KIT | KIT-Bibliothek | Impressum | Datenschutz

A Polymorphic Encryption Framework for Cross-Silo and Cross-Device Distributed Learning

Hagag, Rawan; Nassar, Hassan ORCID iD icon 1; Henkel, Jörg 1; El Ghany, Mohamed A. Abd
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper presents a hardware-accelerated polymorphic encryption framework for privacy-preserving dis-
tributed machine learning, using a mode-switching polymorphic encryption scheme for secure training across multiple data owners without requiring data decryption or direct sharing. We propose two distributed learning architectures: cross-silo for institutional collaboration and cross-device for decentralized sensor networks. Our framework utilizes a two-layer encryption strategy, pseudonymizing data locally before encryption for secure transmission to a semi-trusted central party. We prototype hardware-accelerated decision tree classifiers and evaluate CNN architectures on encrypted datasets. Experiments on three healthcare datasets show minimal performance loss with less than 6% accuracy variation between single-key and multi-key encryption, while maintaining stable model complexity. The cross-device implementation often improves performance and reduces computational complexity. This approach removes frequent parameter exchanges common in traditional methods and maintains regulatory compliance, offering a scalable solution for privacy-preserving collaborative machine learning. ... mehr


Originalveröffentlichung
DOI: 10.1109/ICM66518.2025.11322452
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 14.12.2025
Sprache Englisch
Identifikator ISBN: 979-8-3315-9370-4
KITopen-ID: 1000189950
Erschienen in 2025 37th International Conference on Microelectronics (ICM)
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 5 S.
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page