
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Generating high-fidelity microstructures of polycrystalline 

materials with prescribed higher-order texture tensors

Maximilian Krause a, Thomas Böhlke b, Matti Schneider a,c,d,∗

aUniversity of Duisburg-Essen, Institute of Engineering Mathematics, Germany
bKarlsruhe Institute of Technology, Institute of Engineering Mechanics, Germany
c Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
d CENIDE Center for Nanointegration, University of Duisburg-Essen, Germany

a r t i c l e  i n f o

Keywords:
Microstructure generation
Polycrystals
Texture coefficients
Stochastic homogenization
Yield function
Moment-matching

 a b s t r a c t

We introduce an efficient computational procedure for generating polycrystalline microstructures 
which permits studying the influence of specific texture-tensor orders on the resulting effective 
mechanical response, both in the linear elastic and the inelastic case. The crystallographic tex-
ture of a polycrystalline material is described by the Orientation Distribution Function (ODF). For 
practical computations, only the Fourier coefficients – called texture coefficients – of the ODF up 
to a certain order are of interest. In the work at hand, we wish to investigate this microstructure-
property relationship. We interpret the task of approximating the texture coefficients of a mi-
crostructure realization as a moment-matching, i.e., quadrature, problem, and introduce efficient 
techniques for generating finite sets of orientations which exactly conform to prescribed poly-
nomial texture terms. First, the microstructure morphology is generated via a well-established 
Laguerre-tessellation-based approach. Subsequently, the crystal grains are assigned a finite set of 
orientations which realize prescribed texture coefficients. We exploit the sparse representation 
of the action of the rotation group 𝑆𝑂(3) on higher-order tensors to reduce the computational 
expense from exponential to cubic in the tensor order.
 We consider polycrystalline copper as an example material and study the influence of texture 
terms of different polynomial order on the effective elastic properties and the anisotropy of initial 
yielding. For a large ensemble of polycrystal microstructures, we find that the elastic properties 
are mainly influenced by terms up to fourth order, whereas characterizing the yield function 
accurately requires higher-order texture terms.
 To encourage further study of the texture dependence of nonlinear material properties, we 
provide an open-source python implementation of our algorithm.

1.  Introduction

1.1.  State of the art

Computational homogenization uses simulations to obtain the macroscopic behavior of heterogeneous materials based on an 
explicit resolution of the underlying microstructure. Microstructures which arise from stochastic processes are modeled as stochas-
tic ensembles [1]. Computational homogenization operates on volume elements, i.e., realizations of the ensemble on cells of finite 
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\begin {equation}{\bm {u}}_{\bar {\strain }}: \R ^3 \rightarrow \R ^3 \label {eq:defdisplacement}\end {equation}
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\begin {equation}\bar {\C }[\bar {\strain }] = \eavg {\C [\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{\bar {\strain }}(\loc )]}, \label {eq:macroscopicstress}\end {equation}
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\begin {equation}Y = [0,L)^3 \subset \R ^3. \label {eq:cubiccell}\end {equation}


$\bar {\strain }$


${\bm {u}}_{Y\bar {\strain }}: Y \rightarrow \R ^3$


\begin {equation}\div {\C _Y(\loc ) [\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{Y\bar {\strain }}(\loc )]} = {\bm {0}}, \quad \loc \in Y. \label {eq:localbalancelinearmomentum}\end {equation}


\begin {equation}\stress ^{\text {app}}_{Y\bar {\strain }} = \frac {1}{L^3} \int _{Y} \C _Y(\loc )[\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{Y\bar {\strain }}(\loc )] \d V(\loc ). \label {eq:apparentstress}\end {equation}
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\begin {equation}\C ^{\text {app}}_Y [\bar {\strain }] = \stress ^{\text {app}}_{Y\bar {\strain }}, \label {eq:apparentstiffness}\end {equation}
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${\bm {Q}}: \R ^3 \rightarrow SO(3)$
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\begin {equation}\C (\loc ) = {\bm {Q}}(\loc ) \star \C _{\tref }, \quad \loc \in \R ^3. \label {eq:deflocalstiffness}\end {equation}
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$\bm {Q}$


\begin {equation}\eavg {g} \quad \text {of a continuous function} \quad g: SO(3) \rightarrow \R . \label {eq:defstatistic}\end {equation}


$\bm {Q}$


$f: SO(3) \rightarrow \R $


$\bm {Q}$


$f$


\begin {equation}f({\bm {Q}}) \geq 0, \quad {\bm {Q}} \in SO(3), \label {Xeqn11-2.11}\end {equation}


\begin {equation}\int _{SO(3)} f({\bm {Q}}) \d V({\bm {Q}}) = 1, \label {eq:defodf}\end {equation}
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\begin {equation}\int _{SO(3)} \d V({\bm {Q}}) = 1. \label {Xeqn13-2.13}\end {equation}


\begin {equation}\eavg {g} = \int _{SO(3)} g({\bm {Q}}) f({\bm {Q}}) \d V({\bm {Q}}). \label {eq:odfstatistic}\end {equation}
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${\bm {Q}}_Y : Y \rightarrow SO(3)$


\begin {equation}\C _Y(\loc ) = {\bm {Q}}_Y(\loc ) \star \C _r. \label {eq:defperiodiclocalstiffness}\end {equation}
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${\bm {Q}}_\alpha \in SO(3), \alpha \in \{1,2,\ldots ,N\}$


$v_\alpha $


${\bm {Q}}_\alpha $


\begin {equation}v_\alpha > 0, \quad \sum _{\alpha =1}^N v_\alpha = 1. \label {eq:defvolumefractions}\end {equation}


$g: SO(3) \rightarrow \R $


\begin {equation}\yavg {g} = \sum _{\alpha =1}^N v_\alpha \, g({\bm {Q}}_\alpha ). \label {eq:discretestatistic}\end {equation}


$\eavg {g}$


$\stress $


\begin {equation}\stress (\loc ) = \C (\loc ) [\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{\bar {\strain }}(\loc ) - \strainp (\loc )], \label {Xeqn18-2.18}\end {equation}
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$(SO(3), \mathcal {F}, \mu )$
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\begin {equation}\int _{SO(3)} \d \mu = 1. \label {eq:munormalization}\end {equation}


$\mu _\iso $


$\d V({\bm {Q}})$


$SO(3)$


\begin {equation}\int _{V} \d \mu _\iso = \int _{V} \d V({\bm {Q}}) \quad \text {for all} \quad V \in \mathcal {F}. \label {Xeqn20-2.20}\end {equation}
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\begin {equation}\int _V \d \mu ({\bm {Q}}) = \int _V f({\bm {Q}}) \d \mu _\iso ({\bm {Q}}) \quad \text {for all} \quad V \in \mathcal {F}. \label {Xeqn21-2.21}\end {equation}


\begin {equation}\mu = \sum _{\alpha =1}^N v_\alpha \delta _{{\bm {Q}}_\alpha }, \label {eq:discretemeasure}\end {equation}
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\begin {equation}\eavg {\mu _i, g} = \int _{SO(3)} g({\bm {Q}}) \d \mu _i({\bm {Q}}) \label {Xeqn23-2.23}\end {equation}


$g$
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\begin {equation}\eavg {\mu _1, g} = \eavg {\mu _2,g} \label {Xeqn24-2.24}\end {equation}


$g \in C^0(SO(3))$


$g \in C^0(SO(3))$


$SO(3)$


$SO(3) \rightarrow \R $


$3\times 3$


$\R ^{3 \times 3} \supset SO(3)$


$\bm {Q}$


$n$


${\mathbb {A}}^{n} \in (\R ^3)^{\otimes n}$


${\mathbb {B}}^{n} \in (\R ^3)^{\otimes n}$


\begin {equation}p({\bm {Q}}) = {\mathbb {A}}^{n} \cdot {\bm {Q}} \star {\mathbb {B}}^{n}, \label {eq:pdef}\end {equation}
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\begin {equation}\mathcal {P}_n = \left \{p: SO(3) \rightarrow \R \, | \, p({\bm {Q}}) = \sum _{i=1}^k {\mathbb {A}}^{m}_i \cdot {\bm {Q}} \star {\mathbb {B}}^{m}_i, {\mathbb {A}}^{m}_i \in (\R ^3)^{\otimes n}, {\mathbb {B}}^{m}_i \in (\R ^3)^{\otimes m}, m \leq n\right \}, \label {eq:defpolynomials}\end {equation}
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\begin {equation}\mathcal {P}_\infty = \bigcup _{n=0}^{\infty } \mathcal {P}_n. \label {eq:defpinfty}\end {equation}
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\begin {equation}\int _{SO(3)} p_n({\bm {Q}}) \d \mu ({\bm {Q}}), \label {eq:defpolynomialstatistics}\end {equation}
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\begin {equation}\perm ({\mathbb {B}}^{n}) = {\mathbb {B}}^{n} \quad \text {for all index permutations } \perm , \label {Xeqn29-2.30}\end {equation}
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${\mathbb {D}}^{n}_i, i \in \{1,2,\ldots ,2n+1\}$
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\begin {equation}{\mathbb {V}}^{n}_i = \int _{SO(3)} {\bm {Q}} \star {\mathbb {D}}^{n}_i \d \mu ({\bm {Q}}), \quad i \in \{1,2,\ldots , 2n+1\}, \label {Xeqn31-2.32}\end {equation}
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\begin {equation}{\mathbb {V}}^{n}_{i, \text {d}} = \sum _{\alpha =1}^N v_\alpha \, {\bm {Q}}_\alpha \star {\mathbb {D}}^{n}_i, \quad i \in \{1,2,\ldots , 2n+1\}. \label {eq:coefficientdiscrete}\end {equation}


$p^n_i$
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${\mathbb {D}}^{n}_i$


\begin {equation}p^n_i({\bm {Q}}) = \frac {1}{2n+1} {\mathbb {V}}^{n}_i \cdot \left ({\bm {Q}} \star {\mathbb {D}}^{n}_i\right ). \label {Xeqn33-2.34}\end {equation}


$m$


$p^m$


\begin {equation}p^m ({\bm {Q}}) = \sum _{n=0}^m \frac {1}{2n+1} \sum _{i=1}^{2n+1} {\mathbb {V}}^{n}_i \cdot \left ({\bm {Q}} \star {\mathbb {D}}^{n}_i \right ). \label {Xeqn34-2.35}\end {equation}
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${\mathbb {V}}^{n}_i$


$n$


\begin {equation}{\mathbb {T}}^{2n} = \sum _{i=1}^{2n+1} {\mathbb {V}}^{n}_i \otimes {\mathbb {D}}^{n}_i, \label {eq:deftexturetensor}\end {equation}


\begin {equation}p^m ({\bm {Q}}) = \sum _{n=0}^m \frac {1}{2n+1} {\mathbb {T}}^{2n} \cdot {\bm {Q}}^{\times n}, \label {eq:defptexturetensor}\end {equation}
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$n$


\begin {equation}{\bm {Q}} \star {\mathbb {A}}^{n} = {\bm {Q}}^{\times n}[{\mathbb {A}}^{n}] \quad \text {for all} \quad {\mathbb {A}}^{n} \in (\R ^3)^{\otimes n}. \label {eq:defkronecker}\end {equation}
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$Y=[0,L)^3$
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${\bm {s}}_\alpha \in Y$


$w_\alpha \in \R $


\begin {equation}d(\loc , {\bm {y}}) = \min _{{\bm {h}} \in \Z ^3} \|\loc - {\bm {y}} + L h_i \e _i \|, \quad \loc , {\bm {y}} \in Y, \label {Xeqn38-3.1}\end {equation}


$\alpha \in \{1, 2, \ldots ,N\}$


\begin {equation}I_{\alpha }(\loc ) = \begin {cases} 1, & \text {if } d^2(\loc , {\bm {s}}_\alpha ) - w_\alpha < d^2(\loc , {\bm {s}}_\beta ) - w_\beta \quad \text {for all} \quad \beta \neq \alpha , \quad \beta \in \{1,2,\ldots ,N\}, \\ 0, & \text {else}. \end {cases} \label {eq:characteristicfunction}\end {equation}
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\begin {equation}V_\alpha = \int _Y I_{\alpha }(\loc ) \d {V}(\loc ) \label {Xeqn40-3.3}\end {equation}


\begin {align}v_\alpha = \frac {V_\alpha }{L^3}.\end {align}
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\begin {equation}\int _Y d(\loc , \centroid _\alpha )^2 I_\alpha (\loc ) \d {V}(\loc ) \longrightarrow \min _{\centroid _\alpha \in Y}. \label {Xeqn41-3.5}\end {equation}


\begin {equation}\centroid _\alpha = \frac {1}{V_\alpha } \int _Y I_\alpha (\loc ) \, \loc \d V(\loc ). \label {Xeqn42-3.6}\end {equation}
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\begin {equation}F: [0,1] \rightarrow [0,1] \quad F(v) = \int _0^v p(w) \d w, \label {eq:defF}\end {equation}


\begin {equation}\frac {N_{v_\alpha < v}}{N} \rightarrow F(v) \quad \text {as} \quad N \rightarrow \infty \quad \text {for any} \quad v\in [0,1], \label {eq:vsamplingcondition}\end {equation}
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\begin {equation}\centroid _\alpha = {\bm {s}}_\alpha . \label {Xeqn45-3.9}\end {equation}
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\begin {equation}\sum _{\alpha =1}^N {\bm {Q}}_\alpha \star \mathbb {D}^{m}_{i} = \mathbb {V}^{m}_{i}, \quad \text {for all} \quad i \in \{1, 2, \ldots ,2m+1\}, \quad m \leq n. \label {Xeqn46-3.10}\end {equation}
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\begin {equation}v^*_\alpha = F^{-1}(u_\alpha ), \label {Xeqn47-3.11}\end {equation}
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\begin {equation}v_\alpha = \frac {v^*_\alpha }{\sum _{\beta =1}^N v^*_\beta }. \label {Xeqn48-3.12}\end {equation}


\begin {equation}r_c(w_1, \ldots , w_N, {\bm {s}}_1, \ldots , {\bm {s}}_N) = \sum _{\alpha =1}^N d(\centroid _\alpha , {\bm {s}}_\alpha ). \label {Xeqn49-3.13}\end {equation}


\begin {equation}r_v(w_1, \ldots , w_N, {\bm {s}}_1, \ldots , {\bm {s}}_N) = \sqrt {\sum _{\alpha =1}^N (v_\alpha - v_{\text {target}, \alpha })^2}, \label {Xeqn50-3.14}\end {equation}
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\begin {equation}\max \left (\frac {r_v}{t_v}, \frac {r_c}{t_c}\right ) \leq 1 \label {Xeqn51-3.15}\end {equation}
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\begin {equation}\e _{\text {q}a} \in \R ^4, \quad a \in \{1,2,3,4\}, \label {Xeqn52-3.16}\end {equation}
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\begin {equation}{\bm {P}} \in \R ^3 \otimes \R ^4, \quad {\bm {P}} \hat {=} \begin {pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end {pmatrix}_{(\e _i, \e _{\text {q}j})}. \label {Xeqn53-3.17}\end {equation}


\begin {equation}{\bm {Q}} = {\mathbb {P}}_{\text {Q}}[\q \otimes \q ] \label {eq:quaterniontrafo}\end {equation}
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\begin {equation}{\mathbb {P}}_{\text {Q}} = {\bm {I}} \otimes \e _{\text {q}1} \otimes \e _{\text {q}1} - 2 \boldsymbol {\epsilon } {\bm {P}} \otimes \e _{\text {q}1} + \left ({\mathbb {P}}' -{\mathbb {P}}^\circ \right ) ({\bm {P}} \times {\bm {P}}), \label {Xeqn55-3.19}\end {equation}


\begin {equation}P^{\text {Q}}_{ijab} = \delta _{ij} \delta _{1a} \delta _{1b} - 2 \epsilon _{ijk} P_{ka} \delta _{1b} + \left (P'_{ijkl} - P^\circ _{ijkl} \right ) P_{ka} P_{lb}, \label {Xeqn56-3.20}\end {equation}
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\begin {equation}r:SO(3)^N \rightarrow \R , \quad r({\bm {Q}}_1, {\bm {Q}}_2, \ldots , {\bm {Q}}_N) = \sum _{n=0}^{n_{\text {max}}} \sum _{j=1}^{2j+1} \left \|\mathbb {V}^{n}_{j} - \sum _{\alpha =1}^N v_\alpha {\bm {Q}}_\alpha \star \mathbb {D}^{n}_{j}\right \|^2. \label {eq:oriobjective}\end {equation}
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\begin {equation}\pfrac {r({\bm {Q}}_1, {\bm {Q}}_2, \ldots , {\bm {Q}}_N)}{{\bm {Q}}_\alpha } = \sum _{n=0}^{n_{\text {max}}} \sum _{j=1}^{2j+1} \left ( \mathbb {V}^{n}_{j} - \sum _{\beta =1}^N v_\beta {\bm {Q}}_\beta \star \mathbb {D}^{n}_{j} \right ) \stackrel {\scriptsize (n-1)}{\cdot } \left (v_\alpha n ({\bm {Q}}_\alpha ^{\times (n-1)}\times \Itwo ) [\mathbb {D}^{n}_{j}]\right ), \label {eq:oriobjectivegradient}\end {equation}
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\begin {equation}\left (({\bm {Q}}_\alpha ^{\times (n-1)}\times \Itwo ) [\mathbb {D}^{n}_{j}]\right )_{km} = ({\bm {Q}}_\alpha ^{\times (n-1)})_{kl} \left (\mathbb {D}^{n}_{j}\right )_{lm}. \label {Xeqn62-3.26}\end {equation}
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volume [2,3]. Due to the finite volume and the randomness of the realization, the expected statistics of the ensemble are only approx-
imated on the considered volume. Moreover, there are infinitely many possible statistics, and only finitely many can be considered 
as particularly relevant for such a volume of finite size [4]. Consequently, we seek to identify those statistical characteristics of the 
ensemble which are important to the material behavior under consideration, and implement microstructure generation algorithms 
which ensure that generated volume elements reflect those characteristics. The general approach of matching specific statistical 
microstructure descriptors is well-established in microstructure generation [5] and microstructure reconstruction [6]. For example, 
for generating fiber-reinforced microstructures, advanced algorithms exist to match the fiber orientation tensors [7,8] and the fiber 
length distribution of the microstructure [9].

For generating polycrystalline microstructures, a large body of prior work exists. The review article by Bargmann et al. [2] classify 
polycrystal generators as based on reconstructing experimental data [10], resulting from physics simulations [11], and geometric 
model approaches. This article focuses on the last type.

The geometry of polycrystalline microstructures is described by an orientation field representing local lattice orientations which 
are piecewise homogeneous, forming crystallites separated by grain boundaries [2]. The statistical description of a stochastic en-
semble of such microstructures involves both the local orientation and its spatial correlations as described by 𝑛-point correlation 
functions [1,12]. From the two-point correlation function of an individual microstructure, the microstructure may be reconstructed 
exactly [13,14], except for some special cases [15]. Given the two-point correlation function of an ensemble, the Yeong-Torquato 
algorithm allows generating finite microstructures with similar statistics [16]. The Yeong-Torquato algorithm is challenging in terms 
of numerical expense, despite algorithmic improvements in recent years [17]. General microstructure reconstruction approaches 
like the Yeong-Torquato algorithm encounter the problem that matching the statistics of a stochastic ensemble using a single fi-
nite microstructure is not a well-defined problem in general. For example, a single microstructure contains only a finite number 
of grains, whereas the grain statistics of the ensemble may be continuous functions. Additionally, general approaches using corre-
lation functions do not provide immediate access to some straightforward geometrical properties specific to polycrystals, such as 
grain size and grain shape. Therefore, specialized polycrystal generation algorithms emerged which describe the morphology in ge-
ometric terms, while restricting the orientation statistics to ensure compatibility with an established morphology. We will focus on 
approaches using one-point statistics, though there are also some which partially incorporate 𝑛-point statistics, such as misorientation
statistics [18,19].

Prominent methods to describe the microstructure morphology represent crystallites as irregular tiles in spatial tessellations [20] 
or as particles which are densely packed, followed by a gap-filling process [21]. There is open-source software available to gen-
erate microstructures of either type, with Neper [22] implementing tessellations, Kanapy [23] working with dense packings, and 
Dream.3D [24] implementing both types of methods. Machine-learning methods may also be used for generating polycrystal mi-
crostructure generation [25]. All aforementioned methods are capable of reproducing geometrical features such as crystallite shapes 
and crystallite size distribution, with current research focused on reproducing elongated and irregularly shaped crystallites accu-
rately [26].

The one-point orientation statistics are described by the probability density of individual lattice orientations, which is also known 
as the Orientation Distribution Function (ODF). In experimental and simulation practice, the ODF is represented by various finite-
dimensional approximations. Single-orientation measurement techniques yield experimental data in the form of individual orienta-
tions with associated weights [27,28]. The binning method decomposes the orientation space into a finite number of bins [29,30], 
whose shape and placement may be further optimized [31] based on the underlying texture. The texture component method describes 
the texture as kernel functions of specified width centered around a finite number of specific points [32,33]. Roe [34] and Bunge [35] 
introduced the Fourier coefficients of the ODF, also called texture coefficients, giving rise to the approach which is used most widely 
to represent the ODF nowadays.

The Roe and Bunge coefficients are coefficients in the classical sense, i.e., real numbers which depend on a coordinate system 
convention. A tensorial Fourier expansion of the ODF instead yields tensorial texture coefficients, which are coordinate-independent 
physical quantities [36]. As stated by Guidi et al. [37], the state-variable character of the ODF is properly emphasized using tensorial 
texture coefficients. The classical texture coefficients are recovered from the tensorial texture coefficients by an appropriate choice of 
tensorial basis, showing that both approaches are equally expressive [38]. Tensorial texture coefficients play a prominent role in the 
homogenization theory of linear elasticity [39], i.e., many analytical homogenization schemes allow for an explicit representation 
in terms of a tensorial texture coefficients up to fourth order [40]. In analytical models of plasticity, higher-order texture are also 
relevant, e.g., in anisotropic yield functions [41].

The ODF of a tessellation model is given by the discrete lattice orientations, weighted by the crystallite volume fractions. In 
microstructure generation, the volume fractions are defined by the microstructure morphology parameters, i.e., via a prescribed 
grain-size distribution. Therefore, when selecting lattice orientations to generate a polycrystal microstructure, the challenge lies 
in producing a discrete ODF with prescribed weights which yields similar mechanical properties as the prescribed ODF. Random 
sampling is one such approach, generating discrete ODFs which approximate the prescribed ODF in the infinite-volume limit. With 
prescribed ODF data from the binning method, the ODF values associated with the bins are interpreted as probability weights, and 
orientations are sampled as the center points of each bin [30] or as uniformly random orientations within each bin [42,43]. When 
the ODF is prescribed as a set of texture components, the corresponding kernel functions may be sampled directly [44,45]. As an 
alternative to random sampling, orientations may be selected in a clever deterministic way [46], which may be combined with a 
randomization approach [47]. Recently developed orientation selection methods initially generate random samples, then optimize 
the samples to better correspond to selected statistics of the prescribed ODF. For uniform distributions only, an optimization approach 
is given by physical analogy to the Thompson problem [48]. Vuppala et al. [49] minimize the 𝐿2-error between a target ODF and 
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a texture reconstructed from the sampled discrete points, but apply only a single optimization step instead of fully minimizing the 
error. Liu et al. [50] refine the sampled orientations based on ideal texture components, but the approach is used only for a single 
ideal component. Finally, Kuhn et al. [51] solve an optimization problem based on matching a finite number of prescribed tensorial 
texture coefficients.

The problem of finding a discrete set of weighted lattice orientations which approximates another prescribed ODF also arises in 
microstructure-free crystal plasticity methods [52,53]. In this context, no crystallite weights are prescribed. Consequently, a number 
of compact ODF representation algorithms emerged which produce sets of orientations with optimally chosen weights [54,55]. There-
fore, these methods are not directly applicable to the work at hand, as the volume fractions of the crystallites are pre-specified by 
sampling from the grain-size distribution of the underlying ensemble. The recent ODF representation algorithm by Marki et al. [56] 
may be used to generate orientations for preset weights, and is therefore directly applicable to microstructure generation. The strategy 
consists of solving an optimization problem stated in terms of texture coefficients, like in Kuhn et al. [51]. Marki et al. [56] appear 
to have discovered the approach independently, leading to slight differences in the strategy: Marki et al. [56] use Bunge coefficients 
instead of tensorial coefficients, as well as a less powerful optimization algorithm.

As remarked by both Kuhn et al. [51] and Marki et al. [56], the optimization-based approach allows finding small sets of crystallite 
orientations which can be used to accurately predict the mechanical properties of larger sets of texture data, outperforming methods 
based on random sampling. How many orientations are required, or indeed, whether an arbitrarily accurate approximation is possible 
at all, is not known in the general case. For the special case of a uniform ODF, minimal sets of coefficient-matching orientations were 
found analytically [57]. In general, the number of required orientations increases with the order of considered texture coefficients. 
Kuhn et al.’s [51] implementation allows prescribing texture coefficients of order up to six, and an extension to higher orders is 
straightforward in principle. However, due to the large number of algebraic operations involved in dealing with higher-order tensors, 
the computational effort rises exponentially as the tensor order increases. To accurately simulate material properties which depend 
on higher-order texture coefficients, more efficient algorithms are required.

1.2.  Contributions

We consider the problem of generating representative polycrystal microstructures, with particular emphasis on selecting the lattice 
orientations of individual grains to match a prescribed texture. We build upon the work by Kuhn et al. [51] and introduce an extension 
which handles tensorial texture coefficients of arbitrary order in an efficient and accurate way. To validate our results, we apply the 
novel microstructure generation algorithm to mechanical homogenization of textured polycrystalline materials. More precisely, the 
following novelties characterize the work at hand:

• Texture coefficient tensors are typically introduced as Fourier coefficients of the ODF [37]. This approach is not general, since 
the Fourier series associated to some ODFs do not converge. Indeed, the Fourier series converges for an integrable distribution 
only, ruling out discrete measures, However, when considering a moment-matching problem for the ODF, the texture coeffi-
cients emerge naturally. With this shift of perspective, we provide the mathematical foundations for the use of texture tensors in
crystallography.

• We introduce the concept of texture tensors instead of the commonly used texture coefficients or Guidi et al.’s [37] tensorial texture 
coefficients. This approach, although evident from a physical point of view, appears to be non-standard. Using texture tensors 
provides a basis-independent and physically sound measure to quantify texture in polycrystalline materials.

• The original approach by Kuhn et al. [51] is limited to texture tensors of orders four and six. Higher orders come with a computa-
tional effort which scales exponentially in the tensor order. We circumvent this problem by working with a harmonic basis [58].

• As an algorithm to solve the texture-coefficient matching problem, we implement the Barzilai–Borwein scheme [59] instead of 
fixed-step-size gradient descent, further accelerating the procedure compared to the state of the art [51].

• Marki et al. [56] proposed a similar optimization problem to Kuhn et al. [51]. Marki et al. [56] focus on finding discrete sets of 
orientations with optimized weights, and mention the present case where the weights are given by volume fractions of crystallites 
in passing. Our investigations focus explicitly on the case where the volume fractions are fixed. Further differences arise in the 
algorithm used. Whereas Marki et al. [56] use classical texture coefficients and a trust-region solver, we employ an efficient texture 
tensor implementation and the Barzilai–Borwein method.

• We show that the moment-matching problem for the ODF has a solution. More precisely, for sufficiently large numbers of crystals 
with sufficiently similar volume fractions, there exists a set of orientations to approximate a prescribed polynomial texture of 
finite order to arbitrary precision.

• We investigate which texture tensors affect macroscopic mechanical properties using large-scale studies. The effective stiffness of 
copper shows a slight dependence on sixth-order tensors, despite analytical models taking only tensors up to fourth-order into 
account [40].

• For the effective yield stress, a dependence up to tenth order emerges, which is the highest order considered. This observation illus-
trates that higher-order texture terms are relevant for polycrystal microstructure generation algorithms, underlining the relevance 
of the work at hand.

We describe our algorithm and provide an open-source implementation at https://git.uni-due.de/publicsoftwareingmath/
crystallites/ to encourage further study.
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1.3.  Notation

Throughout the text, we use a symbolic notation for tensor operations. First-order tensors are generally written as bold symbols 
(𝒗), second order as bold capital or Greek symbols (𝑽 , 𝝈), and fourth-order tensors as double-struck (ℂ) symbols. For higher and 
variable-order tensors, the tensor order is indicated explicitly (𝕍 𝑛). The tensor or dyadic product is denoted as 𝑨⊗ 𝑩. We write the 
single-contraction tensor product between two tensors of second order as 𝑨𝑩, and between tensors of second and first order as 𝑨𝒗. 
A full contraction between two tensors of identical order is written as the dot product 𝑨 ⋅ 𝑩. Full contractions between a higher and 
lower-order tensor are written with square brackets ℂ[𝜺]. We denote rotations of arbitrary objects by a proper orthogonal rotation 
tensor 𝑹 ∈ 𝑆𝑂(3) as 𝑹 ⋆ 𝑔, which for tensors resolves to the Rayleigh product, the application of the rotation tensor to every tensorial 
axis. Also, we use the Kronecker product 𝑨 × 𝑩 and the associated Kronecker power 𝑨×𝑛 [60]. Whenever the symbolic notation is not 
sufficient, we use an index notation with Einstein’s summation convention. Tensorial constants used in this work include the second-
order identity (𝑰)𝑖𝑗 = 𝛿𝑖𝑗 , the spherical projector (ℙ◦)𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗𝛿𝑘𝑙∕3 and the deviatoric projector (ℙ′)𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙∕2 + 𝛿𝑗𝑘𝛿𝑖𝑙∕2 − 𝛿𝑖𝑗𝛿𝑘𝑙∕3.

2.  Random polycrystalline materials, their effective properties and statistical description

2.1.  Effective mechanical properties of polycrystals

We consider a stationary and ergodic ensemble of random fields ℂ ∶ R3 →  of stiffness tensors [61], where  denotes the space 
of positive definite fourth-order tensors which are both minor- and major-symmetric. For any given stiffness field ℂ, after prescribing 
the macroscopic strain 𝜺̄, there results a displacement fluctuation field

𝒖𝜺̄ ∶ R3 → R3 (2.1)

which grows sublinearly and solves the local balance of linear momentum
div

(

ℂ(𝒙)[𝜺̄ + ∇S𝒖𝜺̄(𝒙)]
)

= 𝟎, 𝒙 ∈ R3. (2.2)

Using the effective stress of the ensemble, which is given by the expectation
𝝈̄ = ⟨ℂ[𝜺̄ + ∇S𝒖𝜺̄]⟩, (2.3)

we define the effective stiffness ℂ̄ implicitly using the equation
ℂ̄[𝜺̄] = ⟨ℂ[𝜺̄ + ∇S𝒖𝜺̄(𝒙)]⟩, (2.4)

which holds for any prescribed macroscopic strain 𝜺̄. The effective stiffness ℂ̄ is the quantity of interest in stochastic homogeniza-
tion [61]. The effective stiffness is computed by defining a basis of strains and computing the effective stress (2.4) for each strain.

One approach to compute effective stresses is computational homogenization, e.g., by using FFT-based methods [62], which 
generally involve periodized ensembles [63], as the problem (2.2) cannot be solved computationally for an infinite random stiffness 
field. We consider a stiffness field realization ℂ𝑌  on a periodic cubic cell

𝑌 = [0, 𝐿)3 ⊂ R3. (2.5)

We prescribe the macroscopic strain 𝜺̄ and seek the periodic displacement fluctuation field 𝒖𝑌 𝜺̄ ∶ 𝑌 → R3 which solves the local 
balance of linear momentum

div
(

ℂ𝑌 (𝒙)[𝜺̄ + ∇S𝒖𝑌 𝜺̄(𝒙)]
)

= 𝟎, 𝒙 ∈ 𝑌 . (2.6)

The apparent stress of the microstructure is defined by the volume average

𝝈app𝑌 𝜺̄ = 1
𝐿3 ∫𝑌

ℂ𝑌 (𝒙)[𝜺̄ + ∇S𝒖𝑌 𝜺̄(𝒙)] d𝑉 (𝒙). (2.7)

The apparent stiffness ℂapp𝑌  is implicitly defined by the equation
ℂapp𝑌 [𝜺̄] = 𝝈app𝑌 𝜺̄ , (2.8)

which holds for all macroscopic strains 𝜺̄. A given periodic cell stiffness field ℂ𝑌  is considered representative of the ensemble if the 
apparent stiffness matches the effective stiffness [64]. In practice, we observe random and systematic differences between the apparent 
and effective stiffness, with both errors depending on the size of the periodic cell 𝑌 . Classical results of stochastic homogenization [65] 
show that under the assumption of ergodicity and stationarity of the ensemble, the apparent stiffness of a sample of limited size 𝐿, 
such as the periodic stiffness field ℂ𝑌 , converges almost surely towards the effective stiffness as the size 𝐿 increases [66].

In a single-phase (or uniform) polycrystal, the local stiffness heterogeneity is due to locally differing lattice orientations. In stochas-
tic homogenization of polycrystals, we quantify the local lattice orientation by a random rotation field 𝑸 ∶ R3 → 𝑆𝑂(3) from a fixed 
reference lattice orientation r. The local stiffness is then given via a rotation from the stiffness in the reference orientation ℂr as

ℂ(𝒙) = 𝑸(𝒙) ⋆ ℂr, 𝒙 ∈ R3. (2.9)

By Eq. (2.9), the effective stiffness ℂ̄ of the ensemble depends solely on the reference orientation stiffness ℂr and the statistical 
properties of the random field of orientations 𝑸. For the purposes of this work, we focus on the one-point statistics, which take the 
form of an expected value

⟨𝑔⟩ of a continuous function 𝑔 ∶ 𝑆𝑂(3) → R. (2.10)
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Considering only one-point statistics neglects the influence of spatial correlations of the random orientation field 𝑸. In the context 
of microstructure generation, this restriction decouples the problem of assigning local orientations from the problem of spatially 
dividing the microstructure into grains [67, section 2.3]. The one-point statistics are fully determined by the orientation distribution 
function (ODF) 𝑓 ∶ 𝑆𝑂(3) → R, which is the probability distribution of a given point having the lattice orientation 𝑸 [35]. As a 
probability density, the ODF 𝑓 is non-negative

𝑓 (𝑸) ≥ 0, 𝑸 ∈ 𝑆𝑂(3), (2.11)

and normalized

∫𝑆𝑂(3)
𝑓 (𝑸) d𝑉 (𝑸) = 1, (2.12)

where d𝑉  refers to the Haar measure on the rotation group 𝑆𝑂(3), which we assume to be normalized

∫𝑆𝑂(3)
d𝑉 (𝑸) = 1. (2.13)

The statistics (2.10), which we assume to determine the effective properties of the polycrystal, compute as

⟨𝑔⟩ = ∫𝑆𝑂(3)
𝑔(𝑸)𝑓 (𝑸) d𝑉 (𝑸). (2.14)

As discussed previously, the computational approximation of the effective stiffness (2.4) requires working on cells of finite 
size (2.5). For such a fixed cell 𝑌 , we consider the restricted orientation field 𝑸𝑌 ∶ 𝑌 → 𝑆𝑂(3) and the associated stiffness (2.9)

ℂ𝑌 (𝒙) = 𝑸𝑌 (𝒙) ⋆ ℂ𝑟. (2.15)

Since the cell is finite, only a finite number of grains is contained in such a realization, each grain coming with a homogeneous 
orientation. For such a discrete set of 𝑁 orientations 𝑸𝛼 ∈ 𝑆𝑂(3), 𝛼 ∈ {1, 2,… , 𝑁}, the statistical properties are fully described by the 
associated volume fractions 𝑣𝛼 of the crystallites with orientation 𝑸𝛼 , which are positive and normalized

𝑣𝛼 > 0,
𝑁
∑

𝛼=1
𝑣𝛼 = 1. (2.16)

The discrete statistics induced by functions 𝑔 ∶ 𝑆𝑂(3) → R compute as

⟨𝑔⟩𝑌 =
𝑁
∑

𝛼=1
𝑣𝛼 𝑔(𝑸𝛼). (2.17)

Assuming that the effective properties depend on some statistics ⟨𝑔⟩ (2.10), matching the statistics of a periodic microstructure
(2.17) to those of a given ensemble (2.14) is a requirement for representativity.

While the above definitions use linear elastic material laws, the same general approach applies to the other constitutive law 
considered in this work, nonlinear viscoelastoplasticity. Here, the stress field 𝝈 computes as

𝝈(𝒙) = ℂ(𝒙)[𝜺̄ + ∇S𝒖𝜺̄(𝒙) − 𝜺p(𝒙)], (2.18)

where the plastic strain field 𝜺p depends on the loading history of the material. Assuming that the material initially contains no 
plastic strains, the heterogeneity of material parameters is again purely due to the local lattice orientation. In both the elastic and 
elastoviscoplastic case, the microstructure depends on the random orientation field 𝑸, and therefore, the statistics ⟨𝑔⟩ are of interest.

2.2.  Matching the statistics of polycrystals

In the following, we consider the problem of generating a set of orientations matching prescribed statistics ⟨𝑔⟩𝑌  (2.17). Since we 
consider a fixed cell, we omit the subscript 𝑌  for brevity.

Measure theory provides a formal framework which naturally handles both the continuous ODF (2.12) and the discrete volume 
fractions (2.16) [58]. To formally describe the one-point orientation probability, we define the probability space (𝑆𝑂(3), , 𝜇), where 
 denotes the event space and 𝜇 refers to a Borel probability measure which is normalized

∫𝑆𝑂(3)
d𝜇 = 1. (2.19)

For example, the Borel measure 𝜇iso – corresponding to a uniform probability distribution – is the normalized Haar measure d𝑉 (𝑸)
of 𝑆𝑂(3),

∫𝑉
d𝜇iso = ∫𝑉

d𝑉 (𝑸) for all 𝑉 ∈  . (2.20)

If the probability measure 𝜇 is absolutely continuous with respect to 𝜇iso, it corresponds to an ODF via the Radon-Nikodym theorem, 
i.e., there is an integrable, positive and normalized function 𝑓 such that the representation

∫𝑉
d𝜇(𝑸) = ∫𝑉

𝑓 (𝑸) d𝜇iso(𝑸) for all 𝑉 ∈  . (2.21)

is valid.
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The probability measure for a discrete set of orientations (2.16) is given by

𝜇 =
𝑁
∑

𝛼=1
𝑣𝛼𝛿𝑸𝛼 , (2.22)

where 𝛿𝑸𝛼  denotes the Dirac measure centered at 𝑸𝛼 . Such a measure (2.22) is not absolutely continuous, i.e., does not admit an 
ODF.

Borel measures on a compact topological space are naturally isomorphic with elements of the dual space of the space of continuous 
functions [68]. As a consequence, two probability measures 𝜇1 and 𝜇2 on the compact topological space 𝑆𝑂(3) are identical if and 
only if their integrals

⟨𝜇𝑖, 𝑔⟩ = ∫𝑆𝑂(3)
𝑔(𝑸) d𝜇𝑖(𝑸) (2.23)

against all continuous functions 𝑔 on the space 𝑆𝑂(3) are identical, i.e., the condition
⟨𝜇1, 𝑔⟩ = ⟨𝜇2, 𝑔⟩ (2.24)

holds for all 𝑔 ∈ 𝐶0(𝑆𝑂(3)). Generally, a discrete distribution consisting of a finite set of orientations and a continuous distribution 
cannot be identical, as can be shown by choosing a non-negative function 𝑔 ∈ 𝐶0(𝑆𝑂(3)) which vanishes in all orientations which 
are part of the finite set, but is positive on a set of positive measure where the continuous distribution does not vanish. Therefore, 
a piecewise-constant periodic polycrystal microstructure (2.17) cannot be statistically representative of a general infinite random 
microstructure (2.10) in the strict sense that all statistics match, i.e., being “structurally entirely typical” as postulated by Hill [69]. 
However, if the microstructure is only required to be representative with regard to the effective property of interest [64], which 
depends on some statistics, not all of them, it is sufficient to find discrete distributions which reproduce those statistics exactly.

We discuss this moment-matching problem through the lens of polynomials on 𝑆𝑂(3), that is, functions 𝑆𝑂(3) → R which, after 
choosing a basis of the vector space of 3 × 3 matrices R3×3 ⊃ 𝑆𝑂(3), can be written as multivariate polynomials whose variables 
are components of the orientation 𝑸. Formally, we specify polynomials in a basis-independent manner by choosing an 𝑛th order 
coefficient tensor 𝔸𝑛 ∈ (R3)⊗𝑛 and a basis tensor 𝔹𝑛 ∈ (R3)⊗𝑛 to represent the polynomial

𝑝(𝑸) = 𝔸𝑛 ⋅𝑸 ⋆ 𝔹𝑛, (2.25)

where the Rayleigh product 𝑸 ⋆ 𝔹𝑛 denotes the rotation of an 𝑛th-order tensor 𝔹𝑛 by the orthogonal tensor 𝑸. We will refine the 
representation (2.25) later, as a given polynomial may be described by different tensor pairs (𝔸𝑛,𝔹𝑛). Furthermore, Eq. (2.25) does 
not encompass all sums of polynomials. Consequently, we define the set of all polynomials of up to 𝑛th order as

𝑛 =

{

𝑝 ∶ 𝑆𝑂(3) → R | 𝑝(𝑸) =
𝑘
∑

𝑖=1
𝔸𝑚𝑖 ⋅𝑸 ⋆ 𝔹𝑚𝑖 ,𝔸

𝑚
𝑖 ∈ (R3)⊗𝑛,𝔹𝑚𝑖 ∈ (R3)⊗𝑚, 𝑚 ≤ 𝑛

}

, (2.26)

i.e., as sums of 𝑘 polynomials as defined by Eq. (2.25). The set of polynomials of arbitrary order is denoted

∞ =
∞
⋃

𝑛=0
𝑛. (2.27)

The typically considered statistics (2.10) arise as integrals with regard to the ODF-weighted Haar measure 𝜇. Every individual 
statistics-inducing function 𝑔 may be approximated to arbitrary precision by polynomials. This fact is well-known. For the convenience 
of the reader, the arguments are collected in Appendix A. Therefore, it appears natural to investigate polynomial statistics

∫𝑆𝑂(3)
𝑝𝑛(𝑸) d𝜇(𝑸), (2.28)

as “universal statistics” – moments in the terminology of stochastics. Instead of considering the accuracy of a discretized measure with 
regard to some unknown micromechanically relevant statistic, we instead evaluate the measure with regard to moments up to a given 
order. Finding an accurate discretized measure therefore boils down to the following problem:

Moment-matching problem
Given prescribed polynomial statistics up to a degree 𝑛 (2.28), along with a set of 𝑁 volume fractions 𝑣𝛼 (2.16), find a 
discrete set of 𝑁 orientations 𝑸𝛼 to approximate integrals of polynomials up to order 𝑛 exactly.

This is a classic quadrature problem, except that, usually, when searching for quadrature points 𝑸𝛼 , the quadrature weights 𝑣𝛼
are not prescribed. In Appendix B, we prove the existence of approximate solutions requiring large numbers of crystallites.

The established technique for the problem of generating discrete orientations is random or pseudo-random sampling [48]. A set of 
random samples {𝑸𝛼} of the ODF eventually reproduces all statistics of the ODF, including polynomial statistics of arbitrary degree, 
as the number of samples tends towards infinity. Using pseudo-random techniques enhances the convergence rate of this process. By 
contrast, we propose an approach which yields a prescribed number 𝑁 of quadrature points which are accurate to arbitrary precision 
in selected polynomial statistics.
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2.3.  Texture tensors

To compactly describe finite sets of polynomials and their moments, we construct a basis of polynomial functions on 𝑆𝑂(3)
following the tensorial approach of Guidi et al. [37]. In Eq. (2.26), polynomials are represented by tensor pairs (𝔸𝑛,𝔹𝑛). Multiple 
tensor pairs may represent the same polynomial. Indeed, for any index permutation Π, the permuted pair (Π(𝔸𝑛),Π(𝔹𝑛)) represents 
the same polynomial as the pair (𝔸𝑛,𝔹𝑛). Additionally, by multiplying both tensors by the scaled identity tensor 𝑰∕

√

3, we find
(

𝔸𝑛 ⊗ 1
√

3
𝑰

)

⋅𝑸 ⋆

(

𝔹𝑛 ⊗ 1
√

3
𝑰

)

= (𝔸𝑛 ⋅𝑸 ⋆ (𝔹𝑛)) 1
3
(𝑰 ⋅ 𝑰)

= 𝔸𝑛 ⋅𝑸 ⋆ (𝔹𝑛) = 𝑝(𝑸), (2.29)

which shows that the pair (𝔸𝑛 ⊗ 𝑰∕
√

3,𝔹𝑛 ⊗ 𝑰∕
√

3) also describes the same polynomial. Guidi et al. [37] avoid this ambiguity by 
choosing basis tensors which are fully index-symmetric

Π(𝔹𝑛) = 𝔹𝑛 for all index permutations Π, (2.30)

and traceless, i.e., vanish upon contraction by the second-order identity tensor 𝑰
𝔹𝑛[𝑰] = 𝟘𝑛−2. (2.31)

By analogy with the second-order case, we call index-symmetric traceless tensors deviatoric. For convenience, we define zeroth- and 
first-order tensors to be deviatoric tensors as well.

Using methods of group representation theory, it can be shown that the deviatoric tensors of order 𝑛 comprise a (2𝑛 + 1)-
dimensional vector space [70]. If a polynomial representation comprising tensor pairs (2.25) uses deviatoric basis tensors 𝔹𝑛, the 
corresponding coefficient tensors 𝔸𝑛 can also be assumed to be deviatoric, since the non-deviatoric parts vanish in the dot product.

The question of finding a basis of polynomial functions on the group 𝑆𝑂(3) reduces to finding bases for the deviatoric spaces. We 
construct an orthonormal basis by choosing an arbitrary rotation axis, performing an eigenvector decomposition of the representations 
of rotations around that axis, and recombining complex-valued eigenvector pairs to obtain a real-valued deviatoric basis [71]. The 
resulting deviatoric basis tensors are denoted by 𝔻𝑛𝑖 , 𝑖 ∈ {1, 2,… , 2𝑛 + 1}. Using this basis, a probability measure 𝜇 can be quantified 
using the polynomial moments

𝕍 𝑛𝑖 = ∫𝑆𝑂(3)
𝑸 ⋆ 𝔻𝑛𝑖 d𝜇(𝑸), 𝑖 ∈ {1, 2,… , 2𝑛 + 1}, (2.32)

also called tensorial texture coefficients in the literature [37]. For a discrete probability measure 𝜇d (2.22) with volume fractions 𝑣𝛼
and discrete orientations 𝑸𝛼 , the moments compute as

𝕍 𝑛𝑖,d =
𝑁
∑

𝛼=1
𝑣𝛼 𝑸𝛼 ⋆ 𝔻𝑛𝑖 , 𝑖 ∈ {1, 2,… , 2𝑛 + 1}. (2.33)

The polynomial 𝑝𝑛𝑖  associated with a texture coefficient 𝕍 𝑛𝑖  and a corresponding basis tensor 𝔻𝑛𝑖  reads

𝑝𝑛𝑖 (𝑸) = 1
2𝑛 + 1

𝕍 𝑛𝑖 ⋅
(

𝑸 ⋆ 𝔻𝑛𝑖
)

. (2.34)

Using the texture coefficient polynomials as a basis, we may write any 𝑚th order polynomial 𝑝𝑚 as a sum

𝑝𝑚(𝑸) =
𝑚
∑

𝑛=0

1
2𝑛 + 1

2𝑛+1
∑

𝑖=1
𝕍 𝑛𝑖 ⋅

(

𝑸 ⋆ 𝔻𝑛𝑖
)

. (2.35)

Classically, texture terms of order 𝑛 are represented using a set of (2𝑛 + 1) tensorial texture coefficients 𝕍 𝑛𝑖  [37]. However, those 
tensors depend on the choice of deviatoric basis. This defect is easily repaired by combining all tensorial texture coefficients of order 
𝑛 to define the texture tensor

𝕋 2𝑛 =
2𝑛+1
∑

𝑖=1
𝕍 𝑛𝑖 ⊗ 𝔻𝑛𝑖 , (2.36)

which permits representing the full polynomial expansion of the ODF in the basis-invariant form

𝑝𝑚(𝑸) =
𝑚
∑

𝑛=0

1
2𝑛 + 1

𝕋 2𝑛 ⋅𝑸×𝑛, (2.37)

where the Kronecker power 𝑸×𝑛 [60] is used to represent the action of the group 𝑆𝑂(3) on 𝑛th order tensors
𝑸 ⋆ 𝔸𝑛 = 𝑸×𝑛[𝔸𝑛] for all 𝔸𝑛 ∈ (R3)⊗𝑛. (2.38)

Since the deviatoric tensors 𝕍 𝑛𝑖  and 𝔻𝑛𝑖  are elements of a (2𝑛 + 1)-dimensional vector space, the texture tensor 𝕋 2𝑛 can be represented by 
a (2𝑛 + 1) × (2𝑛 + 1) matrix. If the basis chosen for this representation is the set of basis tensors {𝔻𝑛𝑖 }, the tensorial texture coefficients 
𝕍 𝑛𝑖  are recovered as the column vectors of this matrix. The dot product in Eq. (2.37) implies that the Rayleigh action 𝑸×𝑛 may also 
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be treated as a (2𝑛 + 1) × (2𝑛 + 1) matrix in this context, significantly reducing the number of components compared to a full tensor 
of order 2𝑛.

Texture tensors reflect the properties of the ODF (2.12). One direct consequence is that the zeroth-order texture tensor equals unity 
due to the normalization condition (2.19). Symmetry properties of the ODF apply to the texture tensors as described in Appendix C.

Before moving on to algorithmic details, we provide a short summary. To an arbitrary degree of accuracy, any statistics of the 
ODF can be represented by a finite set of texture tensors. When generating polycrystal microstructures, matching the texture tensors 
of the discrete orientations with the ODF leads to microstructures which are statistically representative for polynomial statistics up to 
a given degree. The discrete orientations are essentially quadrature rules with prescribed weights, which are exact when integrating 
polynomials up to a specified degree. This ODF-based approach uses only one-point statistics and therefore does not take into account 
spatial correlations. Compared with random samples of the ODF, orientations which are polynomially exact enhance the statistical 
representativity of a given microstructure. In computational homogenization, generated microstructures are realizations of a statistical 
ensemble, which are used to quantify the effective properties. In this context, texture-tensor fitting is a variance reduction approach 
intended to yield faster convergence of the computed effective properties to the actual effective properties.

3.  Generating polycrystalline microstructures

3.1.  Problem statement

We consider polycrystal microstructures which consist of crystallites with homogeneous lattice orientations, neglecting defects and 
presuming infinitely thin crystallite boundaries. The microstructures under consideration are infinitely large and random, forming 
a statistical ensemble. Computational homogenization, however, requires microstructures of finite volume. Any particular periodic 
realization contains only a finite number of crystallites instead of the infinite variety of general polycrystalline microstructures. We 
seek to generate representative finite periodic microstructures corresponding to an ensemble of infinitely large microstructures with 
known statistical properties.

To represent the microstructure, we use Laguerre tessellations on the cubic domain 𝑌 = [0, 𝐿)3, which consist of 𝑁 distinct tiles 
characterized by seed positions 𝒔𝛼 ∈ 𝑌  and weights 𝑤𝛼 ∈ R, where each tile represents a single crystallite. With the periodic distance 
function

𝑑(𝒙, 𝒚) = min
𝒉∈Z3

‖𝒙 − 𝒚 + 𝐿ℎ𝑖𝒆𝑖‖, 𝒙, 𝒚 ∈ 𝑌 , (3.1)

we define the characteristic function of tile 𝛼 ∈ {1, 2,… , 𝑁} as

𝐼𝛼(𝒙) =

{

1, if 𝑑2(𝒙, 𝒔𝛼) −𝑤𝛼 < 𝑑2(𝒙, 𝒔𝛽 ) −𝑤𝛽 for all 𝛽 ≠ 𝛼, 𝛽 ∈ {1, 2,… , 𝑁},
0, else.

(3.2)

Almost every point in 𝑌  is associated with one tile via its characteristic function. For points on the boundaries, we choose arbitrary 
but fixed tiles among those close to the boundary [20]. Each Laguerre tile 𝛼 has a volume

𝑉𝛼 = ∫𝑌
𝐼𝛼(𝒙) d𝑉 (𝒙) (3.3)

and a volume fraction 
𝑣𝛼 =

𝑉𝛼
𝐿3
. (3.4)

The centroid 𝒄𝛼 of a tile 𝛼 is defined as the point with minimum distance from all points in the tile in an integral sense, i.e., it 
solves the optimization problem

∫𝑌
𝑑(𝒙, 𝒄𝛼)2𝐼𝛼(𝒙) d𝑉 (𝒙) ⟶ min

𝒄𝛼∈𝑌
. (3.5)

For tiles which do not intersect the domain boundaries, the tile’s centroid is given, as in the non-periodic case, by the center of “mass”

𝒄𝛼 = 1
𝑉𝛼 ∫𝑌

𝐼𝛼(𝒙)𝒙 d𝑉 (𝒙). (3.6)

In Section 2, we discussed the problem of generating discrete orientations which are representative of the ODF. Similarly, we 
impose conditions on the generated tessellations to reproduce the statistical properties of the ensemble as closely as possible:

• The volume fractions 𝑣𝛼 must accurately sample the ensemble’s volume fraction distribution 𝑝 ∶ [0, 1] → R. In terms of the cumu-
lative volume fraction distribution function

𝐹 ∶ [0, 1] → [0, 1] 𝐹 (𝑣) = ∫

𝑣

0
𝑝(𝑤) d𝑤, (3.7)

this requirement means that
𝑁𝑣𝛼<𝑣

𝑁
→ 𝐹 (𝑣) as 𝑁 → ∞ for any 𝑣 ∈ [0, 1], (3.8)

where 𝑁𝑣𝛼<𝑣 denotes the number of samples 𝑣𝛼 which are smaller than 𝑣.
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Fig. 1. Overview of the three separate steps involved in the microstructure generation algorithm. From left to right: volume fraction sampling, 
tessellation sampling, and orientation sampling.

• To enhance shape regularity, we seek centroidal tessellations [72], i.e., tessellations whose centroids equal the seeds

𝒄𝛼 = 𝒔𝛼 . (3.9)

• The tile orientations 𝑸𝛼 must match prescribed texture tensors 𝕍𝑚𝑖  up to a prescribed order 𝑛

𝑁
∑

𝛼=1
𝑸𝛼 ⋆ 𝔻𝑚𝑖 = 𝕍𝑚𝑖 , for all 𝑖 ∈ {1, 2,… , 2𝑚 + 1}, 𝑚 ≤ 𝑛. (3.10)

Our proposed microstructure generation algorithm comprises three steps as illustrated in Fig. 1. Both the tessellation sampling 
and the orientation sampling depend on prescribed volume fractions, but are independent of each other. More detailed explanations 
are given in the following.

3.2.  Volume fraction sampling

In step 1, we generate samples of the volume fraction distribution. A scrambled Sobol sequence [73] on the interval [0, 1] serves 
as a set of samples 𝑢𝛼 of the uniform probability distribution. We find volume fraction samples using inverse transform sampling

𝑣∗𝛼 = 𝐹−1(𝑢𝛼), (3.11)

with the cumulative volume fraction distribution 𝐹 (3.7). Because the generated crystallites need to fill the volume of the periodic 
cube exactly, we rescale the volume fractions to

𝑣𝛼 =
𝑣∗𝛼

∑𝑁
𝛽=1 𝑣

∗
𝛽

. (3.12)
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3.3.  Tessellation sampling

In step 2, we generate a tessellation that is both centroidal and corresponds to the volume fractions determined in step 1. The 
centroidality error reads

𝑟𝑐 (𝑤1,… , 𝑤𝑁 , 𝒔1,… , 𝒔𝑁 ) =
𝑁
∑

𝛼=1
𝑑(𝒄𝛼 , 𝒔𝛼). (3.13)

The error in the volume fractions is given by

𝑟𝑣(𝑤1,… , 𝑤𝑁 , 𝒔1,… , 𝒔𝑁 ) =

√

√

√

√

𝑁
∑

𝛼=1
(𝑣𝛼 − 𝑣target,𝛼)2, (3.14)

where 𝑣target denotes the volume fractions from step 1. Both 𝑟𝑣 and 𝑟𝑐 depend on the weights and seeds of the Laguerre tessellation, 
which means that the optimization problems for both errors are coupled. For fixed seeds, finding weights to realize specific volume 
fractions is a convex optimization problem [20]. For fixed weights, centroidal seeds can be found by Lloyd’s fixed-point iteration 
scheme [72]. We follow Kuhn et al. [74] and combine Lloyd’s fixed-point scheme for centroidalization with a Barzilai–Borwein ap-
proach to weight optimization in a nested optimization approach. Initially, we assign seeds based on a scrambled Sobol sequence [73] 
and set all weights to unity. In one outer iteration step, we perform a single step of the fixed-point centroidalizing algorithm, then fit 
the weights to realize the prescribed volume fractions. We prescribe separate tolerances for volume fractions 𝑡𝑣 and centroidality 𝑡𝑐 . 
We terminate the optimization procedure once the condition

max
(

𝑟𝑣
𝑡𝑣
,
𝑟𝑐
𝑡𝑐

)

≤ 1 (3.15)

is fulfilled. Our algorithm for choosing the tessellation is almost identical to the prior work by Kuhn et al. [74]. The only difference 
is that we stop the inner weight optimization after only ten steps, regardless of the residual, because exacting precision in weight 
fitting is unnecessary while the seed position are still imprecise.

3.4.  Orientation sampling

In step 3, we generate discrete orientations matching prescribed texture coefficients. For implementation reasons, we use unit 
quaternions 𝒒 to represent the orientations. We identify the unit quaternions with unit vectors in R4, i.e., elements of the three-
dimensional unit sphere 𝑆3. We choose basis vectors

𝒆q𝑎 ∈ R4, 𝑎 ∈ {1, 2, 3, 4}, (3.16)

such that 𝒆q1 represents a purely real quaternion. The projection from the quaternion unit vector onto the vector of non-real compo-
nents reads as a mixed tensor

𝑷 ∈ R3 ⊗R4, 𝑷 =̂
⎛

⎜

⎜

⎝

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠(𝒆𝑖 ,𝒆q𝑗 )

. (3.17)

The relationship between orientation tensors and quaternions is given by the formula
𝑸 = ℙQ[𝒒 ⊗ 𝒒] (3.18)

with the constant (3,3,4,4)-dimensional tensor ℙQ given by
ℙQ = 𝑰 ⊗ 𝒆q1 ⊗ 𝒆q1 − 2𝝐𝑷 ⊗ 𝒆q1 +

(

ℙ′ − ℙ◦)(𝑷 × 𝑷 ), (3.19)

or in index notation,
𝑃Q𝑖𝑗𝑎𝑏 = 𝛿𝑖𝑗𝛿1𝑎𝛿1𝑏 − 2𝜖𝑖𝑗𝑘𝑃𝑘𝑎𝛿1𝑏 +

(

𝑃 ′
𝑖𝑗𝑘𝑙 − 𝑃

◦
𝑖𝑗𝑘𝑙

)

𝑃𝑘𝑎𝑃𝑙𝑏, (3.20)

where indices starting from 𝑖 take values from one to three, and indices 𝑎, 𝑏 take values from one to four. This is a tensorial form of 
the well-known relationship between quaternions and rotation matrices, which is usually stated in component form Shepperd[75].

To generate an initial set of orientations, we sample the uniform distribution. For a start, we generate pseudo-random samples of 
the uniform distribution on the hypercube [0, 1]4 using a scrambled Sobol sequence. Each component of that four-dimensional uniform 
distribution is transformed using the inverse cumulative distribution function of the standard normal distribution. The uncorrelated 
four-dimensional multivariate normal distribution has isotropic statistics. Therefore, if we project the multivariate normal samples 
onto the four-dimensional embedding of the unit sphere 𝑆3 ∈ R4, we obtain a uniform sampling of the unit sphere 𝑆3 [76]. By the 
relationship between orientation tensors and quaternions (3.18), we obtain samples of the uniform distribution on 𝑆𝑂(3).

We define the square texture coefficient error [51] up to order 𝑛max

𝑟 ∶ 𝑆𝑂(3)𝑁 → R, 𝑟(𝑸1,𝑸2,… ,𝑸𝑁 ) =
𝑛max
∑

𝑛=0

2𝑗+1
∑

𝑗=1

‖

‖

‖

‖

‖

‖

𝕍 𝑛𝑗 −
𝑁
∑

𝛼=1
𝑣𝛼𝑸𝛼 ⋆ 𝔻𝑛𝑗

‖

‖

‖

‖

‖

‖

2

. (3.21)

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118690 

10 



M. Krause et al.

To match the orientation samples 𝑸𝛼 to the prescribed texture coefficients 𝕍 𝑛𝑗 , we minimize
𝑟(𝑸1,𝑸2,… ,𝑸𝑁 ) → min

𝑸𝛼∈𝑆𝑂(3)
. (3.22)

The objective function (3.21) is a polynomial on the 𝑁-fold product space 𝑆𝑂(3)𝑁 . Due to the index symmetry of the deviatoric basis 
tensors 𝔻𝑛𝑗 , its derivative simplifies to

𝜕𝑟(𝑸1,𝑸2,… ,𝑸𝑁 )
𝜕𝑸𝛼

=
𝑛max
∑

𝑛=0

2𝑗+1
∑

𝑗=1

(

𝕍 𝑛𝑗 −
𝑁
∑

𝛽=1
𝑣𝛽𝑸𝛽 ⋆ 𝔻𝑛𝑗

)

(𝑛−1)
⋅

(

𝑣𝛼𝑛(𝑸×(𝑛−1)
𝛼 × 𝑰)[𝔻𝑛𝑗 ]

)

, (3.23)

where the operation (𝑛−1)⋅  denotes an (𝑛 − 1)-fold tensor contraction.
Computing the objective function and its gradient becomes increasingly numerically expensive for a high tensor order 𝑛. A direct 

calculation of the term 𝑸 ⋆ 𝔻𝑛𝑗 , implemented via successive matrix multiplications of the orientation matrix 𝑄𝑖𝑗 and the component 
array 𝐷𝑛

𝑖𝑗𝑘𝑙… requires one matrix multiplication for each tensor axis, which in total necessitate 3𝑛+1𝑛 floating-point operations [71]. 
Instead, we may as in Eq. (2.38) compute rotations using the Kronecker power 𝑸×𝑛 and exploit its sparsity. The tensor 𝔻𝑛𝑗  is an 
element of the 𝑛th order deviatoric tensor space, which is an eigenspace of 𝑸×𝑛. It is therefore sufficient to represent the tensor 𝑸×𝑛

by its deviatoric components
(

𝑸×𝑛)
𝑗𝑘 = 𝑸×𝑛 ⋅ (𝔻𝑛𝑗 × 𝔻𝑛𝑘), (3.24)

which form a (2𝑛 + 1) × (2𝑛 + 1)-dimensional matrix. The numerical effort of this matrix-vector multiplication is quadratic in the 
order 𝑛, and the asymptotic efficiency bottleneck is caused by the calculation of the deviatoric rotation matrix. To compute the 
matrix (𝑸×𝑛)

𝑗𝑘, we use a basis transformation from Wigner-𝑑-symbols [71]. The computation of Wigner-𝑑 symbols is possible with 
an asymptotic complexity of (𝑛3) using the algorithm by Dachsel [77]. By exploiting the sparsity of the rotation matrix (𝑸×𝑛)

𝑗𝑘, we 
therefore reduce the asymptotic complexity of evaluating the objective function from (3𝑛) to (𝑛3). Effectively, the sparse matrix 
representation of the rotation matrix allows us to overcome the computational inefficiency of using full tensorial texture coefficients, 
in the process recovering the computational efficiency of classical texture coefficients [34,35] in the tensorial setting. 

In the expression for the gradient (3.23), a similar multiplication by the 𝑸×𝑛−1-tensor appears. We efficiently implement this 
operation by first transforming the tensor 𝔻𝑛𝑗  into the mixed 𝔻𝑛−1𝑗 ⊗𝑫1

𝑘 basis, which reads
(𝔻𝑛𝑗 )𝑘𝑙 = 𝔻𝑛𝑗 ⋅ (𝔻

𝑛−1
𝑘 ⊗𝑫1

𝑙 ). (3.25)

Using the Clebsch-Gordan decomposition, the right-hand side of Eq. (3.25) arises as the 𝑗𝑘𝑙-component of the Clebsch-Gordan tensor 
𝕔𝑛,𝑛−1,1 [71]. On the matrix of Clebsch-Gordan components, the gradient rotation tensor acts via the matrix-matrix product

(

(𝑸×(𝑛−1)
𝛼 × 𝑰)[𝔻𝑛𝑗 ]

)

𝑘𝑚
= (𝑸×(𝑛−1)

𝛼 )𝑘𝑙
(

𝔻𝑛𝑗
)

𝑙𝑚
. (3.26)

The objective function from Eq. (3.21) is expressed in terms of quaternions as
𝑟q(𝒒1, 𝒒2,… , 𝒒𝑁 ) = 𝑟(ℙQ[𝒒1 × 𝒒1],… ,ℙQ[𝒒𝑁 × 𝒒𝑁 ]), (3.27)

and the gradient 𝒈 of 𝑟q follows via the chain rule

𝒈𝛼 =
𝜕𝑟q(𝒒1,… , 𝒒𝑁 )

𝜕𝒒𝛼
= ℙ𝖳

Q

[

𝒒 ⊗
𝜕𝑟(𝑸1,… ,𝑸𝑁 )

𝜕𝑸𝛼

]

. (3.28)

To minimize the objective function, we use the Barzilai–Borwein method [59]. For step 𝑘, the linear increment of the quaternion 
𝒒𝛼 is computed from the quaternion gradient 𝒈𝛼 (3.28) via 

Δ𝒒𝑘+1𝛼 = 𝑠𝑘 𝒈𝑘𝛼 , (3.29)

where the step size 𝑠𝑘 is given by 

𝑠𝑘 = −
∑𝑁
𝛼=1 Δ𝒒

𝑘
𝛼 ⋅ Δ𝒒

𝑘
𝛼

∑𝑁
𝛼=1 Δ𝒈𝑘𝛼 ⋅ Δ𝒒𝑘𝛼

(3.30)

with

Δ𝒈𝑘𝛼 = 𝒈𝑘𝛼 − 𝒈𝑘−1𝛼 , (3.31)

Δ𝒒𝑘𝛼 = 𝒒𝑘𝛼 − 𝒒𝑘−1𝛼 . (3.32)

Because the optimization takes place on the unit sphere 𝑆3, not the ambient vector space R4, the updated value 𝒒𝑘+1𝛼  of the 
quaternion is not computed via straightforward addition, but requires taking the geometry of the Riemannian manifold 𝑆3 into 
account [78]. We project the quaternion increment (3.29) to the tangent space at 𝒒𝛼 using the formula

Δ𝒒𝑘+1𝛼 = Δ𝒒𝑘+1𝛼 −
(

Δ𝒒𝑘+1𝛼 ⋅ 𝒒𝑘𝛼
)

𝒒𝑘𝛼 . (3.33)

The additive tangent space increment is mapped to a multiplicative manifold increment using the exponential map relating the tangent 
space with the manifold 𝑆3 [79]. The updated value of the quaternion 𝒒𝛼 computes as

𝒒𝑘+1𝛼 = cos(‖Δ𝒒𝑘+1𝛼 ‖) 𝒒𝑘𝛼 +
sin(‖Δ𝒒𝑘+1𝛼 ‖)

‖Δ𝒒𝑘+1𝛼 ‖

Δ𝒒𝑘+1𝛼 . (3.34)
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Fig. 2. Normalized crystallite volume distribution used for the example 
material.

Fig. 3. Realization of the example material with 8192 crystallites re-
solved using 5123 voxels. Colors show the first Euler angle.

Table 1 
Material parameters for viscoplastic simulations of copper.

 Cubic stiffness 𝐶1111 𝐶1122 𝐶1212
170.2GPa 114.9GPa 61.0GPa

 Flow rule 𝛾̇0 𝜏F 𝜏D 𝑚
0.001 s−1 12MPa 4MPa 20

4.  Computational investigations

4.1.  Example microstructure

We investigate microstructure generation for polycrystalline copper. For the probability distribution of crystallite equivalent 
diameters, we assume a log-normal distribution, as typically observed in experimental results [80]. Following Kuhn et al. [51], we 
set the mean of the log-normal distribution to unity and assume a standard deviation of

√

⟨𝐷2
⟩ − ⟨𝐷⟩

2 = 0.15. (4.1)

The crystallite volume 𝑉  is related to the equivalent diameter 𝐷 by the relation
𝑉 = 𝜋

6
𝐷3. (4.2)

The logarithm of a log-normally distributed value is normally distributed with mean 𝜇 and standard deviation 𝜎. The corresponding 
parameters of the volume distribution read

𝜇𝑉 = log
(𝜋
6

)

+ 3𝜇𝐷, (4.3)

𝜎𝑉 = 3𝜎𝐷. (4.4)

The mean and standard deviation of a log-normally distributed value compute as

⟨𝑉 ⟩ = 𝜇𝑉 +
𝜎2𝑉
2
, (4.5)

√

⟨𝑉 2
⟩ − ⟨𝑉 ⟩

2 =
√

(

exp
(

𝜎2𝑉
)

− 1
)

exp
(

2𝜇 + 𝜎2
)

. (4.6)

We re-normalize the volume distribution to a mean of 1, leading to a standard deviation of roughly
√

⟨(𝑉 ∗)2⟩ − ⟨𝑉 ∗
⟩

2 = 0.15. (4.7)

This distribution is illustrated in Fig. 2.
We consider copper with a rolling texture as obtained after cold-rolling to a thickness reduction of 28%. The texture data was 

obtained in a previous work [81], using a Taylor–Lin [82,83] texture simulation, i.e., by prescribing a homogeneous deformation 
process to initially randomly oriented crystallites. The material model used is slip-based crystal plasticity with the slip systems 
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Fig. 4. Copper rolling texture pole figures based on samples interpolated with a Mises–Fischer Kernel and a half-width of 5◦.

Fig. 5. Pole figures reconstructed using texture coefficients of order up to 10.

{111}⟨110⟩, as is typical for an FCC lattice. The slip rate 𝛾̇𝛼 in system 𝛼 is modeled using a Chaboche model [84],

𝛾̇𝛼 = 𝛾̇0 sgn
(

𝜏𝛼
)

⟨

|

|

𝜏𝛼|| − 𝜏F
𝜏D

⟩𝑚

. (4.8)

Material parameters for the Chaboche slip rate and the elastic stiffness with respect to the single crystal lattice vectors are given 
in Table 1. For the viscoplastic large-deformation simulation, hardening is neglected. For more details on the Taylor–Lin texture 
simulation, we refer to the more detailed explanation in the work [81].

The texture simulations result in 11 000 discrete orientations representing the rolled copper texture. To obtain a continuous ODF 
for visualization purposes, we interpolate the discrete measure (2.22) with a Mises–Fisher kernel

𝑓𝛼(𝑸) =
exp

(

𝜅𝑸𝛼 ⋅𝑸
)

∫𝑆𝑂(3) exp
(

𝜅𝑸𝛼 ⋅𝑸
)

d𝜇iso
, 𝜅 =

log (2)
1 − cos (𝑤)

, (4.9)

with a half-width 𝑤 = 5◦. We visualize the interpolated texture by computing (1,0,0) and (1,1,1) pole figures, which are stereographic 
projections of the ODF values associated with the (1,0,0) and (1,1,1) lattice vectors, respectively [85]. The resulting figures are shown 
in Fig. 4, with the rolling direction at 0◦. Note that the pole figures exhibit the typical texture expected of pure copper [86].
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Table 2 
Computational effort of generating the baseline microstructure.

 Sampled property  Volume fractions  Orientation  Tessellation
 Total time 0.001 s 25.4 s 82.8 s
 Optimization steps  – 37 26 (outer) and 251 (inner)

Fig. 6. Convergence behavior of texture coefficient error minimization for the Barzilai–Borwein method compared to a gradient descent algorithm 
with a step size of 500, 1000, 1500 or 2000. On the left, convergence is shown for the baseline microstructure parameters, while on the right, only 
texture coefficients up to sixth order are prescribed.

As discussed in Section 2, this texture can be approximately quantified as a finite set of texture tensors. We use cubic deviatoric 
basis tensors up to tenth order as listed in Appendix D, and compute texture coefficients directly from the samples using Eq. (2.33). 
For visualization purposes, we use the polynomials (2.37) to reconstruct approximate pole figures as shown in Fig. 5. Note that 
in this visualization, we assume all texture coefficients of higher order are zero, which is not the case for the real samples or the 
microstructures which will be generated in the following. Nonetheless, the visualization is sufficient to observe that the set of cubic 
polynomials up to order ten seems to approximate the pole figures of the interpolated texture well enough to reproduce salient 
features.

4.2.  Performance of the microstructure generation algorithm

We investigate the performance of the microstructure generation algorithm in terms of total time and steps taken. All time mea-
surements were recorded on a laptop computer with an Intel i7 CPU and 64GB RAM. As the code is not parallelized, only one core 
is used.

We begin by evaluating the microstructure generator for the copper material discussed in the previous section. We generate a 
8192-crystallite-microstructure with a normalized volume standard deviation of 0.47 and prescribed texture coefficients up to order 
ten, as illustrated in Fig. 3. The tolerance of the texture coefficient error is set to 10−8, for the weight error to 10−5, and for the 
centroidality error to 10−4. The computational effort to achieve these tolerances is summarized in Table 2. The volume fraction 
sampling, involving no optimization, takes negligible time. Both orientation and tessellation sampling require double-digit seconds. 
As the tessellation optimization procedure we use was investigated in detail by Kuhn et al. [74], we focus on the impact of various 
optimization parameters on the orientation sampling.

For orientation sampling, we compare the Barzilai–Borwein optimization algorithm with the gradient descent algorithm. For the 
gradient descent algorithm, we choose four different step size values, 500, 1000, 1500 and 2000. As illustrated in Fig. 6, the conver-
gence speed of the gradient descent algorithm increases with the step size, until a critical value is reached, for which convergence is 
no longer monotonic. For prescribed texture coefficients up to tenth order, a step size of 1500 exceeds that critical value, while for 
texture coefficients up to sixth order, it is the quickest choice among those investigated. We conclude that the choice of step size is 
critical and depends in a complex manner on the problem parameters. The Barzilai–Borwein method avoids the problem of choosing a 
fixed step size. As can be seen particularly for the baseline microstructure, there does not necessarily exists an optimal fixed step size, 
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Fig. 7. Convergence behavior of the orientation sampling procedure 
for the example material with different numbers of crystallites.

Fig. 8. Computation time per orientation optimization step depending 
on the number of crystallites.

Fig. 9. Convergence behavior of the orientation sampling procedure 
for different prescribed texture orders.

Fig. 10. Computation time per orientation optimization step depend-
ing on the prescribed texture order.

such that the adaptable step size of the Barzilai–Borwein method is a major advantage. In all considered cases, the Barzilai–Borwein 
method leads to convergence in the fewest steps.

In Fig. 7, the convergence behavior of the orientation optimization problem is shown for different numbers of crystallites. The 
microstructure with the lowest amount of crystallites, 64, takes 74 steps to convergence, as the few crystallites present are heavily 
constrained by the prescribed texture coefficients up to order ten. With increasing numbers of crystallites, convergence becomes 
easier to achieve. Above roughly 500 crystallites, no further significant reduction in steps taken is observed. As shown in Fig. 8, the 
time required for each optimization step increases linearly in the number of crystallites.

Next, we consider the influence of the prescribed texture coefficients. As discussed in Section 3.4, the algebraic operations involved 
in both the residual and the gradient calculations are asymptotically cubic in the tensor order. This cubic relationship holds for the 
finite tensor orders under consideration as well, as shown in Fig. 10. The texture order also influences the convergence behavior, as 
shown in Fig. 9. Prescribing additional texture tensors excludes previously viable solutions. As the set of solutions shrinks, more steps 
are required to reach convergence.

In addition to texture order, the convergence behavior is influenced by texture strength. We decrease the sharpness of the texture 
by scaling each texture coefficient by the factor 𝜃 ∈ [0, 1]. In terms of the probability measure 𝜇, this is equivalent to a convex 
combination of the existing measure with the isotropic measure, weighted as

𝜇(𝜃) = 𝜃𝜇copper + (1 − 𝜃)𝜇iso. (4.10)

In Fig. 11, the number of required steps to convergence is shown to decrease with a decreasing texture anisotropy factor 𝜃.
Finally, we discuss the influence of grain size variance. For the tessellation sampling procedure, increasing the grain size variance 

has a large effect on the number of optimization steps [74]. For the baseline microstructure example with a normalized volume 
standard deviation of 0.47, we observe that a total of 251 inner optimization steps are required. If the standard deviation vanishes, 
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Fig. 11. Convergence behavior of the orientation sampling procedure 
given different texture strengths 𝜃 (4.10).

Fig. 12. Orientation optimization convergence for different normal-
ized grain volume standard deviations (4.7).

yielding an equal-sized grain distribution, only 6 outer steps and 17 inner steps are necessary to reach the same centroidality and 
weight tolerances. However, the number of orientation optimization steps remains roughly the same, decreasing from 37 to 30. In 
Fig. 12, the optimization convergence is shown for the baseline microstructure parameters and three different standard deviations. 
We note that convergence is reached even for a normalized volume standard deviation of 2, for which the randomly generated volume 
fraction samples span eight orders of magnitude.

4.3.  Elastic homogenization

We investigate the influence of texture coefficients on the effective stiffness of a linear elastic polycrystal. Since the convergence 
rate of the orientation sampling procedure appears to depend heavily on the number of prescribed texture coefficients, we seek to 
find out whether some higher-order texture coefficients can be neglected when generating microstructures for linear elastic homog-
enization. As an example material, we use copper with the stiffness given in Table 1. The microstructures under consideration are 
centroidal Laguerre tessellations generated using the algorithm described in Section 3. Each microstructure is converted to a voxel 
representation by evaluating the characteristic function (3.2) on an equally-spaced grid.

We compute the apparent stiffness (2.8) of the generated microstructures using an in-house numerical homogenization code 
based on the fast-Fourier-transform (FFT) method. The local stress and strain fields are discretized using the staggered grid discretiza-
tion [87]. To solve the discretized system, we use the conjugate gradient method [88]. For each microstructure, we perform six 
simulations with applied strains that are pairwise orthogonal to each other, then reconstruct the effective stiffness from the computed 
effective stresses.

Before investigating the influence of texture coefficients, we perform a resolution study using microstructures with prescribed 
vanishing texture coefficients up to order ten. As no non-vanishing texture coefficients are prescribed, in the infinite-volume limit, 
the microstructures reach an isotropic orientation probability measure 𝜇iso, which we take as the ground truth of this resolution study. 
For symmetry reasons, the ground truth effective stiffness is isotropic. Because the compressive behavior of a cubic single crystal is 
independent of its orientation, the effective compression modulus is directly available from the local stiffness properties as

𝐾̄ = 1
3
(

𝐶1111 + 2𝐶1122
)

. (4.11)

The effective shear modulus of the ground truth ensemble is not known, which is why we approximate it as the apparent shear 
modulus of a microstructure consisting of 16 384 crystallites discretized using 1024 voxels each, for a total resolution of 2563 voxels. 
We compute this effective shear modulus by projecting the stiffness via

𝐺̄ = 1
10

ℂ̄ ⋅ ℙ′. (4.12)

We define the relative stiffness error of a computationally homogenized apparent stiffness ℂ̄app as

𝑒 =
‖ℂ̄app − ℂ̄‖

‖ℂ̄app‖
. (4.13)

The apparent stiffness naturally splits into an isotropic projection and an anisotropic part,

ℂapp,iso = 3𝐾̄ℙ◦ +
ℂ̄app ⋅ ℙ′

5
ℙ′, (4.14)

ℂapp,aniso = ℂapp − ℂapp,iso. (4.15)
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Fig. 13. Deviation from isotropy (left) and shear modulus error (right) for microstructures with 8192 crystallites and varying numbers of voxels 
per crystallite, with 100 realizations each. The reference shear modulus for the shear modulus error is obtained from one simulation with 16,384 
crystallites using a resolution of 1024 voxels per crystallite.

In our simulations, we find that the apparent compression modulus 𝐾̄ is identical for all simulations to within the tolerance of the 
solver, as expected in light of Eq. (4.11). Based on the stiffness decomposition, we define the shear modulus error and the deviation 
from isotropy,

𝑒𝐺 =
‖ℂapp,iso − ℂ̄‖

‖ℂapp‖
=

2
√

5|𝐺̄app − 𝐺̄|
‖ℂapp‖

, (4.16)

𝑒aniso =
‖ℂapp,aniso‖
‖ℂapp‖

. (4.17)

We note that the deviation from isotropy does not depend on the reference stiffness.
We begin with a resolution study. As shown in Fig. 13, the mean deviation from isotropy is roughly 0.08% for microstructures 

with as few as four voxels per crystallite. With increasing resolution, the deviation from isotropy decreases further to around 0.04%. 
The mean shear modulus error is significantly lower at roughly 0.01%, and does not decrease significantly with increasing resolution. 
Presumably, a higher number of crystallites, e.g., a larger cell size, would be required to reduce the error further. We conclude that 
even for low resolutions, high stiffness accuracy can be reached.

Next, we study the impact of the number of crystallites, i.e., the size of the volume element, which influences whether the volume 
element is representative. In Fig. 14, the anisotropic and shear modulus errors decrease as the number of crystals increases. The 
initial mean deviation from isotropy is 0.4%, which reduces to about 0.04%. The shear modulus error is lower than the deviation 
from isotropy for every considered set of parameters. It decreases significantly until it reaches a value of about 0.4% at roughly 2048
crystallites, after which a further decrease cannot be conclusively observed. For both error values, the effect of increasing the number 
of crystallites appears greater than the effect of increasing the resolution.

After investigating the resolution dependence of the isotropic state, we turn our attention to textured polycrystals. We seek to 
quantify the influence of higher-order texture tensors on the effective stiffness for the copper example microstructure. To do so, 
we prescribe all texture tensors up to a given order, and compute the relative stiffness error as in (4.13), where the ground truth 
stiffness ℂ computes as the statistical average of the effective stiffnesses of the 100 realizations with fully prescribed texture tensors. 
Simulation results with 8192 crystallites and 256 voxels per crystallite are visualized in Fig. 15. The microstructures without any 
prescribed texture coefficients, which do not take texture into account at all, show a sizable stiffness error of roughly 1.35%. The 
fourth-order texture shows a slightly increased mean error of roughly 0.034% versus 0.026% for all higher-order microstructures. In 
addition to the visualized mean errors, we also observe a discrepancy between the averaged stiffnesses for each order, which is also 
roughly 1.35% for the zeroth-order results, 0.02% for the fourth-order results, and negligible for the other orders. This suggests that 
neglecting texture coefficients of fourth and sixth order induces a systematic error, not only a random error. For the material under 
consideration, prescribing texture tensors of eighth and higher order does not lead to a measurable improvement in accuracy.

Note that there is an established hypothesis in homogenization theory of polycrystals that the effective stiffness tensor depends 
only on texture tensors of up to fourth-order for weakly anisotropic materials [39]. In light of our results, it appears that copper is 
not weakly anisotropic (see Huang et al.  [89]). We note that the improvement in accuracy due to including the sixth-order texture 
coefficient is rather small, although the corresponding coefficient is large.
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Fig. 14. Deviation from isotropy (left) and shear modulus error (right) for microstructures with varying numbers of crystallites resolved at 512 
voxels per crystallite, with 100 realizations each. The reference shear modulus for the shear modulus error is obtained from one simulation with 
16,384 crystallites using a resolution of 1024 voxels per crystallite.

Fig. 15. Stiffness error for the copper example microstructure with prescribed texture tensors up to the given order. 100 simulations were performed 
for each order, with 8192 crystallites and 256 voxels per crystallite.

The Zener ratio [90]

𝑍 =
2𝐶1212

𝐶1111 − 𝐶1122
. (4.18)

for the elastic constants of copper given in Table 3 is roughly 2.21. Values far from unity indicate high anisotropy. To study the 
influence of the degree of anisotropy, we modify the Zener ratio, keeping the isotropic part of the single crystal stiffness, the moduli

𝐾 = 𝐶1111 + 2𝐶1122, (4.19)

𝐺 = 2
5
(

𝐶1111 − 𝐶1122
)

+ 6
5
𝐶1212, (4.20)

constant. The modified stiffness components compute as 

𝐶∗
1111 =

15 𝐺 + 3 𝐾𝑍∗ + 2𝐾
9(3𝑍∗ + 2)

, (4.21)

𝐶∗
1122 =

−15 𝐺 + 6 𝐾𝑍∗ + 4𝐾
18(3𝑍∗ + 2)

, (4.22)

𝐶∗
1212 =

5 𝐺𝑍∗

4(3𝑍∗ + 2)
. (4.23)
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Table 3 
Material parameters for single-crystal elastoviscoplasticity 
simulations of copper [92].

 Cubic stiffness 𝐶1111 𝐶1122 𝐶1212
170.2GPa 114.9GPa 61.0GPa

 Flow rule 𝛾̇0 𝜏0 𝜏D 𝑚
0.001 s−1 6.5MPa 8MPa 20

 Hardening 𝜃0 𝜃∞ 𝜏∞
250MPa 14MPa 113.5MPa

Fig. 16. Stiffness error for the example microstructure with modified Zener ratios 𝑍∗ = 10 (left) and 𝑍∗ = 0.1 (right) with prescribed texture tensors 
up to the given order. 100 simulations were performed for each order, with 8192 crystallites and 256 voxels per crystallite.

In Fig. 16, the stiffness error (4.13) is visualized for modified Zener ratios 𝑍∗ = 10 and 𝑍 = 0.1. These strongly anisotropic values serve 
as extremes of a range which covers most cubic materials, including the commonly encountered forms of elementary metals [91]. 
For either of the materials with modified Zener ratios, we find that the errors are significantly larger than for copper. However, the 
relative influence of the higher-order texture tensors remains the same. At extremely high anisotropy values, higher-order texture 
tensors might have a non-negligible influence on the stiffness. In the range of anisotropy investigated above, no higher-order influence 
is evident. We conclude that using texture tensors up to order six suffices for linear elastic homogenization of commonly encountered 
cubic materials.

4.4.  Onset of plastic yield

The previous investigations confirmed that the influence of texture coefficients of order eight and above seems negligible for 
elasticity. In the section at hand, we investigate the related question for plastic properties of polycrystals. In particular, we investigate 
the transition between elastic and plastic regimes, i.e., plastic yielding.

Following experimental considerations, we define the yield stress 𝑅p𝑋 as the stress in tensile direction reached in a uniaxial 
tensile test once the plastic strain in tensile direction – quantified by the equivalent von Mises plastic strain – reaches the value 𝑋. 
For plastically anisotropic materials, the yield stress 𝑅p𝑋 depends on the tensile test direction 𝒏. Having observed a clear dependence 
of the anisotropic stiffness on the texture coefficient of fourth order in Section 4.3, we wish to quantify the influence of the individual 
texture coefficients on the plastic response of an anisotropic polycrystal.

We investigate this question via numerical homogenization of centroidal Laguerre tessellations of copper. We model the material 
using crystal elastoviscoplasticity with a Chaboche overstress model for the viscoplastic flow rule (4.8), with a linear-exponential 
hardening curve

𝜏F = 𝜏0 + (𝜏∞ − 𝜏0)
(

1 − exp
(

−
𝜃0 − 𝜃∞
𝜏∞ − 𝜏0

𝛾
))

+ 𝜃∞𝛾, (4.24)

where 𝛾 refers to the accumulated plastic slip over all 𝑁 slip systems, with rate

𝜏̇ =
𝑁
∑

𝑘=1

|

|

𝛾̇𝑘||. (4.25)
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Fig. 17. Stress-plastic-strain-curve with 𝜀p ⋅ (𝑛 ⊗ 𝑛) = 0.2% marked as a dashed line.

We use the efficient numerical implementation of this material model by Wicht et al. [92]. Material parameters for copper are given 
in Table 3. As in the elastic computations, we discretize the voxelized microstructure on a staggered grid [87]. For the solver, we use 
a dual Newton-CG algorithm [93,94].

Given that our example material exhibits a rolling texture, we may imagine it as sheet metal. In this case, the yield stress anisotropy 
is of interest particularly in the sheet plane. Consequently, we perform tensile tests with a stress direction of

𝒏 = 𝑹3(𝜔)𝒆1, (4.26)

where 𝑹3(𝜔) is a rotation around the sheet normal axis 𝒆3 by an angle 𝜔. For 𝜔 = 0◦, the loading direction is 𝒆1, while for 𝜔 = 90◦

it is 𝒆2. To compute the yield stress anisotropy, we perform tensile tests for each angle 𝜔 in 5◦ increments between those values. 
Each tensile test consists of ten loading steps up to a final effective strain of 0.25%. In Fig. 17, the resulting macroscopic stress in 
load direction is plotted versus the plastic strain in load direction. For the small deformations under consideration, the hardening is 
well-approximated by a linear hardening rule with a constant hardening modulus of 250MPa. The nonlinearity below 0.05% plastic 
strain is related to the elastic-plastic transition, where an increasing number of crystallites plastify [95]. We linearly interpolate the 
obtain stress-plastic-strain curves to approximate the stress at a plastic strain of 0.2%, i.e., 𝑅p0.2. Given the above results, a lower 
threshold plastic strain would also be appropriate, such as 0.05%. However, the value 𝑅p0.2 is commonly reported from experiments. 
For brevity, we denote 𝑅p0.2 as 𝑅.

We define the isotropic yield stress 𝑅iso as the mean yield stress

𝑅iso =
1
2𝜋 ∫

2𝜋

0
𝑅(𝜔) d𝜔, (4.27)

leaving an anisotropic remainder
𝑅aniso(𝜔) = 𝑅(𝜔) − 𝑅iso. (4.28)

We investigate the influence of the number of crystallites and voxels with a resolution study. As in the elastic case, the ground 
truth is an infinitely large polycrystal microstructure without prescribed texture tensors, leading to an isotropic orientation probability 
measure 𝜇iso. The anisotropic yield stress vanishes for the ground truth. As the isotropic yield stress is not known, we approximate it 
as the mean yield stress of the same reference microstructure as in the elastic case. We define the mean yield error

𝑒𝑅iso = 𝑅iso − 𝑅refiso (4.29)

and the yield deviation from isotropy

𝑒𝑅aniso =

√

∫

2𝜋

0
𝑅aniso(𝜔)2 d𝜔. (4.30)

In Fig. 18, both errors are shown for microstructures with 8192 grains each and different resolutions. The yield deviation from isotropy 
is larger than the mean yield error in every case. As the number of voxels per crystallite increases, the means of both errors decreases. 
However, the trend is not particularly pronounced, suggesting that, even more so than in the elastic case, increasing the number of 
voxels per crystallite only brings small increases in accuracy.

We investigate the influence of the number of crystallites. Results with 512 voxels per crystallite and different numbers of crystal-
lites are shown in Fig. 19. As in the elastic simulations, the number of crystallites has a large influence on the observed yield deviation 
from isotropy, which reduces with increasing numbers of crystallites from roughly 3% to roughly 0.2%. The mean yield error is lower 
than the yield deviation from isotropy error for every realization, and appears to plateau beyond roughly 1024 crystallites, at a value 
of roughly 0.06%.
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Fig. 18. Anisotropic (left) and isotropic (right) yield errors for microstructures with 8192 crystallites resolved using various numbers of voxels per 
crystallite, with ten realizations each. The reference isotropic yield stress for the isotropic errors was computed using one simulation with 16,384 
crystals and a resolution of 1024 voxels per crystallite.

Fig. 19. Yield deviation from isotropy (left) and mean yield error (right) for microstructures with varying numbers of crystallites resolved at 512 
voxels per crystallite, with 100 realizations each. The reference isotropic yield stress for the isotropic errors was computed using one simulation 
with 16,384 crystals and a resolution of 1024 voxels per crystallite.

In Fig. 20, the yield anisotropy is shown for different prescribed texture tensors. The shown yield values compute as the averaged 
yield stresses of 100 simulations each with 8162 crystallites and 256 voxels per crystallite. Unlike the stiffness anisotropy, the yield 
anisotropy is not well-approximated by prescribing only the fourth-order texture tensor. By including the sixth-order texture tensor, 
most relevant features of the yield surface appear to be incorporated. The tenth-order texture tensor is required to model a slight 
increase of the yield stress near the 30◦ angle.

In Fig. 21, yield errors are illustrated which compute as

𝑒𝑅 =

√

√

√

√

16
∑

𝑖=0

(

𝑅(𝜔𝑖) − 𝑅(𝜔𝑖)
)2. (4.31)

For the reference yield stiffness 𝑅(𝜔), the average of tenth-order results is used. The average error decreases monotonically with 
increasing prescribed texture order. This is unlike the linear elastic case, where no significant error reduction was observed for 
texture tensors higher than sixth order.
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Fig. 20. Uniaxial tensile yield stress in different load directions for the 
copper example microstructure with prescribed texture tensors up to 
the given order.

Fig. 21. Yield errors for the copper example microstructure with pre-
scribed texture tensors up to the given order.

Fig. 22. 𝑟-values in different load directions for the copper example 
microstructure with prescribed texture tensors up to the given order.

Fig. 23. Errors in the 𝑟-value for the copper example microstructure 
with prescribed texture tensors up to the given order.

In addition to anisotropic yield stresses, we investigate the 𝑟-value, a measure of plastic anisotropy commonly studied in sheet 
metal experiments and simulations. Following Hill [96], we define the 𝑟-value as the ratio

𝑟 = −
𝜀̇p𝑦𝑦
𝜀̇p𝑥𝑥

, (4.32)

where 𝜀̇p𝑥𝑥 denotes the plastic strain rate component in load direction and 𝜀̇p𝑦𝑦 the same in sheet-plane direction orthogonal to the 
loading. The 𝑟-values are computed for same steps as the yield stress, i.e., as the 𝑥-component of the plastic strain reaches 0.2%. 
The mean 𝑟-values computed over a hundred simulations – each with different prescribed texture orders – are shown in Fig. 22. As 
with the yield stress, including texture tensors up to order six appears sufficient to compute qualitatively accurate 𝑟-values, but for 
quantitative accuracy, including further texture tensors up to order ten is necessary.

In Fig. 23, errors in the 𝑟-values are illustrated, which compute as

𝑒r =

√

√

√

√

16
∑

𝑖=0

(

𝑟(𝜔𝑖) − 𝑟(𝜔𝑖)
)2. (4.33)

in direct analogy to the yield stress error (4.31). A similar dependence on the texture error is observed as in Fig. 21 for the yield 
errors. However, the 𝑟-value errors are quantitatively larger, with up to 10% error if texture is not taken into account at all.

We study the effect of single crystal elastic anisotropy by changing the Zener ratio (4.18), leading to modified stiffness compo-
nents (4.21) as computed for the elastic simulations. Fig. 24 visualizes yield stress errors for Zener ratios of 𝑍∗ = 10 (left) and 𝑍∗ = 0.1
(right). Comparing the results with those for copper in Fig. 21, we find that the change of Zener ratio does not strongly affect the 
error. A minor change of the fourth-order influence for the low Zener ratio 𝑍∗ = 0.1 is observed. Otherwise, the results for different 
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Fig. 24. Yield stress error for the example microstructure with modified Zener ratios 𝑍∗ = 10 (left) and 𝑍∗ = 0.1 (right) with prescribed texture 
tensors up to the given order. 100 simulations were performed for each order, with 8192 crystallites and 256 voxels per crystallite.

Zener ratios are indistinguishable. We conclude that the relative influence of the various texture orders of the onset of plastic yielding 
does not depend strongly on the degree of elastic anisotropy.

Based on our results, no general recommendation can be made to restrict texture tensors to less than tenth order. Consequently, 
efficient implementations of texture constraints on orientation sampling are critical to accurate microstructure generation.

5.  Summary and conclusion

This work presents an algorithm for generating polycrystal microstructures with specified texture tensors. A special feature of this 
algorithm is the efficient performance for higher-order texture tensors, which allows us to investigate the influence of higher-order 
texture terms on effective properties of polycrystals computationally. We used the algorithm to investigate the anisotropy of stiffness 
and yield stress of rolled copper.

Prescribing texture tensors increases the accuracy of polycrystal simulations significantly. Notably, the microstructure generation 
procedure is significantly less computationally expensive than the homogenization procedure, making this accuracy improvement 
essentially free in terms of computational resources. As discussed in Section 2, prescribing texture coefficients is equivalent to a 
quadrature problem, suggesting a straightforward explanation for the increased accuracy: With properly chosen quadrature points, 
polynomials can be integrated exactly. Some aspects of computational homogenization involve integrals. Apparently, some of the 
involved functions are well-approximated by polynomials. As discussed in Appendix B, we did not manage to provide a proof that the 
quadrature problem with prescribed weights admits a solution with a finite number of crystallites. Our algorithm, as demonstrated in 
Section 4.2, is nonetheless capable of finding accurate computational solutions for this problem. Consequently, it may be possible to 
prove the existence of a solution with a finite lower bound on the number of crystallites. We note that in our approximate quadrature 
construction in Appendix B, we used the very general result of the Carathéodory theorem, which applies to any convex hull. Perhaps 
a proof using specific features of the problem at hand, such as the underlying rotation group 𝑆𝑂(3), is possible.

Matching texture coefficients in orientation sampling does not ensure that the generated microstructure is perfectly representative. 
As with any approach relying entirely on the ODF, a one-point statistic, spatial correlations between different grains are neglected. 
Correspondingly, we expect some remaining errors in the effective properties. Generally, we observe that the influence of low-order 
texture tensors is larger than that of higher-order texture tensors, where the rate at which the influence decreases depends on the 
material property which is being investigated. If texture tensors of sufficiently high order are taken into account, the non-texture 
error overshadows the error due to texture. While a texture model using only a finite number of coefficients may not be exact in 
the strict sense, it can still be sufficiently accurate that prescribing even higher coefficients brings no further improvements. For our 
example of rolled copper, we investigated these sufficient texture orders.

In linear elasticity, it appears that prescribing the fourth-order texture tensor takes care of the bulk of the texture-induced error. 
Indeed, many analytical homogenization approaches take only the fourth-order texture tensor into account [40]. We do however 
observe a further small influence of the sixth-order texture tensor, suggesting that the analytical approaches may be refined by 
including a sixth-order term. Prescribing texture tensors beyond order six brings no accuracy improvement in our simulation. The 
achieved stiffness error equals 0.026%, which is already very small. We therefore conclude that prescribing texture tensors up to order 
six is sufficient for linear elastic homogenization of the material under consideration.

Studying the anisotropy of the macroscopic yield stress in the same material, we find that sixth-order texture tensors are not 
sufficient. Indeed, up to order ten, we observe a noticeable influence of prescribing further texture tensors not only on the value of 
the error, but also on the shape of yield anisotropy. Further studies are necessary to show whether the remaining error of roughly 0.6%
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can be further reduced by prescribing texture tensors of even higher order. We conclude that for nonlinear properties, prescribing 
higher-order texture tensors is crucial for accurate simulations.

The presented texture orientation optimization algorithm is not restricted to polycrystal microstructure generation methods based 
on tessellation models. More precisely, each polycrystal microstructure generation algorithm which assigns orientations in a post-
processing step can be straightforwardly modified to use our orientation sampling algorithm.

As our orientation sampling algorithm takes only ODF-based statistics into account, it disregards higher-order correlation func-
tions [12]. Deka et al. [19] propose an algorithm to incorporate misorientation statistics [18] of neighboring grains for microstructures 
with grains of equal size. Their algorithm re-assigns previously generated grain orientations as a post-processing step, making it com-
patible with our method. A more general approach to higher-order correlation may involve adding spatial correlation terms to the 
objective function of the orientation optimization problem. Either of these approaches seem viable for further study.
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Appendix A.  Approximating arbitrary continuous functions on 𝑺𝑶(𝟑) using polynomials

The goal of this section is to use the polynomials ∞ (2.27) to approximate arbitrary continuous functions 𝑔 ∈ 𝐶0(𝑆𝑂(3)) on the 
group 𝑆𝑂(3) to arbitrary precision, i.e., to show that for any continuous function 𝑔 ∈ 𝐶0(𝑆𝑂(3)) and any margin of error 𝛿 > 0, there 
is a polynomial 𝑝 such that the estimate

|𝑝(𝑄) − 𝑔(𝑄)| ≤ 𝛿 (A.1)

holds for any element 𝑸 ∈ 𝑆𝑂(3). If this property holds, the polynomials are dense in the continuous functions 𝐶0(𝑆𝑂(3)).
To establish that the polynomials are dense (A.1), we resort to the Stone-Weierstrass Theorem. As a subset of continuous functions 

∞ ⊆ 𝐶0(𝑆𝑂(3)), the polynomials on the topological space 𝑆𝑂(3) are dense provided the following two conditions are valid:

(A) The set ∞ forms a subalgebra of the space 𝐶0(𝑆𝑂(3)), i.e., the set ∞ is closed under linear combinations and multiplication.
(B) The set ∞ separates points, i.e., if for any two distinct orientations on the manifold 𝑆𝑂(3) there exists a polynomial which has 

different values for the two points.

Condition (A) results directly from the fact that the set of tensors of arbitrary order are closed under addition and multiplication. 
The sum of two polynomials 𝑝1, 𝑝2 is a polynomial by definition (2.26). Two arbitrary polynomials 𝑝1 and 𝑝2 with coefficient pairs 
(𝔸𝑚1 ,𝔹

𝑚
1 ) and (𝔸𝑛2,𝔹𝑛2) have the product 
𝑝1(𝑸) 𝑝2(𝑸) =

(

𝔸𝑚1 ⊗𝔸𝑛2
)

⋅
(

𝑸 ⋆
(

𝔹𝑚1 ⊗ 𝔹𝑛2
))

, (A.2)

which is a polynomial by definition (2.26) because it is represented by the coefficient pair (𝔸𝑚1 ⊗𝔸𝑛2,𝔹
𝑚
1 ⊗ 𝔹𝑛2). For polynomials given 

by sums of other polynomials, a similar result follows after evaluating the distributive law. The set of polynomials ∞ is closed under 
addition and multiplication, therefore forming a subalgebra of the continuous functions 𝐶0(𝑆𝑂(3)).

We establish the validity of condition (B) constructively. For a fixed orientation 𝑸1, we consider the linear polynomial
𝑝 ∶ 𝑆𝑂(3) → R, 𝑝(𝑸) = 𝑸1 ⋅𝑸, (A.3)
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where ⋅ denotes the inner product on the space of second-order tensors R3⊗2, i.e., a full tensor contraction. Due to the Cauchy-Schwarz 
inequality,

𝑝(𝑸) = 𝑸1 ⋅𝑸 ≤ |

|

𝑸1 ⋅𝑸|

|

≤ ‖𝑸1‖‖𝑸‖. (A.4)

The Frobenius norm ‖𝑸‖ of an orthogonal 3 × 3 matrix is 
√

3. Consequently, the upper bound
𝑝(𝑸) ≤ 3, (A.5)

holds, and the equality 𝑝(𝑸) = 3 is satisfied under the condition 𝑸 = 𝑸1 only. Therefore, the polynomial 𝑝 separates the orientation 
𝑸1 from any other orientation, and condition (B) follows. As both prerequisites (A) and (B) of the Stone-Weierstrass Theorem are 
satisfied, the polynomials are dense in the continuous functions 𝐶0(𝑆𝑂(3)).

Appendix B.  Existence of a solution to the quadrature problem

We consider the moment-matching problem introduced in Section 2.2, and discuss the existence of a solution. Without prescribed 
weights, we find an existence proof by adapting prior results for the related fiber orientation tensor realization problem. However, 
with prescribed weights, we find only an approximate solution using an excessively large amount of crystallites.

First, we show the existence of a solution for a simplified quadrature problem with non-prescribed weights. We use a similar 
approach to Bauer et al. [97], who investigated a related realizability problem for fiber orientation tensors. Formally stated, we 
wish to show that for a given Borel probability measure 𝜇, there exists a set of 𝑚 orientations 𝑸𝛽 ∈ 𝑆𝑂(3) with associated weights 
𝑤𝛽 ∈ [0, 1] such that

𝑚
∑

𝛽=1
𝑤𝛽 = 1, (B.1)

∫𝑆𝑂(3)
𝑝(𝑸) d𝜇(𝑸) =

𝑚
∑

𝛽=1
𝑤𝛽𝑝(𝑸𝛽 ) for all 𝑝 ∈ 𝑛, (B.2)

where 𝑛 denotes the set of 𝑛th order polynomials (2.26). In other words, we seek to approximate a given Borel measure 𝜇 by a 
convex combination of a finite number of Dirac measures 𝛿𝑸𝛽  in such a way that polynomial functions up to degree 𝑛 are integrated 
exactly. Convex sums of Dirac measures are dense in the space of Borel probability measures with respect to the weak-∗ topology, 
which is a classical result of functional analysis, e.g., as a direct consequence of the Krein-Milman theorem [98]. Analogously to the 
statement (A.1), this fact implies that for the measure 𝜇, there is a sequence 𝜇𝛿,𝓁 , such that for every function 𝑝 ∈ 𝐶0(𝑆𝑂(3)), we have

∫𝑆𝑂(3)
𝑝(𝑸) d𝜇𝛿,𝓁(𝑸) → ∫𝑆𝑂(3)

𝑝(𝑸) d𝜇(𝑸) as 𝓁 → ∞. (B.3)

According to Eq. (2.22), each discrete measure 𝜇𝛿,𝓁 is a convex combination of 𝑟𝓁 Dirac measures 𝛿𝑸𝛽,𝓁  with associated weights 𝑤𝛽,𝓁 . 
Substituting the convex sum into Eq. (B.3) leads to 

𝑟𝓁
∑

𝛽=1
𝑤𝛽,𝓁 𝑝(𝑸𝛽,𝓁) → ∫𝑆𝑂(3)

𝑝(𝑸) d𝜇(𝑸) as 𝓁 → ∞. (B.4)

The next step is to show that if we restrict the approximation to a finite-dimensional space of functions 𝑝, there is an upper bound to 
the number of Dirac measures 𝑟𝑙. We use the polynomials of up to 𝑛th order 𝑛, which form a vector space of dimension

𝑑 =
𝑛
∑

𝑖=0
(2𝑖 + 1)2 = 1

3
(1 + 𝑛)(1 + 2𝑛)(3 + 2𝑛), (B.5)

which follows explicitly as the sum of the number of independent coefficients of the texture tensors {𝕋 2𝑖
|𝑖 ≤ 𝑛}, see (2.36). By choosing 

tensorial bases as discussed in Section 2.3, we identify basis polynomials {𝑝𝑖|𝑖 ≤ 𝑑} which span the space of 𝑛th order polynomials 
𝑛. We require Eq. (B.3) to hold for precisely those basis polynomials and write 

𝑟𝓁
∑

𝛽=1
𝑤𝛽,𝓁𝑝𝑖(𝑸𝛽,𝓁) → ∫𝑆𝑂(3)

𝑝𝑖(𝑸) d𝜇(𝑸) as 𝓁 → ∞ for all 𝑖 ∈ {1, 2,… , 𝑑}. (B.6)

We interpret the basis functions 𝑝𝑖 as components of a vector-valued function 𝒑 ∶ 𝑆𝑂(3) → R𝑑 . Consequently, the values 𝑝𝑖(𝑸𝛽,𝓁) ∈ R
are components of a vector 𝒑𝛽,𝓁 ∈ R𝑑 . Carathéodory’s theorem [99] states that any element in the convex hull Conv(𝐻) of a set 
𝐻 ⊂ R𝑑 in a finite-dimensional space with dimension 𝑑 can be represented by a convex combination of elements of a finite subset 
𝐼 ⊆ 𝐻 with at most 𝑑 + 1 elements. In our case, the set 𝐻𝓁 is given by the set of polynomial value tensors {𝒑𝛽,𝓁}, containing 𝑟𝓁
elements. Since the left-hand side of Eq. (B.6) is an element of the convex hull Conv(𝐻𝓁), we find that a convex combination of at 
most 𝑑 + 1 elements is needed to represent it. We write

∑

𝒕∈𝐼𝓁

𝑤𝒕𝒕 → ∫𝑆𝑂(3)
𝒑(𝑸) d𝜇(𝑸) as 𝓁 → ∞. (B.7)
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Fig. 25. Schematic illustration of three different quadrature approaches and their weights, with three orientations, a numerator 𝑀 = 10 and 𝑁 = 4
prescribed volume fractions.

The weight-value pairs (𝑤𝒕, 𝒕) are points in the product space [0, 1] × 𝑆𝑂(3). Consequently, the discrete measure on the left-hand side 
of Eq. (B.7) is characterized by a point in the space [0, 1]𝑑+1 × 𝑆𝑂(3)𝑑+1, which is compact. Being uniquely parametrized by a sequence 
in a compact space, the discrete measures contain a convergent subsequence. The limit of this subsequence as 𝓁 goes to infinity is 
again characterized by a point in the space [0, 1]𝑑+1 × 𝑆𝑂(3)𝑑+1 and yields the exact integral

∑

𝒕∈𝐼
𝑤𝒕𝒕 = ∫𝑆𝑂(3)

𝒑(𝑸) d𝜇(𝑸), (B.8)

with 𝐼 ⊂ R𝑑 containing at most 𝑑 + 1 elements. Thus, a finite number of quadrature points is sufficient to integratefactly.
However, this result holds only if the weights are not prescribed, whereas in our present case, the weights are given by volume 

fractions 𝑣𝛼 . We could not find an existence proof for polynomially exact quadratures with prescribed weights in the literature. To 
begin with, we discuss the case of 𝑀 equally-weighted quadrature points. From Eq. (B.8), we find a quadrature consisting of 𝑑 + 1
weighted orientations. Each weight 𝑤𝛽 ∈ [0, 1] can be approximated to arbitrary precision by a rational number, i.e., for a given 
denominator 𝑀 ∈ N, there exists a numerator 𝑞𝛽 ∈ N such that

|

|

|

|

𝑤𝛽 −
𝑞𝛽
𝑀

|

|

|

|

≤ 1
2𝑁

. (B.9)

For sufficiently large 𝑀 , this approximation becomes arbitrarily precise. When approximating the set of weights {𝑤𝛽}, we seek a set 
of numerators {𝑞𝛽} such that

𝑑+1
∑

𝛽=1
𝑞𝛽 =𝑀 (B.10)

holds. In Fig. 25(b), this approximation is illustrated for three quadrature points and a denominator of 𝑀 = 10.
The discussed technique for realizing equal volume fractions is readily modified to realize 𝑁 prescribed volume fractions 𝑣𝛼 . As 

illustrated in Fig. 25(c), we subdivide each of the 𝑀 = 10 equal-volume crystallites into 𝑁 sub-crystallites with volume fractions 
𝑣𝛼∕𝑀 . The final microstructure consists of 𝑀𝑁 crystallites and satisfies the prescribed crystallite sizes exactly, while satisfying the 
orientation statistics approximately, depending on the choice of the denominator 𝑀 . This constructive example, while involving an 
excessive number of crystallites, illustrates the general feasibility of solving the moment-matching problem with prescribed volume 
fractions.

Appendix C.  Symmetry properties of texture tensors

We discuss symmetry properties of the texture tensors introduced in Section 2.3. More precisely, we discuss the restrictions arising 
from material and statistical symmetries of a texture on its representation as a set of texture tensors. From these restrictions, we derive 
projector operators to compute symmetric texture tensors, allowing for efficient representation of symmetric textures.

Material symmetry requires that the crystal lattice is invariant under a subgroup of rotations

𝑆 ⊆ 𝑆𝑂(3). (C.1)

As the orientation statistics are meant to quantify the impact of lattice orientations on the material properties, only symmetry-invariant 
statistics are relevant. Therefore, we only need to consider polynomials respecting the invariance condition

𝑝𝑚𝑖 (𝑸) = 𝑝𝑚𝑖 (𝑸𝑹) for all 𝑹 ∈ 𝑆. (C.2)

Computer Methods in Applied Mechanics and Engineering 452 (2026) 118690 

26 



M. Krause et al.

Right-hand rotations apply to the texture tensors via

𝑝𝑚(𝑸𝑹) =
𝑚
∑

𝑛=0

1
2𝑛 + 1

𝕋 2𝑛 ⋅
(

𝑸×𝑛𝑹×𝑛), (C.3)

=
𝑚
∑

𝑛=0

1
2𝑛 + 1

(

𝕋 2𝑛𝑹×𝑛) ⋅𝑸×𝑛, (C.4)

where the multiplication between 2𝑛th order tensors is to be understood as a matrix-matrix multiplication between (2𝑛 + 1) × (2𝑛 + 1)
matrices. Right-hand symmetry restricts the texture tensor 𝕋 2𝑛 to a right-hand symmetric subspace. As a tensor space, this subspace 
admits a right-hand basis consisting of tensors 𝔻𝑛𝑆,𝑖 which satisfy the symmetry condition

𝑹 ⋆ 𝔻𝑛𝑆,𝑖 = 𝔻𝑛𝑆,𝑖 for all 𝑹 ∈ 𝑆. (C.5)

Depending on the symmetry class under consideration, the number of symmetric basis tensors 𝑘𝑆 (𝑛) is significantly reduced compared 
to the full (2𝑛 + 1) degrees of freedom. The associated tensorial texture coefficients

𝕍 𝑛𝑆,𝑖 = ∫𝑆𝑂(3)
𝑸 ⋆ 𝔻𝑛𝑖 d𝜇, 𝑖 ∈ {1, 2,… , 𝑘𝑆 (𝑛)} (C.6)

are not generally 𝑆-symmetric. Using them, we write the symmetric texture tensor 𝕋 2𝑛 explicitly as

𝕋 2𝑛 =
𝑘𝑆 (𝑛)
∑

𝑖=1
𝕍 𝑛𝑆,𝑖 ⊗ 𝔻𝑛𝑆,𝑖. (C.7)

As an example, we consider the cubic lattice symmetry group, which is generated by 90◦ rotations around the three lattice vectors. 
A cubic set of deviatoric basis tensors up to order ten is listed in Appendix D. There are only five cubic basis tensors of up to order 
ten, whereas, in the fully anisotropic case, 120 basis tensors would be required in total.

Statistical symmetries of the texture correspond to left-hand symmetries of the texture tensors, which reduce the number of 
components of the coefficient tensor 𝕍 𝑛 just as the material symmetries reduce the number of deviatoric basis tensors 𝔻𝑛. Of particular 
relevance is statistical isotropy, where the symmetry group 𝑆 (C.1) equals the full group 𝑆𝑂(3). Because no deviatoric tensors of non-
zero order are isotropic, statistical isotropy requires that all texture tensors of non-zero order vanish. 

Appendix D.  Cubic deviatoric basis tensors

The cubic deviatoric basis tensors are computed from the regular basis tensors by applying cubic symmetry, then re-
orthonormalizing using the Gram-Schmidt procedure [100]. For texture tensors up order eleven, this procedure yields one tensor 
𝔻𝑛C1 per order 𝑛 ∈ {0, 4, 6, 8, 9, 10} As the results are ambiguous in their signs, we list the values we used explicitly for completeness:

𝐷C1 = 1, (D.1)

𝔻C1 =
√

15
6

𝔻1 +

√

21
6

𝔻9, (D.2)

𝔻6
C1 = −

√

14
4

𝔻6
5 +

√

2
4

𝔻6
13, (D.3)

𝔻8
C1 =

√

195
24

𝔻8
1 +

√

21
12

𝔻8
9 +

√

33
8

𝔻8
17, (D.4)

𝔻9
C1 = −

√

42
12

𝔻9
4 +

√

102
12

𝔻9
12, (D.5)

𝔻10
C1 = −

√

1122
48

𝔻10
5 −

√

22
8

𝔻10
13 +

√

390
48

𝔻10
21. (D.6)
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