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A B S T R A C T

In machining, high temperatures and strain rates impact the flow stress of the workpiece material, making it 
essential to understand the materials behaviour in these process conditions for meaningful finite element analysis 
(FEA) of the cutting process. The Johnson-Cook constitutive model, despite being the most widely applied, is 
reported to struggle in capturing the material behaviour outside of the reference conditions it was calibrated on. 
However determining these parameters in conventional material tests is challenging. To solve this issue, this 
study proposes a grey-box approach which aims to increase the accuracy of process force prediction of FEA, 
employing a Johnson-Cook model determined by experiments conducted on a Split-Hopkins Pressure Bar and 
compression tests at elevated temperatures on a Gleeble 3800c for AISI 1045, over a variety of cutting param
eters. In total 110 cutting experiments and their corresponding simulations were carried out in a fully factorial 
experimental design with eleven cutting speeds and ten uncut chip thicknesses. Succeeding the white-box model, 
a black box model is trained to capture the non-linear behaviour between the simulation and the cutting ex
periments. Among the tested algorithms, XGBoost and Support Vector Regression outperformed Random Forests 
and Neural Network for predicting cutting force and feed force. The proposed grey-box approach showed an 
improved capability of predicting cutting force and feed force, reducing the mean absolute error and mean 
squared error compared to the white-box model by 97.9 % and 99.9 % for cutting force and by 94.9 % and 99.7 % 
for feed force, respectively. The grey-box model achieved a mean error of 1.3 % with a standard deviation of 0.1 
in process force prediction.

1. Introduction

Machining contributes to 5 % of the GDP of developed countries and 
translates into yearly $250B in the U.S [1]. . In order to increase the 
productivity and sustainability of the machining processes, finite 
element analysis (FEA) has become an increasingly important tool due 
to the ever-increasing performance of computers and the resulting in
crease in simulation results accuracy and the possibility to integrate 
more features e.g. for tool wear [2]. Examples are the identification of 
improved process parameters and improved tool geometries [3] and 
thus contributed to reducing manufacturing costs [4]. FEA helped 

significantly to understand the complex physical and mechanical in
teractions between the tool, the machined material and the chip [5]. As 
the complexity of machining in the simulation is time-consuming and 
cost-intensive, for example in milling, the machining case is usually 
simplified to the orthogonal cut [6]. With this approach, complex 
machining operations can be modelled in 2D which leads to a significant 
reduction of required computational resources compared to 3D simu
lations. Thus, orthogonal cutting is the basis of many studies conducted 
on simulating milling [7], drilling [5] and lathe [8]. To setup the FEA 
different forms of meshing are used which includes Eulerian,

Lagrangian and Arbitrary Lagrangian-Eulerian (ALE). Most FE 
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software systems use a 2D Lagrangian mesh formulation, which requires 
constant remeshing [9]. The tool is commonly modelled as a rigid body 
[10] which results in an efficient simulation since the nodes of the tool 
are not displaced [11]. Since machining is a highly nonlinear, coupled 
thermo-mechanical dynamic process, the result of an FEA simulation 
depends mainly on the friction, mechanical and thermal loads, chip 
formation and material flow models [6]. Multiple approaches exist in 
some category, whereby the appropriate model must be selected 
depending on the application. Therefore, expertise is required to apply 
the right models. Regarding wear e.g. the Usui model [12] is regularly 
used to predict the wear rate, however different models such as Archard 
or Arrhenius-style equations exist that may be used depending on the 
prevailing wear mechanism. As tool wear is mainly influenced by the 
workpiece material behaviour, material modelling also is of great sig
nificance. The introduction of constitutive equations, which are a 
mathematical representation of the flow behaviour of materials [13] are 
a vital part to achieve meaningful machining simulations [14,15]. As a 
result, material characterization for determination of material models 
received increasing attention [16]. Constitutive models can be divided 
into three categories which are empirical e.g. Johnson Cook (J-C) and 
Zerilli-Armstrong (Z-A) [17], phenomenological and physical models e. 
g. mechanical threshold stress and Bammann-Chiesa-Johnson [18]. The 
main flow stress models for AISI 1045 are J-C, Z-A, Oxley, Maekawa and 
El-Magd constitutive models [19]. Additional models such as the Bodner 
Partom model which was found to model the behaviour of a rate sen
sitive metal for different tensile straining histories [20] were developed. 
However, the focus of this study lies on the J-C constitutive model due to 
their proven accuracy and simple forms [18].

The J-C model [21] is the most widespread to model machining 
operations and relates flow stress with strain, strain-rate and tempera
ture [22]. It was successfully applied in multiple studies regarding linear 
friction welding processes [23], selective laser melting [24] and 
machining [25,26]. Eq. (1) explains the J-C model where σ is the flow 
stress, εp is the effective plastic strain, ε̇p is the plastic strain rate, ε̇0 is the 
reference strain rate while T, Tm and T0 are the test temperature, the 
melting point of the material and the reference temperature, respec
tively [27]. As a result A, B, C, n and m are the material-dependent 
parameters [22] where A is the initial yield stress at reference strain 
rate and temperature, B is the hardening modulus, C is the strain rate 
dependency coefficient, n is the work hardening exponent and m is the 
thermal softening component [28]. From the equation it can be derived 
that the J-C model contains three parts which are the strain hardening, 
strain rate and thermal softening [29]. To obtain meaningful parameters 
the material should be tested at conditions which occur in the actual 
machining process. During machining high strain rates of up to 106 s− 1 

and temperatures of up to 1200◦C occur which are difficult to obtain 
through conventional tensile or compression test [15]. These parameters 
are difficult to reach in material testing experiments. This explains why 
several researchers utilized a Split Hopkins Pressure Bar (SHPB) that, 
depending on the setup, can reach strain rates of 105 − 106 s− 1. 

σ = (A + Bεn
p)

[

1+Cln
(

ε̇p

ε̇0

)][

1 −

(
T − T0

Tm − T0

)m ]

(1) 

In general, there are two approaches to determine the parameters of 
the J-C material models for the modelling of machining operations [30]. 
The first approach is to conduct material testing experiments such as 
SHPB tests, tensile and compression tests as conducted by [31]. In the 
latter case, quasi-static experiments at low strain rates and different 
temperatures are performed. Subsequently, mathematical methods are 

applied to determine the J-C parameters [32]. As a second approach, the 
J-C parameters can be determined inversely by matching machining 
experiments to the simulation model while changing the parameters to 
iteratively achieve a better fitting. Methods such as artificial intelligence 
and different optimization algorithms e.g. particle swarm optimization 
[22] were applied to solve the multi-dimensional optimization problem. 
However, the second approach comes with the downside of a 
non-uniqueness of the J-C parameter set and usually only applies to a 
limited parameter range.

Besides its simplicity, some researchers criticize the J-C model. As 
pointed out by [33], at high temperatures and non-linear flow stress 
behaviour connections between i.e. strain, strain rate and temperature 
exist which is not modelled by Eq. (1). That is why several researchers 
focused on optimizing the J-C model to improve the prediction of the 
flow stress behaviour and focused on a different constitutive model. 
With the goal of providing adjusted constitutive models for specific 
materials and processes, modified J-C models were developed.

Despite some criticism, the J-C model was found to model material 
flow better than the Z-A model at strain rates up to 5000 s− 1 and tem
peratures up to 1000◦C [19].

In addition, an inverse determination of J-C constants for AISI 1045 
was carried out and validated through a comparison of experimental and 
simulated cutting [34]. Therefore, it can be concluded that the original 
Johnson-Cook model is well suited to describe the flow behaviour of 
AISI 1045. Even though many researchers focused on the determination 
of suitable material models for meaningful cutting simulations, dis
crepancies between measured and simulated cutting conditions still 
exist and are obvious when applying the model to a wide range of cut
ting parameters such as cutting depth and velocity. To overcome this 
shortcoming and to improve the prediction capabilities of mechanical 
loads in FEA, this study focuses on the determination of a grey-box 
model to address those discrepancies. The applied methods to build 
this model are described in chapter 2.

2. Experimental setups

This study utilizes normalized AISI 1045. With respect to DIN EN ISO 
683–1 the data in Table 1 has been collected. Furthermore, the grain size 
is greater or equal to 5 µm with respect to DIN EN ISO 643 and the 
Brinell hardness ranges from 178 to 180 HBW with respect to DIN EN 
ISO 6506.

2.1. Experimental determination of J-C parameters

For the experimental determination of the J-C parameters two setups 
where utilized. To determine the constant C a Split-Hopkins-Pressure- 
Bar (SHPB) was used. Since its introduction of SHPB in the early twen
tieth century, it is widely applied for testing materials at high strain rates 
[35]. While contactless methods of material testing are available, the 
SHPB has stood the test of time and continues to be widely used [36]. 
Basically, the test setup consists of a projectile, an input rod, an output 
rod and the material sample, which are all aligned concentrically to each 
other. The rods should have a length-to-diameter ratio of at least l/D 
> 20 in order to ensure one-dimensional wave propagation [36]. As a 
general practice, ratios of l/D > 100 can be found [37]. The material 
sample is positioned between the input and output bars. A strain gauge is 
attached to the centre of both rods. The projectile is accelerated using a 
pulse generator, which is usually pneumatically operated, and hits the 
input rod. When the projectile hits the input rod, a longitudinal pressure 
wave is generated in both components, which propagates axially. As the 

Table 1 
Chemical composition of normalized AISI 1045 in accordance with DIN EN ISO 683–1.

C Si Mn P S Cr Mo Ni Al Cu

0.431 0.233 0.653 0.011 0.024 0.124 0.005 0.018 0.029 0.029
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projectile is considerably shorter than the rods, the pressure wave is 
initially reflected as a tensile wave at the free end of the projectile. 
During the time that the projectile is in contact with the input rod, a 
pulse is initiated which is recorded using the strain gauge. Once the 
wave in the input rod reaches the interface with the material sample, the 
impedance difference, partial reflection and transmission occurs. The 
transmitted pulse is also recorded using a strain gauge on the output rod. 

The strain measurements are then used to calculate the strain and strain 
rate as well as the stress of the sample [38].

Assuming that the forces at the contact points between the specimen 
and the rods are equal and taking into account the superposition of the 
incoming and reflected wave, the strain rate and the stress of the spec
imen are obtained as a function of the reflected and transmitted rod 
strain εr and εa respectively. The strain φP results from the temporal 

Fig. 1. Schematic overview of the Split Hopkinson Pressure Bar utilized at ISF.

Fig. 2. Gleeble 3800c apparatus (top) and experimental design for different temperature conditions (bottom).
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integration of the strain rate
The following equations can thus be given for the stress, strain rate 

and strain [38]: 

σP =
ArodErod

AP
εa (2) 

φ̇P =
2cs

lP
εr (3) 

φP =
2cs

lP

∫ t

0
εr (4) 

The SHPB test rig used to determine parameter C has a length of 
approx. 8 m, whereby the impulse is initiated by a precision pressure 
regulator in combination with an accelerated projectile. The input and 
output rods used are made of X37CrMoV5–1 hot-work tool steel and 
have a ratio of l/D = 107. The cylindrical test specimens diameter and 
length is 6 mm and 9 mm respectively with a maximum deviation of 
0.02 mm. In order to ensure a valid measurement of the flow stress 
behaviour, the samples were ground plane-parallel and measured be
forehand. Due to the high wave propagation speed of c = 5231 m/s, an 
HBM Gen3i data encoder with a sampling rate of f = 1 MHz was used. 
Within the work presented, the strain rates, indirectly adjusted by 
pressures of ρ = 1.5 … 3.0 bar, are investigated at room temperature. At 
least one test repetition was carried out per pressure level to statistically 
validate the results. The above equations were used to evaluate the 
recorded pulses from the strain gauges, allowing a stress-strain diagram 

and the strain rate to be determined. The test setup is shown in Fig. 1.
For determination of the thermal softening component m quasi static 

experiments have to be conducted at room temperature and at high 
temperatures. To achieve this, compression experiments are carried out 
with a Gleeble 3800c at temperatures of 25◦C to 1000◦C with an interval 
of 167◦C. The strain rate is kept at a minimum of 4*10− 3 s− 1. Test 
specimens are in a cylindrical shape with the length of 15 mm and 
diameter of 10 mm. A common tolerance for specimens is a maximum 
deviation of 0.02 mm. The front face’s centre roughness value Ra is 
0.4 µm while the lateral surface area’s Ra is 0.8 µm. The setup is shown 
in Fig. 2 (top). The experimental procedure is as follows: First the 
specimens were heated to target temperature with an increase in tem
perature of 10◦C s− 1. After the target temperature is reached, the heating 
phase is followed by a delay of 120 s which ensures a uniform temper
ature in the specimen [39].

Thereafter, the compression tests were performed during which the 
load and positional displacement are recorded.

Finally, the specimens are rapidly cooled to keep the grain structure. 
This experimental procedure is shown in Fig. 2 (bottom).

To analyse the microstructural evolution of AISI 1045 steel from its 
initial state to its compressed state at elevated temperatures of 833◦C, a 
metallographic analysis was performed.

For sample preparation, each sample was sectioned at the centre, 
embedded in epoxy resin, and then subjected to subsequent grinding and 
polishing steps. Grinding was performed using silicon carbide (SiC) 
abrasive papers, from coarse (80 µm) to fine (2500 µm) grain papers. 
Polishing steps followed with finer grades, from 6 µm to 1 µm, to achieve 

100 µm

a) Magnification: x1000

Ferrite

Pearlite

100 µm

b) Magnification: x1000

Fig. 3. Grain structure of the AISI 1045 at 25◦C (a) and after heating to 1000◦C 
and compression (b).

Fig. 4. Exemplary clamping of a specimen on a Wenzel LH 87 (top) and 
resulting measurement of diameter (bottom).
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a mirror-like finish. After each step, samples were cleaned with iso
propylene and finally cleaned with ultrasonic isopropylene bath to 
remove any remaining contaminants. A final etching step with 5 % Nital 
was applied which was used to reveal the microstructural features 
characteristic of carbon steels. Microscopy was conducted using a Key
ence VHX 650, with images captured at 1000x magnification using a 
200x lens. Fig. 3 (top) illustrates the original grain boundaries and 
distinct

ferrite and pearlite colonies, whereas Fig. 3 (bottom) shows the 
microstructure that emerged following heating to 1000◦C before 
compression. The darker structures in the images indicate regions of 
pearlite, characterized by alternating layers of ferrite. Compression at 

elevated temperatures is expected to have induced grain elongation 
along the compression axis, enhancing anisotropic properties in the 
material.

2.2. Specimen preparation

To account for manufacturing induced irregularities of the specimen 
sizes, they were measured by a coordinate measurement machine 
(CMM) LH 87 equipped with a PH10M plus head and a SM25–2 scanning 
module by Renishaw. To evaluate the dimensions the length and 
diameter were measured for all specimens used in the compression tests. 
This way the true stress σt and true strain εt according to Eq. (5) and 

10 mm

dynamometer

workpiece

3 mm

jaws

coated cutting tool

z

x

Fig. 5. Experimental setup for measurement of cutting and feed forces (top) and raw time series of measured forces (bottom).
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Eq. (6), where L0 is the intial length and A0 is the initial area can be 
calculated based on the measured load F and displacement ΔL whilst 
adjusting for the real dimensions at an accuracy down to the sub µm 
range. 

εt = ln(1+
− ΔL
L0

) (5) 

σt =
F
A0

eεt (6) 

Prior to the measurements the CMM was referenced and the utilized 
ruby touch probe was calibrated on a ceramic reference sphere artefact. 
The setup is shown in Fig. 4.

2.3. Experimental validation of process forces determined by means of 
FEA

In order to validate the determined J-C parameters, machining ex
periments are carried out during which the cutting forces and feed forces 
are measured via a 9129 A dynamometer by Kistler. Subsequently these 
forces are compared with those predicted by FEA employing the deter
mined J-C parameters. TiN/AlTiN coated cutting tools provided by Paul 
Horn GmbH were utilized for orthogonal turning with an unprofiled 
cutting edge on an EMAG VLC 250 vertical lathe machine. In total ten 
different uncut chip thicknesses between 0.06 mm and 0.15 mm with an 
interval of 0.01 mm paired with eleven cutting speeds between 100 m/ 
min and 200 m/min with an interval of 10 m/min were recorded. The 
diameter of the workpiece is 118 mm which reduces the error made by 
the assumption of orthogonal cutting for comparison with the simula
tion. The experimental setup for measurement of forces is depicted in 
Fig. 5. Ploughing can be neglected, as the ratio of uncut chip thickness to 
cutting edge radius is 3, which is one order of magnitude larger than 
reported for AISI1045 [40].

By leveraging a 24 V output from the control unit, which was toggled 
between HIGH and LOW states through G-code commands within a 
programmed loop to trigger starting and stopping of force measure
ments, a fully automated measurement chain was established. A 
producer-consumer architecture implemented in LabVIEW enabled the 
automated logging of force measurements into uniquely labeled files 
corresponding to each parameter variation. These files were subse
quently processed using a Python algorithm, which extracted the force 
data into a structured table. The entire cutting process was completed in 
under three minutes. Thanks to modern data acquisition techniques, 
both the collection and post-processing of experimental data were 
conducted with high efficiency providing applicability of the proposed 
grey-box approach. Tool wear was not taken into account because the 
overall cutting time was short. In this stage of the study no further input 
parameters were considered. However, the application of this approach 
to different tool geometries is possible by utilizing well known equations 

to estimate the dependency of tool geometry variations to omit the ne
cessity of generating a new dataset for each tool geometry while keeping 
the workpiece material constant. Although the presented framework is 
shown by utilizing AISI1045, the approach can be followed for other 
workpiece materials as well, given that they are suitable for being 
described with the JC-model.

Each parameter combination from the experiments mentioned above 
is simulated within the FEA software package DEFORM-2D (v. 13.1). A 
Lagrangian formulation with remeshing is adopted. Remeshing triggers 
were the interference depth of 0.0015 mm. Prior to the simulations a 
mesh sensitivity analysis was conducted which resulted in meshing the 
workpiece with 5000 elements with an element size of 6.6 µm. A hybrid 
friction model is implemented where a shear friction model with m = 1 
is chosen for the sticking zone while a coulomb friction model is 
implemented in the sliding region with µ = 0.25 [41]. Each cutting 
simulation was performed until the force steady-state was reached. Mesh 
windows for a graded mesh were utilized to improve the efficiency of the 
simulation. The inner mesh window has a length and height of 0.5 mm 
and 0.3 mm respectively. The size ratio of elements from inner to the 
middle mesh window and the middle to the outer mesh window is two. 
These windows were attached to the tool and thus resulted in a dynamic 
meshing of the workpiece in the are of interest over the entire simula
tion. A schematic of the setup is shown in Fig. 6. The rake angle and 
clearance angle of the tool is 5◦ and 7◦ respectively. The cutting edge 

Fig. 6. Schematic of the chip formation model.

Table 2 
FEA model input parameters for AISI1045.

Parameter Value Ref.

Youngs modulus [GPa] E(T) [42]
Density [kgm− 3] 7850 ​
Poisson ratio [] 0.3 ​
Thermal conductivity [Wm− 1K.− 1] λ(T) [42]
Specific heat capacity [J kg− 1K− 1] cp(T) [42]

Table 3 
FEA model input parameters for carbide.

Parameter Value Ref.

Thermal conductivity [Wm− 1K.− 1] λ(T) [43]
Specific heat capacity [J kg− 1K− 1] cp(T) [43]

Table 4 
FEA model input parameters for AlTiN coating.

Parameter Value Ref.

Thermal conductivity [Wm− 1K.− 1] 4.64 + 0.00054 T [44]
Specific heat [J kg− 1K− 1] cp(T) [45]
Coating thickness [µm] 3 ​
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radius is determined as 20 µm. These values were determined by mea
surements conducted on an Alicona G5 with 10x magnification.

The material data of AISI1045, carbide and the AlTiN coating is listed 
in Table 2, Table 3 and Table 4 respectively.

A 20◦C thermal boundary condition was applied to a selected group 
of nodes of the workpiece and tool as depicted in Fig. 6 by the red line.

2.4. Grey-box modelling of process forces

Though advanced machinery and test setups to determine the 
Johnson-Cook parameters were utilized, it becomes obvious that despite 
being a well-recognized constitutive model, the force prediction via FEA 
is still prone to errors. Besides the inaccuracy of the J-C model another 
contributing effect is the modelling of friction which has an effect on the 
heat generated at the contact between the workpiece, especially the chip 
and the tool and thus interrelations between the thermal softening term 
of Eq. (1) and the friction model exist. Unfortunately friction in cutting is 
not completely understood [46]. To overcome these interdependencies, 
the authors utilize a grey-box modelling approach to enhance the ca
pabilities of FEA to accurately predict the mechanical loads during 
cutting.

As stated in [47], grey-box models are a composition of 
theory-driven (white-box) models fT and data-driven (black-box) 
models fD. Grey-box models can be classified as serial models where the 
output of fT is the input of fD or vice versa or as parallel models [48]. In 
order to fulfil the task of predicting accurate forces, the serial approach 
made up of an initial theory-driven model succeeded by a data-driven 
model can be applied. In this architecture, the succeeding data-driven 
model applies minor adjustments to the theory-driven model’s output 
which essentially comes down to a regression approach. Based on the 
mathematical explanation for the case of regression described in [47], 
an output y∈Y is predicted based on the input vector x∈X through the 
function G that takes the vector x as well as the functions fT and fD as 
an argument. This model can be described according to Eq. (7). 

y(x) = G(fT , fD, x) (7) 

When considering the chosen structure of the grey-box model the 
function G essentially comes down to a sum operator. Concerning our 
application, fT(x) is the cutting/feed force output of the FEA model, y 
is the cutting/feed force determined via the experiments, x is the vector 
describing the cutting velocity and the cutting depth and fD(x) is the 
prediction of a data driven model employing artificial intelligence. 
Therefore, the training goal to enhance the force prediction with this 
grey-box architecture can be expressed with Eq. (8), where the loss 
function L is minimized through adjusting the trainable parameters of 
the black-box model Ө. A common loss function in regression is the 
mean squared error (MSE) across training samples n in Eq. (9), where y 
is the measured force and ŷ is the sum of the predicted forces of the 
black-box and white-box model. 

min
Ө

L(y
(
vc, ap

)
, (fT

(
vc, ap

)
+ fD(vc, ap,Ө))) (8) 

L(y, ŷ) =
1
n
∑n

i=1
(yi − ŷi)

2 (9) 

This grey-box model is inspired by two specific facts. Firstly, a 
limited amount of training data is necessary to achieve meaningful 
predictions, since basic knowledge of the materials behaviour is 
included in the white-box model. Furthermore, the complexity of the 
error defined by subtracting y and fT is assumed to be reduced. Conse
quently, it is still beneficial to determine the J-C parameters and train a 
grey-box model over a sole black-box model, since basic explainability is 
obtained.

Besides choosing a suitable grey-box architecture, the artificial in
telligence based model fD for the regression has to be selected. Since one 
underlying idea of grey-box models is reducing the required training 

dataset size, the focus is put towards models which are known to work 
well with small datasets. In total, four models for fT are studied which 
are random forest regression, support vector regression, extreme 
gradient boosting XGBoost and Neural Networks which have been uti
lized in previous studies by the authors on small datasets within the 
domain of cutting force prediction [49].

As a supervised machine learning algorithm proposed by Breimann 
[50], random forests are a scheme for building a predictor by a set of 
decision trees and is suitable for regression and classification [51]. 
Samples are drawn based on the bagging algorithm [50]. Since each 
tree’s processing is done independently and is based on unique subsets 
of the training data, the algorithm has a limited risk of overfitting [52]. 
Random forest is considered a black-box model since it is hard to get 
insights from the prediction rule [53].

Support vector regression is a machine learning algorithm which 
offers robustness against outliers and is suitable for complex data. For 
the case of the accumulated dataset D = {(xi, yi)}

n
i=1 ∈R2xR each 

training tuple is mapped into a feature space by the nonlinear function Ф 
where the linear function f is defined in accordance to Eq. (10) [54] with 
φ(x) being a point in the feature space. Then w and b are determined by 
optimizing Eq. (11). SVR ensures that a function f(x) with ε precision 
exists for the entire training dataset, where ε being equal to zero rep
resents optimum regression [55]. Slack variables ξi, ξ∗i are introduced to 
cope with infeasible constraints of the optimization problem while J 
> 0 defines the balance between the smoothness of f and the extent to 
which deviations beyond ε are accepted [56]. 

f(x) = wTφ(x)+ b ,w ∈ R2andb ∈ R (10) 

min
1
2
‖w‖

2
+ J
∑n

i=1
(ξi + ξ∗i )

subject to

⎧
⎪⎪⎨

⎪⎪⎩

yi − wTφ(x) − b ≤ ε + ξi

wTφ(x) + b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

(11) 

Extreme Gradient Boosting (XGBoost) is a supervised machine 
learning system for tree boosting, where scalability is the main driver 
behind its success in addition to a ten times lower runtime compared to 
previous algorithms [57]. According to the nomenclature used in [58], 
an objective function which is the sum of a loss function L and a regu
larization term Ω(fk) can be written as Eq. (12), where K represents the 
number of trees. With the number of leaves T, the score of the leave node 
w the regularization term can be written as Eq. (13). 

obj =
∑n

i=1
L(yi, ŷi)+

∑K

k=1
Ω(fk) (12) 

Ω(fk) = γT+
1
2

λ
∑T

j=1
w2

j (13) 

To guarantee an efficient use of XGBoost, the hyperparameters 
n_estimators, max_depth and learning_rate were systematically varied 
through a grid search with the best performing model being selected for 
evaluation. XGBoost is especially valuable for its ability to model non- 
linear interactions between input parameters while at the same time 
offering interpretability through feature importance metrics. In this 
context, it allows for physical insights into how parameters such as 
cutting velocity and uncut chip thickness influence the simulations error 
of cutting/feed force, offering understanding beyond prediction 
accuracy.

As a last approach, a Feed Forward Neural Network (FFNN) is 
implemented. The basis of FFNN are perceptrons, which are connected 
to each other [49]. During training weights wi with i∈[1,n] are updated 
via backpropagation [59]. Non-linear behaviour is introduced via acti
vation functions such as Rectified Linear Units (ReLU) in Eq. (14). When 
considering one neuron with input xi and the bias b, the output y is 
calculated according to Eq. (15). 
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y = ReLU

(
∑n

i=1
wixi + b

)

(14) 

withReLU(x) =
{

x,&x ≥ 0
0,&x < 0 (15) 

The chosen network structure consists of an input layer with two 
neurons. One is used for the cutting velocity and the other for the uncut 
chip thickness. Two hidden layers and an output layer with one neuron 
are trained. Only two hidden layers were chosen to keep the training 
parameters at a manageable range considering the size of the dataset. As 
a pre-processing step, the obtained data was standardized. Despite 
choosing a lean FFNN for a reduction of trainable features, the risk of 
overfitting is a valid concern for the model. This was countered by not 
only restricting the model complexity but also by using early stopping 
based on validation loss. To gain further insights in the models perfor
mance, a sobel sensitivity analysis is conducted, to quantify the effect of 
input features on the output of the neural network.In addition, 10 fold 
cross validation was performed, which is a resampling technique used to 
evaluate the generalization ability of the models. Averaging the per
formance across all folds enables the estimation of the models accuracy. 

Bootstrapping with 1000 iterations is introduced to all models to esti
mate the uncertainty of the applied metrics by sampling with replace
ment from the dataset.

When selecting AI approaches for regression tasks, it is argued that 
linear or polynomial regression models may outperform more complex 
methods when working with smaller datasets. For this reason, both 
linear regression and polynomial regression models of degree 2 and 4 
were considered for a comparison in this study. While polynomial 
regression offers a more interpretable and theoretically grounded 
approach, higher-order models still require a substantial number of 
training data points. As highlighted in Eq. (16), the number of trainable 
features n depends on the degree of the polynomial g and the dimension 
of the input parameters d. 

n =

(
d + g

g

)

(16) 

To ensure robust generalization, it is recommended that the size of 
the training dataset significantly exceed the number of trainable pa
rameters. Under this point of view, the practical advantage of poly
nomial regression especially at higher orders diminishes when 
compared to the AI models presented in this work.

3. Results and discussion

3.1. Determined J-C Parameters

The stress strain curves resulting from compression tests are shown 
in Fig. 7 (top) and the stress-strain curves of the SHPB tests are shown in 
Fig. 7 (bottom).

When an experiment is performed at room temperature and at 
reference strain rate, the second and the third terms of Eq. (1) become 1 
resulting in Eq. (17) which can be transferred into Eq. (18). 

σ = (A + Bεn
p) (17) 

ln(σ − A) = lnB + nlnεp (18) 

The yield stress A can directly be obtained from the experimental 
results at reference temperature. This leaves two unknown parameters B 
and n from Eq. (4). This mathematical problem can be approached by 
linear regression when calculating ln(σ - A) over lnεp where n becomes 
the slope and B the offset [60]. Here, the least squares method is applied 
which minimizes the sum of squared residuals for each data point. Then 
Eq. (19) and Eq. (20) result for calculating n and B respectively. 

n =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2 (19) 

B = y − nx (20) 

Without considering thermal softening and therefore neglecting the 
stress strain curves from compression testing under temperatures un
equal to room temperatures, Eq. (1) results in Eq. (21) which can be 
transferred to Eq. (22). By now, applying another linear regression the 
strain rate dependency coefficient C can be determined [61]. 

σ = (A + Bεn
p)

[

1+Cln
(

ε̇p

ε̇0

)]

(21) 

σ
A + Bεn

p
=

(

1+Cln
(

ε̇p

ε̇0

))

(22) 

At this point, the only unknown variable is the thermal softening 
component m. To determine m, the compression test results are evalu
ated. When these tests are performed at reference strain rate, Eq. (1) is 
simplified and can be written as Eq. (23), which is solved for m. 

Fig. 7. Stress-strain curves measured with Gleeble 3800c (top) and 
SHPB (bottom).

Table 5 
J-C parameters for C45 determined by material testing.

A B n C m

331 614 0.26 0.07 1.19
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σ = (A+Bεn
p)

[

1 −

(
T − T0

Tm − T0

)m ]

(23) 

As a result, the J-C parameters for AISI 1045 determined by material 
testing can be obtained from Table 5.

3.2. Comparison of measured and simulated process forces

For simulating orthogonal cutting of AISI 1045, the software 
DEFORM 3D V13.1 was used with the above determined J-C parameters 
values. A hybrid friction model based on Zorev with a coulomb friction 
factor µ= 0.25 [41] was chosen. The tool was modelled as rigid. Insights 
in the simulation and the resulting force can be determined from Fig. 8
for the cutting velocity 200 m/min and uncut chip thickness 0.1 mm.

The corresponding cutting experiments were conducted on an EMAG 
VLC250 vertical drilling machine. The dynamometer in use is a Kistler 
type 9129 A with a range of − 10–10 kN and mounted on a custom made 
VDI40 tool holder. A multi-channel charge amplifier Kistler type 5080 
was used. Lathe is a highly dynamical process which is why the dynamic 
behaviour of the dynamometer and the charge amplifier needs to be 
determined to allow for a reasonable measurement of the forces and the 
resulting evaluation of the measurements. Thus, an impact testing was 
performed in advance of the experiments to determine the frequency 
response function (FRF). Simcenter SCADAS by Siemens is used for this 

task where an impact hammer is chosen as the reference and the output 
of the charge amplifier is the input signal for determination of the FRF. 
The bandwidth and spectral lines are 3276.8 Hz and 2048 respectively, 
which leaves the acquisition as 0.625 s. The tip of the tool was chosen as 
the excitation point of the structure. The results of the analysis are 
shown in Fig. 9. Due to the acceptable setup of the measurement chain, 
measurement errors due to vibration were not considered in further 
evaluations.

The results of the cutting experiments as well as the simulations are 
shown in Fig. 10, where the cutting force Fc and the feed force Ff is 
represented by the z-axis.

The experimental results reveal that both forces increase with 
increasing cutting depth and slowly decrease with larger cutting ve
locities but the surfaces show nonlinear trends, especially in the feed 
force, where a sharp rise is observed at higher feed rates and lower 
cutting velocities. In contrast, the FEA results reproduce the general 
increase of forces with feed but display more linear surfaces and less 
variation dependend on the sliding velocity. This indicates that the 
determined J-C parameters do not fully capture the material behaviour 
in cutting processes. In addition, a strong force offset is noticeable for 
both directions. To further give insights into the dependence of cutting 
force and feed force on the cutting velocity and feed, the feed of 0.1 mm 
with variable cutting velocities and further the cutting velocity of 
150 m/min with variable feed is selected for further evaluation and 
plotted in Fig. 11.

Here, it becomes clear that the trend of decreasing cutting force with 
increasing cutting velocity at a cutting depth of 0.1 mm was captured by 
the simulations, although not as pronounced as in the experiments. It 
remains difficult to attribute this trend to a single cause. However, the 
parameter C of the J-C model influences the flow stress with increasing 
cutting velocity, an effect that is superimposed by thermal effects and 
the parameter m, since higher cutting temperatures are generally 
observed with increasing cutting velocity. For a constant cutting velocity 
of 150 m/min, the cutting forces increase linearly in both the simula
tions and the experiments. When fitting a line via least squares through 
the cutting force values, the slope is determined as 8260 N/mm and 
6318 N/mm for the simulations and the experiments respectively. A 
23.5 % discrepancy in the slope values shows, that the error is not solely 
due to an initial offset of the values but rather arises from a complex 
combination of multiple influencing parameters. The underestimation of 
the feed force is a common phenomenon in metal cutting simulations 
and is not unique to this study. Despite good agreement at a cutting 
velocity of 150 m/min and a cutting depth of 0.06 mm, the simulation 

Fig. 8. Exemplary force signals for a 3 mm wide cutting edge at vc = 200 m/ 
min and ap = 0.1 mm.

Fig. 9. FRF of the measurement chain containing the dynamometer and the charge amplifier.
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Fig. 10. Obtained cutting forces (top left) and feed forces (top right) by the cutting experiments and corresponding simulation results for cutting forces (bottom left) and feed forces (bottom right).
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could not accurately capture the trend in feed force increase with higher 
cutting depths and the model did not register a decrease in feed force 
with higher cutting velocities. The later could be explained by the 
missing dependency of the coloumb friction coefficient on cutting ve
locity as studied in [62], where a lower friction coefficient is observed 
with increasing relative velocity which then results in lower process 
forces. This analysis is further supported by findings in [63], where 
simplified friction models and edge radius effects were identified as 

influencing factors for low feed forces in simulations. Despite having 
identified this influence, it remains an issue for future simulations due to 
missing available models for each coating and work matetrial combi
nation.This again provides a foundation why grey-box modelling is a 
logical solution to tackle these

issues all at once in predicting accurate forces over a large range of 
cutting conditions. The error plot over all parameters is later shown in 
Fig. 13 onwards, as the difference of experimental and simulated values 
is depicted by the training and test data.

The geometry of the cutting insert was assessed after the cutting 
experiments to determine whether tool wear could have influenced the 
measured forces during the experiments. No noticeable changes in cut
ting edge radius exist. No coating delamination took place during the 
experiments, which could have potentially caused different friction 
properties, and thus cutting forces. Fig. 12 shows the cutting edge after 
conducting the experiments and underlines why tool wear is not 
considered in this study.

This leaves the difference between the plots in Fig. 10 to be captured 
by the Black-box models with a regression approach in accordance with 
the chosen grey-box architecture from chapter 2.4. Thus, the goal of the 
function fD is to approximate these errors.

3.3. Evaluation of the proposed grey-box model

Given the results in Fig. 10, it is advantageous to apply regression 
algorithms that are able to capture the non-linear behaviour. The results 
of applying Support Vector Regression, Random Forest, Neural Net
works and the XGBoost algorithm for this task is shown in Fig. 13. From 
the training data displayed in Fig. 13, the difference between simulation 
and experiments becomes clear.

From a first visual inspection, it can be concluded that all imple

Fig. 11. Comparison of obtained forces for cutting depth of 0.1 mm (top) and cutting velocity 150 m/min (bottom).

rake face flank face

cutting
edge

3 mm

Fig. 12. Microscopic images of the cutting edge after conducting the 
experiments.
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Fig. 13. Training results for the selected machine learning models for cutting force prediction (left) and feed force prediction (right).
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mented machine-learning algorithms were able to capture the non- 
linear behaviour of the errors made by the FEA due to the algorithm’s 
adaptability to the training data samples, which are displayed in dark 
blue. This is especially true for the region with low cutting depth and 
velocity. The fitting curve resulting from training is shown in each 3D 
plot. Notably the algorithms using tree-structures like XGBoost and 
Random Forest feature plateau like areas which centre around a training 
data sample. The SVR and Neural Network on the other hand feature a 
more consistent fitting curve. The feature importance calculation of 
XGBoost revealed 0.8682 / 0.7965 for vc and 0.2035/0.1318 for ap 
depending on Fc / Ff .

The good approximation of the AI algorithms when it comes to un
seen data is of great interest. The differences between the prediction on 
that data (blue crosses) and the true data (orange dots) is notable, 
although they mostly lie close together. When considering that a perfect 
model would lead to no discrepancy between the blue crosses and or
ange dots, a metric is necessary to capture the difference between them 
over the entire training dataset. To extract meaningful information over 
the regression capabilities of the different algorithms the metrics mean 
absolute error (MAE), mean squared error (MSE) and mean absolute 
percentage error (MAPE) are calculated and averaged over 1000 boot
strap resamples to provide insights in the variability of model perfor
mance due to random sampling. R2 is given as point estimate. The results 
are listed in Table 6. For comparison, the MAE and MSE of the white-box 
model were 149.65 and 30748 for Ff and 272.31 and 77406 for Fc.

For MAE, XGBoost achieved the lowest values for Fc (5.65) while SVR 

outperformed all other models for Fp (7.60), indicating the most accu
rate predictions on average. RF also showed strong performance, with 
slightly higher MAE values, while FFNN and linear regression exhibited 
larger errors, particularly for Ff . The 95 % confidence intervals further 
indicate that XGBoost predictions are more stable for Fc, with narrower 
intervals compared to the other models.

In terms of MSE, XGBoost again showed the lowest error for Fc 
(60.24), though RF slightly outperformed it for Ff (96.24). FFNN and 
linear/polynomial regression had substantially higher MSE values, 
reflecting occasional large deviations from observed values. The confi
dence intervals confirm that XGBoost predictions are most reliable for 
Fc, whereas the other models lead to larger errors.

The R2 values were generally high across most models, with XGBoost 
achieving 0.982 for Fc while SVR achieved 0.994 for Ff , indicating good 
regression capabilities. RF also performed well, while FFNN and linear/ 
polynomial regression showed lower R2 values.

Finally, MAPE results align with these findings. XGBoost had the 
lowest mean absolute percentage errors (0.0191 for Fc and 0.3502 for 
Ff ), indicating the smallest relative errors. The other models show larger 
MAPE, reflecting less accurate predictions. MAPE values for Ff are 
consistently higher, as predictions near zero at low ap inflate the relative 
error of individual cases and disproportionately affect the metric.

To further investigate the internal behaviour of the FFNN, a sobel 
sensitivity analysis was conducted, showing that the input variable vc 
accounted for the majority of the output variance.

For Fc, the variable vc shows the strongest first-order effect 
(S1vc=0.874 ± 0.155), indicating that it explains the majority of the 
output variance on its own. In contrast, ap has a relatively small first- 
order effect (STap=0.299 ± 0.056), suggesting it plays a secondary 
role. The total-order indices confirm this pattern: STvc= 0.411 ± 0.080 
for vc and STap= 0.283 ± 0.076 for ap. These values indicate that while 
ap contributes some variance through interactions, the output is pre
dominantly controlled by vc. For Ff , the importance of vc remains high 

Table 6 
Evaluation metrics for implemented regression models with 95 % confidence intervals (CI).

SV RF XG-Boost FFNN Lin. 
Reg.

Pol. Reg 
k = 2

Pol. Reg 
k = 4

MAE µ Fc 7.12 6.64 5.65 11.10 20.41 10.68 7.81
Ff 7.60 8.01 9.03 13.85 30.72 12.84 9.85

CI- Fc 4.97 4.43 3.62 9.04 13.84 8.03 5.12
Ff 5.02 5.79 5.03 11.36 19.44 8.80 6.00

CI+ Fc 9.52 9.88 7.96 13.50 27.87 13.20 11.06
Ff 10.86 10.70 10.54 16.63 43.58 17.37 14.24

MSE µ Fc 82.34 86.79 60.24 295.41 706.92 152.95 112.54
Ff 104.65 96.24 116.07 512.87 1820.6 276.38 197.92

CI- Fc 37.37 30.17 23.79 181.10 335.20 91.40 39.89
Ff 40.46 43.11 63.39 287.13 776.77 130.84 63.09

CI+ Fc 146.06 187.34 104.56 450.76 1161.3 223.19 208.35
Ff 186.22 177.14 176.06 787.62 3057.6 459.69 369.91

R2 ​ Fc 0.975 0.973 0.982 0.891 0.761 0.9472 0.961
Ff 0.994 0.983 0.984 0.945 0.737 0.959 0.971

MAPE µ Fc 0.0246 0.023 0.0191 0.0403 0.0821 0.0394 0.0311
Ff 0.38 0.2963 0.3502 0.2515 2.128 0.631 0.7351

CI- Fc 0.0180 0.016 0.0133 0.0321 0.0517 0.0297 0.0188
Ff 0.0402 0.0877 0.0669 0.0938 0.3692 0.082 0.0862

CI+ Fc 0.0317 0.031 0.0251 0.0490 0.1168 0.0492 0.0465
Ff 0.9651 0.5698 0.7821 0.4532 4.9552 0.165 1.8246

Table 7 
Results of sobel sensitivity analysis for neural network across 10 folds.

S1vc(µ,σ) S1ap(µ,σ) STvc(µ,σ) STap(µ,σ)

Fc 0.874, 0.155 0.299, 0.056 0.411, 0.080 0.283, 0.076
Ff 0.794, 0.131 0.386, 0.069 0.376, 0.130 0.303, 0.076

Table 8 
Results of permutation for the trained models.

SV RF XG-Boost FFNN Lin. 
Reg.

Pol. Reg 
k = 2

Pol. Reg 
k = 4

Fc vc 0.0351 1.8520 1.8609 1.4333 1.5841 1.8276 1.8611
ap 0.0132 0.3355 0.3551 0.2276 0.0362 0.3691 0.3967

Fp vc 0.0209 2.2742 2.2242 2.0384 1.6393 2.0918 2.1056
ap 0.0012 0.5282 0.5132 0.2980 0.1726 0.5880 0.6084
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(S1vc=0.794 ± 0.131), though slightly reduced compared to Fc. The role 
of ap is stronger than in the previous case (S1ap=0.386 ± 0.069), 
reflecting a greater direct contribution. The total-order indices again 
show that interactions are small: STvc= 0.376 ± 0.130 for vc and 
STap= 0.303 ± 0.076 for ap.

In this procedure, R² of the trained model is first computed. Then, for 
each feature, its values are randomly shuffled across the test set while all 
other features remain fixed, and the resulting reduction in R² relative to 
the baseline is recorded. The mean of these reductions over all repeti
tions is reported as the permutation importance. For simplicity, inter
action terms of polynomial regression are not listed.

Based on the above listed metrics from Table 6, XGBoost is chosen to 
predict Fc while for Ff SVR is a good trade of between the metrics. These 
algorithms are suited for the regression task, which aims to capture the 
non-linear errors made by the simulation. The study indicates that 
ensemble tree-based methods are suited for this task, as they can 
effectively capture the nonlinear relationships between the input pa
rameters and the process forces, while also being robust to noise in a 
relatively small dataset. Support Vector Regression (SVR) performed 
moderately well for Ff , reflecting its ability to handle nonlinear prob
lems in low-dimensional spaces. It was noted that linear and polynomial 
regression mostly had a worse performance than AI approaches. In 
addition, out of the AI algorithms, the Neural Network performed the 
least favourable, as they usually require larger training sets to avoid 
overfitting and to exploit their ability for modelling complex non
linearities. Linear regression performed the worst, which confirms that 
the relationship between cutting parameters and process forces is 
strongly nonlinear and cannot be captured with a linear model. With an 
MAE of only 5.65 N / 7.6 N over all conducted experiments and simu
lations for Fc and Ff , the proposed grey-box model resulted in the 
reduction of mean absolute error and mean squared error of 97.9 % and 
99.9 % for Fc and 94.9 % and 99.7 % for Ff respectively. When deter
mining the deviation from predicted to real modelling error and calcu
lating the resulting error of the grey-box model to the measured forces, 
the mean error and standard deviation of the grey-box model is 1.3 % 
and 0.1 respectively. Thus, the proposed grey-box model is superior in 
predicting the mechanical loads over the white-box model.

In this study it became clear that even when determining the 
Johnson-Cook constitutive model for a metal with state of the art 
equipment such as a Gleeble 3800c for precise compression tests and 
Split-Hopkins-Pressure Bars for high strain rate material testing, the 
achievable accuracy of predicting mechanical loads of simulations 
employing this model can be further improved by a grey-box model. 
However, the uniqueness of the JC parameters is a clear benefit and 
therefore omits solving an optimization problem of the inverse identi
fication of model parameters. Of the applied algorithms which make up 
the black-box part of the proposed grey-box approach, XGBoost and SVR 
are found to be the most precise. Although, the Neural Network features 
a plane which resembles the one from SVR, the predictions where the 
worst when comparing the mean absolute error and mean squared error. 
A possible cause could be the limited training dataset compared to the 
amount of trainable parameters. With reference to the simulated pre
dictions of mechanical loads, it has to be noted that all grey-box models 
delivered better prediction results than the white-box models. The ap
plications of linear and polynomial regression led to an increase in 
prediction errors over the chosen AI-algorithms, proving the advantages 
of the presented modelling techniques.

4. Conclusion

This study focuses on the improvement of mechanical load predic
tion in cutting simulations for a wide range of process parameters. The 
main conclusions can be drawn as follows: 

• The accuracy of mechanical load prediction in metal cutting simu
lations using FEA heavily depends on the material model used to 
represent flow stress under high strain rates and temperatures. While 
the Johnson-Cook model is widely used, it performs poorly outside 
its calibration range, leading to discrepancies between simulated and 
measured process forces.

• To address this limitation, a grey-box modelling approach was 
developed by first calibrating the Johnson-Cook model for normal
ized AISI1045 using state of the art material testing equipment such 
as Split- Hopkinson pressure bar and high-temperature compression 
tests on a Gleeble 3800c.

• A comparison between 2D orthogonal cutting simulations and cor
responding experiments across 110 test conditions revealed 
nonlinear discrepancies between simulated and experimentally 
determined process forces. Machine learning algorithms are known 
to capture non-linearities efficiently, which is why a grey-box 
framework is implemented to tackle the issue described above. The 
algorithms Random Forest, XGBoost, Support Vector Regression and 
Neural Networks were implemented alongside linear and polynomial 
regression.

• Supported by the lowest MAE, MSE and MAPE XGBoost captured the 
errors of modelled cutting forces the best, while Support Vector 
Regression is determined suitable for predicting these errors for the 
feed force. At the given task, machine learning algorithms were su
perior to linear and polynomial regression.

• The grey-box model achieved a mean error of 1.3 % and a standard 
deviation of 0.1 in cutting/feed force prediction. This demonstrates 
that the combination of physics-based models and data-driven 
models into grey-box models significantly improves prediction ac
curacy, even with limited data.
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[5] Storchak M, Stehle T, Möhring H-C. Numerical modeling of cutting characteristics 
during short hole drilling: modeling of kinetic characteristics. J Manuf Mater 
Process 2023;(6):195. https://doi.org/10.3390/jmmp7060195.

[6] Sadeghifar M, Sedaghati R, Jomaa W, Songmene V, Sadeghifar M, Sedaghati R, 
Jomaa W, Songmene V. A comprehensive review of finite element modeling of 
orthogonal machining process: chip formation and surface integrity predictions. Int 
J Adv Manuf Technol 2018;96:3747–91. https://doi.org/10.1007/s00170-018- 
1759-6.

[7] Zhu L, Zhu C, Pei J, Li X, Wang W. Prediction of three-dimensional milling forces 
based on finite element. Adv Mater Sci Eng 2014:918906. https://doi.org/ 
10.1155/2014/918906.

[8] Soliman HA, Shash AY, El Hossainy TM, Abd-Rabou M. Investigation of process 
parameters in orthogonal cutting using finite element approaches. Heliyon 2020;6: 
e05498. https://doi.org/10.1016/j.heliyon.2020.e05498.

[9] Korkmaz ME, Gupta MK. A state of the art on simulation and modelling methods in 
machining: future prospects and challenges. Arch Comput Methods Eng 2023;30: 
161–89. https://doi.org/10.1007/s11831-022-09794-9.
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[53] Couronné R, Probst P, Boulesteix A-L. Random forest versus logistic regression: a 
large-scale benchmark experiment. BMC Bioinforma 2018;19:270. https://doi.org/ 
10.1186/s12859-018-2264-5.

[54 Sabzekar M, Hasheminejad S. Robust regression using support vector regressions. 
Chaos Solitons Fractals 2021;144:110738. https://doi.org/10.1016/j. 
chaos.2021.110738.

[55] Agustina SD, Mustakim O, Bella C, Ramadhan MA. Support Vector Regression 
Algorithm Modeling to Predict the Availability of Foodstuff in Indonesia to Face 

J. Wolf et al.                                                                                                                                                                                                                                     CIRP Journal of Manufacturing Science and Technology 65 (2026) 163–178 

177 

https://doi.org/10.1016/j.wear.2015.01.015
https://doi.org/10.2507/IJSIMM11(2)1.200
https://doi.org/10.1016/j.procir.2014.10.032
https://doi.org/10.1016/j.procir.2014.10.032
https://doi.org/10.3390/jmmp7060195
https://doi.org/10.1007/s00170-018-1759-6
https://doi.org/10.1007/s00170-018-1759-6
https://doi.org/10.1155/2014/918906
https://doi.org/10.1155/2014/918906
https://doi.org/10.1016/j.heliyon.2020.e05498
https://doi.org/10.1007/s11831-022-09794-9
https://doi.org/10.1007/s00170-021-07167-3
https://doi.org/10.1007/s00170-010-2789-x
https://doi.org/10.1007/s00170-010-2789-x
https://doi.org/10.1016/0043-1648(84)90010-3
https://doi.org/10.1515/HTMP.2011.127
https://doi.org/10.1515/HTMP.2011.127
https://doi.org/10.3390/met12030427
https://doi.org/10.1007/s12289-008-0171-4
https://doi.org/10.1007/s12289-008-0171-4
https://doi.org/10.1016/j.promfg.2020.04.327
https://doi.org/10.1063/1.338024
https://doi.org/10.1063/1.338024
https://doi.org/10.3390/ma12101726
https://doi.org/10.3390/ma12101726
https://doi.org/10.1243/09544054JEM797
https://doi.org/10.1115/1.3423586
https://doi.org/10.1115/1.3423586
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref21
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref21
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref21
https://doi.org/10.1007/s00170-021-08640-9
https://doi.org/10.1007/s00170-021-08640-9
https://doi.org/10.1016/j.jmapro.2018.03.017
https://doi.org/10.1016/j.jmrt.2021.11.062
https://doi.org/10.1016/j.ijmecsci.2017.01.020
https://doi.org/10.1016/j.ijmecsci.2017.01.020
https://doi.org/10.1016/j.matpr.2021.01.136
https://doi.org/10.1016/j.matpr.2021.01.136
https://doi.org/10.3390/ma16020800
https://doi.org/10.1016/j.promfg.2018.03.017
https://doi.org/10.1016/j.rinp.2021.104498
https://doi.org/10.1016/j.rinp.2021.104498
https://doi.org/10.3390/ma15010026
https://doi.org/10.1007/s44029-024-1158-8
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref32
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref32
https://doi.org/10.3390/ma16041574
https://doi.org/10.1016/j-promfg.2020.10.113
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref35
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref35
https://doi.org/10.1016/j.procir.2023.04.010
https://doi.org/10.1016/j.procir.2023.04.010
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref37
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref37
https://doi.org/10.1016/j.procir.2022.03.022
https://doi.org/10.1016/j.procir.2022.03.022
https://doi.org/10.1016/j.jmatprotec
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref40
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref40
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref40
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref41
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref41
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref41
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref41
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref42
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref42
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref42
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref42
https://doi.org/10.1016/j.tca.2012.03.029
https://doi.org/10.1016/j.tca.2012.03.029
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120449
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120449
https://doi.org/10.1080/10910344.2010.503455
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref46
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref46
http://refhub.elsevier.com/S1755-5817(25)00212-3/sbref46
https://doi.org/10.3390/min11070755
https://doi.org/10.3390/jmmp8030107
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1005.0208
https://www.diva-portal.org/smash/get/diva2:1594694/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1594694/FULLTEXT01.pdf
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1186/s12859-018-2264-5
https://doi.org/10.1016/j.chaos.2021.110738
https://doi.org/10.1016/j.chaos.2021.110738


the Demographic Bonus. J Phys Conf Ser 2018;1028:012240. https://doi.org/ 
10.1088/1742-6596/1028/1/012240.

[56] Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput 2004; 
14:199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.

[57] Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proc 22nd ACM 
SIGKDD Int Conf Knowl Discov Data Min 2016;11:785–94. https://doi.org/ 
10.1145/2939672.2939785.

[58] Sheng C, Yu H. An optimized prediction algorithm based on XGBoost. Int Conf 
Netw Netw Appl (NaNA) 2022 2022:1–6. https://doi.org/10.1109/ 
NaNA56854.2022.00082.

[59] Mehlig B. Machine Learning with Neural Networks: An Introduction for Scientists 
and Engineer. 1st ed. Cambridge: Cambridge University Press; 2021.

[60] Sirigiri VKR, Gudiga VY, Gattu US, Suneesh G, Buddaraju KM. A review on Johnson 
Cook material model. Mater Today Proc 2022;62:3450–6. https://doi.org/ 
10.1016/j.matpr.2022.04.279.

[61] Khare S, Kumar K, Choudhary S, Singh PK, Verma RK, Mahajan P. Determination of 
Johnson–Cook material parameters for armour plate Using DIC and FEM. Met 
Mater Int 2021;27:4984–95. https://doi.org/10.1007/s12540-020-00895-3.
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