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 A B S T R A C T

The informed isotropic (IISO) viscosity model has gained popularity as a surrogate for fourth-order tensor 
viscosity models in simulating injection and compression molding of discontinuous fiber reinforced composites 
in industrial applications, primarily to overcome numerical challenges that are especially pronounced in long 
fiber reinforced materials. In addition, the IISO model can be easily integrated into (commercial) isotropic 
frameworks. The central idea is to equate the energy dissipation rates resulting from a fully anisotropic and 
an isotropic viscous material model, which allows deriving a scalar surrogate viscosity that depends on the 
local fiber orientation. However, the model’s fundamental capability to predict anisotropic flow behavior 
in compression molding remains limited. This work comprehensively assesses the IISO viscosity model’s 
capabilities through analytical and numerical investigations of fundamental flow scenarios. We demonstrate 
that the IISO viscosity model cannot generate elliptical deformation in lubricated squeeze flow of initially 
cylindrical samples with spatially homogeneous and anisotropic initial fiber orientation states, confirming the 
model’s inherent limitation due to stress–strain-rate coaxiality. When we extend the analysis to non-lubricated 
squeeze flow, the results emphasize that the IISO viscosity model also fails to produce anisotropic flow 
regardless of the spatially homogeneous and (aligned) orthotropic initial fiber orientation state. Furthermore, 
we demonstrate that the compression-molding-style center-gated disk benchmark is inconclusive, as the flow 
trajectory depends on the magnitude of the imposed perturbation rather than the fiber orientation. The 
perturbation also introduces a physically implausible circumferential vortex. Finally, we discuss potential 
sources of apparent anisotropic behavior in numerical flow simulations in the literature and highlight the 
challenges of parameterizing the IISO viscosity model experimentally.
1. Introduction

1.1. Motivation and state of the art

Compression molding of discontinuous fiber reinforced compos-
ites is a widely used manufacturing process for producing complex 
(semi-)structural components. Compared to injection molding, the fiber 
length is considerably longer, thereby improving mechanical proper-
ties. Common materials include in-line compounded long fiber rein-
forced thermoplastics (LFT-D), glass mat thermoplastics (GMT), and 
sheet molding compounds (SMC), selected based on application-specific 
requirements. While the fiber reinforcement enhances the mechanical 
properties of the composite [1–3], it also introduces strong fiber ori-
entation dependent behavior. Both, structural and rheological behavior 
are significantly influenced by the local fiber orientation and its interac-
tion with the surrounding matrix. The anisotropic rheological behavior 
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has been demonstrated in squeeze flow experiments for various mate-
rials: bundle-like thermoplastics [4], GMT [5,6], and LFT-D [7], where 
initially cylindrical samples deform elliptically. In contrast, SMC sam-
ples generally retain the circular shape due to the planar isotropic fiber 
orientation before testing [8,9], though their flow behavior remains 
fiber-orientation dependent [10].

Accurate prediction of mold filling and resulting fiber orientation re-
quires models that capture the two-way fiber–matrix coupling. Even for 
short fibers typical in injection molding, this interaction significantly 
affects the final fiber orientation distribution [11]. To capture this 
behavior, several anisotropic viscous constitutive models have been de-
veloped. These are motivated either by fluid mechanics [12–14] or solid 
mechanics [15–17] and are applied across a range of discontinuous 
fiber-reinforced materials [18–20]. However, fully anisotropic models 
often suffer from numerical issues such as poor system conditioning and 
convergence problems [21–25].
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To mitigate these issues, several simplified scalar viscosity models 
have been proposed in recent literature to reduce the anisotropic 
viscosity tensor to a scalar surrogate viscosity, which is easier to 
handle numerically. Costa et al. [26] introduce a threshold-based ap-
proach to consider the influence of fiber orientation on the composite’s 
viscosity. However, this approach is not thermodynamically conserva-
tive. An alternative is the informed isotropic (IISO) viscosity model 
proposed by Favaloro et al. [27], which is thermodynamically consis-
tent. In this model, the energy dissipation rate of a fully anisotropic 
fourth-order tensor model and an isotropic scalar model are equated to 
obtain a scalar surrogate viscosity. Although the model fails to predict 
anisotropic behavior in lubricated squeeze flow between two parallel 
plates, the authors present a simplified verification case, namely a 
compression-molding-style center-gated disk (CGD), both analytically 
and via Moldex3D simulations [27]. Simultaneously, Li and Luyé [28] 
proposed an equivalent model. However, we will refer to the model 
as IISO viscosity model, as it is commonly known in the literature. 
Subsequently, the IISO viscosity model has been utilized in prepreg 
platelet molding [29], compression molding of hybridly laminated 
thermoplastics [30], GMT [31], SMC [32] and injection molding [33–
35].

Motivated by numerical instabilities encountered in an earlier work
[23], Tseng and Favaloro [33] propose a full IISO constitutive equa-
tion that also introduces shear rate dependence to the parameter de-
scribing the anisotropy. The IISO constitutive model is applied to 
several injection molding examples including a comparison with the 
isotropic solution and the surrogate viscosity model by Li and Luyé 
[28]. Building on this, Huang and Lai [34] employed the IISO constitu-
tive equation to examine its influence on fiber orientation and mold 
filling in injection molding of short fiber reinforced thermoplastics. 
Both works report the development of a concave flow front pattern in 
conjunction with the IISO viscosity model, compared to a flat flow front 
pattern in the isotropic case. However, comparison with the respective 
fully anisotropic model [33], in which the tensorial information is not 
reduced to a scalar, are not provided.

In an optimization framework, Rienesl et al. [35] use the IISO 
constitutive equation in Moldex3D to identify material parameters 
describing fiber reorientation and anisotropy in short fiber injection 
molding. However, the objective function only accounts for fiber ori-
entation at discrete locations, resulting in non-unique solutions and 
parameter sets that depended on the spatial weighting of measurement 
points.

Favaloro and Sommer [29] apply the IISO viscosity model to
prepreg platelet compression molding using Moldex3D, following their 
earlier smooth particle hydrodynamics (SPH) based work [19] in 
Abaqus/Explicit, in which a fully anisotropic viscosity model [27] 
was utilized. The switch to Moldex3D is motivated by challenges 
with time step restrictions in the SPH solution resulting from the fine 
particle discretization required to accurately capture shearing near the 
mold interface under a no-slip boundary condition. In [29], the IISO 
constitutive equation from Tseng and Favaloro [33] is used, though the 
anisotropy parameter is not modeled as shear rate dependent. A direct 
comparison between the informed and the fully anisotropic models is 
not provided in [29].

Lee et al. [30] employed the IISO viscosity model to simulate 
discontinuous fiber reinforced layers within a hybridly laminated ther-
moplastic compression molding process in Abaqus/Explicit. To verify 
their implementation, the authors simulate lubricated squeezing of an 
initially cylindrical sample with unidirectional fiber orientation. How-
ever, the simulation produces an elliptical deformation, contradicting 
the analytical prediction in [27].

For the study on GMT compression molding in Dörr et al. [31], we 
collaboratively implemented the IISO viscosity model within Autodesk 
Moldflow via the API to perform component-scale simulations. The vis-
cous material parameters were determined from oscillatory rheometry 
2 
using a fully anisotropic constitutive equation. In contrast, Kapsham-
mer et al. [32] determine the viscous material parameters for SMC 
using squeeze flow experiments. Furthermore, the IISO viscosity model 
is utilized in the parameter identification. However, due to the planar 
isotropic initial fiber orientation of SMC, the sample’s cylindrical shape 
is preserved during these tests, offering limited insight into anisotropic 
flow behavior. Similar to the concerns raised in Rienesl et al. [35], 
this parameter identification approach does not include flow-induced 
effects in the optimization. As a result, the derived anisotropy ratio is 
substantially higher than reported in, e.g., [36]. For this reason, the 
parameters describing the anisotropy are often approximated analyti-
cally [13,37–39], as done in [17,18,31]. However, the applicability of 
such expressions must be carefully evaluated, as emphasized in [7]. 
An overview of published studies using the IISO viscosity model is 
provided in Table  1.

1.2. Originality

In this work, we comprehensively assess the applicability of the 
informed isotropic (IISO) viscosity model [27] to compression molding 
of discontinuous fiber reinforced polymers. To this end, we revisit the 
limiting case of lubricated squeeze flow between two parallel plates, 
originally emphasized by Favaloro et al. [27], and extend the analysis 
to non-lubricated squeeze flow. The latter is particularly important for 
thermoplastic-based material systems, where the high frictional forces 
at the mold-composite interface are typically idealized by a no-slip 
boundary condition. We then re-examine the simplified compression-
molding-style benchmark of a center-gated disk (CGD), which is in-
tended to showcase the IISO model’s capability to induce anisotropic 
flow behavior. Drawing from these investigations, we evaluate the 
model’s predictive capabilities and limitations, and discuss its practical 
relevance in light of existing applications summarized in Table  1.

1.3. Notation

Throughout this manuscript the symbolic notation is employed. 
Vectors are represented by bold lowercase letters, e.g., 𝒂, second-order 
tensors by bold uppercase letters, e.g., 𝑨, and fourth-order tensors by 
double-struck letters, e.g., A. Tensor contractions of equal order are ex-
pressed as, e.g., (𝑨𝑩)𝑖𝑗 = 𝐴𝑖𝑘𝐵𝑘𝑗 for second-order tensors and (AB)𝑖𝑗𝑘𝑙 =
𝐴𝑖𝑗𝑚𝑛𝐵𝑚𝑛𝑘𝑙 for fourth-order tensors. The linear mapping of a fourth-
order tensor on a second-order tensor is written as (A [𝑩])𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙. 
Scalar products are denoted by a centered dot, e.g., 𝑨 ⋅ 𝑩 for second-
order tensors, while dyadic products are indicated as, e.g., 𝑨 ⊗ 𝑩. 
The second-order identity tensor is denoted by 𝑰 , and the fourth-order 
projection tensor onto symmetric deviatoric tensors is represented by 
Idev. The Cartesian coordinate system is spanned by basis vectors 𝒆1, 
𝒆2, and 𝒆3, while the cylindrical coordinate system is spanned by 𝒆𝑟, 
𝒆𝜑, and 𝒆𝑧, where 𝒆3 = 𝒆𝑧.

2. Theoretical background

In this section, we provide a brief overview of fiber orientation 
modeling and viscous constitutive modeling relevant to this work.

2.1. Fiber orientation description

A single fiber’s orientation is described by a unit vector 𝒑 ∈ 2, 
where 2 denotes the unit sphere. However, modeling the fiber ori-
entation in industrial composites requires a formal description. This is 
achieved using the fiber orientation distribution function 𝛹 (𝒑), which 
relates a fiber orientation 𝒑 to its occurrence probability. Although the 
fiber orientation distribution function 𝛹 (𝒑) offers a complete statistical 
characterization, its arbitrary complexity makes it impractical for most 
numerical methods. To address this, the fiber orientation distribution 
function is typically represented by its statistical moments given by 
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Table 1
Chronological overview of studies using the informed isotropic (IISO) viscosity model.
 Reference Application Software  
 Favaloro et al. [27] Injection molding, compression-molding-style center-gated disk Moldex3D  
 Favaloro et al. [40] Compression molding style center-gated disk Moldex3D  
 Li and Luyé [28]a Injection molding Moldflow  
 Tseng and Favaloro [33] Injection molding Moldex3D  
 Huang and Lai [34] Injection molding Moldex3D  
 Favaloro and Sommer [29] Prepreg platelet compression molding Moldex3D  
 Lee et al. [30] Hybridly laminated thermoplastics Abaqus/Explicit 
 Rienesl et al. [35] Injection molding Moldex3D  
 Dörr et al. [31] Glass mat thermoplastics (GMT) Moldflow  
 Kapshammer et al. [32] Sheet molding compounds (SMC) Moldex3D  
a Simultaneously proposed a model equal to the IISO viscosity model [27].
the 𝑘th (even) order fiber orientation tensor 𝑨
⟨𝑘⟩ following the works 

of Kanatani [41] and Advani and Tucker [42]. The fiber orientation 
tensor 𝑨

⟨𝑘⟩ is defined as 

𝑨
⟨𝑘⟩ = ∫2

𝛹 (𝒑)𝒑⊗𝑘𝑑𝑆, (1)

 where (⋅)⊗𝑘 denotes the 𝑘th times dyadic product. In an engineering 
context, the second- and fourth-order fiber orientation tensors 𝑨 and 
A are of particular interest. The second-order fiber orientation tensor 
𝑨 is generally utilized to model fiber reorientation in flow simulations. 
However, the respective evolution equation requires knowledge of the 
fourth-order fiber orientation tensor A as well. Closure approximations 
A = (𝑨) solve these problems by associating a second-order fiber 
orientation tensor 𝑨 with exactly one fourth-order fiber orientation 
tensor. The orthotropy of the second-order fiber orientation tensor 
𝑨 is generally preserved by closure approximations; therefore, the 
fourth-order tensor A is also orthotropic. Notable exceptions are the 
non-orthotropic closures proposed by [43] for planar fiber orientation 
states.

2.2. Governing equations and viscous constitutive modeling

In (compression) molding simulation of discontinuous fiber rein-
forced composites, the transient flow of the material is governed by 
the conservation of mass and momentum, which can be expressed as
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0, (2)
𝜕𝜌𝒖
𝜕𝑡

+ 𝒖∇ (𝜌𝒖) = ∇ ⋅ 𝝈 + 𝜌𝒈, (3)

where 𝜌 is the density, 𝑡 is the time, 𝒖 is the velocity field, 𝝈 is the 
Cauchy stress tensor, and 𝜌𝒈 is the gravitational force per unit volume. 
For non-isothermal simulations, the energy conservation equation is 
also required. The general form of a viscous constitutive model for a 
(quasi-)incompressible medium is given by 
𝝈 = −𝑝𝑰 + V′ [𝑫′] , (4)

where 𝑝 describes the hydrostatic pressure, V′ = IdevVIdev is a sym-
metric deviatoric fourth-order viscosity tensor, and 𝑫′ = Idev [𝑫] is the 
deviatoric part of the rate of strain tensor 𝑫. When the constitutive 
equation is formulated so that the viscous stresses 𝝉 are purely devi-
atoric, i.e., 𝝉 = V′ [𝑫′], the pressure 𝑝 solely describes the spherical 
contribution, as emphasized in [44]. The simplest form of a viscous 
constitutive model is the Newtonian model, where the viscosity tensor 
V is a scalar multiple of the symmetric deviatoric projection tensor 
V′ = 2𝜂Idev. (5)

Including dependence on shear rate 𝛾̇, temperature 𝑇 , and curing effects 
𝛼 (for thermoset matrix materials) in the scalar viscosity 𝜂(𝛾̇ , 𝑇 , 𝛼) in-
creases the model’s physical interpretation. Following Eqs.  (4) and (5), 
the Cauchy stress 𝝈 and the rate of deformation tensor 𝑫 are coaxial. 
Thus, extension-extension, extension-shear, and shear-shear coupling, 
3 
as evident in experimental studies [4–7,12], are not considered. There-
fore, anisotropic viscous constitutive models, whether derived from 
fluid [12–14] or solid [15–17] mechanics, are required to capture the 
material’s anisotropic behavior. In these models, the viscosity tensor 
V′(A) is expressed as a function of the fourth-order fiber orientation 
tensor A.

3. Informed isotropic (IISO) viscosity model

The idea of the IISO viscosity model is to introduce anisotropic 
information into an otherwise isotropic framework by adjusting the 
magnitude of the scalar surrogate viscosity 𝜂IISO depending on the local 
fiber orientation distribution. The central idea, proposed by Favaloro 
et al. [27], is to equate the energy dissipation rate 𝐸̇D of a fully 
anisotropic viscous model with that of an isotropic surrogate: 

𝐸̇D = 𝝉 ⋅𝑫′ = 2𝜂IISO𝑫′ ⋅𝑫′ = V′ [𝑫′] ⋅𝑫′, (6)

where 𝜂IISO is the IISO viscosity. Equating the energy dissipation rates 
ensures a conservative formulation. Rearranging Eq.  (6), the IISO vis-
cosity is obtained as 

𝜂IISO = 𝑫′ ⋅ V′ [𝑫′] (2𝑫′ ⋅𝑫′)−1 = 𝒅 ⋅ V′ [𝒅] , (7)

where 𝒅 = 𝑫′𝛾̇−1 is the normalized rate of deformation tensor. Substi-
tuting Eq.  (7) into Eq.  (4) yields the general form of an IISO constitutive 
equation: 

𝝈 = −𝑝𝑰 + 𝒅 ⋅ V′ [𝒅]𝑫′. (8)

A generic form of the fourth-order viscosity tensor definitions in [14,
27,44] is given as 

V′ = 𝜂
(

Idev + 𝛽A′) , (9)

where A′ = IdevAIdev is the deviatoric part of the fourth-order fiber 
orientation tensor, and 𝛽 is a parameter describing the anisotropic con-
tribution. The interpretation of the parameter 𝛽 may vary depending 
on the derivation context [14,27]. By inserting Eq.  (9) into Eq.  (7), the 
scalar surrogate viscosity becomes 

𝜂IISO = 2𝜂
(

1 + 𝛽𝒅 ⋅ A′ [𝒅]
)

. (10)

The term 𝒅 ⋅ A′ [𝒅], referred to as the stretching kernel [27], describes 
the alignment between the principal direction of deformation and the 
fiber orientation. Note that since 𝒅 is purely deviatoric, i.e., Isph [𝒅] = 𝟎, 
it follows that 𝒅 ⋅ A′ [𝒅] = 𝒅 ⋅ A [𝒅]. The stretching kernel attains its 
maximum when the flow direction aligns with the major principal di-
rection of the fiber orientation (if present), leading to a higher surrogate 
viscosity. Conversely, if the flow is perpendicular to the preferred fiber 
orientation, the kernel is minimized and the viscosity is reduced.
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4. Evaluation of the IISO model for anisotropic flow prediction

Squeeze flow between two parallel plates is a fundamental flow 
scenario in the compression molding of discontinuous fiber reinforced 
polymers (cf. Fig.  1). In such experiments, circular samples with an 
initially aligned in-plane fiber orientation exhibit elliptical deforma-
tion, as observed for various material systems [4–7]. Fully anisotropic 
viscosity models are able to accurately capture this behavior, as demon-
strated in several studies [7,12,17,45]. This elliptical deformation is 
characteristic of orthotropic materials under compressive loading. Since 
common closure approximations preserve the orthotropy of the second-
order fiber orientation tensor, fourth-order viscosity models inherently 
exhibit orthotropic behavior. Consequently, the squeeze flow cases 
presented below serve to investigate an orthotropic model’s inherent 
capability to induce anisotropic flow.

Generally, a distinction is made between lubricated and non-
lubricated squeeze flow. In lubricated squeeze flow, negligible friction 
at the mold-composite interface results in plug-flow-like behavior, 
which is modeled by an ideal slip boundary condition and characterized 
by purely elongational deformation. In contrast, non-lubricated squeeze 
flow results from high frictional forces at the interface. These forces 
are typically idealized by a no-slip boundary condition, yielding a 
combination of elongation and shear. The resulting through-thickness 
velocity profiles are characteristic of both compression molding and 
injection molding.

In the following, we first evaluate the IISO viscosity model’s ability 
to induce anisotropic flow analytically for both lubricated and non-
lubricated squeeze flow (Section 4.1). Subsequently, we demonstrate 
these findings with finite element simulations, which also account for 
fiber reorientation during flow (Section 4.2).

Fig. 1. Schematic of squeeze flow between two parallel plates [7].

4.1. Analytical evaluation

Lubricated squeeze flow. In lubricated squeeze flow, cited as worst-
case scenario [27], the IISO viscosity model cannot induce anisotropic 
flow depending on the fiber orientation, as the model lacks extension-
extension coupling. To understand this limitation, we apply a compres-
sive stress 𝜎33 = −𝜎̂ to a continuum with lateral free boundaries. The 
surface traction at the free boundary 
𝝈𝒏 = 𝟎, ∀𝒙 ∈ 𝜕𝛺𝑡 (11)

implies 𝜎11 = 𝜎22 = 0 at the coordinate axes (cf. Fig.  1), where 𝒏 is 
the outward normal vector. Following the definition of the hydrostatic 
pressure 𝑝 = 𝜎̂∕3, the deviatoric stresses are 𝜏33 = 𝜎33 − 𝑝 = −2∕3𝜎̂, 
and 𝜏11 = 𝜏22 = 𝜎̂∕3. In an isotropic framework, the stress tensor and 
rate of deformation tensor are coaxial, and thus 𝜏11 = 𝜏22 necessitates 
𝐷11 = 𝐷22. This constraint, however, does not hold for fully anisotropic 
models.

For further illustration, we analyze the stretching kernel’s behavior. 
The IISO viscosity model alters the magnitude of the scalar viscosity 
depending on the relative alignment between fiber orientation and 
rate of deformation. Therefore, the ratio of the stretching kernel be-
tween the principal axes 𝒅 ⋅ A [𝒅] (𝜑 = 0)∕𝒅 ⋅ A [𝒅] (𝜑 = 𝜋∕2) is crucial 
to the development of anisotropic flow, where 𝜑 denotes the circum-
ferential coordinate (cf. Fig.  1). For lubricated squeeze flow of an 
4 
initially cylindrical sample with spatially homogeneous (orthotropic) 
fiber orientation, the rate of deformation tensor is given by 

𝑫 =
⎛

⎜

⎜

⎝

𝛾̇011 0 0
0 𝛾̇022 0
0 0 −

(

𝛾̇011 + 𝛾̇022
)

⎞

⎟

⎟

⎠{𝒆1 ,𝒆2 ,𝒆3}

, (12)

where 𝛾̇011 and 𝛾̇022 are the rates of deformation at the principal axes (cf. 
Fig.  1). Since the rate of deformation tensor has no spatial dependence 
for cylindrical samples, the stretching kernel is spatially uniform even 
for aligned fiber orientation distributions, provided they are spatially 
homogeneous.

Non-lubricated squeeze flow. In the following, we extend the above 
analysis to non-lubricated squeeze flow building upon Ericsson’s analyt-
ical model [12]. Recently, we proposed an extension to this model that 
also considers shear thinning [7]. However, for the sake of simplicity, 
we focus on the original model with the following assumptions, which 
do not influence the occurrence or non-occurrence of an anisotropic 
flow:

• Quasi-Newtonian material is assumed incompressible (∇ ⋅ 𝒖 = 0) 
and exhibits IISO constitutive behavior according to Eq.  (10).

• Temperature field is homogeneous (∇𝑇 = 𝟎) and isothermal ( d𝑇d𝑡 =
0).

• Inertia effects are negligible (𝜌D𝒖
D𝑡 ≪ ∇ ⋅ 𝝈).

• Gravitational forces are neglected (𝜌𝒈 = 𝟎).
• Fiber orientation distribution 𝛹 is orthotropic, i.e., the material 
also exhibits orthotropic behavior. Furthermore, the material’s 
orthotropy axes coincide with the coordinate axes.

• Initial fiber orientation distribution 𝛹0 is spatially homogeneous 
(∇𝛹0 = 𝟎).

Since the exact influence of the IISO viscosity model on the velocity 
field is unknown, we make the following approach for the velocity field:

𝒖 =

⎛

⎜

⎜

⎜

⎜

⎝

𝛾̇011
(

1 − 𝑓 (𝑥3)
)

𝑥1
𝛾̇022

(

1 − 𝑓 (𝑥3)
)

𝑥2

−
(

𝛾̇011 + 𝛾̇022
)

(

1 − 1
𝜒 𝑓 (𝑥3)

)

𝑥3

⎞

⎟

⎟

⎟

⎟

⎠{𝒆1 ,𝒆2 ,𝒆3}

, (13)

where 𝑓 (𝑥3) describes the through-thickness profile. Because of the 
problem’s symmetry with respect to the 1, 2-plane, we define the veloc-
ity field in the interval 𝑥3 ∈ [0, ℎ∕2], and demand smooth symmetries, 
i.e., 𝑓 ′(𝑥3 = 0) = 0, where 𝑓 ′ corresponds to the total derivative. In-
serting Eq.  (13) in the mass conservation yields an ordinary differential 
equation for 𝑓 (𝑥3). Imposing the boundary condition 𝑓 (ℎ∕2) = 1 at the 
plate interface yields the following expression for the through-thickness 
profile: 

𝑓 (𝑥3) = 𝑥(𝜒−1)3

(ℎ
2

)(1−𝜒)
, (14)

where ℎ(𝑡) is the transient sample height and 𝜒 = 𝑓 (A, 𝜂, 𝛽) ∈ [3,∞) is 
a parameter describing the shape of the through-thickness profile. For 
𝜒 ≥ 3, the velocity field is twice differentiable with respect to 𝑥3 in the 
midplane (𝑥3 = 0), i.e., 

𝜒 ≥ 3 ⇒ ∃ 𝜕2

𝜕𝑥23
𝑓 (𝑥3)

|

|

|

|

|

|𝑥3=0

. (15)

For 𝜒 = 3, the through-thickness velocity profile is quadratic, as in the 
original model [12], and for 𝜒 → ∞, the profile resembles lubricated 
squeeze flow (cf. Fig.  2). The rate of deformation tensor 𝑫, calculated 
from Eqs.  (13) and (14), is given in cartesian coordinates {𝒆1, 𝒆2, 𝒆3} as: 

𝐷𝑖𝑗 =

⎛

⎜

⎜

⎜

𝛾̇011
(

1 − 𝑓 (𝑥3)
)

0 − 1
2 𝛾̇

0
11𝑓

′(𝑥3)𝑥1
𝛾̇022

(

1 − 𝑓 (𝑥3)
)

− 1
2 𝛾̇

0
22𝑓

′(𝑥3)𝑥2
( 0 0 )

⎞

⎟

⎟

⎟

(16)
⎝ sym. − 𝛾̇11 + 𝛾̇22 Ξ(𝑥3)⎠
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Fig. 2. Normalized through-thickness velocity profiles of 𝑢1 and 𝑢2 for differ-
ent values of 𝜒 .

with Ξ(𝑥3) = 1 − 1∕𝜒
(

𝑓 ′(𝑥3
)

𝑥3 + 𝑓
(

𝑥3
))

.
Formulating the problem against the midplane (𝑥3 = 0, cf. Fig. 

1) takes advantage of the velocity and fiber orientation fields’ sym-
metry, thus, allowing for a manageable model, as noted in [7]. In 
the midplane, the rate of deformation tensor 𝑫 is diagonalized and 
homogeneous, depending only on 𝛾̇011 and 𝛾̇022. Furthermore, the spin 
tensor is zero, i.e., 𝑾 |𝑥3=0 = 𝟎. Consequently, the fiber reorientation 
𝑨̇ = 𝑓 (𝑫,𝑾 ) in the midplane is also homogeneous and diagonalized as 
predicted by established evolution equations [42,46,47]. Therefore, the 
material’s orthotropy axes remain aligned with the coordinate system 
throughout squeezing, which is a fundamental requirement for this 
analytical approach. Additionally, the fiber reorientation does not con-
tribute to the conservation of momentum in the midplane. Inserting Eq. 
(16) into the conservation of linear momentum (Lagrange formulation) 

∇𝑝 = ∇ ⋅
(

𝜂IISO𝑫
)

= 𝑫∇𝜂IISO + 𝜂IISO∇ ⋅𝑫, (17)

yields the pressure gradient.
Equating the surface traction at the radii 𝑟1(𝑡) and 𝑟2(𝑡) at the 

coordinate axes 
𝝈𝒏|𝑥1=𝑟1 ,𝑥2=𝑥3=0 = 𝝈𝒏|𝑥2=𝑟2 ,𝑥1=𝑥3=0 = 𝟎, (18)

− ∫

𝑟1

0

𝜕𝑝
𝜕𝑥1

|

|

|

|𝑥2=𝑥3=0
d𝑥1 +

(

𝜂IISO𝐷11
)

|

|

|

𝑥1=𝑟1
𝑥2=𝑥3=0

=

− ∫

𝑟2

0

𝜕𝑝
𝜕𝑥2

|

|

|

|𝑥1=𝑥3=0
d𝑥2 +

(

𝜂IISO𝐷22
)

|

|

|

𝑥2=𝑟2
𝑥1=𝑥3=0

, (19)

yields a relation between the rates of deformation 𝛾̇011 and 𝛾̇022. For 𝜒 > 3, 
the relation is given by: 
𝛾̇022
𝛾̇011

= 1,∀𝜒 > 3. (20)

For 𝜒 = 3, it follows analogously: 
𝛾̇022
𝛾̇011

=
2𝑟21 + ℎ2

2𝑟22 + ℎ2
. (21)

However, in both cases, the relation is independent of the fiber ori-
entation. Consequently, the IISO viscosity model also does not predict 
elliptical deformation for cylindrical samples in non-lubricated squeeze 
flow for any spatially homogeneous, (aligned) orthotropic fiber orien-
tation state based on this analysis. For initially cylindrical samples, 
note that the principal axes of the resulting ellipse (which in this case 
remains circular) always coincide with the material’s orthotropy axes.
5 
While the IISO viscosity model does not induce anisotropic flow in 
the presented cases, it does influence the normal force response. This 
influence can be attributed to two main effects. First, the IISO viscos-
ity model yields a higher 𝜎33 due to the stress–strain-rate coaxiality, 
provided the fibers are not predominantly oriented out-of-plane, which 
is unlikely in compression molding. Therefore, the compression force 
is generally higher in comparison to the fully tensorial model. Second, 
the IISO viscosity model exhibits a shear-thinning-like effect, resulting 
in a wider core-region of the velocity profile (see the influence of 𝜒 in 
Fig.  2). Consequently, the slope of the normal force tends to be flatter 
than that of the fully tensorial model.

4.2. Numerical demonstration

In this section, we numerically demonstrate the findings of Sec-
tion 4.1 for both lubricated and non-lubricated squeeze flow of an 
initially cylindrical sample, while also accounting for fiber reorienta-
tion during the flow process. The measurements of the sample and the 
initial fiber orientation are chosen in accordance with the experiments 
in [7]. Thus, the initial sample height and diameter are 6mm and 
60mm, respectively. The initial, spatially homogeneous second-order 
fiber orientation tensor with respect to the sample’s orthotropy axes 
is 𝑨̃0 = diag (⟨0.81, 0.19, 0⟩) [7]. To verify that the IISO viscosity model 
correctly handles general fiber orientation states, the sample’s material 
axes are rotated by +𝜋∕4 with respect to the global coordinate system’s 
3-direction in the simulation model.

The Folgar-Tucker equation [48] models the evolution of the fiber 
orientation: 
D𝑨
D𝑡

= (𝑾𝑨 −𝑨𝑾 ) + 𝜇(𝑫𝑨 +𝑨𝑫 − 2A [𝑫]) + 2𝐶i𝛾̇(𝑰 − 3𝑨), (22)

where 𝜇 describes the fiber shape and 𝐶i is the empirical interaction 
coefficient. In this investigation, we chose 𝜇 = 1 (large fiber aspect 
ratio) and 𝐶i = 0.01. Compared to Jeffery’s equation [49], the addi-
tional diffusion in Eq.  (22) rotates the fibers towards a more isotropic 
orientation. Furthermore, the rate of reorientation is also increased for 
the chosen 𝐶i value compared to Jeffery’s equation. The fourth-order 
fiber orientation tensor is approximated by the invariant-based optimal 
fitting (IBOF) closure A ≈ AIBOF [50]. The material’s constitutive 
behavior is modeled with the scalar IISO viscosity model according 
to Eq.  (10). As in Section 4.1, we neglect temperature and shear rate 
dependence of the viscosity, choosing 𝜂 = 103Pa s. To induce strong 
anisotropic behavior, the parameter describing the anisotropy 𝛽 = (𝑅𝜂−
1) [27] is chosen as 𝑅𝜂 = 100 [7].

The simulations are performed in Abaqus/Explicit using a
Lagrangian reference frame. The sample is discretized with linear 
hexahedron elements (C3D8, cf. Fig.  3). According to the lubricated or 
non-lubricated squeeze flow case, the boundary conditions are imposed 
on the nodes at the top and bottom of the sample (cf. Fig.  3). In 
both cases, compression is prescribed via a velocity boundary condition 
(smooth step) in the negative 3-direction of the top nodes. Because of 
the significant element distortion resulting from the no-slip condition in 
the non-lubricated case, the sample is compressed by ≈14%, as opposed 
to 50% in the lubricated case.

Fig.  4 and Fig.  5 show the numerical contour evolution in lubricated 
and non-lubricated squeeze flow, respectively. The fully tensorial so-
lutions using Eqs.  (4) and (9) are included for reference. When using 
the IISO viscosity model, the sample maintains a cylindrical shape in 
both flow scenarios. Therefore, given a spatially homogeneous and 
orthotropic initial fiber orientation state, fiber reorientation does not 
lead to anisotropic flow with this approach. In contrast, the fully 
tensorial model exhibits pronounced elliptical flow in both scenarios. 
The resulting elliptical deformation causes (severe) localized element 
distortion, which limits the achievable compression, especially in the 
non-lubricated case. In all cases, the fibers reorient toward a more 
isotropic state. However, fiber reorientation is more pronounced in 
the lubricated case because it undergoes greater overall compression. 
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Given the larger velocity gradient in the fully tensorial model (elliptical 
deformation), the fiber orientation at the end of compression is more 
isotropic compared to the IISO model (circular deformation). Note 
that, in the fully tensorial model, fiber orientation kinematics tend to 
reduce the degree of anisotropy and thus the degree of the elliptical 
deformation.

Additionally, Fig.  6 compares the compression forces predicted by 
both models. Consistent with the discussion at the end of Section 4.1, 
the IISO model predicts higher forces for both boundary conditions 
due to its inherent stress–strain-rate coaxiality. However, the shear-
thinning-like effect, which would tend to flatten the force-strain curve, 
is not apparent in the non-lubricated simulation due to the limited flow 
path length.

5. Compression molding style center-gated disk

To demonstrate the IISO viscosity model’s ability to capture
anisotropic behavior given a spatially homogeneous stationary fiber 

Fig. 3. Finite element model for lubricated and non-lubricated squeeze flow 
of a cylindrical sample.

Fig. 4. Numerical flow front evolution in lubricated squeeze flow using the 
IISO viscosity model, and the resulting contour from the fully tensorial model.
6 
Fig. 5. Numerical flow front evolution in non-lubricated squeeze flow using 
the IISO viscosity model, and the resulting contour from the fully tensorial 
model.

Fig. 6. Numerical compression force predicted by the IISO and fully tensorial 
model for lubricated and non-lubricated squeeze flow.

orientation state, Favaloro et al. [27] propose a simplification of the 
lubricated squeeze flow example: a compression-molding-style center-
gated disk (CGD) (cf. Fig.  7). In contrast to compression molding, 
the cavity height ℎ remains constant, and material is injected via a 
large sprue. To impose strong anisotropic behavior, a homogeneous 
unidirectional fiber orientation state (𝐴11 = 𝐴1111 = 1) is assumed [27].

Three distinct regions are identified in the CGD: the runner where 
material is placed initially, the cavity that the material fills during 
molding, and a transition region between the runner and the cavity 
(light to dark gray in Fig.  7). Within the runner, the material flows 
downward (𝑢3 < 0), and there is no circumferential or radial velocity 
(𝑢𝑟 = 𝑢𝜑 = 0). At a sufficient distance from the injection location, 
the material only experiences a radial velocity (𝑢 > 0, 𝑢 = 0) as 
𝑟 3
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Fig. 7. Schematic of the compression-molding-style center-gated disk (CGD) 
with stationary unidirectional fiber orientation (𝐴11 = 1). The distinct regions 
in the sectional view are (from light to dark gray): the runner, the cavity, and 
the transition region.

the cavity height is fixed. Thus, a transition region exists, where the 
material experiences a downward velocity (𝑢3 < 0) and a radial velocity 
(𝑢𝑟 > 0).

To examine the influence of the transition region on the stretching 
kernel, Favaloro et al. [27] introduce a perturbation to the rate of 
deformation tensor: 

𝑫∕𝜖̇ =
⎛

⎜

⎜

⎝

𝜉 − 1 0 0
0 1 0
0 0 −𝜉

⎞

⎟

⎟

⎠{𝒆𝑟 ,𝒆𝜑 ,𝒆𝑧}

, (23)

where 𝜉 quantifies the magnitude of the transition region contribution 
and 𝜖̇ corresponds to a characteristic strain rate that de-dimensionalizes 
the rate of strain tensor. In cartesian coordinates, the rate of deforma-
tion tensor 𝑫 is given by

𝑫∕𝜖̇ =
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

sin2 𝜑 − cos2 𝜑 2 sin𝜑 cos𝜑 0
2 sin𝜑 cos𝜑 cos2 𝜑 − sin2 𝜑 0

0 0 0

⎞

⎟

⎟

⎠

+

𝜉
⎛

⎜

⎜

⎝

cos2 𝜑 − sin𝜑 cos𝜑 0
− sin𝜑 cos𝜑 sin2 𝜑 0

0 0 −1

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠{𝒆1 ,𝒆2 ,𝒆3}

. (24)

This representation is obtained via the coordinate transformation
𝑫{𝒆1 ,𝒆2 ,𝒆3} = 𝑸𝑇𝑫{𝒆𝑟 ,𝒆𝜑 ,𝒆𝑧}𝑸 with the rotation matrix 𝑸.

In the case of unidirectional fiber orientation (𝐴11 = 1; cf. Fig.  7), 
the stretching kernel is defined as [27] 

𝒅 ⋅ A [𝒅] =
(

1 + (𝜉 − 2) cos2 𝜑
)2

4
(

𝜉2 − 𝜉 + 1
)2

. (25)

For 𝜉 = 0, the stretching kernel reduces to the planar extension case, 
yielding isotropic flow. Favaloro et al. [27] argue that a slight pertur-
bation, choosing 𝜉 = 0.3, induces a lower viscosity in fiber direction 
(𝜑 = 0) compared to the viscosity in transverse direction (𝜑 = 𝜋∕2), 
i.e. 𝜂IISO (𝜑 = 𝜋∕2) > 𝜂IISO (𝜑 = 0) (cf. Fig.  8(a)). This leads to higher 
stretching in circumferential direction at 𝜑 = 𝜋∕2 compared to the fiber 
direction (𝜑 = 0) [27]. However, the argument could also be made 
that the smaller surrogate viscosity in fiber direction leads to higher 
stretching in fiber direction. Furthermore, depending on the magnitude 
of the perturbation 𝜉, arbitrary stretching kernel profiles are obtained, 
as shown in Fig.  8. For 𝜉 = 2, the stretching kernel profile is constant, 
and for 𝜉 > 2 the stretching kernel ratio inverts. Thus, the magnitude 
of the perturbation determines the flow’s trajectory. In addition, the 
definition of the perturbation in Eq.  (23) requires a linear dependence 
of 𝑢𝜑 on 𝜑, i.e., 𝑢𝜑 ∝ 𝜑, which behaves similar to a vortex. Moreover, 
a constant rate of deformation tensor in cylindrical coordinates cannot 
produce elliptical flow because the necessary periodicity with respect 
to the 𝜑-coordinate that characterizes elliptical deformation is lacking. 
Therefore, the perturbation is physically inconsistent, as discussed in 
more detail in the Appendix.
7 
6. Discussion

Lubricated squeeze flow. Following the analytical investigation in Sec-
tion 4.1, the IISO viscosity model is unable to induce elliptical deforma-
tion of an initially cylindrical sample in lubricated squeeze flow. The 
compression-molding-style CGD (cf. Section 5) is also not a conclusive 
counterexample because the perturbation is physically inconsistent, 
and arbitrary stretching kernel profiles can be generated depending on 
the size of the perturbation rather than on the initial fiber orientation 
distribution.

Nevertheless, several works [27,30,40] report simulation results 
showing elliptical deformation for lubricated squeeze flow of initially 
cylindrical samples, using different numerical methods. In these works, 
the IISO viscosity is defined as an explicitly updated field property. 
While this is natural in the coupled Eulerian Lagrangian (CEL) method 
with explicit time integration (Abaqus/Explicit) in [30], the IISO vis-
cosity is kept constant throughout each time step in the finite volume 
based approach in [27,40]. As a result, the IISO viscosity strongly 
depends on the velocity field at the beginning of the time step, as 
well as the initial velocity field at the start of the simulation. In 
addition, in Abaqus/Explicit, the explicit modeling of contact between 
the composite and plates adds further complexity to the simulation.

Given the theoretical findings (cf. Section 4.1), it is reasonable 
to conclude that the anisotropic flow observed in such simulations 
largely results from numerical artifacts, such as highly nonlinear con-
tact modeling, rounding errors, or discretization effects. This conclusion 
is further supported by the finite element simulations presented in 
Section 4.2, which model the fundamental flow case of an orthotropic 
material using a Lagrangian framework. Beyond numerical artifacts, 
it is possible to impose anisotropic flow by informing the initial ve-
locity field at the beginning of the simulation depending on the fiber 
orientation state. Unfortunately, the literature lacks direct compari-
son between the IISO viscosity model and fully tensorial constitutive 
models. Such comparisons would be feasible for moderate values for 
the anisotropy parameter 𝛽 (cf. Eq.  (9)), as shown in [17–20] and 
Section 4.2.
Non-lubricated squeeze flow. In addition to lubricated squeeze flow, the 
analysis based on Ericsson’s model [12] (cf. Section 4.1) further em-
phasizes that the IISO viscosity model cannot generate anisotropic flow 
in non-lubricated squeeze flow of cylindrical samples either, regardless 
of the spatially homogeneous and orthotropic initial fiber orientation 
state. Thus, an analytical counterexample is available for this flow sce-
nario, which is relevant for thermoplastic composites. Moreover, finite 
element simulations of this analytical case involving fiber reorientation 
in a Lagrangian framework corroborate the analytical model’s findings, 
as illustrated in Section 4.2.
IISO viscosity model parameterization. Another key aspect of using the 
IISO viscosity model is that material parameters determined from fully 
tensorial models cannot be transferred directly to the IISO framework. 
The anisotropic flow (if generated due to an initially (non-constant) 
velocity field or an initially non-homogeneous fiber orientation field) 
is less pronounced than in the fully tensorial case [27]. In addition, 
the normal stresses and thus the compression force also differ. Con-
sequently, when restricted to an isotropic framework, the material 
parameters should be determined specifically using an IISO constitutive 
model. However, parameterization of any IISO constitutive equation 
from squeeze flow experiments is not possible using analytical mod-
els [7,12], as demonstrated in Section 4.1, because no anisotropic flow 
develops independent of the homogeneous (and orthotropic) initial 
fiber orientation state. For the same reason, no simple benchmark case 
exists that describes the fundamental deformation of an orthotropic 
material. This absence makes it challenging to (artificially) adjust the 
anisotropy parameters until sufficient agreement with the fully tenso-
rial model is achieved. To date, no comprehensive discussion regarding 
this problem is available in the literature. Current approaches for 
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Fig. 8. Behavior of the stretching kernel in compression-molding-style center-gated disk (CGD) with unidirectional fiber orientation (𝐴11 = 1) depending on the 
perturbation magnitude 𝜉 (cf. Eq.  (25)).
determining the IISO material parameters include: the direct adoption 
from fully tensorial parameterization [31], component-scale simula-
tions [35], squeeze flow experiments [32], and estimation based on 
anticipated material behavior [29]. All of these approaches can lead to 
ambiguous results. While directly adopting from fully tensorial param-
eterization may significantly underestimate the material anisotropy, 
parameterization from component-scale simulations is susceptible to 
numerical artifacts and exhibits strong sensitivity to the choice of 
experimental sampling locations (leading to optimization convergence 
to local minima). The challenge is particularly pronounced for material 
systems without a preferred initial fiber direction (e.g., 𝐴11 = 𝐴22 =
0.5), such as SMC and GMT, where parameterization from squeeze flow 
rheometry alone yields ambiguous and physically implausible results, 
as highlighted by the findings in [32]. This limitation applies equally to 
both IISO and fully tensorial models because the material deformation 
remains isotropic in the absence of a preferential (initial) fiber orienta-
tion. Consequently, no information about the anisotropic deformation 
behavior is available, requiring anisotropy parameters to be determined 
solely from force measurements, which leads to non-unique solutions.
Kinematically informed scalar surrogate model. An alternative approach 
to develop a scalar surrogate viscosity model is to artificially modify the 
rate of strain tensor based on the fiber orientation 𝑫∗ = 𝑓 (A), i.e., the 
model is kinematically informed. To ensure physical consistency, the 
dissipative power (cf. Eq.  (6)) must also be preserved. However, such 
an approach has the disadvantage that it cannot be easily integrated 
into (commercial) isotropic frameworks since the rate of strain tensor 
cannot generally be manipulated by the user.
Viscosity model verification cases. Finally, in addition to analytical con-
siderations, we propose two numerical verification cases for scalar 
surrogate and fully tensorial viscosity models. The first case is lubri-
cated squeeze flow of a cylindrical sample, analyzed within a purely 
Lagrangian frame of reference, as demonstrated in Section 4.2. With 
this approach, boundary conditions are directly imposed at the nodes, 
minimizing numerical errors. The second case expands on the CGD 
benchmark with initially aligned fiber orientation in [27] by prescrib-
ing an isotropic initial velocity field. In this scenario, an anisotropic 
constitutive model should alter the flow pattern depending on the fiber 
8 
orientation. Moreover, maintaining a constant gap height, i.e. imple-
menting an injection-induced rather than compression-induced flow, 
further reduces the influence of numerical artifacts, such as mesh 
motion and fluid–structure interaction in Eulerian frameworks.

7. Conclusion

First, we investigated and verified the IISO viscosity model’s inabil-
ity to generate elliptical deformation in lubricated squeeze flow (char-
acterized by negligible frictional contact forces) of initially cylindrical 
samples with an aligned fiber orientation. In addition to basic consid-
erations of a continuum, the model’s limitations were illustrated on the 
basis of the strain rate tensor for planar extension. Furthermore, we ex-
tended the discussion to non-lubricated squeeze flow (characterized by 
substantial frictional contact forces and no-slip) of initially cylindrical 
samples. We analytically demonstrated that the IISO viscosity model 
cannot produce anisotropic flow in this essential flow scenario either, 
regardless of the initial spatially homogeneous fiber orientation state. 
Finite element simulations using a purely Lagrangian reference frame 
were conducted for both cases, corroborating the analytical results.

Second, we demonstrated that the counterexample of the
compression-molding-style center-gated disk (CGD) is inconclusive, as 
the flow trajectory depends on the magnitude of the imposed per-
turbation instead of the (initial) fiber orientation. In addition, the 
perturbation induces a vortex in the circumferential direction, which 
is physically implausible.

We then discussed possible reasons for the anisotropic flow in 
lubricated squeeze flow presented in the literature and emphasized that 
material parameters determined from fully tensorial models cannot be 
directly transferred to the IISO framework. Accordingly, no uniform 
approach for transferring material parameters to an IISO framework is 
available in the literature.

In conclusion, fully anisotropic (fourth-order tensor) viscosity mod-
els should be preferred over the IISO viscosity model for accurate 
representation of flow-fiber coupling. However, when restricted to an 
isotropic (commercial) framework, the IISO viscosity model is currently 
the preferred choice over a simple isotropic material description that 
neglects the fiber contribution entirely. Nevertheless, when using it, its 
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limitations must be taken into account: inability to capture anisotropic 
flow (in fundamental deformation scenarios), deviations in predicted 
compression forces, and potentially spurious anisotropic flow behavior 
arising from numerical artifacts.

CRediT authorship contribution statement

Louis Schreyer: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Software, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. Constantin Krauß: 
Writing – review & editing, Methodology, Conceptualization. Florian 
Wittemann: Writing – review & editing. Luise Kärger: Writing – 
review & editing, Supervision, Project administration, Funding acqui-
sition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

The research documented in this manuscript has been funded ini-
tially by the German Research Foundation (DFG) as part of the Interna-
tional Research Training Group ‘‘Integrated engineering of continuous-
discontinuous long fiber reinforced polymer structures’’ (IRTG 2078), 
and subsequently by the German Federal Ministry for Economic Affairs 
and Climate Action (BMWK) as part of the EcoDynamicSMC research 
project. The work is also part of the Heisenberg project ‘‘Digitalization 
of fiber-reinforced polymer processes for resource-efficient manufactur-
ing of lightweight components’’ (455807141), funded by the DFG. The 
support by the DFG, Germany and BMWK is gratefully acknowledged.

Appendix. Analysis of the perturbation definition

In this section, we investigate the definition of the perturbation in 
Eqs.  (23) and (24) of the compression-molding-style CGD (cf. Fig.  7) 
in more detail. In addition to the incompressibility condition (∇ ⋅ 𝒖 =
0), the individual components of the rate of deformation tensor must 
follow from the definition of the velocity field. To analyze the latter, 
we start by computing the radial velocity 𝑢𝑟 by integrating 𝐷𝑟𝑟 (cf. Eq. 
(23)): 

𝑢𝑟 = ∫ 𝐷𝑟𝑟d𝑟 = ∫ (𝜉 − 1)d𝑟 = (𝜉 − 1) 𝑟 + 𝑔1(𝜑), (26)

where 𝑔1(𝜑) is an integration constant, which can be an arbitrary func-
tion of 𝜑. A contribution of the out-of-plane coordinate 𝑥3 to the radial 
velocity is neglected, as it is not relevant for the following analysis. 
Assuming that flow only occurs in the region 𝑟 > 𝑟0 and applying the 
boundary condition 𝑢𝑟(𝑟 = 𝑟0) = 0 at the onset of the transition region, 
we obtain 
𝑢𝑟 = (𝜉 − 1)

(

𝑟 − 𝑟0
)

,∀𝑟 > 𝑟0. (27)

The use of 𝑟0 as a boundary condition provides a more general formula-
tion than simply using 𝑟 = 0, although 𝑟0 = 0 in Fig.  7. To compute the 
circumferential velocity 𝑢𝜑, we substitute Eq.  (27) into the definition of 
𝐷𝜑𝜑, which follows from the velocity gradient in cylindrical coordinates 
and the perturbed rate of deformation tensor (cf. Eq.  (23)): 

𝐷𝜑𝜑 = 1
𝑟
𝜕𝑢𝜑
𝜕𝜑

+
𝑢𝑟
𝑟

= 1. (28)

This substitution yields the following differential equation:
1
𝑟
𝜕𝑢𝜑
𝜕𝜑

+
(𝜉 − 1)

(

𝑟 − 𝑟0
)

𝑟
= 1, (29)

⇒
𝜕𝑢𝜑 = 𝑟 − (𝜉 − 1)

(

𝑟 − 𝑟0
)

. (30)

𝜕𝜑
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Integrating Eq.  (30) yields the circumferential velocity: 

𝑢𝜑 = ∫
(

𝑟 − (𝜉 − 1)
(

𝑟 − 𝑟0
))

d𝜑 =
(

𝑟 − (𝜉 − 1)
(

𝑟 − 𝑟0
))

𝜑 + 𝑔2(𝑟), (31)

where 𝑔2(𝑟) is an integration constant, which can be an arbitrary 
function of 𝑟. The definition of the velocity 𝑢𝜑 contains a linear term 
in 𝜑 that corresponds to a vortex. However, this term cannot be 
compensated for by 𝑔2(𝑟), making the definition of 𝑫 unphysical. Fur-
thermore, there is no suitable boundary condition for 𝑢𝜑 that satisfies 
the differential equations of the remaining components of the strain 
rate tensor.

In the case of an elliptical deformation (the fundamental geo-
metric shape of an orthotropic material), shearing occurs everywhere 
except on the coordinate axes (cf. Fig.  A.1). Therefore, for physical 
consistency, the perturbation should also induce deformation in the 
circumferential components.

Fig. A.1. Volume elements between and on coordinate axes in elliptical flow 
of an orthotropic material; volume element between the coordinate axes 
indicates shear deformation.

Data availability

Data will be made available on request.
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