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ABSTRACT

The informed isotropic (IISO) viscosity model has gained popularity as a surrogate for fourth-order tensor
viscosity models in simulating injection and compression molding of discontinuous fiber reinforced composites
in industrial applications, primarily to overcome numerical challenges that are especially pronounced in long
fiber reinforced materials. In addition, the IISO model can be easily integrated into (commercial) isotropic
frameworks. The central idea is to equate the energy dissipation rates resulting from a fully anisotropic and
an isotropic viscous material model, which allows deriving a scalar surrogate viscosity that depends on the
local fiber orientation. However, the model’s fundamental capability to predict anisotropic flow behavior
in compression molding remains limited. This work comprehensively assesses the IISO viscosity model’s
capabilities through analytical and numerical investigations of fundamental flow scenarios. We demonstrate
that the IISO viscosity model cannot generate elliptical deformation in lubricated squeeze flow of initially
cylindrical samples with spatially homogeneous and anisotropic initial fiber orientation states, confirming the
model’s inherent limitation due to stress—strain-rate coaxiality. When we extend the analysis to non-lubricated
squeeze flow, the results emphasize that the IISO viscosity model also fails to produce anisotropic flow
regardless of the spatially homogeneous and (aligned) orthotropic initial fiber orientation state. Furthermore,
we demonstrate that the compression-molding-style center-gated disk benchmark is inconclusive, as the flow
trajectory depends on the magnitude of the imposed perturbation rather than the fiber orientation. The
perturbation also introduces a physically implausible circumferential vortex. Finally, we discuss potential
sources of apparent anisotropic behavior in numerical flow simulations in the literature and highlight the
challenges of parameterizing the IISO viscosity model experimentally.

1. Introduction

has been demonstrated in squeeze flow experiments for various mate-
rials: bundle-like thermoplastics [4], GMT [5,6], and LFT-D [7], where

1.1. Motivation and state of the art

Compression molding of discontinuous fiber reinforced compos-
ites is a widely used manufacturing process for producing complex
(semi-)structural components. Compared to injection molding, the fiber
length is considerably longer, thereby improving mechanical proper-
ties. Common materials include in-line compounded long fiber rein-
forced thermoplastics (LFT-D), glass mat thermoplastics (GMT), and
sheet molding compounds (SMC), selected based on application-specific
requirements. While the fiber reinforcement enhances the mechanical
properties of the composite [1-3], it also introduces strong fiber ori-
entation dependent behavior. Both, structural and rheological behavior
are significantly influenced by the local fiber orientation and its interac-
tion with the surrounding matrix. The anisotropic rheological behavior
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initially cylindrical samples deform elliptically. In contrast, SMC sam-
ples generally retain the circular shape due to the planar isotropic fiber
orientation before testing [8,9], though their flow behavior remains
fiber-orientation dependent [10].

Accurate prediction of mold filling and resulting fiber orientation re-
quires models that capture the two-way fiber-matrix coupling. Even for
short fibers typical in injection molding, this interaction significantly
affects the final fiber orientation distribution [11]. To capture this
behavior, several anisotropic viscous constitutive models have been de-
veloped. These are motivated either by fluid mechanics [12-14] or solid
mechanics [15-17] and are applied across a range of discontinuous
fiber-reinforced materials [18-20]. However, fully anisotropic models
often suffer from numerical issues such as poor system conditioning and
convergence problems [21-25].
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To mitigate these issues, several simplified scalar viscosity models
have been proposed in recent literature to reduce the anisotropic
viscosity tensor to a scalar surrogate viscosity, which is easier to
handle numerically. Costa et al. [26] introduce a threshold-based ap-
proach to consider the influence of fiber orientation on the composite’s
viscosity. However, this approach is not thermodynamically conserva-
tive. An alternative is the informed isotropic (IISO) viscosity model
proposed by Favaloro et al. [27], which is thermodynamically consis-
tent. In this model, the energy dissipation rate of a fully anisotropic
fourth-order tensor model and an isotropic scalar model are equated to
obtain a scalar surrogate viscosity. Although the model fails to predict
anisotropic behavior in lubricated squeeze flow between two parallel
plates, the authors present a simplified verification case, namely a
compression-molding-style center-gated disk (CGD), both analytically
and via Moldex3D simulations [27]. Simultaneously, Li and Luyé [28]
proposed an equivalent model. However, we will refer to the model
as IISO viscosity model, as it is commonly known in the literature.
Subsequently, the IISO viscosity model has been utilized in prepreg
platelet molding [29], compression molding of hybridly laminated
thermoplastics [30], GMT [31], SMC [32] and injection molding [33-
35].

Motivated by numerical instabilities encountered in an earlier work
[23], Tseng and Favaloro [33] propose a full IISO constitutive equa-
tion that also introduces shear rate dependence to the parameter de-
scribing the anisotropy. The IISO constitutive model is applied to
several injection molding examples including a comparison with the
isotropic solution and the surrogate viscosity model by Li and Luyé
[28]. Building on this, Huang and Lai [34] employed the IISO constitu-
tive equation to examine its influence on fiber orientation and mold
filling in injection molding of short fiber reinforced thermoplastics.
Both works report the development of a concave flow front pattern in
conjunction with the IISO viscosity model, compared to a flat flow front
pattern in the isotropic case. However, comparison with the respective
fully anisotropic model [33], in which the tensorial information is not
reduced to a scalar, are not provided.

In an optimization framework, Rienesl et al. [35] use the IISO
constitutive equation in Moldex3D to identify material parameters
describing fiber reorientation and anisotropy in short fiber injection
molding. However, the objective function only accounts for fiber ori-
entation at discrete locations, resulting in non-unique solutions and
parameter sets that depended on the spatial weighting of measurement
points.

Favaloro and Sommer [29] apply the IISO viscosity model to
prepreg platelet compression molding using Moldex3D, following their
earlier smooth particle hydrodynamics (SPH) based work [19] in
Abaqus/Explicit, in which a fully anisotropic viscosity model [27]
was utilized. The switch to Moldex3D is motivated by challenges
with time step restrictions in the SPH solution resulting from the fine
particle discretization required to accurately capture shearing near the
mold interface under a no-slip boundary condition. In [29], the IISO
constitutive equation from Tseng and Favaloro [33] is used, though the
anisotropy parameter is not modeled as shear rate dependent. A direct
comparison between the informed and the fully anisotropic models is
not provided in [29].

Lee et al. [30] employed the IISO viscosity model to simulate
discontinuous fiber reinforced layers within a hybridly laminated ther-
moplastic compression molding process in Abaqus/Explicit. To verify
their implementation, the authors simulate lubricated squeezing of an
initially cylindrical sample with unidirectional fiber orientation. How-
ever, the simulation produces an elliptical deformation, contradicting
the analytical prediction in [27].

For the study on GMT compression molding in Dorr et al. [31], we
collaboratively implemented the IISO viscosity model within Autodesk
Moldflow via the API to perform component-scale simulations. The vis-
cous material parameters were determined from oscillatory rheometry
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using a fully anisotropic constitutive equation. In contrast, Kapsham-
mer et al. [32] determine the viscous material parameters for SMC
using squeeze flow experiments. Furthermore, the IISO viscosity model
is utilized in the parameter identification. However, due to the planar
isotropic initial fiber orientation of SMC, the sample’s cylindrical shape
is preserved during these tests, offering limited insight into anisotropic
flow behavior. Similar to the concerns raised in Rienesl et al. [35],
this parameter identification approach does not include flow-induced
effects in the optimization. As a result, the derived anisotropy ratio is
substantially higher than reported in, e.g., [36]. For this reason, the
parameters describing the anisotropy are often approximated analyti-
cally [13,37-39], as done in [17,18,31]. However, the applicability of
such expressions must be carefully evaluated, as emphasized in [7].
An overview of published studies using the IISO viscosity model is
provided in Table 1.

1.2. Originality

In this work, we comprehensively assess the applicability of the
informed isotropic (IISO) viscosity model [27] to compression molding
of discontinuous fiber reinforced polymers. To this end, we revisit the
limiting case of lubricated squeeze flow between two parallel plates,
originally emphasized by Favaloro et al. [27], and extend the analysis
to non-lubricated squeeze flow. The latter is particularly important for
thermoplastic-based material systems, where the high frictional forces
at the mold-composite interface are typically idealized by a no-slip
boundary condition. We then re-examine the simplified compression-
molding-style benchmark of a center-gated disk (CGD), which is in-
tended to showcase the IISO model’s capability to induce anisotropic
flow behavior. Drawing from these investigations, we evaluate the
model’s predictive capabilities and limitations, and discuss its practical
relevance in light of existing applications summarized in Table 1.

1.3. Notation

Throughout this manuscript the symbolic notation is employed.
Vectors are represented by bold lowercase letters, e.g., a, second-order
tensors by bold uppercase letters, e.g., A, and fourth-order tensors by
double-struck letters, e.g., A. Tensor contractions of equal order are ex-
pressed as, e.g., (AB);; = A By, for second-order tensors and (AB),;;;, =
A;junBumi for fourth-order tensors. The linear mapping of a fourth-
order tensor on a second-order tensor is written as (A [B]);; = A, By-
Scalar products are denoted by a centered dot, e.g., A - B for second-
order tensors, while dyadic products are indicated as, e.g., A ® B.
The second-order identity tensor is denoted by I, and the fourth-order
projection tensor onto symmetric deviatoric tensors is represented by
19V, The Cartesian coordinate system is spanned by basis vectors e,
e,, and e;, while the cylindrical coordinate system is spanned by e,,
e,, and e, where e; =e_.

2. Theoretical background

In this section, we provide a brief overview of fiber orientation
modeling and viscous constitutive modeling relevant to this work.

2.1. Fiber orientation description

A single fiber’s orientation is described by a unit vector p € S?,
where S? denotes the unit sphere. However, modeling the fiber ori-
entation in industrial composites requires a formal description. This is
achieved using the fiber orientation distribution function ¥ (p), which
relates a fiber orientation p to its occurrence probability. Although the
fiber orientation distribution function ¥ (p) offers a complete statistical
characterization, its arbitrary complexity makes it impractical for most
numerical methods. To address this, the fiber orientation distribution
function is typically represented by its statistical moments given by
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Table 1

Chronological overview of studies using the informed isotropic (IISO) viscosity model.
Reference Application Software
Favaloro et al. [27] Injection molding, compression-molding-style center-gated disk Moldex3D
Favaloro et al. [40] Compression molding style center-gated disk Moldex3D
Li and Luyé [28]° Injection molding Moldflow
Tseng and Favaloro [33] Injection molding Moldex3D
Huang and Lai [34] Injection molding Moldex3D
Favaloro and Sommer [29] Prepreg platelet compression molding Moldex3D
Lee et al. [30] Hybridly laminated thermoplastics Abaqus/Explicit
Rienesl et al. [35] Injection molding Moldex3D
Dorr et al. [31] Glass mat thermoplastics (GMT) Moldflow
Kapshammer et al. [32] Sheet molding compounds (SMC) Moldex3D

2 Simultaneously proposed a model equal to the IISO viscosity model [27].

the kth (even) order fiber orientation tensor Ay following the works
of Kanatani [41] and Advani and Tucker [42]. The fiber orientation
tensor Ay, is defined as

Ay = / P P)p®hds, @)
S

where (-)®* denotes the kth times dyadic product. In an engineering
context, the second- and fourth-order fiber orientation tensors A and
A are of particular interest. The second-order fiber orientation tensor
A is generally utilized to model fiber reorientation in flow simulations.
However, the respective evolution equation requires knowledge of the
fourth-order fiber orientation tensor A as well. Closure approximations
A = C(A) solve these problems by associating a second-order fiber
orientation tensor A with exactly one fourth-order fiber orientation
tensor. The orthotropy of the second-order fiber orientation tensor
A is generally preserved by closure approximations; therefore, the
fourth-order tensor A is also orthotropic. Notable exceptions are the
non-orthotropic closures proposed by [43] for planar fiber orientation
states.

2.2. Governing equations and viscous constitutive modeling
In (compression) molding simulation of discontinuous fiber rein-

forced composites, the transient flow of the material is governed by
the conservation of mass and momentum, which can be expressed as

dp
— 4+ V- =0, 2
o TV 2
0
ait"+uwu)=v.a+pg, 3)

where p is the density, ¢ is the time, u is the velocity field, ¢ is the
Cauchy stress tensor, and pg is the gravitational force per unit volume.
For non-isothermal simulations, the energy conservation equation is
also required. The general form of a viscous constitutive model for a
(quasi-)incompressible medium is given by

c=-pl +V'[D'], 4

where p describes the hydrostatic pressure, V/ = I9VI%V is a sym-
metric deviatoric fourth-order viscosity tensor, and D’ = 19" [D] is the
deviatoric part of the rate of strain tensor D. When the constitutive
equation is formulated so that the viscous stresses = are purely devi-
atoric, i.e., 7 = V/ [D’ ], the pressure p solely describes the spherical
contribution, as emphasized in [44]. The simplest form of a viscous
constitutive model is the Newtonian model, where the viscosity tensor
V is a scalar multiple of the symmetric deviatoric projection tensor

V! = 219, (5)

Including dependence on shear rate y, temperature T, and curing effects
a (for thermoset matrix materials) in the scalar viscosity 5(7,7T, @) in-
creases the model’s physical interpretation. Following Egs. (4) and (5),
the Cauchy stress o and the rate of deformation tensor D are coaxial.
Thus, extension-extension, extension-shear, and shear-shear coupling,

as evident in experimental studies [4-7,12], are not considered. There-
fore, anisotropic viscous constitutive models, whether derived from
fluid [12-14] or solid [15-17] mechanics, are required to capture the
material’s anisotropic behavior. In these models, the viscosity tensor
V/(A) is expressed as a function of the fourth-order fiber orientation
tensor A.

3. Informed isotropic (IISO) viscosity model

The idea of the IISO viscosity model is to introduce anisotropic
information into an otherwise isotropic framework by adjusting the
magnitude of the scalar surrogate viscosity ny;so depending on the local
fiber orientation distribution. The central idea, proposed by Favaloro
et al. [27], is to equate the energy dissipation rate Ej of a fully
anisotropic viscous model with that of an isotropic surrogate:

Ep=1-D' =25oD’'-D' =V [D'] - D', (6)

where #y5g is the IISO viscosity. Equating the energy dissipation rates
ensures a conservative formulation. Rearranging Eq. (6), the IISO vis-
cosity is obtained as

mso=D'-V' [D'](2D'- D)™ =d-V'[d], @

where d = D'y~! is the normalized rate of deformation tensor. Substi-
tuting Eq. (7) into Eq. (4) yields the general form of an IISO constitutive
equation:

oc=-pl+d-V'[d]D. (8

A generic form of the fourth-order viscosity tensor definitions in [14,
27,44] is given as

V' =q (1% + pA"), )

where A’ = T9VAI%' is the deviatoric part of the fourth-order fiber
orientation tensor, and f§ is a parameter describing the anisotropic con-
tribution. The interpretation of the parameter f may vary depending
on the derivation context [14,27]. By inserting Eq. (9) into Eq. (7), the
scalar surrogate viscosity becomes

fiso = 2n(1+ pd - A" [d]). 10$)

The term d - A’ [d], referred to as the stretching kernel [27], describes
the alignment between the principal direction of deformation and the
fiber orientation. Note that since d is purely deviatoric, i.e., I*" [d] = 0,
it follows that d - A’ [d] = d - A[d]. The stretching kernel attains its
maximum when the flow direction aligns with the major principal di-
rection of the fiber orientation (if present), leading to a higher surrogate
viscosity. Conversely, if the flow is perpendicular to the preferred fiber
orientation, the kernel is minimized and the viscosity is reduced.
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4. Evaluation of the IISO model for anisotropic flow prediction

Squeeze flow between two parallel plates is a fundamental flow
scenario in the compression molding of discontinuous fiber reinforced
polymers (cf. Fig. 1). In such experiments, circular samples with an
initially aligned in-plane fiber orientation exhibit elliptical deforma-
tion, as observed for various material systems [4-7]. Fully anisotropic
viscosity models are able to accurately capture this behavior, as demon-
strated in several studies [7,12,17,45]. This elliptical deformation is
characteristic of orthotropic materials under compressive loading. Since
common closure approximations preserve the orthotropy of the second-
order fiber orientation tensor, fourth-order viscosity models inherently
exhibit orthotropic behavior. Consequently, the squeeze flow cases
presented below serve to investigate an orthotropic model’s inherent
capability to induce anisotropic flow.

Generally, a distinction is made between lubricated and non-
lubricated squeeze flow. In lubricated squeeze flow, negligible friction
at the mold-composite interface results in plug-flow-like behavior,
which is modeled by an ideal slip boundary condition and characterized
by purely elongational deformation. In contrast, non-lubricated squeeze
flow results from high frictional forces at the interface. These forces
are typically idealized by a no-slip boundary condition, yielding a
combination of elongation and shear. The resulting through-thickness
velocity profiles are characteristic of both compression molding and
injection molding.

In the following, we first evaluate the IISO viscosity model’s ability
to induce anisotropic flow analytically for both lubricated and non-
lubricated squeeze flow (Section 4.1). Subsequently, we demonstrate
these findings with finite element simulations, which also account for
fiber reorientation during flow (Section 4.2).

v

—
—_—
[N

Fig. 1. Schematic of squeeze flow between two parallel plates [7].
4.1. Analytical evaluation

Lubricated squeeze flow. In lubricated squeeze flow, cited as worst-
case scenario [27], the IISO viscosity model cannot induce anisotropic
flow depending on the fiber orientation, as the model lacks extension-
extension coupling. To understand this limitation, we apply a compres-
sive stress o33 = —& to a continuum with lateral free boundaries. The
surface traction at the free boundary

on=0,Vx e i 11

implies o), = 05, = 0 at the coordinate axes (cf. Fig. 1), where n is
the outward normal vector. Following the definition of the hydrostatic
pressure p = /3, the deviatoric stresses are 733 = 033 — p = —2/36,
and 7|, = 75, = 6/3. In an isotropic framework, the stress tensor and
rate of deformation tensor are coaxial, and thus 7;; = 7,, necessitates
D,, = D,,. This constraint, however, does not hold for fully anisotropic
models.

For further illustration, we analyze the stretching kernel’s behavior.
The IISO viscosity model alters the magnitude of the scalar viscosity
depending on the relative alignment between fiber orientation and
rate of deformation. Therefore, the ratio of the stretching kernel be-
tween the principal axes d - A[d](¢ =0)/d - A[d] (¢ = x/2) is crucial
to the development of anisotropic flow, where ¢ denotes the circum-
ferential coordinate (cf. Fig. 1). For lubricated squeeze flow of an
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initially cylindrical sample with spatially homogeneous (orthotropic)
fiber orientation, the rate of deformation tensor is given by

70 0
D=|0 7 0 , 12)
0 0
0 0 —(i}, +7p) (e e2.e3)

where ;'/?1 and 722 are the rates of deformation at the principal axes (cf.
Fig. 1). Since the rate of deformation tensor has no spatial dependence
for cylindrical samples, the stretching kernel is spatially uniform even
for aligned fiber orientation distributions, provided they are spatially
homogeneous.

Non-lubricated squeeze flow. In the following, we extend the above
analysis to non-lubricated squeeze flow building upon Ericsson’s analyt-
ical model [12]. Recently, we proposed an extension to this model that
also considers shear thinning [7]. However, for the sake of simplicity,
we focus on the original model with the following assumptions, which
do not influence the occurrence or non-occurrence of an anisotropic
flow:

» Quasi-Newtonian material is assumed incompressible (V - u = 0)
and exhibits IISO constitutive behavior according to Eq. (10).
Temperature field is homogeneous (VT = 0) and isothermal (‘;—f =
0).

Inertia effects are negligible (p% < V.o).

Gravitational forces are neglected (pg = 0).

Fiber orientation distribution ¥ is orthotropic, i.e., the material
also exhibits orthotropic behavior. Furthermore, the material’s
orthotropy axes coincide with the coordinate axes.

Initial fiber orientation distribution ¥, is spatially homogeneous
(V¥, =0).

Since the exact influence of the IISO viscosity model on the velocity
field is unknown, we make the following approach for the velocity field:

7, (1= £6) x,
u=| (-G x

(i + 75) (1= 1) )

> (13)

{e1.e2.e3}

where f(x3) describes the through-thickness profile. Because of the
problem’s symmetry with respect to the 1,2-plane, we define the veloc-
ity field in the interval x5 € [0, 2/2], and demand smooth symmetries,
i.e., f'(x3 = 0) = 0, where f’ corresponds to the total derivative. In-
serting Eq. (13) in the mass conservation yields an ordinary differential
equation for f(x3). Imposing the boundary condition f(h/2) =1 at the
plate interface yields the following expression for the through-thickness
profile:

h)(l—)(), (14)

f(x3) = xgl_l) (5

where A(?) is the transient sample height and y = f (A, 5, f) € [3, ) is
a parameter describing the shape of the through-thickness profile. For
x > 3, the velocity field is twice differentiable with respect to x5 in the
midplane (x; = 0), i.e,,

2
r23=>13 0—2f(X3) : 15)
()x3
3 x3=0

For y =3, the through-thickness velocity profile is quadratic, as in the
original model [12], and for y — oo, the profile resembles lubricated
squeeze flow (cf. Fig. 2). The rate of deformation tensor D, calculated
from Egs. (13) and (14), is given in cartesian coordinates {e|, e,, e5} as:

7 (1= £(x3)) 0 =370 e,
D, = 79 (1= fG3) =375 (x3)x, (16)

sym. — (70 + 79, )E(x3)
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h/2

el
& h/4 ]
= == Newtonian, lubr. %,
== Newtonian, non-lubr. *
0 1 1 1
0 1/4 1/2 3/4 1
1— f(xs)
! , |
3 6 9 12 15 18
X

Fig. 2. Normalized through-thickness velocity profiles of u; and u, for differ-
ent values of y.

with E(x3) = 1= 1/x(f"(x3)x3 + f(x3))-

Formulating the problem against the midplane (x; = 0, cf. Fig.
1) takes advantage of the velocity and fiber orientation fields’ sym-
metry, thus, allowing for a manageable model, as noted in [7]. In
the midplane, the rate of deformation tensor D is diagonalized and
homogeneous, depending only on j/?l and j/gz. Furthermore, the spin
tensor is zero, i.e., Wi, =0. Consequently, the fiber reorientation
A = f(D,W) in the midplane is also homogeneous and diagonalized as
predicted by established evolution equations [42,46,47]. Therefore, the
material’s orthotropy axes remain aligned with the coordinate system
throughout squeezing, which is a fundamental requirement for this
analytical approach. Additionally, the fiber reorientation does not con-
tribute to the conservation of momentum in the midplane. Inserting Eq.
(16) into the conservation of linear momentum (Lagrange formulation)

Vp=V- (msoD) = DVinso +msoV - D, @a7)

yields the pressure gradient.
Equating the surface traction at the radii r;(r) and r,(r) at the
coordinate axes

Unlxlzr],xZZX3:O = Gnlxzer,XIZX3:0 =0, 18)

I
o 0x;

dx; + (msoDyy)

X1=r
Xp=x3=0 xp=x3=0
I'z a
/4
—/ Fe dx, + (ﬂllsoDzz) Xp=ry 19
0 X2 Ix;=x3=0 x)=x3=0

yields a relation between the rates of deformation 7?1 and 732. For y > 3,
the relation is given by:

0
L)
0
1

1,Vy>3. (20)

For y =3, it follows analogously:
@ _ 2r +h2. on
P 2+ n?

However, in both cases, the relation is independent of the fiber ori-
entation. Consequently, the IISO viscosity model also does not predict
elliptical deformation for cylindrical samples in non-lubricated squeeze
flow for any spatially homogeneous, (aligned) orthotropic fiber orien-
tation state based on this analysis. For initially cylindrical samples,
note that the principal axes of the resulting ellipse (which in this case
remains circular) always coincide with the material’s orthotropy axes.
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While the IISO viscosity model does not induce anisotropic flow in
the presented cases, it does influence the normal force response. This
influence can be attributed to two main effects. First, the IISO viscos-
ity model yields a higher o33 due to the stress—strain-rate coaxiality,
provided the fibers are not predominantly oriented out-of-plane, which
is unlikely in compression molding. Therefore, the compression force
is generally higher in comparison to the fully tensorial model. Second,
the IISO viscosity model exhibits a shear-thinning-like effect, resulting
in a wider core-region of the velocity profile (see the influence of y in
Fig. 2). Consequently, the slope of the normal force tends to be flatter
than that of the fully tensorial model.

4.2. Numerical demonstration

In this section, we numerically demonstrate the findings of Sec-
tion 4.1 for both lubricated and non-lubricated squeeze flow of an
initially cylindrical sample, while also accounting for fiber reorienta-
tion during the flow process. The measurements of the sample and the
initial fiber orientation are chosen in accordance with the experiments
in [7]. Thus, the initial sample height and diameter are 6 mm and
60 mm, respectively. The initial, spatially homogeneous second-order
fiber orientation tensor with respect to the sample’s orthotropy axes
is Ay = diag ((0.81,0.19,0)) [7]. To verify that the IISO viscosity model
correctly handles general fiber orientation states, the sample’s material
axes are rotated by +x /4 with respect to the global coordinate system’s
3-direction in the simulation model.

The Folgar-Tucker equation [48] models the evolution of the fiber

orientation:
% = (WA—-AW)+ u(DA + AD - 2A[D]) + 2C;7(I - 3A), (22)
where u describes the fiber shape and C; is the empirical interaction
coefficient. In this investigation, we chose u = 1 (large fiber aspect
ratio) and C; = 0.01. Compared to Jeffery’s equation [49], the addi-
tional diffusion in Eq. (22) rotates the fibers towards a more isotropic
orientation. Furthermore, the rate of reorientation is also increased for
the chosen C; value compared to Jeffery’s equation. The fourth-order
fiber orientation tensor is approximated by the invariant-based optimal
fitting (IBOF) closure A ~ ABOF [50]. The material’s constitutive
behavior is modeled with the scalar IISO viscosity model according
to Eq. (10). As in Section 4.1, we neglect temperature and shear rate
dependence of the viscosity, choosing = 10°Pas. To induce strong
anisotropic behavior, the parameter describing the anisotropy § = (R, —
1) [27] is chosen as R, =100 [7].

The simulations are performed in Abaqus/Explicit using a
Lagrangian reference frame. The sample is discretized with linear
hexahedron elements (C3D8, cf. Fig. 3). According to the lubricated or
non-lubricated squeeze flow case, the boundary conditions are imposed
on the nodes at the top and bottom of the sample (cf. Fig. 3). In
both cases, compression is prescribed via a velocity boundary condition
(smooth step) in the negative 3-direction of the top nodes. Because of
the significant element distortion resulting from the no-slip condition in
the non-lubricated case, the sample is compressed by ~14 %, as opposed
to 50 % in the lubricated case.

Fig. 4 and Fig. 5 show the numerical contour evolution in lubricated
and non-lubricated squeeze flow, respectively. The fully tensorial so-
lutions using Egs. (4) and (9) are included for reference. When using
the IISO viscosity model, the sample maintains a cylindrical shape in
both flow scenarios. Therefore, given a spatially homogeneous and
orthotropic initial fiber orientation state, fiber reorientation does not
lead to anisotropic flow with this approach. In contrast, the fully
tensorial model exhibits pronounced elliptical flow in both scenarios.
The resulting elliptical deformation causes (severe) localized element
distortion, which limits the achievable compression, especially in the
non-lubricated case. In all cases, the fibers reorient toward a more
isotropic state. However, fiber reorientation is more pronounced in
the lubricated case because it undergoes greater overall compression.
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Given the larger velocity gradient in the fully tensorial model (elliptical
deformation), the fiber orientation at the end of compression is more
isotropic compared to the IISO model (circular deformation). Note
that, in the fully tensorial model, fiber orientation kinematics tend to
reduce the degree of anisotropy and thus the degree of the elliptical
deformation.

Additionally, Fig. 6 compares the compression forces predicted by
both models. Consistent with the discussion at the end of Section 4.1,
the IISO model predicts higher forces for both boundary conditions
due to its inherent stress-strain-rate coaxiality. However, the shear-
thinning-like effect, which would tend to flatten the force-strain curve,
is not apparent in the non-lubricated simulation due to the limited flow
path length.

5. Compression molding style center-gated disk

To demonstrate the IISO viscosity model’s ability to capture
anisotropic behavior given a spatially homogeneous stationary fiber

e us(t)

— non-lubr. case:
up =uz =0
-~ lubr. case:

L u(t), ua(t) free
o

€2

uz =0
non-lubr. case:
ur =u2 =0
lubr. case:

w1 (t), ua(t) free

€1

Fig. 3. Finite element model for lubricated and non-lubricated squeeze flow
of a cylindrical sample.
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Fig. 4. Numerical flow front evolution in lubricated squeeze flow using the
1ISO viscosity model, and the resulting contour from the fully tensorial model.
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Fig. 5. Numerical flow front evolution in non-lubricated squeeze flow using
the IISO viscosity model, and the resulting contour from the fully tensorial
model.
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Fig. 6. Numerical compression force predicted by the IISO and fully tensorial
model for lubricated and non-lubricated squeeze flow.

orientation state, Favaloro et al. [27] propose a simplification of the
lubricated squeeze flow example: a compression-molding-style center-
gated disk (CGD) (cf. Fig. 7). In contrast to compression molding,
the cavity height 4 remains constant, and material is injected via a
large sprue. To impose strong anisotropic behavior, a homogeneous
unidirectional fiber orientation state (A,; = A;;;; = 1) is assumed [27].

Three distinct regions are identified in the CGD: the runner where
material is placed initially, the cavity that the material fills during
molding, and a transition region between the runner and the cavity
(light to dark gray in Fig. 7). Within the runner, the material flows
downward (u; < 0), and there is no circumferential or radial velocity
(u, = U, = 0). At a sufficient distance from the injection location,
the material only experiences a radial velocity (u, > 0, u3 = 0) as
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1
transition region

Fig. 7. Schematic of the compression-molding-style center-gated disk (CGD)
with stationary unidirectional fiber orientation (A,, = 1). The distinct regions
in the sectional view are (from light to dark gray): the runner, the cavity, and
the transition region.

the cavity height is fixed. Thus, a transition region exists, where the
material experiences a downward velocity (u; < 0) and a radial velocity
(u, > 0).

To examine the influence of the transition region on the stretching
kernel, Favaloro et al. [27] introduce a perturbation to the rate of
deformation tensor:

E-1 0 O
D/e= 0 1 o0 , (23)
0 0 ¢ (e.epme;)

where ¢ quantifies the magnitude of the transition region contribution
and ¢ corresponds to a characteristic strain rate that de-dimensionalizes
the rate of strain tensor. In cartesian coordinates, the rate of deforma-
tion tensor D is given by

sin? @ — cos? @ 2 sin ¢ cos @ 0

D/é=|| 2singpcosg cos2p—sin’@ O]+
0 0 0
cos? ¢ —singcosp 0
&l —singcos @ sin? @ 0 . 24
0 0 -1 {e1.e2.e3}

This representation is obtained via the coordinate transformation
D eres) = QTD(e,,eq,,ez)Q with the rotation matrix Q.

In the case of unidirectional fiber orientation (A, = 1; cf. Fig. 7),
the stretching kernel is defined as [27]
(14 (& —-2)cos? (p)2

4(&2-c+1)

For ¢ = 0, the stretching kernel reduces to the planar extension case,
yielding isotropic flow. Favaloro et al. [27] argue that a slight pertur-
bation, choosing ¢ = 0.3, induces a lower viscosity in fiber direction
(¢ = 0) compared to the viscosity in transverse direction (¢ = 7/2),
ie. mygo (@ = 7/2) > nygo (@ = 0) (cf. Fig. 8(a)). This leads to higher
stretching in circumferential direction at ¢ = = /2 compared to the fiber
direction (¢ = 0) [27]. However, the argument could also be made
that the smaller surrogate viscosity in fiber direction leads to higher
stretching in fiber direction. Furthermore, depending on the magnitude
of the perturbation ¢, arbitrary stretching kernel profiles are obtained,
as shown in Fig. 8. For ¢ = 2, the stretching kernel profile is constant,
and for ¢ > 2 the stretching kernel ratio inverts. Thus, the magnitude
of the perturbation determines the flow’s trajectory. In addition, the
definition of the perturbation in Eq. (23) requires a linear dependence
of u, on @, i.e., u, x @, which behaves similar to a vortex. Moreover,
a constant rate of deformation tensor in cylindrical coordinates cannot
produce elliptical flow because the necessary periodicity with respect
to the p-coordinate that characterizes elliptical deformation is lacking.
Therefore, the perturbation is physically inconsistent, as discussed in
more detail in the Appendix.

d-Ald] = (25)
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6. Discussion

Lubricated squeeze flow. Following the analytical investigation in Sec-
tion 4.1, the IISO viscosity model is unable to induce elliptical deforma-
tion of an initially cylindrical sample in lubricated squeeze flow. The
compression-molding-style CGD (cf. Section 5) is also not a conclusive
counterexample because the perturbation is physically inconsistent,
and arbitrary stretching kernel profiles can be generated depending on
the size of the perturbation rather than on the initial fiber orientation
distribution.

Nevertheless, several works [27,30,40] report simulation results
showing elliptical deformation for lubricated squeeze flow of initially
cylindrical samples, using different numerical methods. In these works,
the IISO viscosity is defined as an explicitly updated field property.
While this is natural in the coupled Eulerian Lagrangian (CEL) method
with explicit time integration (Abaqus/Explicit) in [30], the IISO vis-
cosity is kept constant throughout each time step in the finite volume
based approach in [27,40]. As a result, the IISO viscosity strongly
depends on the velocity field at the beginning of the time step, as
well as the initial velocity field at the start of the simulation. In
addition, in Abaqus/Explicit, the explicit modeling of contact between
the composite and plates adds further complexity to the simulation.

Given the theoretical findings (cf. Section 4.1), it is reasonable
to conclude that the anisotropic flow observed in such simulations
largely results from numerical artifacts, such as highly nonlinear con-
tact modeling, rounding errors, or discretization effects. This conclusion
is further supported by the finite element simulations presented in
Section 4.2, which model the fundamental flow case of an orthotropic
material using a Lagrangian framework. Beyond numerical artifacts,
it is possible to impose anisotropic flow by informing the initial ve-
locity field at the beginning of the simulation depending on the fiber
orientation state. Unfortunately, the literature lacks direct compari-
son between the IISO viscosity model and fully tensorial constitutive
models. Such comparisons would be feasible for moderate values for
the anisotropy parameter f (cf. Eq. (9)), as shown in [17-20] and
Section 4.2.

Non-lubricated squeeze flow. In addition to lubricated squeeze flow, the
analysis based on Ericsson’s model [12] (cf. Section 4.1) further em-
phasizes that the IISO viscosity model cannot generate anisotropic flow
in non-lubricated squeeze flow of cylindrical samples either, regardless
of the spatially homogeneous and orthotropic initial fiber orientation
state. Thus, an analytical counterexample is available for this flow sce-
nario, which is relevant for thermoplastic composites. Moreover, finite
element simulations of this analytical case involving fiber reorientation
in a Lagrangian framework corroborate the analytical model’s findings,
as illustrated in Section 4.2.

IISO viscosity model parameterization. Another key aspect of using the
IISO viscosity model is that material parameters determined from fully
tensorial models cannot be transferred directly to the IISO framework.
The anisotropic flow (if generated due to an initially (non-constant)
velocity field or an initially non-homogeneous fiber orientation field)
is less pronounced than in the fully tensorial case [27]. In addition,
the normal stresses and thus the compression force also differ. Con-
sequently, when restricted to an isotropic framework, the material
parameters should be determined specifically using an IISO constitutive
model. However, parameterization of any IISO constitutive equation
from squeeze flow experiments is not possible using analytical mod-
els [7,12], as demonstrated in Section 4.1, because no anisotropic flow
develops independent of the homogeneous (and orthotropic) initial
fiber orientation state. For the same reason, no simple benchmark case
exists that describes the fundamental deformation of an orthotropic
material. This absence makes it challenging to (artificially) adjust the
anisotropy parameters until sufficient agreement with the fully tenso-
rial model is achieved. To date, no comprehensive discussion regarding
this problem is available in the literature. Current approaches for
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(a) Magnitude of the stretching kernel over ¢
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(b) Ratio of stretching kernel between ¢ = 0 and ¢ = 7/2
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Fig. 8. Behavior of the stretching kernel in compression-molding-style center-gated disk (CGD) with unidirectional fiber orientation (A,, = 1) depending on the

perturbation magnitude ¢ (cf. Eq. (25)).

determining the IISO material parameters include: the direct adoption
from fully tensorial parameterization [31], component-scale simula-
tions [35], squeeze flow experiments [32], and estimation based on
anticipated material behavior [29]. All of these approaches can lead to
ambiguous results. While directly adopting from fully tensorial param-
eterization may significantly underestimate the material anisotropy,
parameterization from component-scale simulations is susceptible to
numerical artifacts and exhibits strong sensitivity to the choice of
experimental sampling locations (leading to optimization convergence
to local minima). The challenge is particularly pronounced for material
systems without a preferred initial fiber direction (e.g., A;; = Ay =
0.5), such as SMC and GMT, where parameterization from squeeze flow
rheometry alone yields ambiguous and physically implausible results,
as highlighted by the findings in [32]. This limitation applies equally to
both IISO and fully tensorial models because the material deformation
remains isotropic in the absence of a preferential (initial) fiber orienta-
tion. Consequently, no information about the anisotropic deformation
behavior is available, requiring anisotropy parameters to be determined
solely from force measurements, which leads to non-unique solutions.

Kinematically informed scalar surrogate model. An alternative approach
to develop a scalar surrogate viscosity model is to artificially modify the
rate of strain tensor based on the fiber orientation D* = f(A), i.e., the
model is kinematically informed. To ensure physical consistency, the
dissipative power (cf. Eq. (6)) must also be preserved. However, such
an approach has the disadvantage that it cannot be easily integrated
into (commercial) isotropic frameworks since the rate of strain tensor
cannot generally be manipulated by the user.

Viscosity model verification cases. Finally, in addition to analytical con-
siderations, we propose two numerical verification cases for scalar
surrogate and fully tensorial viscosity models. The first case is lubri-
cated squeeze flow of a cylindrical sample, analyzed within a purely
Lagrangian frame of reference, as demonstrated in Section 4.2. With
this approach, boundary conditions are directly imposed at the nodes,
minimizing numerical errors. The second case expands on the CGD
benchmark with initially aligned fiber orientation in [27] by prescrib-
ing an isotropic initial velocity field. In this scenario, an anisotropic
constitutive model should alter the flow pattern depending on the fiber

orientation. Moreover, maintaining a constant gap height, i.e. imple-
menting an injection-induced rather than compression-induced flow,
further reduces the influence of numerical artifacts, such as mesh
motion and fluid-structure interaction in Eulerian frameworks.

7. Conclusion

First, we investigated and verified the IISO viscosity model’s inabil-
ity to generate elliptical deformation in lubricated squeeze flow (char-
acterized by negligible frictional contact forces) of initially cylindrical
samples with an aligned fiber orientation. In addition to basic consid-
erations of a continuum, the model’s limitations were illustrated on the
basis of the strain rate tensor for planar extension. Furthermore, we ex-
tended the discussion to non-lubricated squeeze flow (characterized by
substantial frictional contact forces and no-slip) of initially cylindrical
samples. We analytically demonstrated that the IISO viscosity model
cannot produce anisotropic flow in this essential flow scenario either,
regardless of the initial spatially homogeneous fiber orientation state.
Finite element simulations using a purely Lagrangian reference frame
were conducted for both cases, corroborating the analytical results.

Second, we demonstrated that the counterexample of the
compression-molding-style center-gated disk (CGD) is inconclusive, as
the flow trajectory depends on the magnitude of the imposed per-
turbation instead of the (initial) fiber orientation. In addition, the
perturbation induces a vortex in the circumferential direction, which
is physically implausible.

We then discussed possible reasons for the anisotropic flow in
lubricated squeeze flow presented in the literature and emphasized that
material parameters determined from fully tensorial models cannot be
directly transferred to the IISO framework. Accordingly, no uniform
approach for transferring material parameters to an IISO framework is
available in the literature.

In conclusion, fully anisotropic (fourth-order tensor) viscosity mod-
els should be preferred over the IISO viscosity model for accurate
representation of flow-fiber coupling. However, when restricted to an
isotropic (commercial) framework, the IISO viscosity model is currently
the preferred choice over a simple isotropic material description that
neglects the fiber contribution entirely. Nevertheless, when using it, its
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limitations must be taken into account: inability to capture anisotropic
flow (in fundamental deformation scenarios), deviations in predicted
compression forces, and potentially spurious anisotropic flow behavior
arising from numerical artifacts.
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Appendix. Analysis of the perturbation definition

In this section, we investigate the definition of the perturbation in
Egs. (23) and (24) of the compression-molding-style CGD (cf. Fig. 7)
in more detail. In addition to the incompressibility condition (V - u =
0), the individual components of the rate of deformation tensor must
follow from the definition of the velocity field. To analyze the latter,
we start by computing the radial velocity u, by integrating D,, (cf. Eq.
(23)):

u,=/D,,dr=/(.§—l)dr:(f—l)r+gl((p), (26)

where g, (@) is an integration constant, which can be an arbitrary func-
tion of ¢. A contribution of the out-of-plane coordinate x5 to the radial
velocity is neglected, as it is not relevant for the following analysis.
Assuming that flow only occurs in the region r > r, and applying the
boundary condition u,.(r = ry) = 0 at the onset of the transition region,
we obtain

U, =(E=1)(r—rg),Vr>rg. 27)

The use of r, as a boundary condition provides a more general formula-
tion than simply using r = 0, although r, = 0 in Fig. 7. To compute the
circumferential velocity u,,, we substitute Eq. (27) into the definition of

>
D,,,, which follows from the velocity gradient in cylindrical coordinates
and the perturbed rate of deformation tensor (cf. Eq. (23)):
1 Buq, ur
=241, 28
PP r g + r 28

This substitution yields the following differential equation:

194, E=D(r=ro)

=1, 29
r op r 29

Ju
ﬁa—(;p:r—(é—l)(r—ro). (30)
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Integrating Eq. (30) yields the circumferential velocity:

u¢=/(r-<-f-1>(r—ro)>d¢=(r—(é—l)(r—ro))wgz(r), @D

where g,(r) is an integration constant, which can be an arbitrary
function of r. The definition of the velocity u, contains a linear term
in ¢ that corresponds to a vortex. However, this term cannot be
compensated for by g,(r), making the definition of D unphysical. Fur-
thermore, there is no suitable boundary condition for u,, that satisfies
the differential equations of the remaining components of the strain
rate tensor.

In the case of an elliptical deformation (the fundamental geo-
metric shape of an orthotropic material), shearing occurs everywhere
except on the coordinate axes (cf. Fig. A.1). Therefore, for physical
consistency, the perturbation should also induce deformation in the
circumferential components.

\63

€1

Fig. A.1. Volume elements between and on coordinate axes in elliptical flow
of an orthotropic material; volume element between the coordinate axes
indicates shear deformation.
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