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ABSTRACT

Manufacturing systems involve multiple, often conflicting, objectives referred to as performance indicators,
including production efficiency, resource utilization, energy consumption, carbon emissions, and waste reduc-
tion, which correspond to different dimensions of the system, such as time, energy consumption, and waste
generation aspects. Digital Twins have emerged as a powerful tool, integrating data-driven simulation and
analysis of complex systems, such as manufacturing systems. Process Mining (PM), along with data analysis,
enables the automatic discovery of executable discrete-event simulation models directly from production event
logs. These data-driven models are the key to enabling near-real-time Digital Twins of discrete-event systems.
Stochastic Petri Nets (SPNs) offer a robust and intuitive modeling formalism well-suited for representing the
extracted models derived from PM, particularly in the context of manufacturing systems. However, standard
SPNs face challenges in incorporating dimensions beyond time, such as energy consumption and waste gener-
ation. This limitation often results in suboptimal decision-making and reduced system efficiency. In this paper,
we propose a Comprehensive Digital Twin (CDT) framework that employs Multi-Flow Process Mining (MFPM) to
automatically extract Multidimensional Stochastic Petri Nets (MDSPNs) as underlying models of manufacturing
systems. To support the modeling and simulation of extracted MDSPNs, we introduce and utilize our tool,
MDPySPN. The CDT framework supports multi-objective decision-making for various performance indicators of
the system. Through an illustrative case study of hot forging process chains, we showcase the development of
CDT for time, energy consumption, and waste generation dimensions. We further illustrate the utilization of CDT
to analyze and support decision-making to enhance the case study system according to its objectives.

1. Introduction

utilizes data analytics and advanced technologies to facilitate informed
decisions and enable more adaptive responses to market changes and

Manufacturing is moving from single-objective optimization (such as customer demands, enhancing efficiency, flexibility, and

throughput, cost) to multi-objective operation, including energy effi-
ciency, carbon-footprint reduction, and waste minimization. This move
is driven by the policy and market pressures, such as the European
Climate Law [1] mandating at least 55% GHG by 2030, and climate
neutrality by 2050 [2], the 2024 revision of the Industrial Emissions
Directive, and the U.S. DOE Industrial Decarbonization Roadmap [3].
These objectives reflect different system dimensions, and effective
decision-making depends on understanding the system's behavior across
all these dimensions. Data-driven technologies are pivotal in advancing
Smart Manufacturing Systems (SMS), enabling industries to improve
operational efficiency, optimize processes, and drive innovation [4].
SMS refers to an interconnected, adaptive production system that
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cost-effectiveness in manufacturing [5]. SMSs leverage Internet of
Things (IoT) technologies, artificial intelligence (AI), and machine
learning (ML) algorithms to utilize extensive datasets, enabling
real-time insights, operational optimization, enhanced efficiency, and
increased productivity [6]. This digitalization shift in SMSs aligns with
the Industry 4.0 paradigm, which focuses on networked cyber-physical
production systems that connect machines, logistics, and production
resources through the Internet across the value chain [7]. Beyond
decarbonization and resource efficiency, Industry 5.0 complements the
Industry 4.0 paradigm by emphasizing human-centricity, sustainability,
and resilience, positioning industry as a resilient provider of prosperity
beyond purely technology-driven efficiency goals [8]. In manufacturing
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systems, resilience has been defined as the capability to recover system
functions after partial damage to lead to successes from failures [9].

In this context, Digital Twins (DTs) offer a dynamic platform for
data-driven simulation of real-world systems in (near) real-time. DTs
accurately replicate physical systems, enhancing process monitoring,
analysis, and control in manufacturing systems [10]. The constituent
parts of a DT consist of (1) a real-world entity, which can be an indi-
vidual machine, a cluster of machines, or an entire production system;
(2) a data-driven simulation model that incorporates algorithms that
define the simulation logic, supported by ML and data mining tech-
niques for extracting models from data, along with their corresponding
software implementations and connectivity infrastructure, such as IoT
systems; and (3) the bidirectional (near) real-time data flow that is
generated by the real-world entity. Data plays a vital role in a DT,
directly influencing the effectiveness of its modeling objectives [11].

Model extraction from data, as a key enabler of DTs, is essential for
automatically capturing the actual behavior of complex systems without
relying on manual modeling, which is often time- and cost-consuming
and subject to errors, especially when systems change. Process Mining
(PM) enables the automatic modeling of the underlying discrete-event
behavior of these systems from event logs [12]. Event logs, which re-
cord the execution of activities over time, are the standard form of data
collected from SMSs [12]. Stochastic Petri Nets (SPNs) serve as a
well-suited modeling formalism for representing the extracted models
from PM, as they can represent and analyze concurrency, timing, syn-
chronization, and priority in processes [13] in discrete event systems
such as SMSs. However, standard SPN formalism focuses only on the
system's progression over time and cannot capture the system's behavior
over other dimensions, such as energy and waste. This limitation results
in an incomplete representation of the system, reducing the effectiveness
of decision-making and constraining holistic optimization.

To enable the automated extraction of underlying multidimensional
models of a system from its generated event logs, we developed an
innovative PM methodology, termed Multi-Flow Process Mining
(MFPM) [14]. MFPM extends standard PM by separately extracting
process flows that correspond to different system dimensions. In our
recent work [15], we proposed the Comprehensive Digital Twin (CDT)
framework, where we introduced a methodology to integrate the
extracted SPNs from the MFPM of different dimensions into a single
Multidimensional Stochastic Petri Net (MDSPN). The final unified model
captures system behavior across multiple dimensions in a single MDSPN
formalism.

In this paper, we wrap up our recent research and present the com-
plete methodology for automatically extracting MDSPNs of
manufacturing systems, which serve as the foundation for developing
CDTs. Furthermore, we discuss potential methodologies for enhancing
decision-making in SMSs using their corresponding CDTs. Finally,
through a case study on a hot forging system, we demonstrate the CDT
development process and showcase how CDT supports multi-objective
decision-making to improve system performance across its various
operational goals.

We structured the paper as follows: In Section 2, we present the
background, including an overview of DTs in SMSs, modeling and
simulation within DTs, and the role of PM and relevant modeling for-
malisms. We further introduce MFPM and discuss formalisms capable of
capturing multidimensionality. In Section 3, we introduce the concept of
CDTs, detailing MDSPNs, data collection and preprocessing re-
quirements, supporting data ontologies, and the MFPM methodology.
We also describe the MDPySPN simulation tool and outline how CDTs
support multi-objective decision-making. In Section 4, we present the
case study on a hot forging system, including system description, data
preparation, model extraction and construction, simulation setup, and
validation, followed by example multi-objective decision-making sce-
narios. We discuss the key challenges in developing multidimensional
DTs in Section 5. Finally, in Section 6, we conclude the paper with a
summary of contributions and future directions.
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2. Background

In the following subsections, we provide the foundational context for
our research. For this, we review (i) DTs in SMSs; (ii) modelling and
simulation approaches in DTs of SMSs; (iii) the role of PM in DTs, (iv)
modelling formalisms for presenting the discovered model by PM; (v)
multidimensional extensions of PM; and (vi) modelling formalisms
capable of representing multidimensional behavior.

2.1. Terminology

To avoid ambiguities stemming from different DT- and PM-related
literature, we provide descriptions of the terms that we consistently
use throughout the paper. Specifically, we adopt the following
definitions:

e Data refers to raw, time-stamped records captured within SMSs by
sensing and logging infrastructures (including machine signals,
controller traces, and system records) before they are organized into
an analysis-ready structure [16].

Data model refers to an abstract representation that defines how
data is structured, organized, stored, and related within a system.
Information refers to data that has been structured under a pre-
defined data model so that it can be interpreted and queried
consistently. In our paper, information corresponds to validated and
structured event data organized as an event log (explained in Section
2.4.1) [17,18].

Knowledge refers to actionable “know-how” extracted from recor-
ded executions. in this paper, knowledge corresponds to an execut-
able model. PM and data analysis are explicitly positioned as a means
to extract such knowledge from event logs [16].

Digital refers to information encoded in a machine-interpretable
form. Following ISO 23247-1 [19], we use digital representation
to mean the corresponding data element that captures a set of
properties of an observable manufacturing element.

Digital model refers to a computational model of a system in the
digital representation that is not necessarily synchronized automat-
ically with the physical system. In manufacturing, DT classification
distinguishes between a Digital Model (no automated data ex-
change), a Digital Shadow (automated one-way data flow), and a DT
(automated bidirectional data exchange) [20].

Data-driven model refers to a digital model whose structure and
parameters are inferred from observed execution data. In our work,
the model structure is automatically discovered from event logs via
PM and data analysis to obtain an executable simulation model [18,
21].

Digital Twin, as defined in ISO 23247 [19], is realized when the
executable data-driven model is synchronized with the observed
system through automated data exchange, thereby serving as a
practical behavioral core for monitoring and what-if analysis. In
manufacturing, DT classification distinguishes between a Digital
Model (no automated data exchange), a Digital Shadow (automated
one-way data flow), and a DT (automated bidirectional data ex-
change) [20]. We use “DT” in the remainder of this paper to denote
the bidirectional coupled case.

2.2. Digital twins in smart manufacturing systems

Digitalization in manufacturing offers organizations the opportunity
to achieve increased productivity and efficiency [22], while addressing
challenges such as rapid changes in demand, heightened global
competition, and the need for sustainable practices [23]. SMSs collect
operational data through sensors and communication technologies. This
enables the use of advanced intelligent systems to enhance their per-
formance, such as operational efficiency, increase production rates, and
reduce errors and waste in manufacturing [24]. DTs bridge these
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technologies by utilizing the collected data from the system to develop a
real-time virtual copy of the system, and make it possible to monitor the
system continuously [25]. The term DT was first introduced by Michael
Grieves in 2003 as a “digital equivalent to a physical product” [26].
Although the term DT is widely used, its meaning is not uniform across
domains [20]. The “Twin” notion has also been the subject of debate, in
part because any computational representation is necessarily an
abstraction and cannot fully “mirror” the real system [27]. Definitional
differences largely reflect whether and how the digital representation
must exchange data with its physical counterpart. Some authors
explicitly require bidirectional data exchange, describing it as a “two--
way data flow” that allows changes in either the physical or digital
entity to propagate to the other. For instance, Friederich et al. detailed a
DT framework for SMSs where they explicitly adopt a DT definition that
requires bidirectional (“two-way”) data flow [11].

In parallel, Bi et al. [28] have argued that the commonly used DT
concept (“DT-I") can be insufficient when the objective is lifecycle-level
information integration. Bi et al. define DT-I as mapping a physical
object to a digital model so that it can be modeled, monitored, and
controlled, but note limitations for lifecycle support under continuous
change. They therefore propose the Digital Triad (DT-II) concept and the
Internet of Digital Triad Things (IoDTT) as an enterprise-architecture
solution for lifecycle information integration in digital manufacturing
enterprises. At the same time, it is important to distinguish DT research
from earlier product and lifecycle data modeling. Prior work established
database-driven approaches for product data model formulation [29],
formal product data representations using EXPRESS/EXPRESS-G and
extensions to represent imprecision and uncertainty [30], and database
design strategies for engineering/product databases, including the
Instance-As-Type (IAT) dependency and methods to control it to avoid
inconsistency [31]. In contrast, the DT pipeline proposed in this paper
targets operational, process-level behavior. We automatically derive an
executable discrete-event model from runtime event logs and use it for
simulation-based what-if analysis and decision support, rather than
redefining product or lifecycle information models.

As shown in Fig. 1, developing a data-driven DT begins by identifying
the relevant entities (machines, lines, control elements) and setting up
pipelines that continuously collect diagnostics, logs, traces, and operator
inputs from sensors and the factory network. The data collected is in-
tegrated and stored as structured event logs (information) in a consistent
format. Because model accuracy depends on data quality, the next step is
data validation: running validity checks, filtering noise, handling
missing values, and applying anomaly-detection methods (supervised or
unsupervised) to flag deviations from normal operation [33]. The
workflow then performs knowledge extraction: (i) event detection and
labeling using ML methods such as classification [34] or clustering [35],
with domain experts verifying the labels; and (ii) process discovery from
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event logs to derive an initial, unified simulation model [36]. This model
is connected to live data streams so that it updates automatically as the
system changes. The twin is validated continuously by comparing its
outputs with predefined Key Performance Indicators (KPIs) (such as
throughput rate, output counts). After validation, we run simulations
and what-if analyses to identify improvements, and we compare the
outcomes with the same KPIs to provide actionable guidance for opti-
mizing the SMS.

Despite rapid progress, most DT deployments in SMSs are still limited
to one or two systems’ objectives (such as time and energy) rather than
multidimensional twins that jointly couple different system dimensions
into a single coherent model. Our focus in this paper is operational
executable behavior modeling from the system’s event data to support
decision-making, rather than lifecycle-wide enterprise information
integration in the DT-II [28] sense.

2.3. Modeling and simulation within digital twins of manufacturing
systems

Simulation is the behavior replica of a real-world process or system
over time by generating and analyzing an artificial history using a
representative model [37]. In the context of Digital Twins, simulation
forms the computational backbone that enables prediction, optimiza-
tion, and informed decision support. Simulation studies are typically
categorized into four approaches: System Dynamics (SD), Discrete-Event
Simulation (DES), Agent-Based Simulation (ABS), and Hybrid Simula-
tion (HS). Each approach has distinct strengths and application areas,
providing unique insights into systems. Following, we detail each
simulation paradigm for DT models and review recent research contri-
butions of DTs in SMS for each approach. SD captures the behavior of
complex systems and represents systems where state variables change
continuously over time using differential equations. SD is ideal for
analyzing physical processes, fluid dynamics, and engineering systems
[38]. DES models the systems as sequences of instantaneous events, each
event triggering a discrete change in the system’s state. DES is particu-
larly useful for systems with distinct, individual events, such as pro-
duction lines and logistics networks [39], and is extensively utilized for
most production planning and control tasks [40]. ABS models systems as
populations of autonomous agents (such as machines, operators, or
products), each with distinct behaviors and attributes, whose decisions
and interactions contribute to the system’s overall behavior. The ABS
method is particularly useful for studying systems where individual
components operate autonomously but collectively influence the overall
system performance [41]. HS integrates two or more simulation ap-
proaches, such as DES, SD, and ABS, into a single modeling environ-
ment, enabling the analysis of complex systems that exhibit both
discrete and continuous behaviors. The HS approach provides a
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Fig. 1. Framework for data-driven Digital Twins of smart factories [32].
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framework for capturing the multifaceted dynamics of real-world sys-
tems [42].

Choosing the proper simulation modeling paradigm is essential to
model the system’s required aspects while leaving out unnecessary de-
tails, thereby achieving a balance between oversimplification and over-
complexity in a DT. Manufacturing systems are fundamentally event-
driven [43], with state transitions that occur at discrete points of time
in response to events such as part arrivals, operation starts and com-
pletions, failures, and subsequent repairs. Cause of the ability of DES to
accurately present the event-driven processes, it is a frequently preferred
approach for developing DTs of SMSs [44]. For instance, to investigate
the application of DES in DTs for SMSs, Magnanini and colleagues [45]
implemented DES in a DT to support short-term, multi-product pro-
duction planning in the railway sector. Magnanini et al. introduced a
framework that couples a DES-based DT with a multi-objective optimi-
zation engine, enabling the generation of multiple best-possible pro-
duction schedules and improving shop-floor flexibility and overall
operational efficiency. In the same context, Tsinarakis et al. [46] created
a Petri-net-driven DES-based DT for a steel-reinforcement plant. The DT
runs in both offline and online operations, enabling dynamic what-if
analyses, performance prediction, and real-time monitoring and man-
agement of industrial systems, enhancing operational efficiency and
responsiveness. In this paper, we concentrate on developing DES-based
DTs.

2.4. Process mining for digital twins

Many systems, including SMSs, record all pertinent events in a
structured format, typically as logs, which are also referred to as event
logs [47,48]. In SMSs, the events required to construct an event log are
often distributed across enterprise systems—such as Manufacturing
Execution Systems (MES) and Enterprise Resource Planning (ERP)—and
shop-floor control and sensing infrastructures, including Programmable
Logic Controller (PLC) and sensor networks. Due to their heterogeneous
structure, granularity, and semantics, these data records are commonly
transformed, aligned, and integrated into a unified event-log format
prior to process discovery [16]. PM enables the automatic extraction of
the system’s process model, directly from event data generated by SMSs
[49]. PM consists of three categories: (i) Process discovery, (ii)
Conformance checking, and (iii) Process enhancement. Process discov-
ery is the automatic extraction of process models from the event logs.
Discovery tools and algorithms, such as the alpha algorithm and heu-
ristic miners, enable organizations to visualize and understand their
operational processes in detail [18]. Conformance checking compares a
process model with its event log to identify differences and determine
how closely the model matches the actual process execution using four
main quality dimensions: fitness, simplicity, precision, and generaliza-
tion [50]. Process enhancement builds on the insights gained from dis-
covery and conformance checking and refines the model based on
specific performance or goals [51].

In this paper, we mainly focus on the process discovery techniques
along with the data analysis to extract the DT’s simulation model using
event log data. For instance, Friederich et al. [52] showed that PM
discovery techniques can be used to extract reliability models directly
from the event and state logs generated by SMSs. Friederich et al.
showcased their approach through a case study on a flow shop
manufacturing system with parallel operations. Similarly, Bemthuis
et al. [53] introduced a proof-of-concept method to extract ABS models
from event log data using PM. Bemthuis et al. employed Schelling's
segregation model as an illustrative example and confirmed that ABS
models can be extracted utilizing PM techniques.

Furthermore, PM enables the automatic updating of the system
model in response to changes in the real-world system, and keeps the DT
synchronized and accurate for predictive analysis and informed
decision-making [54]. In safety-critical domains such as safe autonomy,
Flammini et al. [54] show that a DT equipped with PM continuously
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contrasts real-time traces with the reference model to flag anomalies
early and trigger adaptive responses, thereby reducing downtime and
enhancing operational safety. In the same context, Kumbhar et al. [55]
investigate a data-driven method that combines data integration, PM,
and analytics based on factory physics to identify bottlenecks. Kumbhar
et al.'s approach utilizes data from multiple sources, including produc-
tion planning, process execution, and asset monitoring, to generate an
event log that feeds into PM. The generated DT is then used to identify
bottlenecks in the system.

Standard PM methodology primarily focuses on extracting the pro-
cesses and activities over time. However, relying only on the standard
PM to extract a complete system model may lead to an incomplete un-
derstanding of process dynamics, especially in complex environments
such as manufacturing systems, and thus hinders the potential process
optimization.

Literature review shows the efforts to extend PM to discover and
present system models beyond the time dimension, which are mainly
termed as "multi-perspective" or "multidimensional" PM. For instance, in
the healthcare domain, Vogelgesang and Appelrath introduced multi-
dimensional PM to analyze processes across patient factors (including
age, region, treatment type) [56], and later presented PMCube Explorer,
an OLAP-style tool that slices logs into homogeneous sub-logs for
side-by-side model comparison [57,58]. These contributions improve
visibility of the developed model by partitioning logs and comparing
variants rather than producing a single, integrated model. Further
studies extend multi-perspective analysis in different domains. Erdogan
and Tarhan propose a goal-driven framework for emergency de-
partments that combines activity, resource, and temporal views for
performance evaluation [59]. Xu et al. develop a constraint-based,
multi-perspective declarative approach inspired by openEHR for clin-
ical modelling and conformance checking [60]. Mannhardt’s thesis
systematizes multi-perspective PM across control-flow, data, resource,
time, and function dimensions [61].

From a data-engineering perspective, Bolt and van der Aalst
formalize process cubes to isolate distinct behaviors across attribute
slices, enabling comparison of performance and conformance between
process variants [62] In internal logistics, Knoll et al. use multidimen-
sional PM to support value-stream mapping and identify wasteful ac-
tivities [63]. More recently, Kroeger et al. propose a data model that
stores scenario-rich, multidimensional datasets for value-stream anal-
ysis in production networks [64]. Methodological Advancements also
target analytics. Guzzo et al. compute holistic trace embeddings that
encode multiple perspectives for clustering, classification, and anomaly
detection [65], while Sim et al. automate multi-perspective process
discovery using reinforcement learning [66]. These approaches enrich
analysis across perspectives but do not yield formal, simulation-ready
models.

Although the reviewed multi-perspective or multidimensional PM
approaches improve the representation and analysis of processes from
multiple perspectives, they rarely yield a formal model that compre-
hensively captures process behavior per dimension, such as labor effort,
energy consumption, or waste generation. As a result, these PM ap-
proaches are unable to represent cross-dimensional dependencies (for
example, how a delay in the time-oriented flow might lead to increased
energy consumption), which remain hidden when only the time
dimension is analyzed. Moreover, these approaches primarily provide
descriptive analyses and comparative views, while formal, executable
multidimensional models such as Petri Nets (PNs) [36] remain outside
their scope. Consequently, existing approaches are not directly appli-
cable for the simulation of multidimensional systems, which highlights
the need for an extension of current PM methods. Multi-perspective or
multidimensional PM approaches do not align with our conceptualiza-
tion of multidimensional models, which leads us to define the term
MFPM to distinguish our proposed methodology.
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2.4.1. Event logs

The IoT devices continuously monitor and record various operational
parameters and activities, including machine status, production level,
maintenance tasks, and system anomalies. Event logs, generated by IoT
devices, capture the various activities involved in a process. PM tech-
niques provide an accurate view of actual processes of a system, pinpoint
differences from predefined models, and identify inefficiencies [67]. An
event log EL consists of a collection of traces, where each trace (¢) is a
finite sequence of events ce £°. Formally event log is expressed as EL =
{0 |o € C}, with C representing the set of all possible traces [68]. The
formal representation of each event’s attributes is defined as E; =
(t,0,e) where:

e TimeStamp z(e;): : The exact time of the event occurrence.

e Case ID y(e;): A unique identifier of a trace that the event belongs to.

e Eventldentifier af(e;) : The type of activity that took place in the
process instance.

The events within a trace are chronologically ordered such that for
any two events ¢; and ¢; in the event log, if i < j, then t(e;) < t(gj), to
ensure a non-decreasing order of timestamps in a trace. The structure of
event logs can be extended with additional attributes depending on the
modeling needs. In Table 1, we present an example of an SMS event log
that documents the sequence of events in the production process of a
single product. The production process starts with a "New Order" and
moves through various stages, including assembling and painting. Some
events are related to a specific asset (K), which is indicated as an “Asset
ID” that informs which asset was used in that activity.

2.4.2. Modeling formalisms for representing the discovered process models

PM employs different types of modeling formalisms to represent the
discovered process models from event logs. These modeling formalisms
include imperative models, declarative models, and hybrid models that
combine both approaches [69]. Imperative models, such as PNs and
Business Process Model and Notation (BPMN) [70], define the exact
sequences of activities that must occur in a process. Declarative models,
such as Declare rules [71], set rules on how the process can behave,
without specifying every action in detail. Declarative process models are
particularly suitable for less structured processes, as they define
behavioral constraints rather than fixed sequences of activities [72]. In
contrast, most existing process discovery techniques focus on generating
imperative models, which explicitly define the control flow of the pro-
cess [72]. The main types of Imperative modeling formalisms that can be
automatically discovered from event logs are BPMN [73], process trees
[74], Transition Systems (State Automata) [75], and PNs [36], among
which, PNs are widely used formalisms for modeling and simulating
manufacturing systems [76].

Since the 1980s, PNs have been extensively applied to model SMSs
for purposes of analysis, performance evaluation, simulation, and con-
trol [77]. PNs offer a clear and visually intuitive way to represent sys-
tems, which facilitates understanding of systems’ structure and dynamic
behavior [78]. PNs are well-suited for representing the concurrent and
asynchronous activities typical in manufacturing systems since they can
model resource sharing, synchronization, and parallel operations. PNs
have been employed in areas of manufacturing modeling, from

Table 1

Event log example for a smart manufacturing system.
Time Stamp Case ID Event Asset ID
08:00:00 112 New Order NAN
08:01:00 112 Product Assembling Robot Al
08:30:00 113 New Order NAN
08:45:00 112 Product Painting Robot P1
09:10:00 110 Product Finish NAN
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individual machines and workstations up to entire production lines and
flexible manufacturing systems [79]. PNs also support the analysis of
properties in manufacturing systems, including deadlocks, state reach-
ability [80], and throughput. Furthermore, a number of simulation
tools, for instance, SNAKES [81], CPN tools [82], and PySPN [68] sup-
port the simulation of PN models, enabling performance evaluation and
what-if analysis in SMSs.

2.4.3. Stochastic petri nets

PNs are categorized into several types, each utilized for specific
modeling requirements and application domains. The classical PN (also
known as the Place/Transition (P/T) net) encompasses several exten-
sions that differ mainly in how they represent tokens, handle timing, and
manage system complexity. Including Fuzzy Petri Nets (FPNs) [83] that
integrate fuzzy logic into PNs to address uncertainty in the modeling
process, Colored Petri Nets (CPNs) [84] that extend Petri nets by
assigning colors or data values to the tokens, and Stochastic Petri Nets
(SPNs) [85] that reflect the stochastic behavior of the system activities
by transitions following a probabilistic firing time.

Besides PNs’ semantic extensions (such as CPNs and SPNs),
manufacturing-oriented PN research also employs architectural struc-
turing schemes (template-based model construction) to support scal-
ability and reuse of PN models. In particular, Zhang et al. [86] propose a
generic PN modeling scheme in which a model is first described as a
template, and application-specific models are then established as in-
stances of the template (schema/instance pattern), which reduces the
complexity of large manufacturing nets. Similarly, Wang et al. [87]
provide guidelines with templates to reduce the complexity caused by
large amounts of construct instances in Petri net models of complex
networks [87]. Importantly, these are model-construction or organiza-
tion strategies, and once instantiated, the resulting models remain
executable nets with the chosen semantics (such as SPN/timed
semantics).

SPNs are particularly useful for systems where randomness is a key
factor, such as reliability engineering. Formally, the class of SPNs fol-
lows the definition provided by [88] describes an SPN as SPN = (P, T, A,
G, my), where:

e P={Py,P,, ..., Py} represents the set of places, illustrated as circles;

e T={T,Ty, ...,T,} includes the set of transitions, each associated
with its respective distribution functions or weights, represented as
bars;

e A={A"U A°U A"} classifies the arcs, with A® = {a3, a3, ...,a}}

indicating output arcs which connect transitions to places, Al = {ail,

a, ..., a}} denoting input arcs that connect places to transitions, and

AP = {d" d} ... a}} representing inhibitor arcs that prevent a
transition from firing if a certain number of tokens are present in its
connected place. Each arc has a multiplicity assigned to it, which
defines the number of tokens destroyed (for input arcs) or produced
(for output arcs) during the firing of a transition, and A° C
(Tx P xN) and A# A C (Px T x N);

G =1{g1,&, ...,&} represents the set of guard functions linked with
different transitions, which introduce logical conditions that further
restrict transition firing based on the system state;

and my indicates the initial marking that specifies the initial token
distribution across the places.

To support the integration of SPNs with PM, we define a transition as
a tuple T; = (e, f, type), where e corresponds to the event label derived
from event {E.e} in a trace E € EL, f represents either the probability
distribution function for timed transitions or a firing weight for imme-
diate transitions, and type, indicates whether the transition is timed or
immediate. A transition is enabled if (1) all its input places contain a
sufficient number of tokens as specified by the arc multiplicities, (2) no
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inhibitor arc is actively blocking it, and (3) any associated guard func-
tions evaluate to true. When a transition fires, it consumes (destructive)
tokens from its input places and produces tokens in its output places
according to arc multiplicities. This operation updates the marking of
the PN from the marking M to M . In this research, we utilize an extended
version of SPNs to present the CDT simulation models.

In Fig. 2, we illustrate four foundational control-flow patterns among
several commonly used in workflow modeling. PN(a) presents a
sequential flow (a—b), PN(b) shows an XOR-split pattern (a > b,a > ¢
and b#c), PN(c) presents an AND-split pattern (a > b,a > ¢ and b||c),
and PN(d) represents an AND-join pattern (a||b—c). More details are
provided in the work of van der Aalst et al. [18].

2.5. Modeling formalisms capable of capturing multidimensionality

In multidimensional discrete-event models, the occurrence of an
event in the time dimension impacts simultaneously across various
system dimensions, including cost, energy consumption, and waste
generation. With this improved definition of events in discrete event
systems, multidimensional DES modeling can better understand system
dynamics and capture the different dimension-related behavior of
complex discrete event systems such as SMSs. Several modeling for-
malisms can represent multiple-dimensional systems in a single model.
For instance, CPNs [84], as an extension of Petri nets, are enriched with
colored tokens, which enable the representation of multiple types of
entities or attributes concurrently in one model. Similarly, hybrid
modeling combines discrete and continuous components into a single
model, where some places or transitions represent continuous quantities
(such as energy or fluid levels) and others capture discrete events (such
as machine operations). Discrete Event System Specification (DEVS)
[90] is a formal, modular framework used to model hierarchical
discrete-event and hybrid systems, which can be used to present the
multidimensional models. DEVS can define multiple interacting atomic
models, each with its own state transitions. BPMN can also be extended
to support annotations that describe additional aspects of a process, such
as energy, cost, or emissions.

While the mentioned modeling frameworks contribute significantly
to multidimensional modeling, they each present specific limitations
when applied to complex systems such as manufacturing systems.
Although CPNs are powerful in encoding multiple attributes, they have
limited support for automatic extraction from basic event logs [91], and
often require manual construction when modeling complex, multidi-
mensional systems. This restricts their scalability and real-time adapt-
ability. Hybrid models typically require detailed physical mathematical
equations and as well as expert-driven modeling, making them less
practical for plug-and-play DT systems. DEVS models, though modular
and mathematically rigorous, are not natively compatible with
data-driven approaches and often require manual setup [92]. Similarly,
BPMN extensions remain mostly illustrative, lacking formal semantics
for dynamic simulation or performance prediction across dimensions.
BPMN is not directly executable, and manual efforts are involved in
making (standard) BPMN models executable [93]. In contrast, our
proposed multidimensional modeling, MDSPN, can be automatically
discovered by employing PM and data analysis methodologies and en-
ables an automatic data-driven approach, proper for CDTs of SMSs.

||
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XOR-split
(b)
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MDSPN represents the system’s behavior in various dimensions in an
intuitive, unified model.

2.6. Related work on simulation of multidimensional models

Several tools facilitate the simulation of discrete-event systems with
multidimensional impacts and support analysis of system behavior
across multiple dimensions, such as time, energy consumption, and
waste generation. Notable examples are AnyLogic® [94], ExtendSim®
[95], and MATLAB®/Simulink® [96]. Currently, our library, MDPySPN
[971], is the only open-source tool that provides simulation of MDSPNs,
where each event in the system can impact multiple dimensions
simultaneously.

3. Comprehensive digital twins of smart manufacturing systems

To facilitate the optimized multi-objective decision-making in com-
plex systems, such as SMSs, we require a thorough understanding of
system behaviors and their interdependence across their related di-
mensions. CDTs enable data-driven, multidimensional modeling and
simulation of complex systems, thereby supporting and enhancing
multi-objective decision-making.

Asillustrated in Fig. 3, which is organized for direct comparison with
the baseline DT workflow from Fig. 1, CDTs retain the main DT com-
ponents for SMSs while introducing the following key modifications: (i)
data collection and preprocessing, where MELs are used instead of
conventional event logs to represent both operational events and
dimension-specific measurements; (ii) process discovery and data
analysis, where MFPM and dimension-aware feature extraction are
applied to extract a set of unidimensional SPN models, one for each
dimension of interest, rather than a time-oriented SPN only; (iii) a
unification step that integrates the extracted unidimensional SPNs into a
unified MDSPN; and (iv) MDSPN-based simulation, validation, and
multi-objective decision-making, where model validation and what-if
analysis are conducted using dimension-specific KPIs to support multi-
objective improvements in parallel. Depending on the system’s objec-
tives and the dimensions under study, IoT devices capture a variety of
dimension-specific data. For example, if the objective is to improve both
productivity and energy efficiency, the collected data must capture
process execution details (such as activity timing) alongside energy
consumption across all energy-consuming stages. The subsequent sub-
sections detail MEL construction, MFPM-based model extraction and
unification, and KPI-based validation and multi-objective decision
support.

3.1. Multidimensional stochastic petri nets

As we noted in Section 2.3.2, SPNs are a suitable formalism for
representing models discovered through PM and can serve as the DT
model for discrete-event systems such as SMSs. Current SPN (or, in
general, PN) formalisms are limited to representing the system behavior
in only one dimension, typically time, and cannot mirror the system's
multidimensional behavior. To address this limitation, we extend the
SPNs formalism to MDSPNs.

MDSPNs result from the integration of multiple unidimensional SPN

| O

AND-join
(d)

AND-split
(c)

Fig. 2. Examples of foundational Petri net control-flow patterns [89].
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Fig. 3. Comprehensive Digital Twin framework for smart manufacturing systems.

models, each representing the system’s behavior in a single dimension of
interest. These unidimensional models can also function independently
to support system behavior analysis of that specific dimension. All of the
system’s unidimensional models follow the same processing flow, with
differences mainly in their transition type and impact. For instance,
consider a small manufacturing system with a robotic arm that assists in
production. The systems’ objectives are to increase productivity and
energy efficiency, and to reduce material waste, which aligns with the
dimensions of time, energy consumption, and waste generation. In this
scenario, when raw materials arrive, the robotic arm starts operating
and completes the task over a duration of time. During the production
activity, the robotic arm consumes energy and generates waste. When
the production is completed, the product undergoes a manual packaging
process and, following a short delay and generation of material waste,
proceeds to the next stage. When no raw materials are available for the
robotic arm, it will enter to idle state, during which it consumes energy
until the next task arrives. This example highlights how a system shows
distinct dimension-dependent behavior.

As shown on the left side of Fig. 4, the unidimensional models of this

Unidimensional Stochastic Petri Nets

Time Dimension
'ID1 LTZ

4
N
P1

Energy Consumption
Dimension

E1

s

Waste Generation
Dimension

W1

system share a similar process flow but differ in their transition type,
depending on their dimension. For instance, in the time dimension,
transition T1 (new material arrival) is time-consuming, while in the
energy (E1) and waste (W1) dimensions, the new material arrival ac-
tivity does not contribute to energy consumption or waste generation
dimensions. Similarly, T2 is an immediate transition in the time
dimension, which means the robot moves directly to production once
raw materials are available. However, the corresponding transition E2
consumes energy in the energy consumption dimension, which indicates
the robotic arm’s energy consumption in the idle state. Transitions T3,
E3, and W3 represent the production activity and all contribute to their
related dimension (T3 takes time, E3 consumes energy, and W3 gener-
ates waste).

MDSPN represents all the different behaviors of an activity in
different dimensions in a single transition, and this transition can impact
from none to all identified dimensions. In MDSPNSs, transitions create
and destroy tokens and update simulation clocks across different di-
mensions, such as time, energy consumption, and waste generation.
Unlike the time dimension, which progresses only in a forward

Time
Energy Consumption
Waste Generation

Multidimensional Stochastic Petri Net

MT4

o

MT1

P1: New order arrived

P2: Robotic arm and new order in place
P3: Product is ready for manual packaging
P4: Robotic arm’s Idle state

Fig. 4. Multidimensional stochastic Petri net model of the example system.
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direction, updates in other dimensions can be either positive or negative.
This reflects the fact that some activities may increase or reduce values
in a given dimension, for example, an activity in a system may reuse the
waste generated in another state and so reduce the system’s waste
generation indicator.

In MDSPN, we assume identical topologies across dimensions
without losing generalizability. This is possible because transitions can
vary in behavior, for example, they may be immediate or, as defined in
our SPN extension, noncontributing in certain dimensions. To support
modeling across multiple dimensions, we extended the original SPN
formalism with the following enhancements:

e Transition Definition: Transitions are redefined to include the
dimension’ specific behavior, expressed as T; = (dim, type,F), where
dim indicates the affected dimension, and type € {contributing,
noncontributing}. For contributing transitions, F is defined as a
fixed value or a probability distribution, indicating the expected
change in that dimension. Except in the time dimension, the impact
function F for contributing transitions can represent either a positive
or negative effect. For noncontributing transitions, F typically holds
a value to show the weight of probability in fork situations.
Graphical Element: We introduced a new graphical representation
for multidimensional transitions, visually segmented to reflect their
effects on each relevant dimension. For example, in the above
example system, transitions are divided into three (the number of the
system's dimensions). The top segment of the transition shows time
behavior; the middle shows energy consumption; and the bottom
shows waste generation.
Distinct Clocks: We defined separate simulation clocks for each
dimension. The time clock functions as a conventional simulation
clock for the time progress, while clocks for other dimensions update
according to changes in their respective indicators.

In Fig. 4 (right), we proceed by integrating each unidimensional
model into a single multidimensional model (MDSPN). In MDSPN, to-
kens follow their progress in the time dimension, while transitions
associated with other dimensions update the corresponding values,
which are tracked by their own clocks. For instance, MT1 only con-
tributes to the time dimension, and MT2 to the energy consumption
dimension, while MT3 contributes to all dimensions, and MT4 time and
waste generation dimensions. This example demonstrates how MDSPNs
simultaneously capture both the temporal progression of process steps
and their impacts on other dimensions.

3.2. Data collection and preprocessing for comprehensive digital twins

Building upon our previous research [98], to enable the extraction of
MDSPN models for CDTs, we initially expand the structure of event logs,
termed Multidimensional Event Logs (MEL). This expansion includes
capturing basic event log data, such as "Time Stamp (t)," "Case ID (0),"
and "Event Identifier (e)," as well as additional data points that reflect
the involved dimension’s related behaviors, such as energy consump-
tion, carbon footprint, and waste generation-related data at the occur-
rence of each event. We formalize the MEL as follows:

MEL = {Ey, Ea, ...,En},

Journal of Manufacturing Systems 85 (2026) 287-306

where:
Ei = (t,0,e,d).

Each E; records the data points required for the CDTs model
extraction. In this context, d represents the set of domain-specific at-
tributes that capture related-dimensional impacts associated with each
event, such as energy consumption, carbon emissions, and waste gen-
eration resulting from the event’s occurrence. For the preprocessing of
MELs, it is essential to remove incomplete or unfinished traces to pre-
vent the discovery of inaccurate or misleading process models. To enable
the automatic extraction of multidimensional models, we use a uniform,
coherent structure for the MEL, including consistent column labeling for
all generated logs. The key components are as follows:

e Asset (K): A unique identifier for each asset (such as a labor-
intensive, machine, or device) or group of assets that specifies
which resource is involved in an activity.

Dimension Stamps: In addition to timestamps, MEL also includes the
dimension stamp that records the value of each relevant dimension at
the event occurrence. For example, the log entry for the production
event with an asset connected to the grid includes an energy stamp.
Resource Types: For the dimension with different types of resources,
we categorize resources accordingly. For instance, a system that
consumes different types of energy sources, such as electricity, bat-
tery, or fuel, or generates different types of waste, including plastic,
metal.

Activity Begin/End Events: Each activity is represented by two
events, a start (Begin) and a completion (End). The time between
Begin and End directly points to task duration, enabling the extrac-
tion of the transitions' contributing values, such as time distribution,
energy consumption per unit time, and waste per operation. Addi-
tionally, comparing an activity’s end with its successor’s start reveals
bottlenecks and inefficiencies between them.

Notably, a uniform naming must be applied across all MELs,
including the main system log and asset-specific logs, to enable the
automatic CDT model extraction. In Table 2, we illustrate an example of
an MEL from the example system in Section 3.1, with its corresponding
dimensions as energy consumption, carbon footprint, and waste gener-
ation. Each entry in the MEL records the main attributes, including time,
event, asset, ID, and other dimension attributes (if contributed) such as
energy usage in kilowatts/hours, the type of power used, and the type
and quantity of waste generated in kilograms. It is noted that some
entries might not contain data for certain dimensions, which indicates
these dimensions do not pertain to specific activities, for instance,
manual packaging does not consume energy.

In addition, we collect individual MELs for each asset K, defining
asset-oriented activities. These logs combine the concept of state logs
into the event logs and capture both state transitions and their corre-
sponding impacts in all related dimensions. Consistent and unique
naming of assets in system MELs is essential to enable the automatic
model extraction and accurate representation of asset behavior in the
model. For instance, Table 3 presents an excerpt of a single electrical
asset MEL. Events such as “Idle Begin” and “Idle End” denote asset state
change and their impact on the related dimensions.

Table 2

Multidimensional event log excerpt of an example manufacturing system.
Time Stamp ID Event Asset Energy Stamp (kWh) Energy Type Waste Stamp (kg) Waste Type
08:00:00 1001 New Order None NA NA NA NA
08:01:00 1001 Robot and Order in Place Robot 1 0.11 Grid NA NA
08:01:26 1001 Production Begin Robot 1 0.11 Grid 0.2 Plastic
08:09:00 1001 Production End Robot 1 1.27 Grid 0.8 Plastic
08:09:00 1001 Manual Packaging Begin Robot 1 NA NA 0.8 Plastic
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Table 3
Multidimensional event log excerpt of an example system asset.

Journal of Manufacturing Systems 85 (2026) 287-306

system’s MEL, as shown in Table 2, and when required for assets’
behavior, the asset MELs in Table 3) to extract separate unidimensional
models for each dimension of interest. As we illustrated in Fig. 5, the

. Energy Waste
;gn:lp ID  Event Stamp ;;;V:r Stamp Twy?ete MFPM workflow is divided into two main phases. The first phase results
(kwh) (kg) in a distinct unidimensional SPN model for each relevant dimension
Idle ) (such as time, energy, or waste) using system MEL. For this, we extract
09:00:00 100 ) 0.11 Grid NA NA . Lo
Begin the main process flow structure of the target system, which is the same
09:01:00 100 Xﬂ‘? End 023 Grid NA NA for all dimensions. Furthermore, we identify and map the sets of places
t o . .
09:01:26 101 B:gli‘:' 0.23 Grid 0.2 Plastic (P) and transitions (T) following the PN formalism. Furthermore, we
Active define the set of arcs (A) that connect places and transitions, specify
09:09:00 101 1.27 Grid 0.8 Plastic . . s s .
End guard functions (G), assign probabilities for fork situations, and define
09:09:00 102 E(:;n 1.27 Grid NA NA the initial marking (mo). The second phase identifies transition attri-

The structure of MELs is not limited to sustainability dimensions
(such as energy, waste) and can also be extended to capture resilience-
relevant operational dimensions. In particular, resilience can be repre-
sented in the MEL by adding explicit disruption and recovery events
(such as fault start/end, repair start/end, maintenance, rework,
rerouting decisions), and by recording recovery actions (such as rework
or rerouting) as event attributes, enabling resilience analysis in CDTs
[87,99].

3.3. Multi-flow process mining

In MFPM, we apply the standard PM techniques to the MEL (the
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Process Flow 1

Process Flow
L ‘ Process Flow 2
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Event Log Process Flow

Multi-flow Process Mlnlng

Transmons Feature Extraction

L || Transitions Feature Extraction

I' Transitions Feature Extraction

butes in the unidimensional SPN models from system MEL. For this, for
each contributing transition we specify, in its related dimension, a
contribution (impact) given by a distribution, rate, or fixed value. For
example, we define the time distributions for timed transitions or energy
consumption rates in the energy dimension. The output of the MFPM is a
collection of unidimensional SPN models (U), where each SPN model
reflects the behavior of the system in each dimension of interest. We next
detail automatic model extraction via MFPM.

3.4. Automated MDSPN model extraction

In this subsection, we present the automated extraction process of
MDSPN models for representing CDTs in complex discrete-event systems
such as SMSs. As we illustrated in Fig. 6, first, we apply process dis-
covery techniques to the cleaned MELs to discover the system’s process
flow. Subsequently, we identify key structural features of the extracted
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Fig. 6. The process of automatic MDSPN model extraction.
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process, including inhibitor arcs, arc multiplicities, and branching
probabilities in fork situations. Based on this information, we construct a
Multidimensional Transition Table (MTT) that captures the behavior of
each transition across different dimensions of the system. MTT specifies,
for each transition, its contribution to every dimension, its type (fixed,
rate, or distribution type, such as deterministic, exponential, etc.), and
its impact feature, including rate values or distribution parameters.
Based on the transitions table, we can either extract a unidimensional
model of the system corresponding to a dimension of interest or
construct the MDSPN model with all its detailed characteristics. Finally,
we generate the corresponding simulation code for the extracted MDSPN
model, which is implemented using the MDPySPN simulation library. It
is important to note that the time dimension must be included when
simulating the MDSPN model, as the progression of the simulation de-
pends on the advancement of time.

The MDSPN extraction pipeline comprises two core algorithms
(Algorithms 1-2) followed by an MDSPN construction (Section 3.4.3).
For readability, we first summarize the core innovations of Algorithms
1-2 and then detail them in Sections 3.4.1-3.4.3. Algorithm 1 describes
the extraction of the structural SPN skeleton from the MEL. Algorithm 2
introduces MTT as a unified transition-level parameterization that as-
signs each transition a dimension-specific contribution form and esti-
mated parameters, enabling the construction of unidimensional SPNs
and their unification into an executable MDSPN model.

3.4.1. Process flow discovery and process flow features extraction

In Algorithm 1, we outline the first step of automatic MDSPN model
extraction, the system's process flow discovery, defined as F3 = (Pq, Ty,
Ag), where Py and T, represent the set of places and transitions, and A4
represents the arcs. In the following, we detail Algorithm 1, which is an
extended version of our earlier work for automatic SPN model extraction
[89].

1. Integration of All Collected MEL Data: We collect separate MELs
for multiple production runs and store each log independently (such
as in distinct database tables). With this separation, we ensure that
the MDSPN feature extraction process can use the variability across
runs, such as parameter estimation and pattern discovery.

. Trace Extraction and Data Pre-processing: We first sort the input
MEL = {E;,Es, ..., E,} by their case IDs (0) and timestamps (t). Next,
we utilize PM to extract the underlying process flow of the system
and keep the unique trace paths in the trace list (TR). In parallel, we
perform the same trace-extraction procedure on each asset’s MEL,
obtaining a separate set of traces for every asset (or asset group). To
avoid the invalid process flow extraction, we drop the incomplete
traces for each unique case ID before the PM. From TR we define the
first events list.

. Petri Net Structure Construction: In order to define the PN's
structure, we utilize MEL and TR to set a transition (T;) for each
unique event (E;). Next, we assign a place P, labeled as (T;_to_Ti:1)
between each unique consecutive pair of transitions (T;, T;;1), which
can be identified from TR.

. Assets Behavior Implementation:

From the previous steps, we obtain (i) the main process-flow model
and (ii) separate models for each asset (or asset group). In this step, we
integrate all asset models into the main PN so that resource behavior is
explicitly represented. This integration is useful even for a standard SPN,
because it ensures that constraints that might otherwise be modeled via
inhibitor arcs are instead captured by explicit asset-state places and
transitions. Thus, assets can participate in activities only when they are
available. To connect assets to the process, we identify, for each asset K,
the activities in which it is involved, and the first event that enables its
active state.

For each asset K, we introduce an “Asset Ready” transition Tﬁeady
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that represents the change of state from its current non-active state (such
as idle/free) to the active state. We add an asset-available place PX
representing this non-active state, which holds one or more tokens in the
initial marking my to indicate the number of available units of that asset
(a single asset or a group). We then update the SPN model by inserting
TK 4, before the enabler transition that marks the start of the asset’s

Ready
X 1%

v Ready then leads to a

: K
»i1 is connected to T,

active state. The place cady’

new intermediate place P, , which connects to the first active transition
that uses asset K. Finally, we add an output arc from the last active
transition using asset K back to PX ,, returning the token when the asset
completes its activity. This structure accurately models asset state
transitions and, in later steps, supports the integration of dimension-
specific behavior. For instance, in Fig. 7, we contrast the raw SPN
skeleton (a) with its extension with assets' behavior (b). In panel (a), the
main control flow consists of a transition T1, place P1, and transition T2.
Panel (b) updates the SPN model for an asset with two states: idle and
active. For this, we add an idle place (P_IDLE) that permanently holds
one or more tokens (to show one or a group of assets) in the initial
marking mo; an Asset Ready transition (T_Asset_Ready) that when fires,
signals the asset’s move from idle to active state; a new place (P_new)
inserted between T Asset_Ready and the first active transition (T2); and a
return arc from T2 back to P_IDLE Returns the token once the activity
finishes, closing the asset’s state cycle. Furthermore, we add initial to-
kens to place (P_new) based on the number of assets included in the
activity (this can be modeled for each individual asset).

5. Inhibitor Arcs Detection: Inhibitor arcs (A¥) can introduce delays
in the execution of associated activities by preventing transitions
from firing until specific conditions are met. Using this information,
we can pinpoint inhibitor arcs through a two-step procedure. First,
we detect skews in the time duration of activities; second, we assess
whether this skew is caused by the execution of subsequent activities
(for example, when a later transition in TR is enabled by an earlier
case ID). For this, we first record, for each activity’s duration time,
using:

m
A = Z i —min(t, i1, enabled),
st

where t;; is the time stamp of the case ID; for the event E;, t;_; is the
time stamp of the case ID; for the E; 1 and tj gapieq is the time that
case ID; is included in the activity (enabled corresponding transition
T)). If A; for E; is not zero, we must check if the value for 4; is affected
by an inhibitor condition. For this, we first drop outliers in the 4;
durations by discarding any values outside the 15th-85th percentile
range (thereby trimming extreme observations) and then compute
the median activity’s time duration t,,4. For each occurrence of even
E; with caseID; = 1,2, ...,m, we then estimate the expected firing
timestamp as follows:

G expected = Gongyieg T Lmed-

If for a given case ID; the observed delay 4;; of event E; exceeds the
expected delay & expecrea €xactly the moment when the next event E; 4
becomes enabled, we insert inhibitor arcs from the outgoing place to
its corresponding transition T; for the event E;. Finally, we remove
any inhibitor-induced delay from 4;; for E; and return A; ;- Next, we
return A; as the refined duration measure for E; corresponding to T;.

. Multiplicity Detection: We separately define multiplicity for input
and output arcs. For input multiplicity, we scan how many tokens
(case IDs) each transition requires from its place when it fires. For
instance, for the input arc from place P(T;_to_T;;1) to Ti1, corre-
sponding to E; and E;;; we calculate the number of occurrences of
Ei;1, before the first occurrence of the event E; in every such trace,
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Fig. 7. Incorporating the asset states cycle into the SPN skeleton.

we assign that integer value as the multiplicity on the input arc.
Similarly, for output multiplicity, we inspect every trace that con-
tains E; and count the number of occurrences of E;,; after the first

appearance of E;, and assign the integer value as the multiplicity
on the output arc from T; to P(T;_to_T;;1).

. Control-Flow Patterns Implementation: To represent system
progress precisely, we must implement foundational control-flow
patterns for SPN and then refine the resulting places, transitions,
and arcs. For instance, to implement XOR-split control-flow, we
begin by identifying a transition that serves as the decision point,
scanning all traces in TR that share an identical prefix but differ at

prefixes meet on the same event in TR. Although the PN generated in
step 2 of Algorithm 1 can already encode an AND-join, we test
whether the join point is a false AND-join. A true AND-join satisfies
two conditions: (i) all tokens generated by the prior events must be
present at the same time before the join transition becomes enabled,
and (ii) when the transition fires, the tokens form the prior events
merge into one, and the join transition creates new case ID(s) equal
to the number of output multiplicity of the join transition. If the
condition fails (so we have a false AND-join condition, we merge the
input places to the transition with the false AND-join condition into
one and update the arcs to reflect this refinement.

the subsequent event (corresponding to a transition). In the resulting
SPN model, we merge the transitions’ multiple output places (which
we assigned in step 2 of Algorithm 1) into a single place and draw
separate arcs from that place to every possible following transition
(to each event that appears next in the traces). To implement the
AND-join pattern, we identify points where traces with different

Algorithm 1. SPN skeleton extraction.

Input: multidimensional event log MEL

Output: SPN skeleton F = (P,T,A)

1. Integration of All Collected MEL Data

2. Trace Extraction and Data Pre-processing: Sort events in MEL by case ID & timestamp; remove incomplete traces,
utilize the cleaned log in PM, store ordered traces in the set TR, define the first events list; apply the same trace-extraction
procedure to each asset’s MEL.

3. Petri-net structure construction: For every trace t € TR, for every pair of consecutive events mapped to transitions
(T;, Ti+1): create a place P and add the arcs T; = P; ¢ ;11 = Titq.

4. Asset behaviour implementation: For each asset K: create an asset-available place PX  with one or more tokens in the
initial marking mg(one per unit of the asset); create an Asset Ready transition Tlfeadythat represents the change of state
from the asset’s current non-active state (such as idle/free) to the active state; insert T{eadybefore the enabler transition that
marks the start of the asset’s active period by adding a new intermediate place with initial token(s) PX and arcs PX , —
T{eady — PX, —(first active transition using asset K); add an output arc from the last active transition using asset Kback to
PX ..1» returning the token when the asset completes its activity.

vail>

5. Inhibitor Arcs Detection:
a.  For every transition T; and each case j : compute 4; = Z}’Ll tii — min(tji—1, & enabiea)-
b.  If A; = 0: no inhibitor check is needed.

c.  Otherwise: remove outliers outside the 15th—85th percentiles and set the median t,,,, ; compute the expected
timestamp ¢; =t + tmeas If 4ij >t expectea @and Ej1q is enabled: Mark inhibitor arc from the

expected Jenabled

place P(T;_to_T;,4) to T;; remove the inhibitor effect on time duration for E; ; and return 4;.
6. Multiplicity Detection: In every trace E; = E;,,: for input arc multiplicity, assign the number of occurrences E; before
first E; 4 ; for output arc multiplicity, assign the number of occurrences E;, after first E;.
7. Control-Flow Patterns Implementation: Refine the SPN model by adding control-flow patterns, for instance:
a.  XOR-split: locate each transition whose traces share an identical prefix but diverge at the next event; merge its
outgoing places into one place, then update arcs.

b. AND-join: verify join conditions: all incoming tokens must be present simultaneously and merge into the

correct number of outputs; if not, integrate its input places into one and update arcs.

297



A. Khodadadi and S. Lazarova-Molnar

3.4.2. Extraction of the multidimensional transition table

Building on the SPN skeleton extracted in Section 3.4.1, we next
define each transition’s type € {contributing, noncontributing} and its
impact in each dimension of interest by developing the MTT. Following,
utilizing the MFPM framework and the MTT, we can derive a separate
unidimensional model for each dimension. Because the manufacturing
process progresses over time, we consider time as a mandatory baseline
dimension for the simulation of the final MDSPN model. Furthermore,
when the energy dimension is also under study, we extend the SPN by
representing assets (K) to enable the model to capture their distinct
energy-consumption profile states. In the following, we detail Algorithm
2, which presents a step-by-step procedure for constructing the MTT,
using MEL and the SPN skeleton as inputs.

1. Define Multidimensional Transition Table: We begin by con-
structing an MTT, where each row corresponds to a unique event E;

(mapped to a transition T;), including T{geady transitions. To support

the automatic MDSPN model extraction, we establish a structured
naming for the columns. The first column stores the event identi-
fier (e). For each dimension of interest, we define four additional
columns: (i) dimension_name_ Dimension specifies the dimension (such
as Energy Dimension), and the content of this column indicates the
type of transition in that dimension (C for contributing, N for non-
contributing), (ii) dimension_transition impact type describes how the
transition contributes to the dimension (such as a distribution, rate,
or fixed value), and (iii) dimension_transition impact value provides
the corresponding impact value. The impact of transitions with
contributing type is quantified using one of the following
approaches:
a. Fixed values: representing the average fixed contribution impact

of an activity.
b. Rate values: estimate the activity-specific rate:

i 1 i Impact;;

i, o T

where Impact; 4 is the measured impact (such as energy, cost) of
the activity i on dimension d for the included case IDj, 7;; is the
corresponding duration, and m is the total number of observed
cases. The mean rate can then be multiplied by the duration
observed in any future execution of the activity to obtain its total
impact on the dimension d.

c. Dynamic values: calculate the value using MLE or ML techniques
to calculate the impact value. We fit distributions using Maximum
Likelihood Estimation (MLE) via the SciPy library [100] to a set of
candidate distributions{norm, lognorm, expon, ...}. or each distri-

bution f, we estimate its parameters /H\T(f). To evaluate the
goodness of fit, we perform a one-sample Kolmogorov-Smirnov
(KS) test by comparing the empirical cumulative distribution
of A’T with the theoretical Cumulative Distribution Function (CDF)

F(x; 01(f) ). We then select the distribution f{ with the highest KS
p-value with the highest KS p-value as the best-fitting time-feature
distribution.

The impact for all dimensions (except time) can be both positive
and negative. For instance, consider a system that uses the waste
generated in an activity (positive impact on the waste generation
dimension) in another part of the system (negative impact on the
waste generation dimension). Furthermore, if a dimension’s type
column contains more than one type, the dimension is split into
separate sub-dimensions. For instance, if a system consumes
different types of energy sources, such as grid and oil, each of
them would be considered as a separate dimension for that
system.

2. Time Dimension: We capture the temporal behavior in a dedicated
Time Dimension column and identify other related details such as
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weights (for immediate XOR-splits) or fitted time distributions (for

timed transitions) as follows:

a. Time dimension definition and transition classification: In
MTT, we add the column Time Dimension, where we assign each
transition’s type. For this, we check if both 4; and A/i are zero, we
classify the transition T; as immediate and set (T; € T;), and set
Time_Dimension to N, otherwise it is marked as a timed transition
(T; € Tr), with type C. All transitions in the first events list are
included in the timed transition list (Tr). In addition, every

K

Asset_Ready transition Tl,\eady

is treated as an immediate transition
(Txeady € Tr) and its Time Dimension entry is set to N.

b. Weight assignment for immediate (XOR-split) transitions: For
each immediate transition (T; € T;) involved in XOR-split condi-
tions (identified in step 5 of Algorithm 1), we compute the weight
of each of its outgoing branches by counting how often each
possible successor transition follows T; across all traces. We record
these values in the Weight column (which we add to the multidi-
mensional transitions table), corresponding to each successor
transition.

c. Distribution fitting for timed transitions: For each timed
transition (T; € Tr). We further define the dimension -
transition_impact type as "distribution", and correspondingly, we
compute the dimension_transition impact value by fitting the
adjusted durations 4; using MLE.

. Energy Dimension: The second key dimension in the MDSPN model

extraction is the energy dimension, which becomes essential when

energy-related behavior is among the system’s objectives, particu-

larly in manufacturing systems, where energy consumption is
coupled with asset operation. To extract the energy dimension, we
proceed as follows:

a. Energy dimension definition and transition classification: In
the multidimensional transitions table, we define dimension_na-
me_Dimension as Energy Dimension. A transition is marked as
contributing (C) under dimension transition_type if its correspond-
ing event’s entry in the Energy Stamp column of the MEL is not
missing (not NaN); otherwise, it is labeled as N. For contributing
transitions, we specify dimension transition impact type as rate,
since energy consumption depends on the time the asset spends in
its energy-relevant states during an activity (including processing,
idle, standby, or other non-off states), where all such states
contribute to the overall Energy Consumption Profile (ECP).

b. Energy consumption profile table construction: To determine
the dimension_transition impact value, we construct an ECP table
for each energy-consuming asset K in the system. The ECP table is
built from the asset-specific MEL and captures the energy con-
sumption rates for both active and idle states. For each asset, we
identify the time intervals during which it is active or idle and
associate these with corresponding power consumption values.
We then calculate the instantaneous energy consumption rate as
defined in Step 1. The active ECP rate for each asset is added to the
dimension_transition impact value for every corresponding event in
the MEL where that asset is involved. Next, we add a column to
the ECP table to represent the asset’s state changes caused by an
activity. Using this, we identify the first event in the asset’s MEL
where the asset becomes active (as the enabler for the active state)
and the last event before the asset returns to its available state (as
the enabler for the asset-ready state).

4. Other Dimensions: For all additional dimensions beyond time and

energy, we define dimension name Dimension based on the presence
of a corresponding Dimension_stamp in the MEL. If the value in the
Dimension_Stamp column is not NaN for a given event, we classify the
transition as contributing to that dimension by setting dimension -
name_Dimension value to C; otherwise, it is marked as N. For
contributing transitions, we specify the
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dimension_transition impact type as Fixed, Rate, or Dynamic, depend-

ing on the semantics of the dimension and as defined in Step 1 of
Algorithm 2.

Algorithm 2. Multidimensional transition table development.

Journal of Manufacturing Systems 85 (2026) 287-306

3.5. MDSPNs simulation tool: MDPySPN

MDPySPN is an open-source Python library designed for modeling,
simulation, and MEL generation of MSPNs. MDPySPN is the extended
version of PySPN [68] and is utilized as the core simulation library for
this paper’s case study. The MDPySPN library supports multiple distri-
bution functions for timed transitions (for instance, exponential, normal,
and Weibull), as well as fixed and rate-based values for transitions

Qutput: Multidimensional Transition Table (MTT)

e ; for every dimension D of interest: add

D_transition_impact_value.

2. Time Dimension:

in Time_transition_impact value.
3. Energy Dimension:

Input. multidimensional event log MEL, SPN skeleton F = (P, T, A)

1. Define MTT: Initialize one MTT with one row per unique event E; — transition T;; set the first column as event identifier

columns

a.  For each Tj: if 4; and A4} =0; then Time Dimension = N and T; € T;; else Time Dimension = C and T; € Ty;
Mark all transitions in the first events list as T; € Ty. Additionally, each Asset Ready transition T]{gadyis treated
as an immediate transition (Tgt,q, € T;)with Time_Dimension = N.

For every T; € T; in an XOR-split: count the successors that follow T; and store in their Weight column.

c.  ForeveryT; € Ty : set Time_transition_impact_type = distribution and fit 4; via MLE and store the parameters

a.  For each T;:set Energy Dimension = C if Energy Stamp in MEL # NaN, else N;
For Energy Dimension = C, set Energy_transition_impact_type = rate;
Build an Energy-consumption-profile (ECP) table;

D_Dimension, D_transition_impact_type , and

b.
c.
d.  For each unique asset K in MEL: from the asset-specific MEL, extract the intervals and associated power
values for all energy-relevant states (including processing, idle, standby); compute the corresponding rates:

1y Impact;

TiEnergy = — Lj=1 and store it in Energy_transition_impact value for the transitions that use asset K.

Add columns in the ECP that flag (i) the first event where the asset enters an active state and (ii) the last event
before it returns to its available state.

4. Other Dimensions: For each T;: if Dg;qmy, = NaN:set D_Dimension = N; else C and choose D_transition_impact_type €

{Fixed, Rate, Dynamic} (from Step 1) and compute D_transition_impact value accordingly.

3.4.3. MDSPN model extraction and MDSPN simulation code development

Following the last subsection, we extract the MTT of the system,
which enables us to extract individual, unidimensional SPN models for
each system objective and then integrate them into a single MDSPN.
Because the MTT centralizes every transition’s contribution type and
impact values, we can readily update the model whenever the objectives
of the system change.

In the MDSPN model development process, each entry E; in the MTT
is assigned to a transition MTg in the MDSPN. To visually and seman-
tically encode each transition's contributions across all dimensions d, we
split MTg into d segments. Next, we set the color of each segment to
white if the transition’s type for the assigned dimension to this segment
is “C” (type = contributing) or black if “N” (type = noncontributing). The
resulting MDSPN can be exported in a script-ready format, either as a
tool-specific input script or as a general interchange file such as Petri Net
Markup Language (PNML) [101] or Multidimensional Petri Net Markup
Language (MDPNML) [102], so that the extracted MDSPN model can be
directly loaded into any compatible simulation environment.

In this work, the automatically discovered output is an instantiated
MDSPN (explicit places, transitions, arcs, plus estimated timed/sto-
chastic parameters). If a generic (or template) representation is
preferred for reuse or large-model organization, the extracted per-asset
and repeated subnet structures can be packaged as templates without
changing the executable net semantics and exported via MDPNML for
tool interoperability [102].
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contributing to dimensions other than the time dimension, idle places
for assets, inhibitor arcs, and guard functions. MDPySPN is able to
simulate the multidimensional behavior of complex discrete-event sys-
tems, such as manufacturing, logistics, and healthcare. A key feature of
MDPySPN is its ability to generate synthetic MELs, which are essential
for process discovery, validation, and further refinement of CDT models.
In cases where access to real-world data is restricted, such as during
early-stage system design or in sensitive operational environments, the
synthetic MEL generated by MDPySPN can be used as a substitute and
enables model analysis in the absence of actual system data. MDPySPN
can be employed to develop data-driven CDTs in (near) real-time, which
enable system monitoring, support what-if scenario analysis, and assist
in multi-objective decision-making in complex systems such as SMSs.
Building on the MDSPN model extracted automatically in Section 3.4,
we generate the corresponding MDPySPN simulation script so that the
MDSPN model can be executed.

3.6. Multidimensional simulation model validation

We conduct the validation process to evaluate whether the extracted
model accurately represents the real-world system (or original model),
both structurally and operationally. The structural validation [103] is
possible when the process model of the original system is available (such
as a ground-truth model). In this case, we evaluate the correctness of the
network flow of entities and their causal relations, such as counting the
number of places, transitions, and arcs, between the extracted model
(which can be obtained from the MDPySPN simulation) and the original
model. For operational validity (output validation), we compare the
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KPIs defined for the original model with those obtained from the
simulation of the extracted model, where data in both is generated over
the same time duration. The selection of KPIs for validation can be based
on the objectives of the system under analysis. Finally, we assess
whether the 95 % confidence intervals (CIs) of the defined KPIs overlap
[104].

Once the extracted MDSPN is validated against the real-world sys-
tem, it becomes a CDT of the system and serves as a basis for what-if
analyses to support multi-objective decision-making in the system. For
example, scenarios that target non-value-adding behaviors, such as
minimizing the waiting times or asset idle state periods, and then
assessing the improvement on throughput, energy consumption, and
other KPIs defined by the real-world system. Furthermore, ML tech-
niques can help refine the models by identifying patterns in simulation
outcomes and proposing parameter adjustments automatically, such as
optimized scheduling policies. In this paper, as we mostly concentrate
on the automated generation of the MDSPN model, we outline a case
study related scenario.

4. Illustrative case study

To demonstrate the fully automated, data-driven MDSPN model
extraction workflow, we designed an illustrative case study of hot
forging process based on an extended version of the study presented in
[105]. Within our proposed CDT framework, the hot-forging line rep-
resents the real-world entity (observable manufacturing process), while
the extracted MDSPN serves as its DT simulation model, constructed
from the generated MEL data. We employ our case-study model, which
we use as a ground truth reference to generate data, which is subse-
quently utilized to rediscover the underlying MDSPN model for the di-
mensions of time, energy consumption, and waste generation. We verify
the proposed method by comparing the simulated behavior of the
extracted MDSPN against the reference behavior using the relevant KPI
measures. Following validation, we employ the CDT simulation model in
what-if scenarios to support multi-objective optimization in the case
study system. We first describe the case-study system and, following the
methodology in Section 3, generate the MEL data for MDSPN extraction

New order Bars Bars
arrived transported feeded

]
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and simulation. After validating the extracted model against the ground
truth model, we employ the CDT simulation model in an example
what-if scenario to support multi-objective optimization in the case
study system.

4.1. Case study description

The hot forging system includes a multi-product manufacturing line.
Fig. 8 shows the SPN model of the described case study (ground-truth)
model. The process begins with the arrival of raw material units (bars),
such as steel or aluminum, at the system from a source, following an
exponential distribution with A = 0.1 (T1). Operators manually trans-
port these bars, taking a triangular-distributed duration of between 3
and 4 min (with a mode of 3.5 min) (T2), to an automatic feeding ma-
chine that requires 2 min per operation (T3). Once loaded, the bars are
cut into coils by a separation machine, with a processing time following
a triangular distribution (minimum 5, mode 5.5, maximum 6 min) (T4).
After separation, each billet is routed with equal probability to one of
three conveyor lines (cold (T5.3), warm (T5.2), or hot conveyors (T5.1))
that prepare the material for forging in accordance with product re-
quirements. The cold forging conveyor takes 5 min per transfer and
consumes relatively low electricity. The hot forging conveyor takes
10 min and consumes a high level of electricity, while the warm
conveyor takes 7 min, with electricity consumption between the cold
and hot conveyors. The forging machine itself operates with high elec-
tricity consumption and processes the billets with a triangular-
distributed duration (7-8 min, mode of 7.5 min) (T7). Once forged,
the products are transported via another conveyor, with a fixed duration
of 5min, to a manual quality assessment station (T8). The manual
quality check takes a triangular-distributed duration of 2-3 min (with a
mode of 2.5 min) (T9), after which each product is classified as qualified
(T20.2) or unqualified (T10.1), with an acceptance rate of 90 %.
Furthermore, in our study, in addition to energy considerations, we
incorporate waste material metrics into some processes to incorporate
the dimensions of interest for our case study on CDT. Specifically, both
the separation machine and the forging process produce a fixed amount
of material waste per operation.

Conveyor cold

O

T5.3, T6.

cut . Conveyor warm d_et(S)

Bars are

Conveyor to
forging

OO
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Fig. 8. SPN model of the case study system.
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Table 4
Excerpt of the case study MEL.
# Time Stamp Case ID Asset Energy Stamp Energy Type Waste Stamp Waste Type Event
24 00:32:29 5775 Conveyor Cold 0.11 Electricity 0.0 NA Conveyor Cold End
25 00:33:19 5775 Forging Machine 37.34 Electricity 0.05 Iron Forging Begin
26 00:37:29 5774 Conveyor to Forging 0.10 Electricity 0.0 NA Conveyor End
27 00:37:29 5774 NA 0.0 NA 0.0 NA Quality Check Begin
28 00:40:22 5774 NA 0.0 NA 0.0 NA Quality Check End
Using the knowledge extracted from the MEL, such as the ECP table
Table 5 and the MTT, we automatically construct the system’s MDSPN digital
Except for the case study ECP table. . . . .
simulation model. In Fig. 9, we present the resulting MDSPN (redrawn
# Asset State ECP Enabling Transition for clarity). Each transition icon is divided into three horizontal seg-
1 Feeding Machine Active 0.0167 Feeding B2C Begin (T3) ments that encode dimensional contributions: the upper segment rep-
2 Feeding Machine Idle 0.083 Feeding B2C End (T3) resents the time dimension, the middle segment the energy dimension,
3 Separation Machine Active 0.05 Coils to Bullets Begin (T4) and the lower segment the waste-generation dimension. For example,
4 Separation Machine Idle 0.25 Coils to Bullets End (T4)

4.2. Data collection and preprocessing

Next, we outline the data required to construct the CDT of the case-
study system. We first identify the KPIs that drive our data-collection
strategy: (i) the number of inputs, (ii) the electricity consumed by
each asset, (iii) the material waste produced by each asset, and (iv) the
total energy use and waste generation over a 10-hour production day.
Using the methodology described in Section 3.2, we then collect a
multidimensional MEL for 100 production days. In Table 4, we present
an excerpt of the MEL, generated from the ground-truth model of the
hot-forging line.

4.3. MDSPN model extraction and simulation

Using the collected MEL from the ground-truth model, we auto-
matically extracted the case-study MDSPN with the procedure described
in Section 3.4, integrating the time, energy, and waste dimensions into a
single multidimensional model. In Table 5, we present the excerpt for
the case study ECP table, where we define each asset’s different state, its
ECP rate, and the enabling events for its different states. For instance,
the feeding machine state turns to active once the activity feeding bars
begin and returns to its idle state once the activity feeding bars end.

In Table 6, we present the extracted MTT, where each transition with
its behavior in different dimensions is defined. To save space in the
table, we abbreviate the dimension-specific column headers as follows:
TD for Time Dimension, TDIT for Time-Dimension Impact Type, TDIV
for Time-Dimension Impact Value; ED for Energy Dimension, EDIT for
Energy-Dimension Impact Type, EDIV for Energy-Dimension Impact
Value; and WD for Waste Dimension, WDIT for Waste-Dimension Impact
Type, WDIV for Waste-Dimension Impact Value. For example, transition
T1 (new-order arrival) contributes only to the time dimension as a timed
transition and is non-contributing to all other dimensions. Transition T3
(bar feeding) contributes to both the time and energy dimensions,
whereas transition T4 (cutting bars into coils) contributes to all three
dimensions: time, energy, and waste generation.

transition MT7 (forging) contributes to all three dimensions, whereas
the conveyor-selection transitions (MT51, MT52, MT53) are non-con-
tributing to every dimension. Finally, we run the extracted MDSPN in
the extended version of the MDPySPN, which records all target KPIs
directly from the model’s execution traces.

4.4. MDSPN simulation model validation

The validation of the case study comprises two components: struc-
tural validation and output validation. Structural validity was estab-
lished by comparing the discovered simulation model with the ground-
truth process model, confirming full face validity and consistency of the
control-flow structure.

Output validation was then conducted by comparing the predefined
KPIs over 100 replications of both the ground-truth and the extracted
MDSPN simulation models. The corresponding 95 % CIs are reported in
Table 7 and visualized in Fig. 10. Each block of rows in the table refers to
one dimension of system performance, time-related KPIs, energy con-
sumption, and waste generation, respectively. Units of Raw Material are
denoted by URM, and the Number of Products by NP.

Some of the observed deviations in energy-related KPIs can be
explained by differences in the number of input units processed at each
stage. For example, in the extracted model, the 95 % CI for the number
of inputs is between 58.55 and 58.94 URM, whereas in the ground-truth
model, the CI ranges from 57.42 to 60.47 URM. Although this discrep-
ancy in throughput volume and the associated processing times is
relatively small, it accumulates across stages and propagates into the
energy dimension. This is visible, for instance, at the separation ma-
chine: the CI for energy consumption in the extracted model is
93.80-94.45 kWh, while the real system exhibits slightly higher values
of 94.99-98.85 kWh. Furthermore, for stages with routing choices, such
as the cold, warm, and hot conveyors, the selections made across the 100
runs can lead to substantial variation, especially for the most energy-
intensive path (the hot conveyor). Nevertheless, the 95 % ClIs for total
energy consumption show a large degree of overlap between the
extracted and ground-truth models, indicating that the simulation re-
produces the aggregate energy behavior of the real system with good

Table 6
Excerpt of the case study MTT.
# Transition TD TDIT TDIV Weight ED EDIT EDIV WD WDIT WDIV
1 T1 C Distribution weibull(2.83, 6.38, 4.27) NA N NA NA N NA NA
2 T2 C Distribution norm (3.47, 0.20) NA N NA NA N NA NA
3 T23 N NA NA NA C Rate 0.0167 N NA NA
4 T3 C Distribution lognorm (1.33, 2.0, 0.0) NA C Rate 0.0833 N NA NA
5 T4 C Distribution lognorm (1.44, 5.10, 0.79) NA C Rate 0.25 C Fixed 0.02
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Fig. 9. The extracted MDSPN model of the case study.

4.5. Multi-objective decision-making scenarios and results
Table 7

95 % confidence intervals for KPIs of 100 replications of the ground-truth and

the extracted model. To demonstrate the application of our proposed CDT to obtain multi-

objective decision-making, we simulate our validated CDT model in an

Extracted Extracted Ground Ground example what-if scenario to reduce total energy consumption without
# KPI Model CI Model CI Truth CI Truth CI . . . . . e
Low High Low High degrading other KPIs. For this, we identify non-value-adding activities,
such as idle periods for each machinery asset. We then introduced a new
1 Input ?&1513[) 58.94 (URM) Z;ﬁ) ?8;;[) standby state for all assets, except for the forging
9 Output 55.01 (NP) 55.40 (NP) 53.62 (NP)  56.25 (NP) machine, where any a.sset that remains idle for more than two mi-
3 Throughput 0.93 0.94 0.93 0.94 nutes automatically transitions to standby [106]. In the standby state,
4 Eecedmg M 17.66 (kWh)  17.72 (kWh) 11(7‘;; 1](7‘./?: the .asset consumes 51gn1ﬁc.ant1y less p.ower (at least 10 times less t.han
s oM ((34 99) (98 85) the idle state ECP) but requires approximately 30 s to resume operation,
t . . . . . .
5 Ezpara ron 93.80 (kWh)  94.45 (kWh) (kWh) (kWh) doing so at a higher energy rate than when idle. As presented in Table 8,
10.02 10.43 we applied this scenario to our ground-truth model, which resulted in a
6 Conveyor EC 10.25 (kWh) 10.31 (kWh) . . . o
(kWh) (kWh) mean reduction in total energy consumption for 100 runs by 8.38 %,
7 201'1 po 7ILGWH) 747 GWR)  7.01 (W) 7.41 (kWh) while other KPIs remained unchanged. These results are based on 100
V\?:r‘r,:yor 62.43 63.95 runs for the standby scenario and the
8 Conveyor EC 67.01 (kWh)  68.50 (kWh) (kWh) (kWh) historical data of the base model (before the change) for 100 runs,
g  Hot 138.60 142.33 129.05 132.43 with 95 % confidence intervals. This scenario illustrates one of many
Conveyor EC  (kWh) (kWh) (kWh) (kWh) potential scenarios we could deploy in our developed CDT to identify
10 Forging MEC 81(5‘/6\]-38 SEV%ZS 81(6:\’-}?7 8](7‘/%}‘:2 optimized system features. In Fig. 11, we compare the normalized KPIs,
(kwh) (kwh) (kWh) (kwh) including the number of outputs, total energy use, and waste generated
1193.11 1197.31 1185.17 1206.90 . .
11 Total EC (kWh) (kWh) (kWh) (kWh) for the ground truth model (original model) versus the new scenario.
1o SeparationM ., ko) 115 (kg) 112 (kg) 118 (kg) Each metric is sca‘lled between 0 anq 1 ba.sgd on the .observed range
WG across both scenarios. The new scenario exhibits a clear improvement in
13 ‘F/:,’égmg M 2.78 (kg) 2.80 (kg) 2.71 (kg) 2.84 (kg) energy efficiency and almost the same results for other KPIs (number of
14 Total WG 3.93 (kg) 3.96 (kg) 3.83 (kg) 4.02 (kg) outputs and amount of waste generated).
accuracy.
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Fig. 10. Graphical comparison of 95 % confidence intervals for KPIs of 100 replications of the ground-truth and the extracted model.

Table 8
Total energy consumption: baseline vs. standby scenario (95 % CI).

Total Energy Consumption CI ~ Total Energy Consumption CI

Model Low High

Base Model 1187.01 (kWh) 1207.91 (kWh)

New Scenario 1084.89 (kWh) 1109.35 (kWh)
Model

5. Challenges in developing comprehensive digital twins

The introduction of the CDT has presented several challenges,
detailed as follows:

e Data integration and latency: CDTs require an accurate compiled
event log that is both coherent and time-synchronized. Delays in data
collection, specifically common in real-world systems, can skew ac-
tivity durations and also distort event correlations, which result in
incorrect model extraction.

Domain-Specific Dimensional Behavior: Different dimensions
might exhibit distinct behaviors that necessitate a thorough under-
standing of the system. For example, the battery-powered Auto-
mated Guided Vehicles (AGVs) introduce distinct characteristics,
including charge/discharge thresholds and minimum dwell times,
and nonlinear charging curves.

Human Interaction with the System: Given the significant role of
human participation in manufacturing systems, human actions add
stochasticity in task duration, decision-making, and operational ef-
ficiency, thereby complicating the modeling and simulation
processes.

6. Summary and outlook

Complex systems, such as manufacturing systems, involve multiple,
and often conflicting, objectives, including increasing throughput,
improving energy efficiency, and reducing CO- emissions and material

303
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.00 0.75 0.50 Output

Fig. 11. Radar of normalized KPIs from the new scenario and the orig-
inal model.

waste. These objectives correspond to distinct dimensions of the system
that must be considered simultaneously. To obtain an optimized multi-
objective decision in such systems, stakeholders require a comprehen-
sive understanding of the system’s behavior in each of these dimensions.
Recent advances in industrial technology have established the Digital
Twin as a virtual replica of the physical system, which enables system
analysis and supports decision-making by utilizing real-time system
data. The current state of the art does not yet offer an automated
approach to extract system models that coherently and intuitively
represent the system’s behavior across multiple dimensions.

In this paper, we address this gap by presenting a methodology for
comprehensive Digital Twins and detailing our automated, data-driven
approaches for their development. We specify the required data and
their structured representation (the multidimensional event log),
describe our Multi-Flow Process Mining (MFPM) approach, and detail
the steps to extract, simulate, and validate systems’ multidimensional
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stochastic Petri Nets (MDSPNs) as underlying simulation models of
comprehensive Digital Twins. Through an illustrative case study of a hot
forging packing process, we demonstrated our proposed methodology
for developing comprehensive Digital Twins that encompass the di-
mensions of time, energy consumption, and waste generation. We
employed our validated comprehensive Digital Twin model to simulate
a what-if scenario aimed at enhancing overall energy efficiency. The
scenario resulted in an average 8.38 % reduction in total energy con-
sumption without impacting other key performance indicators, such as
total production output and waste generation. This result highlights the
capability of the comprehensive Digital Twin to support multi-objective
decision-making and explore optimal system configurations. Several
opportunities remain to extend our proposed comprehensive Digital
Twins capabilities as follows:

e Multi-objective decision support: Implement algorithms to auto-
matically recommend/support optimal multi-objective decisions.

e Establish an interchange format: Extend existing standardized
interchange formats, such as Petri Net Markup Language, to support
multidimensional stochastic Petri-net annotations, and seamless
model exchange between simulation tools.

CRediT authorship contribution statement

Atieh Khodadadi: Writing — original draft, Visualization, Valida-
tion, Software, Methodology, Formal analysis, Data curation, Concep-
tualization. Sanja Lazarova-Molnar: Writing — review & editing,
Supervision, Project administration, Methodology, Formal analysis,
Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

The authors extend their thanks for the funding received from the
ONE4ALL project funded by the European Commission, Horizon Europe
Programme under Grant Agreement No. 101091877.

References

[1] G. Erbach, "European climate law," in "Regulation (EU)," European Parliamentary
Research Service (EPRS), European Parliament, PE 649.385, 2021, vol. 1119.
[Online]. Available: (https://www.univiu.org/images/aauniviu2017/GP/co-curr
/European_climate_law.pdf).

EU, "Regulation (EU) 2021/1119 of the European Parliament and of the Council
of 30 June 2021 establishing the framework for achieving climate neutrality and
amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European
Climate Law’)," Official Journal of the European Union L 243, vol. 1, p. 64, 2021.
J. Cresko et al., "US department of energy’s industrial decarbonization roadmap,"
U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy
(EERE), DOE/EE-2635, 2022. [Online]. Available: (https://www.osti.gov/serv
lets/purl/1961393).

Chinchorkar S. Data-Driven Paradigm for Smart Manufacturing in the Context of
Big Data Analytics. Big Data Analytics in Smart Manufacturing. Chapman and
Hall/CRC; 2022. p. 21-34.

Sharma R, Villanyi B. Evaluation of corporate requirements for smart
manufacturing systems using predictive analytics. Internet Things 2022;19:
100554.

Soori M, Arezoo B, Dastres R. Internet of things for smart factories in industry 4.0,
a review. Internet Things CyberPhys Syst 2023.

Kagermann H, Anderl R, Gausemeier J, Schuh G, Wahlster W. Industrie 4.0 in a
Global Context: strategies for cooperating with international partners. Herbert
Utz Verlag; 2016.

M. Breque, L.De Nul, and A. Petridis, Industry 5.0: towards a sustainable, human-
centric and resilient European industry, Directorate General for Research and
Innovation (DG RTD) of the European ..., 2021.

Zhang W, Van Luttervelt C. Toward a resilient manufacturing system. CIRP Ann
2011;60(1):469-72.

[2]

[3]

[4]

[5]

[6]
[71

[8]

91

304

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

Journal of Manufacturing Systems 85 (2026) 287-306

Liu S, Zheng P, Bao J. Digital Twin-based manufacturing system: a survey based
on a novel reference model. J Intell Manuf 2023:1-30.

Friederich J, Francis DP, Lazarova-Molnar S, Mohamed N. A framework for data-
driven digital twins of smart manufacturing systems. Comput Ind 2022;136:
103586.

Lugaresi G, Zanotti M, Tarasconi D, Matta A. Manufacturing systems mining:
Generation of real-time discrete event simulation models. 2019 IEEE
international conference on systems, man and cybernetics (SMC). IEEE; 2019.
p. 415-20.

van der Aalst WM, Leemans SJ. Learning generalized stochastic petri nets from
event data. Principles of Verification: Cycling the Probabilistic Landscape: Essays
Dedicated to Joost-Pieter Katoen on the Occasion of His 60th Birthday, Part III.
Springer; 2024. p. 3-17.

Khodadadi A, Lazarova-Molnar S. Multi-flow process mining for comprehensive
simulation model discovery. Presente ICICM 2024.

Khodadadi A, Lazarova-Molnar S. Multi-Flow Process Mining as an Enabler for
Comprehensive Digital Twins of Manufacturing Systems. Winter Simulation
Conference, Seattle. Washington: IEEE; 2025.

Dreher S, Reimann P, Groger C. Application fields and research gaps of process
mining in manufacturing companies. INFORMATIK 2020. Bonn: Gesellschaft fiir
Informatik; 2021. p. 621-34.

Yu H, Ogbeyemi A, Lin W, He J, Sun W, Zhang W-J. A semantic model for
enterprise application integration in the era of data explosion and globalisation.
Enterprise Information Systems, 17; 2023, 1989495.

Van der Aalst W, Weijters T, Maruster L. Workflow mining: discovering process
models from event logs. IEEE Trans Knowl data Eng 2004;16(9):1128-42.
Automation systems and integration — Digital twin framework for manufacturing —
Part 1: Overview and general principles, International Standard I. O. f.
Standardization, Geneva, Switzerland, 2021. [Online]. Available: (https://www.
iso.org/standard/75066.html).

Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital Twin in
manufacturing: A categorical literature review and classification. IfacPap 2018;51
(11):1016-22.

Camargo M, Dumas M, Gonzalez-Rojas O. Automated discovery of business
process simulation models from event logs. Decis Support Syst 2020;134:113284.
Uhlemann TH-J, Schock C, Lehmann C, Freiberger S, Steinhilper R. The digital
twin: demonstrating the potential of real time data acquisition in production
systems. Procedia Manuf 2017;9:113-20.

Al Faruque MA, Muthirayan D, Yu S-Y, Khargonekar PP. Cognitive digital twin for
manufacturing systems. 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE; 2021. p. 440-5.

Zheng P, et al. Smart manufacturing systems for Industry 4.0: Conceptual
framework, scenarios, and future perspectives. Front Mech Eng 2018;13:137-50.
Li L, Lei B, Mao C. Digital twin in smart manufacturing. J Ind Inf Integr 2022;26:
100289.

Grieves M. Digital twin: manufacturing excellence through virtual factory
replication. "White paper,", 1; 2014. (https://www.3ds.com/fileadmin/PROD
UCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-
Whitepaper.pdf).

Batty M. Digital twins, 45. London, England: Sage Publications Sage UK; 2018.
p. 817-20.

Bi Z, Zhang CW, Wu C, Li L. New digital triad (DT-II) concept for lifecycle
information integration of sustainable manufacturing systems. J Ind Inf Integr
2022;26:100316.

Zhang W, Van der Werff K. Guidelines for product data model formulation using
database technology. Proc. of Int. Conf. on Engineering Design (ICED’93), 3;
1993. p. 1618-26.

Ma Z, Zhang W, Ma W, Chen G. Extending EXPRESS-G to model fuzzy information
in product data model. International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, 35111. American
Society of Mechanical Engineers; 2000. p. 285-91.

Li Q, Zhang W, Tso S. Generalization of strategies for product data modeling with
special reference to Instance-As-Type problem. Comput Ind 2000;41(1):25-34.
Lazarova-Molnar S. A Vision for Advancing Digital Twins Intelligence: Key
Insights and Lessons from Decades of Research and Experience with Simulation.
14th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications. SCITEPRESS Digital Library; 2024. p. 5-10.
Gudivada V, Apon A, Ding J. Data quality considerations for big data and
machine learning: Going beyond data cleaning and transformations. Int J Adv
Softw 2017;10(1):1-20.

Duarte L, Neto P. Classification of primitive manufacturing tasks from filtered
event data. J Manuf Syst 2023;68:12-24.

Shu X, Ye Y. Knowledge discovery: methods from data mining and machine
learning. Soc Sci Res 2023;110:102817.

Van Der Aalst WM, Van Dongen BF. Discovering petri nets from event logs.
Transactions on Petri nets and other models of concurrency vii. Springer; 2013.
p. 372-422.

Banks J, Carson JS. Introduction to discrete-event simulation. Proceedings of the
18th conference on Winter simulation. 1986. p. 17-23.

Rebs T, Brandenburg M, Seuring S. System dynamics modeling for sustainable
supply chain management: a literature review and systems thinking approach.
J Clean Prod 2019;208:1265-80.

Agalianos K, Ponis S, Aretoulaki E, Plakas G, Efthymiou O. Discrete event
simulation and digital twins: review and challenges for logistics. Procedia Manuf
2020;51:1636-41.


https://www.univiu.org/images/aauniviu2017/GP/co-curr/European_climate_law.pdf
https://www.univiu.org/images/aauniviu2017/GP/co-curr/European_climate_law.pdf
https://www.osti.gov/servlets/purl/1961393
https://www.osti.gov/servlets/purl/1961393
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref1
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref1
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref1
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref2
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref2
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref2
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref3
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref3
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref4
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref4
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref4
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref5
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref5
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref6
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref6
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref7
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref7
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref7
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref8
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref8
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref8
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref8
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref9
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref9
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref9
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref9
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref10
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref10
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref11
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref11
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref11
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref12
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref12
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref12
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref13
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref13
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref13
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref14
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref14
https://www.iso.org/standard/75066.html
https://www.iso.org/standard/75066.html
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref15
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref15
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref15
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref16
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref16
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref17
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref17
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref17
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref18
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref18
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref18
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref19
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref19
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref20
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref20
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref22
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref22
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref23
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref23
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref23
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref24
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref24
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref24
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref25
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref25
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref25
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref25
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref26
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref26
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref27
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref27
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref27
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref27
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref28
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref28
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref28
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref29
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref29
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref30
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref30
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref31
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref31
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref31
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref32
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref32
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref33
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref33
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref33
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref34
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref34
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref34

A. Khodadadi and S. Lazarova-Molnar

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

Overbeck L, Graves SC, Lanza G. Development and analysis of digital twins of
production systems. Int J Prod Res 2024;62(10):3544-58.

Antelmi A, Cordasco G, D’Ambrosio G, De Vinco D, Spagnuolo C. Experimenting
with agent-based model simulation tools. Appl Sci 2022;13(1):13.

Khan AA, Abonyi J. Simulation of sustainable manufacturing solutions: tools for
enabling circular economy. Sustainability 2022;14(15):9796.

Kampa A, Gotda G, Paprocka I. Discrete event simulation method as a tool for
improvement of manufacturing systems. Computers 2017;6(1):10.

Li W, Huynh BH, Akhtar H, Myo KS. Discrete event simulation as a robust
supporting tool for smart manufacturing. Implement Ind 4 0 Model Fact Key
Enabler Future Manuf 2021:287-312.

Magnanini MC, et al. A digital twin-based approach for multi-objective
optimization of short-term production planning. IFACPap 2021;54(1):140-5.
Tsinarakis G, Sarantinoudis N, Arampatzis G. A discrete process modelling and
simulation methodology for industrial systems within the concept of digital twins.
Appl Sci 2022;12(2):870.

van Cruchten R, Weigand H. Towards event log management for process mining-
vision and research challenges. International Conference on Research Challenges
in Information Science. Springer; 2022. p. 197-213.

Bozkaya M, Gabriels J, Van der Werf JM. Process diagnostics: a method based on
process mining. 2009 International Conference on Information, Process, and
Knowledge Management. IEEE; 2009. p. 22-7.

Brockhoff T, et al. Process prediction with digital twins. 2021 ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE; 2021. p. 182-7.

Naderifar V, Sahran S, Shukur Z. A review on conformance checking technique
for the evaluation of process mining algorithms. TEM J 2019;8(4):1232.

de Leoni M. Foundations of process enhancement. Process Mining Handbook.
Springer; 2022. p. 243-73.

Friederich J, Lazarova-Molnar S. Data-driven reliability modeling of smart
manufacturing systems using process mining. 2022 Winter Simulation Conference
(WSCQ). IEEE; 2022. p. 2534-45.

Bemthuis RH, Lazarova-Molnar S. Discovering agent models using process
mining: Initial approach and a case study. 2022 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE; 2022. p. 163-72.

Flammini F. Data-Driven Anomaly Detection in Smart-Railways through Self-
Adaptation, Process Mining, and Digital Twins. 2024 IEEE International
Conference on Big Data (BigData). IEEE; 2024. p. 8653-7.

Kumbhar M, Ng AH, Bandaru S. A digital twin based framework for detection,
diagnosis, and improvement of throughput bottlenecks. J Manuf Syst 2023;66:
92-106.

Vogelgesang T, Appelrath H-J. Multidimensional process mining: a flexible
analysis approach for health services research. Proc Jt EDBT/ICDT 2013
Workshops 2013:17-22.

Vogelgesang T, Appelrath H-J. Multidimensional ProCess Mining with Pmcube
Explorer. BPM 2015:90-4.

T. Vogelgesang, G. Kaes, S. Rinderle-Ma, and H.-J. Appelrath, "Multidimensional
process mining: Questions, requirements, and limitations," 2016.

Erdogan TG, Tarhan AK. Multi-perspective process mining for emergency process.
Health Inform J 2022;28(1):14604582221077195.

Xu H, Pang J, Yang X, Yu J, Li X, Zhao D. Modeling clinical activities based on
multi-perspective declarative process mining with openEHR’s characteristic. BMC
Med Inform Decis Mak 2020;20:1-11.

F. Mannhardt, "Multi-perspective process mining," 2018.

Bolt A, van der Aalst WM. Multidimensional process mining using process cubes.
International Workshop on Business Process Modeling, Development and
Support. Springer; 2015. p. 102-16.

Knoll D, Reinhart G, Priiglmeier M. Enabling value stream mapping for internal
logistics using multidimensional process mining. Expert Syst Appl 2019;124:
130-42.

Kroeger S, Rafles A, Jordan P, Soellner C, Zaeh MF. Data model to enable
multidimensional process mining for data farming based value stream planning in
production networks. Prod Eng 2024:1-21.

Guzzo A, Joaristi M, Rullo A, Serra E. A multi-perspective approach for the
analysis of complex business processes behavior. Expert Syst Appl 2021;177:
114934.

S. Sim, L. Liu, and H. Bae, "Automatic Discovery of Multi-perspective Process
Model using Reinforcement Learning," arXiv preprint arXiv:2211.16687, 2022.
Aalst W v d. Business alignment: using process mining as a tool for delta analysis
and conformance testing. Requir Eng 2005;10:198-211.

Friederich J, Khodadadi A, Lazarova-Molnar S. PySPN: a python library for
modeling, simulation, and event log generation of stochastic petri nets. Trans Soc
Model Simul Int 2025;2025.

Brzychczy E, Szpyrka M, Korski J, Nalepa GJ. Imperative vs. declarative modeling
of industrial process. The case study of the longwall shearer operation. IEEE
Access 2023;11:54495-508.

S.A. White, "Introduction to BPMN," in "Ibm Cooperation," Object Management
Group (OMG), 2004. [Online]. Available: (https://www.omg.org/bpmn/Docu
ments/Introduction_to_BPMN.pdf).

Cecconi A, De Giacomo G, Di Ciccio C, Maggi FM, Mendling J. Measuring the
interestingness of temporal logic behavioral specifications in process mining. Inf
Syst 2022;107:101920.

Maggi FM, Bose RJC, van der Aalst WM. Efficient discovery of understandable
declarative process models from event logs. Advanced Information Systems

305

[73]

[74]

[75]

[76]

[77]

[78]

[791]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

Journal of Manufacturing Systems 85 (2026) 287-306

Engineering: 24th International Conference, CAiSE 2012, Gdansk, Poland, June
25-29, 2012. Proceedings 24. Springer; 2012. p. 270-85.

Kalenkova AA, van der Aalst WM, Lomazova IA, Rubin VA. Process mining using
BPMN: relating event logs and process models. Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and
Systems. 2016. p. 123.

Schroder C, van Detten JN, Leemans SJ. Locally optimized process tree discovery.
International Conference on Process Mining. Springer; 2024. p. 389-401.
Kalenkova AA, Lomazova IA, van der Aalst WM. Process model discovery: A
method based on transition system decomposition. International Conference on
Applications and Theory of Petri Nets and Concurrency. Springer; 2014. p. 71-90.
Davidrajuh R. Petri nets for modeling of large discrete systems. Singapore:
Springer; 2021.

Wu N, Zhou M, Hu G. On Petri net modeling of automated manufacturing
systems. 2007 IEEE International Conference on Networking, Sensing and
Control. IEEE; 2007. p. 228-33.

Gutowska K, Kogut D, Kardynska M, Formanowicz P, Smieja J, Puszynski K. Petri
nets and ODEs as complementary methods for comprehensive analysis on an
example of the ATM-p53-NF-k B signaling pathways. Sci Rep 2022;12(1):1135.
Kahraman C, Tiiysiiz F. Manufacturing system modeling using petri nets.
Production Engineering and Management under Fuzziness. Springer; 2010.

p. 95-124.

Kaid H, Al-Ahmari A, El-Tamimi AM, Nasr EAbouel, Li Z. Design and
implementation of deadlock control for automated manufacturing systems. South
Afr J Ind Eng 2019;30(1):1-23.

Pommereau F. SNAKES: A flexible high-level petri nets library (tool paper).
Application and Theory of Petri Nets and Concurrency: 36th International
Conference, PETRI NETS 2015, Brussels, Belgium, June 21-26, 2015, Proceedings
36. Springer; 2015. p. 254-65.

Westergaard M, Kristensen LM. The access/cpn framework: A tool for interacting
with the cpn tools simulator. International conference on applications and theory
of Petri nets. Springer; 2009. p. 313-22.

Looney CG. Fuzzy Petri nets for rule-based decisionmaking. IEEE Trans Syst Man
Cybern 1988;18(1):178-83.

Zimmermann A. Colored petri nets. Stoch Discret Event Syst Model Eval Appl
2008:99-124.

F. Bause and P.S. Kritzinger, Stochastic petri nets. Vieweg Wiesbaden, 2002.
Zhang W, Bi Z, Zha X. A generic petri net model for flexible manufacturing
systems and its use for FMS control software testing. Int J Prod Res 2000;38(5):
1109-31.

Wang J, Ip W, Muddada RR, Huang J, Zhang W. On Petri net implementation of
proactive resilient holistic supply chain networks. Int J Adv Manuf Technol 2013;
69(1):427-37.

S. Lazarova-Molnar, "The proxel-based method: Formalisation, analysis and
applications," PhD dissertation, Otto-von-Guericke-Universitat Magdeburg, 2005.
A. Khodadadi, A. Zare, M. Jungmann, M. G6tz, and S. Lazarova-Molnar, "A
Tutorial on Data-Driven Petri Net Model Extraction and Simulation for Digital
Twins in Smart Manufacturing," presented at the Winter Simulation Conference,
Seattle, Washington, 2025, 2025.

Zeigler BP, Praehofer H, Kim TG. Theory of modeling and simulation. Second ed.
Academic press; 2000.

Van Der Aalst WM. Learning Colored Petri Nets Using Object-Centric Event Data
(OCED2CPN). 2023 7th IEEE Congress on Information Science and Technology
(CiSt). IEEE; 2023. p. 1-6.

Y. Wang, G. Zacharewicz, D. Chen, and M.K. Traoré, "Integrating dependency
with DEVS in the process mining," presented at the New Information
Communication Sciences and Technology for Sustainable Development (NICST
2015), Bordeaux, France, 2015. [Online]. Available: (https://hal.science/
hal-01551430v1).

De Giacomo G, Oriol X, Estanol M, Teniente E. Linking data and BPMN processes
to achieve executable models. International Conference on Advanced Information
Systems Engineering. Springer; 2017. p. 612-28.

AnyLogic. "AnyLogic Simulation Software." (https://www.anylogic.com/)
(accessed 13rd March 2025.

"ExtendSim." (https://extendsim.com/) (accessed 2024).

"Simulink." (https://www.mathworks.com/products/simulink.html) (accessed
2024).

A. Khodadadi and S. Lazarova-Molnar, "Multidimensional Stochastic Petri Nets: A
Novel Approach to Modeling and Simulation of Stochastic Discrete-Event
Systems," presented at the IEEE SMC, 2025.

A. Khodadadi and S. Lazarova-Molnar, "Essential Data Requirements for
Industrial Energy Efficiency with Digital Twins: A Case Study Analysis," presented
at the ED-140, 2023.

Fink L, Matyas G, Zink F, Wallner B, Bleicher F, Trautner T. Severity of failure:
resilience assessment on the shop floor. Procedia CIRP 2025;134:85-90.
Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat Methods 2020;17(3):261-72.

Billington J, et al. The petri net markup language: Concepts, technology, and
tools. International Conference on Application and Theory of Petri Nets. Springer;
2003. p. 483-505.

A. Khodadadi and S. Lazarova-Molnar, "MDPNML: A Multidimensional Petri Net
Markup Language Enabling Construction and Simulation of Comprehensive
Digital Twin Models," presented at the The International Conference on Model-
Based Software and Systems Engineering (MODELSWARD), 2026.

J. Martens and F. Put, "A theory of structural model validity in simulation," KU
Leuven - Departement Toegepaste Economische Wetenschappen (DTEW),


http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref35
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref35
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref36
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref36
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref37
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref37
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref38
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref38
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref39
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref39
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref39
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref40
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref40
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref41
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref41
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref41
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref42
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref42
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref42
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref43
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref43
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref43
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref44
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref44
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref44
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref45
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref45
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref46
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref46
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref47
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref47
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref47
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref48
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref48
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref48
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref48
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref48
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref49
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref49
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref49
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref50
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref50
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref50
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref51
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref51
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref51
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref52
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref52
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref53
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref53
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref54
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref54
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref54
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref55
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref55
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref55
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref56
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref56
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref56
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref57
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref57
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref57
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref58
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref58
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref58
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref59
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref59
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref60
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref60
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref60
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref61
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref61
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref61
https://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
https://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref62
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref62
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref62
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref63
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref63
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref63
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref63
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref64
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref64
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref64
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref64
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref65
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref65
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref66
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref66
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref66
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref67
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref67
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref68
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref68
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref68
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref69
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref69
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref69
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref70
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref70
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref70
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref71
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref71
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref71
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref72
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref72
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref72
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref72
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref73
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref73
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref73
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref74
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref74
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref75
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref75
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref76
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref76
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref76
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref77
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref77
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref77
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref78
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref78
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref79
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref79
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref79
https://hal.science/hal-01551430v1
https://hal.science/hal-01551430v1
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref80
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref80
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref80
https://www.anylogic.com/
https://extendsim.com/
https://www.mathworks.com/products/simulink.html
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref81
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref81
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref82
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref82
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref83
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref83
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref83

A. Khodadadi and S. Lazarova-Molnar Journal of Manufacturing Systems 85 (2026) 287-306

Leuven, Belgium, 9936, 1999. [Online]. Available: (https://lirias.kuleuven.be [105] Wenzel S, Rabe M, Strassburger S, von Viebahn C. Energy-Related Material Flow
/1834098?1limo=0). Simulation in Production and Logistics. Springer; 2024.

[104] Sargent RG. A tutorial on verification and validation of simulation models. [106] Simunic T, Benini L, Glynn P, De Micheli G. Event-driven power management.
Proceedings of the 16th conference on Winter simulation. 1984. p. 114-21. IEEE Trans ComputAided Des Integr Circuits Syst 2001;20(7):840-57.

306


https://lirias.kuleuven.be/1834098?limo=0
https://lirias.kuleuven.be/1834098?limo=0
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref84
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref84
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref85
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref85
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref86
http://refhub.elsevier.com/S0278-6125(26)00022-1/sbref86

	Automated extraction of comprehensive digital twin models for smart manufacturing systems
	1 Introduction
	2 Background
	2.1 Terminology
	2.2 Digital twins in smart manufacturing systems
	2.3 Modeling and simulation within digital twins of manufacturing systems
	2.4 Process mining for digital twins
	2.4.1 Event logs
	2.4.2 Modeling formalisms for representing the discovered process models
	2.4.3 Stochastic petri nets

	2.5 Modeling formalisms capable of capturing multidimensionality
	2.6 Related work on simulation of multidimensional models

	3 Comprehensive digital twins of smart manufacturing systems
	3.1 Multidimensional stochastic petri nets
	3.2 Data collection and preprocessing for comprehensive digital twins
	3.3 Multi-flow process mining
	3.4 Automated MDSPN model extraction
	3.4.1 Process flow discovery and process flow features extraction
	3.4.2 Extraction of the multidimensional transition table
	3.4.3 MDSPN model extraction and MDSPN simulation code development

	3.5 MDSPNs simulation tool: MDPySPN
	3.6 Multidimensional simulation model validation

	4 Illustrative case study
	4.1 Case study description
	4.2 Data collection and preprocessing
	4.3 MDSPN model extraction and simulation
	4.4 MDSPN simulation model validation
	4.5 Multi-objective decision-making scenarios and results

	5 Challenges in developing comprehensive digital twins
	6 Summary and outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


