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 a b s t r a c t

Experimental observations have revealed molecular-scale density depletion near hydrophobic substrates, suggest-
ing a diffuse and structurally heterogeneous fluid-solid interface. Motivated by these findings, we hypothesise 
that the surface composition at the fluid-solid boundary may adopt multiple energetically favourable states. To 
account for this behaviour, we introduce a nonmonotonic wall free energy formulation that captures the ener-
getic contribution of the fluid-solid interactions within the wetting boundary condition of a thermodynamically 
consistent phase-field model. This formulation successfully reproduces multistable surface compositions and en-
ables the modelling of static contact angle hysteresis (CAH) on smooth, horizontally oriented substrates, arising 
from deposition histories. By allowing the wall free energy to relax and permit contact line motion via molecular 
diffusion, this model captures the dynamic CAH observed during droplet motion on inclined substrates. Unlike 
conventional phase-field CAH models, our framework requires no explicit input on contact-line velocity or pre-
scribed contact angles and relies solely on thermodynamic energy minimisation; it automatically captures contact 
line pinning, as well as advancing and receding states. Upon droplet sliding with CAH, stick-slip behaviour nat-
urally emerges. These findings demonstrate that both CAH and stick-slip behaviour can originate purely from 
molecular-scale fluid-solid interactions, underscoring the importance of surface composition and interfacial dif-
fusion, factors often overlooked in classical hydrodynamic models. This framework provides a pathway to bridge 
thermodynamic and hydrodynamic perspectives, potentially enabling new insights into slip, friction, and no-slip 
behaviour at fluid-solid interfaces, with particular relevance for microfluidic applications.

1.  Introduction

Contact angle hysteresis (CAH) is a universal wetting phenomenon 
central to advanced surface technologies, including self-cleaning, smart 
filtration, and bioadhesive and antifouling applications. A droplet rest-
ing on a horizontal substrate may exhibit a range of contact angles de-
pending on how it is deposited. Tilting the substrate leads to an asym-
metric deformation of the droplet’s contact angles, yet the droplet often 
remains pinned. Sliding occurs only beyond a critical tilt, where the 
front and rear contact angles approach their static advancing (𝜃A) and 
receding (𝜃R) limits. The difference between these two limits defines 
CAH [1] and reflects a capillary imbalance that resists droplet motion, 
manifesting as drop friction [2]. Without CAH, even tiny perturbations 
would set droplets in motion. Understanding CAH is therefore crucial 
for applications in microfluidics, heat transfer, and surface engineering.
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Despite extensive study, it still lacks a complete theoretical frame-
work on CAH. Predicting water droplet motion on inclined surfaces 
remains challenging. Roughness and heterogeneity are traditionally
regarded as the primary causes of CAH. Marmur’s thermodynamic 
analysis [3] shows that such inhomogeneities create multiple local 
minima in surface free energy, leading to metastable states and hys-
teresis. Yet CAH also appears on smooth, chemically homogeneous 
solids [4,5] and even on liquid substrates [6], showing that sur-
face inhomogeneity alone is insufficient to explain this phenomenon. 
Additional mechanisms have been proposed, including viscous dis-
sipation [7], substrate deformation within the contact wedge, and 
molecular-scale fluid-solid interactions such as surface adaptation [8], 
contact line friction, and slide electrification [9]. These mechanisms 
and their role in drop friction are comprehensively reviewed by
Butt et al. [2].
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When the substrate is regarded as inert, the intermolecular attractive 
and repulsive forces experienced by fluid molecules at the fluid-solid in-
terface differ from those within the bulk or at the fluid-fluid interface. 
Such disparities break interfacial symmetry and may induce molecular 
accumulation or depletion near the substrate. Consequently, the local 
fluid volume fraction at the substrate, termed surface composition, may 
deviate from its bulk value, leading to adsorption or depletion layers, 
a phenomenon known as surface composition effect. Experiments have 
revealed molecular-scale depletion layers characterised by diffuse and 
structured interfaces rather than atomically sharp boundaries [10,11]. 
These findings prompt two fundamental questions: (i) Is the surface 
composition inherently unique for a given material, or does the inter-
face exhibit multistability in surface composition? (ii) If the latter holds, 
how does the multistable surface composition influence CAH and con-
tact line dynamics? This study focuses on the latter question, seeking 
to elucidate how molecular-scale interfacial structures give rise to CAH 
and govern macroscopic droplet friction [12], a connection that remains 
poorly understood. To isolate this effect, we focus on flat, rigid, smooth, 
chemically homogeneous, and inert substrates with quasi-equilibrium 
droplets. In this regime, CAH arises solely from molecular-scale fluid-
solid interactions, hereafter referred to as intrinsic CAH.

The coexistence of multistable surface compositions would directly 
challenge the classical assumption of a fixed fluid-solid interfacial ten-
sion [13]. Recent theoretical studies [14–16] suggest that the fluid-solid 
interfacial tension varies with surface composition. This variability in-
troduces multiple local minima in the surface energy landscape, pro-
viding a natural mechanism for static CAH. However, these studies are 
formulated within a sharp-interface framework and inherently disregard 
the diffuse nature of interfacial structure and the associated composition 
gradients near the contact line. As a result, although they capture the 
role of surface composition in static CAH, their predictive power is lim-
ited: they fail to account for how surface composition profiles influence 
dynamic behaviours such as contact line motion, pinning-depinning, 
and frictional resistance on tilted ideal substrates, where partial contact 
line shifts often precede droplet sliding. A predictive framework that 
links surface composition to both static CAH and contact line dynamics 
remains elusive.

Conventional hydrodynamic models [17,18] treat the fluid as a struc-
tureless continuum and typically model CAH phenomenologically, by 
prescribing a fixed hysteresis window [𝜃R, 𝜃A] within which the contact 
line remains pinned. While practical, such models provide limited in-
sight into the microscopic origin of CAH or the role of interfacial struc-
ture in contact line dynamics and friction. Molecular dynamics (MD) 
simulations [19] can capture intrinsic CAH but are limited by their small 
computational scale. A promising alternative is the phase-field model, 
a mesoscale approach that treats interfaces as diffuse and captures in-
terfacial physics without ad hoc boundary conditions. This approach 
integrates seamlessly with hydrodynamic equations. As such, it is well 
suited for studying fluid-solid interactions in microfluidic systems. In 
phase-field wetting models, fluid-solid coupling is typically introduced 
via a surface-composition-dependent wall free energy [20–22], which 
shares density units with interfacial tension and quantifies the energetic 
cost of the substrate’s presence. This term bridges molecular-scale fluid-
solid interactions with macroscopic wetting behaviour. However, con-
ventional phase-field models still struggle to reproduce intrinsic CAH, 
even in static cases on horizontal substrates. Most [23–25] continue 
to rely on prescribed strategies, similar to those used in hydrodynamic 
models. This limitation arises from the commonly adopted wall free en-
ergy, which typically yields a global minimum in the surface energy 
landscape. It results in a unique, energetically favoured surface compo-
sition and enforces a constant fluid-solid interfacial tension determined 
solely by the material system. As a result, it smears out the experimen-
tally observed fluid-solid interfacial structures that may play a critical 
role in CAH and contact line dynamics.

In this work, we propose a physically grounded phase-field model 
that connects multistable surface composition to macroscopic wetting 

dynamics, a connection that, to the best of our knowledge, remains un-
explored. The novelty of this model lies in incorporating multiple local 
minima into the wall free energy density to represent the diffuse inter-
facial structure near an ideal solid surface. Each minimum corresponds 
to a thermodynamically favourable surface composition. This formu-
lation enables the emergence of metastable surface compositions that 
depend on wetting history. We examine two representative cases: (i) 
sessile droplets at equilibrium and (ii) droplets steadily sliding or stick-
ing on inclined substrates. In both scenarios, the model captures intrin-
sic CAH without relying on artificial hysteresis windows, contact line 
velocities, or hydrodynamic inputs. It also reveals how multistable sur-
face compositions naturally account for contact line dynamics, including 
pinning, depinning, and stick-slip motion. This thermodynamically con-
sistent framework provides a basis for investigating fluid friction in mi-
crofluidic systems where wetting dominates transport behaviour, such 
as plasma clogging at Y-junctions in blood flow [26] or nanoparticle-
based drug delivery [27].

2.  Phase-field model

2.1.  Governing equations

Considering a droplet resting on an ideal substrate surrounded by 
gas (Fig. 1(1, 2)), the total free energy of the system is formulated as

𝐸 = ∫Ω

[ 𝛾lg
𝜖
𝜓b(𝜙) + 𝜖𝛾lg‖∇𝜙‖2 + 𝑓g(𝜙) + 𝑓vp(𝜙)

]

dΩ

+ ∫𝜕Ωw

𝑓sr(𝜙s) d𝑆,
(1)

where the first integral accounts for the energy between the immiscible 
liquid and gas phases within the fluid domain Ω, and the second de-
scribes the excess wall free energy of forming the fluid-solid interface 
at the substrate 𝜕Ωw. The phase-field order parameter 𝜙 ∈ [0, 1] denotes 
the local liquid volume fraction, with 𝜙 = 1 for pure liquid, 𝜙 = 0 for 
pure gas, and intermediate values within the diffuse interface. The com-
position 𝜙s denotes the order parameter on the substrate.

In Ω, the first term, 𝛾lg𝜖 𝜓b(𝜙), adopts the dimensionless obstacle po-
tential

𝜓b(𝜙) =

{

16
𝜋2
𝜙(1 − 𝜙) if 0 ≤ 𝜙 ≤ 1

+∞ otherwise,
(2)

which confines 𝜙 strictly to the physically meaningful range [0, 1] by im-
posing an infinite energy barrier outside this interval. This potential has 
two minima at 𝜙 = 1 and 𝜙 = 0, representing the stable liquid and gas 
phases, respectively. The barrier between them penalises the presence 
of the liquid-gas interface, favouring a sharper phase separation. The 
second term, 𝜖𝛾lg‖∇𝜙‖2, is the gradient energy density, which penalises 
spatial variations in 𝜙 and thus favours a smoother interface. The bal-
ance between these competing energies stabilises the diffuse liquid-gas 
interface and defines its excess free energy. Here, 𝛾lg is the liquid-gas in-
terfacial tension and 𝜖 controls the width of the diffusive interface. Both 
are held constant in this work for a fixed material system. The third 
term, 𝑓g(𝜙), accounts for the gravity effect when the droplet rests on an 
inclined substrate:

𝑓g(𝜙) = 𝐠 ⋅ 𝐳
[

𝜌lℎ(𝜙) + 𝜌g
[

1 − ℎ(𝜙)
]

]

, (3)

where ℎ(𝜙) = 𝜙3(6𝜙2 − 15𝜙 + 10) is an interpolation function, 𝜌l and 𝜌g
are the densities of the liquid and gas phases, respectively, 𝐠 is the 
gravity vector, and 𝐳 is the position vector. The fourth term, 𝑓vp(𝜙), 
enforces droplet volume conservation, leading to a volume-preserved 
Allen-Cahn-type phase-field model that improves computational effi-
ciency. More discussions are shown in Refs. [22,28]. At 𝜕Ωw, the wall 
free energy density 𝑓sr(𝜙s) quantifies the short-range attractive and re-
pulsive interactions between fluid and solid molecules, determined by 
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Fig. 1. (1–2) Schematic of a sessile droplet on horizontal and inclined solid surfaces. (3) Zoomed-in schematic of molecular arrangements at the liquid-solid interface: 
region (dark grey, bulk solid; light grey, interfacial zone); circles (grey, solid molecules; blue, liquid molecules; green, gas molecules). Three representative liquid 
density profiles are shown: blue, uniform profile with surface composition equal to bulk; green, monotonic transition to a single stable surface composition; pink, 
multiple density profiles, indicating multistable surface compositions. The final equilibrium surface composition is determined by the deposition history. (4) Wall 
free energy density functions 𝑤0, 𝑤1, and 𝑤2 corresponding to these density profiles. (5–7) Analytical equilibrium surface compositions 𝜙∗

i  at Δ𝛾 = −0.8 and −0.5, 
obtained from Eq. (9). A less hydrophobic surface (Δ𝛾 = −0.5) weakens surface composition effects. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

the local surface composition 𝜙s. This term is central to capturing in-
trinsic CAH in the present thermodynamic phase-field framework and is 
detailed later.

Focusing on the equilibrium state and steady droplet sliding, we ne-
glect kinetic effects and apply an energy minimisation principle. Stan-
dard variational calculus on Eq. (1) gives the bulk and wall chemical 
potentials, 𝜇b and 𝜇s. Extending this framework to dynamics via the 
steepest descent method leads to the time-dependent evolution equa-
tion in the domain Ω:

−𝜇b = 𝜏b𝜕𝑡𝜙 = 𝛾lg
[

2𝜖∇2𝜙 − 1
𝜖
𝜓 ′
b(𝜙)

]

− 𝑓 ′
g (𝜙) − 𝑓

′
vp(𝜙), (4)

subject to the wetting boundary condition (WBC) on 𝜕Ωw:

−𝜇s = 𝜏s𝜕𝑡𝜙 = 2𝛾lg𝜖∇𝜙s ⋅ 𝐧 − 𝑓 ′
sr(𝜙s), (5)

and the no-flux boundary condition on 𝜕Ω∖𝜕Ωw:

∇𝜙s ⋅ 𝐧̃ = 0, . (6)

Here, 𝜏b and 𝜏s are phenomenological relaxation parameters in the bulk 
and at the wall, respectively. The vector 𝐧 is the unit normal to the 
substrate 𝜕Ωw, and ̃𝐧 is the outward normal on the remaining boundaries 
𝜕Ω ⧵ 𝜕Ωw, as shown in Fig. 1(1).

Simulations use a dimensionless water-air system based on three 
reference quantities: surface tension (𝜎lg = 72.8mNm−1), characteris-
tic length (𝑙0 = 4 µm), and characteristic time (𝑡0 = 1 × 10−4 s). Unless 
otherwise noted, all variables hereafter are presented in dimension-
less form. Details of nondimensionalization, free energy formulation, 
and interface-width convergence are given in the Supplementary. It is 
essential to note that the present work focuses on the intrinsic CAH 
originating solely from wall free energy relaxation, thereby neglecting 
the effects of internal fluid dynamics. However, coupling the Navier-
Stokes equations with phase-field models is possible using either a Cahn-
Hilliard [29] or Allen-Cahn [30] type evolution equation and may be 
explored in future work.

2.2.  Wall free energy formulations

Following the classical framework of Cahn [20], we define the short-
range wall free energy density as:
𝑓sr(𝜙s) = 𝛾ls𝑤(𝜙s) + 𝛾gs

[

1 −𝑤(𝜙s)
]

, (7)

where 𝛾ls and 𝛾gs are the pure liquid-solid and gas-solid interfacial ten-
sions.  The wall free energy density function 𝑤(𝜙s) satisfies 𝑤(1) = 1 and 
𝑤(0) = 0, so that 𝑓sr0 (𝜙s = 1) = 𝛾ls and 𝑓sr0 (𝜙s = 0) = 𝛾gs. Standard forms 
of 𝑤(𝜙s), such as linear, polynomial, or sinusoidal profiles, are smooth 
and monotonic functions derived from ideal sub-regular solution theo-
ries based on van der Waals interactions [24]. Such profiles typically 
yield a global minimum, selecting a unique, energetically preferred sur-
face composition. As such, these smooth formulations cannot reproduce 
surface composition multistability and thus fail to capture its role in 
intrinsic CAH within the traditional phase-field framework.

In adaptive wetting, even on ideal surfaces, interfacial structures can 
dynamically reorganise upon contact: fluid molecules may adsorb to or 
deplete from the solid surface, surface groups may reconstruct, diffu-
sion and swelling can occur, and electric double layers may form, all 
strongly influenced by external perturbations [8]. These complex, cou-
pled processes can give rise to nontrivial interfacial profiles, and thus 
to multistable surface compositions. Fig. 1(3) schematically illustrates 
molecular arrangements at the liquid-solid interface, along with three 
representative liquid density profiles reflecting varying degrees of ad-
sorption or depletion. In the uniform case (𝑤0), the fluid density at the 
substrate equals the bulk value. In the monotonic case (𝑤1), the density 
deviates from the bulk but remains uniquely determined by the given 
material properties. In the nonmonotonic case (𝑤2), multiple metastable 
density profiles may coexist, with the equilibrium state determined by 
the deposition history. To represent these behaviours, we compare three 
wall free energy density functions, shown in Fig. 1(4), each correspond-
ing to one of the density profile types:

𝑤0: 𝑤(𝜙s) = 2
𝜋

[

arcsin(
√

𝜙s) + (2𝜙s − 1)
√

𝜙s(1 − 𝜙s)
]

,
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𝑤1: 𝑤(𝜙s) = 𝜙3
s (6𝜙

2
s − 15𝜙s + 10),

𝑤2: 𝑤(𝜙s) = 𝜙s −
sin (6𝜋𝜙s)

6𝜋
. (8)

Both 𝑤0 and 𝑤1 are smooth and monotonic, leading to a single energy 
minimum in 𝑓sr(𝜙s). In contrast, 𝑤2 exhibits a smooth, but step-like, non-
monotonic profile with multiple local extrema. This feature naturally 
introduces multiple metastable states into the system while maintaining 
thermodynamic consistency (d𝐸∕d𝑡 ≤ 0) of the system.

3.  Theoretical analysis

We show analytically, within the phase-field framework, that the ex-
istence of multiple stable surface compositions can give rise to intrinsic 
CAH. A brief outline is provided here; full derivations are documented 
in the Supplementary.

3.1.  Surface composition effect

We first investigate the conditions under which the surface compo-
sition deviates from its bulk value, i.e., the surface composition effect, 
which leads to the formation of adsorption or depletion layers (hereafter 
referred to as wall layers) along the substrate. Under equilibrium and in 
one dimension, the natural WBC (Eq. (5)) reduces to:
±2𝛾lg

√

Δ𝜓b(𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

∶=Π1

= Δ𝛾 𝑤′(𝜙s)
⏟⏞⏞⏟⏞⏞⏟

∶=Π2

, (9)

where the sign - corresponds to hydrophobic and+hydrophilic config-
urations, and Δ𝜓b(𝜙) = 𝜓b(𝜙) − 𝜓b(𝜙0) − (𝜙 − 𝜙0)𝜓 ′

b(𝜙0) = 𝜓b(𝜙). Here, 
𝜙0 = 0 represents the bulk gas phase. The interfacial energy differ-
ence, Δ𝛾 = 𝛾gs − 𝛾ls, quantifies the wall’s relative affinity for gas and liq-
uid: Δ𝛾 > 0 favors wetting (hydrophilic), Δ𝛾 < 0 favors dewetting (hy-
drophobic), and Δ𝛾 = 0 represents a neutral surface. A larger |Δ𝛾| indi-
cates a stronger affinity contrast, making the surface more hydrophobic 
for negative Δ𝛾 or more hydrophilic for positive Δ𝛾.

Solving Eq. (9) yields a discrete set of admissible equilibrium sur-
face compositions,  ∶= {𝜙∗

i ∶ i ∈ ℤ+}, from which the final equilib-
rium values beneath and outside the droplet, 𝜙∗

sl
 and 𝜙∗

sg
, are selected. 

Fig. 1(5–7) presents a graphical analysis of Eq. (9) for Δ𝛾 = −0.8 and 
−0.5, with black symbols denoting 𝜙∗

sg
 and colored symbols denoting 

𝜙∗
sl
 for Δ𝛾 = −0.8. The results highlight that the surface composition 

effect depends primarily on two factors: (i) Wall free energy density 
formulation. The semi-obstacle form 𝑤0 only yields trivial bulk-like so-
lutions (𝜙∗

sg
= 0 and 𝜙∗

sl
= 1), thereby suppressing surface composition 

effects and preventing wall layer formation. In contrast, both 𝑤1 and 
𝑤2 permit 𝜙∗

i  to deviate from bulk values, allowing wall layers to form. 
(ii) Magnitude of |Δ𝛾|. Increasing |Δ𝛾| (from −0.5 to −0.8) yields more 
Π1 − Π2 intersections for both 𝑤1 and 𝑤2. This implies that an increased 
interfacial energy difference strengthens surface composition effects and 
wall layering. As a result, within our framework, increasing surface hy-
drophobicity promotes multiple stable surface compositions, manifested 
as additional local minima in the surface free energy landscape (Supple-
mentary fig. S1).

It is worth noting, however, that the presence of surface composition 
effects does not necessarily imply multiple stable surface compositions. 
At Δ𝛾 = −0.8, the smooth form 𝑤1 yields four intersection points. The 
first, 𝜙∗

1 = 0, corresponds to the equilibrium surface composition out-
side the droplet (𝜙∗

sg
= 0). Beneath the droplet, the third intersection 𝜙∗

3
corresponds to a local maximum in surface energy, while 𝜙∗

2 and 𝜙∗
4 rep-

resent two local minima. The final 𝜙∗
sl
 is determined by a competition 

between the two minima, depending on the relative magnitudes of the 
integral areas I (increasing surface energy) and II (decreasing surface 
energy). At Δ𝛾 = −0.8, these areas are equal and thus both minima are 
equally stable, a critical wetting condition [20] that allows multistable 
surface composition. Away from this condition, the asymmetry in areas I 

and II favours a unique minimum. The step-like formulation 𝑤2 exhibits 
up to eight intersections at Δ𝛾 = −0.8, four of which (colored symbols) 
correspond to local energy minima.  The existence of multiple energy 
barriers between them necessitates that the determination of the final 
state 𝜙∗

sl
 must account for the dynamics of overcoming these barriers. 

This configuration supports robust multistability in surface composition, 
even away from the critical wetting condition, a necessary precursor for 
intrinsic CAH within the present framework.

3.2.  Effective contact angle

We define a prescribed contact angle 𝜃p via cos 𝜃p = Δ𝛾∕𝛾lg, where 
Δ𝛾 = 𝛾gs − 𝛾ls. Here, 𝛾gs and 𝛾ls are user-defined simulation parameters 
representing the fluid-solid interfacial tensions in the absence of sur-
face composition effects. 𝜃p coincides with the classical Young’s angle, 
as both assume constant interfacial tensions and neglect molecular vari-
ations at the fluid-solid interface. Intuitively, if the equilibrium surface 
composition 𝜙∗

sg
 or 𝜙∗

sl
 deviates from its bulk value, the effective interfa-

cial tensions 𝛾∗gs and 𝛾∗ls are expected to differ from their nominal values 
𝛾gs and 𝛾ls. Consequently, the effective contact angle 𝜃∗ may deviate from 
the prescribed angle 𝜃p.

To quantify this deviation, we integrate the natural WBC (Eq. (9)) 
from 𝜙∗

sg
 to 𝜙∗

sl
 across the liquid-gas interface on the substrate, yielding 

a modified Young’s law:

cos 𝜃∗ =
𝛾∗gs − 𝛾

∗
ls

𝛾lg
, (10)

with the effective interfacial tensions defined as:

𝛾∗gs = 𝑓sr0 (𝜙
∗
sg
) + 2𝛾lg ∫

0

𝜙∗sg

√

Δ𝜓b(𝜙)d𝜙,

𝛾∗ls = 𝑓sr0 (𝜙
∗
sl
) + 2𝛾lg ∫

1

𝜙∗sl

√

Δ𝜓b(𝜙)d𝜙. (11)

This variationally derived 𝜃∗ is a microscopic contact angle that char-
acterises the droplet profile around the contact line region, where the 
fluid-solid molecular interactions vary sharply [31]. In the present 
framework, these complex interactions are implicitly subsumed into 𝛾∗gs
and 𝛾∗ls . Eq. (11) indicates that the effective fluid-solid interfacial free 
energy comprises two contributions: the wall free energy evaluated at 
the actual surface composition, and the excess free energy arising from 
the nonuniform composition profile within the wall layer.

In the absence of surface composition effects, i.e., 𝜙∗
sg

= 0 and 𝜙∗
sl
= 1, 

the integrals in Eq. (11) vanishes. Consequently, the effective interfacial 
tensions recover their prescribed values: 𝛾∗gs = 𝛾gs and 𝛾∗ls = 𝛾ls, and the 
modified Young’s law (Eq. (10)) reduces to the classical Young’s law 
with 𝜃∗ = 𝜃p. However, when surface composition deviates from bulk 
values, 𝜃∗ ≠ 𝜃p. If multiple stable surface compositions exist, as in the 
step-like form 𝑤2, multiple values of 𝜃∗ can arise. This directly gives rise 
to intrinsic CAH, as demonstrated next through simulations.

4.  Simulation results

4.1.  CAH on horizontal substrates

Here, we examine a droplet resting on a horizontal substrate and 
compare theoretical predictions with numerical simulations for three 
wall free energy density formulations (𝑤0, 𝑤1, and 𝑤2), finding that 
the step-like 𝑤2(𝜙) can reproduce deposition-history-dependent multi-
stable surface compositions. This multiplicity thereby offers a promising 
thermodynamic route for reproducing intrinsic CAH on horizontal sub-
strates.

Unlike the smooth formulation 𝑤1, where the equilibrium surface 
composition follows a balance of integral areas, the outcome for 𝑤2 also 
depends on the relaxation pathway because multiple energy barriers 
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Fig. 2. (1–3) Simulation results for two distinct initial droplet shapes: Left: half-circle; right: full-circle. 𝑤0: both cases converge to identical equilibrium states with 
no wall layer; 𝑤1 and 𝑤2: half-circle yields no wall layer, whereas full-circle forms a distinct wall layer, producing static CAH. (4–6) Quantitative comparison between 
theoretical and simulated equilibrium surface compositions across the full hydrophobic range. 𝑤0: no multistable surface compositions; 𝑤1: two multistable states 
only at Δ𝛾 = −0.8; 𝑤2: pronounced multistability for Δ𝛾 ≤ −0.5, giving rise to robust static CAH driven by deposition history. (7–9) Comparison of theoretical and 
simulated equilibrium contact angles as a function of the wettability parameter Δ𝛾, for half-circle and full-circle initialisations. 𝑤0: no measurable hysteresis across 
all Δ𝛾, irrespective of initialisation; 𝑤1: hysteresis appears only near the critical wetting condition (Δ𝛾 = −0.8); 𝑤2: pronounced hysteresis is observed, confirming its 
capacity to capture intrinsic static CAH arising from different deposition histories.

exist. For instance, depending on initial conditions, the surface compo-
sition may evolve either from the bulk gas value (0) or the bulk liq-
uid value (1) toward one of the stable states. To validate these predic-
tions, we perform a series of two-dimensional simulations across the hy-
drophobic range (Δ𝛾 ∈ [−1, 0]), each initialised with either a half-circle 
(dewetting pathway) or a full-circle (wetting pathway) droplet to rep-
resent different deposition histories.

Fig. 2(1–3) illustrates simulation visualisations for three wall free 
energy density formulations at Δ𝛾 = −0.8. Black dashed lines mark the 
initial shapes; Insets À and Á are enlarged for clarity. The colour bar 
represents the order parameter 𝜙 ranging from 0 to 1. For 𝑤0, both ini-
tialisations yield nearly identical profiles, with the equilibrium surface 
compositions close to the bulk values, signifying the absence of wall 
layers. In contrast, 𝑤1 and 𝑤2 exhibit sensitivity to deposition history: 
pronounced wall layers form with full-circle initialisation but are absent 
in the half-circle case. Inset À highlights a wedge-like intrusion for 𝑤2, 
consistent with experimental reports of imperfect triple-junctions on su-
perhydrophobic substrates [32]. In Inset Á, the wall layer in 𝑤2 is visibly 

thinner than in 𝑤1, reflecting weaker depletion. To understand this vari-
ation, we quantitatively analyse the surface composition in Fig. 2(4–6).

Theoretical values (𝜙∗
i , crosses) are compared with simulated equi-

librium surface compositions across the full hydrophobic range. In this 
regime, the half-circle and full-circle initialisations produce distinct 
configurations which, if CAH exists, correspond to receding and ad-
vancing contact angles. Consequently, the equilibrium surface compo-
sitions beneath the droplet are denoted as 𝜙sim

R  (squares) and 𝜙sim
A  (cir-

cles), respectively, while the surface compositions outside the droplet, 
which naturally approach the bulk value (0), are therefore omitted. 
Fig. 2(7–9) further presents the corresponding contact angles as func-
tions of Δ𝛾: theoretical 𝜃∗R (solid) and 𝜃∗A (dotted) from the modified 
Young’s law (Eq. (10)), alongside simulated 𝜃simR  (squares) and 𝜃simA  (cir-
cles). Across all three formulations, simulations agree well with theoreti-
cal predictions. The two panels quantitatively establish the link between 
deposition-history-dependent surface compositions and CAH.

For 𝑤0, both initialisations relax to the same equilibrium (𝜙sim
R ≈

𝜙sim
A ≈ 1; 𝜃simR ≈ 𝜃simA ). This indicates a unique global minimum in the 
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surface free energy landscape (Supplementary fig. S1 (1)), eliminating 
multistability in surface composition and thus intrinsic CAH, irrespec-
tive of deposition history. Minor deviations reflect the inherent numer-
ical limitations of the Allen-Cahn model [22].

For 𝑤1, less hydrophobic substrates yield equilibrium surface compo-
sitions equal to the bulk liquid value (no wall layers). As |Δ𝛾| increases, 
surface composition effects emerge, accompanied by the formation of 
stable wall layers. These trends are consistent with experimental ob-
servations that increasing hydrophobicity enhances the stabilisation of 
depletion layers [11]. Deposition-history dependence (𝜙sim

R ≠ 𝜙sim
A ) ap-

pears only near the critical wettability Δ𝛾 ≈ −0.8, producing a finite 
hysteresis of Δ𝜃sim ≈ 11◦. Outside this narrow window (green region 
in Fig. 2(5)), the imbalance between integral areas I and II favours a 
single energy minimum, yielding a unique equilibrium surface compo-
sition and no intrinsic CAH. Hence, 𝑤1 produces static CAH only near 
critical wetting, contrary to numerous reports of static CAH on smooth 
substrates without such conditions [4,5], and therefore falls short in 
capturing the widely observed intrinsic CAH in real-world systems.

For 𝑤2, multistable surface compositions and the associated intrin-
sic CAH robustly emerge across a broad hydrophobic range. When 
Δ𝛾 ≤ −0.5, 𝑤2 produces multiple local minima in the surface free energy 
landscape (Supplementary fig. S1 (3)), leading to deposition-history-
dependent relaxation dynamics. Specifically, a half-circle droplet ini-
tialised with the liquid bulk composition beneath it (90◦) undergoes 
dewetting, while a full-circle droplet initialised with the gas bulk com-
position (180◦) follows a wetting path. These distinct relaxation routes 
converge to different energy minima characterised by distinct equilib-
rium surface compositions, i.e., 𝜙sim

R ≠ 𝜙sim
A . Consequently, the resulting 

contact angles differ significantly, with 𝜃simR ≠ 𝜃simA , and the hysteresis 
magnitude increases from approximately 11◦ at intermediate hydropho-
bicity to over 50◦ in the superhydrophobic regime. This hysteresis can 
be effectively tuned by adjusting the step-like profile of 𝑤2. In contrast, 
for moderately hydrophobic surfaces (Δ𝛾 > −0.3), the surface free en-
ergy landscape flattens, and the multiple minima become less distinct 
or vanish entirely (Supplementary fig. S1 (3)). In this regime, distinct 
initial conditions relax to a single global minimum, yielding identical 
equilibrium states and eliminating hysteresis, consistent with a weak-
ened depletion effect [11].

With surface composition effects, 𝑤2 produces a higher surface com-
position than 𝑤1 at the same Δ𝛾. The resulting disparity between surface 
and bulk compositions establishes a diffuse wall layer, characterised by 
a gradual transition in composition normal to the substrate. Under iden-
tical wetting conditions, 𝑤2 thus yields a narrower depletion zone than 
𝑤1, reflecting the influence of wall free energy formulation on the wall 
layer structure [33,34]. Variations in surface composition, induced by 
changes in wettability, temperature, or other factors, alter the surface-
to-bulk transition and thereby the wall layer thickness. Explicitly, the 
wall layer thickness varies; implicitly, the effective solid-fluid interfa-
cial tensions in Eq (11) are also affected. Through Eq. (10), these varia-
tions influence the final contact angle, consistent with experimental ob-
servations that interfacial tensions depend on the thickness of the wall 
layer [3].

At high hydrophobicity, particularly in the superhydrophobic 
regime, the surface composition profile from 𝑤2 becomes highly nonuni-
form, featuring multiple depletion zones with distinct local values of 
𝜙sim
A . This complexity necessitates numerical evaluation of the integrals 
in Eq. (11). Fig. 3 provides a zoomed view of the triple-junction re-
gion at Δ𝛾 = −1.0, revealing two zones with 𝜙sim

A = 0.75 (box 1) and 0.07
(box 2); the latter reflects a pronounced depletion layer and a strongly 
inhomogeneous interfacial structure near the solid surface. These spa-
tial variations align with high-resolution experimental observations of 
interfacial density fluctuations near the triple junction [10,11]. Such in-
terfacial heterogeneity fundamentally challenges the measurements of 
the contact angle on superhydrophobic surfaces [35]. The microscopic 
contact angle 𝜃∗ is defined in a submicron region that is practically in-
accessible to optical methods. Instead, experiments typically rely on go-

Fig. 3. Zoomed-in view of the triple junction for 𝑤2 at superhydrophobic-
ity (Δ𝛾 = −1.0), initialised with a full-circle droplet. The pronounced non-
uniformity in surface composition yields distinct contact angle measurements 
at box 1 and box 2.

niometry, which estimates a macroscopic contact angle by extrapolating 
the droplet profile to a defined substrate baseline 𝑎 (Fig. 1(1)). On su-
perhydrophobic surfaces, however, this baseline becomes ambiguous: 
should it be placed at 𝑎1, where the interface appears smooth and com-
positionally uniform, or at 𝑎2, where the interface is strongly diffuse and 
depleted? Such ambiguity in baseline placement introduces substantial 
uncertainty in measured contact angles. As a result, contact angles re-
ported on superhydrophobic surfaces often exhibit significant variabil-
ity, in contrast to the relatively stable values observed for moderately 
wetting systems (𝜃 ∈ [30◦, 150◦]) [2]. To ensure consistency, all simu-
lated contact angles in this work are calculated using the droplet’s base-
line 𝑎1 and the droplet height ℎ (Fig. 1(1)). Notably, although the theory 
in Eq. (10) predicts microscopic angles while simulations report macro-
scopic ones, observed agreement above is reasonable because droplets 
are small and the substrate is ideal.

We further extend the systematic analysis across a broader wettabil-
ity range (Δ𝛾 ∈ [0, 1]). On hydrophilic surfaces (Δ𝛾 > 0), the influence 
of initial conditions vanishes, as both droplet configurations follow the 
same wetting pathway and relax toward the same equilibrium state. The 
surface composition beneath the droplet (denoted as 𝜙sim

sl
) converges to 

the bulk liquid value, while the composition outside the droplet (𝜙sim
sg
) 

approaches the bulk gas value, even in the superhydrophilic regime 
(𝜃 < 30◦). In this regime, however, experimental observations show that 
the wetting wedge intrudes into the gas phase, causing 𝜙sim

sg
 to exceed 

the bulk gas value and form an adsorption layer. Consequently, both 
initial conditions fail to form a stable wall layer in the fully hydrophilic 
regime, which prevents the emergence of intrinsic CAH (Supplemen-
tary fig. S2). This finding aligns with experimental reports that rarely 
detect static CAH on horizontally oriented hydrophilic substrates. To 
induce CAH on hydrophilic surfaces, external perturbations are typi-
cally required. In our context, tilting the substrate introduces gravity as 
an asymmetric perturbation between the front and rear contact lines. 
This asymmetry drives the formation of a wall layer near the triple line, 
thereby enabling the emergence of CAH even on hydrophilic surfaces.

4.2.  CAH on inclined substrate

Here, we simulate droplet wetting on inclined substrates using three 
wall free energy density formulations, focusing on equilibrium or steady 
sliding states governed solely by thermodynamic energy minimisation. 
The results show that the step-like 𝑤2(𝜙), owing to its nonmonotonic 
character, enables the model to naturally capture contact line pinning, 
advancing, and receding, thereby reproducing CAH under gravity. Once 
sliding begins, it further captures the characteristic stick-slip motion.

4.2.1.  Droplet sliding criterion on inclined substrate
We place a droplet on a substrate inclined at 𝛼 = 45◦ under grav-

ity. The droplet begins to slide when the gravitational force component 
along the substrate exceeds the sliding resistance; otherwise, it remains 
pinned. Unlike classical solid-solid friction, which arises from interfa-
cial roughness, droplet friction originates at the molecular level. Liquid 
molecules may become temporarily trapped in the solid lattice, form-
ing a structure analogous to a molecular-scale Cassie-Wenzel state. In 
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the presence of CAH, earlier experiments [36] attribute this friction to 
an imbalance in capillary forces between the advancing and receding 
sides. This imbalance generates a net friction force, also called lateral 
adhesion force, defined as:
𝐹la = 𝑘𝑙𝛾lg(cos 𝜃R − cos 𝜃A), (12)

where 𝑙 is the effective footprint width and 𝛾lg is the liquid-gas surface 
tension. The geometric prefactor 𝑘 accounts for the droplet deformation; 
we take 𝑘 = 1 for 2D droplets. This formulation is primarily applicable to 
sessile or steady-state sliding droplets. In dynamic regimes, friction be-
comes velocity dependent and additional dissipation mechanisms (e.g., 
bulk and wedge viscous dissipation) must be considered [7].

The critical sliding condition is then determined by balancing the 
gravitational driving component and lateral adhesion force:
(𝜌l − 𝜌g)𝑉 𝑔 sin 𝛼 = 𝑘𝑙𝛾lg(cos 𝜃R − cos 𝜃A), (13)

where 𝑔 is gravitational acceleration, and 𝑉 = 2𝜋𝑅3
0∕3 is the droplet 

volume, initialised as a hemisphere with imaginary radius 𝑅0 to ensure 
consistent volume across all cases. Introducing the Bond number, Bo =
(𝜌l − 𝜌g)𝑔𝑅2

0∕𝛾lg, which quantifies the ratio of gravitational to capillary 
forces, and approximating 𝑙 ≈ 2𝑅0, Eq. (13) reduces to a dimensionless 
sliding criterion [23]:

Boc =
cos 𝜃R − cos 𝜃A

𝜋
3 sin 𝛼

, (14)

which defines the critical Bond number separating pinned (Bo < Boc) 
and sliding (Bo > Boc) states. If Bo < Boc, the gravitational force is in-
sufficient to overcome droplet friction, and the droplet remains pinned; 
otherwise, it slides.

Unlike conventional CAH models [25,37], which prescribe 𝜃A and 
𝜃R as input parameters, our model incorporates energy barriers directly 
into the wall free energy. As a result, these angles emerge naturally from 
the simulations rather than being imposed a priori. Consequently, the 
values of 𝜃A and 𝜃R must be extracted from simulations. To investigate 
droplet sliding in the presence of CAH, we examine three representa-
tive surface wettabilities: Δ𝛾 = −0.8 (hydrophobic), 0.0 (neutral), and 
0.8 (hydrophilic). For each case, the simulated advancing and receding 
contact angles (𝜃simA  and 𝜃simR ) obtained in Section 4.1 are substituted into 
Eq. (14) to estimate the corresponding critical Bond number Boc. 

For all three wettabilities considered with the 𝑤0 and 𝑤1 formula-
tions, as well as for the natural surface case modelled with 𝑤2, no stable 
CAH is observed on horizontal substrates, and the corresponding Boc
is 0. This implies that even tiny perturbations are sufficient to initiate 
droplet motion. Interestingly, for the 𝑤1 formulation at Δ𝛾 = −0.8, CAH 
does emerge under critical wetting conditions on a horizontal substrate. 
However, the droplet will slide freely on inclined substrates without ex-
hibiting CAH, again yielding Boc = 0, a point we elaborate on in the 
subsequent section.

In contrast, the 𝑤2 formulation with Δ𝛾 = −0.8 exhibits clear CAH 
on horizontal substrates due to deposition history. Substituting the cor-
responding simulated contact angles into Eq. (14) yields a finite thresh-
old of Boc ≈ 0.52. This value provides an order-of-magnitude estimate 
for the transition between pinned and sliding regimes. However, since 
the effective contact width 𝑙 depends on droplet shape, and the advanc-
ing and receding contact angles vary with local wettability, a problem-
dependent prefactor is required for quantitative estimation. For Δ𝛾 =
0.8, no CAH is observed on horizontal substrates using the 𝑤2 formula-
tion. Nevertheless, analysis of Eqs (10) and (11) suggests that CAH may 
develop under inclined conditions. Given that 𝑤2 is symmetric with re-
spect to ±Δ𝛾, we assume that the magnitude of CAH at Δ𝛾 = 0.8 is com-
parable to that at Δ𝛾 = −0.8, with an estimated Boc ≈ 0.52. To test this 
prediction, we perform simulations at two Bond numbers, Bo1 and Bo2, 
selected such that Bo2 < Boc = 0.52 < Bo1. If CAH is present, as expected 
for the 𝑤2 formulation at Δ𝛾 = ±0.8, the droplet is expected to remain 
pinned at Bo2 and to slide at Bo1.

4.2.2.  2D droplet wetting on inclined substrate
Fig. 4 shows 2D simulations of droplet wetting on an inclined sub-

strate for the three wall free energy density formulations. Droplets 
are initially equilibrated without gravity. Upon activation of gravity 
at 𝑡0 = 0 s, their motion is governed by CAH and gravity. To optimise 
space, the domains are displayed horizontally, with the substrate in-
clined at 𝛼 = 45◦ and the gravity vector 𝐠 indicated. The transformed 
domain size is with length L = 19.8mm and height H = 3.6mm.

Fig. 4(1) presents simulation snapshots for 𝑤0 and 𝑤1 at Δ𝛾 = −0.8, 
from 𝑡0 to 𝑡3 = 0.048 s. Both formulations yield identical sliding without 
CAH: droplets slide at both Bond numbers (Bo1 and Bo2) without defor-
mation or interface asymmetry. At Bo2, droplets move more slowly but 
still slide freely, showing no evidence of pinning. In both cases, the sur-
face composition equals the bulk value, indicating no wall layer and no 
need to adjust fluid-solid interfacial tensions (Eq. (11)). The measured 
advancing and receding contact angles are identical 𝜃A = 𝜃R ≈ 𝜃p, re-
covering Young’s law and agreeing with theoretical expectations. Sim-
ilar behaviour is observed on hydrophilic and neutral surfaces; these 
cases are omitted for brevity. 

Under horizontal conditions at Δ𝛾 = −0.8, the 𝑤1 formulation yields 
distinct equilibrium surface compositions for two different initial states, 
resulting in a measurable static CAH. However, this hysteresis vanishes 
when the substrate is inclined. This behaviour can be interpreted from 
both dynamic and energetic perspectives. Dynamically, as discussed 
above, CAH is influenced by the relaxation dynamics of the wall free 
energy. This aligns with the mechanism proposed by Jacqmin [21] as 
well, in which such relaxation enables contact line motion via molecu-
lar diffusion. The monotonic profile of 𝑤1 leads to equal driving forces 
at the front and rear contact lines, even under the influence of gravity, 
thereby suppressing droplet deformation and preventing the develop-
ment of CAH. From an energetic standpoint, although the surface en-
ergy with 𝑤1 has two local minima at Δ𝛾 = −0.8, this critical bistability 
is insufficient to maintain CAH under perturbations. On an inclined sub-
strate, gravitational force acts asymmetrically on the droplet’s leading 
and trailing edges, providing the perturbation needed to overcome the 
local energy barrier. Once this barrier is crossed, the system relaxes to 
the global minimum, yielding 𝜙sim

sl
= 1 and 𝜙sim

sg
= 0. This eliminates sur-

face composition effects. As a result, no wall layer is sustained, and no 
CAH is observed on inclined substrates.

Fig. 4(2–4) present simulation snapshots for 𝑤2 from 𝑡0 to 𝑡2, as the 
droplet on the hydrophilic surface at Bo1 has already slid out the simu-
lation domain by 𝑡3. When Δ𝛾 = 0, surface compositions remain pinned 
to their bulk values (0 or 1), with no deviation observed either beneath 
or outside the droplet. Consequently, both droplets slide symmetrically 
without exhibiting contact angle asymmetry or deformation, demon-
strating the same behaviour when using 𝑤0 and 𝑤1.

In contrast, for Δ𝛾 = ±0.8, significant surface composition effects 
arise on the inclined substrates, leading to the formation of a stable wall 
layer. On the hydrophilic surface, 𝜙sim

sg
 stabilizes at 0.268, while on the 

hydrophobic surface, 𝜙sim
sl

 equals 0.731. Notably, non-uniform distribu-
tions of surface compositions exist near the triple junction, as illustrated 
in Fig. 2(3). In the inclined configuration, asymmetric gravitational per-
turbations at the droplet’s front and rear contact lines amplify this non-
uniform distribution of surface composition near the triple junctions. 
These effects together induce asymmetric variations in the local fluid-
solid interfacial tensions at the front and rear triple junctions, sustaining 
CAH even during droplet sliding.

As shown in Fig. 4(2) and (4), droplets with Bond number Bo1 > Boc
begin to slide, while those with Bo2 < Boc remain pinned, consistent 
with our theoretical expectation. Droplet deformation arises as the ad-
vancing and receding contact angles diverge: on hydrophilic surfaces, 
the rear contact angle decreases, while on hydrophobic surfaces, the 
front contact angle increases. These asymmetric responses reflect the 
presence of CAH under inclination and confirm that the nonmonotonic 
nature of 𝑤2 is sufficient to sustain hysteresis in droplet motion.

Journal of Colloid And Interface Science 708 (2026) 139781 

7 



H. Zhang et al.

Fig. 4. Simulation snapshots of droplets on inclined substrates at 𝑡0 = 0 s, 𝑡1 = 0.02 s, 𝑡2 = 0.034 s, and 𝑡3 = 0.048 s (𝛼 = 45◦, 𝐠 indicates gravity). (1) 𝑤0 and 𝑤1: no 
CAH; droplets slide symmetrically at both Bond numbers, with Bo2 sliding more slowly than Bo1. (2–4) 𝑤2 captures contact line pinning as well as advancing and 
receding, thereby reproducing CAH. At Δ𝛾 = 0, the absence of multistable surface compositions yields symmetric, unimpeded sliding for both Bond numbers. At 
Δ𝛾 = ±0.8, CAH emerges, sliding at Bo1 and pinning at Bo2. This behaviour is accompanied by pronounced front-rear asymmetry, with a decreasing receding angle 
on hydrophilic surfaces and an increasing advancing angle on hydrophobic surfaces.

In the sliding case (Bo1 > Boc), the droplet shape reaches a quasi-
steady state between 𝑡1 and 𝑡2, with 𝜃A and 𝜃R unchanged. For Δ𝛾 = 0.8, it 
travels approximately 0.18L along the substrate (with footprint length of 
∼ 0.37L), corresponding to an average sliding velocity of 𝑣 ≈ 0.25m s−1, 
in good agreement with the experimentally measured values by Li et 
al. [7]. On the hydrophobic surface (Δ𝛾 = −0.8), the droplet displace-
ment is only 0.04L over the same time interval (footprint length ∼
0.12L), yielding a lower velocity of 𝑣 ≈ 0.057m s−1. It is important to 
emphasise that these simulations are conducted within a purely energy 
minimisation framework without hydrodynamic coupling. In this con-
text, contact line motion is governed entirely by molecular diffusion, 
driven by the relaxation of the wall free energy, rather than by fluid 
flow. As a result, droplets on hydrophilic surfaces tend to elongate and 
exhibit faster sliding velocities compared to those on hydrophobic sur-
faces. This behaviour does not contradict experimental findings, where 
droplets typically move faster on hydrophobic surfaces due to additional 
mechanisms such as slip, rolling, or tank-treading mechanisms. For in-
stance, in high capillary number regimes [7] or the presence of nanos-
tructured coatings [38], fluid motion can be dominated by rolling or 
tank-treading mechanisms, neither of which is captured in the present 
framework. This work focuses on demonstrating CAH arising solely from 
fluid-solid interactions that induce multistable surface compositions. 
The interplay with hydrodynamic mechanisms in droplet motion will 
be explored in future studies.

For the stick case with Bo2 < Boc, droplets on both hydrophilic and 
hydrophobic surfaces remain pinned on the inclined substrate. While 
comparing the buildup of CAH from the initial shape at 𝑡0 to the near-
equilibrium configuration at 𝑡1, distinct wetting behaviours are observed 
depending on the surface character. On the hydrophilic surface, the rear 
contact line remains pinned while the receding contact angle decreases. 
In contrast, the advancing contact angle remains nearly unchanged, with 
the front contact line gradually advancing to adjust the droplet shape 

and enable relaxation toward a local energy minimum. This asymmetry 
in contact line dynamics is consistent with the CAH development mech-
anism reported by Yue [23]. On the hydrophobic surface, an opposite 
trend is observed: the front contact line remains pinned while the rear 
contact line retracts. This behaviour is accompanied by an increase in 
the advancing contact angle and a relatively constant receding angle, 
indicating a contrasting mode of CAH buildup.

4.2.3.  Mechanismus of droplet stick-slip sliding
To further characterise droplet sliding behaviour under inclination, 

Fig. 5 extracts the time evolution of advancing and receding contact 
angles (𝜃A and 𝜃R), along with the corresponding sliding friction force, 
for the step-like wall free energy density formulation 𝑤2. The top panel 
shows the temporal evolution of the lateral adhesion force 𝐹la (left y-
axis), plotted as solid and dotted lines for Bo1 and Bo2, respectively. 
This force is calculated by substituting the simulated 2D contact length 
as 𝑙 into Eq. (12). The corresponding advancing and receding contact 
angles are shown on the right y-axis: filled and open circles represent 
Bo1, while filled and open squares correspond to Bo2. The x-axis indi-
cates simulation time steps; representative droplet shapes at 𝑡0, 𝑡1, and 
𝑡2 are shown in Fig. 4.

In the neutral case (Δ𝛾 = 0.0), both 𝜃A and 𝜃R remain fixed at 90◦, and 
𝐹la is negligible throughout the simulation. The droplet maintains sym-
metric motion without deformation and exhibits smooth flow without 
stick-slip behaviour.

In contrast, for Δ𝛾 = ±0.8, gravity induces droplet deformation from 
𝑡0, causing the divergence between 𝜃A and 𝜃R and leading to a buildup 
in lateral adhesion force. For Bo1, two distinct regimes emerge: a static 
regime (purple background in Fig. 5) where the droplet deforms but re-
mains pinned, and a kinetic regime (orange background) where sliding 
occurs. This qualitative behaviour agrees well with experimental obser-
vations by Gao et al. [39].
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Fig. 5. Time evolution of lateral adhesion force and advancing & receding contact angles for the step-like 𝑤2. Middle and bottom panels: zoomed-in views for 
the sliding case (Bo1) showing stick-slip dynamics. At Δ𝛾 = 0, no CAH occurs and sliding is smooth. At Δ𝛾 = ±0.8, CAH appears; once sliding begins, sawtooth-like 
oscillations in 𝐹la arise from contact angle fluctuations, indicating diffusion-driven stick-slip motion near the contact lines. The mechanism observed here is sustained 
by fluctuations of previously unchanged contact angles in the static region (highlighted by purple), 𝜃A on hydrophilic surfaces and 𝜃R on hydrophobic surfaces. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

On the hydrophilic surface, for Bo2, 𝜃R decreases from 62◦ to 41◦
while 𝜃A remains constant. This asymmetry leads to a rise in 𝐹la until 
it balances the gravitational component along the incline. The droplet 
remains pinned in this state, and the contact angle difference saturates 
at approximately Δ𝜃sim ≈ 21◦. For the higher Bond number Bo1, 𝜃R de-
creases further to 24◦, eventually triggering droplet sliding. On the hy-
drophobic surface, a contrasting mechanism is observed: 𝜃R remains un-
changed, while 𝜃A increases from 120◦ to 137◦ for Bo2, where the lateral 
adhesion force balances gravity. For Bo1, 𝜃A reaches 155◦, with a maxi-
mum angle difference of Δ𝜃sim ≈ 35◦, marking the threshold for sliding 
onset. Notably, the measured advancing and receding contact angles de-
viate by less than 2◦ from 𝜃simA  and 𝜃simR , respectively, as defined in Sec-
tion 4.1. This confirms our expectation that the full-circle and half-circle 
initialisations recover the advancing and receding contact angles under 
CAH on a horizontal substrate. Moreover, the advancing-receding angle 
differences for Δ𝛾 = ±0.8 are nearly identical under both Bond num-
ber conditions. Together, these observations support the validity of our 
earlier hypothesis for determining the critical Bond number, as formu-
lated in Eq. (14). The contrasting CAH buildup mechanisms observed 
for Δ𝛾 = ±0.8 suggest that the advancing and receding behaviours are 
governed not solely by spatial orientation, but also by the kinetic re-
sponse relative to the initial configuration, aligning with the argument 
by Gao et al. [40]. Finally, the measured critical lateral adhesion force 
𝐹la is significantly lower on the hydrophobic surface (approximately 
50 µN) than on the hydrophilic one (approximately 150 µN), consistent 
with experimental results [39].

In the Bo1 cases, once droplet motion begins on both hydrophilic and 
hydrophobic surfaces, the system reaches a quasi-steady sliding state. 
This behaviour aligns with our assumption that, in the absence of exter-
nal dissipation mechanisms, such as macroscopic roughness or viscous 
drag, the droplet slides steadily. However, small sawtooth-like oscilla-
tions in 𝐹la appear within the kinetic regime. These fluctuations arise 
from the detailed dynamics of contact line motion. A zoomed-in view 
of the advancing and receding contact angles is shown in the middle 
and bottom panels of Fig. 5, respectively. During sliding, contact angles 
that were previously constant in static regions begin to fluctuate mildly 
within a hysteresis window. On the hydrophilic surface, the advancing 
angle varies between approximately 60◦ and 62◦, while the receding an-

gle remains pinned near 24◦; on the hydrophobic surface, the advancing 
contact angle stays pinned, while the receding angle fluctuates slightly 
within the range [119◦, 121◦]. These angle variations reflect the alterna-
tion of lateral adhesion forces, acting as pinning or depinning forces, to 
balance the gravity component. The alternation is indicative of recurrent 
contact line depinning and repinning, resulting in a stick-slip droplet 
motion. In our model, this stick-slip behaviour arises solely from diffu-
sion dynamics near the contact region. As previously discussed, on the 
hydrophilic surfaces, diffusion may dominate the contact line motion, 
whereas on hydrophobic surfaces, other mechanisms may play a more 
significant role. This interpretation is supported by experimental obser-
vations from Mirsaidov et al. [41], who reported that nanodroplets on 
a hydrophilic surface advance through a series of stick-slip steps rather 
than smooth flow. We propose that such stick-slip dynamics may be 
diffusion-driven in the absence of flow, although further quantitative in-
vestigation is necessary. In particular, whether the buildup of stick-slip 
motion driven by small fluctuations in the unchanged contact angles in 
the static region is a general phenomenon remains an open question, 
requiring higher-resolution measurements or advanced molecular dy-
namics simulations.

Last but not least, the stick-slip dynamics in our simulations arise 
purely from the relaxation of wall free energy within the diffusive in-
terface framework. Unlike experimental systems, our model neglects 
macroscopic surface roughness, viscous dissipation, and slip at the solid-
liquid interface. Consequently, the lateral adhesion force in our simu-
lations does not exhibit an evident decay, as observed in experiments, 
where the force typically drops sharply and then reaches a plateau fol-
lowing droplet slip. Gao et al. [39] demonstrated that this post-slip force 
reduction strongly depends on the macroscopic roughness of the sub-
strate. For instance, the decrease in lateral adhesion force for droplets 
on smooth silicone substrates is approximately 10%, significantly less 
than that observed on rougher surfaces coated with silicone nanofil-
aments, titanium dioxide nanoparticles, or crosslinked polydimethyl-
siloxane. These surface structures promote partial liquid entrapment 
within asperities, forming a mixed Cassie-Wenzel wetting state that be-
haves like a virtual spring, modulating the effective contact area and 
storing interfacial energy. Such mechanisms alter the activation energy 
required for droplet motion compared to that on mechanically smooth 
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Fig. 6. 3D simulation snapshots of droplets on inclined substrates at Bo1 using 𝑤2: 𝑡0 (blue), 𝑡1 (orange), and 𝑡2 (green). In both cases, droplets slide steadily. On 
the hydrophilic surface, the footprint elongates into two semicircles joined by straight sides parallel to the motion, consistent with theory and experiments. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Comparison of CAH models: literature vs. present work.
Models Origin of CAH Static CAH on 

smooth substrate
CAH on inclined 
substrate

Stick-slip sliding Hydrodynamic 
coupling

Notes

Spelt (2005) [37] Prescribed Not captured Captured Not captured Optional Empirically prescribed hysteresis 
window

Yue (2020) [23] Prescribed Not captured Captured Not captured Yes Hysteresis window incorporated 
into wall free energy relaxation

Wang et al. (2024) [14,
16]

Multistable sur-
face composition

Captured Not captured Not captured No Theoretical framework

Present work Multistable sur-
face composition

Captured Captured Captured Framework 
ready

Physically grounded mesoscale 
model for fluid-solid interactions; 
requiring no geometric input

substrates. Further investigation into the roles of macroscopic rough-
ness and internal fluid flow during droplet motion is warranted in future 
work.

4.2.4.  3D droplet sliding with CAH
We further perform 3D simulations of droplets sliding on inclined 

hydrophilic and hydrophobic substrates using the 𝑤2 formulation. Fig. 6 
presents the side and top views for the Bo1 configuration. For space 
considerations, pinned cases at Bo2 are provided in the Supplementary.

As shown in the side view of Fig. 6, both cases exhibit clear CAH, with 
distinct advancing and receding contact angles. The top view reveals 
that the simulated footprint of the hydrophilic droplet agrees well with 
theoretical predictions [36]: which, when the droplet slides in steady 
state, the footprint is elongate and approximated by two semicircles 
joined by straight sides parallel to the direction of motion. In contrast, 
the droplet on the hydrophobic surface displays much less pronounced 
elongation. This observation is consistent with experimental findings by 
Extrand et al. [42], which show that the footprint aspect ratio (length to 
width) increases with the hysteresis ratio, defined as  = Δ𝜃∕𝜃A. In our 
simulations, the hydrophilic case ( = 0.34) exhibits greater elongation 
than the hydrophobic case ( = 0.22), in agreement with this trend. To 
fully capture the front-rear asymmetry in droplet shape during sliding, 
the internal fluid flow within the droplet should be incorporated into 
our future model.

5.  Discussion

This section addresses the physical plausibility and implications of 
the proposed step-like wall free energy density formulation concerning 
fluid-solid interactions in microfluidic simulations.

5.1.  Physical plausibility of the step-like form 𝑤2

The proposed step-like wall free energy density, 𝑤2, permits the exis-
tence of multistable surface compositions. This feature allows the phase-

field model to account for intrinsic CAH, driven by deposition history, 
as well as contact line dynamics such as pinning, advancing, and re-
ceding. Here, we assess the physical plausibility of this formulation by 
considering: (i) the thermodynamic feasibility of multiple energetically 
favourable surface compositions coexisting at the fluid-solid interface; 
(ii) the emergence of corresponding local minima in the wall free energy 
landscape, which provide the necessary conditions for CAH.

Conventional wall free energy density functions in phase-field mod-
els [21,22] are derived from regular solution theory, which assumes a 
unique surface composition beneath and outside the droplet. This yields 
a surface free energy landscape with a single global minimum, thereby 
precluding the emergence of CAH from a thermodynamic perspective. 
This stands in contrast to experimental evidence showing multiple lo-
cal minima in surface free energy when CAH is present [43,44]. More-
over, smooth wall free energy density formulations oversimplify inter-
facial physics by neglecting the structural asymmetry between mobile 
fluid molecules and immobile solid atoms. Near the solid surface, fluid 
molecules experience distinct constraints compared to those in the bulk, 
giving rise to interfacial behaviours not captured by conventional for-
mulations.

Experimental evidence further underscores the structural complex-
ity of fluid-solid interfaces. On superhydrophobic surfaces, the water 
density near the solid wall exhibits nanoscale inhomogeneities within a 
molecular-scale depletion layer [10,11]. In polymer systems, analogous 
interfacial depletion can extend up to micrometers [45] and may exhibit 
pronounced near-wall density fluctuations. Additionally, Tadmor et al. 
[46] observed increased adhesion with contact time, attributed to the 
formation and rupture of transient molecular bonds. This behaviour can 
be rationalised with a spring model in which longer contact durations 
strengthen interfacial bonding and raise frictional resistance. Such ob-
servation supports viewing CAH as a thermally activated process in-
volving molecular hopping among metastable states. Together, these 
findings suggest the plausible coexistence of multiple metastable sur-
face compositions, as illustrated schematically in Fig. 1(3). However, 
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phase-field models employing smooth wall free energy density formula-
tions impose a single equilibrium surface composition and enforce ho-
mogeneous composition profiles, inherently smoothing out the interfa-
cial fluctuations and limiting their ability to capture intrinsic CAH.

Wang et al. [14], working within the framework of multistable sur-
face compositions, theoretically demonstrated how liquid-gas density 
asymmetry, fluid-solid van der Waals interactions, and intermolecular 
potentials collectively determine the final surface composition and, con-
sequently, the effective composition-dependent interfacial energy. This 
competition yields multiple minima in the surface energy landscape, 
offering a microscopic basis for intrinsic CAH on nominally smooth sub-
strates. Building on the same framework, Wang et al. [16] incorporated 
the disjoining pressure into the composition-dependent wall free en-
ergy. By linking pressure to composition via Dalton’s law and apply-
ing the Young-Laplace equation, they introduced the effect of gravity 
into fluid-solid interfacial energy. This concept quantifies the gravity-
induced contribution to line tension and explains its sign and magni-
tude, resolving longstanding inconsistencies among experimental mea-
surements. Together, their findings reinforce the surface composition 
effect as a unifying framework for interpreting wetting phenomena by 
accounting for composition-dependent interfacial energies. Their anal-
ysis offers key insights into the origin of CAH and supports the view 
that surface composition is not necessarily unique or constant, but mul-
tistable, state-dependent, and responsive to molecular-scale structure.

To directly illustrate the impact of surface composition on wetting 
behaviour, we performed MD simulations as quantitative support for 
our argument: surface composition might vary spatially rather than al-
ways being a unique value. An aluminium (Al) droplet is placed on the 
single-crystal copper (Cu) substrate, which has three crystallographic 
orientations: (001), (110), and (111). Near equilibrium, Al droplet on 
Cu (001) and Cu (110) exhibits similar wetting behaviour: only limited 
diffusion occurs at the liquid-solid interface. An atomic-thick precur-
sor film is clearly visible on both substrates. This layer leads to a local 
density overshoot, which then decays and settles to the bulk density. In 
contrast, on the Cu (111) substrate, significant dissolution occurs across 
the interface, which results in a lower Al density compared to the bulk 
density; Cu atoms cross the interface and continue diffusing deep into 
the droplet interior, producing a diffuse interfacial zone. The differing 
equilibrium contact angles on the three substrates (𝜃 = 29◦ on Cu (001), 
28◦ on Cu (110), and 18◦ on Cu (111)) indicate that the liquid-solid in-
terfacial tension is sensitive to local molecular interactions and varies 
with surface compositions. Simulation details are provided in the Sup-
plementary.

In general, surface composition at fluid-solid interfaces is influenced 
by a variety of factors, including but not limited to molecular polarity, 
surface charge, particle size, and interfacial alignment of polar groups. 
These factors collectively shape a rugged energy landscape with multi-
ple metastable states. Building on these insights, our step-like wall free 
energy density formulation extends the smooth sinusoidal forms [37] by 
introducing multiple local minima. These minima mimic physical per-
turbations caused by multibody interactions at the fluid-solid interface. 
Although difficult to model explicitly, such interactions reflect realistic 
interfacial complexity and justify the existence of multiple stable states 
within the diffuse interface. This, in turn, enables the phase-field model 
to support distinct advancing and receding contact angles.

5.2.  Outlook for fluid-solid interface

Finally, we emphasise the broader implications of the proposed step-
like wall free energy density formulation beyond CAH studies. Tradi-
tional hydrodynamic models typically impose slip or no-slip conditions 
without explicitly accounting for molecular interactions at the fluid-
solid interface. While bridging microscopic diffusion and macroscopic 
flow is a promising idea, slip emerges naturally from interfacial molec-
ular interactions rather than being prescribed. Recent theoretical ad-

vances [47] support this perspective through the introduction of a wall 
layer.

Our step-like wall free energy density formulation enables the phase-
field model to numerically implement such a wall layer by directly en-
coding molecular-scale interactions, thereby capturing CAH without re-
lying on imposed hydrodynamic boundary conditions. This highlights 
the critical role of interfacial structure in determining CAH, an aspect 
often overlooked in experiments and conventional hydrodynamic mod-
els of wetting. This framework lays a foundation for future microflu-
idic simulations that couple hydrodynamic and thermodynamic effects. 
In the context of droplet motion, the wall layer facilitates a quantita-
tive exploration of frictional dissipation and the interplay between slip, 
no-slip, and diffusion-driven contact line motion, which are crucial for 
optimising droplet transport and surface functionality.

6.  Conclusion

This work develops a physically grounded, thermodynamically con-
sistent phase-field model in which contact angle hysteresis (CAH) 
emerges directly from molecular-scale fluid-solid interactions. Mo-
tivated by experimental evidence of depletion and adsorption lay-
ers [10,11], we assume the existence of multistable surface composi-
tions [14,15] at the fluid-solid interface and propose a step-like, non-
monotonic wall free energy density. Unlike the conventional smooth 
form [22], which leads to a unique equilibrium surface composition, 
our formulation naturally produces metastable surface states. As shown 
in Table 1, this approach reproduces:

• static CAH on smooth substrates arising from different deposition 
processes;

• CAH on inclined substrates, naturally capturing contact line pinning 
as well as advancing and receding states;

• intrinsic stick-slip sliding.

These behaviours arise without imposing a hysteresis window [23,37], 
specifying geometric details, or coupling to hydrodynamics, revealing 
that both CAH and stick-slip sliding can originate purely from interfacial 
molecular physics.

This work highlights the importance of fluid-solid interactions and 
offers a robust framework for coupling these interactions with contin-
uum hydrodynamics. It opens the door to new frontiers in quantitatively 
exploring viscous-frictional dissipation and the dynamic interplay of 
slip, no-slip, and diffusion-driven motion, paving the way for innova-
tions in microfluidics and droplet-based technologies.
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