K (h; ω) ln (q (h|φv))] . (5.14)

≈ 1
N

N∑

i=1
I
(
φξi

; γ
)
K
(
φhi

; ω
)

ln
(
q
(
φhi

∣∣φv

))
(5.15)

with

hi = (ξi,ϕi) ∼ q (h|v = ω) . (5.16)

It is

K
(
φh ; ω

)
=

ph

(
φh

)

q
(
φh

∣∣v = ω
) . (5.17)

In principle, an arbitrary member q
(
φh

∣∣ω
)

could be chosen for the opti-
mization. However, for numerical stability a multilevel approach as defined
in algorithm 1 is applied. In this approach, the optimization in (5.13) is
executed iteratively. For each iteration i, the value γi which defines an
event set εi is further reduced until the required value γ is finally reached.
This iterative reduction of γ allows creating a higher proportion of relevant
samples with I (ξ; γ) = 1 for each iteration. This is necessary for a stable
optimization. Otherwise, not enough data points would be available to
get a good approximation of the expectation value in (5.14). The inputs
to algorithm 1 are the quantile η, the number of samples per iteration N
which are used to determine the expectation value, the maximum number
of iterations kmax , the unbiased density ph

(
φh

)
, a safety metric gcrit. and

the required level of criticality γ which defines ε. The algorithm outputs
v∗ = vk. The density q

(
φh

∣∣v∗) ≈ p∗
h,opt

(
φh

)
can then be used to calculate

Y ∗
N in (5.9).
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Algorithm 1 Cross entropy algorithm; algorithm 2.1 in [15]
1: procedure crossentropy(N, η, kmax , ph , gcrit., γ)
2: p(0) = ph ; k = 0
3: while k < kmax do
4: sample hsample,k ←

{
φh1

, . . . , φhN

}
∼ p(k)

5: γk ← η-quantile of
{
gcrit.

(
φξ ,S

)
: (φξ , φϕ) ∈ hsample,k

}

6: if γk < γ then
7: γk ← γ
8: end if
9: vk ← arg max

φv

D(φv;vk−1, γk) use hsample,k

10: if γk ≤ γ then
11: break
12: end if
13: k ← k + 1
14: p(k) = q

(
φh

∣∣vk−1
)

15: end while
16: return vk

17: end procedure

5.2 Extension to high dimensional
ADF-simulations

This section recalls the scaling problem of CE and proposes solutions. For
that, section 5.2.1 proposes the concept of causality groups which allows
focusing the CE optimization on the “relevant parts” of a simulation run.
Section 5.2.2 adds some adaptions to CE which improve the numerical
stability of the optimization procedure.

5.2.1 Causality groups

In general, the described CE method scales poorly when applied to high-
dimensional, complex simulations. Since simulations which evaluate the
safety of an automated vehicle and its surrounding have a high number of
parameters this scaling challenge heavily affects them. In order to address
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5.2 Extension to high dimensional ADF-simulations

this challenge, this section proposes two adjustments. Firstly, only relevant2

parts of the total probability distribution of a simulation run shall be
optimized which allows reducing the number of dimensions which have
to be considered when performing CE. Secondly, the separation of these
relevant parts into causality groups is proposed.

Simulations of automated vehicle behavior typically are determined by
distributions of type

ph

(
φh

)
= p0

(
φx0

, φϕ

)
· pbeh.

(
φx1

, ..., φxnφξ

∣∣∣∣φx0
, φϕbeh.

)
. (5.18)

Remember, that it is φξ =
(
φx0

, ..., φxnφξ

)
∈ Ω. The random variable

xt gives the scene at time t of simulation run h, as already introduced in
section 4.1. The factorization into p0 and pbeh. is based on the assumption
that the initial scene and time dynamics are described by different models:
Scene models and behavior models. The parameters ϕbeh. ⊆ ϕ represent
the non-physical parameters which have an influence on the dynamics of a
simulation run.

The parametric family of distributions used for CE optimization can of
course be chosen arbitrarily. In analogy to (5.18) however, it makes sense
to choose

q
(
φh

∣∣φv

)
= q0

(
φx0

, φϕ

∣∣φv

)
·pbeh.

(
φx1

, ..., φxnφξ

∣∣∣∣φx0
, φϕbeh.

)
, (5.19)

in order to enable good approximations of the optimal IS distribution. As
already mentioned, v may have a very high dimension. Hence, the resulting
high-dimensional optimization of v in (5.13) is infeasible or at least highly
complicated since the “volume” of the search space increases exponentially
with |v|.

As an example for the possible size of v’s dimension, an estimate of the
dimension |v| was given for a straight highway section in section 1.3. It
was assumed that ten vehicles governed by the intelligent driver model
are included in the surrounding of an automated ego vehicle. It was fur-
ther supposed that the skewed distribution’s parameters only describe the
2 A parameter is relevant in this context if a value change of this parameter has

significant influence on the sampling of simulation runs with critical safety metric
values gcrit.. A quantitative method to find such parameters will be discussed in
section 5.4.
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behavior parameters of these surrounding vehicles by using truncated Gaus-
sian mixture distributions with three summands per behavior parameter.
Consequently, it was shown that |v| increases already to 630 dimensions.
Highway scenarios as for example included in the highD dataset can contain
30+ vehicles. That means, the number of parameters could become much
higher, additionally when considering parameters which are not related to
the behavior models.

In order to reduce |v|’s size, the optimization now shall be limited to
the parts of h which are relevant for safety. A separation into relevant
and irrelevant parts should be possible for most ADF simulations since for
example the behavior parameters of a vehicle 200 m behind the ego vehicle
are less important than the behavior parameters of its direct predecessor.
After having found such a separation, it is useful to reformulate

p0
(
φx0

, φϕ

)
=p0,irr.

(
φx0,irr.

, φϕirr.

)

· p0,rel.

(
φx0,rel.

, φϕrel.

∣∣∣φx0,irr.
, φϕirr.

)
. (5.20)

It is x0 = x0,irr. ∪ x0,rel. and ϕ = ϕirr. ∪ ϕrel.. The distribution p0,irr. de-
scribes the random variables x0,irr.,ϕirr. which are approximately irrelevant
for the safety of the ego vehicle and p0,rel. represents the distribution of pa-
rameters x0,rel.,ϕrel. which are relevant for safety. This separation between
relevant and irrelevant parameters can then be exploited by analogously
defining

q0
(
φx0

, φϕ

∣∣φv

)
=p0,irr.

(
φx0,irr.

, φϕirr.

)

· q0,rel.

(
φx0,rel.

, φϕrel.

∣∣∣φx0,irr.
, φϕirr.

, φv

)
. (5.21)

Note that p0,irr. is kept to be the same as in the unskewed distribution.
Since it only contains irrelevant parameters it does not have to be optimized.
This alone already might strongly reduce the total number of parameters
|v| since v would become larger if the number of relevant parameters which
must be optimized increased3. The reason behind that is, that for models
q0,rel. to be expressive, the number of model parameters v increases with
the distribution’s dimension and complexity which is given by the size of
x0,rel.,ϕrel..
3 The standard case, which assumes all parameters in x0, ϕh are relevant, is of course

the worst case.
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As already mentioned, the second proposition to tackle the dimension
problem is the introduction of causality groups. Since simulations are often
built in a modular fashion (e.g. by defining individual (behavior) models
and parameterizations separately for each vehicle in a simulation run),
it is intuitive to assume that there are subsets of relevant parameters
c ∈ C which are independent of each other. Such a subset c shall be
called causality group and it gives the subset of relevant parameters which
are dependent on each other, but independent from parameters of other
causality groups. The parameters of a causality group therefore must be
handled in a joint distribution. By definition C shall contain all causality
groups. Consequently, it is possible to write

q0,rel.

(
φx0,rel.

, φϕrel.

∣∣∣φx0,irr.
, φϕirr.

, φv

)
=

∏

c∈C

q0,rel.,c

(
φx0,rel.,c

, φϕrel.,c

∣∣∣φx0,irr.
, φϕirr.

, φ
v

(c)

)
. (5.22)

It is x0,rel. =
⋃

c∈C

x0,rel.,c and ϕrel. =
⋃

c∈C

ϕrel.,c.

It can be shown that this enables reducing and splitting the optimization
in (5.13) to

v(c,∗) = arg max
φ

v
(c)
Dc

(
φ
v

(c) ,ω, γ
)
∀c ∈ C (5.23)

with v∗ =
(
v(c1,∗), ...,v

(c|C|,∗)
)

. Besides, it is

Dc

(
φ
v

(c) ,ω, γ
)

= Eq(h|v=ω)
[
I (ξ; γ)Krel. (h; ω) ln

(
q0,rel.,c (...|...)

)]
,

(5.24)

and

Krel.
(
φh ; ω

)
=

p0,rel.

(
φx0,rel.

, φϕrel.

∣∣∣φx0,irr.
, φϕirr.

)

q0,rel.

(
φx0,rel.

, φϕrel.

∣∣∣φx0,irr.
, φϕirr.

,v = ω
) . (5.25)

Consequently, one optimization of dimension |v| could be split up to |C|
optimizations with dimensions

∣∣∣v(c)
∣∣∣. The split up into causality groups

depends on the structure of the simulation and on the assumptions regarding
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the correlation of relevant parameters with regard to the critical scenes.
The best gains can be achieved when splitting the simulation into very
small causality groups which for example might include only the relevant
parameters of one vehicle or even only one relevant parameter at all.
Then the dimensions of the single optimizations

∣∣∣v(c)
∣∣∣ become as small as

possible. When doing so, the factorization of the total distribution cannot
in principle falsify the results of (5.9) when the number of samples N
is large enough. However, a poor approximation of (5.12) might strongly
increase the relative standard deviation in (5.11). This might cause severe
underestimations of Pcrit (ξ ∈ ε) when the number of samples is too low to
find critical simulation runs in underrepresented parameter areas.

Section 5.3.2 will exemplarily implement the described separation pro-
cedure and show the resulting reduction in the dimension of the required
optimizations.

One might wonder why one should not try to delete or at least reduce
the number of irrelevant parameters in the models in order to reduce the
dimensionality of the optimization (by using different/smaller models).
Such a parameter reduction however would require the construction of
models p0 and pbeh. which do not strive to represent reality as exact and
generic as possible, but only the parts of reality which are critical for
a specific ADF (e.g. only the vehicles/ the vehicle configurations which
affect the ADF e.g. in a maneuver-based way). This however would require
good knowledge of the critical behavior of the ADF before creating the
models and doing the simulations. If no complete knowledge about the
weaknesses of the ADF was available, the resulting models might not be
representative and neglect some important critical aspects of reality which
then will be overlooked and cannot be optimized. When applying IS this
can lead to severe underestimations of the collision rate since no good
optimal IS distribution can be found (for this reason also methods as
described in section 5.4 become necessary). However, if complete knowledge
about the critical behavior was available, no simulations at all would be
necessary since the system was already understood perfectly beforehand. In
addition, since the limitation on ADF-specific critical parts of reality would
prevent using generic models and the weaknesses of an ADF might change
throughout its development, adapted simulation models might be required
for each development version of the ADF. The same also holds true when
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calculating the occurrence rates of differently defined critical event sets4

ε. Additionally, completely new behavior models would be needed since
expressive and generic behavior models which try to model reality as good
as possible need a certain set of parameters (separately for each vehicle).
Just leaving out a parameter here is not possible. Hence, in the case of an
intended behavioral parameter reduction an extra behavior model would be
needed for each surrounding vehicle at a certain position in relation to the
ADF vehicle. The reason for that is, that different behavior is relevant for
different vehicles, e.g. a vehicle on the lane to the left of the ego vehicle is
critical if it fastly changes lanes to the right. A vehicle, which precedes the
ego vehicle, would be dangerous if it decelerated very strongly. Summarized,
parameter reduction prevents using generic models and requires the usage
of maneuver-based models. The described parameter explosion is however
inevitable when using generic models.

5.2.2 Adaptions to the optimization procedure
Despite the dimension of the necessary optimization, there are some other
hurdles which prevent the efficient application of IS to high-dimensional
simulation frameworks. In the following, solutions are proposed. They will
be applied in the experiments discussed in section 5.3.4.

5.2.2.1 Numerical instability of weighting

One hurdle is the numerical instability of the relation Krel.
(
φh ; ω

)
. When

sampling, the samples of Krel.
(
φh ; ω

)
might take largely different values,

especially when the distributions p0,rel. and q0,rel. contain a large number of
relevant parameters in x0,rel.,ϕrel.. That can however result in only very few
simulation runs with large Krel.

(
φh ; ω

)
dominating the calculation of the

expectation value in (5.24) or (5.14). Consequently, these outliers should
be filtered. For that, the starting point is the set of critical simulation runs

hsample,crit.,k =
{
φh ∈ hsample,k : I

(
φξ ; γk

)
= 1
}
, (5.26)

with the set hsample,k used for the optimization in iteration k (see algo-
rithm 1). The simulation runs with I

(
φξ ; γ

)
= 0 can be neglected since

these values do not influence the expectation value when changing the value
4 e.g. for different accident types
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q0.5(1−z1) m q0.5(1+z1)

Krel.

sh
ar

e

z1-interval

distribution of Krel.

Figure 5.1 Illustration of the z1 -interval around the median m. Note, that Krel. ∈ K
can be distributed arbitrarily. For illustrative purposes only, a Gaussian distribution
was chosen here.

of v during the optimization procedure. The respective weightings define
the set

K =
{
Krel.

(
φh ; ω

)
: φh ∈ hsample,crit.,k

}
. (5.27)

This set’s median (0.5-quantile) shall be denoted by

m = q0.5 (K) . (5.28)

First of all, the values located above z0 times the upper limit value of the
z1-quantile around m are filtered5. This upper limit is equivalent to the
upper limit of q0.5(1+z1 ) (K). The filtering can mathematically be expressed
by the resulting set

Kfilter =
{
K ∈ K : K −m > z0 ·

(
q0.5(1+z1 ) (K)−m

)}
. (5.29)

The used z1-interval is sketched in fig. 5.1. Finally, all values in Kfilter
whose distance to the next smaller neighbor is larger than

dmax = z2 · (q0.999 (K)−m) (5.30)

shall be selected. Therefore the next lower neighbour of K in a set A of
weightings is selected by

flower (K,A) = max ({a ∈ A : a < K}) . (5.31)
5 Note, that z0 and z1 are parameters which can be empirically chosen.
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The smallest value in Kfilter which has a distance to the next smaller
neighbor larger then dmax shall then be extracted by

Klimit = min ({K ∈ Kfilter : K − flower (K,K) > dmax}) . (5.32)

This smallest value in Kfilter is then used as cut-off value in

hsample,filtered,k =
{
φh ∈ hsample,crit.,k : Krel.

(
φh ; ω

)
< Klimit

}
. (5.33)

The set hsample,filtered,k instead of hsample,k is now used to approximate
the expectation values (5.24) needed for the optimization6. In summary,
outliers which exceed a certain distance to the next lower value are thus
neglected. For the calculation of the respective sets, quantiles, the median
and distances in between were used instead of expectation values and
standard deviations. The reason is, that quantiles are largely invariant with
regard to outliers. In contrast, outliers can strongly influence expectation
values. This might directly prevent these outliers from being excluded
when using expectation values. In the remainder of this work, the filtering
procedure is parameterized empirically by

z0 = 2, (5.34)
z1 = 0.96, (5.35)
z2 = 0.25. (5.36)

5.2.2.2 Exploration vs exploitation

The optimization procedure in algorithm 1 iteratively reduces the deviation
of the sampling distribution q (φh|vk−1) to the optimal importance sampling
distribution by iteratively reducing the accepted criticality limit γk. A
disadvantage of this iterative process is, that critical areas in parameter
space which possibly have been left completely undiscovered in iteration
k − 1 probably will not be found in iteration k. The reason is that during
iteration k−1, the distribution q (φh|vk−1) will be optimized to contain high
probabilities only for parameter values φh which have been discovered to be
6 The rest of the samples with I

(
φξ ; γ

)
= 0 can be ignored since they only add 0 to

the sum in (5.15). Hence, they only contribute to the expectation value by changing
the factor 1

N
. When applying arg max

v
(c)

..., this factor however can be neglected and

therefore it is sufficient to just use hsample,filtered,k.
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critical (gcrit. ≤ γk−1) during iteration k − 1. The other areas’ occurrence
probability will be reduced. Since q (φh|vk−1) is used to draw samples
for the optimization in iteration k, these already emphasized areas from
iteration k − 1 will mainly determine the kth optimization. Therefore,
the even more critical parameter areas with gcrit. ≤ γk which are found
during iteration k tend to be located only within the already emphasized
parameter ranges. If there were some critical areas which were not found in
iteration k− 1, it would be very unlikely to find them now by chance. That
means, not all relevant critical parameter areas might be found during the
optimization procedure if some critical parameter areas were not identified
in early iterations. Eventually that means, that the amount of exploration
during an iteration is limited.

Additionally, if the numerical instability of Krel. introduced distortions
into q (φh|vk−1) when optimizing in iteration k− 1, this directly influences
the samples in iteration k and thereby affects the construction of q (φh|vk).

Due to the use of importance sampling within (5.24), it is in principle
possible to sample from arbitrary distributions without distorting the
expectation value. This fact is now used to propose an adaption of the
sampling in order to mitigate the mentioned challenges. For that, the
sampling distribution q (φh|vk−1) for iteration k is changed by adding
Nadd distributions qadd,i to q0,rel.,c. The resulting distribution is given by

q̃0,rel.,c

(
φx0,rel.,c

, φϕrel.,c

∣∣∣φx0,irr.
, φϕirr.

,v
(c)
k−1

)

=
Nadd∑

i=1
βi · qadd,i (...) + β0 · q0,rel.,c (...) (5.37)

with 0 ≤ βi ≤ 1 and
∑Nadd

i=0 βi = 1. In the remainder, this work proposes
the use of Nadd = 2. Firstly, the uniform distribution

qadd,1

(
φx0,rel.,c

, φϕrel.,c

)
= U

(
φx0,rel.,c

, φϕrel.,c

)
(5.38)

is added with weight β1. The application of the uniform distribution
enhances the algorithm’s ability to explore new parameter ranges which
have not previously been known to contain critical simulation runs.

Secondly, a histogram hist (in a strict mathematical sense it will later
be a categorical distribution obtained after discretizing the variables) over
the critical simulation runs of the last iteration k − 1

qadd,2

(
φx0,rel.,c

, φϕrel.,c

)
= hist

(
φx0,rel.,c

, φϕrel.,c

∣∣∣hsample,crit.,k−1

)
(5.39)
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is added with weight β2. The addition of qadd,2 improves the overall stability
and convergence rate of the algorithm since it reduces the influence of the
unstable factor Krel.. In contrast to q0,rel.,c, qadd,2 does not care about
the weightings of the samples. It purely steers the distribution to critical
parameter regions which have been sampled most frequently in the last
iteration. Hence, β0, β1 and β2 can be used to weight the algorithm’s
amounts of exploration and exploitation7.

5.2.2.3 Premature convergence

Another challenge of the iterative optimization procedure is that γk might
undercut the final value γ before vk−1 has converged and thus before the
deviation of q (φh|vk−1) to the optimal importance sampling distribution
has fallen below an acceptable level. New critical parameter areas might be
found after reaching γ since some parameter ranges only become interesting
after some correlated parameters have been optimized into a certain range.
Therefore, this work proposes the execution of an additional number kadd of
iterations which take places after reaching γk ≤ γ at iteration k = kreach. For
the iterations b ∈ {kreach, ..., kreach + kadd} the value of γb is, in accordance
with algorithm 1, set to γ. Within the remainder of this work

kadd = 2 (5.40)

is utilized. During the additional iterations, the number of performed
simulations used to calculate the respective expectation value is given by
Nadd . Within this work,

Nadd = 20 000 (5.41)

is used.

5.3 Implementation and illustration of CE on
simple behavior models

In this section, the mentioned improvements enhancing the scalability of CE
shall be illustrated. This is accomplished by applying them to determine the
rare collision rate in simulations of an ADF-equipped ego vehicle in complex
7 exploration: β1; exploitation: β0, β2
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highway scenes. The initial scenes of the simulation runs are directly taken
from the highD dataset (for the dataset, see appendix B.2, for the sampling
of initial scenes see section 5.3.1.1). This makes sure that realistic scenes
which are not limited to certain scenario classes or complexities are used. For
the desired proof of concept, the vehicle dynamics are governed by simple
behavior models as described in section 5.3.1. The concrete causality groups
used to enable the scalability are introduced within section 5.3.2. When
taking initial scenes from a dataset it becomes impossible to optimize them.
Therefore, a relaxation phase (section 5.3.3) becomes necessary. The results
of the optimization procedure and the ability to accelerate the generation of
statistically stable results is then evaluated on two metrics (section 5.3.4):
A purely physics-based one (section 5.3.4.1) and a behavior-based one
(section 5.3.4.2).

5.3.1 Model

5.3.1.1 Initial scenes

At the beginning of each simulation run an initial scene must be constructed.
These initial scenes, which represent the physical vehicle configuration x0 at
the beginning of a simulation run h, are constructed by drawing arbitrary
samples from the highD dataset (appendix B.2). That implies, x0 ⊥⊥ ϕ.
For the sake of simplicity, in this first illustration of the concept, only
non-physical parameters ϕrel. ⊆ ϕ shall be optimized by CE. Hence, this
implicitly assumes that the initial scene configuration is totally irrelevant
for the safety of the ADF-equipped vehicle under test8. Hence, it is x0,rel. =
{} ,x0,irr. = x0. As a result of these assumptions, (5.20) can be specified

8 This is of course not the case in reality. Nevertheless, this assumption is kept through-
out the rest of this chapter to enable the initial scenes being drawn from the dataset.
An optimization of initial scenes when they are purely based on sampling from the
dataset is not possible since a pure dataset does not contain descriptive optimizable
parameters. The optimization would require an initial scene model. It is possible to
neglect this by including a relaxation phase (section 5.3.3). The challenges arising
from this concept are not intrinsic to the proposed algorithmic scheme. They are
finally resolved in chapters 6 and 7 by the introduction of initial scene models.
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by

p0
(
φx0

, φϕ

)
=

p0,irr.(φx0 ,φϕirr.
)︷ ︸︸ ︷

p0,irr.,1
(
φx0

)
· p0,irr.,2

(
φϕirr.

)

· p0,rel.
(
φϕrel.

∣∣φϕirr.

)
. (5.42)

The distribution p0,irr.,1 of initial scenes is, as already mentioned, described
by drawing arbitrary samples from the highD dataset (see fig. B.3 for an
exemplary sample). This makes sure that realistic scenes which are not
limited to certain scenario classes or complexities are used. For simplicity,
the lateral positions within a lane and the lateral velocities of the vehicles
are neglected9. On the German Autobahn there is always a constructional
median barrier. Therefore vehicles driving in the opposite direction are
totally decoupled and only the vehicles traveling in the same direction as
the ego vehicle are relevant for its safety. Hence, when sampling from the
highD dataset only these vehicles are extracted.

After having drawn a scene from the dataset, one of the vehicles in the
initial scene is declared to be the ego vehicle which is controlled by the ADF
model given in section 5.3.1.2. It is the simulation’s aim to test this ego
vehicle/ADF. The rest of the vehicles are governed by the behavior models
described in section 5.3.1.3. The ADF model and the behavior models
together then account for pbeh.

(
φx1

, ..., φxnφξ

∣∣∣∣φx0
, φϕbeh.

)
as required by

(5.18) and (5.19).
Additionally, it is ϕ = ϕbeh.. That means all of the non-physical pa-

rameter in the used simulation framework are behavior parameters which
determine the vehicle dynamics, no further parameters are required. The
parameters in ϕbeh. are determined by the used behavior models (IDM
and MOBIL). They are discussed in section 5.3.1.3. Since the behavior
parameters shall characterize the intrinsic properties of the drivers of the
single vehicles, each vehicle gets its own set of behavior parameters. It is
assumed that the behavior parameters do not change during the consid-
ered time horizon nφξ

of the simulations. For the sake of simplicity, the
non-physical parameters are sampled independently from each other. That
9 This is also necessary to prevent the initial scenes which cannot be optimized to have

a dominating share in the causation of critical scenes. It is therefore the relaxation
phase’s (which only relaxes longitudinal parts of the initial scenes, see section 5.3.3)
equivalent for lateral parts of a scene. Hence, to include the lateral parts an initial
scene model which sufficiently addresses the lateral parts of a scene is required.
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is, both p0,rel. and p0,irr.,2 are fully factorized distributions with factors of
truncated Cauchy distributions

p
(p)
cauchy,trunc

(
φp

∣∣∣u(p),Bp

)
=





1
zBp

π
u

(p)
2(

u
(p)
2

)2
+
(

φp−u
(p)
1

)2 if φp ∈ Bp

0 else
.

(5.43)

The random variable p declares the parameters of IDM and MOBIL which
are introduced in section 5.3.1.3 and contained in ϕrel. respectively ϕirr..
The parameters in the 2× 1 matrix u(p) =

(
u

(p)
1 u

(p)
2

)†
give the position

of the peak and the width of the Cauchy distribution. The support of the
truncated Cauchy distribution is limited to the interval Bp. The values u(p)

as well as Bp are enumerated in table 5.2. The parameter zBp
renorms

the distribution to the truncation interval. The Cauchy distributions are
centered on the standard values u

(p)
1 of the parameters. Note, that all the

behavior parameters get sampled separately for each vehicle since they
describe the intrinsic properties of a driver and there is obviously an extra,
different driver in each vehicle. The Cauchy distribution was used because
its slope converges relatively slowly to 0. Since these slopes often contain
the critical and thereby interesting simulation runs, a product of Cauchy
distributions seems to be a promising starting point for a challenging
simulation framework with rare critical events. In contrast, when using
Gaussian distributions, the slopes would vanish pretty fast. This could
cause an underflow in the floating-point arithmetic of a computer and
thereby the loss of events from the slopes of the distributions.

5.3.1.2 Ego vehicle

The vehicle on the middle lane in a generated initial scene whose distance to
the longitudinal middle point of the simulated highway section is minimal,
is defined to be the ADF driven ego vehicle. This ego vehicle shall be tested
by the simulation.

The ego vehicle’s dynamics are governed by a simple adaptive cruise
control (ACC) model as introduced by Gelder and Paardekooper [30]. This
means, that the longitudinal acceleration of the ego vehicle is controlled by

aego = min (uCC, uACC) , (5.44)
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Table 5.1 The parameters used for the ego vehicle controller. Their values are taken
from [30]. vr is the desired reference velocity, kVCC gives the velocity gain of the cruise
controller, τh is the desired time headway and s0 describes the desired minimal safety
distance. The parameters kd1 and kd2 correspond to the distance gains of the ACC at
high and low velocity. The parameter σd describes how fast kd2 changes to kd1 if the
velocity increases. The parameter kv is called velocity difference gain. The table was
also published by Jesenski et al. [134]; © 2020 IEEE.

Parameter Value Parameter Value
vr 36 m

s kd1 0.7 s−2

kVCC 1.3 s−1 kd2 2.0 s−2

τh 2.0 s σd 5.0 m
s

s0 1.54 m kv 0.35 s−1

with

uCC = kVCC
(
vr − vego

)
, (5.45)

uACC = kd(vego)(dego − τhvego − s0) + kvḋego, (5.46)

kd(v) = kd1 + (kd2 − kd1) · e− v
2
ego

2σd . (5.47)

Table 5.1 contains the parametrization of the ACC. The ego vehicle’s
acceleration aego is confined by the interval Iego =

[
−8 m/s2, 8 m/s2

]
. The

ego vehicle’s velocity is given by vego, dego is the distance to its predecessor.
The desired speed vr is of course dependent on the simulated location. In
the presented case vr is derived by the advisory speed limit of 130 km

h . In
the presented simulation framework optimal perception is assumed. Sensor
noise could however easily be added to the simulations.

5.3.1.3 Behavior models for surrounding vehicles

In order to model the stochastic time dynamics expressed by pbeh., prob-
abilistic behavior models (BMs) are needed to control the agents which
surround the ADF-controlled ego vehicle. Since the main interest of this
work is to show the applicability of the IS strategy to large unstructured
scenarios, there is no focus on detailed vehicle behavior. Hence, simple
parametric BMs are sufficient for the purposes of this work. A heavily used
model for the longitudinal dynamics of an agent is the intelligent driver
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model (IDM) [104] which shall now be applied. For the lateral dynam-
ics, minimizing overall braking induced by lane changes (MOBIL) [52] is
utilized.

The IDM which governs the longitudinal dynamics of a vehicle is defined
by

v̇
(det)
t (vt−treact

,∆vt−treact
, dt−treact

)

= A


1−

(
vt−treact

V0

)δ

−
(
s∗ (vt−treact

,∆vt−treact

)

dt−treact

)2

 (5.48)

with the desired minimum gap

s∗(v,∆v) = S0 + S1 ·
√

v

V0
+ T · v + v ·∆v

2
√
A ·B

. (5.49)

The parameters of the IDM are described in table 5.2. Note that the original
model proposed by Treiber et al. [104] was modified by adding a reaction
time treact. The deterministic acceleration v̇(det)

t for time step t is dependent
on the three variables

(
vt−treact

,∆vt−treact
, dt−treact

)
, which are the velocity

of the agent, the velocity difference to its predecessor and the distance to
its predecessor at time t− treact. On the German Autobahn it is in general
forbidden to overtake another vehicle on the right. To implement this rule,
the minimization

v̇
(det)
t,∗ =

{
min

(
v̇

(det)
t , v̇

(det,left)
t

)
if vt−treact

> vlead > vc

v̇
(det)
t otherwise

(5.50)

as proposed in [52] is implemented. v̇(det,left)
t is the agent’s IDM acceleration

when the distance and velocity difference to its predecessor on the left lane
are given as inputs. vlead is the velocity of the predecessor on the left lane
and vc is the maximum velocity for which it is allowed to overtake on the
right, e.g. in congestions. On the German Autobahn it is vc = 60 km

h .
Since the IDM is deterministic and the simulation shall be probabilistic,

the Gaussian distribution

v̇
(prob)
t ∼ p(a) = 1√

2πσ2
e− [a−v̇

(det)
t,∗ ]2

2σ
2 . (5.51)
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Table 5.2 Parameters ϕi ⊆ ϕbeh. needed to specify the BMs of a surrounding agent i.
The parameters are sampled as defined in section 5.3.1.1. The parameters with "-" in
the fourth column are not sampled, but always set to the values in the third column
which are given instead of interval limits. The parameters in the fourth column give
the initial peak position and the width of the Cauchy distributions in (5.43). The peak
values of the parameters are mostly oriented by the values given by Kesting et al. [52]
and Treiber et al. [104]. The table is based on table 3 published by Jesenski et al. [134];
© 2020 IEEE.

Param p Description Interval Bp

(
u(p)

)†

ID
M

V0 desired velocity in m
s [0.001, 70]

(
36 2.5

)

T safe time headway in s [0.2, 2.5]
(
1.6 0.2

)

A max. acceleration in m
s2 [0.2, 1.5]

(
0.73 0.1

)

B des. deceleration in m
s2 [0.5, 3]

(
1.67 0.8

)

δ acc. exponent [4± 0.001]
(
4 0.01

)

S0 jam distance 1 in m [1, 3]
(
2 1

)

S1 jam distance 2 in m [0, 3]
(
0 1

)

treact reaction time in s [0, 4]
(
0.001 0.1

)

vc congest. velocity in m
s 16 -

σ std. deviation in m
s2 [0.2, 1.4]

(
0.75 0.3

)

alimits accel. limits in m
s2 -10 and 10 -

M
O

B
IL

ωpol. politeness factor [0, 1]
(
0.9 0.1

)

∆ath changing threshold in m
s2 0.2 -

bmin min. safe dec. in m
s2 [-2, 2]

(
0.6 0.3

)

∆abias bias for right lane in m
s2 0.3 -

is applied to get the final probabilistic acceleration v̇
(prob)
t .

The Gaussian function is truncated (and renormed) by the interval
alimits =

[
−10 m

s2 , 10 m
s2

]
and the agents are prevented to drive in the wrong

direction by setting v ≥ 0 m
s .

MOBIL Since a multi-lane highway section shall be simulated, it is nec-
essary that the lateral dynamics of the agents are determined. For that,
MOBIL [52] is used. MOBIL works by calculating the agents’ lane change
decisions. In order to do so, the benefit of a lane change to the right is
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Table 5.3 Conditions for lane changes. The table was already published by Jesenski
et al. [134]; © 2020 IEEE.

Conditions Decision
τR > τL ∧ τR > 0 ∧ τ (right)

safe change to the right
τL > τR ∧ τL > 0 ∧ τ (left)

safe change to the left
otherwise no lane change

defined by

τR = ã− a+ ωpol. (ão − ao)− (∆ath −∆abias) . (5.52)

The benefit of a lane change to the left is analogously defined by

τL = ã− a+ ωpol. (ãn − an)− (∆ath + ∆abias) . (5.53)

ã and a are the longitudinal IDM accelerations of the ego vehicle after and
before the hypothetic lane change. Analogously, ão/n and ao/n are the IDM
accelerations of the agent’s successor on its old/new lane after and before
the lane change. The parameter ωpol. decides about the politeness of the
lane changing vehicle, that means how strong it considers the effects of
the lane change on relevant surrounding traffic participants. The value for
∆ath is the overall advantage a lane change minimally must achieve to be
executed and ∆abias realizes the keep-right directive as required in most
European countries. As also proposed by Kesting et al. [52] an additional
safety criterion,

τsafe = ã > bmin ∧ ãn > bmin (5.54)

is used. This makes sure that no vehicle has to brake stronger than allowed
by the minimum safe deceleration bmin after the lane change has taken
place. The lane change decision itself is based upon the conditions in
table 5.3. When the lane change decision was made, the lateral behaviour
is determined using constant accelerations. These are applied to reach a
desired lateral lane change velocity and to brake afterwards. The used
values for the described MOBIL parameters are also given in table 5.2.

5.3.2 Selection of causality groups
The proposed family of distributions q0

(
φx0

, φϕ

∣∣φv

)
is chosen analogously

to the unskewed distribution described in section 5.3.1.1. Consequently,
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(5.21) is modified into

q0
(
φx0

, φϕ

∣∣φv

)
=

p0,irr.(φx0 ,φϕirr.
)︷ ︸︸ ︷

p0,irr.,1
(
φx0

)
· p0,irr.,2

(
φϕirr.

)
·q0,rel.

(
φϕrel.

∣∣φv

)
.

(5.55)

The distributions p0,irr.,1
(
φx0

)
and p0,irr.,2

(
φϕirr.

)
were already described

in section 5.3.1.1. The remaining distribution q0,rel. is split into causality
groups as described in (5.22). For maximal efficiency gains, the causality
groups C are chosen to consist of single parameters. Therefore, q0,rel. is
chosen to be factorized by truncated Cauchy mixture distributions

q0,rel.,p
(
φp

∣∣φ
v

(p)
)

=
3∑

i=1
φ

m
(p)
i
· p(p)

cauchy,trunc

(
φp

∣∣∣φ
v

(p)
i
,Bp

)
(5.56)

for p ∈ C = ϕrel.. q0,rel.,p is defined by 9 optimizable parameters since

v(p) =
3⋃

i=1

({
m

(p)
i

}
∪ v

(p)
i

)
. The interval Bp is kept constant at the values

given in table 5.2. The boundary condition
∑3

i=1 φm
(p)
i

= 1 must hold. The

truncated Cauchy distributions p(p)
cauchy,trunc

(
φp

∣∣∣φ
v

(p)
i
,Bp

)
are defined as

given by (5.43).
Consequently, by setting the products of (5.43) and (5.56) into (5.25),

the relation between unskewed and skewed distribution ends up being

Krel.
(
φh ; ω

)
=

∏

p∈ϕrel.

p
(p)
cauchy,trunc

(
φp

∣∣∣u(p),Bp

)

3∑
i=1

φ
(ω)
m

(p)
i

· p(p)
cauchy,trunc

(
φp

∣∣∣ω(p)
i ,Bp

) . (5.57)

When adapting the sampling distribution in the iterative optimization
procedure as introduced in section 5.2.2.2, the relation of course must
additionally be adjusted. For the executed simulations in section 5.3.4, ϕrel.
has empirically been selected to consist of specific parameters of specific
vehicles as listed in table 5.4. The relevant vehicle positions are illustrated
in fig. 5.2 .

Note, that the parameters p are chosen and optimized in a position-
dependent and not a vehicle-dependent manner. That means, when a
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Table 5.4 The parameters ϕrel. which are used to optimize the pdf. The set ϕi ⊆ ϕbeh.
contains the IDM and MOBIL parameters of vehicle i, however only selected parameters
of each vehicle are included in the set of relevant parameters. Compare table 5.2 for the
meaning of the parameters. For the vehicles’ nomenclature see fig. 5.2.

Vehicle i ϕi \ ϕirr.

Lsame,0 V0
Lsame,1 V0
Tsame,0 treact

1

2

3

Lright,1Lright,0OrightTright,0

Lsame,0Tsame,0Tsame,1

Lleft,0OleftTleft,0Tleft,1

ego

Figure 5.2 The position-dependent nomenclature of vehicles in relation to the the ego
vehicle. The index iterates with growing distance to the ego vehicle.

vehicle changes its position in relation to the ADF-based ego vehicle, its
behavior parameters get changed to the respectively assigned values.

This position-dependency can be justified by the fact, that critical be-
havior of a vehicle is strongly determined by its position and therefore the
parametric family of distributions q

(
φh

∣∣φv

)
should be chosen accordingly.

As an example, a vehicle driving behind the ego vehicle is probably more
critical if it accelerates fast and has large reaction times. However, the
vehicle preceding the ego should in contrast decelerate fast and drive slower
in order to provoke critical scenarios. The introduced procedure is not
limited to position-dependent sampling. It could easily be used to sample
vehicle-dependent.

With the chosen relevant parameters and an exemplary scene with
n

(φξ )
veh = 25 vehicles, the separation into relevant and irrelevant parameters

and the introduction of causality groups would enable the reduction of one
optimization with n(φξ )

veh · |ϕi| · 9 = 2475 dimensions to 3 optimizations with
9 dimensions (compare section 5.2.1).
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5.3.3 Relaxation phase
As already explained, the initial scenes x0 are simply drawn from the
highD dataset which makes it impossible to influence these initial scenes
by optimizing the set ϕrel. via the CE method. This introduces the implicit
assumption that the initial scene is not relevant for the criticality of a
total scenario into the design of q

(
φh

∣∣φv

)
. Obviously, this cannot be true

in reality since for example the initial distances and relative velocities
between neighboring vehicles will be important for a scenario’s criticality.
Mathematically this implies that the proposed family of distributions
q
(
φh

∣∣φv

)
has a certain deviation to the optimal IS distribution (5.12)

which it cannot undercut no matter how the parameters v are chosen.
As a result the standard deviation (5.11) might not be reduced as far as
desired. It has turned out in the experiments that this case typically leads
to an underestimation of the collision rate since not all critical parts ε
of reality were found and thereby the probability values, the distribution
q
(
φh

∣∣v∗) allocates to its known critical scenarios in ε are too large on
average. Therefore, the relation in (5.7) for the drawn samples is on average
too low. However, (5.10) shows that the expectation value obtained from
IS should always be correct. This is consistent with the described situation
since critical runs ξ ∈ ε which could not be optimized and emphasized
by the found distribution q

(
φh

∣∣v∗) will have too large relations K∗
(
φh

)

since their occurrence is underweighted in q
(
φh

∣∣v∗). If these samples are
found and sampled, this introduces a large increase in the estimation of
the collision rate since K∗

(
φh

)
becomes very large in these cases. However

since they are not emphasized by the optimized distribution q
(
φh

∣∣v∗) they
will rarely be sampled. Consequently, the number of samples would have to
be strongly increased in order to find enough of these “increases” in order
to get a good estimation of the collision rate.

Since this chapter shall give a proof of concept that the proposed method
can handle large scale scenes as included in the highD dataset, it is sufficient
to handle the described problem by reducing the influence of the initial
scene on the scenario’s criticality. This can be achieved by the introduction
of a relaxation phase10, which allows decoupling the initial scene from the
10 This relaxation phase of course changes the unskewed version of the simulation. The

calculated collision rates will also change undoubtedly. However, the aim of this work
is not to prove the real collision rates of a system, but to give a prove of concept of
the introduced method. An altered unskewed simulation does not pose a problem in
this context.
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Table 5.5 Parameters used in algorithm 1 for both optimizations. The metric g
(RSS Dist)
crit.

is the metric based on g
(RSS Dist)
pair (p, t, ξ) defined in section 4.4.2, whereas g

(RSS Beh)
crit. is

based on g
(RSS Beh)
pair (p, t, ξ) given in section 4.4.3. Both metrics base on RSS which was

in this relation parameterized by the values in table 5.6.

gcrit. N η kmax γ β1 β2 z0 z1 z2 kadd Nadd

g
(RSS Dist)
crit. 10 000 0.02 100 −1 0.2 0.3 2 0.96 0.25 2 20 000
g

(RSS Beh)
crit. 10 000 0.02 100 −8 0.2 0.3 2 0.96 0.25 2 20 000

set ε. During this relaxation phase, which lasts for the 40 first steps of a
simulation run, no criticality assessment takes place. Additionally, some
parameters of the vehicles in a simulation run are changed during the
relaxation phase: It is for example treact = 0 s for all vehicles. Besides, the
vehicles’ values for V0 are set to their velocities in the initial scene. S0 and
T of all vehicles are set to the standard values of IDM. The Gaussian noise
σ is reduced to 0.01 and the acceleration limits of the vehicles are enlarged
to −30 m

s2 and 30 m
s2 . Last but not least, after the end of the relaxation

phase, a vehicle will always at least have knowledge about the scene directly
after the end of the relaxation phase, no matter if the elapsed time since
the relaxation phase’s end is smaller than the vehicle’s reaction time treact.
These changes allow the initial scene to relax into a safer state before
critical states are again produced by the optimizable behavior models. Note
however, that the necessity of a relaxation phase is not a general problem of
the described approach. It will be shown in chapter 7 that the introduction
of an optimizable initial scene model based on the techniques mentioned in
chapter 6 renders the relaxation phase unnecessary.

5.3.4 Evaluation
The parametric family of functions q

(
φh

∣∣φv

)
based on the causality groups

given in section 5.3.2 is now optimized towards the optimal IS distribution
(5.12) by the iterative scheme in algorithm 1, with the additions introduced
in section 5.2.2. The optimization is executed separately on g

(RSS Dist)
crit.

which is a purely physical metric and on g
(RSS Beh)
crit. which also assesses

the behavior of the ADF controlled ego vehicle. For both metrics, it is
S = {ego}, compare chapter 4. The parameters used for both optimizations
are summarized in tables 5.5 and 5.6. The simulations are run with time

94



5.3 Implementation and illustration of CE on simple behavior models

Table 5.6 The numerical values for the RSS parameters defined in table 4.1 which were
used to define both RSS-based safety metrics.

Parameter Value Parameter Value
ρ 0.5 s amax,accel 4 m

s2

amin,brake 7 m
s2 amax,brake 7 m

s2

alat,max,accel 1 m
s2 alat,min,brake 2 m

s2

µ 0.04 m

steps ∆t = 0.04 s and a time horizon of nφξ
= 300 steps.

5.3.4.1 Evaluation on physics-based metric

The optimization on g
(RSS Dist)
crit. converged to γ = −1 after 3 iterations. As

already shown in table 5.5, two additional optimization steps follow. The
resulting, optimized parameter set is denoted by v∗

RSS Dist. The consequent
optimized distribution q

(
φh

∣∣v∗
RSS Dist

)
emphasizes the critical event set

εRSS Dist =
{
φξ ∈ Ω : g(RSS Dist)

crit.

(
φξ ,S

)
= −1

}
. (5.58)

By definition, this set comprises all physical collisions with participation
of the ADF-controlled ego vehicle. Figure 5.3 visualizes the effects of the
optimized distribution q

(
φh

∣∣v∗
RSS Dist

)
by displaying q

(
φh

∣∣v∗
RSS Dist

)
and

the original distribution ph

(
φh

)
marginalized on the relevant parameters in

the causality groups. It is obvious, that all three causality group parameters
are strongly shifted. The shifts can be understood intuitively. For both
velocity parameters (Lsame,0, V0) and (Lsame,1, V0), small values are strongly
emphasized in the optimized distribution. The reason is that low values of
IDM’s desired velocity V0 expresses the desire of the respective vehicle to
drive slowly. The slower a vehicle desires to drive, the higher the probability,
that the respective vehicle brakes, becomes. Of course, the braking of a
leading vehicle like Lsame,0 or Lsame,1 increases the criticality of a scene and
the likelihood of a collision taking place. For the trailing vehicle Tsame,0,
the situation is a little bit different. If the trailing vehicle drives slower,
this would decrease a scenario’s criticality since the trailing vehicle tends
to drive slower than the ego vehicle and the distance between them would
increase. Hence, V0 is not of interest here. However, if the reaction time
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Figure 5.3 Comparison of q
(

φh

∣∣∣v∗
RSS Dist

)
and ph

(
φh

)
. In detail, the images show a

comparison of the marginals of the relevant behavior parameters/causality groups. (a)
gives the marginal of the desired velocity V0 of vehicle Lsame,0, (b) shows the same for
Lsame,1 and (c) gives the reaction time treact of the trailing vehicle Tsame,0.

treact of the trailing vehicle increases, then its capability to react on ego’s
dynamics decreases which increases the probability that it crashes into it.
Consequently, as shown in fig. 5.3(c), the optimization emphasizes large
values of treact. Note, that the shift in the distribution of Lsame,1 is weaker
than the shift in the distribution of Lsame,0. Hence, a vehicle’s effect on ego’s
criticality decreases when its separation to ego increases. This strengthens
the confidence in the concept of causality groups since that means a lot of
simulation parameters can be neglected during optimization.
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Lsame,0

29.0 m
s

Tsame,0

28.0 m
s

28.8 m
s

(a) t = 0 s after the start of the simulation.

Lsame,0

25.4 m
s

Tsame,0

27.9 m
s

34.6 m
s

(b) t = 1.6 s after the start of the simulation.

Lsame,0

10.3 m
s

Tsame,0

29.2 m
s

26.6 m
s

(c) t = 3.2 s after the start of the simulation.

(d) t = 8.72 s after the start of the simulation.

Figure 5.4 Illustration of a highly critical simulation run. The ADF controlled ego
vehicle is shown in green, the surrounding vehicles are blue. The vehicles appear distorted
since the road section has a length of about 480 m and a width of about 13 m, the
relation of the images’ width and height is therefore not appropriate. (a) displays the
initial scene drawn from the highD dataset. (b) shows the scene at t = 1.6 s. This is
directly after the end of the relaxation phase. Afterwards, the scene quickly becomes
dangerous. A low value for the desired velocity V0 now causes the predecessor Lsame,0
to brake hard. In (c), it is already driving very slowly at 10.3 m

s . In (d) the successor
vehicle Tsame,0 crashes into the ego vehicle. Due to a large reaction time, it could not
react quickly enough to the decelerating ego vehicle which had to brake in order to
prevent crashing into Lsame,0.

Figure 5.4 illustrates a typical critical simulation run which was drawn
by q

(
φh

∣∣v∗
RSS Dist

)
. Obviously, the already mentioned effects provoke a
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Figure 5.5 Criticality histogram of the optimized distribution in comparison with
the original unskewed one. The histograms are based on 120 000 samples drawn from
q
(

φh

∣∣∣v∗
RSS Dist

)
and 650 000 samples drawn from ph

(
φh

)
.

crash between Tsame,0 and ego.
The optimized distribution can further be evaluated by comparing the

criticality values produced by drawing from it with the criticality values
when drawing from the original distribution ph

(
φh

)
. The resulting his-

tograms are displayed in fig. 5.5. The histograms show that the optimized
distribution generates much more critical scenarios. More than 20 % of all
runs generated with the optimized distribution are located in the worst
bin directly next to a collision at the metric value g(RSS Dist)

crit. = −1. In
contrast, when sampling from the original distribution ph

(
φh

)
, most of

the simulation runs were uncritical at a metric value larger 0 (compare
section 4.4.2).

This high share of critical sampled scenes allows extracting more informa-
tion about an ADF’s safety with fewer simulation runs. This is illustrated
by fig. 5.6. The application of (5.9) on the values sampled by the optimized
distribution causes a significantly faster convergence of the approximated
collision rate than when naively applying (5.4) on the samples from the
original distribution. The approximated collision rate of the discussed ADF
lies at approximately

Pcrit (ξ ∈ εRSS Dist) ≈ 5.98× 10−5. (5.59)

Figure 5.6 shows that the standard deviations of the original distribution
are larger in general. When comparing them numerically, it is found, that
the standard deviation of sample 650 000 of ph

(
φh

)
’s curve is equivalent

to the standard deviation at sample 6086 of q
(
φh

∣∣v∗
RSS Dist

)
’s curve. This

corresponds to an acceleration factor of

F
(RSS Dist)
accel. ≈ 106.8. (5.60)
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Figure 5.6 The occurrence rate of εRSS Dist which corresponds to collisions of the ego
vehicle. The occurence rate is determined both by sampling from the original and the
optimized distributions. Additionally, the standard deviations of both methods are drawn
in.

In order to check if the purely physical metric g
(RSS Dist)
crit. is sufficient,

all simulation runs with g
(RSS Dist)
crit. = −1 are extracted from the 120 000

samples drawn from the optimized distribution. About 28 500 relevant
simulation runs are obtained this way. The metric values of g(RSS Beh)

crit. of
these runs are calculated and shown in a histogram in fig. 5.7. As the
figure shows, most of the simulation runs, which are critical for the purely
physics-based metric, are not in the critical range for the behavior-based
metric. Therefore, for the most of these cases, the ADF-driven ego vehicle
behaved correctly. That means, the collisions in these cases were caused by
the surrounding vehicles and not by ego. These accidents might therefore be
irrelevant for the assessment of the ADF. This shows, that the physics-based
metric g(RSS Dist)

crit. is not sufficient for the evaluation of an ADF. Hence,
the next section discusses the occurrence rate of simulation runs which
are critical with regard to the behavior-based metric and which therefore
considers faulty behavior of the ADF.

In the discussed optimization procedure, all optimized causality groups
respectively parameters were relevant for the critical event set. If some
additional parameters, which are irrelevant for the event set, would have
been optimized no principal problem would occur. The optimized marginal
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Figure 5.7 The metric values calculated with g
(RSS Beh)
crit. for the critical simulation runs

drawn from q
(

φh

∣∣∣v∗
RSS Dist

)
in fig. 5.6 which lead to a collision with g

(RSS Dist)
crit. = −1.

About 28 500 critical runs are contained in the histogram. Only in very few runs ego gets
a blame for the causation of the collision since the values for g

(RSS Beh)
crit. are mostly located

at about −1 which means that rfrac(p, t, φξ )l(p, t, φξ ) ≈ 0 (compare section 4.4.3).

distributions of these irrelevant parameters however would not change and
would roughly be distributed as already described by the unoptimized
distribution ph

(
φh

)
.

5.3.4.2 Evaluation on behavior-based metric

The optimization based on g
(RSS Beh)
crit. is executed on the parameteriza-

tion given in table 5.5. The corresponding optimization converges after 7
iterations onto the set

εRSS Beh =
{
ξ ∈ Ω : g(RSS Beh)

crit. (ξ,S ) ≤ −8
}
. (5.61)

Of course, again two additional iterations were performed afterwards in
order to ensure a good fit. The resulting parameterization of the para-
metric family of distributions is denoted by v∗

RSS Beh. Histograms of the
criticalities of simulation runs sampled by q

(
φh

∣∣v∗
RSS Dist

)
, q
(
φh

∣∣v∗
RSS Beh

)

and the original distribution ph

(
φh

)
are displayed in fig. 5.8. As expected,

q
(
φh

∣∣v∗
RSS Beh

)
delivers significantly more samples at behavior values in

the range [−10,−1].
The optimized distribution q

(
φh

∣∣v∗
RSS Beh

)
is used to approximate the

occurrence rate of εRSS Beh. The result is presented by fig. 5.9. The optimized
distribution determines an occurrence rate of about

Pcrit (ξ ∈ εRSS Beh) ≈ 2.79× 10−6. (5.62)
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Figure 5.8 Histograms when sampling from the original dataset and the two optimized
distributions. The distribution optimized on g

(RSS Beh)
crit. increases the share of very critical

scenarios which can be blamed on the ego vehicle. (a) gives the histograms in the range
[−10, 4], whereas (b) is limited to [−10, −2.5] in order to give a better overview about
the differences at low metric values.

The standard deviation of the occurrence rate curve of the original distri-
bution at sample 400 000 is equal to the optimized distribution’s curve at
sample 806. This leads to an acceleration factor of

F
(RSS Beh)
accel. ≈ 496.3. (5.63)

Even after drawing 400 000 samples, the result obtained by the original
distribution is not stable. In fig. 5.9, the sampling by ph

(
φh

)
only produced

2 critical simulation runs, which then lead to strong fluctuations of the
approximated occurrence rate. Hence, a significantly larger amount of
simulation runs than the given ones would be necessary to determine a
stable approximation by using this original distribution. In order to estimate
the needed amount, a comparison to the optimization of g(RSS Dist)

crit. is helpful.
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Figure 5.9 Approximation of the occurrence rate of εRSS Beh. The approximation is
executed both by sampling from the original and the respective optimized distribution.
The optimized distribution delivers a stable result. In contrast, the approximation by
the original distribution only finds two relevant critical simulation runs and is therefore
fluctuating strongly. Many more simulation runs would thus be required to approximate
the occurrence rate by the use of the original distribution. This however would exceed
the available time budget for the simulations by far.

In this case, a good approximation by the original distribution is achieved
after sampling N (εRSS Dist) = 650 000 simulation runs. By applying

σ
(εRSS Beh)
dev,rel

!= σ
(εRSS Dist)
dev,rel =⇒ N (εRSS Beh)

N (εRSS Dist) ≈
Pcrit (ξ ∈ εRSS Dist)
Pcrit (ξ ∈ εRSS Beh) , (5.64)

this can be translated to the behavior-based metric. A need of about
N (εRSS Beh) = 13 932 000 simulation runs in order to get the same accuracy
for the behavior-based metric when sampling by the original distribution
is resulting. This high number is practically infeasible to reach since the
650 000 runs already needed 8.4 days11 to be processed. Consequently, more
than 180 days would be required for simulating the 13 932 000 runs. Here,
the strength of IS becomes clear: The approximation of εRSS Beh performed
by the optimized distribution was feasible and requires much less time.

11 The simulations were executed with a quad core Intel Xeon E-2144G with 64 GB of
RAM.
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5.4 Sensitivity analysis
5.4.1 Introduction
In order to realize the described scalable CE optimization approach, it was
necessary to identify the parameters ϕrel. which influence the criticality gcrit.

of a simulation run. The relevant parameters used for the previous evaluation
were empirically chosen in section 5.3.2 (see table 5.4). This selection of the
correct causality groups/relevant parameters is of high importance for the
approach to work properly. On the one hand, as few as possible parameters
should be chosen in order to keep the amount and the dimensions of the
causality groups and the resulting optimizations small and feasible. On the
other hand, all parameters which play a role for the criticality of a scenario
must be chosen. Otherwise, if some relevant parameters are missed, the
optimal importance sampling distribution p∗

h,opt
(
φh

)
in (5.12) cannot be

approximated closely enough by the family of functions q
(
φh

∣∣φv

)
resulting

from (5.19), (5.22), (5.55), (5.56). This might cause severe deviations and
losses of efficiency when calculating the occurrence rate of the desired
critical event set ε by applying (5.9). Consequently, a formal method to
assess the relevance of the available parameters in ϕ with regard to the
criticality gcrit. of a scenario is of utmost importance because it allows
selecting the causality groups and thereby an appropriate form of the
proposed function family.

The assessment of the relevance of the non-physical parameters ϕ (see
section 5.1) of a simulation run can be grasped as the analysis of the output
of a computational model M which evaluates to

g
(expec.)
crit. = M

(
φϕ

)
. (5.65)

That is, the non-physical parameters ϕ of the simulation runs are interpreted
to be input parameters of M and the output is defined by the resulting
averaged metric value g(expec.)

crit. of Nsens. simulation runs executed during
the current evaluation of M. To fulfill these demands, the computational
model M is defined by

M
(
φϕ

)
= Eph(ξ|ϕ=φϕ) [gcrit. (ξ,S )] , (5.66)

which can be approximated by

M
(
φϕ

)
= 1

Nsens.

Nsens.∑

i=1
gcrit.

(
φξi

,S) ; ξi ∼ ph

(
ξ
∣∣ϕ = φϕ

)
. (5.67)
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The challenge to assess the sensitivity of the output g(expec.)
crit. of a compu-

tational model M with regard to its input values φϕ is addressed by the
field of sensitivity analysis.

In general, the methods of sensitivity analysis are categorized into the
classes of

local methods and

global methods,

as for example discussed by Rivalin et al. [85] and Saltelli et al. [90]. Local
methods quantify the influence of a single factor p ∈ ϕ while keeping
the other factors ϕ \ p constant at a predefined value in the input space.
These local methods are not applicable to the presented simulation frame-
work since the simulation models may be highly non-linear and the input
parameters might interact strongly with each other.

In contrast, global methods quantify the influence of parameters in the
whole input space Φ. However, quantitative global methods usually are very
expensive since they require a large number of runs of M. Consequently,
for the purpose of this work, screening methods seem to be advantageous.
Screening methods evaluate M’s sensitivity globally. However, they are
not capable to derive quantitative results. They can only give qualitative
rankings of the model’s dependencies on its input parameters. Screening
methods are however computationally cheaper and therefore a good choice
here since a qualitative sensitivity assessment is sufficient for selecting the
relevant parameter set ϕrel.. As Rivalin et al. [85] and Saltelli et al. [90]
argue, the Elementary Effects method which was developed by Morris [73]
in 1991 is the most popular and versatile screening method.

5.4.2 Elementary effects method

For the application of the method of elementary effects [73] on the computa-
tional model M, the input space Φ = V al (ϕ) of the Nparams-dimensional
parameter set ϕ is transformed by the bijection Funit into a Nparams-
dimensional unit hypercube Φ∗ = Funit (Φ) by normalizing the parameters’
ranges. Afterwards, each normalized parameter range is discretized into
g-levels

{
0, 1

g−1 , ..., 1
}

. Consequently, a Nparams“-dimensional g-level grid”
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[19] Φ∗
grid of the unit hypercube is obtained. The model M’s sensitivity

with regard to parameter p ∈ ϕ is assessed based on its elementary effects

dp
(
φϕ

∗
)

=
M∗

(
φϕ

∗\p∗ , φp
∗ + ∆elementary

)
−M∗

(
φϕ

∗\p∗ , φp
∗

)

∆elementary
, (5.68)

with M∗ = M ◦ F−1
unit, p∗ = Funit (p) and ϕ∗ = Funit (ϕ). The step

∆elementary is a multiple of 1
g−1 . The selection of the evaluation point

φϕ
∗ ∈ Φ∗

grid is subject to {φϕ
∗\p∗ , φp

∗ + ∆elementary} ∈ Φ∗
grid. Since an

elementary effect dp
(
φϕ

∗
)

is a local measure of p’s sensitivity at point φϕ,
Morris [73] defines a measure

µ = E
[
dp
(
ϕ∗)] (5.69)

which assesses the sensitivity in a global fashion12 by approximating the
expectation value over randomly drawn Nmorris evaluation points for each
assessed parameter p. Therefore, Nmorris · Nparams evaluation points are
required in total. For the sake of efficiency, the Nmorris values for the
different assessed parameters p ∈ ϕ are not drawn independently. Instead,
Morris suggests drawing the elementary effects in a trajectory-based fashion.
An example with 3 sampled trajectories is given in fig. 5.10. Each trajectory
has length Nparams + 1 and each parameter changes by ∆elementary once in
each trajectory. Only one parameter is changed per trajectory step. M∗

is evaluated at each trajectory point. That allows efficiently calculating
an elementary effect dp for each of the Nparams parameters during the
Nparams + 1 required simulation runs in a trajectory. This is of course
accomplished by subtracting the evaluated values of subsequent trajectory
points. Since µ is approximated by averaging over Nmorris evaluations of
M, Nmorris trajectories thus must be sampled in total. Eventually,

Nmorris,tot = Nmorris ·
(
Nparams + 1

)
·Nsens. (5.70)

runs of the ADF’s simulation framework must be conducted in order to get
an estimation of µ for all examined non-physical parameters. Remember
that Nsens. was introduced in (5.67).
12 To be complete, it must be noted that Morris uses a second metric which is based on

the standard deviation of the elementary effects. However, since this second metric
will not be used in the following no discussion of this metric is given at this point.
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Figure 5.10 Trajectory-based sampling of elementary effects for ϕ = {p1, p2, p3}. Hence,
it is Nparams = 3. Here, 3 trajectories are sampled in a g = 4 level grid in the 3-
dimensional unit hypercube. It is ∆elementary = 2

3 .

Morris draws the trajectories randomly. This does not necessarily ensure
the trajectories being distributed equally over the whole input grid. If the
trajectories are however not distributed as equal as possible, this endangers
the expressiveness of the sensitivity analysis since some relevant parts of the
input space might not be analyzed as thorough as possible. As a solution,
Campolongo et al. [19] propose randomly sampling Ncampo. trajectories and
selecting the set of Nmorris trajectories whose distances to each other are
maximized. This ensures a good input space coverage. Since the calculation
of these optimal trajectories becomes very expensive for a large number of
parameters and trajectories, Ruano et al. [88] developed a computationally
cheaper method which approximately finds the trajectories with the largest
distances. This method will be applied in the following.

In addition, Campolongo et al. [19] introduce a revised measure

µcampo. = E
[∣∣dp

(
ϕ∗)∣∣] . (5.71)

This makes sure, that elementary effects of different sign do not cancel
each other. This is especially important for non-linear and interacting input
parameters.

Instead of analyzing the elementary effects of single random variables p,
[19] demonstrates, that µcampo. can also be used to estimate the model’s
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dependency on groups of parameters at once. This allows reducing the
number of required model runs when analyzing an entire group’s importance.
This works by moving all factors in a group simultaneously by ±∆elementary
within the trajectory-based sampling. Consequently, the amount of runs of
the ADF’s simulation framework reduces to

Nmorris,tot,groups = Nmorris ·
(
Ngroups + 1

)
·Nsens.. (5.72)

The variable Ngroups gives the number of groups into which the parameters
are separated. Because of the time savings, this group analysis can be
applied to identify relevant parameter groups, whose elements then should
be analyzed in a more expensive, parameter-wise execution of the screening
approach.

5.4.3 Results
When running the sensitivity analysis experiments, g(RSS Dist)

crit. was used
for the evaluation in (5.66). The metric was however adapted by setting
all resulting criticality values larger 1 to 1. The reason is, that otherwise,
because of the diverging nature of the metric, changes in the absolutely
safe region of the metric would dominate the results of the analysis (e.g.
a change of a metric result from 100 to 150 would cause high elementary
effects. They are however not relevant for the assessment, but would still
prevail over critical changes like for example changes between -1 and 0.).

When determining the expectation value in (5.66), by drawing Nsens.

simulation runs, the same Nsens. initial scenes x0 are used throughout an
entire trajectory. This makes sure, that only the assessed parameters are
changed and no other influences bias the analysis’ results.

For the simulation framework presented in section 5.3.1, all the pa-
rameters are behavior parameters which are given separately for each
vehicle in a scenario. Since the distance to the ego vehicle influences
the parameters’ capability to cause critical scenarios to a great extent,
it was chosen to firstly analyze the parameters grouped by their corre-
spondence to a respective surrounding vehicle. The parameterization of
this first execution of the elementary effects method is given in the first
row of table 5.7. Note that the analysis was limited to show the sensi-
tivity on the nearest 7 vehicles around the ADF controlled ego vehicle
which are

{
Lsame,0, Lsame,1, Tsame,0, Lleft,0, Tleft,0, Lright,0, Tright,0

}
. The re-

sults are demonstrated in fig. 5.11(a). Obviously, the most important
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Table 5.7 The elementary effects method was applied twice. The table gives the chosen
parameterizations. The last columns shows the amount of runs of the ADF’s simulation
framework which had to be run for the analyses. Note, that the runs are significantly
fewer than the runs required for the unoptimized original determination of the collision
rate in section 5.3.4.1.

description Ncampo. Nmorris Nsens. Ngroups g Nparams
required

runs
groups 2000 40 20 7 4 - 6400
single 2000 40 20 - 4 33 27 200parameters

vehicles are
{
Lsame,0, Lsame,1, Tsame,0

}
which are also the vehicles whose

parameters were optimized in section 5.3.4 since they were selected in
section 5.3.2. The approach seems to work on the group level since the
vehicles which have been found to be relevant in section 5.3.4 also have
been selected here.

After having found the most important vehicles with regard to sensitivity,
the individual behavior parameters of these vehicles shall now be analyzed
in a second sensitivity analysis. The parameterization of this second anal-
ysis is also given in table 5.7. The results are displayed by figs. 5.11(b)
to 5.11(d). The green marked dots represent the parameters which already
were optimized in the IS approach in section 5.3.4 (see table 5.4). Since this
IS approach delivered unbiased expectation values, that proves the correct-
ness of the underlying parameter selection. This selection shall therefore
be used as a groundtruth to check if the elementary effect methods is able
to find all the necessary relevant parameters.

Obviously, for Lsame,0 and Lsame,1 the executed sensitivity analysis is
in accordance with the parameters which were optimized for the working
approximation of the collision rate in section 5.3.4.1. For the trailing vehicle
Tsame,0 the reaction time is also found. However, for Tsame,0 the most
important parameter found by the sensitivity analysis is V0 which was
not optimized in the illustrated IS optimization. That can however easily
be explained. It is understandable, that the desired velocity V0 strongly
influences the metric result of a simulation run, since low values of the
desired velocity induce a slow driving trailing vehicle Tsame,0 and high values
cause the vehicle to drive fast. That is, low values cause large distances
between ego and Tsame,0. This therefore can reduce the criticality of a
simulation run since most of the found accidents in section 5.3.4.1 are
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Figure 5.11 The results for both executions of the elementary effects method. The
higher the values of µcampo. , the more sensitive M is to the respective parameter. If a
value for µ is negative, then an increase of the respective parameter on average reduces
g

(RSS Dist)
crit. , if the value is positive then the parameter increase also increases the metric.

The green marked parameters are the parameters which were selected in section 5.3.2
and which thus were used for the already discussed IS optimizations in section 5.3.4. (a)
shows the results for the first, group-based execution. (b), (c), (d) illustrate the results
of the second, parameter-based execution.

caused by the trailing vehicle crashing into ego. In accordance to that, V0 is
located at a negative value of µ, which states that an increase in V0 reduces
g

(RSS Dist)
crit. and thus a scenario becomes more critical. A closer look at (5.48)

however reveals, that V0 determines an IDM-controlled vehicle’s velocity if
it does not follow any leading vehicle. However, V0 is not dominant anymore
when a scene becomes critical and Tsame,0’s distance to ego vanishes; in this
case the third term in (5.48) diverges and therefore dominates Tsame,0’s
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dynamics. Consequently, V0 was called to be important by the sensitivity
analysis since it can strongly influence a scene’s criticality metric value
g

(RSS Dist)
crit. , but it still could be neglected in the CE-optimization since it

cannot further decrease g(RSS Dist)
crit. if a scene is already critical.

Consequently, if the CE optimization was executed on the elementary
effects method’s chosen parameters, an additional, irrelevant parameter
would have been included. This however does not pose a problem. In the
IS optimization it would become apparent if some parameters are not
important since the respective marginal distributions (comp. fig. 5.3) would
just not be shifted in contrast to the original distribution. The optimization
itself would still be working as long as the sensitivity analysis is not missing
any relevant parameter. Consequently, the experiments show that the
method of elementary effects is an adequate tool to give a first overview
about the parameters’ importance. The method therefore enables selecting
the relevant causality groups which allows reducing the dimension and
number of optimizations which must be executed by the CE method.

5.5 Discussion/summary
In this chapter, a new method to enhance the scalability of CE to complex
traffic scenarios is proposed. Previously, IS still was limited to scenarios of
limited complexity and class (section 3.3.2). The proposed method mitigates
this by focusing the CE optimization on the “relevant” parts of a complete
scenario which truly have an influence on a scenario’s criticality. That
enables a strong reduction of the dimension of the required optimizations
and yields contribution 6. The proposed algorithmic scheme was tested
and evaluated on an exemplary simulation framework which considers
complex highway scenarios whose initial scenes x0 are drawn from the
highD dataset. Since all scenes drawn from the dataset can be handled, it
is shown that the limitations on complexity and scenario class are strongly
relaxed. In this relation, the occurrence rates of two event sets, one defined
by a purely physical and the other one defined by a behavior-based metric,
were calculated. Hence, contribution 9 is accomplished. The behavior-based
metric might produce better insights into an ADF’s safety since it filters
scenarios whose criticality was caused by the surrounding of the ADF-
controlled ego vehicle. The ADF is not to blame for these scenarios.

The proposed methods strongly benefit from knowledge about the “rele-
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vant parts” of a scenario. It was shown that the Elementary Effects method
detects the “relevant” simulation parameters by judging their influence on
an ADF’s safety. This addresses contribution 7.

During the simulations, it however became clear, that creating initial
scenes by drawing from a dataset is not sufficient, since a pure dataset does
not allow optimizing on critical initial scenes. This problem was mitigated by
introducing a relaxation phase (see section 5.3.3) which then allowed giving
a proof of concept of the whole procedure. However, as already mentioned,
the relaxation phase creates unrepresentative/unrealistic simulation runs.
Hence, chapter 6 will introduce initial scene models and chapter 7 will show
how to combine them with IS in order to get rid of the relaxation phase.

Eventually it must be noted, that the proposed method only works for
systems, whose criticality is dominated by a subset of simulation parameters.
If all elements of ϕ have a similar, high influence on the ADF’s safety, no
reduction of the CE optimization’s dimension could be achieved. However,
the likelihood that this case occurs is low since the surrounding vehicles’
influence on the ego vehicle reduces when they are farther away or other
vehicles are located between them. This decoupling of vehicle behaviors
usually should enable a strong reduction of the dimension of the CE
optimization when applying the proposed method.

In the future, the approach should be implemented on more complex
behavior and ADF models.
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6 Scene Generation
As stated before, the development of a scene model, which can be used
to generate the initial scenes for the simulation pipeline described in
fig. 1.1, is one of the key points of this work. Due to the advantages
discussed in section 3.3.1, incremental roadway population models shall
be examined and used to realize the scene model. These incremental
roadway population models require the modeling of conditional probability
distributions (see fig. 3.10). Due to the complexity of the real world, these
distributions shall be learned from data. Consequently, efficient and fast
methods which enable learning such distributions and allow performing
inference on them (determine conditional statements) are essential. In this
relation, Bayesian networks (BN) and sum-product networks (SPN) shall
be assessed. Therefore, section 6.1 describes the basic methods and concepts
needed by BNs and SPNs to learn the probability distributions, to perform
inference and to populate a road section. On the way to the realization of
the described incremental roadway population model, section 6.2 discusses
how to extend the already available approach [119], which only works on
straight highway sections, to more complex topologies like intersections
(contribution 3). In section 6.3 the use of SPNs instead of BNs (inference
on BNs is strained by efficiency problems which SPNs can solve [81, p. 20-
21]) is proposed. Additionally, the networks’ efficiency and accuracy is
compared (contribution 4). Section 6.4 summarizes and concludes the
chapter. Parts of this chapter were already published by Jesenski et al. [132,
135]; © 2020 IEEE.

6.1 Theoretical background
This chapter discusses the methods and concepts needed for the application
of BNs and SPNs in order to realize initial scene models. Section 6.1.1
starts by giving detailed insights into the basic concept of the PGM-based
sampling framework which realizes the incremental roadway population
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model. Section 6.1.2 gives methods for learning and inferencing with BNs
and section 6.1.3 depicts the same for SPNs.

6.1.1 Basic idea for scene generation
The principle procedure to scene generation as used within this thesis is
conducted by a statistical approach. The latter is based on the work of
Wheeler et al. [119] which enables populating straight highway sections. For
the purpose of this work, Wheeler’s approach was adapted and works as
discussed in the following: In principle, the total joint probability distribu-
tion of a scene is learned from a discretized dataset. This joint probability
distribution contains statistical information about the properties of all
vehicles in a scene, and also about their relations. Exemplary properties are
velocities, distances between vehicles, directions of travel, widths, lengths
and so on. In order to make the reproduction of a scene’s joint probability
distribution feasible, it is, as already roughly outlined in section 3.3.1.5,
factorized into multiple parts on a per-vehicle basis. Afterwards, the scene
is reproduced by incrementally sampling lane by lane and vehicle by vehicle.
In the following, a simplified view on vehicle properties is utilized: It is
approximated that a vehicle is completely defined by χ = {v, x, l, w} which
are its velocity, its position on the lane’s middle line in the x-direction,
its length and its width. In the remainder of this work, the position of a
vehicle always is given by the center of its front bumper. For the sake of
simplicity, this work does not consider lateral or angular deviations of a
vehicle to the middle line of the respective lane.

During sampling, when applying the factorized probability distribution
iteratively lane-by-lane, the rightmost lane in the direction of travel (which
shall be named lane 1) is by definition populated at first. Afterwards,
the next lanes are filled iteratively. The filling procedure within a lane is
executed iteratively against the direction of travel in order to make sure
that vehicles can be placed accurately in relation to infrastructure elements
in front of the vehicles (in contrast to [119], where the lanes are populated
in the direction of travel). An example for a 3-lane straight highway section
is shown in fig. 6.1. At first, lane 1 is filled by starting at vehicle (1, 1)
and iterating to vehicle (1, n1). Afterwards, vehicles (2, 1) to (2, n2) and
vehicles (3, 1) to (3, n3) are created. When doing so, the first vehicle in a
lane L is sampled by drawing from

v1, db , l1, w1 ∼ p(L)
1 . (6.1)
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d
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dright,2

y

xxrear xfront

Figure 6.1 Exemplary approach to populate a multi-lane straight highway section. The
features relevant for sampling and related to vehicle (2, 2) are visualized. The lane starts
at an x-value of xrear and ends at xfront. The image was already published by Jesenski
et al. [136], © 2021 IEEE.

Subsequently, the following vehicles 2, ..., nL are created by drawing from

p
(L)
next

(
φvi+1

, φdi+1
, φli+1

, φwi+1

∣∣∣φvi
, φvi−1

, φdi
, φ

d
(ego)
right,i

, φdright,i

)
. (6.2)

Remember, that φX denotes a numerically assigned value of random variable
X. In the original formulation by Wheeler et al. [119], these distributions
were learned by BNs. In section 6.3 the usage of SPNs is proposed.

In (6.1) and (6.2), vi is the random variable of velocity, li the length
and wi the width of the ith vehicle (L, i) in lane L. Additionally, di is
the distance between the (i − 1)th and the ith vehicle. As illustrated in
fig. 6.1, db gives the distance between the first vehicle in a lane and the
boundary xfront of the observed road section. The parameter d(ego)

right,i is the
distance of the ith vehicle to its predecessor in the lane on its right.1 The
value of dright,i is the distance to the successor of this vehicle (therefore
this always describes the distance between i’s two nearest surrounding
vehicles on the next lane on the right, compare fig. 6.1). The distributions
p

(L)
1 and p

(L)
next must be learned from a (discretized) dataset representing

1 Note that the random variable’s name includes “ego” because the ith vehicle is in
this step of the sampling procedure understood as the ego vehicle (this is the vehicle
whose successor shall be sampled). This enables distinguishing dright,i which denotes
a distance of two vehicles in the surrounding of the current ego i.
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reality. For the sampling of the second vehicle (that means i = 1 in (6.2))
in a lane, certain values are not accessible because the predecessor of the
predecessor of the vehicle-to-sample is not known, e.g. when sampling
(1, 2) no properties of a hypothetical vehicle (1, 0) are known. Hence, let
φv0

= NaN and φd1
= NaN in this case. These non-existent values are

encoded by extra discretization values for these features of the learned
probability distribution p

(L)
next. The same also holds for the features d(ego)

right,i

and dright,i if the respective predecessor or successor vehicles on the lane
to the right of the vehicle-to-sample do not exist.

The features d
(ego)
right,i and dright,i are necessary to model correlations

between different lanes, e.g. if there are a lot of vehicles on lane 1 then the
probability that lane 2 is densely populated should also rise. If vehicles on
the rightmost lane 1 are sampled, these features are of course neglected.
This can be achieved quite easily since the probability distributions p(L)

1
and p(L)

next are learned separately for each single lane L. The reason for doing
so, is that some properties will fundamentally differ for different lanes. As
an example, more trucks will be found on the rightmost lane than on the
leftmost lane of a road section. Therefore, the distributions of the lengths
li in a dataset will be different on each of the lanes. Such deviations in the
distributions justify the training of separate networks for the distributions
in each lane.

During the placement of the vehicles, the front bumper of the (i+ 1)th
vehicle is positioned at

xi+1 =
{
xi − φdi+1

− φli
for i ≥ 1

xfront − φdb
for i = 0

, (6.3)

whereas xi is the x-position of vehicle i on the middle line of the vehicle’s
lane in the direction of travel (compare fig. 6.1). The sampling within a
lane is aborted if xi+1 < xrear.

6.1.2 Learning and inference on Bayesian networks

The distributions (6.1) and (6.2) are modeled by using BNs and SPNs.
Therefore this section gives an overview on the methods for training and
inference which are crucially necessary for BNs.
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n1

n2 n3

n4 n5 n6

Figure 6.2 Directed acyclic graph G = (V , E) of variables V = {n1, n2, n3, n4, n5, n6}
and edges E = {(n1, n2), (n2, n4), (n2, n5), (n1, n3), (n3, n5), (n3, n6)}.

6.1.2.1 General properties

Since BNs are probabilistic graphical models, they use a graph structure
to encode independencies of a joint probability distribution. This enables
the efficient representation of large distributions.

A directed acyclic graph (DAG) G = (V ,E) used for the construction of
Bayesian networks consists of a set of variables V and a set of directed edges
E between nodes ni, nj ∈ V . A DAG is not allowed to contain directed
cycles which means it is not possible to start and end at the same node
when following the directions of the edges e ⊂ E which span a connected
path. An example for a DAG G is presented in fig. 6.2.

Formally, a tuple (G, p) consisting of a DAG and a probability distribu-
tion p is called Bayesian network, if it fulfills the Markov condition [76,
Definition 1.9 and p. 40]. If the Markov condition holds, then G expresses
a factorization of p [76, Theorem 1.4]. The nodes of G represent random
variables and the directed edges E correspond to statistical dependencies.
Therefore, in the example given by fig. 6.2, the joint probability distribution
can be calculated by

p(φn1
, φn2

, φn3
, φn4

, φn5
, φn6

) =p(φn1
) · p(φn2

|φn1
) · p(φn3

|φn1
)

· p(φn4
|φn2

) · p(φn5
|φn2

, φn3
)

· p(φn6
|φn3

). (6.4)

The challenge when working with Bayesian networks is firstly the extraction
of the best graph topology describing the statistics of random variables in
a dataset (structure learning) and secondly the determination of the condi-
tional probability distributions located at each node (parameter learning).
Additionally, methods for inference, that is the computation of generic
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conditional probability distributions of the form

p(φA|φB) with A ⊆ V ,B ⊆ V \A, (6.5)

become necessary in order to calculate the distributions described in (6.1)
and (6.2).

6.1.2.2 Learning

The following discussion only considers the learning of discretized parame-
ters since this is sufficient for the scope of this work. The implementation
of the relevant BN methods was achieved by the application of the python
package pgmpy [8]. In the following, the used methods are described math-
ematically.

Parameter learning estimates well fitting conditional probability tables
at each of the nodes in V . For parameter learning, a Bayesian network
is augmented by adding an additional root node f i at each node ni [76,
Definition 7.3]. For instance, the BN in fig. 6.3 is the augmented version
of the BN shown in fig. 6.2. These new nodes allow the introduction of
“distributions of distributions”. For that, each of the newly introduced nodes
contains a set of random variables which consists of

f i =
{

f i,1, ...,f i,qi

}
. (6.6)

The entirety of parents of node ni can take qi different instantiations. Each
of the elements of the set f i is a further set containing

f i,j =
{
fi,j,1, ..., fi,j,ri

}
. (6.7)

The size of ri gives the number of discrete bins for variable i described by
node ni. A conditional probability distribution shall be defined by

p
(
φni

∣∣j, φf i

)
= φfi,j,φni

(6.8)

That is, φfi,j,φni

gives the probability for the occurrence of φni
given the

parental instantiation j. Consequently, the distribution of random variable
ni conditioned on the parental instantiation j is completely described by
the set f i,j . As a result, the distribution

pf i,j

(
φfi,j,1

, ..., φfi,j,ri

)
with φfi,j,k

∈ [0, 1] , (6.9)
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n1
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f2 f3
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Figure 6.3 Augmented Bayesian network. The inherent embedded Bayesian network is
the network shown in fig. 6.2. The newly introduced nodes marked by the squared, green
boxes are new root parents of the original variables in V . They result in the description
of distributions of distributions and thereby allow performing Bayesian learning.

and φfi,j,ri
= 1 −∑ri−1

k=1 φfi,j,k
describes a distribution of possible distri-

butions p
(
φni

∣∣j, φf i

)
[76, p. 392]. Note that this includes independency

assumptions

pf i

(
φf i

)
=

qi∏

j=1
pf i,j

(
φf i,j

)
. (6.10)

The aim of Bayesian parameter learning is to find posteriors

pf i,j

(
φf i,j

∣∣∣d
)

=
pf i,j

(
d
∣∣∣φf i,j

)
pf i,j

(
φf i,j

)

´
V al(f i,j) pf i,j

(
d
∣∣∣φf i,j

)
pf i,j

(
φf i,j

)
dφf i,j

. (6.11)

The element d describes a training dataset [76, Definition 7.4] of type

d = {d1, ..., dM} (6.12)

with length M . The data tuples dm ∈ d have the shape of

dm =



φ(m)

n1...
φ(m)

nN


 . (6.13)
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The parameter N = |V | gives the total number of random variables included
in the BN. Consequently, it is

pf i,j

(
d
∣∣∣φf i,j

)
=

ri∏

k=1
φ

si,j,k

fi,j,k
. (6.14)

The value of si,j,k specifies the number of data tuples in d for which the
ith feature takes the kth value and for which the parent configuration of
feature i is in its jth instantiation [76, Theorem 7.7].

The usual choice for the a priori distribution pf i,j

(
φf i,j

)
is the Dirichlet

distribution

Dir
(
φf i,j

; ai,j

)
=

Γ
(∑ri

k=1 ai,j,k

)
∏ri

k=1 Γ
(
ai,j,k

)
ri∏

k=1
φ

ai,j,k−1
fi,j,k

(6.15)

with φfi,j,k
∈ [0, 1] ;

∑ri

k=1 φfi,j,k
= 1. It is ai,k =

{
ai,j,k

∣∣1 ≤ k ≤ ri

}
It can

be shown, that the Dirichlet distribution is a conjugate prior with respect
to the the categorical likelihood function in (6.14) which means, that the
posterior distribution remains in the same family of functions. Therefore,
it is (see [76, Corollary 7.7])

pf i,j

(
φf i,j

∣∣∣d
)

= Dir
(
φf i,j

; ai,j ⊕ si,j

)
. (6.16)

This follows from the application of the Dirichlet-Distribution into (6.11).
⊕ is the element-wise addition of two sets. Let si,j =

{
si,j,k

∣∣1 ≤ k ≤ ri

}
.

The parameter learning of the trained embedded Bayesian network then
results in

p
(
φni

∣∣j,d
)

=
ˆ

V al(f i,j)

p
(
φni

∣∣∣j, φf i,j

)
pf i,j

(
φf i,j

∣∣∣d
)

dφf i,j

=
ri∑

k=1
δni,kEpfi,j

(f i,j |d)
[
fi,j,k

]
. (6.17)

As discussed by Neapolitan [76, Corollary 7.5, Corollary 7.4], when using
Dirichlet-Distributions it follows that

p
(
φni

∣∣j,d
)

=
ai,j,φni

+ si,j,φni∑ri

k=1 ai,j,k + si,j,k

. (6.18)
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In order to obtain this result, it is necessary to specify the prior by choosing
the values in the parameter set ai,j . Since no prior knowledge shall influence
the training of the BN, a uniform prior distribution with

ai,j,k = N

riqi

(6.19)

is chosen [76, Theorem 7.8]. N is called equivalent sample size.

Structure learning of BNs was performed by using a greedy search algo-
rithm. Hence, a metric which quantifies the quality of fit of a DAG G is
required. This quantification can be performed by using

p(G|d) = p(d|G)p(G)
p(d) . (6.20)

Uniform priors which encode missing prior knowledge will be used. Hence,
the quantification reduces to the evaluation of

p(d|G) =
ˆ
p(d|φf , G) · p(φf |G) dφf . (6.21)

Neapolitan [76, Definition 8.2] shows, that when a Dirichlet distribution is
used for the prior, this expression is given by

p(d|G) =
n∏

i1

q
(G)
i∏

j=1

Γ
(∑ri

k a
(G)
i,j,k

)

Γ
(∑ri

k a
(G)
i,j,k + s

(G)
i,j,k

)
ri∏

k=1

Γ
(
a

(G)
i,j,k + s

(G)
i,j,k

)

Γ
(
a

(G)
i,j,k

) . (6.22)

This metric is denoted as Bayesian scoring criterion. For the selection of
the priors again the condition in (6.19) is applied. Note that the superscript
(G) shows that the relevant values are dependent on the structure of the
DAG.

Ideally, it would be best to use this metric to test and assess all possible
BN structures. However, Neapolitan [76, p. 450-451] illustrates, that the
number of possible structures strongly increases with network size |V | and
it quickly becomes infeasible to exhaustively test them all. Consequently,
approximate learning algorithms which heuristically search the space of
possible structures are utilized. In this thesis, a greedy structure search
algorithm [76, Algorithm 9.2] which iteratively manipulates the structure
of the network by using the single-edge operations of
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1. adding an edge,

2. removing an edge and

3. reversing an edge,
in order to maximize the Bayesian scoring criterion, is used. The algorithm
stops when finding a local maximum. In order to limit the complexity
and time requirements of the structure learning algorithm, the number of
allowed parents per node shall be limited to three. Additionally, the search
algorithm is not allowed to reverse modifications applied during the last
two iterations.

6.1.2.3 Inference

After the learning of network parameters and structure is accomplished,
an algorithm for inference is required for using the network to obtain infor-
mation about conditional relationships between variable sets as formulated
in (6.5). Marginalization is sufficient for performing inference since

p
(
φV 1

∣∣φV 2

)
=
p
(
φV 1∪V 2

)

p
(
φV 2

) =
∑

V \(V 1∪V 2) p (φV )
∑

V \V 2
p (φV ) , (6.23)

for V 1 ∪ V 2 ⊂ V and V 1 ∩ V 2 = ∅, when the joint p is defined over the
random variables in V . Because marginalization requires summing out all
parameter combinations, the effort to calculate p

(
φV 1

∣∣φV 2

)
completely

for all variable values scales by O
(
r|V |

max

)
, where rmax = max{ri|i ∈ V }

is the maximal number of discrete bins of all variables. Since this growth
quickly makes marginalization infeasible when the network size |V | grows,
approaches to enable efficiency gains were developed.

Here, the approach of Variable Elimination [56, chapter 9] shall be
applied. The used property is that the joint probability distribution in a
BN is always given by a set of factors, whereas the scope of each factor
will not contain all random variables in V . This allows calculating the
marginalization of some variables more efficiently by shifting some parts of
the sum “backwards” in the product of probabilities and by caching factors
ϕX which correspond to the marginalization of variable X. For instance,
let’s assume a joint probability function with V = {a, b, c} which as an
example might be given by

p (φa, φb, φc) = p (φa) · p (φb|φa) · p (φc|φb) . (6.24)
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The marginalization on b can then be expressed by

p(φb) =
∑

a,c

p(φa)p(φb|φa)p(φc|φb)

=
∑

a

p(φa) · p(φb|φa) ·
∑

c

p(φc|φb)
︸ ︷︷ ︸

ϕc(φb)︸ ︷︷ ︸
ϕa(φb)

. (6.25)

Remember, that rX gives the number of discrete values available for random
variable X. When iteratively calculating and caching ϕc(φb) and ϕa(φb),
rb · (rc − 1) summation operations must be conducted for ϕc(φb) and
rb · (ra − 1) summations and 2 · ra · rb multiplication operations for ϕa(φb).
That means, the number of necessary arithmetic operations is strongly
dependent on the size of the factors before marginalization (in this case
r

(fac)
ϕa

= ra · rb and r(fac)
ϕb

= rb · rc). Further analysis shows that the number
of operations needed by the variable elimination approach can in general be
approximated by O

(
|V | · r(fac)

max

)
[56, p. 306]. The parameter r(fac)

max gives the

size of the largest factor before marginalization (here: max{r(fac)
ϕa

, r
(fac)
ϕb
}).

As shown, the sizes of the factors scale exponentially with the factors’
scopes (here the scopes are: {a, b} and {b, c}). Hence, if a marginalization
by shifting the sums “backwards” creates factors with small scopes, variable
elimination can strongly speed up the calculation of marginals and thus of
conditional distributions since the number of operations scales exponentially
with the scope of the factors and not with the total scope |V | of the total
network. Since different orders of summing out the variables will create
factors of different sizes, the search for good elimination orderings with
small factors is crucial. In this work, pgmpy’s implementation of the Min-fill
algorithm [56, chapter 9.4.3.2] is used. Note however, that depending on
the structure of the BN, large factors may arise. Therefore, this algorithm
will not work properly on all possible networks. Hence, inference may still
need time exponential to |V | in the worst case.

6.1.3 Learning and inference on sum-product networks
Since inference may still scale badly with the size of a BN, sum-product
networks may be an advantageous alternative. This section discusses the
necessary methods to train and use them.
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6.1.3.1 General properties

In 2011 Poon and Domingos [83] have proposed a new type of deep network
which they called sum-product networks (SPN). This type of network shall
overcome the traditionally existent challenge of efficiency when performing
exact inference on classic probabilistic models such as BNs. An elegant,
recursive method to define SPNs is given by Gens and Domingos [32].

Definition 6.1 (sum-product networks [32])
A sum-product network (SPN) is defined as follows.

1. A tractable univariate distribution is an SPN.

2. A product of SPNs with disjoint scopes is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN, provided all
weights are positive.

4. Nothing else is an SPN.

The second requirement is called decomposability. The third one is denoted
as completeness. The scope of an SPN is the set of variables on which it is
defined.

Structures fulfilling the requirements of definition 6.1 can be represented
by the graph type illustrated in fig. 6.4. Similar to the graphs representing
BNs, the SPN graphs are directed and acyclic. In addition, the graphs
contain only one root per modeled probability distribution. In contrast
to BNs, the SPN graphs’ nodes do not contain random variables but the
operations requested by requirements 2 and 3 in the definition. Additionally,
the edges do not correspond to statistical dependencies but connect the
input and output elements of the operations. An SPN is evaluated from the
bottom to the top. That means, in the beginning the univariate probability
distributions pu in the SPN’s leaves are evaluated at the chosen values of
the random variables. Afterwards, the sum and product nodes are applied.
Sum nodes contain the weighted sums of their child nodes, whereas product
nodes contain the products of their children. The joint (unnormalized)
probability distribution N (φx) which shall be modeled by the SPN is then

124



6.1 Theoretical background

+
N

× ×

+ +

p(2)
x p(2)

yp(1)
x p(1)

y

w1,2w1,1

w2,1 w3,1 w2,2

w3,2

Figure 6.4 Example for the graph-based representation of an SPN. The SPN represented
by this particular graph models a bivariate probability distribution N (φx, φy). In contrast
to the type of graphs which defines BNs, the graph does not describe random variables
in its nodes, but operations applied to the child nodes. As given in definition 6.1, these
operations are sums represented by + and products represented by × . pu gives the
univariate distributions in the leaf nodes. The parameters wh,i give the weights of the
sums. The image is based on fig. 2 published by Jesenski et al. [135], © 2020 IEEE.

given by the root node. The related normalized probability distribution is
obtained by

p (φx) = N (φx)
Z

. (6.26)

Z =
´

V al(x)N (φx) dφx denotes the partition function of the distribution.
If the SPN is normalized by

∑
i wh,i = 1,∀h ∈ P ⊆ V and the leaf

distributions are normalized, then it is Z = 1 [32, p.2]. The set P contains
all sum nodes of the SPN. The set V again contains all nodes of the SPN.

Since a marginalization over N (φx) can be realized by directly marginal-
izing over the univariate distributions in an SPN’s leave nodes, inference
scales only linearly with the number of edges in the network [32]. Therefore,
SPNs allow the efficient calculation of conditional probability values as
demanded in (6.1) and (6.2). Similar to BNs, the challenges of applying
SPNs are to learn a good structure and parameters (for SPNs that are
the weights in the sums) in order to create SPNs which fit properly onto
real statistical probability distributions. The algorithms used to realize this
learning procedure are described in the next section.
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6.1.3.2 Learning

There are lots of different SPN learning methods available in the literature.
For the purpose of this work, LearnSPN (LSPN) [32], Mixed SPN (MSPN)
[71], SearchSPN (SSPN) [24] and Online SearchSPN (OSSPN) [25] were
tested and compared to each other for the use case of populating a road
topology. These four algorithms were chosen by considering their specific
strengths and weaknesses. The python library SPFlow [72] was used for
training and inference on the SPNs.

A dataset whose structure shall be learned by an SPN can be described
as M ×N data matrix

dV =




d
(1)
1 . . . d

(1)
N

... . . . ...
d

(M)
1 . . . d

(M)
N




instances
variables

(6.27)

with |V | = N random variables in the horizontal direction and M instances
of variable tuples in the vertical direction. d(j)

i gives the jth repetition of
the value of the ith random variable. In principle, the examined learning
algorithms work by the definition of frameworks which allow splitting these
instances and variables into subsets.

LSPN (LearnSPN) is one of the earliest and most popular structure (and
parameter) learning algorithms for SPNs. Its developers call it the “first
algorithm for learning the structure of SPNs that does not sacrifice any
of their expressiveness” [32]. In fact, LSPN is an algorithmic scheme and
no fully defined algorithm itself, since it describes a top-down approach
to split a dataset into subsets of instances and variables. This splitting
however may be executed using various algorithms. The algorithmic scheme
consists of three types of basic steps, which are

1. fit of univariate distributions,

2. instance splits, and

3. variable splits.
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(a) Exemplary product node. The child
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

d
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(b) Splitting of a dataset at a product node
corresponding to the situation in (a).

Figure 6.5 Example for binary variable splitting. (a) illustrates the creation of a product
node and (b) displays the respective dataset splitting. V describes the scope of the
parent node and V1, V2 give the scopes of the child nodes. |V1| = N1 and |V2| = N −N1
are the sizes of the independent variable subsets.

Since LSPN works top-down and starts with the root node, the created
SPNs possess a tree-like shape.

A fit of univariate distributions is performed when a dataset containing
only one random variable is left. Besides, for a dataset with multiple
variables this is applied if too few instances are left in the dataset for the
other two basic steps to be performed. In this case, the dataset is naively
factorized into univariate distributions. This basic step is equivalent to the
creation of univariate leaf nodes pu .

Variable splits are applied if an independency measure applied onto the
dataset is able to find subsets of random variables which are independent to
each other. If such independent subsets are successfully found, the dataset
is split into data subsets which correspond to these independent variable
sets. Afterwards, the LSPN algorithm recurses onto these newly found data
subsets. This step is equivalent to the creation of a product node × . The
splitting procedure is illustrated in fig. 6.5.

Instance splits are applied if the other two cases are not possible.
That means, the dataset contains multiple random variables and there are
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(a) Exemplary sum node. The child nodes
are not necessarily product nodes.
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(b) Splitting of a dataset at a sum node
corresponding to the situation in (a).

Figure 6.6 Example for instance splitting into two subsets.(a) shows the creation of a
sum node. In (b) the respective dataset splitting is discussed. I describes the M instances
of the parent node and I1, I2 identify the instances of the child nodes. |I1| = M1 and
|I2| = M − M1 are the sizes of the instance subsets.

no independent variable subsets. In this case, the algorithm tries to find
subsets of instances (data samples) which are “different” to each other
and do not follow similar distributions. This can be achieved by applying
clustering algorithms (k-means, ...). Having clustered such instance subsets,
the LSPN algorithm is applied recursively to each of them. This basic step
corresponds to the creation of a sum node + in an SPN and is equivalent
to defining a probability mixture distribution. The weights of the sum
nodes are given by the relative sizes of the newly found instance subsets.
The instance splitting procedure is illustrated in fig. 6.6.

MSPN (Mixed SPN) is respectively an augmentation or instantiation of
LSPN. That means, MSPN uses the very same algorithmic scheme. One of
the disadvantages of LSPN in its original formulation is, that it is required
to choose a certain parametric family of functions [71]. The usually used
methods for variable and instance splitting depend on the parametric form.
The same is of course valid for the fitting of the univariate distributions.
MSPN mitigates this by being able to train SPNs without specifying a
concrete parametric family of distributions. Additionally, MSPN is able
to work on mixed domains of discrete and continuous data. The key idea
of MSPN is to evaluate the variables and instances’ non-linear statistical
dependency in a k-dimensional space which is created by applying a pipeline
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of non-linear transformations onto the original data. This pipeline is based
onto the randomized dependency coefficient (RDC) [68]. For the univariate
leaf distributions, the algorithm utilizes histogram leaves with Laplacian
smoothing [71].

SSPN (SearchSPN) is an alternative learning framework for SPNs. In
contrast to LSPN and MSPN, it is however not limited to the learning of
tree-shaped SPNs. As the basic difference to the latter two approaches,
SSPN is not a top-down algorithm which learns an SPN starting at the root
node and ending at the leaf nodes. Instead SSPN uses an initial seed model
and augments it by selecting the product node whose surrounding reduces
an approximation of the corresponding dataset likelihood the most. This
approximation of the likelihood is defined by the use of maximal complete
sub-circuits extracted for each instance of training data [25]. By using
the parameterization of these maximal complete sub-circuits, the training
dataset then can be transformed in mini-datasets. The creation of these mini-
datasets allows the factorization of the approximated likelihood into units
associated with single product nodes. Hence, it is possible to separately
evaluate the influence of the product nodes on the total approximate
likelihood.

The product node which corresponds to the worst-performing likelihood
unit is then selected and the structure in its surrounding is updated in order
to fit better onto the dataset. These structural changes are accomplished by
firstly checking the independency assumptions between the product node’s
child nodes (independency of the variables in the scopes of the childs) which
can be accomplished by again using the mini dataset and a dependency
measure. After independent child subsets have been found, the fitting within
these internally dependent subsets is improved by cloning the subsets’ nodes
and by incorporating an additional layer of sum and product nodes for each
subset [25]. This corresponds to the introduction of a probability mixture
model in order to grasp the subset-internal dependencies. Figure 6.7 displays
an example for this introduction of additional nodes into an already existent
SPN.

The iterative selection of the worst product node and consequently the
improvement of the surroundings of these product nodes, results in the
construction of an SPN which fits onto the training dataset. Within the
scope of this work the modified version of SSPN as given in [25] is utilized.
For more details on the implementation see [24, 25].
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Figure 6.7 Illustration of SSPN-based improvement of the structure in the surrounding
of a selected product node. In this example, node p2 is the product node with the
worst likelihood unit. When checking the independency assumptions of the childs, the
independent subsets V1 =

{
p

(1)
z

}
and V2 = {s1, s2} were found. Since |V1| = 1 only the

structure of V2 is adapted. Therefore, new nodes constructing a mixture are integrated
into the initial SPN. Compare also [25, Fig. 2].

OSSPN (Online SearchSPN) is the fourth tested algorithm. Since SSPN
is not a top-down approach, but iteratively augments an already existing
SPN at its worst location, it is predestined to be used in an online setting.
The benefit of an online approach for the generation of scenes is clear:
Firstly, an existing model could continuously be improved and changed
when traffic data are measured for a longer time period and when the
world is changing during this time. Secondly, training becomes possible
on potentially very large datasets which do not fit into the memory of the
system used for the training. For these reasons, the approach proposed by
Dennis and Ventura [25] which is an adaption of SSPN onto the online
setting is examined. In the original formulation of OSSPN, parameter
learning was operated on the last r data tuples, whereas the structure
learning step was performed on all batches until the current one. In the
remainder of this work, this is changed to the last r parameter tuples for
learning both parameters and structure in order to make sure, that the
second benefit of not having to load all data into memory holds.
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6.2 Generalization of the model to intersections

6.2 Generalization of the model to intersections
This section proposes a framework which can be used to extend the applica-
bility of the incremental roadway population model (originally introduced
by Wheeler et al. [119] and adapted in section 6.1.1) to more complex road
topologies like e.g. intersections. For that, section 6.2.1 gives the challenges
which must be solved and section 6.2.2 proposes a model to solve these
mentioned challenges. In section 6.2.3 the preprocessing of the datasets
used to train the model is described and in section 6.2.4 the trained model
is evaluated. For the purpose of this section, BNs shall be used to represent
the stochastic distributions in the model. This section was already partly
published by Jesenski et al. [132]; © 2019 IEEE.

6.2.1 Problem statement
In this section, the incremental roadway population model proposed in
[119] shall be extended to intersections. In order to do so, the following
challenges concerning complex road topologies must be solved:

1. Inhomogeneous lanes: In contrast to the straight highway sections
handled in [119] and illustrated in fig. 6.1, a lane L with length
s2 − s1 in an intersection/complex road topology will be represented
by a parameterized curve of type

fL : [s1, s2]→ R2. (6.28)

The curve’s parameter s ∈ [s1, s2] gives the arc length within the lane.
Since lanes are inhomogeneous, the position of a vehicle on these
lanes will have strong implications on its behavior and properties.
Think for example about the position in front of a stopping line.
A vehicle which is located directly in front of the stopping line is
more likely to drive slowly than a vehicle with a large distance to
the stopping position. Therefore, the conditional distribution (6.2)
must definitively be adapted to contain vehicle arc-length positions.
This introduces the necessity of being able to handle positions on
such arbitrary parameterized curves. Since especially longitudinal
and lateral relations to the lane are relevant, global coordinates (x, y)
are not convenient. Hence, a Frenet frame based on the lanes’ middle
lines will be introduced in section 6.2.2.1.
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2. Merging, splitting & intersecting lanes: In an intersection, lanes
can merge, split or intersect. Thus, a model used to generate scenes
has to take into account the interactions between vehicles located in
such related lanes. As a solution, the detachment of lanes into lane
sections

fL (t) =





fL1
for s ∈ [s1, s11]

fL2
for s ∈ (s11, s12]
...

fLn
for s ∈ (s1n, s2]

(6.29)

is proposed in section 6.2.2.2. In line with this, a scheme to populate
the detached lane sections {L1, ...,Ln} based on boundary conditions
is developed in section 6.2.2.4.

3. Interactions between lanes and global parameters: When considering
complex intersections, there will be global parameters affecting all
lane sections. Examples are parameters which determine technical
properties such as traffic light phase or environmental properties like
temperature or clock time. These global parameters necessitate a
hierarchization of parameters in the sampling process. Section 6.2.2.3
therefore suggests the use of intersectional and intrasectional param-
eters whose sampling is realized separately by different networks.

6.2.2 Model description
This section now proposes a new generic model which allows handling
the mentioned challenges. The application of this model is depicted at
the example of an intersection in Aschaffenburg contained in the Ko-PER
dataset (appendix B.1) and an intersection in Aachen which is part of the
inD dataset (appendix B.3).

6.2.2.1 Frenet frame

To solve the challenge of inhomogeneity of lanes, a 2-dimensional Frenet
frame is used. This means a point on a lane L is defined by its position
relative to the lane’s centerline fL. For that, the transformation

FfL :
(
x
y

)
→
(
s
ρ

)
(6.30)
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x
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P = (xP , yP )†

ρP
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Figure 6.8 The point P = (xP , yP )† is transformed into the Frenet frame defined by
centerline fL. As a result, the arc length sP and the lateral distance ρP are obtained.

changes the position (x, y)† in global Cartesian coordinates to the position
(s, ρ)† in local lane-dependent coordinates. The value of s gives the arc
length and ρ gives the lateral distance to fL as illustrated in fig. 6.8. The
methods provided by Wang et al. [114] are used for the realization of
the transformation FfL . Obviously, it is crucial to find good fits to the
centerlines of the lanes in order to enable the definition of lane-dependent
coordinates. For that, splines of degree two and three were applied through-
out this work. The fitted curves fL for both examined intersections are
shown in fig. 6.9. Note, that the KoPER intersection in fig. 6.9(a) is a
signalized intersection with traffic lights on all sides, whereas in the inD
intersection vehicles yield to vehicles on their right.

6.2.2.2 Detachment of lanes into sections

To handle splits, merges and intersections of lanes, the lanes are segmented
into lane sections. The section boundaries are set to the merging and
splitting positions and additionally to stopping lines. The results of the
segmentation procedure when applied to the chosen KoPER and the inD
intersections are displayed in figs. 6.10 and 6.11. The very same figures
also describe the nomenclature used to name the lane sections in the
intersections. Since the nomenclature is simple and consistent for fig. 6.10,
just some example lanes have been given (the lanes starting from track 0, 1
and 2, which are not given, are named in the same way). However, the inD
intersection in fig. 6.11 is more complicated and the lanes’ names can not
easily be derived. Therefore, all lane names are given here. In principle, the
nomenclature of a lane section works similar for both intersections and uses
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(a) KoPER intersection (b) inD intersection

Figure 6.9 Illustration of examined intersections. (a): Intersection in Aschaffenburg
contained in the KoPER dataset. (b): Intersection at Neuköllner Straße, Aachen selected
from the inD dataset. The blue centerlines were fitted by using splines of degree 2 and 3.

(3, 1)
(3, 2)
(3, 3)

(3, 0, 1, -2)
(3, 0, 2, -1)
(3, 2, 1, -1)
(3, 1, 3, -1)

(0, -2)(0, -1)

(2, -1)

(1, -1)

track 0

track 1

track 2

track 3

Figure 6.10 Nomenclature of lane sections in the KoPER intersection. Lane sections
on the outside of the intersection are named by a 2-tuple (track, lane position) and lane
sections in the intersection are named by a 4-tuple (track in, track out, lane position in,
lane position out). The lanes going out of the intersection are chosen to have negative
lane position values. The number for the lane position is increasing from the right to the
left in the direction of travel. As an example, the image shows the lane sections starting
at track 3. The lane sections of the other tracks are constructed and named equivalently.
The image was firstly published by Jesenski et al. [132]; © 2019 IEEE.
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Figure 6.11 Nomenclature and construction of lane sections in the inD intersection at
Neuköllner Straße, Aachen. Nomenclature is similar to the KoPER nomenclature. Lane
sections on the outside of the intersection have three digits. The first digit gives the
track and the next two digits give the count of the lane section within the track. Lane
sections leaving the intersection are symbolized by negative numbers. Lane sections
within in the intersections have four digits. The first digit gives the entering track, the
second digit the track on which the section leaves the intersection and the next two
digits give the counts of the connected lane sections in the entering and leaving track.
Since the inD intersection is more complicated in its nomenclature, all lane sections are
drawn in the image.

two properties: The driveway (track) of the lane section and its position
within the driveway. Both examined intersections have four tracks which
were named by integers between 0 and 3 and 1 and 4 respectively (track 4
in fig. 6.11 is not denoted but it is the small exit from track 2 on the right
side of the image). More details on the nomenclature can be found in the
captions of the figures.

When the lane sections will be populated (see section 6.2.2.4), relations
to relevant neighboring lane sections must be considered since they stochas-
tically influence the vehicles in the current lane section to sample. The
relevant types of relations between lane sections are discussed in fig. 6.12.

In the following, it is assumed that all vehicles obey the traffic rules of
the intersection. That means, only relations between adjacent lane sections,
which the traffic rules allow to be populated at the same time, are considered.
This has mainly an effect on the signalized KoPER intersection in fig. 6.10
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current
lane successor lane
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intersecting
lane

Figure 6.12 Illustration of the current lane section (black, dashed) and the possible
relations to adjacent lane sections. The black arrow gives the direction of travel. The
predecessor lane is the lane section before the current lane section in the direction of
travel. It contains the vehicles which spatially precede the vehicles in the current lane.
The successor lane section is accordingly placed behind the current lane. An intersecting
lane section intersects with the current lane section at some point. Additionally, an
adjacent lane section is called peer lane section when it possesses a common start or
end point with the current lane. At last a combining lane, which is a peer lane section
to the current lane’s predecessor lane, can sometimes be relevant. The image is based on
fig. 5 published by Jesenski et al. [132]; © 2019 IEEE.

since the intersection’s traffic light phases determine which lane sections
are allowed being entered at the same time. However, as soon as there
are vehicles in the dataset not obeying these rules, this assumption must
be removed. Since the aim of this section is to illustrate the concept of
populating intersections and since there are no conceptual reasons, which
would prevent including all relations, this simplifying assumption can be
adopted with no loss of generality. More details on the traffic light phases
of the KoPER intersection which determine the relevant relations of lane
sections are given in appendix B.1.

6.2.2.3 Hierarchization of parameters

In order to address the challenge of global parameters which influence
multiple lane sections, the partitioning of parameters into intrasectional
and intersectional parameter groups shall be proposed in the following.
Intrasectional parameters hereby shall have a local meaning which only
influences the vehicle population within one lane section, whereas inter-
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Table 6.1 Definition of the set of intersectional parameters Ψglobal for the KoPER and
the inD intersection. Ψglobal [L] gives the parameters which are directly relevant for the
usage in the local networks for respective lane section L, see section 6.2.2.4.

KoPER inD
Ψglobal a, ta , µ(0,1), ..., µ(3,3) µ100, ..., µ−300∣∣Ψglobal

∣∣ 35 36
Ψglobal [L] a, ta -

sectional parameters have a global meaning. This means they can have
influence on multiple lane sections.

In the following,
the light phase a (for a definition of KoPER’s light phases see fig. B.2),

the time ta since the last change of the light phase,

boolean parameters {µL|L ∈ L} for the set of all lane sections L
which describe if at least one vehicle can be found in lane section L
in the current sample,

shall be the elements of the intersectional parameter group. Of course, for
more detailed models a lot more parameters could be added. Since a and
ta are related to traffic lights, they are neglected for the inD intersection
because no traffic lights exist at Neuköllner Straße. The sets of intersectional
parameters Ψglobal for the inD and KoPER intersection are given in table 6.1.
Because of the global meaning of these parameters, they are sampled by the
use of a global BN before the intrasectional parameters for the single lanes
are drawn. The drawing of the intrasectional parameters is accomplished
by accessing local BNs which were trained only upon data of the respective
single lanes. This procedure is sketched in fig. 6.13.

The generation of intersectional parameters is realized by drawing from
the joint probability distribution

Ψglobal ∼ pglobal, (6.31)

which is modeled by the global BN. The drawn intersectional parameters
can then be utilized to infer the local intrasectional parameters Ψlocal .
Therefore, one local BN per lane section L is trained to represent

plocal,L
(
φΨlocal

∣∣∣φΨglobal [L]

)
, (6.32)
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Figure 6.13 Basic structure of the Bayesian network approach. The intersectional
parameters are sampled by a global network. They are then inputted in the local
networks of the respective lane section and the intrasectional parameters are sampled.
The intrasectional parameters directly describe the physical vehicle population in the
respective lane section. Based on fig. 1 published by Jesenski et al. [132]; © 2019 IEEE.

where Ψglobal [L] gives the subset of intersectional parameters which is
relevant for lane section L. Remember again, that φX is a numerical assign-
ment of the random variables in X. The local, intrasectional parameters
allow calculating the vehicles’ properties such as position and velocity. The
structure and application of the local BNs in order to populate the lanes is
outlined in section 6.2.2.4. The local network for a lane L is only called if
φµL = True. Otherwise, it is assumed that the lane is empty which then
does not necessitate any call of the local network since no vehicles are to
be placed.

6.2.2.4 Sampling on lane sections

In this section, the procedure to fill single lane sections by the local networks
is described. The following cases must be distinguished:

The filling of lane sections which posses neither a peer, a combining
nor an intersecting lane section (case 1).

The filling of lane sections with peer lanes (case 2).

The both preceding cases which additionally have either an intersect-
ing lane (cases 3 and 4), a combining lane (cases 5 and 6) or both
(cases 7 and 8).

The filling of lane sections without peers (case 1) is realized similarly
to the approach described in section 6.1.1. Some adaptions are however
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Figure 6.14 Sampling a lane section without peers (case 1). The horizontal line gives
the central line of a lane. The lane does not necessarily have to be straight anymore
as a change of the coordinate system into lane-dependent coordinates (s, ρ) is included.
Therefore, si gives the arc length of the front bumper of the ith vehicle. The vertical
lines named sfront and srear give the arc lengths of the lane section boundaries. The
image was originally published by Jesenski et al. [132]; © 2019 IEEE.

indispensable because of the relations to other lane sections, the inho-
mogeinity of lanes and the existence of global parameters. A lane section is
as before filled against the direction of travel in order to make sure that
the vehicles can be accurately placed to infrastructure elements. In the
examined case these are usually stopping lines in front of the respective
vehicle. The extension of the approach in section 6.1.1 to the requirements
of lane sections and global parameters is illustrated in fig. 6.14. As already
introduced in section 6.1.1, two local BNs are used to generate the intra-
sectional parameters of a lane. The first of these networks samples the
position of the first car in the lane section. The second network samples
the next vehicles conditioned on the respective predecessor vehicle. The
joint probability distribution modeled by the first network is adapted to

v1, db ∼ p1

(
φv1

, φdb

∣∣∣φb0
, φv0

, φΨglobal [L]

)
. (6.33)

Since a lane section has a predecessor lane section, it is in contrast to
(6.1) necessary to condition on properties b0 , v0 of the last vehicle in
this predecessor lane section. It is of course a valid assumption that no
predecessor vehicle exists in the predecessor lane section. For this case
φb0

= NaN and φv0
= NaN are encoded as extra bins in the network.

Additionally, the conditioning on the global parameters Ψglobal [L], which
are relevant for lane section L, is added. Note that the lane section is also
strongly dependent on µL = True since otherwise the networks are not
even called. If the back bumper b0 of vehicle 0 is in L (that is b0 < sfront),
the starting point for the distance db is set to sfront = b0 . This guarantees
that there is no overlap between vehicle 0 and vehicle 1.
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The second distribution (6.2) is modified to sample the i+ 1th vehicle
by a distribution

pnext

(
φvi+1

, φdi+1

∣∣∣φvi
, φvi−1

, φdi
, φsi

, φΨglobal [L]

)
. (6.34)

Due to the inhomogeneity of the lanes, it becomes necessary to condition on
the arc length si of the vehicles. Of course, also the relevant intersectional
parameters are included in the condition part of the distribution.

Note that for the sake of simplicity and in order to keep the size of
the BNs small (remember that inference might scale exponentially with
the network size), the length li and width wi of the sampled vehicles are
neglected in the probability distributions. Consequently, constant values
will be used in the simulations. Analogously, the parameters in (6.2) which
are related to vehicles in the lane to the right are also neglected. In total,
the front bumper position si+1 of the i + 1th vehicle is then generated
(analogously to (6.3)) by

φsi+1
=
{
φsi
− φdi+1

− φli
for i ≥ 1

min
(
sfront, φb0

)
− φdb

for i = 0
. (6.35)

The sampling of new vehicles is stopped for φsi+1
< srear or if the second

networks returns NaN for di+1 or vi+1. These missing values, encoded by an
extra bin state, express that no further successor exists (this is not allowed
for the first network due to the global parameter µL = True ensuring that
at least one vehicle must exist).

For the sampling of lane sections with related peer lanes (case 2), a
modified approach becomes necessary since the correlations to vehicles in
peer lanes have to be taken into account. For instance, vehicles in lane
section (3, 0, 1,−2) of the KoPER intersection can block space on lane
section (3, 2, 1,−1) especially directly after the lane split when the distance
between the lane sections’ center lines is still small. Hence, the concept
of virtual vehicles, which allows considering this blocked space, shall be
introduced in the following. Afterwards, the application of these virtual
vehicles to the sampling of vehicles will be discussed.

The creation of virtual vehicles is sketched in fig. 6.15. Virtual vehicles
of a lane L are created by projecting the vehicles in L’s peer lanes onto L’s
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Figure 6.15 Creation of virtual vehicles: Projection of real vehicles in peer lanes on
their virtual vehicle representations on the current lane L. The virtual vehicles block
space on L. Image based on fig. 7 published by Jesenski et al. [132]; © 2019 IEEE.

central line. The points {Pi|i = 1, ..., 4} describe the position of the peer
vehicles’ bounding boxes in global coordinates. The projection of the peer
lane vehicle can thus be accomplished based on (6.30) and by executing

Ti = ProjL
[
FfL (Pi)

]
= ProjL

[(
sPi

ρPi

)]
=
(
sPi

0

)
∀i ∈ {1, ..., 4} . (6.36)

Here, ProjL [•] is the projection of a point to the central line of lane section
L. The points Ti thus are the projected points which define the virtual
vehicle. The arc lengths of the front and rear bumper of the virtual vehicle
are specified by the extremal values of the arc lengths of the points Ti.
Since the blocking of an arc length interval by a virtual vehicle only makes
sense if the projected vehicle is near to the current lane, an additional
condition of

min
i∈{1,2,3,4}

(∥Ti − Pi∥2) ≤ L (6.37)

must be fulfilled. The threshold L gives the minimal distance to L a vehicle
on a peer lane section must undercut to create a virtual vehicle. For the
creation of virtual vehicles, the order of sampling the lane sections is
substantial. The sampling order used within this work will be discussed in
section 6.2.2.5.
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Figure 6.16 Placement of real vehicles in gaps between virtual vehicles and the last
and first vehicles of the preceding and successing lane sections (case 2). The image was
firstly published by Jesenski et al. [132]; © 2019 IEEE.

The sampling model is applied after the generation of all virtual
vehicles in a lane section L. Since the virtual vehicles block arc length
intervals, the lane must be filled by placing real vehicles in the gaps between
the virtual vehicles. This procedure is illustrated in fig. 6.16. The gaps in a
lane section are filled against the direction of travel. The algorithm starts
with the gap between the last predecessor and the 1st virtual vehicle. The
procedure for the gap between the ith and i+ 1th virtual vehicle acts by
the following scheme:

1. The preceding vehicle of the gap is determined. This is usually a
virtual vehicle or real vehicle in the case of last predecessor (here: the
ith virtual vehicle). From now on, this vehicle is denoted as current
vehicle.

2. The arc length b at the rear bumper and the velocity v of the current
vehicle are taken.

3. The distance d(i+1)
tot between the current vehicle and the next successor

which ends the gap is calculated. This is usually a virtual vehicle or
a real vehicle in the case of first successor, see fig. 6.16 (here: i+ 1th
virtual vehicle). The current vehicle’s distance dpre to the real or
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virtual vehicle, which precedes it in the direction of travel, is taken.
Additionally, the velocity vpre of this preceding vehicle is examined.

4. These values can be used to draw samples from a BN representing
the joint distribution

p
(
φv∗ , φζ

∣∣∣φb , φv, φdpre
, φvpre

, φ
d

(i+1)
tot

, φΨglobal [L]

)
. (6.38)

The distance to the next vehicle which now shall be sampled is then
given by

d∗ = ζ · d(i+1)
rel . (6.39)

The parameter d(i+1)
rel = d

(i+1)
tot − l is the distance to the next (virtual)

vehicle minus the length l of the vehicle to sample.

5. Check the conditions

φ
d

(i+1)
tot

< l, (6.40)

φζ = NaN, (6.41)
φb − φd∗ < srear. (6.42)

The first condition checks if there is enough space left in the current
gap for the next sampled vehicle to be placed in front of the gap-
ending (virtual) vehicle without any overlap. The second condition
considers the encoding NaN which signalizes that no further vehicle
shall be placed in the current gap and the third condition checks if
the sampled vehicle is still located in the current lane. If none of
these conditions holds then set the next real vehicle with velocity v∗
at s∗ = b − d∗ . Define this new vehicle to be the new current vehicle
and reiterate the sampling process beginning with step 2. However, if
any of the conditions holds, then reject the drawn sample and check if
another gap succeeds the current gap within L (here: between virtual
vehicle i+ 1 and virtual vehicle i+ 2 (or first successor respectively)).
If true, then select this next succeeding gap and start filling it by
reiterating the whole process starting at 1. If no further gap exists,
the sampling is aborted for L in total.

Remember that the sampling in L is only started if µL = True. However,
if the sampling started at least one vehicle is demanded. Therefore, if
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L
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Pintersec

vTSP

vTTP

dTTP

dTSP

Figure 6.17 Illustration of an intersection of lane sections. The nearest vehicles in the
intersecting lane are considered and the Time To intersection Point (TTP) as well as
the Time Since intersection Point (TSP) is calculated by using (6.43) and (6.44). The
figure was firstly published by Jesenski et al. [132]; © 2019 IEEE.

the whole procedure does not produce any sampled vehicle since for each
iteration any of the conditions in (6.40) to (6.42) holds, then repeat the
sampling procedure for the whole lane section until at least one vehicle
is sampled in L or a maximal number of tries has been reached. Note
that if no last predecessor vehicle exists, its values are all set to NaN and
s∗ = sfront − d∗ .

For lane sections with intersecting lanes (cases 3, 4, 7, 8), it is impor-
tant that the last intersecting vehicle after the intersection point Pintersec
and the first intersecting vehicle before Pintersec are considered when pop-
ulating a lane section L. Figure 6.17 shows the situation. By using the
parameters of these vehicles as described in fig. 6.17, it is possible to calcu-
late the time since intersection point (TSP) and the time to intersection
point (TTP) by

TTP = dTTP
vTTP

, (6.43)

TSP = dTSP
vTSP

. (6.44)

When a lane section with an intersecting lane is filled, the relevant inter-
secting vehicles are considered by additionally conditioning the probability
distributions given in (6.33), (6.34) and (6.38) on TTP and TSP .
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L

combining lane
vTTBo

dTTBo

Figure 6.18 Illustration of a combining lane scenario. The first vehicle in the combining
lane is used to calculate TTBo by applying (6.45).

Lane sections with combining lanes (cases 5, 6, 7 and 8) require, analo-
gously to intersecting lanes, to consider the first vehicle on a combining lane
section. This is especially important when vehicles in lane section L must
yield to vehicles in the combining lane section since then the appearance of
a vehicle in this lane section has great influence on the behavior of a vehicle
in L. For instance, this case arises for lane sections 302 and 3122 in relation
to the combining lane section 2122 at Neuköllner Straße since vehicles in
302 and 3122 must yield to vehicles in 2122 and therefore strongly reduce
their velocity if necessary. Figure 6.18 gives the situation and describes
dTTBo and vTTBo . By putting these parameters into

TTBo = dTTBo
vTTBo

, (6.45)

the time to boundary (TTBo) is determined. TTBo is connected to the
scene generation procedure by simply putting it into the conditioning part
of (6.33), (6.34) and (6.38).

6.2.2.5 Sampling order

In the process of filling the lane sections, vehicles in related lane sections
are considered as described above. Therefore, the order of filling the lane
sections is very important. Since a lane section always is conditioned on
its predecessor lane section, the filling procedure starts by sampling the
lane sections at the front of the examined road topology since they do not
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(a) (b)

Figure 6.19 Illustrations for the lane sections which are allowed to be traversed in light
phase a = 1 of the KoPER intersection (compare fig. B.2), when the traffic lights at
track 0 and track 3 are green. (a) distinguishes lane sections which are not conditioned
on related peer sections (blue) and lane sections whose filling procedure is dependent
on peer sections (green). (b) shows the order of filling the lane sections. First of all,
the blue lanes are filled, followed by the red ones and the yellow ones. The green peer
related lane sections are filled at the end. The images were published by Jesenski et al.
[132]; © 2019 IEEE.

have predecessor sections. Afterwards, the successor lane sections are filled
iteratively until the rear lane sections are reached. During this process, the
lanes which possess related peer lane sections are skipped at first. When a
lane section L depends on related intersecting or combining lane sections,
then these must be populated before L. The respective parameters are
added into L’s distribution as already described. At the end, the lane
sections which must be conditioned on related peer lane sections are filled.
An example for the KoPER intersection is given in fig. 6.19.

6.2.3 Dataset & discretization
For the training of the BNs which represent the introduced distributions,
the KoPER dataset as well as Neuköllner Straße in the inD dataset were
used. More details on the datasets are given in appendix B. In order to train
the BNs on the datasets, the continuous dataset parameters must firstly be
discretized. For this discretization the ranges of the dataset parameters are
divided into equidistantly spaced bins. The minimal and maximal values
of these ranges are used to determine the middle value of the respective
extremal bins. The parameters used in the BNs and the number of bins
into which they are discretized can be found in table 6.2. Since the KoPER
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Table 6.2 The parameters used to train the Bayesian networks, their meaning and the
number of bins used to discretize them. The light phase a is a discrete value and does
not have to be discretized. The table is based on tab. 1 published by Jesenski et al. [132],
© 2019 IEEE.

Parameter Description Bin Counts
intersectional parameters

a light phase discrete
ta time since last change of light phase 20

parameters for lane sections without peers – first vehicle
v1 velocity of first vehicle 20
db distance of first vehicle to boundary sfront 40
b0 rear bumper of last vehicle in predecessor lane 40
v0 velocity of last vehicle in predecessor lane 20

parameters for lane sections without peers – following vehicles
vi+1 velocity of successor 20
vi velocity of current vehicle 20
si arc length of current vehicle 40
vi−1 velocity of predecessor of current vehicle 20
di+1 distance to successor of current vehicle 40
di distance to predecessor 40

parameters for lane sections with peers
v∗ velocity of successor to sample 20
ζ relative distance to real successor vehicle 40
b arc length of rear bumper of current vehicle 40
v velocity of current vehicle 20
dpre distance to predecessor of current vehicle 40
vpre velocity of predecessor of current vehicle 20
d

(i+1)
tot dist. to virt. successor of current vehicle 40

parameters for lane sections with intersecting lane sections
TTP time to intersection point 10
TSP time since intersection point 10

parameters for lane sections with combining lane sections
TTBo time to boundary 10
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Figure 6.20 Scenes in the KoPER intersection sampled using BNs. The orange curves
in both images represent virtual vehicles. Most vehicles in the dataset are driving in
the direction between track 0 and track 3. Accordingly, way more vehicles are placed
on these tracks than on track 1 and 2. (a) shows a scene about 7 s after the traffic
lights entered traffic light phase 1. That means, the vehicles in track 0 and track 3
are allowed to drive into the intersection. The generated scene is consistent with that.
Since the traffic light change took place only 7 s before, a traffic jam on track 0 is in a
dissolving state at the moment. The reason is that the light phase a = 2 takes place
before light phase a = 1, here vehicles from track 0 and track 3 are not allowed to enter
the intersection. (b) shows such a scene with a = 2. It can be seen that the vehicles
from track 0 and track 3 are waiting at their red traffic lights whereas vehicles from
track 1 are entering the intersection. By chance, no vehicles are existent on track 2.

dataset only provides 6 min 28 s of data, all data are used for training. Since
1.83 h of data are available for Neuköllner Straße in the inD dataset, the
relevant inD data are split into 90 % of training data and 10 % of test data.

6.2.4 Evaluation
The model described in section 6.2.2 is used to sample scenes in both
examined intersections. Exemplary results are given in figs. 6.20 and 6.21.
Visually, the generated vehicle positions look realistic. The velocities of

the vehicles in the example scenes for the KoPER intersection (velocities
not illustrated in fig. 6.20) show that the cars which are allowed to drive
into the intersection due to the traffic light phase are moving fast whereas
the rest of the cars in front of red traffic lights are moving slowly or are
stopped. Additionally, the images illustrate the dissolution (fig. 6.20(a))
and formation (fig. 6.20(b)) of traffic jams in track 0. This indicates, that
the conditioning on global parameters is working. In fig. 6.21, the vehicle in
lane section 302 stops and yields to the vehicle in lane section 2122 which
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Figure 6.21 Scene sampled for Neuköllner Straße. This intersection is not signalized.
Vehicles from the track 3 must yield to vehicles driving between track 1 and track 2.
The vehicle in lane 302 accordingly yields to the vehicle which has driven from track 2
to track 1. It therefore is in standstill with a velocity of 0.0 m

s . The orange curves again
give the lane section intervals blocked by virtual vehicles. Most parts of track 2 were not
in the field of view of the camera which was used to collect the dataset. Therefore, no
vehicles can be sampled in this region.

is caused by the conditioning on TTBo.
To quantitatively assess the sampling procedure, several metrics were

evaluated on both datasets and on 20 000 generated samples respectively.
First of all, the signalized KoPER intersection requires an assessment of
the intersectional parameters a and ta . The results are given in figs. 6.22(a)
and 6.22(b). Obviously, there is a remarkable accordance between dataset
and sampled scenes. The used metrics for intrasectional properties are the
number of vehicles per lane section (number of vehicles), the inverse TTC
(see section 4.3) between vehicles in the same lane section (invTTC intra),
the velocity distribution of all vehicles in a lane section (velocity intra)
and the inverse TTC between vehicles at a transition (L1,L2) between two
lane sections (invTTC inter). The successor vehicle of the TTC calculation
resides in lane section L1 and the predecessor is located in lane section
L2. The number of vehicles and both invTTCs are metrics which were not
directly learned by the BNs. The velocity distribution however is included
in the training parameters. The metrics are evaluated separately for all
relevant lane sections, respectively all transitions between lane sections
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Figure 6.22 Comparison of distributions of several metrics for the KoPER dataset.
The blue curves show the distribution in the dataset and the green curves show the
distributions in the 20 000 generated samples. (a), (b) give the distributions of the
intersectional parameters. The metrics in (c), (d), (e) show the results for lane section
(3, 1) and a = 1. (f) shows the result for the transition between (3, 1) and (3, 0, 1, -2)
for a = 1. The image is based on fig. 13 published by Jesenski et al. [132]; © 2019 IEEE.
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for invTTC inter. For KoPER, the results are additionally splitted for
all values of the light phase a. Some exemplary results for the KoPER
dataset are illustrated in figs. 6.22(c) to 6.22(f). These exemplary results
for the intrasectional metrics also suggest that the generated samples are
in accordance with the dataset.

For all assessed lane sections and light phases, the “distance” between the
empirical probability distributions of the dataset and the generated samples
is quantified by using the total variation distance (TVD), normalized to
the number of bins. This procedure is defined by

δTVD = 1
2b

b∑

i=1
|pi − qi| . (6.46)

p and q are the distributions in the dataset and the samples (as exemplary
shown in fig. 6.22). b is the bin count of the distributions, corrected by the
number of bins where both qi and pi are zero. The results for the KoPER
dataset are given in fig. 6.23 and the inD results are shown in fig. 6.24.

In the KoPER dataset, the light phases endure for different durations.
In total, a = 1 lasts for 200 s, a = 2 for 100 s, a = 3 for 20 s and a = 4
for 40 s. Hence for the KoPER dataset, the worst values for the TVD are
expected to be in light phases 3 and 4 because the least training data are
available here. This is verified by fig. 6.23(a), which gives an overview about
the TVD values calculated for all mentioned intrasectional metrics on all
(lane, a) combinations. Figure 6.23(b) gives the same information for the
invTTC inter metric. It can be seen, that at transition number 13 which
corresponds to the transition ((1, 2), (1, 0, 2,−2)) an outlier occurs. In this
context it is necessary to note that only few vehicles are driving in the
involved lane sections and therefore only few training data are available at
this transition (this low number of vehicles in lane section (1, 2) also causes
the maximum value for TTC intra in fig. 6.23(a)). Figure 6.23(a) shows,
that the number of vehicles coincides very well at light phases where the
respective lanes are not allowed to contain vehicles as a result of the traffic
rules (i.e. most of the (lane, a) combinations which correspond to white
spaces in the TVD of the velocity intra metric correspond to very low values
for the TVD of the number of vehicles metric). The reason is, that for a
high probability to have no vehicles located in a lane section, the statistics
are determined strongly by the intersectional parameters µL, which means
that for this cases the metric is learned directly by the global network and
not generated indirectly by the intrasectional networks. Additionally, there
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Figure 6.23 Results for the KoPER dataset. (a) shows the heatmaps which illustrate
the results for the TVD for the intrasectional metrics separately for all combinations
of relevant lane sections and phases. Lower values are better.White spaces mean that
no data were available for the (lane, a) combination. The most white spaces appear
for invTTC intra since the calculation of a TTC needs two vehicles. The lane sections
directing out of the intersections were neither sampled nor evaluated since the field
of view of the sensors used to obtain the dataset did not cover them sufficiently. (b)
shows the results for the TVD for invTTC inter. Lower values are better. In total, 34
transitions are allowed between the 26 relevant lanes. Note that for the sake of clarity,
the transitions just were enumerated by integers since denoting the respective 2-tuples
of the lane sections in a transition would require a lot of space. The large outlier at lane
transition number 13 is caused by too few training data. White spaces mean no data
were available. Both images were firstly published by Jesenski et al. [132]; © 2019 IEEE.
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Figure 6.24 Results for Neuköllner Straße (inD). (a) shows the TVD results for the
intrasectional metrics. (b) gives TVD results for invTTC inter. The transitions between
lane sections are again just enumerated by numbers. The discontinuations in the his-
tograms correspond to missing data.

are some (lane, a) combinations for which the traffic rules do not allow
the filling of the lane section, but nevertheless the TVD of the velocity
intra metric contains some values for the combination. An example is (3, 1,
3, -1) for a ∈ {1, 2, 3}. This is caused by humans driving slightly over the
stopping lines of a red traffic light and waiting in the intersection. However
such vehicles stand still and wait until the traffic lights turn green. Thus,
the velocity distributions for these cases are limited to a short range in the
surrounding of v ≈ 0 m

s and consequently the values for the TVD of the
velocity metric often are quite low here.

Since Neuköllner Straße is not signalized, the TVD results for the in-
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trasectional metrics in fig. 6.24(a) and for the intersectional metric in
fig. 6.24(b) are only distinguished by lane section and not by light phase.
The TVD values for the number of vehicles and velocity intra are generally
lower than the respective values for the KoPER dataset. This was expected,
since the inD dataset contains more data than the KoPER dataset which
could be used to train the networks2. Especially TVD values for the number
of vehicles metrics are very low. The values for velocity intra are slightly
higher, but again the outliers can be explained. For example the outlier
at lane section 202 can be explained by few data since vehicles on track
2 were not thoroughly recorded by the drone since most of the track is
outside of the viewing angle of the camera. Therefore, incoming vehicles
are detected late. For the same reasons no values for tracks 200 and 201
are given at all. The same explanation also holds for lane section 100. The
values for invTTC intra are comparable to the respective values of the
KoPER dataset. The reason for this lies in the low traffic density in the
inD data. Hence, within most lane sections at most one vehicle is located
at the same time point. Therefore, only comparatively few indirect training
data (as mentioned TTC is not learned directly) for TTC were available.
The fits of invTTC inter are better and the respective δTVD are rather low.

6.3 Comparison of SPNs and BNs
After having extended the incremental roadway population models from
the original approach as proposed by Wheeler et al. [119] to the sampling
of more complex road topologies, this section discusses how to use SPNs
to improve the efficiency of the models. For doing so, the BN and SPN
training methods described in section 6.1.2 and section 6.1.3 are applied
to learn the distributions in (6.1) and (6.2) on the basis of the highD
dataset (appendix B.2). The distributions are then used to generate highway
scenes. Section 6.3.1 describes the preprocessing of the highD dataset,
section 6.3.2 discusses the hyper-parameters of the SPN learning algorithms
and section 6.3.3 evaluates the generated highway scenes. For that, the
SPN-learning algorithms’ hyper-parameters are optimized in section 6.3.3.1
and the different SPN algorithms are compared to each other and to the
usage of a BN in section 6.3.3.2. This section was already published by
Jesenski et al. [135]; © 2020 IEEE.
2 inD: 1.83 h at Neuköllner Straße; KoPER: 6 min28 s, compare appendix B.
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Table 6.3 Bin numbers for the discretization of vehicle velocity v, vehicle width w,
vehicle length l, longitudinal distance d between vehicles, distance to boundary db , d

(ego)
right

and dright. For definitions of d
(ego)
right and dright see fig. 6.1. Table taken from Jesenski

et al. [135]; © 2020 IEEE.

feature v w l d d
(ego)
right dright db

number of bins 30 10 10 80 10 10 80

6.3.1 Data processing
As already mentioned before, the highD dataset (appendix B.2) shall be
used to train the model described in section 6.1.1. However, before the
training of the probability distributions can be started, the dataset must
be processed as described in the following. First of all, the positions of
the vehicles in the highD dataset are transformed into lane-related Frenet
coordinates. Afterwards, features comprised in the probability distributions
(6.1) and (6.2) which are missing in the dataset are calculated. For the sake
of sampling speed, discrete SPNs are trained. Therefore, the calculated
features are discretized into equidistantly distributed bins and the calculated
and discretized feature tuples are saved. They can now be used for the
training procedure. Due to the feature ranges and diverse importance of
the features to the sampled scenes, different bin numbers are used for the
different features. The bin numbers are given in table 6.3.

6.3.2 Hyper-parameters for SPN learning
An overview about the hyper-parameters which are required by the SPN
learning algorithms is presented in table 6.4. Remember, that details about
the learning algorithms were already given in section 6.1.3.

It is necessary to specify the minimal number of instances κmin which
is required that an operation/instance split is allowed. The assessment of
the independency of variable subsets relies on dependency measures with a
usual range of 0 to 1. Therefore, one must decide for which threshold of
significance α ∈ [0, 1] the algorithms shall consider a variable subset to be
independent. For MSPN, the Laplace smoothing, applied on the data when
fitting the leaves, must be defined by choosing the smoothing parameter ∆.
SSPN and OSSPN work by augmenting an already existing SPN. Hence,
a seed SPN N0 has to be selected. The amount of recent samples ι onto
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Table 6.4 The hyper-parameters and settings needed for the training algorithms. The
table was originally published by Jesenski et al. [135]; © 2020 IEEE.

hyper- description necessary forparameter

κmin
min. number of LSPN, MSPN, SSPN, OSSPNinstances for split

α thresh. of significance LSPN, MSPN, SSPN, OSSPN
∆ smoothing parameter MSPN
N0 seed SPN SSPN, OSSPN

ι
most recent samples OSSPNused for training

Λ values per batch OSSPN
σ type of leaf distribution LSPN, SSPN, OSSPN

which OSSPN trains when a new batch of data arrives is another important
hyper-parameter. Besides, the size Λ of the batches given to OSSPN must
be defined. At last, the type σ of leaf distribution pu used when applying
LSPN, SSPN and OSSPN must be chosen.

6.3.3 Evaluation
In a first step, the hyper-parameters for the SPN training algorithms must
be chosen (see section 6.3.3.1). Afterwards, the chosen hyper-parameter
combinations are used to compare the learning algorithms against each
other and against a BN-baseline (section 6.3.3.2). For all experiments
90 % of the data were used for the training of the networks, whereas 10 %
of the same were used as test dataset in order to calculate the average
log-likelihoods Lilog .

6.3.3.1 Intra-algorithmic hyper-parameter selection

All learning approaches use RDC [68] to calculate the independency of
variable subsets when executing a variable split. For LSPN, SSPN and
OSSPN, the k-means algorithm is used to cluster the instances. For MSPN
a version using k-means, which is denoted as MSPNkm is implemented.
Additionally, the original MSPN version called MSPNrdc, for which k-
means is applied on the feature space which was transformed by using the
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non-linear transformations of the RDC-pipeline, is considered. Categorical
distributions are used for the leaf nodes of LSPN, SSPN and OSSPN. The
standard values ∆ = 1 and Λ = 100 000 are used for Laplace smoothing of
MSPN-leaves and the batch size of OSSPN. For the seed SPNs N0 of SSPN
and OSSPN a fully factorized product node as proposed in [25] is applied.
Note that since categorical leaves and RDC are used for this thesis’ version
of LSPN, the main difference to MSPNkm is the application of Laplace
smoothing. In the following paragraphs, different values for the remaining
hyper-parameters α, κmin and ι are evaluated.

For the hyper-parameter α, the values α ∈ {0.2, 0.3, 0.4} shall be assessed
in this paragraph for all training methods. During this assessment, the

Table 6.5 Results of the comparison of different values of α for all learning algorithms.
Lilog is the log-likelihood averaged over all data samples with a probability N (x) > 0
and over the networks for the following vehicles trained for the different lanes. q gives
the share of data samples with N (x) = 0, E gives the number of edges averaged over the
following-vehicle-SPNs for the different lanes and ttrain shows the training times. α = 0.4
is selected for OSSPN. For the rest, α = 0.3 is chosen. The bold printed numbers give
the best values of its class and training method. The table has already been published
by Jesenski et al. [135]; © 2020 IEEE.

algorithm α Lilog q E ttrain in s

LSPN
0.2 −14.81 2.72× 10−6 1873.3 11 808
0.3 −14.93 1.17× 10−6 907.0 7957
0.4 −15.20 3.88 × 10−7 533.7 6031

MSPNkm

0.2 −14.81 0 1873.3 11 805
0.3 −14.93 0 907.0 7950
0.4 −15.20 0 533.7 6022

MSPNRDC

0.2 −15.14 0 1632.0 16 035
0.3 −15.14 0 1314.8 14 206
0.4 −15.22 0 1150.2 13 199

SSPN
0.2 −14.81 2.33× 10−6 2554.8 13 914
0.3 −14.97 1.17× 10−6 1277.0 10 060
0.4 −15.23 3.88 × 10−7 714.7 7903

OSSPN
0.2 −14.83 1.61× 10−3 2557.5 15 138
0.3 −14.96 6.75× 10−4 1341.5 11 184
0.4 −15.23 3.91 × 10−4 752.7 7071
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constant values κmin = 0.5 % and ι = 100 000 are set. The results of the
analysis are displayed by table 6.5. For LSPN, MSPNkm, MSPNrdc and
SSPN α = 0.3 is selected, since this seems to be the best trade-off between
accuracy (high values for Lilog) and the inference time which is linearly
dependent on the number of edges E. For OSSPN the values for q are rather
high. Hence, OSSPN considers a lot of data samples to be impossible and
to have a probability value of zero when the likelihood is calculated. The
reason is, that only the most recent 100 000 data samples were considered
for the training of the parameters of OSSPN. In contrast, q disappears
for both versions of MSPN. The reason should be the usage of Laplace
smoothing in the MSPN leaf nodes. Since q is high for OSSPN and this
indicates unseen values and overfitting, α = 0.4 is chosen for OSSPN.

The evaluation of κmin is shown in table 6.6. Here, κmin is varied and
relative values of 1 %, 0.5 % and 0.1 % of the training data are assessed.
During the comparisons constant values α = 0.3 and ι = 100 000 are used.

Table 6.6 Evaluation of results for the variation of κmin . κmin = 0.1% is chosen for
MSPNRDC. For the rest, it κmin = 1% selected. The table was published by Jesenski
et al. [135]; © 2020 IEEE.

algorithm κmin Lilog q E ttrain in s

LSPN
1% −14.96 3.88 × 10−7 626.7 7688

0.5% −14.93 1.17× 10−6 907.0 7957
0.1% −14.91 1.17× 10−6 1919.2 8401

MSPNkm

1% −14.96 0 626.7 7698
0.5% −14.93 0 907.0 7950
0.1% −14.91 0 1919.2 8401

MSPNRDC

1% −15.36 0 804.0 13 588
0.5% −15.14 0 1314.8 14 206
0.1% −14.78 0 4034.5 16 144

SSPN
1% −15.00 3.88 × 10−7 855.8 9664

0.5% −14.97 1.17× 10−6 1277.0 10 060
0.1% −14.95 1.17× 10−6 2627.3 11 263

OSSPN
1% −15.00 5.23 × 10−4 869.3 7041

0.5% −14.96 6.75× 10−4 1341.5 11 184
0.1% −14.94 1.02× 10−3 2632.3 30 904
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Table 6.7 Evaluation of the variation of ι. ι = 200 000 is selected for the work in the
remainder. The table was published by Jesenski et al. [135]; © 2020 IEEE.

algorithm ι Lilog q E ttrain in s

OSSPN
50 000 −14.99 1.47× 10−3 885.8 6032
100 000 −14.96 6.75 × 10−4 1341.5 11 904
200 000 −14.97 7.73× 10−4 1392.7 11 921

Table 6.6 shows, that except for MSPNRDC the influence of κmin on the
likelihood of the networks is rather small compared to the influence of α.
Therefore, κmin = 1 % is selected since this creates networks with a smaller
number of edges which corresponds to shorter inference times. Since the
accuracy of MSPNRDC is strongly influenced by κmin , 0.1 % is chosen at
this end despite the growing number of edges.

Using a proper value of ι is essential when training OSSPN. Therefore,
networks are trained and assessed for the values {50 000, 100 000, 200 000}.
During the variation of ι, the other parameters are kept constant at α = 0.3
and κmin = 0.5 %. The results are illustrated in table 6.7. A number of
ι = 50 000 should not be selected since this causes a very high amount of
impossible samples q. Since the training time and the number of edges E is
nearly identical for 100 000 and 200 000, ι = 200 000 is preferred since that
could be more robust. A restriction of this assessment is, that it is executed
on a dataset which does not change strongly over time. In order to find
good values for OSSPN, the assessment should be repeated on an evolving
dataset which strongly changes its probability distribution over time.

6.3.3.2 Inter-algorithmic comparison

Table 6.8 shows the hyper-parameter combinations which were - as a result
of the assessment in the previous section - chosen for an inter-algorithmic
comparison. The results of the comparison are shown in table 6.9. The
table shows, that q is very small for all algorithms except OSSPN. This can
be explained by the fact that OSSPN only trains the network’s parameters
on ι recent samples.

MSPNRDC creates the best likelihoods Lilog among the SPNs, however
it requires comparably long sampling times. LSPN, SSPN and MSPNkm
possess similar likelihoods, but MSPNkm needs the shortest sampling time
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Table 6.8 Overview about the selected hyper-parameters. The table was published by
Jesenski et al. [135]; © 2020 IEEE.

hyper - LSPN MSPNkm MSPNRDC SSPN OSSPNparam.
κmin 1% 1% 0.1% 1% 1%
α 0.3 0.3 0.3 0.3 0.4
∆ - 1 1 - -
N0 - - - factorized product node
ι - - - - 200 000
Λ - - - - 100 000

Table 6.9 Inter-algorithmic comparison of results. tsample represents the mean time
needed to sample a lane section of a length of 480 m. The sampling times were determined
on an Intel Xeon E-2144G with 64 GB of RAM. The table was published by Jesenski
et al. [135]; © 2020 IEEE.

algorithm Lilog q ttrain in s tsample in s
LSPN -14.96 3.88× 10−7 7688 2.80

MSPNkm -14.96 0 7698 2.44
MSPNRDC -14.78 0 16 144 12.37

SSPN -15.00 3.88× 10−7 9664 4.11
OSSPN -15.24 3.46× 10−4 6052 2.85

BN -13.79 0 54 122 87.30

(2.44 s) for a whole statistically populated road with a length of more than
400 m. An example for a generated scene sampled by MSPNkm is given in
fig. 6.25.

Compared to the BN approach, all SPNs show a worse average log-
likelihood. However, the SPNs can sample whole lane sections up to 36
times faster: Whereas the BN needs about 87 s, the fastest SPN populates
a lane section in 2.4 s. Additionally, the BN’s training requires much more
time than the SPNs’ training.

Further comparisons between the algorithms can be performed on statis-
tics of properties of completely filled lane sections. A few statistical evalu-
ations of populated lane sections are given in figs. 6.26 and 6.27. These
evaluations analyze 20 000 scenes generated by each of the SPN algorithms
and compare them to results of the BN. Due to sampling time constraints
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Figure 6.25 Scene generated by using SPNs which were trained by MSPNkm. The
displayed 6-lane highway section has a length of about 480 m and a width of about
30 m. Hence, the vertical and horizontal scales in the image are strongly deviating and
therefore the vehicles appear distorted.

only 2000 scenes sampled by the BN were used for the statistics. Addi-
tionally, the statistics extracted from the scenes which were contained in
the test dataset are given. Figures 6.26(a) to 6.26(c) show statistics of
variables on which the networks were trained. Figures 6.27(a) and 6.27(b)
illustrate emergent variables which were not directly trained. Naturally,
the performance of the networks is better on the trained variables. Here,
the performance of the different networks seems to be comparable. All
networks can qualitatively reproduce the statistics of the learned variables
in figs. 6.26(a) to 6.26(c). For fig. 6.27(a), there are deviations of invTTC
values next to 0 s−1. The displayed discretized test data show that this
is completely caused by the discretization of the dataset. All networks
overestimate the vehicle density as shown in fig. 6.27(b). Consistently, the
networks’ distance distributions in fig. 6.26(a) overestimate small distance
values. The Bayesian network baseline seems to reproduce the vehicle
density slightly better than the SPNs.
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Figure 6.26 Comparison of histograms of directly trained properties of populated lanes
sampled by the SPNs with the continuous test data and the BN baseline. (a) shows the
statistics of the longitudinal distance between vehicles. (b) displays the distribution of
velocity. (c) contains information about the lengths of the sampled vehicles. The graphs
were firstly published by Jesenski et al. [135]; © 2020 IEEE.

6.4 Discussion/summary

This chapter aims to solve open questions regarding the generation of scenes.
In detail, the handled questions concern a scene model’s applicability to
complex road topologies and its efficiency when sampling.

For that, section 6.2 describes the implementation of a framework of BNs
which allows modeling traffic scenes on complex intersections. The proposed
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Figure 6.27 Comparison of distributions for emergent variables which were not directly
trained in the networks. (a) shows a histogram of the inverse time to collision (invTTC)
between consecutive vehicles and (b) shows the vehicle density of the populated lane
sections. (a) also contains the statistics of the discretized test data. The histograms
were firstly published by Jesenski et al. [135]; © 2020 IEEE.

model enables modeling inhomogeneous curved lane sections and several
types of relations between them. Additionally, it includes the possibility
to model global properties with intersectional influence. The model was
illustrated by applying it to two intersections: the KoPER intersection in
Aschaffenburg and the intersection at Neuköllner Straße, Aachen which is
contained in the inD dataset. By using multiple metrics it could be shown
that the implementation of the proposed model reproduces the datasets
accordingly. By the application to the signalized KoPER intersection and
the unsignalized inD intersection, it was shown that the model adapts
to different types of road topologies. Eventually, section 6.2 shows the
fulfillment of contribution 3.

Section 6.3 proposes the usage of SPNs to populate road topologies.
Therefore by learning distributions from the highD dataset, four different
SPN learning algorithms were compared to a BN baseline. While the SPNs
sample a scene up to 36 times faster than the BN, they show a worse
performance regarding the log likelihood. Nevertheless, it was shown that
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the SPNs can qualitatively reproduce the dataset. Additionally, the short
sampling time is essential for simulation-based validation methods (e.g.
based on importance sampling; see chapter 5) since they usually require
a high amount of sampled scenes. Among the compared SPN learning
algorithms, MSPNrdc performs best regarding the likelihood, but has the
worst sampling time. LSPN, MSPNkm and SSPN generate similar likelihods.
Among them, MSPNkm shows the shortest sampling time. OSSPN performs
worst which is caused by its online setting. However, there might be some
applications where the online property and the ability not to load the whole
dataset at once could become valuable. In total, section 6.3 delivers all
ingredients for the realization of contribution 4.

The high number of lane sections, which is necessary to describe complex
road topologies, creates a large number of combinations which splits the
available training data. This results in some parameter combinations being
trained only on small data subsets. Hence, it would be beneficial to train the
models on larger datasets. Additionally, larger datasets would be sensible
in order to enable the inclusion of neglected vehicle properties such as
lateral position or orientation angles relative to the road centerline into the
trained distributions.

As mentioned in chapter 5, a proper IS optimization of high dimensional
ADF-simulations demands the ability to optimize the initial scenes which
start the simulation runs. By using the results of this chapter and by
introducing some adaptions to the scene models, it will become possible
to predominantly sample critical scenes in chapter 7. This will enable
optimization and hence the incorporation into importance sampling. Hence,
chapter 7 will illustrate that a combination of the scene models with IS is
possible.
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Chapter 5 proposes a method to apply IS to highly complex (highway)
scenarios. However, the initial scenes for the simulation runs were created by
just drawing from a dataset. This made it impossible to optimize the initial
scenes when trying to find an optimal IS distribution and necessitated the
introduction of a relaxation phase (see section 5.3.3).

Of course, for the calculation of the collision rates of real systems, a
relaxation phase must not be used since it introduces unrealistic dynamics
and biases the statistical model. Hence, it must become possible to optimize
the initial scenes when implementing IS. In order to address this issue, the
PGM-based initial scene model discussed in chapter 6 shall now be adapted
to being able to produce predominantly critical scenes. This is realized by
introducing parameters which are linked to the criticality of an initial scene
into the relevant sampling distributions.

In section 7.1 specific safety metrics are tested for this purpose. In
section 7.2 it is shown that the adapted initial scene models can be used to
include the initial scenes into the CE optimization and a good approximation
of the optimal IS distribution can be found. This renders the relaxation
phase unnecessary since all relevant parts of a simulation run now can be
optimized. Parts of this chapter were already published by Jesenski et al.
[136]; © 2021 IEEE.

7.1 Generation of critical scenes
This section discusses how to adapt the initial scene model in order to
generate critical scenes. Therefore, section 7.1.1 adjusts the scene model by
adding additional metric parameters. Section 7.1.2 presents the preprocess-
ing of the required dataset. Section 7.1.3 shows that discriminative learning
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is advantageous when training the necessary probability distributions and
section 7.1.4 discusses the effects of several metrics when using them to
select a certain criticality during scene sampling.

7.1.1 Adaption of initial scene model
In section 6.1.1 it was described how to generate initial scenes by sampling
the first vehicle in a lane L from a distribution p(L)

1 (see (6.1)) and by iter-
atively sampling the following vehicles from a distribution p

(L)
next (see(6.2)).

However, this enabled only the reproduction of scene distributions as given
in the original dataset.

In order to enable the generation of scenes with a distinct criticality, a
set of random variables ϕmetrics,i,L which describe the safety metrics is now
introduced into p(L)

next. One obtains

p
(L)
next,cond.

(
φΨi+1,L\ϕmetrics,i,L , φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)

= p
(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L

∣∣∣φΨcond.,i,L , φϕmetrics,i,L

)

· p(L)
metrics

(
φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)
, (7.1)

with

Ψi+1,L = {∆vi+1, di+1, li+1, wi+1} , (7.2)

Ψcond.,i,L =
{
vi, vi−1, di, d

(ego)
right,i, dright,i

}
. (7.3)

For the definition of the variables compare section 6.1.1. Remember that
φX are numerically assigned values of the random variables in X. The
set Ψi+1,L contains the random variables which are required to determine
vehicle i+ 1 in lane L and Ψcond.,i,L gives the random variables of vehicle i
in the same lane on which it is conditioned during the sampling of Ψi+1,L.
In the following, both p

(L)
cond. and p

(L)
metrics are represented by SPNs learned

on a dataset.
Note, that the sampling of the velocity vi+1 of the next vehicle was

replaced by sampling the velocity difference ∆vi+1 = vi+1 − vi since this
is much more relevant for safety than vi+1 itself. Hence, directly training
on ∆vi+1 when learning p(L)

next,cond. improves the expressiveness of the used
learning approaches with regard to a scene’s safety.
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The set of “metric parameters” ϕmetrics,i,L expresses safety in the relation
between consecutive vehicles i and i + 1 in lane L. Note, that Ψi+1,L \
ϕmetrics,i,L makes sure that no parameter is sampled twice if some of the
used metrics are also included in Ψi+1,L. Depending on the sampling
of ϕmetrics,i,L in the second factor p(L)

metrics, the safety/criticality of the
generated scenes can be influenced. Nevertheless, since the distribution
p

(L)
metrics

(
φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)
is learned from data (e.g. by SPNs or BNs

as proposed in chapter 5), the entire distribution p(L)
next,cond. still represents

the same unskewed distribution as p(L)
next.

However, when trying to sample skewed, predominantly critical scenes it
is possible to replace p(L)

metrics and sample the following vehicles of lane L by

q
(L)
next,cond.

(
φΨi+1,L\ϕmetrics,i,L , φϕmetrics,i,L

∣∣∣φΨcond.,i,L , φvinit,L,i

)

= p
(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L

∣∣∣φΨcond.,i,L , φϕmetrics,i,L

)

· q(L)
metrics

(
φϕmetrics,i,L

∣∣∣φvinit,L,i

)
. (7.4)

Hence, by the use of the parametric family of distributions q(L)
metrics which

can be chosen to emphasize certain ranges of values of the metric parameters
included in ϕmetrics,i,L, it becomes possible to sample predominantly from
the parts of the learned dataset which relate to a certain degree of criticality.
The parameters vinit,L,i shall fully specify the distribution q

(L)
metrics.

7.1.2 Dataset & data preprocessing
For the SPN-based training of the modified initial scene models (7.1) and
(7.4), the highD dataset (appendix B.2), which is already used in section 6.3,
is utilized. Therefore, the dataset preprocessing which was explained in
section 6.3.1 is also applied here before the training of the modified scene
models takes place. However, since the metric parameters contained in
ϕmetrics,i,L must additionally be considered, further preprocessing steps are
executed.

Most of the metrics tested and compared for ϕmetrics,i,L (see section 7.1.4)
are not included in the original data. Therefore, these metrics must firstly
be calculated from the available dataset parameters in order to enable
learning them. The metrics, which are calculated, are g(TTC)

pair , g(invTTC)
pair and
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7 Combining importance sampling and scene generation models

the physics-based g(RSS Dist)
pair metric. For more information on these metrics

see chapter 4. They are applied on consecutive vehicle pairs p = (i, i+ 1).
For the purpose of ϕmetrics,i,L, only the longitudinal part of g(RSS Dist)

pair was
used since this is the prevailing metric term for consecutive vehicles in the
same lane (and the SPN fills a lane consecutively). For the parameterization
of g(RSS Dist)

pair , ρ = 0.5 s , amax,accel = 4 m
s2 , amin,brake = 4 m

s2 and amax,brake =
4 m

s2 were used. In section 7.1.4, the three mentioned metrics additionally
will be compared to a 2-dimensional metric ϕmetrics,i,L = {di+1,∆vi+1},
i.e. the criticality is in this case directly determined by setting the distance
and velocity difference to the vehicle which is sampled next. The values for
di+1 as well as for ∆vi+1 are already included in the dataset and therefore
no new calculations are necessary for this metric selection.

The metrics TTC, invTTC, as well as RSS tend to produce diverging
values since they include a quotient and the denominator is able to reach
0. These possible diverging or at least very large values must be handled
before the networks’ training can be started. For RSS, all infinite values
are replaced with the highest finite RSS value found in the dataset. For
TTC and invTTC it becomes more complicated since all negative values
are uncritical. Therefore, for TTC all values not included in the interval
[0 s,∞) are set to the highest available finite value. For invTTC the highest
values are the most critical ones. Hence, the procedure must be adapted.
That means, all negative invTTC values are set to the smallest positive
value found in the dataset. All positive, infinite values are set to the highest
finite value occurring in the dataset.

As already explained in section 6.3.1, the data are discretized before using
them to train the SPNs. Up to now, equidistantly distributed bins were
used. However, the metric values are distributed strongly uneven in a very
large range, especially because of their diverging behavior. Consequently,
equidistant bins are not feasible anymore and the metric bins are arranged
to make sure that each metric bin contains the same quantile of metric data1.
For g(TTC)

pair , g(invTTC)
pair and g

(RSS Dist)
pair , 10 of those quantile-based bins per

metric are used. When handling negative metric values or infinite values as
described above, a lot of metric values might be placed at the exactly same
numerical value. In these cases, potentially multiple quantile-based bins
are located within this single value. If that happens, the overlapping bins

1 The rest of the SPN parameters Ψi+1,L \ ϕmetrics,i,L, Ψcond.,i,L are of course still
discretized equidistantly.
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7.1 Generation of critical scenes

however are fused together. For the metric {di+1,∆vi+1}, di+1 is discretized
quantile-based and ∆vi+1 is discretized equidistantly. The reason is that
the networks will be trained discriminatively for di+1 and generatively for
∆vi+1. Section 7.1.3 discusses such generative and discriminative training
procedures. A number of 80 bins were used for discretizing di+1 and 30
were applied to discretize ∆vi+1 when using them as metrics in ϕmetrics,i,L.

7.1.3 Discriminative learning of p
(L)
cond.

This section discusses how to train SPNs in order to properly represent the
conditional distribution

p
(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L

∣∣∣φΨcond.,i,L , φϕmetrics,i,L

)
. (7.5)

Usually, when training an SPN, the joint distribution

p
(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L , φΨcond.,i,L , φϕmetrics,i,L

)
(7.6)

is learned generatively. The conditioning on Ψcond.,i,L,ϕmetrics,i,L is then
obtained by dividing two marginalizations as described in eq. (6.23). How-
ever, better results can be achieved when directly learning the desired
conditional distribution. Consequently, the discriminative training of a
conditional distribution

p
(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L , φΨcond.,i,L

∣∣∣φϕmetrics,i,L

)
(7.7)

is beneficial2. This allows improving the learning of the relations between
the consecutive vehicles for a distinct value of the respective metric. The
preprocessed training dataset can be visualized as sequence of data tuples
with values for all random variables in Ψi+1,L \ ϕmetrics,i,L, Ψcond.,i,L and
ϕmetrics,i,L. The direct conditional training can be implemented by dividing
this total dataset into subsets whose data tuples belong to a certain bin b of
the metric in ϕmetrics,i,L. Then a separate SPNb can be trained on each of
these sub-datasets, which means that in effect the training is executed in a
discriminative fashion. The conditioning on a distinct value for ϕmetrics,i,L
is then achieved by selecting the SPN from the set {SPNb : b ∈ {0, 1, ...}}
2 The desired distribution in (7.5) can then be obtained by the scheme

p (a|b, c) = p(a,b|c)
p(b|c)
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7 Combining importance sampling and scene generation models

which corresponds to the respective desired metric bin3. In section 6.3.3.2,
it was discussed that MSPNkm delivers the best results among the analyzed
training algorithms. It is thus used to train the SPNs in this section.

The quality of the learned discriminative distributions with respect
to their ability to represent the conditional influence of the metric in
distribution (7.5) can be evaluated by sampling from the marginalized
distribution

p
(L)
cond.

(
φ∆vi+1

, φdi+1
, φvi

∣∣∣φϕmetrics,i,L

)
. (7.8)

For doing so, the discriminative SPNs which represent (7.7) were marginal-
ized and the sampling is hence limited to ∆vi+1, di+1, vi. This is sensible
since only these parameters influence the tested metrics used in ϕmetrics,i,L.
The rest of the parameters are therefore not relevant for the evaluation and
are neglected at this point. The sampled parameters ∆vi+1, di+1, vi can
then be used to recalculate the metrics in ϕmetrics,i,L on which the networks
were conditioned. If these recalculated metrics are distributed as desired by
the given value of ϕmetrics,i,L, then a good discriminative representation of
the conditional distribution (7.5) was achieved. As an example, histograms
of the recalculated values of g(TTC)

pair are given in fig. 7.1. The sub-figures
compare the results for the recalculated metric values when the SPN was
naively trained in a generative way and the results when the SPNs were
trained discriminatively with the mentioned procedure. The figure shows
that the discriminative approach creates a better representation of (7.5)
because it produces larger shifts between the recalculated metric values
than the generative approach. Consequently, in the remainder of this work,
the discriminative learning approach will be applied to learn p

(L)
cond..

3 This learning procedure was chosen since it allows using the generative learning
approaches presented in section 6.1.3 in order to train discriminative networks. In
literature (e.g. [5, 84]), a similar SPN structure was utilized in order to train classifiers
of type p (Y |X). Here Y is a number representing the class related to the features in
the set X. The number of possible values of Y is low, the number of values for X is
high (scales exponentially with |X|). In the present case this is inverted to p (X|Y )
and therefore trivial to represent since only few networks for the few values of Y must
be trained.
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Figure 7.1 Histograms of recalculated metric values. In both histograms the sampling
was conditioned on the most critical metric bin (max. crit. bin), on the minimal
critical bin (min. crit. bin) and on the second least critical bin (2nd min. crit. bin)
for ϕmetrics,i,L =

{
g

(TTC)
pair

}
. The results are shifted consistently into the direction of

the conditioned bins since higher values for g
(TTC)
pair are less critical. Remember that

negative TTC values are absolutely uncritical since they imply a situation with a faster
leading vehicle. For comparison, the distribution of the TTC values in the dataset is also
included. Note that the plotted dataset distribution is taken from the original data prior
to the application of the processing steps described in section 7.1.2. Notice that the min.
crit. bin corresponds to the bin with the highest TTC values. However, conditioning
onto this highest bin creates a lot of negative recalculated TTC values. This is caused
by the preprocessing introduced in section 7.1.2: Before training, all negative values
are set to the highest finite TTC value found in the dataset. Therefore, these data
tuples now are related to the least critical metric bin (with the highest value) during
training. The networks were trained by MSPNkm because this training method delivered
the best overall results as analyzed in section 6.3.3.2. The histograms were produced
by evaluating 10 000 samples per metric bin drawn by (7.8). (a) shows the histogram
of TTC as sampled by one SPN for all conditioned values of ϕmetrics,i,L =

{
g

(TTC)
pair

}

and by dividing by the marginalizations (generative learning, based on (7.6)). (b) gives
the same histogram of TTC when sampling with an extra SPNb per discretized TTC
bin b (discriminative learning, based on (7.7)). The results of (b) are superior since a
better separation of TTC values takes place. That means, 2nd min. crit. bin for example
is located at higher, less critical TTC values than in (a) and max. crit. bin is also
more pronounced on smaller, more critical values. Figure 7.1(b) was firstly published by
Jesenski et al. [136] © 2021 IEEE.
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Figure 7.2 Histograms for recalculated metric values for both g
(invTTC)
pair and g

(RSS Dist)
pair .

Compare also fig. 7.1(b). The histograms were constructed based on 10 000 samples
per metric bin setting. (a) gives the histogram of RSS sampled with an extra SPN per
discretized RSS bin. The conditioning is working. Most of the values sampled when
conditioning on the maximal critical bin are located in the metric’s critical range [−1, 0]
(see section 4.4.2), whereas the other uncritical conditioned values are located at high
recalculated metric values. (b) displays the same results for invTTC. The conditioning
is also working here, since the more critical the conditioned bins are, the higher also
the recalculated invTTC values are. Note again, that the minimal critical bin delivers
a lot of uncritical negative invTTC values since all negative values were positioned at
the lowest positive invTTC value as a result of the procedure explained in section 7.1.2.
Figure 7.2(a) was firstly published by Jesenski et al. [136] © 2021 IEEE.

7.1.4 Comparison of different metrics

In addition to sampling critical scenes by ϕmetrics,i,L =
{
g

(TTC)
pair

}
as pre-

sented in section 7.1.3, the sampling by g(invTTC)
pair and g(RSS Dist)

pair was evalu-
ated. The evaluation was performed similar to the assessment of g(TTC)

pair
in fig. 7.1. The SPNs for both metrics were learned by applying MSPNkm
through the discriminative approach. The results are displayed by fig. 7.2.
Obviously, the conditioning works for both metrics.

In order to compare the effects of the conditioning on the various
metrics to each other, entire scenes are sampled by the iterative appli-
cation of (7.4). For that, the required factor p(L)

cond. is described by the
respective discriminatively trained distribution. This was executed with
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(a) (b)

Figure 7.3 Scenes of varying criticality generated by directly setting the critical-
ity for all sampled vehicles. The displayed 6-lane highway section has a length
of about 480 m and a width of about 30 m. Hence, the vertical and horizon-
tal scales in the images are strongly different and the vehicles appear distorted.
For (a), it is q

(L)
metrics

(
φ

g
(RSS Dist)
pair

)
= δφ

g
(RSS Dist)
pair

,max.crit.bin. (b) was drawn by

q
(L)
metrics

(
φ

g
(RSS Dist)
pair

)
= δφ

g
(RSS Dist)
pair

,min.crit.bin. Both images were already published

by Jesenski et al. [136] © 2021 IEEE.

q
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φvinit,L,i

)
set to sample only from the minimal crit-

ical bin (min. crit. bin) or the maximal critical bin (max. crit. bin) of
the metric, respectively4. Exemplary results of single scenes drawn with
ϕmetrics,i,L =

{
g

(RSS Dist)
pair

}
are given in fig. 7.3. Obviously, the effects of

conditioning on the metric are significant in these examples. The scene
which was sampled by conditioning on max. crit. bin contains a lot more
vehicles with much smaller distances d between consecutive vehicles in a
lane than the scene sampled with min. crit. bin.

Now, the scene creation procedure was applied to create 2000 complete
scenes for both of the mentioned bins. For comparison, the same amount
of scenes was also drawn with p

(L)
metrics as defined in (7.1). In this relation,

p
(L)
metrics was trained by MSPNkm to represent the real distribution as

included in the dataset.
The safety with regard to two consecutive vehicles in a scene is predomi-

nantly dependent on their velocity difference ∆v and their distance d. Thus,
the histograms of ∆v and d within the 2000 generated entire scene samples

4 Because of the discretization of the metric, q
(L)
metrics is of course a discrete probability

mass function which in this case is set to be defined by a Kronecker Delta.
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Figure 7.4 Histograms for d and ∆v taken from 2000 scenes per metric bin gen-
erated with ϕmetrics,i,L =

{
g

(RSS Dist)
pair

}
. They are compared with the respective

histograms of the highD dataset. The images show, that when sampling from the
SPN p

(L)
metrics, the dataset distributions are approximately reproduced. The rest of

the histograms were sampled by q
(L)
metrics, e.g. for min. crit. bin, it is sampled by

q
(L)
metrics

(
φ

g
(RSS Dist)
pair

)
= δφ

g
(RSS Dist)
pair

,min.crit.bin. (a) shows that the distances d are

strongly shifted when conditioning on metric bins of varying criticality. (b) shows that
the shift of ∆v works for the uncritical bins, but the shift to more critical, higher values
of ∆v is only weak. For max. crit. bin filtered, values of ∆v = 0 m

s are filtered out. Both
images were already published by Jesenski et al. [136] © 2021 IEEE.

per bin have been analyzed and compared to each other. The histogram
results for the three examined metrics are given in figs. 7.4 to 7.6. Before
sketching the figures, the histograms were limited to interesting ranges in
the x-direction. For ∆v additionally a filtered version of max. crit. bin is
drawn. For this histogram, values of ∆v = 0 m

s are filtered. This becomes
necessary, since the velocity in the sampled scenes is limited to 200 km

h .
That means, if a lot of vehicles are located in a scene (which is the case for
critically conditioned scenes) and the successor vehicles are driving faster
(∆v > 0) this limit is reached pretty fast. Afterwards, the next vehicle is
not allowed to drive faster even if a positive velocity difference is sampled.
As a result, velocity differences of 0 m

s are added and the histograms are
skewed. When these velocity differences are filtered out, it becomes visible
which velocity differences are chosen if a velocity increase is still allowed.
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Figure 7.5 Histograms for d and ∆v taken from 2000 scenes generated with
ϕmetrics,i,L =

{
g

(TTC)
pair

}
. The histograms are compared with the histograms of the

highD dataset. (a) shows that TTC’s influence on d is only of limited extent. However,
(b) shows, that the shift induced into ∆v when selecting highly critical metric bins is
quite strong. The same filtered histogram as explained in fig. 7.4 is presented in (b).
Both images were already published by Jesenski et al. [136] © 2021 IEEE.

In the current cases, no strong skews are found by the filtering. The his-
tograms are additionally compared to the histograms of the parameters
in the original dataset. When comparing the figures, one can observe that
the conditioning on the extremal critical values of g(TTC)

pair and g
(invTTC)
pair ,

introduces strong shifts in the histograms of ∆v. However, the metrics’
influence on d seems to be limited. In contrast, when utilizing g(RSS Dist)

pair , a
strong shift to smaller values of d is visible, when it is conditioned on highly
critical bins (fig. 7.4(a)). The influence on ∆v (fig. 7.4(b)) however is weaker.
The images show, that the sampling by all three metrics reproduces the
dataset histograms when p

(L)
metrics is applied for the sampling of the metric

values. For all metrics, there are small deviations between the histogram
sampled by p(L)

metrics and the histogram of the dataset at low values for d.
These deviations seem to be similar to the deviations in fig. 6.26(a) and
are therefore not additionally created by introducing the conditioning.

Consequently, the described conditioning procedure makes it possible
to sample scenes of a certain criticality as quantified by different types of
metrics. However, as the analysis reveals, none of the metrics alone seems
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Figure 7.6 Histograms for d and ∆v taken from 2000 scenes generated with
ϕmetrics,i,L =

{
g

(invTTC)
pair

}
. They are compared with the respective histograms of the

highD dataset. The results are similar to the results in fig. 7.5. This is a result of the
fact, that the values of invTTC are closely related to the values of TTC.

to be sufficient to fully enable the exhaustive optimization of all critical
parts of an initial scene (at least ∆v, d). As the experiments have shown,
the conditioning on the tested metrics either allows tuning ∆v or d, but
not both combined5. Nevertheless, this is a requirement of the IS approach
since the optimal importance sampling distribution (5.12) must weight
up/emphasize all possible critical scenes. Too large deviations from this
optimal importance sampling distribution after the optimization can cause
faults in the calculation of the occurrence rates of a critical event. A solution
is the direct conditioning on ϕmetrics,i,L = {di+1,∆vi+1}. Obviously, this
direct conditioning should enable the direct sampling of parameter values
in the relevant critical ranges. The resulting histograms are illustrated in
fig. 7.7. They show that it becomes possible to sample from the desired
critical parameter ranges for both d and ∆v. In order to keep the number
of networks small (in this case 80), the discriminate learning has only
been applied on d. However, there is no principal limitation preventing the

5 In addition, when testing these metrics in the IS experiments described in 7.2 it
turned out, that accidents can also happen at very uncritical values of these metrics,
e.g. there may be situations where critical values of ∆vi+1 (large) or critical values of
di+1 (small) evaluate to strongly uncritical values of RSS.
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Figure 7.7 Histograms of ∆v and d when sampling 2000 scenes by directly conditioning
on ϕmetrics,i,L =

{
di+1, ∆vi+1

}
. When sampling by p

(L)
metrics, the dataset is reproduced

properly. Sub-figure (a) shows that the generated values for d are located in a very
narrow interval when sampling critically. This is sensible since these values were now
directly sampled by choosing the most critical bin with the smallest available value
for d when applying q

(L)
metrics. The respective sampled interval for min. crit. bin is not

visible within the illustrated range of d since the minimal critical values for d correspond
to the largest distance values found in the dataset, which are larger than 150 m. In
(b), it is illustrated that the extremal bins for ∆v are located at about ±20 m

s . The
unfiltered version of max. crit. bin however naively seems not being working properly
since a large peak is visible around 0 m

s . Note however, that after having filtered 0 m
s ,

the ∆v histogram looks as expected. The reason is that max. crit. bin samples very small
distances d which causes a lot of vehicles being placed into a scene. Additionally, all of
the consecutive vehicles shall maximally drive faster than their predecessor. This causes
the maximum velocity of 200 km

h allowed in the scenes being reached pretty fast and
consequently a lot of successor vehicles with a velocity difference of 0 m

s are following up.
Note that both ∆v peaks are distributed in a certain range and have a certain width,
even for the filtered version. They are not only located in one bin as naively expected.
There are two reasons for that: Firstly, as already introduced in chapter 6, for each of
the lanes in the scene extra SPNs are trained. Therefore, different extremal bin values
exist for each of those networks. Secondly, the limitation of allowed vehicle velocities to
the interval

[
0, 200 km

h

]
causes larger/smaller values to occur in order to comply with

these limits when the limits are approached. Both images were already published by
Jesenski et al. [136] © 2021 IEEE.

discriminative learning scheme to be applied on both metrics.
Note, that even if a very specific metric set ϕmetrics,i,L = {di+1,∆vi+1}

was chosen, the procedure is not limited. If IS further required condition-

177



7 Combining importance sampling and scene generation models

ing on additional parameters (in Ψi+1,L) they can simply be added to
ϕmetrics,i,L. Remember, that added parameters are deleted from Ψi+1,L.
This is necessary, since it does not make sense to sample parameters twice.
The parameters which should be added to ϕmetrics,i,L might for example
be determined by methods similar to those in section 5.4.

7.2 Application to importance sampling
In chapter 5, a simulation framework was presented which was used to
generate entire scenarios. The initial scenes were taken from the highD
dataset and the vehicle dynamics were determined by the use of IDM
and MOBIL. Now, this framework is adapted to use the modified initial
scene model from section 7.1 which then enables including the initial
scenes into the CE optimization. For that, section 7.2.1 discusses how the
modified initial scene models are incorporated into the mentioned simulation
framework. Section 7.2.2 presents the causality groups to perform IS and
section 7.2.3 executes IS and shows the results.

7.2.1 Simulation model
The modified initial scene model in (7.1) is now introduced to the simulation
framework from chapter 5. In that relation, a simulation run h is governed
by (5.18). However, the non-physical parameters are now defined by

ϕ = ϕbeh. ∪ ϕscene (7.9)

with the union

ϕscene =
⋃

L∈L

⋃

i∈ν
(L)
φξ

ϕmetrics,i,L (7.10)

of the metric parameters specified in (7.1). The set ϕbeh. contains the
behavior models’ parameters. They remain the same as discussed in sec-
tion 5.3 since the dynamics of a simulation run shall still be governed by
the behavior models given in section 5.3.1.3. The set L comprises all lanes
existent at the current road topology and ν(L)

φξ
gives all vehicles located in

lane L.
When representing the unskewed creation of a simulation run h, the

distribution p0
(
φx0

, φϕ

)
in (5.20) does no longer contain a factor p0,irr.,1,

178



7.2 Application to importance sampling

which purely samples from a dataset, as it was the case in section 5.3.1.1.
Instead, the initial scenes are sampled as discussed in sections 6.1.1 and 6.3
with the modifications in (7.1). Hence, the factors required in (5.20) are
now defined by

p0,irr.

(
φx0

, φϕirr.

∣∣φϕscene∩ϕrel.

)
= p

(beh.)
0,irr.

(
φϕirr.∩ϕbeh.

)

·
∏

L∈L

p
(L)
1
(
φv1

, φdb
, φl1

, φw1

)

·
∏

L∈L

nh,L−1∏

i=1
p

(L)
cond.

(
φΨi+1,L\ϕmetrics,i,L

∣∣∣φΨcond.,i,L , φϕmetrics,i,L

)

·
∏

L∈L

∏

i∈ν
(irr.,L)
φξ

p
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)

·
∏

L∈L

p
(L)
end

(
φxnh,L+1

< xrear

∣∣∣∣φΨcond.,nh,L,L, φϕmetrics,nh,L,L

)

(7.11)

and

p0,rel.
(
φϕrel.

)
= p

(beh.)
0,rel.

(
φϕrel.∩ϕbeh.

)

·
∏

L∈L

∏

i∈ν
(rel.,L)
φξ

p
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)
. (7.12)

The distribution p(L)
cond. is created by the discriminative approach specified

in section 7.1.3. The distributions p(L)
cond., p

(L)
metrics and p(L)

1 will in the remain-
der be represented by SPNs learned by MSPNkm which in section 6.3.3.2
delivered the best combination of sampling time and likelihood. Since the
behavior models applied in section 5.3 are reused, the distributions p(beh.)

0,irr.

and p(beh.)
0,rel. which consider the behavior parameters are chosen similar to the

definition of p0,irr.,2 and p0,rel. in section 5.3.1.1. Furthermore, ν(rel.,L)
φξ

and
ν(irr.,L)

φξ
give the vehicles whose initial states are relevant and not relevant

respectively for the optimization of the initial scene. The number nh,L gives
the amount of vehicles initially positioned in lane L for simulation run
h. The possibility that a hypothetical vehicle nh,L + 1 is located behind
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the sampled road topology is determined by p
(L)
end. This distribution is a

direct result of aborting the sampling if φdnh,L+1
> φxnh,L

−φlnh,L
− xrear

Formally, it is therefore given by

p
(L)
end

(
φxnh,L+1

< xrear

∣∣∣∣φΨcond.,nh,L,L , φϕmetrics,nh,L,L

)

=
ˆ

V nh,L+1,L

p
(L)
cond.

(
φAnh,L+1,L

∣∣∣φBcond.,nh,L,L

)
dφAnh,L+1,L ,

(7.13)

with

Anh,L+1,L = Ψnh,L+1,L \ ϕmetrics,nh,L,L, (7.14)

Bcond.,nh,L,L = Ψcond.,nh,L,L ∪ ϕmetrics,nh,L,L, (7.15)

V nh,L+1,L =
{
ψ ∈ V al

(
Anh,L+1,L

)
:

φdnh,L+1
> φxnh,L

− φlnh,L
− xrear

}
. (7.16)

7.2.2 Selection of causality groups
The presented scenario generation model must now be modified to generate
predominantly critical scenarios as required for IS. For that, the procedure
described in section 5.2.1 is used. Therefore, the parametric family of
distributions used for the optimization is defined as described in (5.19) and
(5.21). The factor p0,irr. is of course still determined by (7.11). The factor
q0,rel. however is proposed to be determined by

q0,rel.
(
φϕrel.

∣∣φv

)
= q

(beh.)
0,rel.

(
φϕrel.∩ϕbeh.

∣∣φvbeh.

)

·
∏

L∈L

∏

i∈ν
(rel.,L)
φξ

q
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φvinit,L,i

)
. (7.17)

q
(beh.)
0,rel. is a replicate of q0,rel. defined in section 5.3.2. To enable a good

fitting of the distributions q(L)
metrics, their form is chosen to be given by

q
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φvinit,L,i

)
=

∏

m∈ϕmetrics,i,L

q0,rel.,m

(
φm

∣∣∣φ
v

(m)
init,L,i

)
. (7.18)
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The distributions q0,rel.,m

(
φm

∣∣∣φ
v

(m)
init,L,i

)
are truncated Cauchy mixture dis-

tributions as defined by (5.56). Their truncation intervals Bm are equivalent
to the intervals applied during the discretization in section 7.1.2. The CE
optimization is performed by adopting (5.23) and (5.24) into algorithm 1
and by considering the modifications in section 5.2.2. As a result of (7.17)
and (7.18), the causality groups according to (5.22) are

Cscenes = ϕrel. = (ϕrel. ∩ ϕbeh.) ∪
⋃

L∈L

⋃

i∈ν
(rel.,L)
φξ

ϕmetrics,i,L. (7.19)

That is, all causality groups have been chosen to contain only one parameter.
Consequently, by distinguishing relevant and irrelevant parameters and

by introducing the causality groups, one optimization of size |ϕ| · 9 (as-
sumption: 9 optimization parameters per simulation parameter) can be
reduced to |Cscenes| = |ϕrel.| optimizations of size 9 (Cauchy mixtures with
9 parameters per simulation parameter) . Here, the relation factor can be
expressed by

Krel.
(
φh ; ω

)
=

∏

p∈ϕrel.∩ϕbeh.

p
(p)
cauchy,trunc

(
φp

∣∣∣u(p),Bp

)

q0,rel.,p

(
φp

∣∣∣ω(p)
beh.

)

·
∏

L∈L

∏

i∈ν
(rel.,L)
φξ

p
(L)
metrics

(
φϕmetrics,i,L

∣∣∣φΨcond.,i,L

)

∏
m∈ϕmetrics,i,L

q0,rel.,m

(
φm

∣∣∣ω(m)
L,i

) . (7.20)

Remember, that the values u(p) can be found in table 5.2 and that p(L)
metrics

is an SPN which was directly learned from a dataset.
The causality group/relevant parameters used for the evaluation in the

next section are listed in table 7.1.

7.2.3 Evaluation
The described optimization procedure is now illustrated. For that, the initial
scenes are generated under the usage of ϕmetrics,i,L = {∆vi+1, di+1}, which
was the best metric set in the assessment in section 7.1.4. The networks
are trained discriminatively only on di+1. The selection of this metric
set can further be justified since it turned out that both initial velocity
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Table 7.1 The relevant parameters ϕrel. spanning the causality groups. For the definition
of relative vehicles see fig. 5.2. For the concrete applied optimization, 7 parameters have
been chosen empirically. The behavior related parameters are explained in table 5.2.

vehicle i ϕi \ ϕirr.

Lsame,0 treact, V0, ∆vi+1, di+1
Lsame,1 V0, ∆vi+1, di+1

differences and initial distances between consecutive vehicles are relevant
for the criticality of a scenario. Hence, these properties must be controllable.
Additionally, the use of a general safety metric such as RSS or TTC is
not sufficient since these metrics only indirectly determine the relevant
properties of the initial scenes. That means, it is for example possible
that critical values of ∆vi+1 (large) or critical values of di+1 (small) occur
for strongly uncritical values of RSS. This however would prevent a good
optimization from taking place.

The rare event set whose occurrence rate shall be approximated is defined
by

εpre =
{
φξ ∈ Ω : g(RSS Dist,pre)

crit.

(
φξ ,S

)
≤ γ

}
, (7.21)

whereas for g(RSS Dist,pre)
crit. , A(φξ)

t =
⋃

i∈S
{(i, pre [i, t])} and S = {ego} holds

deviating from the definitions in section 4.4.2. The used RSS parameters
are given in table 5.6. The relevant parameters/ causality groups have been
empirically chosen. They are listed in table 7.1.

Note that only predecessor vehicles in relation to the ego vehicle are
considered relevant. The rationale is, that εpre only considers ego’s colli-
sions with its predecessor vehicle. The trailing vehicles thus should not
be relevant and are therefore not optimized. As described in section 7.2.2,
when considering a scenario with n

(φξ )
veh = 20, this selection of relevant

parameters allows reducing one optimization with 20 · (11 + 2) · 9 = 2340
dimensions6 to 7 optimizations of 9 dimensions.

The set of parameters used for CE optimization are listed in table 7.2.
The simulation runs utilize time steps of ∆t = 0.04 s and a time horizon
6 It is ϕ = 20 · (11 + 2), because 11 behavior parameters and 2 scene parameters exist

for each of the 20 vehicles.
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7.2 Application to importance sampling

Table 7.2 Parameters used for the optimization by algorithm 1. For z0 , z1 , z2 , kadd
and Nadd , the values given in table 5.5 are reused.

gcrit. N η kmax γ β1 β2

g
(RSS Dist,pre)
crit.

10 000 0.02 100 −1 0.2 0.3 for ϕbeh. ∩ ϕrel.
0.3 0.2 for ϕscene ∩ ϕrel.

of nφξ
= 300 steps. No relaxation phase is applied during the simulations.

When executing the optimization, the η quantile converges to γ1 = −1 after
two iterations. Two additional optimization iterations (see section 5.2.2.3)
are conducted afterwards to make sure a good approximation of the IS
distribution has been found. The resulting parameter values are denoted
by v∗

RSS Dist,pre.
The results of the optimization are visualized in figs. 7.8 and 7.9. Fig-

ures 7.8(c) and 7.9(b) ilustrate that the optimized distribution emphasizes
small bin numbers of the metric di+1 for Lsame,0 and Lsame,1. This is easily
understood since small bin values correspond to small distances between
consecutive vehicles and such small initial distances obviously render an
initial scene more dangerous. Besides, another strong shift in the optimized
distribution is observed for V0 for vehicle Lsame,0, as displayed in fig. 7.8(a).
Here, the distribution is shifted to low values for V0. This makes sense
since a low desired velocity V0 increases Lsame,0’s desire to drive slowly and
thereby to brake. Last but not least, a shift can be found in fig. 7.8(d). That
is, the velocity difference now has an emphasis on larger values. This causes
the sampling of more scenarios where Lsame,0 initially drives slower than
ego. Obviously, this will also cause a higher collision risk. In contrast, treact
in fig. 7.8(b) is barely modified. The reason is, that this parameter makes it
hard for Lsame,0 to react on actions of other vehicles. Therefore, this would
mainly induce a collision risk between Lsame,0 and Lsame,1. However, the
simulation7 is only interested in collisions between ego and its surrounding
vehicles. Consequently, no optimization of treact on this uninteresting colli-
sion takes place. In total, it becomes clear, that Lsame,0 seems to have a
stronger influence on criticality than Lsame,1 since the distribution shifts
are either pronounced much stronger (for di+1) or there are no significant
shifts for Lsame,1 at all (V0 and ∆vi+1). This was expected and gives again

7 to be more precise: the chosen metric g
(RSS Dist,pre)
crit.
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Figure 7.8 Marginals of ph and q for the optimized parameters of Lsame,0 (see fig. 5.2).
The distributions for the initial scene’s velocity difference ∆vi+1 and distance di+1
(between the ego vehicle and Lsame,0) are given by histograms since their distribution
p

(L)
metrics is jointly determined by a discrete SPN in the unskewed case. The bins for d

are chosen on the basis of quantiles and are not equidistantly distributed. Therefore,
only the bin numbers and not real distance values are plotted on the x-axis of fig. 7.8(c).
Small bin numbers correspond to small distance values. (a), (c) and (d) were already
published by Jesenski et al. [136]; © 2021 IEEE.
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Figure 7.9 Marginals of ph

(
φh

)
and q

(
φh

∣∣∣v∗
RSS Dist,pre

)
for the optimized parameters

of Lsame,1 (see fig. 5.2). Similar to fig. 7.8, ∆vi+1 and distance di+1 (both defined between
Lsame,0 and Lsame,1) are given by histograms. (b) was already published by Jesenski
et al. [136]; © 2021 IEEE.

confidence that the concept of relevant and irrelevant parts of a simulation
run is a sensible approach.

After having accomplished and evaluated the optimization, 40 000 simu-
lation runs are generated by the optimized distribution q

(
φh

∣∣v∗
RSS Dist,pre

)

and 330 000 scenarios by the original unskewed distribution ph

(
φh

)
. Fig-

ure 7.10 shows a histogram over the criticalities of these generated simula-
tion runs. As expected, the optimized distribution generates a much larger
fraction of critical scenarios than the unskewed distribution.
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Figure 7.10 Histogram of criticality values of the simulation runs. The blue curve
shows the dispensation of criticality values when sampling with the original unskewed
distribution ph

(
φh

)
. Obviously, most generated simulation runs are located at

g
(RSS Dist,pre)
crit. ≥ 0. As discussed in section 4.4.2, this corresponds to totally safe con-

ditions. However, when sampling by the optimized distribution q
(

φh

∣∣∣v∗
RSS Dist,pre

)

more critical scenarios are sampled. About 50 % of all runs even are located in the most
critical bin next to g

(RSS Dist,pre)
crit. = −1 which corresponds to a collision.
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Figure 7.11 Collision rates approximated by sampling with the original distribution
ph

(
φh

)
and by sampling with the optimized distribution q

(
φh

∣∣∣v∗
RSS Dist,pre

)
. 330 000

samples were drawn by the original unskewed distribution and 40 000 samples were
generated by using the optimized one. The image was already published by Jesenski
et al. [136]; © 2021 IEEE.
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Figure 7.11 proves that this higher amount of critical scenarios during
the sampling by q

(
φh

∣∣v∗
RSS Dist,pre

)
allows extracting more relevant infor-

mation with fewer simulation runs. It is shown, that the sampling by the
optimized distribution gives a good approximation of the collision rate
with significantly fewer samples. When comparing the standard deviations,
the blue curve of the unskewed distribution has the same accuracy at
sample 330 000 as the green curve at sample 2989. This corresponds to an
acceleration factor of

F
(RSS Dist,pre)
accel. ≈ 110.4. (7.22)

A collision rate of about

Pcrit
(
ξ ∈ εpre

)
≈ 2.92× 10−4. (7.23)

is obtained by the sampling from the optimized distribution.

7.3 Discussion/summary
In chapter 7, it was demonstrated how to modify the initial scene models
from chapter 6 in order to sample mainly critical scenes. This works
by conditioning on safety metrics. Among the tested safety metrics, the
set ϕmetrics,i,L = {di+1,∆vi+1} was found to work best. Consequently,
contribution 5 is satisfied.

In a further step, the developed critical scene model was combined with
IS. This allows directly optimizing the initial scenes, which was not possible
in chapter 5. It was shown, that this combination allows finding good
approximations of the occurrence rate Pcrit

(
ξ ∈ εpre

)
. This worked without

applying a relaxation phase which therefore becomes irrelevant. Hence,
contribution 8 is accomplished.

Up to now, only longitudinal metrics (g(TTC)
pair , g(invTTC)

pair , g(RSS Dist)
pair ,

{di+1,∆vi+1}) were incorporated into the initial scene models. In the
future, the initial scene models and the respective metrics should be im-
proved to consider lateral properties of a scene. Additionally, more advanced
behavior models and ADF models should be tested. The entire framework
should also be tested on more complicated roadway topologies like inter-
sections. Chapter 6 already includes the groundwork for doing so. Besides,
discriminative training methods (e.g. [5, 84]) might improve the accuracy
of the trained version of p(L)

metrics.
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8.1 Conclusion
This work addresses the methodological challenge of validating highly
automated driving functions of SAE levels 3 and higher by using simulations.
Therefore, the work starts by giving a formalized overview about the
validation tasks and simulation frameworks. Additionally, the current state
of the art regarding simulation-based validation is discussed (for both, see
chapter 3). The given overview is based on the 3-circles model [138].

As already shown in literature and recalled in section 2.3, one of the
pressing issues for ADF validation is efficiency. This problem makes it
impossible to validate ADFs by traditional methods like endurance runs
alone (see section 2.3). The problem of efficiency translates to the application
of simulations. When generating statistical evidence regarding an ADF’s
safety (e.g. collision rates), simulation runs are typically drawn statistically
by distributions which represent reality. Since in reality only very few of
the occurring scenarios will be relevant/critical for a good performing ADF,
also a very high number of simulation runs is required in order to find
enough relevant scenes to enable statistically stable simulation results.

It was shown in literature, that importance sampling (IS) can solve the
efficiency problem (comp. section 5.1). However, ADF simulations can
become quite complex which is challenging for IS since it scales very badly
with the dimension of a simulation run. Up to now, IS therefore was limited
to simulation runs with limited complexity or class.

As a first main part, this thesis therefore proposes a new procedure
which enhances importance sampling’s scalability by focusing the related
CE optimization on the parts of a simulation run which are relevant with
respect to the safety of the ADF-driven ego vehicle (see section 5.2). The
method works by distinguishing between such relevant and irrelevant parts
of a simulation run and additionally by categorizing the relevant parts
into causality groups (procedure given in section 5.2.1). In general this
method reduces the |v|-dimensional optimization, which is required for
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finding the optimal importance sampling distribution, to |C| optimizations
with dimensions

∣∣∣v(c)
∣∣∣. Remember that v is the set of parameters required

to parameterize the complete probability distribution which describes the
simulation runs, C is the set of causality groups and v(c) ⊂ v is the set of
parameters which fully describes the part of the probability distribution
belonging to causality group c ∈ C.

The proposed, scalable IS procedure was tested by applying it on a
simulation framework which simulates complex scenarios on a 6-lane high-
way section (see section 5.3). In order to consider a realistic complexity of
classes and scenarios, the initial scenes were directly drawn from a real-
world dataset. The dynamics of the simulations were determined by simple
parametric models (IDM and MOBIL). It could be shown that it is possible
to accelerate the determination of the occurrence rate of critical events for
an ADF-controlled vehicle in the middle lane of the highway scenario by fac-
tors of 107 and 496, respectively (see section 5.3.4). Note that the proposed
method was able to reduce the dimensions of the required CE optimization
from 2475 dimensions (which is not feasible) to 3 optimizations with 9
dimensions. Occurrence rates of Pcrit (ξ ∈ εRSS Dist) ≈ 5.98 × 10−5 and
Pcrit (ξ ∈ εRSS Beh) ≈ 2.79× 10−6 were obtained for the critical event sets
εRSS Dist and εRSS Beh. Since the initial scenes of the simulation framework
were drawn from a pure dataset, it was impossible to optimize them within
the CE approach, only the optimization of critical vehicle behavior could
thus be achieved. This caused the necessity of a relaxation phase during
this proof of concept of the method (see section 5.3.3) in order to decouple
the initial scenes from the ADF’s safety.

Additionally, the elementary effects method was shown to be efficient in
identifying the relevant parameters in ϕ which span the necessary causality
groups C (section 5.4). Such a method is necessary to make sure that on
the one hand no relevant parameters are overlooked (which may lead to
wrong results for the determined statistical evidence) and on the other
hand as few as possible parameters are included during the optimizations
(in order to keep the number of causality groups as well as their dimensions∣∣∣v(c)

∣∣∣ as small as possible).
As a second main part of the thesis, the current state of the art of initial

scene models (see chapter 6), which are a prerequisite for enabling the
optimization of the initial scenes and thereby for removing the unrealistic
relaxation phase, is improved by this work. For that, previous research
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by Wheeler et al. [119] which covered only straight highway sections (see
section 6.1.1) was extended to complex topologies like intersections. This
was illustrated by generating scenes for intersections included in the inD and
the KoPER datasets (see section 6.2). This extension could be achieved by
separately sampling so-called lane sections and by conditioning on related
lane sections during the lane-section specific sampling.

Furthermore, the use of Bayesian networks as proposed by Wheeler et al.
[119] scales badly with the network size. Consequently, BN-based sampling
becomes slow or even infeasible for large scene models and/or complex
topologies. As a solution, this work proposes using sum-product networks
as an alternative to BNs (see section 6.3). Multiple SPN learning algorithms
with different parameterizations were tested and compared to learning and
sampling by a BN. In this context, it could be shown that the fastest SPN
approach MSPNkm is about 36 times faster than a BN when sampling a
complete highway section. On an Intel Xeon E-2144G with 64 GB of RAM,
MSPNkm only needs about 2.44 s to sample a complete highway section,
whereas the respective BN needs about 87.30 s. Furthermore, SPNs and
BNs delivered a comparable modeling quality (see section 6.3.3).

As a third main part, the developed initial scene models were further
adapted to enable their coupling with IS. That shall allow the optimiza-
tion of the initial scenes when trying to find an optimal IS distribution,
which was not yet possible in chapter 5. In order to make this coupling
possible, the SPN-based scene generation approach was further modi-
fied in order to enable the sampling of predominantly critical scenes (see
section 7.1). This could be achieved by conditioning on pair-wise safety
metrics (for metrics see chapter 4). For that, the relevant distributions
p

(L)
cond. were trained discriminatively by MSPNkm. A comparison confirmed

that this discriminative learning approach yields better results than pure
generative learning (section 7.1.3). In addition, multiple pair-wise safety
metrics were tested for creating the critical scenes. Eventually, the metric
ϕmetrics,i,L = {di+1,∆vi+1} was found to achieve the best results since it
strongly shifts both ∆v and d between consecutive vehicles in a lane (see
section 7.1.4).

The resulting modified initial scene model was then incorporated into IS
(see section 7.2). It could be experimentally shown (on a modified version
of the simulation framework from section 5.3) that it is now possible to
directly optimize on the generation of critical initial scenes. As a result,
no relaxation phase was necessary anymore. Finally, a collision rate of
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Pcrit
(
ξ ∈ εpre

)
≈ 2.92×10−4 could be determined in a strongly accelerated

manner. Numerically, this application of IS accelerated the generation of the
statistical result by a factor of about 110. The related CE optimization could
be reduced from a dimension of 2340 to 7 optimizations with dimension 9.1

As a fourth main part, work on IS compatible metrics was executed.
The respective requirements for the metrics are discussed in section 4.2.
Firstly, it was shown that a physical RSS-based metric g(RSS Dist)

crit. can be
applied on IS (see sections 4.4.2 and 5.3.4.1). Secondly, a behavior-based
safety metric g(RSS Beh)

pair
(
p, t, φξ

)
was developed (see section 4.4.3). This

becomes necessary since traditional metrics only evaluate the physical
criticality between two vehicles but not the fact which vehicle causes it.
This is however a relevant question since an ADF cannot be blamed for an
accident which it could not prevent. It was shown that g(RSS Beh)

crit. fulfills IS’s
requirements for a safety metric. For that, it was applied on the proposed
IS framework (see section 5.3.4.2).

The simulations have shown that a large difference in the occurrence
probability between the respective sets εRSS Dist, εRSS Beh and εpre exists. It
is shown, that without IS, the tiny occurrence rate of εRSS Beh could not even
have been determined by the simulations in feasible time (see section 5.3.4.2).
Note that the occurrence rate of εpre is the highest, despite the fact that
the underlying metric only considers the criticality to the predecessor of the
ego vehicle. The reason for that is that the occurrence rates for εRSS Dist
and εRSS Beh were evaluated in chapter 5 without optimizing the initial
scenes. As already mentioned, that required the introduction of a relaxation
phase which artificially reduces risk since it ditches a lot of dangerous initial
scenes. In contrast, εpre was assessed in chapter 7 where a relaxation phase
was not necessary anymore due to the coupling of an initial scene model.

In summary, this work proposes a new scalable and efficient, IS-based
simulation framework for the validation of highly automated vehicles.
Additionally, compatible initial scene models and a compatible behavior-
based metric were investigated.

Finally, it must be noted that the developed framework is only applicable
if it is possible to neglect some parameters in ϕ in the optimization because
they are not relevant for the assessed ADF’s safety and/or if it is possible to
categorize the relevant parameters into causality groups. If, in contrast, all
of the parameters would have the same relevance for safety, the approach’s
1 Valid for an example scene with 20 vehicles. The scenes used by the framework and

generated by the initial scene models of course contain a variable number of vehicles.
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ability to reduce the dimension of the respective CE optimization decreases.
However, since the influence of a surrounding vehicle on the ADF-driven
ego vehicle decreases strongly when their separation increases or if another
vehicle is located between them, the method should be applicable in reality
(compare for example the decrease of relevance between Lsame,0 and Lsame,1
in section 7.2.3). Additionally, it is very important, that the used models’
parameters allow optimizing/emphasizing all relevant parts of the scenario
space. All used and potentially very complex models must be designed
accordingly. If this is not possible, the occurrence rates of the assessed event
set might be underestimated when only a limited number of simulation
runs is drawn for determining the statistical evidence. This is of course the
problem which also necessitated the introduction of the relaxation phase in
chapter 5 which was circumvented by improving the models. This proves,
that a thoughtful model design is absolutely essential.

8.2 Outlook
There are multiple open points left for analysis in future work.

1. The initial scene models should be improved by incorporating more
information about lateral properties and angular alignment of the
vehicles. This is of course also valid for the definition of the pair-wise
metrics used to generate predominantly critical initial scenes.

2. More sophisticated behavior and ADF models should be tested within
the framework. In an ideal case, the ADF-controlled ego vehicle is
represented by as much production software code and hardware as
possible.

3. IS should be tested on more complex road topologies. For that,
the proposed, extended version of the initial scene models, which
represent e.g. intersections, may be used.

4. With regard to the intersections and the high combinatorics of the
resulting lane sections, even larger datasets would be beneficial for
the training of the required SPNs/BNs for the extended initial scene
models.

5. Up to now, only one-dimensional causality groups (each causality
group only included one parameter) were examined. These one-
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8 Conclusion & outlook

dimensional causality groups might not be sufficient when simulating
more complex scenarios and behavior models. Additionally, it would
in general be interesting to find out if more complicated causality
groups can further improve the efficiency and accuracy of the devel-
oped, scalable IS approach. Hence, new types of causality groups
should be created and tested. In this relation, it would also be benefi-
cial to have a further look at sensitivity analysis in order to assess the
interactions between the relevant parameters. This assessment might
then be used to create causality groups of maximally interacting
parameters (Remember, that parameters in different causality groups
are assumed to be approximately independent of each other with
regard to the optimal importance sampling distribution).

194



Appendix





A Derivation of confidence level
for test driving

For the sake of completeness, this appendix shall present a derivation for
formula (2.3). Bayes’ rule implies

p(φr |φn , φi) = p(φi |φn , φr ) · p(φr |φn)
p(φi |φn) . (A.1)

Additionally, it is possible to marginalize

p(φi |φn) =
1ˆ

0

p(φi |φn , φr ) · p(φr |φn) dφr. (A.2)

Combining (A.1), (A.2) and using the a-priori distribution p(φr |φn) =
const. (constant uniform distribution) results in

p(φr |φn , φi) =
p(φi |φn , φr )´ 1

0 p(φi |φn , φr ) dφr

=
p(φi |φn , φr )(

φn

φi

)
· B(x = φn − φi + 1, y = φi + 1)

. (A.3)

Here, B(x, y) is Euler’s beta function. By using the identity ([17], p. 1114)

B(x, y) = (x− 1)!(y − 1)!
(x+ y − 1)! , (A.4)

it can be shown that

p(φr |φn , φi) = (φn + 1) · p(φi |φn , φr ). (A.5)
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By applying (2.1) and (A.5),

C (R|φn , φi) =
1ˆ

R

p(φr |φn , φi) dφr

= 1−
(
φn + 1
φi

)
· (φn + 1− φi) ·

R̂

0

φ
φn −φi

r (1− φr )φi dφr (A.6)

is obtained. With the identity

|w|∑

j=0

(
s

j

)
pj(1− p)s−j = (s− w)

(
s

w

)
·

1−pˆ

0

ts−w−1 · (1− t)wdt, (A.7)

(A.6) changes to

C (R|φn , φi) = 1−
|φi |∑

j=0

(
φn + 1
j

)
(1−R)jRφn +1−j . (A.8)

When, in the best case, φi = 0 failures happen during the test run, this
can be simplified to

C (R|φn , 0) = 1−Rφn +1. (A.9)

Therefore, the number of necessary kilometers can be determined by

φn =
ln(1− C (R|φn , 0))

ln(R) − 1 ≈ ln(1− C (R|φn , 0))
ln(R) . (A.10)
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B Datasets

B.1 Ko-PER dataset

−50 0 50 100 150

x in m

−150

−100

−50

0

50

y
in

m

track 0

track 1

track 2

track 3

Figure B.1 Digital map of the KoPER intersection in Aschaffenburg as provided in the
dataset.

Strigel et al. [99] introduced the KoPER dataset in 2014. The dataset is
accessible for free and provides 6 min 28 s of manually labeled object-data in
an intersection which is located in the city of Aschaffenburg, Germany. The
intersection was observed by laserscanners and video cameras which are
installed at infrastructure components. The sensors detect incoming traffic,
but have a very limited field of view on vehicles leaving the intersection. The
data provide a time resolution of 12.5 Hz and include the position, width,
length, orientation angle and classification of the vehicles and pedestrians
moving through the intersection. A digital model of the intersection is also
provided (see fig. B.1). There are four driveways into the intersection which
shall be denoted as track 0 to track 3. The majority of vehicles is driving
from track 0 to track 3 and vice versa. The traffic flow is controlled by
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(a) a = 1 (b) a = 2

(c) a = 3 (d) a = 4

Figure B.2 The blue dashed lines in the images show where it is allowed to drive
simultaneously. Sub-figures (a), (b), (c) and (d) give the lanes for the different traffic
light phases. The images are based on figure 11 by Jesenski et al. [132]; © 2019 IEEE.

traffic lights which can switch between four different traffic light phases a.
The effects of the traffic light phases are illustrated in fig. B.2. The traffic
rules allow the vehicles to drive on the blue dashed lane sections. Note that
pedestrians are filtered from the KoPER data before using the dataset in
this work.

B.2 highD dataset
The highD dataset contains the movement of road users at straight sections
of the German Autobahn. Krajewski et al. [61] published the dataset in
2018. The data were taken at six different locations on highways around
Cologne in the years 2017 and 2018. The recordings have a total length
of 16.5 h and were taken by a camera mounted to a drone which was
flying over the respective highway section. Therefore, the data are free
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Figure B.3 A typical scene taken from the highD dataset at locationId 1. The rectangles
represent bounding boxes of the vehicle objects which were preprocessed by computer
vision and tracking algorithms. Image originally published by Jesenski et al. [135];
© 2020 IEEE.

of occlusions caused by traffic participants. The length of the recorded
highway sections is between 400 to 420 m. The data were taken at a 4k
resolution at 25 Hz. The recorded raw data were already processed by
utilizing tracking and computer vision algorithms. Thus, processed object
lists annotated with the properties of the driven tracks are ready for usage.
A typical time snapshot (scene) in the dataset is illustrated in fig. B.3. As
already mentioned, the data were taken at different highway locations with
different road topologies. Since for the purpose of this thesis data with the
same topology are required, the location with the longest measurement
time was selected and the rest of the data were neglected. Consequently
highD’s locationId 1, which made up about 11 h of the data, was used in
this work. The global coordinates given in the dataset were transformed
into lane related Frenet coordinates (compare section 6.2.2.1). Afterwards,
the data were discretized according to section 6.3.1.

B.3 inD dataset
In 2019, Bock et al. [14] published the inD dataset. It contains trajectories of
vehicles at four intersections in the city of Aachen, Germany. The recorded
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Figure B.4 A typical scene taken from inD records of Neuköllner Straße, Aachen. The
rectangles represent bounding boxes of vehicles. The blue dots show the locations of
pedestrians.

data have a length of about 10 h. The data were recorded by a camera
mounted to a drone which was positioned at altitudes up to 100 m over
the respective intersection. The used camera has a 4k resolution and takes
images at 25 Hz. The recorded intersections have a size between 80 m×40 m
and 140 m× 70 m. Note that the intersections are unsignalized and have
a maximum allowed speed of 50 km

h . Pedestrians, cyclists, cars, trucks, as
well as buses were recorded. The data were already pre-processed by the
use of computer vision and tracking algorithms. Therefore, the dataset
delivers simple-to-use and already classified objects with referenced tracks.
In the context of this work, only the data recorded at Neuköllner Straße,
Aachen were used. The reason is that this work focuses on vehicles and
neglects pedestrians. Neuköllner Straße contains comparatively few VRUs
in comparison to the total amount of included traffic participants. At
Neuköllner Straße, a double-laned priority road intersects with a single-
laned side road as shown in the exemplary scene in fig. B.4. The four
entrances into the intersection are label by track 1 to track 4. 1.83 h of data
were recorded at Neuköllner Straße. Only objects classified as car, bus or
truck were used within this work. The rest of the objects were filtered out.
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