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In machining, high temperatures and strain rates impact the flow stress of the workpiece material, making it
essential to understand the materials behaviour in these process conditions for meaningful finite element analysis
(FEA) of the cutting process. The Johnson-Cook constitutive model, despite being the most widely applied, is
reported to struggle in capturing the material behaviour outside of the reference conditions it was calibrated on.
However determining these parameters in conventional material tests is challenging. To solve this issue, this
study proposes a grey-box approach which aims to increase the accuracy of process force prediction of FEA,
employing a Johnson-Cook model determined by experiments conducted on a Split-Hopkins Pressure Bar and
compression tests at elevated temperatures on a Gleeble 3800c for AISI 1045, over a variety of cutting param-
eters. In total 110 cutting experiments and their corresponding simulations were carried out in a fully factorial
experimental design with eleven cutting speeds and ten uncut chip thicknesses. Succeeding the white-box model,
a black box model is trained to capture the non-linear behaviour between the simulation and the cutting ex-
periments. Among the tested algorithms, XGBoost and Support Vector Regression outperformed Random Forests
and Neural Network for predicting cutting force and feed force. The proposed grey-box approach showed an
improved capability of predicting cutting force and feed force, reducing the mean absolute error and mean
squared error compared to the white-box model by 97.9 % and 99.9 % for cutting force and by 94.9 % and 99.7 %
for feed force, respectively. The grey-box model achieved a mean error of 1.3 % with a standard deviation of 0.1
in process force prediction.

1. Introduction

Machining contributes to 5 % of the GDP of developed countries and
translates into yearly $250B in the U.S [1]. . In order to increase the
productivity and sustainability of the machining processes, finite
element analysis (FEA) has become an increasingly important tool due
to the ever-increasing performance of computers and the resulting in-
crease in simulation results accuracy and the possibility to integrate
more features e.g. for tool wear [2]. Examples are the identification of
improved process parameters and improved tool geometries [3] and
thus contributed to reducing manufacturing costs [4]. FEA helped
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significantly to understand the complex physical and mechanical in-
teractions between the tool, the machined material and the chip [5]. As
the complexity of machining in the simulation is time-consuming and
cost-intensive, for example in milling, the machining case is usually
simplified to the orthogonal cut [6]. With this approach, complex
machining operations can be modelled in 2D which leads to a significant
reduction of required computational resources compared to 3D simu-
lations. Thus, orthogonal cutting is the basis of many studies conducted
on simulating milling [7], drilling [5] and lathe [8]. To setup the FEA
different forms of meshing are used which includes Eulerian,
Lagrangian and Arbitrary Lagrangian-Eulerian (ALE). Most FE
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Table 1
Chemical composition of normalized AISI 1045 in accordance with DIN EN ISO 683-1.
C Si Mn P S Cr Mo Ni Al Cu
0.431 0.233 0.653 0.011 0.024 0.124 0.005 0.018 0.029 0.029

software systems use a 2D Lagrangian mesh formulation, which requires
constant remeshing [9]. The tool is commonly modelled as a rigid body
[10] which results in an efficient simulation since the nodes of the tool
are not displaced [11]. Since machining is a highly nonlinear, coupled
thermo-mechanical dynamic process, the result of an FEA simulation
depends mainly on the friction, mechanical and thermal loads, chip
formation and material flow models [6]. Multiple approaches exist in
some category, whereby the appropriate model must be selected
depending on the application. Therefore, expertise is required to apply
the right models. Regarding wear e.g. the Usui model [12] is regularly
used to predict the wear rate, however different models such as Archard
or Arrhenius-style equations exist that may be used depending on the
prevailing wear mechanism. As tool wear is mainly influenced by the
workpiece material behaviour, material modelling also is of great sig-
nificance. The introduction of constitutive equations, which are a
mathematical representation of the flow behaviour of materials [13] are
a vital part to achieve meaningful machining simulations [14,15]. As a
result, material characterization for determination of material models
received increasing attention [16]. Constitutive models can be divided
into three categories which are empirical e.g. Johnson Cook (J-C) and
Zerilli-Armstrong (Z-A) [17], phenomenological and physical models e.
g. mechanical threshold stress and Bammann-Chiesa-Johnson [18]. The
main flow stress models for AISI 1045 are J-C, Z-A, Oxley, Maekawa and
El-Magd constitutive models [19]. Additional models such as the Bodner
Partom model which was found to model the behaviour of a rate sen-
sitive metal for different tensile straining histories [20] were developed.
However, the focus of this study lies on the J-C constitutive model due to
their proven accuracy and simple forms [18].

The J-C model [21] is the most widespread to model machining
operations and relates flow stress with strain, strain-rate and tempera-
ture [22]. It was successfully applied in multiple studies regarding linear
friction welding processes [23], selective laser melting [24] and
machining [25,26]. Eq. (1) explains the J-C model where o is the flow
stress, g, is the effective plastic strain, €, is the plastic strain rate, € is the
reference strain rate while T, T,, and Ty are the test temperature, the
melting point of the material and the reference temperature, respec-
tively [27]. As a result A, B, C, n and m are the material-dependent
parameters [22] where A is the initial yield stress at reference strain
rate and temperature, B is the hardening modulus, C is the strain rate
dependency coefficient, n is the work hardening exponent and m is the
thermal softening component [28]. From the equation it can be derived
that the J-C model contains three parts which are the strain hardening,
strain rate and thermal softening [29]. To obtain meaningful parameters
the material should be tested at conditions which occur in the actual
machining process. During machining high strain rates of up to 10% s~
and temperatures of up to 1200°C occur which are difficult to obtain
through conventional tensile or compression test [15]. These parameters
are difficult to reach in material testing experiments. This explains why
several researchers utilized a Split Hopkins Pressure Bar (SHPB) that,
depending on the setup, can reach strain rates of 10° —10%s71.

o= (A + Beg){uan(%”{I—G":Y;?O)m}

In general, there are two approaches to determine the parameters of
the J-C material models for the modelling of machining operations [30].
The first approach is to conduct material testing experiments such as
SHPB tests, tensile and compression tests as conducted by [31]. In the
latter case, quasi-static experiments at low strain rates and different
temperatures are performed. Subsequently, mathematical methods are
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applied to determine the J-C parameters [32]. As a second approach, the
J-C parameters can be determined inversely by matching machining
experiments to the simulation model while changing the parameters to
iteratively achieve a better fitting. Methods such as artificial intelligence
and different optimization algorithms e.g. particle swarm optimization
[22] were applied to solve the multi-dimensional optimization problem.
However, the second approach comes with the downside of a
non-uniqueness of the J-C parameter set and usually only applies to a
limited parameter range.

Besides its simplicity, some researchers criticize the J-C model. As
pointed out by [33], at high temperatures and non-linear flow stress
behaviour connections between i.e. strain, strain rate and temperature
exist which is not modelled by Eq. (1). That is why several researchers
focused on optimizing the J-C model to improve the prediction of the
flow stress behaviour and focused on a different constitutive model.
With the goal of providing adjusted constitutive models for specific
materials and processes, modified J-C models were developed.

Despite some criticism, the J-C model was found to model material
flow better than the Z-A model at strain rates up to 5000 s ! and tem-
peratures up to 1000°C [19].

In addition, an inverse determination of J-C constants for AISI 1045
was carried out and validated through a comparison of experimental and
simulated cutting [34]. Therefore, it can be concluded that the original
Johnson-Cook model is well suited to describe the flow behaviour of
AISI 1045. Even though many researchers focused on the determination
of suitable material models for meaningful cutting simulations, dis-
crepancies between measured and simulated cutting conditions still
exist and are obvious when applying the model to a wide range of cut-
ting parameters such as cutting depth and velocity. To overcome this
shortcoming and to improve the prediction capabilities of mechanical
loads in FEA, this study focuses on the determination of a grey-box
model to address those discrepancies. The applied methods to build
this model are described in chapter 2.

2. Experimental setups

This study utilizes normalized AISI 1045. With respect to DIN EN ISO
683-1 the data in Table 1 has been collected. Furthermore, the grain size
is greater or equal to 5 um with respect to DIN EN ISO 643 and the
Brinell hardness ranges from 178 to 180 HBW with respect to DIN EN
ISO 6506.

2.1. Experimental determination of J-C parameters

For the experimental determination of the J-C parameters two setups
where utilized. To determine the constant C a Split-Hopkins-Pressure-
Bar (SHPB) was used. Since its introduction of SHPB in the early twen-
tieth century, it is widely applied for testing materials at high strain rates
[35]. While contactless methods of material testing are available, the
SHPB has stood the test of time and continues to be widely used [36].
Basically, the test setup consists of a projectile, an input rod, an output
rod and the material sample, which are all aligned concentrically to each
other. The rods should have a length-to-diameter ratio of at least 1/D
> 20 in order to ensure one-dimensional wave propagation [36]. As a
general practice, ratios of 1/D > 100 can be found [37]. The material
sample is positioned between the input and output bars. A strain gauge is
attached to the centre of both rods. The projectile is accelerated using a
pulse generator, which is usually pneumatically operated, and hits the
input rod. When the projectile hits the input rod, a longitudinal pressure
wave is generated in both components, which propagates axially. As the
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Fig. 1. Schematic overview of the Split Hopkinson Pressure Bar utilized at ISF.

projectile is considerably shorter than the rods, the pressure wave is The strain measurements are then used to calculate the strain and strain
initially reflected as a tensile wave at the free end of the projectile. rate as well as the stress of the sample [38].

During the time that the projectile is in contact with the input rod, a Assuming that the forces at the contact points between the specimen
pulse is initiated which is recorded using the strain gauge. Once the and the rods are equal and taking into account the superposition of the
wave in the input rod reaches the interface with the material sample, the incoming and reflected wave, the strain rate and the stress of the spec-
impedance difference, partial reflection and transmission occurs. The imen are obtained as a function of the reflected and transmitted rod
transmitted pulse is also recorded using a strain gauge on the output rod. strain ¢, and ¢, respectively. The strain ¢, results from the temporal
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Fig. 2. Gleeble 3800c apparatus (top) and experimental design for different temperature conditions (bottom).
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Magnification: x1000

Magnification: x1 000'

Fig. 3. Grain structure of the AISI 1045 at 25°C (a) and after heating to 1000°C
and compression (b).

integration of the strain rate
The following equations can thus be given for the stress, strain rate
and strain [38]:

AodFE,
op = %&a 2
.2
$p =Tt 3)
P
2¢, [*
=7 / & (C)]
P Jo

The SHPB test rig used to determine parameter C has a length of
approx. 8 m, whereby the impulse is initiated by a precision pressure
regulator in combination with an accelerated projectile. The input and
output rods used are made of X37CrMoV5-1 hot-work tool steel and
have a ratio of 1/D = 107. The cylindrical test specimens diameter and
length is 6 mm and 9 mm respectively with a maximum deviation of
0.02 mm. In order to ensure a valid measurement of the flow stress
behaviour, the samples were ground plane-parallel and measured be-
forehand. Due to the high wave propagation speed of ¢ = 5231 m/s, an
HBM Gen3i data encoder with a sampling rate of f = 1 MHz was used.
Within the work presented, the strain rates, indirectly adjusted by
pressures of p=1.5 ... 3.0 bar, are investigated at room temperature. At
least one test repetition was carried out per pressure level to statistically
validate the results. The above equations were used to evaluate the
recorded pulses from the strain gauges, allowing a stress-strain diagram
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and the strain rate to be determined. The test setup is shown in Fig. 1.

For determination of the thermal softening component m quasi static
experiments have to be conducted at room temperature and at high
temperatures. To achieve this, compression experiments are carried out
with a Gleeble 3800c at temperatures of 25°C to 1000°C with an interval
of 167°C. The strain rate is kept at a minimum of 41073 s~1. Test
specimens are in a cylindrical shape with the length of 15 mm and
diameter of 10 mm. A common tolerance for specimens is a maximum
deviation of 0.02 mm. The front face’s centre roughness value R, is
0.4 um while the lateral surface area’s R, is 0.8 um. The setup is shown
in Fig. 2 (top). The experimental procedure is as follows: First the
specimens were heated to target temperature with an increase in tem-
perature of 10°C s 1. After the target temperature is reached, the heating
phase is followed by a delay of 120 s which ensures a uniform temper-
ature in the specimen [39].

Thereafter, the compression tests were performed during which the
load and positional displacement are recorded.

Finally, the specimens are rapidly cooled to keep the grain structure.
This experimental procedure is shown in Fig. 2 (bottom).

To analyse the microstructural evolution of AISI 1045 steel from its
initial state to its compressed state at elevated temperatures of 833°C, a
metallographic analysis was performed.

For sample preparation, each sample was sectioned at the centre,
embedded in epoxy resin, and then subjected to subsequent grinding and
polishing steps. Grinding was performed using silicon carbide (SiC)
abrasive papers, from coarse (80 um) to fine (2500 um) grain papers.
Polishing steps followed with finer grades, from 6 pm to 1 pm, to achieve

Diameter of SHPB specimens

== tolerance field
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w
[ S "SI PENNSONNN [NSUNIOUN IS ECESON WE—" E———

5 0 5
Deviation [um]

0 -15 -10 20

Fig. 4. Exemplary clamping of a specimen on a Wenzel LH 87 (top) and
resulting measurement of diameter (bottom).
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Fig. 5. Experimental setup for measurement of cutting and feed forces (top) and raw time series of measured forces (bottom).

a mirror-like finish. After each step, samples were cleaned with iso-
propylene and finally cleaned with ultrasonic isopropylene bath to
remove any remaining contaminants. A final etching step with 5 % Nital
was applied which was used to reveal the microstructural features
characteristic of carbon steels. Microscopy was conducted using a Key-
ence VHX 650, with images captured at 1000x magnification using a
200x lens. Fig. 3 (top) illustrates the original grain boundaries and
distinct

ferrite and pearlite colonies, whereas Fig. 3 (bottom) shows the
microstructure that emerged following heating to 1000°C before
compression. The darker structures in the images indicate regions of
pearlite, characterized by alternating layers of ferrite. Compression at
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elevated temperatures is expected to have induced grain elongation
along the compression axis, enhancing anisotropic properties in the
material.

2.2. Specimen preparation

To account for manufacturing induced irregularities of the specimen
sizes, they were measured by a coordinate measurement machine
(CMM) LH 87 equipped with a PH10M plus head and a SM25-2 scanning
module by Renishaw. To evaluate the dimensions the length and
diameter were measured for all specimens used in the compression tests.
This way the true stress 6, and true strain ¢, according to Eq. (5) and
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Fig. 6. Schematic of the chip formation model.

Eq. (6), where Ly is the intial length and A, is the initial area can be
calculated based on the measured load F and displacement AL whilst
adjusting for the real dimensions at an accuracy down to the sub ym
range.

)

©

Prior to the measurements the CMM was referenced and the utilized
ruby touch probe was calibrated on a ceramic reference sphere artefact.
The setup is shown in Fig. 4.

2.3. Experimental validation of process forces determined by means of
FEA

In order to validate the determined J-C parameters, machining ex-
periments are carried out during which the cutting forces and feed forces
are measured via a 9129 A dynamometer by Kistler. Subsequently these
forces are compared with those predicted by FEA employing the deter-
mined J-C parameters. TiN/AITiN coated cutting tools provided by Paul
Horn GmbH were utilized for orthogonal turning with an unprofiled
cutting edge on an EMAG VLC 250 vertical lathe machine. In total ten
different uncut chip thicknesses between 0.06 mm and 0.15 mm with an
interval of 0.01 mm paired with eleven cutting speeds between 100 m/
min and 200 m/min with an interval of 10 m/min were recorded. The
diameter of the workpiece is 118 mm which reduces the error made by
the assumption of orthogonal cutting for comparison with the simula-
tion. The experimental setup for measurement of forces is depicted in
Fig. 5. Ploughing can be neglected, as the ratio of uncut chip thickness to
cutting edge radius is 3, which is one order of magnitude larger than
reported for AISI1045 [40].

By leveraging a 24 V output from the control unit, which was toggled
between HIGH and LOW states through G-code commands within a
programmed loop to trigger starting and stopping of force measure-
ments, a fully automated measurement chain was established. A
producer-consumer architecture implemented in LabVIEW enabled the
automated logging of force measurements into uniquely labeled files
corresponding to each parameter variation. These files were subse-
quently processed using a Python algorithm, which extracted the force
data into a structured table. The entire cutting process was completed in
under three minutes. Thanks to modern data acquisition techniques,
both the collection and post-processing of experimental data were
conducted with high efficiency providing applicability of the proposed
grey-box approach. Tool wear was not taken into account because the
overall cutting time was short. In this stage of the study no further input
parameters were considered. However, the application of this approach
to different tool geometries is possible by utilizing well known equations
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Table 2

FEA model input parameters for AISI1045.
Parameter Value Ref.
Youngs modulus [GPa] E(T) [42]
Density [kgm ™3] 7850
Poisson ratio [] 0.3
Thermal conductivity [Wm 'K ~!] MT) [42]
Specific heat capacity [J kg 'K 1] cp(T) [42]

Table 3

FEA model input parameters for carbide.
Parameter Value Ref.
Thermal conductivity [Wm’lK"l] MT) [43]
Specific heat capacity [J kg™'K™1] cp(T) [43]

to estimate the dependency of tool geometry variations to omit the ne-
cessity of generating a new dataset for each tool geometry while keeping
the workpiece material constant. Although the presented framework is
shown by utilizing AISI1045, the approach can be followed for other
workpiece materials as well, given that they are suitable for being
described with the JC-model.

Each parameter combination from the experiments mentioned above
is simulated within the FEA software package DEFORM-2D (v. 13.1). A
Lagrangian formulation with remeshing is adopted. Remeshing triggers
were the interference depth of 0.0015 mm. Prior to the simulations a
mesh sensitivity analysis was conducted which resulted in meshing the
workpiece with 5000 elements with an element size of 6.6 um. A hybrid
friction model is implemented where a shear friction model with m =1
is chosen for the sticking zone while a coulomb friction model is
implemented in the sliding region with u = 0.25 [41]. Each cutting
simulation was performed until the force steady-state was reached. Mesh
windows for a graded mesh were utilized to improve the efficiency of the
simulation. The inner mesh window has a length and height of 0.5 mm
and 0.3 mm respectively. The size ratio of elements from inner to the
middle mesh window and the middle to the outer mesh window is two.
These windows were attached to the tool and thus resulted in a dynamic
meshing of the workpiece in the are of interest over the entire simula-
tion. A schematic of the setup is shown in Fig. 6. The rake angle and
clearance angle of the tool is 5° and 7° respectively. The cutting edge

Table 4

FEA model input parameters for AITiN coating.
Parameter Value Ref.
Thermal conductivity [Wm 'K ~!] 4.64 + 0.00054 T [44]

Specific heat [J kg 'K !] cp(T) [45]

Coating thickness [um] 3
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radius is determined as 20 um. These values were determined by mea-
surements conducted on an Alicona G5 with 10x magnification.

The material data of AISI1045, carbide and the AITiN coating is listed
in Table 2, Table 3 and Table 4 respectively.

A 20°C thermal boundary condition was applied to a selected group
of nodes of the workpiece and tool as depicted in Fig. 6 by the red line.

2.4. Grey-box modelling of process forces

Though advanced machinery and test setups to determine the
Johnson-Cook parameters were utilized, it becomes obvious that despite
being a well-recognized constitutive model, the force prediction via FEA
is still prone to errors. Besides the inaccuracy of the J-C model another
contributing effect is the modelling of friction which has an effect on the
heat generated at the contact between the workpiece, especially the chip
and the tool and thus interrelations between the thermal softening term
of Eq. (1) and the friction model exist. Unfortunately friction in cutting is
not completely understood [46]. To overcome these interdependencies,
the authors utilize a grey-box modelling approach to enhance the ca-
pabilities of FEA to accurately predict the mechanical loads during
cutting.

As stated in [47], grey-box models are a composition of
theory-driven (white-box) models fr and data-driven (black-box)
models fp. Grey-box models can be classified as serial models where the
output of fr is the input of f, or vice versa or as parallel models [48]. In
order to fulfil the task of predicting accurate forces, the serial approach
made up of an initial theory-driven model succeeded by a data-driven
model can be applied. In this architecture, the succeeding data-driven
model applies minor adjustments to the theory-driven model’s output
which essentially comes down to a regression approach. Based on the
mathematical explanation for the case of regression described in [47],
an output y€Y is predicted based on the input vector x€X through the
function G that takes the vector x as well as the functions fr and fp as
an argument. This model can be described according to Eq. (7).

y(x) = G(fTv fDﬂ (7)

When considering the chosen structure of the grey-box model the
function G essentially comes down to a sum operator. Concerning our
application, fr(x) is the cutting/feed force output of the FEA model, y
is the cutting/feed force determined via the experiments, x is the vector
describing the cutting velocity and the cutting depth and fp(x) is the
prediction of a data driven model employing artificial intelligence.
Therefore, the training goal to enhance the force prediction with this
grey-box architecture can be expressed with Eq. (8), where the loss
function L is minimized through adjusting the trainable parameters of
the black-box model ©. A common loss function in regression is the
mean squared error (MSE) across training samples n in Eq. (9), where y
is the measured force and y is the sum of the predicted forces of the
black-box and white-box model.

II‘leil‘l.L(.y(Vc7 ap)7 (fT(Vu ap) +fD(Vc7 apve)))

x)

(€©))

L0.3) =30 -3 ©

This grey-box model is inspired by two specific facts. Firstly, a
limited amount of training data is necessary to achieve meaningful
predictions, since basic knowledge of the materials behaviour is
included in the white-box model. Furthermore, the complexity of the
error defined by subtracting y and fr is assumed to be reduced. Conse-
quently, it is still beneficial to determine the J-C parameters and train a
grey-box model over a sole black-box model, since basic explainability is
obtained.

Besides choosing a suitable grey-box architecture, the artificial in-
telligence based model f;, for the regression has to be selected. Since one
underlying idea of grey-box models is reducing the required training
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dataset size, the focus is put towards models which are known to work
well with small datasets. In total, four models for fr are studied which
are random forest regression, support vector regression, extreme
gradient boosting XGBoost and Neural Networks which have been uti-
lized in previous studies by the authors on small datasets within the
domain of cutting force prediction [49].

As a supervised machine learning algorithm proposed by Breimann
[50], random forests are a scheme for building a predictor by a set of
decision trees and is suitable for regression and classification [51].
Samples are drawn based on the bagging algorithm [50]. Since each
tree’s processing is done independently and is based on unique subsets
of the training data, the algorithm has a limited risk of overfitting [52].
Random forest is considered a black-box model since it is hard to get
insights from the prediction rule [53].

Support vector regression is a machine learning algorithm which
offers robustness against outliers and is suitable for complex data. For
the case of the accumulated dataset D = {(x; y;)}., €R*xR each
training tuple is mapped into a feature space by the nonlinear function @
where the linear function f is defined in accordance to Eq. (10) [54] with
@(x) being a point in the feature space. Then w and b are determined by
optimizing Eq. (11). SVR ensures that a function f(x) with € precision
exists for the entire training dataset, where ¢ being equal to zero rep-
resents optimum regression [55]. Slack variables ¢;, & are introduced to
cope with infeasible constraints of the optimization problem while J
> 0 defines the balance between the smoothness of f and the extent to
which deviations beyond ¢ are accepted [56].

fx)= wlp(x)+b ,we R?andb € R (10)
.1 2 n .
min |jw] +IY L (E+E)
yi-wo)-b <e+g
subject toq wp(x) +b-yi <e+¢& (11)

& & >0

Extreme Gradient Boosting (XGBoost) is a supervised machine
learning system for tree boosting, where scalability is the main driver
behind its success in addition to a ten times lower runtime compared to
previous algorithms [57]. According to the nomenclature used in [58],
an objective function which is the sum of a loss function L and a regu-
larization term Q(fi) can be written as Eq. (12), where K represents the
number of trees. With the number of leaves T, the score of the leave node
w the regularization term can be written as Eq. (13).

obi= S Loy + Y Q) a2

Qi) = 7T+ %zzlew} 13)

To guarantee an efficient use of XGBoost, the hyperparameters
n_estimators, max_depth and learning rate were systematically varied
through a grid search with the best performing model being selected for
evaluation. XGBoost is especially valuable for its ability to model non-
linear interactions between input parameters while at the same time
offering interpretability through feature importance metrics. In this
context, it allows for physical insights into how parameters such as
cutting velocity and uncut chip thickness influence the simulations error
of cutting/feed force, offering understanding beyond prediction
accuracy.

As a last approach, a Feed Forward Neural Network (FFNN) is
implemented. The basis of FFNN are perceptrons, which are connected
to each other [49]. During training weights w; with i€[1,n] are updated
via backpropagation [59]. Non-linear behaviour is introduced via acti-
vation functions such as Rectified Linear Units (ReLU) in Eq. (14). When
considering one neuron with input x; and the bias b, the output y is
calculated according to Eq. (15).
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temperature dependent flow stress of normalized AlSI1045
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Fig. 7. Stress-strain curves measured with Gleeble 3800c (top) and
SHPB (bottom).

y= ReLU(Zwixier) (14)
i=1
. x,&x >0
withReLU(x) = {O,&x -0 (15)

The chosen network structure consists of an input layer with two
neurons. One is used for the cutting velocity and the other for the uncut
chip thickness. Two hidden layers and an output layer with one neuron
are trained. Only two hidden layers were chosen to keep the training
parameters at a manageable range considering the size of the dataset. As
a pre-processing step, the obtained data was standardized. Despite
choosing a lean FFNN for a reduction of trainable features, the risk of
overfitting is a valid concern for the model. This was countered by not
only restricting the model complexity but also by using early stopping
based on validation loss. To gain further insights in the models perfor-
mance, a sobel sensitivity analysis is conducted, to quantify the effect of
input features on the output of the neural network.In addition, 10 fold
cross validation was performed, which is a resampling technique used to
evaluate the generalization ability of the models. Averaging the per-
formance across all folds enables the estimation of the models accuracy.

Table 5
J-C parameters for C45 determined by material testing.
A B n C m
331 614 0.26 0.07 1.19
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Bootstrapping with 1000 iterations is introduced to all models to esti-
mate the uncertainty of the applied metrics by sampling with replace-
ment from the dataset.

When selecting AI approaches for regression tasks, it is argued that
linear or polynomial regression models may outperform more complex
methods when working with smaller datasets. For this reason, both
linear regression and polynomial regression models of degree 2 and 4
were considered for a comparison in this study. While polynomial
regression offers a more interpretable and theoretically grounded
approach, higher-order models still require a substantial number of
training data points. As highlighted in Eq. (16), the number of trainable
features n depends on the degree of the polynomial g and the dimension
of the input parameters d.

( d+ g)
4
To ensure robust generalization, it is recommended that the size of
the training dataset significantly exceed the number of trainable pa-
rameters. Under this point of view, the practical advantage of poly-

nomial regression especially at higher orders diminishes when
compared to the Al models presented in this work.

n= (16)

3. Results and discussion
3.1. Determined J-C Parameters

The stress strain curves resulting from compression tests are shown
in Fig. 7 (top) and the stress-strain curves of the SHPB tests are shown in
Fig. 7 (bottom).

When an experiment is performed at room temperature and at
reference strain rate, the second and the third terms of Eq. (1) become 1
resulting in Eq. (17) which can be transferred into Eq. (18).

o= (A + Be) an

Ine— A) =InB + nlng, (18)

The yield stress A can directly be obtained from the experimental
results at reference temperature. This leaves two unknown parameters B
and n from Eq. (4). This mathematical problem can be approached by
linear regression when calculating In(c - A) over Ing, where n becomes
the slope and B the offset [60]. Here, the least squares method is applied
which minimizes the sum of squared residuals for each data point. Then
Eq. (19) and Eq. (20) result for calculating n and B respectively.

Y =X - y)
> (i — X)z

n= 19

B=y-nx (20)

Without considering thermal softening and therefore neglecting the
stress strain curves from compression testing under temperatures un-
equal to room temperatures, Eq. (1) results in Eq. (21) which can be
transferred to Eq. (22). By now, applying another linear regression the
strain rate dependency coefficient C can be determined [61].

o= (A + Bsg){ncm(iﬂ (21)

R0)

At this point, the only unknown variable is the thermal softening
component m. To determine m, the compression test results are evalu-
ated. When these tests are performed at reference strain rate, Eq. (1) is
simplified and can be written as Eq. (23), which is solved for m.

c

—_— 22
A+Bsg 22)
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determined process forces by FEA
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Fig. 8. Exemplary force signals for a 3 mm wide cutting edge at v. = 200 m/
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As aresult, the J-C parameters for AISI 1045 determined by material
testing can be obtained from Table 5.

(23)

3.2. Comparison of measured and simulated process forces

For simulating orthogonal cutting of AISI 1045, the software
DEFORM 3D V13.1 was used with the above determined J-C parameters
values. A hybrid friction model based on Zorev with a coulomb friction
factor u= 0.25 [41] was chosen. The tool was modelled as rigid. Insights
in the simulation and the resulting force can be determined from Fig. 8
for the cutting velocity 200 m/min and uncut chip thickness 0.1 mm.

The corresponding cutting experiments were conducted on an EMAG
VLC250 vertical drilling machine. The dynamometer in use is a Kistler
type 9129 A with a range of —10-10 kN and mounted on a custom made
VDI40 tool holder. A multi-channel charge amplifier Kistler type 5080
was used. Lathe is a highly dynamical process which is why the dynamic
behaviour of the dynamometer and the charge amplifier needs to be
determined to allow for a reasonable measurement of the forces and the
resulting evaluation of the measurements. Thus, an impact testing was
performed in advance of the experiments to determine the frequency
response function (FRF). Simcenter SCADAS by Siemens is used for this

CIRP Journal of Manufacturing Science and Technology 65 (2026) 163-178

task where an impact hammer is chosen as the reference and the output
of the charge amplifier is the input signal for determination of the FRF.
The bandwidth and spectral lines are 3276.8 Hz and 2048 respectively,
which leaves the acquisition as 0.625 s. The tip of the tool was chosen as
the excitation point of the structure. The results of the analysis are
shown in Fig. 9. Due to the acceptable setup of the measurement chain,
measurement errors due to vibration were not considered in further
evaluations.

The results of the cutting experiments as well as the simulations are
shown in Fig. 10, where the cutting force F; and the feed force F is
represented by the z-axis.

The experimental results reveal that both forces increase with
increasing cutting depth and slowly decrease with larger cutting ve-
locities but the surfaces show nonlinear trends, especially in the feed
force, where a sharp rise is observed at higher feed rates and lower
cutting velocities. In contrast, the FEA results reproduce the general
increase of forces with feed but display more linear surfaces and less
variation dependend on the sliding velocity. This indicates that the
determined J-C parameters do not fully capture the material behaviour
in cutting processes. In addition, a strong force offset is noticeable for
both directions. To further give insights into the dependence of cutting
force and feed force on the cutting velocity and feed, the feed of 0.1 mm
with variable cutting velocities and further the cutting velocity of
150 m/min with variable feed is selected for further evaluation and
plotted in Fig. 11.

Here, it becomes clear that the trend of decreasing cutting force with
increasing cutting velocity at a cutting depth of 0.1 mm was captured by
the simulations, although not as pronounced as in the experiments. It
remains difficult to attribute this trend to a single cause. However, the
parameter C of the J-C model influences the flow stress with increasing
cutting velocity, an effect that is superimposed by thermal effects and
the parameter m, since higher cutting temperatures are generally
observed with increasing cutting velocity. For a constant cutting velocity
of 150 m/min, the cutting forces increase linearly in both the simula-
tions and the experiments. When fitting a line via least squares through
the cutting force values, the slope is determined as 8260 N/mm and
6318 N/mm for the simulations and the experiments respectively. A
23.5 % discrepancy in the slope values shows, that the error is not solely
due to an initial offset of the values but rather arises from a complex
combination of multiple influencing parameters. The underestimation of
the feed force is a common phenomenon in metal cutting simulations
and is not unique to this study. Despite good agreement at a cutting
velocity of 150 m/min and a cutting depth of 0.06 mm, the simulation

Frequency Response Function (FRF) of measurement chain

15
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10 { —— Yy-direction
—— z-direction

-30

500 1000

1500 2000

Hz

Fig. 9. FRF of the measurement chain containing the dynamometer and the charge amplifier.
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Comparison of force values for cutting depth of 0.1 mm
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Fig. 11. Comparison of obtained forces for cutting depth of 0.1 mm (top) and cutting velocity 150 m/min (bottom).

rake fage

Fig. 12. Microscopic images of the cutting edge after conducting the
experiments.

could not accurately capture the trend in feed force increase with higher
cutting depths and the model did not register a decrease in feed force
with higher cutting velocities. The later could be explained by the
missing dependency of the coloumb friction coefficient on cutting ve-
locity as studied in [62], where a lower friction coefficient is observed
with increasing relative velocity which then results in lower process
forces. This analysis is further supported by findings in [63], where
simplified friction models and edge radius effects were identified as
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influencing factors for low feed forces in simulations. Despite having
identified this influence, it remains an issue for future simulations due to
missing available models for each coating and work matetrial combi-
nation.This again provides a foundation why grey-box modelling is a
logical solution to tackle these

issues all at once in predicting accurate forces over a large range of
cutting conditions. The error plot over all parameters is later shown in
Fig. 13 onwards, as the difference of experimental and simulated values
is depicted by the training and test data.

The geometry of the cutting insert was assessed after the cutting
experiments to determine whether tool wear could have influenced the
measured forces during the experiments. No noticeable changes in cut-
ting edge radius exist. No coating delamination took place during the
experiments, which could have potentially caused different friction
properties, and thus cutting forces. Fig. 12 shows the cutting edge after
conducting the experiments and underlines why tool wear is not
considered in this study.

This leaves the difference between the plots in Fig. 10 to be captured
by the Black-box models with a regression approach in accordance with
the chosen grey-box architecture from chapter 2.4. Thus, the goal of the
function fp is to approximate these errors.

3.3. Evaluation of the proposed grey-box model

Given the results in Fig. 10, it is advantageous to apply regression
algorithms that are able to capture the non-linear behaviour. The results
of applying Support Vector Regression, Random Forest, Neural Net-
works and the XGBoost algorithm for this task is shown in Fig. 13. From
the training data displayed in Fig. 13, the difference between simulation
and experiments becomes clear.

From a first visual inspection, it can be concluded that all imple-
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Table 6
Evaluation metrics for implemented regression models with 95 % confidence intervals (CI).
SV RF XG-Boost FENN Lin. Pol. Reg Pol. Reg
Reg. k=2 k=4
MAE u F. 7.12 6.64 5.65 11.10 20.41 10.68 7.81
Fy 7.60 8.01 9.03 13.85 30.72 12.84 9.85
CL F, 4.97 4.43 3.62 9.04 13.84 8.03 5.12
Fr 5.02 5.79 5.03 11.36 19.44 8.80 6.00
ClL, F, 9.52 9.88 7.96 13.50 27.87 13.20 11.06
Fy 10.86 10.70 10.54 16.63 43.58 17.37 14.24
MSE u F. 82.34 86.79 60.24 295.41 706.92 152.95 112.54
Fy 104.65 96.24 116.07 512.87 1820.6 276.38 197.92
CL F. 37.37 30.17 23.79 181.10 335.20 91.40 39.89
Fr 40.46 43.11 63.39 287.13 776.77 130.84 63.09
CIL. F. 146.06 187.34 104.56 450.76 1161.3 223.19 208.35
Fy 186.22 177.14 176.06 787.62 3057.6 459.69 369.91
R? F, 0.975 0.973 0.982 0.891 0.761 0.9472 0.961
Fr 0.994 0.983 0.984 0.945 0.737 0.959 0.971
MAPE u F. 0.0246 0.023 0.0191 0.0403 0.0821 0.0394 0.0311
Fy 0.38 0.2963 0.3502 0.2515 2.128 0.631 0.7351
CL F, 0.0180 0.016 0.0133 0.0321 0.0517 0.0297 0.0188
Fr 0.0402 0.0877 0.0669 0.0938 0.3692 0.082 0.0862
CIL. F, 0.0317 0.031 0.0251 0.0490 0.1168 0.0492 0.0465
Fy 0.9651 0.5698 0.7821 0.4532 4.9552 0.165 1.8246
outperformed all other models for F, (7.60), indicating the most accu-
Table 7 dicti RF also showed strong performance, with
Results of sobel sensitivity analysis for neural network across 10 folds. ra.te pre %C 1005 on average. . . &P . S
slightly higher MAE values, while FEFNN and linear regression exhibited
S1ve(u,0) Slay(u,0) STvc(u,0) STay (p,0) larger errors, particularly for F;. The 95 % confidence intervals further
F. 0.874, 0.155 0.299, 0.056 0.411, 0.080 0.283, 0.076 indicate that XGBoost predictions are more stable for F,, with narrower
Fr 0.794, 0.131 0.386, 0.069 0.376, 0.130 0.303, 0.076 intervals compared to the other models.

mented machine-learning algorithms were able to capture the non-
linear behaviour of the errors made by the FEA due to the algorithm’s
adaptability to the training data samples, which are displayed in dark
blue. This is especially true for the region with low cutting depth and
velocity. The fitting curve resulting from training is shown in each 3D
plot. Notably the algorithms using tree-structures like XGBoost and
Random Forest feature plateau like areas which centre around a training
data sample. The SVR and Neural Network on the other hand feature a
more consistent fitting curve. The feature importance calculation of
XGBoost revealed 0.8682 / 0.7965 for v. and 0.2035/0.1318 for a,
depending on F, / Fy.

The good approximation of the AI algorithms when it comes to un-
seen data is of great interest. The differences between the prediction on
that data (blue crosses) and the true data (orange dots) is notable,
although they mostly lie close together. When considering that a perfect
model would lead to no discrepancy between the blue crosses and or-
ange dots, a metric is necessary to capture the difference between them
over the entire training dataset. To extract meaningful information over
the regression capabilities of the different algorithms the metrics mean
absolute error (MAE), mean squared error (MSE) and mean absolute
percentage error (MAPE) are calculated and averaged over 1000 boot-
strap resamples to provide insights in the variability of model perfor-
mance due to random sampling. R? is given as point estimate. The results
are listed in Table 6. For comparison, the MAE and MSE of the white-box
model were 149.65 and 30748 for Fy and 272.31 and 77406 for F..

For MAE, XGBoost achieved the lowest values for F, (5.65) while SVR

In terms of MSE, XGBoost again showed the lowest error for F,
(60.24), though RF slightly outperformed it for Fy (96.24). FFNN and
linear/polynomial regression had substantially higher MSE values,
reflecting occasional large deviations from observed values. The confi-
dence intervals confirm that XGBoost predictions are most reliable for
F., whereas the other models lead to larger errors.

The R? values were generally high across most models, with XGBoost
achieving 0.982 for F, while SVR achieved 0.994 for F, indicating good
regression capabilities. RF also performed well, while FFNN and linear/
polynomial regression showed lower R? values.

Finally, MAPE results align with these findings. XGBoost had the
lowest mean absolute percentage errors (0.0191 for F, and 0.3502 for
Fy), indicating the smallest relative errors. The other models show larger
MAPE, reflecting less accurate predictions. MAPE values for F; are
consistently higher, as predictions near zero at low g, inflate the relative
error of individual cases and disproportionately affect the metric.

To further investigate the internal behaviour of the FFNN, a sobel
sensitivity analysis was conducted, showing that the input variable v,
accounted for the majority of the output variance.

For F., the variable v. shows the strongest first-order effect
(S1v,=0.874 + 0.155), indicating that it explains the majority of the
output variance on its own. In contrast, a, has a relatively small first-
order effect (STa,=0.299 + 0.056), suggesting it plays a secondary
role. The total-order indices confirm this pattern: STv.= 0.411 + 0.080
for v, and STa,= 0.283 + 0.076 for a,. These values indicate that while
a, contributes some variance through interactions, the output is pre-
dominantly controlled by v.. For Fy, the importance of v, remains high

Table 8
Results of permutation for the trained models.
sV RF XG-Boost FFNN Lin. Pol. Reg Pol. Reg
Reg. k=2 k=4
F. Ve 0.0351 1.8520 1.8609 1.4333 1.5841 1.8276 1.8611
ap 0.0132 0.3355 0.3551 0.2276 0.0362 0.3691 0.3967
F, Ve 0.0209 2.2742 2.2242 2.0384 1.6393 2.0918 2.1056
a, 0.0012 0.5282 0.5132 0.2980 0.1726 0.5880 0.6084
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(S1v,=0.794 + 0.131), though slightly reduced compared to F,. The role
of a, is stronger than in the previous case (S1a,=0.386 + 0.069),
reflecting a greater direct contribution. The total-order indices again
show that interactions are small: STv.= 0.376 = 0.130 for v. and
STa,= 0.303 + 0.076 for a,.

In this procedure, R? of the trained model is first computed. Then, for
each feature, its values are randomly shuffled across the test set while all
other features remain fixed, and the resulting reduction in R? relative to
the baseline is recorded. The mean of these reductions over all repeti-
tions is reported as the permutation importance. For simplicity, inter-
action terms of polynomial regression are not listed.

Based on the above listed metrics from Table 6, XGBoost is chosen to
predict F; while for F; SVR is a good trade of between the metrics. These
algorithms are suited for the regression task, which aims to capture the
non-linear errors made by the simulation. The study indicates that
ensemble tree-based methods are suited for this task, as they can
effectively capture the nonlinear relationships between the input pa-
rameters and the process forces, while also being robust to noise in a
relatively small dataset. Support Vector Regression (SVR) performed
moderately well for Fy, reflecting its ability to handle nonlinear prob-
lems in low-dimensional spaces. It was noted that linear and polynomial
regression mostly had a worse performance than AI approaches. In
addition, out of the AI algorithms, the Neural Network performed the
least favourable, as they usually require larger training sets to avoid
overfitting and to exploit their ability for modelling complex non-
linearities. Linear regression performed the worst, which confirms that
the relationship between cutting parameters and process forces is
strongly nonlinear and cannot be captured with a linear model. With an
MAE of only 5.65 N / 7.6 N over all conducted experiments and simu-
lations for F. and Fy, the proposed grey-box model resulted in the
reduction of mean absolute error and mean squared error of 97.9 % and
99.9 % for F, and 94.9 % and 99.7 % for F; respectively. When deter-
mining the deviation from predicted to real modelling error and calcu-
lating the resulting error of the grey-box model to the measured forces,
the mean error and standard deviation of the grey-box model is 1.3 %
and 0.1 respectively. Thus, the proposed grey-box model is superior in
predicting the mechanical loads over the white-box model.

In this study it became clear that even when determining the
Johnson-Cook constitutive model for a metal with state of the art
equipment such as a Gleeble 3800c for precise compression tests and
Split-Hopkins-Pressure Bars for high strain rate material testing, the
achievable accuracy of predicting mechanical loads of simulations
employing this model can be further improved by a grey-box model.
However, the uniqueness of the JC parameters is a clear benefit and
therefore omits solving an optimization problem of the inverse identi-
fication of model parameters. Of the applied algorithms which make up
the black-box part of the proposed grey-box approach, XGBoost and SVR
are found to be the most precise. Although, the Neural Network features
a plane which resembles the one from SVR, the predictions where the
worst when comparing the mean absolute error and mean squared error.
A possible cause could be the limited training dataset compared to the
amount of trainable parameters. With reference to the simulated pre-
dictions of mechanical loads, it has to be noted that all grey-box models
delivered better prediction results than the white-box models. The ap-
plications of linear and polynomial regression led to an increase in
prediction errors over the chosen Al-algorithms, proving the advantages
of the presented modelling techniques.

4. Conclusion
This study focuses on the improvement of mechanical load predic-

tion in cutting simulations for a wide range of process parameters. The
main conclusions can be drawn as follows:
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e The accuracy of mechanical load prediction in metal cutting simu-
lations using FEA heavily depends on the material model used to
represent flow stress under high strain rates and temperatures. While
the Johnson-Cook model is widely used, it performs poorly outside
its calibration range, leading to discrepancies between simulated and
measured process forces.

e To address this limitation, a grey-box modelling approach was
developed by first calibrating the Johnson-Cook model for normal-
ized AISI1045 using state of the art material testing equipment such
as Split- Hopkinson pressure bar and high-temperature compression
tests on a Gleeble 3800c.

e A comparison between 2D orthogonal cutting simulations and cor-

responding experiments across 110 test conditions revealed

nonlinear discrepancies between simulated and experimentally
determined process forces. Machine learning algorithms are known
to capture non-linearities efficiently, which is why a grey-box
framework is implemented to tackle the issue described above. The
algorithms Random Forest, XGBoost, Support Vector Regression and

Neural Networks were implemented alongside linear and polynomial

regression.

Supported by the lowest MAE, MSE and MAPE XGBoost captured the

errors of modelled cutting forces the best, while Support Vector

Regression is determined suitable for predicting these errors for the

feed force. At the given task, machine learning algorithms were su-

perior to linear and polynomial regression.

The grey-box model achieved a mean error of 1.3 % and a standard

deviation of 0.1 in cutting/feed force prediction. This demonstrates

that the combination of physics-based models and data-driven
models into grey-box models significantly improves prediction ac-
curacy, even with limited data.
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