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ARTICLE INFO ABSTRACT

Keywords: We introduce an efficient computational procedure for generating polycrystalline microstructures
Microstructure generation which permits studying the influence of specific texture-tensor orders on the resulting effective
Polycrystals

mechanical response, both in the linear elastic and the inelastic case. The crystallographic tex-
ture of a polycrystalline material is described by the Orientation Distribution Function (ODF). For
practical computations, only the Fourier coefficients - called texture coefficients — of the ODF up
to a certain order are of interest. In the work at hand, we wish to investigate this microstructure-
property relationship. We interpret the task of approximating the texture coefficients of a mi-
crostructure realization as a moment-matching, i.e., quadrature, problem, and introduce efficient
techniques for generating finite sets of orientations which exactly conform to prescribed poly-
nomial texture terms. First, the microstructure morphology is generated via a well-established
Laguerre-tessellation-based approach. Subsequently, the crystal grains are assigned a finite set of
orientations which realize prescribed texture coefficients. We exploit the sparse representation
of the action of the rotation group .SO(3) on higher-order tensors to reduce the computational
expense from exponential to cubic in the tensor order.

We consider polycrystalline copper as an example material and study the influence of texture
terms of different polynomial order on the effective elastic properties and the anisotropy of initial
yielding. For a large ensemble of polycrystal microstructures, we find that the elastic properties
are mainly influenced by terms up to fourth order, whereas characterizing the yield function
accurately requires higher-order texture terms.

To encourage further study of the texture dependence of nonlinear material properties, we
provide an open-source python implementation of our algorithm.

Texture coefficients
Stochastic homogenization
Yield function
Moment-matching

1. Introduction
1.1. State of the art

Computational homogenization uses simulations to obtain the macroscopic behavior of heterogeneous materials based on an
explicit resolution of the underlying microstructure. Microstructures which arise from stochastic processes are modeled as stochas-
tic ensembles [1]. Computational homogenization operates on volume elements, i.e., realizations of the ensemble on cells of finite
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\begin {equation}Y = [0,L)^3 \subset \R ^3. \label {eq:cubiccell}\end {equation}
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\begin {equation}\div {\C _Y(\loc ) [\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{Y\bar {\strain }}(\loc )]} = {\bm {0}}, \quad \loc \in Y. \label {eq:localbalancelinearmomentum}\end {equation}
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\begin {equation}\C (\loc ) = {\bm {Q}}(\loc ) \star \C _{\tref }, \quad \loc \in \R ^3. \label {eq:deflocalstiffness}\end {equation}
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\begin {equation}\eavg {g} \quad \text {of a continuous function} \quad g: SO(3) \rightarrow \R . \label {eq:defstatistic}\end {equation}
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$f: SO(3) \rightarrow \R $


$\bm {Q}$


$f$


\begin {equation}f({\bm {Q}}) \geq 0, \quad {\bm {Q}} \in SO(3), \label {Xeqn11-2.11}\end {equation}


\begin {equation}\int _{SO(3)} f({\bm {Q}}) \d V({\bm {Q}}) = 1, \label {eq:defodf}\end {equation}
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\begin {equation}\int _{SO(3)} \d V({\bm {Q}}) = 1. \label {Xeqn13-2.13}\end {equation}


\begin {equation}\eavg {g} = \int _{SO(3)} g({\bm {Q}}) f({\bm {Q}}) \d V({\bm {Q}}). \label {eq:odfstatistic}\end {equation}
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\begin {equation}\C _Y(\loc ) = {\bm {Q}}_Y(\loc ) \star \C _r. \label {eq:defperiodiclocalstiffness}\end {equation}


$N$


${\bm {Q}}_\alpha \in SO(3), \alpha \in \{1,2,\ldots ,N\}$


$v_\alpha $


${\bm {Q}}_\alpha $


\begin {equation}v_\alpha > 0, \quad \sum _{\alpha =1}^N v_\alpha = 1. \label {eq:defvolumefractions}\end {equation}


$g: SO(3) \rightarrow \R $


\begin {equation}\yavg {g} = \sum _{\alpha =1}^N v_\alpha \, g({\bm {Q}}_\alpha ). \label {eq:discretestatistic}\end {equation}
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\begin {equation}\stress (\loc ) = \C (\loc ) [\bar {\strain } + \nabla ^{\text {S}} {\bm {u}}_{\bar {\strain }}(\loc ) - \strainp (\loc )], \label {Xeqn18-2.18}\end {equation}
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\begin {equation}\int _{SO(3)} \d \mu = 1. \label {eq:munormalization}\end {equation}
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\begin {equation}\int _{V} \d \mu _\iso = \int _{V} \d V({\bm {Q}}) \quad \text {for all} \quad V \in \mathcal {F}. \label {Xeqn20-2.20}\end {equation}
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\begin {equation}\eavg {\mu _i, g} = \int _{SO(3)} g({\bm {Q}}) \d \mu _i({\bm {Q}}) \label {Xeqn23-2.23}\end {equation}
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\begin {equation}\eavg {\mu _1, g} = \eavg {\mu _2,g} \label {Xeqn24-2.24}\end {equation}
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\begin {equation}p^n_i({\bm {Q}}) = \frac {1}{2n+1} {\mathbb {V}}^{n}_i \cdot \left ({\bm {Q}} \star {\mathbb {D}}^{n}_i\right ). \label {Xeqn33-2.34}\end {equation}
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\begin {equation}{\mathbb {T}}^{2n} = \sum _{i=1}^{2n+1} {\mathbb {V}}^{n}_i \otimes {\mathbb {D}}^{n}_i, \label {eq:deftexturetensor}\end {equation}
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\begin {align}v_\alpha = \frac {V_\alpha }{L^3}.\end {align}


$\centroid _\alpha $


$\alpha $


\begin {equation}\int _Y d(\loc , \centroid _\alpha )^2 I_\alpha (\loc ) \d {V}(\loc ) \longrightarrow \min _{\centroid _\alpha \in Y}. \label {Xeqn41-3.5}\end {equation}


\begin {equation}\centroid _\alpha = \frac {1}{V_\alpha } \int _Y I_\alpha (\loc ) \, \loc \d V(\loc ). \label {Xeqn42-3.6}\end {equation}


$v_\alpha $


$p: [0,1] \rightarrow \R $


\begin {equation}F: [0,1] \rightarrow [0,1] \quad F(v) = \int _0^v p(w) \d w, \label {eq:defF}\end {equation}


\begin {equation}\frac {N_{v_\alpha < v}}{N} \rightarrow F(v) \quad \text {as} \quad N \rightarrow \infty \quad \text {for any} \quad v\in [0,1], \label {eq:vsamplingcondition}\end {equation}


$N_{v_\alpha < v}$


$v_\alpha $


$v$


\begin {equation}\centroid _\alpha = {\bm {s}}_\alpha . \label {Xeqn45-3.9}\end {equation}


${\bm {Q}}_\alpha $


$\mathbb {V}^{m}_{i}$


$n$


\begin {equation}\sum _{\alpha =1}^N {\bm {Q}}_\alpha \star \mathbb {D}^{m}_{i} = \mathbb {V}^{m}_{i}, \quad \text {for all} \quad i \in \{1, 2, \ldots ,2m+1\}, \quad m \leq n. \label {Xeqn46-3.10}\end {equation}


$[0,1]$


$u_\alpha $


\begin {equation}v^*_\alpha = F^{-1}(u_\alpha ), \label {Xeqn47-3.11}\end {equation}


$F$


\begin {equation}v_\alpha = \frac {v^*_\alpha }{\sum _{\beta =1}^N v^*_\beta }. \label {Xeqn48-3.12}\end {equation}


\begin {equation}r_c(w_1, \ldots , w_N, {\bm {s}}_1, \ldots , {\bm {s}}_N) = \sum _{\alpha =1}^N d(\centroid _\alpha , {\bm {s}}_\alpha ). \label {Xeqn49-3.13}\end {equation}


\begin {equation}r_v(w_1, \ldots , w_N, {\bm {s}}_1, \ldots , {\bm {s}}_N) = \sqrt {\sum _{\alpha =1}^N (v_\alpha - v_{\text {target}, \alpha })^2}, \label {Xeqn50-3.14}\end {equation}


$v_{\text {target}}$


$r_v$


$r_c$


$t_v$


$t_c$


\begin {equation}\max \left (\frac {r_v}{t_v}, \frac {r_c}{t_c}\right ) \leq 1 \label {Xeqn51-3.15}\end {equation}


$\q $


$\R ^4$


$S^3$


\begin {equation}\e _{\text {q}a} \in \R ^4, \quad a \in \{1,2,3,4\}, \label {Xeqn52-3.16}\end {equation}


$\e _{\text {q1}}$


\begin {equation}{\bm {P}} \in \R ^3 \otimes \R ^4, \quad {\bm {P}} \hat {=} \begin {pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end {pmatrix}_{(\e _i, \e _{\text {q}j})}. \label {Xeqn53-3.17}\end {equation}


\begin {equation}{\bm {Q}} = {\mathbb {P}}_{\text {Q}}[\q \otimes \q ] \label {eq:quaterniontrafo}\end {equation}


${\mathbb {P}}_{\text {Q}}$


\begin {equation}{\mathbb {P}}_{\text {Q}} = {\bm {I}} \otimes \e _{\text {q}1} \otimes \e _{\text {q}1} - 2 \boldsymbol {\epsilon } {\bm {P}} \otimes \e _{\text {q}1} + \left ({\mathbb {P}}' -{\mathbb {P}}^\circ \right ) ({\bm {P}} \times {\bm {P}}), \label {Xeqn55-3.19}\end {equation}


\begin {equation}P^{\text {Q}}_{ijab} = \delta _{ij} \delta _{1a} \delta _{1b} - 2 \epsilon _{ijk} P_{ka} \delta _{1b} + \left (P'_{ijkl} - P^\circ _{ijkl} \right ) P_{ka} P_{lb}, \label {Xeqn56-3.20}\end {equation}


$i$


$a, b$


$[0,1]^4$


$S^3\in \R ^4$


$S^3$


$SO(3)$


$n_{\text {max}}$


\begin {equation}r:SO(3)^N \rightarrow \R , \quad r({\bm {Q}}_1, {\bm {Q}}_2, \ldots , {\bm {Q}}_N) = \sum _{n=0}^{n_{\text {max}}} \sum _{j=1}^{2j+1} \left \|\mathbb {V}^{n}_{j} - \sum _{\alpha =1}^N v_\alpha {\bm {Q}}_\alpha \star \mathbb {D}^{n}_{j}\right \|^2. \label {eq:oriobjective}\end {equation}


${\bm {Q}}_\alpha $


$\mathbb {V}^{n}_{j}$


\begin {equation}r({\bm {Q}}_1, {\bm {Q}}_2, \ldots , {\bm {Q}}_N) \rightarrow \min _{{\bm {Q}}_\alpha \in SO(3)} . \label {Xeqn58-3.22}\end {equation}


$N$


${SO(3)}^N$


$\mathbb {D}^{n}_{j}$


\begin {equation}\pfrac {r({\bm {Q}}_1, {\bm {Q}}_2, \ldots , {\bm {Q}}_N)}{{\bm {Q}}_\alpha } = \sum _{n=0}^{n_{\text {max}}} \sum _{j=1}^{2j+1} \left ( \mathbb {V}^{n}_{j} - \sum _{\beta =1}^N v_\beta {\bm {Q}}_\beta \star \mathbb {D}^{n}_{j} \right ) \stackrel {\scriptsize (n-1)}{\cdot } \left (v_\alpha n ({\bm {Q}}_\alpha ^{\times (n-1)}\times \Itwo ) [\mathbb {D}^{n}_{j}]\right ), \label {eq:oriobjectivegradient}\end {equation}


$\stackrel {\scriptsize (n-1)}{\cdot }$


$(n-1)$


$n$


${\bm {Q}}\star \mathbb {D}^{n}_{j}$


$Q_{ij}$


$D^n_{ijkl\ldots }$


$3^{n+1}n$


${\bm {Q}}^{\times n}$


$\mathbb {D}^{n}_{j}$


$n$


${\bm {Q}}^{\times n}$


${\bm {Q}}^{\times n}$


\begin {equation}\left ({\bm {Q}}^{\times n}\right )_{jk} = {\bm {Q}}^{\times n}\cdot (\mathbb {D}^{n}_{j} \times \mathbb {D}^{n}_{k}), \label {Xeqn60-3.24}\end {equation}


$(2n+1)\times (2n+1)$


$n$


$\left ({\bm {Q}}^{\times n}\right )_{jk}$


$d$


$d$


$\mathcal {O}(n^3)$


$\left ({\bm {Q}}^{\times n}\right )_{jk}$


$\mathcal {O}(3^n)$


$\mathcal {O}(n^3)$


${\bm {Q}}^{\times n-1}$


$\mathbb {D}^{n}_{j}$


$\mathbb {D}^{n-1}_{j} \otimes {\bm {D}}_{k}^1$


\begin {equation}(\mathbb {D}^{n}_{j})_{kl} = \mathbb {D}^{n}_{j} \cdot (\mathbb {D}^{n-1}_{k} \otimes {\bm {D}}_{l}^{1}). \label {eq:devcomponent}\end {equation}


$jkl$


$\mathbb {c}^{n,n-1,1}$


\begin {equation}\left (({\bm {Q}}_\alpha ^{\times (n-1)}\times \Itwo ) [\mathbb {D}^{n}_{j}]\right )_{km} = ({\bm {Q}}_\alpha ^{\times (n-1)})_{kl} \left (\mathbb {D}^{n}_{j}\right )_{lm}. \label {Xeqn62-3.26}\end {equation}


\begin {equation}r_{\text {q}}(\q _1, \q _2, \ldots , \q _N) = r({\mathbb {P}}_{\text {Q}}[\q _1 \times \q _1], \ldots , {\mathbb {P}}_{\text {Q}}[\q _N \times \q _N]), \label {eq:quat_objective}\end {equation}


$\bm {g}$


$r_{\text {q}}$


\begin {equation}{\bm {g}}_\alpha = \pfrac {r_{\text {q}}(\q _1, \ldots , \q _N)}{\q _\alpha } = {\mathbb {P}}^{\mathsf {T}}_{\text {Q}}\left [\q \otimes \pfrac {r({\bm {Q}}_1, \ldots , {\bm {Q}}_N)}{{\bm {Q}}_\alpha }\right ]. \label {eq:quatobjectivegradient}\end {equation}


$k$


${\bm {q}}_\alpha $


${\bm {g}}_{\alpha }$


\begin {align}\Delta {\bm {q}}^{k+1}_{\alpha } = s^k \, {\bm {g}}^k_\alpha , \label {eq:quatincrement}\end {align}


$s^k$


\begin {align}s^k &= -\frac {\sum _{\alpha =1}^N \Delta {\bm {q}}^k_\alpha \cdot \Delta {\bm {q}}^k_\alpha }{\sum _{\alpha =1}^N \Delta {\bm {g}}^k_\alpha \cdot \Delta {\bm {q}}^k_\alpha }\end {align}


\begin {align}\Delta {\bm {g}}^k_\alpha & = {\bm {g}}^k_\alpha - {\bm {g}}^{k-1}_\alpha , \\ \Delta {\bm {q}}^k_\alpha & = {\bm {q}}^k_\alpha - {\bm {q}}^{k-1}_\alpha .\end {align}


$S^3$


$\R ^4$


$\q ^{k+1}_{\alpha }$


$S^3$


$\q _\alpha $


\begin {equation}\Delta \tilde {\q }^{k+1}_\alpha = \Delta \q ^{k+1}_\alpha - \left (\Delta \q ^{k+1}_\alpha \cdot \q ^{k}_\alpha \right ) \q ^{k}_\alpha . \label {Xeqn65-3.33}\end {equation}


$S^3$


$\q _\alpha $


\begin {equation}\q ^{k+1}_\alpha = \cos (\| \Delta \tilde {\q }^{k+1}_\alpha \|)\, \q ^k_\alpha + \frac {\sin (\| \Delta \tilde {\q }^{k+1}_\alpha \|)}{\|\Delta \tilde {\q }^{k+1}_\alpha \|} \Delta \tilde {\q }^{k+1}_\alpha . \label {Xeqn66-3.34}\end {equation}


$512^3$


\begin {equation}\sqrt {\eavg {D^2} - \eavg {D}^2} = 0.15. \label {Xeqn67-4.1}\end {equation}


$V$


$D$


\begin {equation}V = \frac {\pi }{6}\,D^3. \label {Xeqn68-4.2}\end {equation}


$\mu $


$\sigma $


\begin {align}\mu _V &= \log {\frac {\pi }{6}} + 3 \mu _D,\\ \sigma _V &= 3 \sigma _D.\end {align}


\begin {align}\eavg {V} &= \mu _V + \frac {\sigma _V^2}{2}, \\ \sqrt {\eavg {V^2} - \eavg {V}^2} &= \sqrt {\left (\exp {\sigma _V^2}-1\right ) \exp {2\mu +\sigma ^2}}.\end {align}


$1$


\begin {equation}\sqrt {\eavg {(V^*)^2} - \eavg {V^*}^2} = 0.15. \label {eq:defnormalizedvolumestd}\end {equation}


$28$


$\mathrm {%}$


$\{111\}\langle 110\rangle $


$\dot {\gamma }_\alpha $


$\alpha $


\begin {equation}\dot {\gamma }_\alpha = \dot {\gamma }_0 \, \sign {\tau _\alpha } \left < \frac {\left | \tau _\alpha \right | - \tau _{\text {F}}}{\tau _{\text {D}}}\right > ^m. \label {eq:Chaboche}\end {equation}


$11\,000$


\begin {equation}f_\alpha ({\bm {Q}}) = \frac {\exp {\kappa {\bm {Q}}_\alpha \cdot {\bm {Q}}}}{\int _{SO(3)}\exp {\kappa {\bm {Q}}_\alpha \cdot {\bm {Q}}} \d \mu _\iso }, \quad \kappa = \frac {\log {2}}{1-\cos \left (w\right )}, \label {Xeqn71-4.9}\end {equation}


$w=\SI {5}{\degree }$


$5$


$\mathrm {\TextOrMath {°}{{}^{\circ }}}$


$0$


$\mathrm {\TextOrMath {°}{{}^{\circ }}}$


$8192$


$0.47$


$10^{-8}$


$10^{-5}$


$10^{-4}$


$500$


$1000$


$1500$


$2000$


$1500$


$64$


$74$


$500$


$\strength $


\begin {equation}\mu (\strength ) = \strength \mu _{\text {copper}} + (1-\strength )\mu _\iso . \label {eq:defstrength}\end {equation}


$\strength \in [0,1]$


$\mu $


$\strength $


$0.47$


$6$


$17$


$37$


$30$


$2$


$\mu _\iso $


\begin {equation}\bar {K} = \frac {1}{3}\left (C_{1111} + 2C_{1122}\right ). \label {eq:exactK}\end {equation}


$16\,384$


$1024$


$256^3$


\begin {equation}\bar {G} = \frac {1}{10} \bar {\C } \cdot {\mathbb {P}}'. \label {Xeqn74-4.12}\end {equation}


$\bar {\C }_{\text {app}}$


\begin {equation}e = \frac {\|\bar {\C }_{\text {app}} - \bar {\C }\|}{\|\bar {\C }_{\text {app}}\|}. \label {eq:defrelstiffnesserror}\end {equation}


\begin {align}\C _{\text {app},\iso } &= 3 \bar {K} {\mathbb {P}}^\circ + \frac {\bar {\C }_\text {app} \cdot {\mathbb {P}}'}{5} {\mathbb {P}}',\\ \C _{\text {app},\text {aniso}} &= \C _{\text {app}} - \C _{\text {app},\text {iso}}.\end {align}


$\bar {K}$


\begin {align}e_G &= \frac {\|\C _{\text {app},\text {iso}} - \bar {\C } \|}{\|\C _{\text {app}}\|} = \frac {2 \sqrt {5} \lvert \bar {G}_{\text {app}} - \bar {G}\rvert }{\|\C _{\text {app}}\|}, \\ e_{\text {aniso}} &= \frac {\|\C _{\text {app},\text {aniso}}\|}{\|\C _{\text {app}}\|}.\end {align}


$0.08$


$\mathrm {%}$


$0.04$


$\mathrm {%}$


$0.01$


$\mathrm {%}$


$0.4$


$\mathrm {%}$


$0.04$


$\mathrm {%}$


$0.4$


$\mathrm {%}$


$2048$


$\C $


$8192$


$256$


$8192$


$256$


$1.35$


$\mathrm {%}$


$0.034$


$\mathrm {%}$


$0.026$


$\mathrm {%}$


$1.35$


$\mathrm {%}$


$0.02$


$\mathrm {%}$


\begin {equation}Z =\frac { 2 \, C_{1212}}{C_{1111} - C_{1122}}. \label {eq:zener}\end {equation}


$2.21$


\begin {align}K &= C_{1111} + 2 C_{1122}, \\ G &= \frac {2}{5} \left (C_{1111} - C_{1122}\right ) + \frac {6}{5} C_{1212},\end {align}


\begin {align}C^*_{1111} &= \frac {15~G + 3~K Z^* + 2\thinspace K}{9 \left (3 Z^* + 2\right )}, \label {eq:zenerincr1}\end {align}


\begin {align}C^*_{1122} &= \frac {- 15~G + 6~K Z^* + 4\thinspace K}{18 \left (3 Z^* + 2\right )}, \label {eq:zenerincr2}\end {align}


\begin {align}C^*_{1212} &= \frac {5~G Z^*}{4 \left (3 Z^* + 2\right )}. \label {eq:zenerincr3}\end {align}


$Z^*=10$


$Z^*=0.1$


$8192$


$256$


$Z^*=10$


$Z=0.1$


$\rpx $


$X$


$\rpx $


$\normal $


\begin {equation}\tau _{\rm F} = \tau _0 + (\tau _\infty - \tau _0) \left (1- \exp {-\frac {\theta _0-\theta _\infty }{\tau _\infty -\tau _0} \gamma } \right ) + \theta _\infty \gamma , \label {Xeqn77-4.24}\end {equation}


$\gamma $


$N$


\begin {equation}\dot {\tau } = \sum _{k=1}^N \left | \dot {\gamma }_k \right |. \label {Xeqn78-4.25}\end {equation}


\begin {equation}\normal = {\bm {R}}_3(\loadangle ) \e _1, \label {eq:stressunidirectional}\end {equation}


${\bm {R}}_3(\loadangle )$


$\e _3$


$\loadangle $


$\loadangle =\SI {0}{\degree }$


$\e _1$


$\loadangle =\SI {90}{\degree }$


$\e _2$


$\loadangle $


$5$


$\mathrm {\TextOrMath {°}{{}^{\circ }}}$


$0.25$


$\mathrm {%}$


$\sty {\varepsilon }_\text {p} \cdot (\sty {n} \otimes \sty {n}) = \SI {0.2}{\percent }$


$250$


$\mathrm {MPa}$


$0.05$


$\mathrm {%}$


$0.2$


$\mathrm {%}$


$R_{\text {p}0.2}$


$0.05$


$\mathrm {%}$


$R_{\text {p}0.2}$


$R_{\text {p}0.2}$


$R$


$R_\iso $


\begin {equation}R_\iso = \frac {1}{2\pi } \int _{0}^{2\pi } R(\loadangle ) \d {\loadangle }, \label {Xeqn80-4.27}\end {equation}


\begin {equation}R_{\text {aniso}}(\loadangle ) = R(\loadangle ) - R_\iso . \label {Xeqn81-4.28}\end {equation}


$\mu _\iso $


\begin {equation}e^R_\iso = R_\iso - R^\text {ref}_\iso \label {Xeqn82-4.29}\end {equation}


\begin {equation}e^R_{\text {aniso}} = \sqrt {\int _{0}^{2\pi } R_{\text {aniso}}(\loadangle )^2 \d {\loadangle }}. \label {Xeqn83-4.30}\end {equation}


$8192$


$\SI {3}{\percent }$


$0.2$


$\mathrm {%}$


$1024$


$0.06$


$\mathrm {%}$


$30$


$\mathrm {\TextOrMath {°}{{}^{\circ }}}$


\begin {equation}e^R = \sqrt {\sum _{i=0}^{16} \left (R(\loadangle _i) - R(\loadangle _i)\right )^2}. \label {eq:yielderrors}\end {equation}


$R(\loadangle )$


$r$


$r$


$r$


$r$


\begin {equation}r = -\frac {\dot {\varepsilon }_{\text {p}{yy}}}{\dot {\varepsilon }_{\text {p}{xx}}}, \label {Xeqn85-4.32}\end {equation}


$\dot {\varepsilon }_{\text {p}{xx}}$


$\dot {\varepsilon }_{\text {p}{yy}}$


$r$


$x$


$0.2$


$\mathrm {%}$


$r$


$r$


$r$


\begin {equation}e_{\text {r}} = \sqrt {\sum _{i=0}^{16} \left (r(\loadangle _i) - r(\loadangle _i)\right )^2}. \label {eq:rerrors}\end {equation}


$r$


$10$


$\mathrm {%}$


$Z^*=10$


$Z^*=0.1$


$8192$


$256$


$Z^*=10$


$Z^*=0.1$


$Z^*=0.1$


$SO(3)$


$0.026$


$\mathrm {%}$


$0.6$


$\mathrm {%}$


$\sin ^2(\psi )$


$SO(3)$


$\mathcal {P}_\infty $


$g \in C^0(SO(3))$


$SO(3)$


$g \in C^0(SO(3))$


$\delta > 0$


$p$


\begin {equation}|p(Q) - g(Q)| \leq \delta \label {eq:defapproximation}\end {equation}


${\bm {Q}} \in SO(3)$


$C^0(SO(3))$


$\mathcal {P}_\infty \subseteq C^0(SO(3))$


$SO(3)$


$\mathcal {P}_\infty $


$C^0(SO(3))$


$\mathcal {P}_\infty $


$\mathcal {P}_\infty $


$SO(3)$


$p_1, p_2$


$p_1$


$p_2$


$({\mathbb {A}}^{m}_{1}, {\mathbb {B}}^{m}_{1})$


$({\mathbb {A}}^{n}_{2}, {\mathbb {B}}^{n}_{2})$


\begin {align}p_1({\bm {Q}}) \, p_2({\bm {Q}}) &= \left ({\mathbb {A}}^{m}_1 \otimes {\mathbb {A}}^{n}_2\right ) \cdot \left ({\bm {Q}} \star \left ({\mathbb {B}}^{m}_{1} \otimes {\mathbb {B}}^{n}_{2}\right )\right ),\end {align}


$({\mathbb {A}}^{m}_{1} \otimes {\mathbb {A}}^{n}_{2}, {\mathbb {B}}^{m}_{1} \otimes {\mathbb {B}}^{n}_{2})$


$\mathcal {P}_\infty $


$C^0(SO(3))$


${\bm {Q}}_1$


\begin {equation}p:SO(3) \rightarrow \R , \quad p({\bm {Q}}) = {\bm {Q}}_1 \cdot {\bm {Q}}, \label {Xeqn88-A.3}\end {equation}


$\cdot $


${\R ^3}^{\otimes 2}$


\begin {equation}p({\bm {Q}}) = {\bm {Q}}_1 \cdot {\bm {Q}} \leq \left | {\bm {Q}}_1 \cdot {\bm {Q}} \right | \leq \| {\bm {Q}}_1 \| \| {\bm {Q}} \|. \label {Xeqn89-A.4}\end {equation}


$\| {\bm {Q}} \|$


$3\times 3$


$\sqrt {3}$


\begin {equation}p({\bm {Q}}) \leq 3, \label {Xeqn90-A.5}\end {equation}


$p({\bm {Q}}) = 3$


${\bm {Q}} = {\bm {Q}}_1$


$p$


${\bm {Q}}_1$


$C^0(SO(3))$


$\mu $


$m$


${\bm {Q}}_\beta \in SO(3)$


$w_\beta \in [0,1]$


\begin {align}\sum _{\beta =1}^m w_\beta &= 1, \\ \int _{SO(3)} p({\bm {Q}}) \, \d {\mu ({\bm {Q}})} &= \sum _{\beta =1}^m w_\beta p({\bm {Q}}_\beta ) \quad \text {for all} \quad p \in \mathcal {P}_n,\end {align}


$\mathcal {P}_n$


$n$


$\mu $


$\delta _{{\bm {Q}}_\beta }$


$n$


$*$


$\mu $


$\mu _{\delta , \ell }$


$p\in C_0(SO(3))$


\begin {equation}\int _{SO(3)} p({\bm {Q}}) \d \mu _{\delta ,\ell }({\bm {Q}}) \rightarrow \int _{SO(3)} p({\bm {Q}}) \d \mu ({\bm {Q}}) \quad \text {as} \quad \ell \rightarrow \infty . \label {eq:deltaconvergence}\end {equation}


$\mu _{\delta , \ell }$


$r_\ell $


$\delta _{{\bm {Q}}_{\beta , \ell }}$


$w_{\beta ,\ell }$


\begin {align}\sum _{\beta =1}^{r_\ell } w_{\beta ,\ell } \, p({\bm {Q}}_{\beta ,\ell }) \rightarrow \int _{SO(3)} p({\bm {Q}}) \d \mu ({\bm {Q}}) \quad \text {as} \quad \ell \rightarrow \infty . \label {eq:papprox}\end {align}


$p$


$r_l$


$n$


$\mathcal {P}_n$


\begin {equation}d = \sum _{i=0}^n (2i+1)^2 = \frac {1}{3} (1 + n) (1 + 2 n) (3 + 2 n) \label {eq:dim},\end {equation}


$\{\mathbb {T}^{2i} | i \leq n\}$


$\{p_i | i \leq d\}$


$n$


$\mathcal {P}^n$


\begin {align}\sum _{\beta =1}^{r_\ell } w_{\beta ,\ell } p_i({\bm {Q}}_{\beta ,\ell }) \rightarrow \int _{SO(3)} p_i({\bm {Q}}) \d \mu ({\bm {Q}}) \quad \text {as} \quad \ell \rightarrow \infty \quad \text {for all} \quad i \in \{1, 2, \ldots , d\}. \label {eq:pbasis}\end {align}


$p_i$


${\bm {p}}: SO(3) \rightarrow \R ^d$


$p_i({\bm {Q}}_{\beta ,\ell }) \in \R $


${\bm {p}}_{\beta ,\ell } \in \R ^d$


$\operatorname {Conv}(H)$


$H \subset \R ^d$


$d$


$I \subseteq H$


$d+1$


$H_\ell $


$\{{\bm {p}}_{\beta ,\ell }\}$


$r_\ell $


$\operatorname {Conv}(H_\ell )$


$d+1$


\begin {equation}\sum _{{\bm {t}} \in I_\ell } w_{{\bm {t}}} {\bm {t}} \rightarrow \int _{SO(3)} {\bm {p}}({\bm {Q}}) \d \mu ({\bm {Q}}) \quad \text {as} \quad \ell \rightarrow \infty . \label {eq:approxintermediated}\end {equation}


$(w_{{\bm {t}}}, {\bm {t}})$


$[0,1] \times SO(3)$


$[0,1]^{d+1} \times SO(3)^{d+1}$


$\ell $


$[0,1]^{d+1} \times SO(3)^{d+1}$


\begin {equation}\sum _{{\bm {t}} \in I} w_{{\bm {t}}} {\bm {t}} = \int _{SO(3)} {\bm {p}}({\bm {Q}}) \d \mu ({\bm {Q}}), \label {eq:approx_final_d}\end {equation}


$I \subset \R ^d$


$d+1$


$v_{\alpha }$


$M$


$d+1$


$w_\beta \in [0,1]$


$M \in \N $


$q_\beta \in \N $


\begin {equation}\left | w_\beta - \frac {q_\beta }{M}\right | \leq \frac {1}{2N}. \label {eq:rationalapproximation}\end {equation}


$M$


$\{w_\beta \}$


$\{q_\beta \}$


\begin {equation}\sum _{\beta =1}^{d+1} q_\beta = M \label {Xeqn96-B.10}\end {equation}


$M=10$


$N=4$


$M=10$


$N$


$v_{\alpha }$


$M=10$


$N$


$v_{\alpha }/M$


$M N$


$M$


\begin {equation}S \subseteq SO(3). \label {eq:defsymmetrygroup}\end {equation}


\begin {equation}p^m_i({\bm {Q}}) = p^m_i({\bm {Q}} {\bm {R}}) \quad \text {for all} \quad {\bm {R}} \in S. \label {Xeqn98-C.2}\end {equation}


\begin {align}p^m({\bm {Q}}{\bm {R}}) &= \sum _{n=0}^m \frac {1}{2n+1} {\mathbb {T}}^{2n} \cdot \left ({\bm {Q}}^{\times n} {\bm {R}}^{\times n}\right ),\\ &= \sum _{n=0}^m \frac {1}{2n+1} \left ({\mathbb {T}}^{2n} {\bm {R}}^{\times n}\right ) \cdot {\bm {Q}}^{\times n},\end {align}


$2n$


$(2n+1) \times (2n+1)$


${\mathbb {T}}^{2n}$


${\mathbb {D}}^{n}_{S,i}$


\begin {equation}{\bm {R}} \star {\mathbb {D}}^{n}_{S,i} = {\mathbb {D}}^{n}_{S,i} \quad \text {for all} \quad {\bm {R}} \in S. \label {Xeqn99-C.5}\end {equation}


$k_S(n)$


$(2n+1)$


\begin {equation}{\mathbb {V}}^{n}_{S,i} = \int _{SO(3)} {\bm {Q}} \star {\mathbb {D}}^{n}_i \d \mu , \quad i \in \{1,2,\ldots , k_S(n)\} \label {Xeqn100-C.6}\end {equation}


$S$


${\mathbb {T}}^{2n}$


\begin {equation}{\mathbb {T}}^{2n} = \sum _{i=1}^{k_S(n)} {\mathbb {V}}^{n}_{S,i} \otimes {\mathbb {D}}^{n}_{S,i}. \label {Xeqn101-C.7}\end {equation}


$90$


$\mathrm {\TextOrMath {°}{{}^{\circ }}}$


${\mathbb {V}}^{n}$


${\mathbb {D}}^{n}$


$S$


$SO(3)$


$\mathbb {D}^{n}_{\cub 1}$


$n \in \{0,4,6,8,9,10\}$


\begin {align}D_{\cub 1} &= 1, \\ \mathbb {D}_{\cub 1} &= \frac {\sqrt {15}}{6}\mathbb {D}_{1} + \frac {\sqrt {21}}{6}\mathbb {D}_{9}, \\ \mathbb {D}^{6}_{\cub 1} &= - \frac {\sqrt {14}}{4}\mathbb {D}^{6}_{5} +\frac {\sqrt {2}}{4}\mathbb {D}^{6}_{13}, \\ \mathbb {D}^{8}_{\cub 1} &= \frac {\sqrt {195}}{24}\mathbb {D}^{8}_{1} +\frac {\sqrt {21}}{12}\mathbb {D}^{8}_{9} +\frac {\sqrt {33}}{8}\mathbb {D}^{8}_{17}, \\ \mathbb {D}^{9}_{\cub 1} &= - \frac {\sqrt {42}}{12}\mathbb {D}^{9}_{4} + \frac {\sqrt {102}}{12}\mathbb {D}^{9}_{12}, \\ \mathbb {D}^{10}_{\cub 1} &= - \frac {\sqrt {1122}}{48}\mathbb {D}^{10}_{5} - \frac {\sqrt {22}}{8}\mathbb {D}^{10}_{13} + \frac {\sqrt {390}}{48}\mathbb {D}^{10}_{21}.\end {align}

https://orcid.org/0000-0001-6884-0530
https://orcid.org/0000-0001-7017-3618
mailto:matti.schneider@uni-due.de
https://doi.org/10.1016/j.cma.2025.118690
https://doi.org/10.1016/j.cma.2025.118690
http://creativecommons.org/licenses/by/4.0/

M. Krause et al. Computer Methods in Applied Mechanics and Engineering 452 (2026) 118690

volume [2,3]. Due to the finite volume and the randomness of the realization, the expected statistics of the ensemble are only approx-
imated on the considered volume. Moreover, there are infinitely many possible statistics, and only finitely many can be considered
as particularly relevant for such a volume of finite size [4]. Consequently, we seek to identify those statistical characteristics of the
ensemble which are important to the material behavior under consideration, and implement microstructure generation algorithms
which ensure that generated volume elements reflect those characteristics. The general approach of matching specific statistical
microstructure descriptors is well-established in microstructure generation [5] and microstructure reconstruction [6]. For example,
for generating fiber-reinforced microstructures, advanced algorithms exist to match the fiber orientation tensors [7,8] and the fiber
length distribution of the microstructure [9].

For generating polycrystalline microstructures, a large body of prior work exists. The review article by Bargmann et al. [2] classify
polycrystal generators as based on reconstructing experimental data [10], resulting from physics simulations [11], and geometric
model approaches. This article focuses on the last type.

The geometry of polycrystalline microstructures is described by an orientation field representing local lattice orientations which
are piecewise homogeneous, forming crystallites separated by grain boundaries [2]. The statistical description of a stochastic en-
semble of such microstructures involves both the local orientation and its spatial correlations as described by n-point correlation
functions [1,12]. From the two-point correlation function of an individual microstructure, the microstructure may be reconstructed
exactly [13,14], except for some special cases [15]. Given the two-point correlation function of an ensemble, the Yeong-Torquato
algorithm allows generating finite microstructures with similar statistics [16]. The Yeong-Torquato algorithm is challenging in terms
of numerical expense, despite algorithmic improvements in recent years [17]. General microstructure reconstruction approaches
like the Yeong-Torquato algorithm encounter the problem that matching the statistics of a stochastic ensemble using a single fi-
nite microstructure is not a well-defined problem in general. For example, a single microstructure contains only a finite number
of grains, whereas the grain statistics of the ensemble may be continuous functions. Additionally, general approaches using corre-
lation functions do not provide immediate access to some straightforward geometrical properties specific to polycrystals, such as
grain size and grain shape. Therefore, specialized polycrystal generation algorithms emerged which describe the morphology in ge-
ometric terms, while restricting the orientation statistics to ensure compatibility with an established morphology. We will focus on
approaches using one-point statistics, though there are also some which partially incorporate n-point statistics, such as misorientation
statistics [18,19].

Prominent methods to describe the microstructure morphology represent crystallites as irregular tiles in spatial tessellations [20]
or as particles which are densely packed, followed by a gap-filling process [21]. There is open-source software available to gen-
erate microstructures of either type, with Neper [22] implementing tessellations, Kanapy [23] working with dense packings, and
Dream.3D [24] implementing both types of methods. Machine-learning methods may also be used for generating polycrystal mi-
crostructure generation [25]. All aforementioned methods are capable of reproducing geometrical features such as crystallite shapes
and crystallite size distribution, with current research focused on reproducing elongated and irregularly shaped crystallites accu-
rately [26].

The one-point orientation statistics are described by the probability density of individual lattice orientations, which is also known
as the Orientation Distribution Function (ODF). In experimental and simulation practice, the ODF is represented by various finite-
dimensional approximations. Single-orientation measurement techniques yield experimental data in the form of individual orienta-
tions with associated weights [27,28]. The binning method decomposes the orientation space into a finite number of bins [29,30],
whose shape and placement may be further optimized [31] based on the underlying texture. The texture component method describes
the texture as kernel functions of specified width centered around a finite number of specific points [32,33]. Roe [34] and Bunge [35]
introduced the Fourier coefficients of the ODF, also called texture coefficients, giving rise to the approach which is used most widely
to represent the ODF nowadays.

The Roe and Bunge coefficients are coefficients in the classical sense, i.e., real numbers which depend on a coordinate system
convention. A tensorial Fourier expansion of the ODF instead yields tensorial texture coefficients, which are coordinate-independent
physical quantities [36]. As stated by Guidi et al. [37], the state-variable character of the ODF is properly emphasized using tensorial
texture coefficients. The classical texture coefficients are recovered from the tensorial texture coefficients by an appropriate choice of
tensorial basis, showing that both approaches are equally expressive [38]. Tensorial texture coefficients play a prominent role in the
homogenization theory of linear elasticity [39], i.e., many analytical homogenization schemes allow for an explicit representation
in terms of a tensorial texture coefficients up to fourth order [40]. In analytical models of plasticity, higher-order texture are also
relevant, e.g., in anisotropic yield functions [41].

The ODF of a tessellation model is given by the discrete lattice orientations, weighted by the crystallite volume fractions. In
microstructure generation, the volume fractions are defined by the microstructure morphology parameters, i.e., via a prescribed
grain-size distribution. Therefore, when selecting lattice orientations to generate a polycrystal microstructure, the challenge lies
in producing a discrete ODF with prescribed weights which yields similar mechanical properties as the prescribed ODF. Random
sampling is one such approach, generating discrete ODFs which approximate the prescribed ODF in the infinite-volume limit. With
prescribed ODF data from the binning method, the ODF values associated with the bins are interpreted as probability weights, and
orientations are sampled as the center points of each bin [30] or as uniformly random orientations within each bin [42,43]. When
the ODF is prescribed as a set of texture components, the corresponding kernel functions may be sampled directly [44,45]. As an
alternative to random sampling, orientations may be selected in a clever deterministic way [46], which may be combined with a
randomization approach [47]. Recently developed orientation selection methods initially generate random samples, then optimize
the samples to better correspond to selected statistics of the prescribed ODF. For uniform distributions only, an optimization approach
is given by physical analogy to the Thompson problem [48]. Vuppala et al. [49] minimize the L2-error between a target ODF and
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a texture reconstructed from the sampled discrete points, but apply only a single optimization step instead of fully minimizing the
error. Liu et al. [50] refine the sampled orientations based on ideal texture components, but the approach is used only for a single
ideal component. Finally, Kuhn et al. [51] solve an optimization problem based on matching a finite number of prescribed tensorial
texture coefficients.

The problem of finding a discrete set of weighted lattice orientations which approximates another prescribed ODF also arises in
microstructure-free crystal plasticity methods [52,53]. In this context, no crystallite weights are prescribed. Consequently, a number
of compact ODF representation algorithms emerged which produce sets of orientations with optimally chosen weights [54,55]. There-
fore, these methods are not directly applicable to the work at hand, as the volume fractions of the crystallites are pre-specified by
sampling from the grain-size distribution of the underlying ensemble. The recent ODF representation algorithm by Marki et al. [56]
may be used to generate orientations for preset weights, and is therefore directly applicable to microstructure generation. The strategy
consists of solving an optimization problem stated in terms of texture coefficients, like in Kuhn et al. [51]. Marki et al. [56] appear
to have discovered the approach independently, leading to slight differences in the strategy: Marki et al. [56] use Bunge coefficients
instead of tensorial coefficients, as well as a less powerful optimization algorithm.

As remarked by both Kuhn et al. [51] and Marki et al. [56], the optimization-based approach allows finding small sets of crystallite
orientations which can be used to accurately predict the mechanical properties of larger sets of texture data, outperforming methods
based on random sampling. How many orientations are required, or indeed, whether an arbitrarily accurate approximation is possible
at all, is not known in the general case. For the special case of a uniform ODF, minimal sets of coefficient-matching orientations were
found analytically [57]. In general, the number of required orientations increases with the order of considered texture coefficients.
Kuhn et al.’s [51] implementation allows prescribing texture coefficients of order up to six, and an extension to higher orders is
straightforward in principle. However, due to the large number of algebraic operations involved in dealing with higher-order tensors,
the computational effort rises exponentially as the tensor order increases. To accurately simulate material properties which depend
on higher-order texture coefficients, more efficient algorithms are required.

1.2. Contributions

We consider the problem of generating representative polycrystal microstructures, with particular emphasis on selecting the lattice
orientations of individual grains to match a prescribed texture. We build upon the work by Kuhn et al. [51] and introduce an extension
which handles tensorial texture coefficients of arbitrary order in an efficient and accurate way. To validate our results, we apply the
novel microstructure generation algorithm to mechanical homogenization of textured polycrystalline materials. More precisely, the
following novelties characterize the work at hand:

o Texture coefficient tensors are typically introduced as Fourier coefficients of the ODF [37]. This approach is not general, since
the Fourier series associated to some ODFs do not converge. Indeed, the Fourier series converges for an integrable distribution
only, ruling out discrete measures, However, when considering a moment-matching problem for the ODF, the texture coeffi-
cients emerge naturally. With this shift of perspective, we provide the mathematical foundations for the use of texture tensors in
crystallography.

* We introduce the concept of texture tensors instead of the commonly used texture coefficients or Guidi et al.’s [37] tensorial texture
coefficients. This approach, although evident from a physical point of view, appears to be non-standard. Using texture tensors
provides a basis-independent and physically sound measure to quantify texture in polycrystalline materials.

¢ The original approach by Kuhn et al. [51] is limited to texture tensors of orders four and six. Higher orders come with a computa-
tional effort which scales exponentially in the tensor order. We circumvent this problem by working with a harmonic basis [58].

¢ As an algorithm to solve the texture-coefficient matching problem, we implement the Barzilai-Borwein scheme [59] instead of

fixed-step-size gradient descent, further accelerating the procedure compared to the state of the art [51].

Marki et al. [56] proposed a similar optimization problem to Kuhn et al. [51]. Marki et al. [56] focus on finding discrete sets of

orientations with optimized weights, and mention the present case where the weights are given by volume fractions of crystallites

in passing. Our investigations focus explicitly on the case where the volume fractions are fixed. Further differences arise in the
algorithm used. Whereas Marki et al. [56] use classical texture coefficients and a trust-region solver, we employ an efficient texture
tensor implementation and the Barzilai-Borwein method.

¢ We show that the moment-matching problem for the ODF has a solution. More precisely, for sufficiently large numbers of crystals
with sufficiently similar volume fractions, there exists a set of orientations to approximate a prescribed polynomial texture of
finite order to arbitrary precision.

» We investigate which texture tensors affect macroscopic mechanical properties using large-scale studies. The effective stiffness of
copper shows a slight dependence on sixth-order tensors, despite analytical models taking only tensors up to fourth-order into
account [40].

¢ For the effective yield stress, a dependence up to tenth order emerges, which is the highest order considered. This observation illus-
trates that higher-order texture terms are relevant for polycrystal microstructure generation algorithms, underlining the relevance
of the work at hand.

We describe our algorithm and provide an open-source implementation at https://git.uni-due.de/publicsoftwareingmath/
crystallites/ to encourage further study.


https://git.uni-due.de/publicsoftwareingmath/crystallites/
https://git.uni-due.de/publicsoftwareingmath/crystallites/
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1.3. Notation

Throughout the text, we use a symbolic notation for tensor operations. First-order tensors are generally written as bold symbols
(v), second order as bold capital or Greek symbols (V, o), and fourth-order tensors as double-struck (C) symbols. For higher and
variable-order tensors, the tensor order is indicated explicitly (V"). The tensor or dyadic product is denoted as A ® B. We write the
single-contraction tensor product between two tensors of second order as AB, and between tensors of second and first order as Av.
A full contraction between two tensors of identical order is written as the dot product A - B. Full contractions between a higher and
lower-order tensor are written with square brackets C[e]. We denote rotations of arbitrary objects by a proper orthogonal rotation
tensor R € SO(3) as R * g, which for tensors resolves to the Rayleigh product, the application of the rotation tensor to every tensorial
axis. Also, we use the Kronecker product A x B and the associated Kronecker power A*" [60]. Whenever the symbolic notation is not
sufficient, we use an index notation with Einstein’s summation convention. Tensorial constants used in this work include the second-
order identity (I);; = §;;, the spherical projector (P°),;;, = 6;;6;,/3 and the deviatoric projector (P’);;;; = 6;6;,/2 + 6;.6;1/2 — 6;;61/3-

2. Random polycrystalline materials, their effective properties and statistical description
2.1. Effective mechanical properties of polycrystals
We consider a stationary and ergodic ensemble of random fields C : R? — C of stiffness tensors [61], where C denotes the space

of positive definite fourth-order tensors which are both minor- and major-symmetric. For any given stiffness field C, after prescribing
the macroscopic strain &, there results a displacement fluctuation field

u; : R? > R? 2.1
which grows sublinearly and solves the local balance of linear momentum

div (C)[E + Viu(x)]) =0, x € R>. (2.2)
Using the effective stress of the ensemble, which is given by the expectation

& = (Cl& + Vou,)), 2.3)

we define the effective stiffness C implicitly using the equation
Clel = (CIE + Viue(x)]). (2.4)

which holds for any prescribed macroscopic strain £. The effective stiffness C is the quantity of interest in stochastic homogeniza-
tion [61]. The effective stiffness is computed by defining a basis of strains and computing the effective stress (2.4) for each strain.

One approach to compute effective stresses is computational homogenization, e.g., by using FFT-based methods [62], which
generally involve periodized ensembles [63], as the problem (2.2) cannot be solved computationally for an infinite random stiffness
field. We consider a stiffness field realization Cy on a periodic cubic cell

Y =[0,L)° c R%. (2.5)
We prescribe the macroscopic strain & and seek the periodic displacement fluctuation field uy; : ¥ — R3 which solves the local
balance of linear momentum
div (Cy(®)[E + Vouy(x)]) =0, x€Y. (2.6)
The apparent stress of the microstructure is defined by the volume average
1 -
ol = =/, Cy (%)[€ + Vuy (x)] dV (x). 2.7)
The apparent stiffness C
appr—q _ app
C,y [El=0), (2.8)
which holds for all macroscopic strains &. A given periodic cell stiffness field Cy is considered representative of the ensemble if the
apparent stiffness matches the effective stiffness [64]. In practice, we observe random and systematic differences between the apparent
and effective stiffness, with both errors depending on the size of the periodic cell Y. Classical results of stochastic homogenization [65]
show that under the assumption of ergodicity and stationarity of the ensemble, the apparent stiffness of a sample of limited size L,
such as the periodic stiffness field Cy, converges almost surely towards the effective stiffness as the size L increases [66].
In a single-phase (or uniform) polycrystal, the local stiffness heterogeneity is due to locally differing lattice orientations. In stochas-

tic homogenization of polycrystals, we quantify the local lattice orientation by a random rotation field Q : R? — SO(3) from a fixed
reference lattice orientation r. The local stiffness is then given via a rotation from the stiffness in the reference orientation C, as

Cx)=Q(x)*xC,, xeR> (2.9)

app . o 3 .
v is implicitly defined by the equation

By Eq. (2.9), the effective stiffness C of the ensemble depends solely on the reference orientation stiffness C, and the statistical
properties of the random field of orientations Q. For the purposes of this work, we focus on the one-point statistics, which take the
form of an expected value

(g) of a continuous function g : SO3) — R. (2.10)
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Considering only one-point statistics neglects the influence of spatial correlations of the random orientation field Q. In the context
of microstructure generation, this restriction decouples the problem of assigning local orientations from the problem of spatially
dividing the microstructure into grains [67, section 2.3]. The one-point statistics are fully determined by the orientation distribution
function (ODF) f : SO3) — R, which is the probability distribution of a given point having the lattice orientation Q [35]. As a
probability density, the ODF f is non-negative

f(@) =0, Q€S0Q), (2.11)
and normalized
/ f(@)dV(Q) =1, (2.12)
50(3)

where dV refers to the Haar measure on the rotation group SO(3), which we assume to be normalized
/ v Q) =1. (2.13)
S03)
The statistics (2.10), which we assume to determine the effective properties of the polycrystal, compute as
=/ sr@awo. 2.14)
S0(3)
As discussed previously, the computational approximation of the effective stiffness (2.4) requires working on cells of finite
size (2.5). For such a fixed cell Y, we consider the restricted orientation field @y : Y - SO(3) and the associated stiffness (2.9)

Cy(x) = Qy(x) % C,. (2.15)

Since the cell is finite, only a finite number of grains is contained in such a realization, each grain coming with a homogeneous
orientation. For such a discrete set of N orientations Q, € SO3),a € {1,2,..., N}, the statistical properties are fully described by the
associated volume fractions v, of the crystallites with orientation Q,, which are positive and normalized

N
0, >0, D v =1 (2.16)
a=1

The discrete statistics induced by functions g : SO(3) —» R compute as

N
@)y = Y, v, 8(0,). (2.17)

a=1
Assuming that the effective properties depend on some statistics (g) (2.10), matching the statistics of a periodic microstructure
(2.17) to those of a given ensemble (2.14) is a requirement for representativity.
While the above definitions use linear elastic material laws, the same general approach applies to the other constitutive law
considered in this work, nonlinear viscoelastoplasticity. Here, the stress field o computes as

o(x) = C(x)[E + Viug(x) — £,(x)], (2.18)

where the plastic strain field ¢, depends on the loading history of the material. Assuming that the material initially contains no
plastic strains, the heterogeneity of material parameters is again purely due to the local lattice orientation. In both the elastic and
elastoviscoplastic case, the microstructure depends on the random orientation field Q, and therefore, the statistics (g) are of interest.

2.2. Matching the statistics of polycrystals

In the following, we consider the problem of generating a set of orientations matching prescribed statistics (g)y (2.17). Since we
consider a fixed cell, we omit the subscript Y for brevity.

Measure theory provides a formal framework which naturally handles both the continuous ODF (2.12) and the discrete volume
fractions (2.16) [58]. To formally describe the one-point orientation probability, we define the probability space (SO(3), F, u), where
F denotes the event space and u refers to a Borel probability measure which is normalized

/ du=1. (2.19)
SO(3)

For example, the Borel measure y;y, — corresponding to a uniform probability distribution - is the normalized Haar measure dV(Q)
of SO(3),

/ o = / dv(Q) forall Vv eF. (2.20)
|4 14

If the probability measure u is absolutely continuous with respect to p;g,, it corresponds to an ODF via the Radon-Nikodym theorem,
i.e., there is an integrable, positive and normalized function f such that the representation

/ du(Q) = / f(@) du;,(Q) forall vV eF. (2.21)
14 14

is valid.



M. Krause et al. Computer Methods in Applied Mechanics and Engineering 452 (2026) 118690

The probability measure for a discrete set of orientations (2.16) is given by

N
U= Z Vg, - (2.22)
a=1
where do, denotes the Dirac measure centered at Q,. Such a measure (2.22) is not absolutely continuous, i.e., does not admit an
ODF.
Borel measures on a compact topological space are naturally isomorphic with elements of the dual space of the space of continuous
functions [68]. As a consequence, two probability measures y; and u, on the compact topological space SO(3) are identical if and
only if their integrals

(ui8) = / 2(Q)du,(Q) (2.23)
S0(3)

against all continuous functions g on the space SO(3) are identical, i.e., the condition

(H1,8) =12, 8) (2.24)

holds for all g € C%(SO(3)). Generally, a discrete distribution consisting of a finite set of orientations and a continuous distribution
cannot be identical, as can be shown by choosing a non-negative function g € C%(SO(3)) which vanishes in all orientations which
are part of the finite set, but is positive on a set of positive measure where the continuous distribution does not vanish. Therefore,
a piecewise-constant periodic polycrystal microstructure (2.17) cannot be statistically representative of a general infinite random
microstructure (2.10) in the strict sense that all statistics match, i.e., being “structurally entirely typical” as postulated by Hill [69].
However, if the microstructure is only required to be representative with regard to the effective property of interest [64], which
depends on some statistics, not all of them, it is sufficient to find discrete distributions which reproduce those statistics exactly.

We discuss this moment-matching problem through the lens of polynomials on SO(3), that is, functions SO(3) — R which, after
choosing a basis of the vector space of 3 x 3 matrices R3*® 5 SO(3), can be written as multivariate polynomials whose variables
are components of the orientation Q. Formally, we specify polynomials in a basis-independent manner by choosing an nth order
coefficient tensor A” € (R?)®” and a basis tensor B” € (R*)®" to represent the polynomial

p(Q)=A"-QxB", (2.25)

where the Rayleigh product Q x B" denotes the rotation of an nth-order tensor B” by the orthogonal tensor Q. We will refine the
representation (2.25) later, as a given polynomial may be described by different tensor pairs (A", B"). Furthermore, Eq. (2.25) does
not encompass all sums of polynomials. Consequently, we define the set of all polynomials of up to nth order as

k
P, = {p 1 S03) > R|p(Q) = Y, AT -0 + B AT € (R)®", B € (R)®",m < n}, (2.26)
i=1

i.e., as sums of k polynomials as defined by Eq. (2.25). The set of polynomials of arbitrary order is denoted
P =JP. (2:27)
n=0

The typically considered statistics (2.10) arise as integrals with regard to the ODF-weighted Haar measure u. Every individual
statistics-inducing function g may be approximated to arbitrary precision by polynomials. This fact is well-known. For the convenience
of the reader, the arguments are collected in Appendix A. Therefore, it appears natural to investigate polynomial statistics

/ Pn(Q)du(Q), (2.28)
50(3)
as “universal statistics” — moments in the terminology of stochastics. Instead of considering the accuracy of a discretized measure with

regard to some unknown micromechanically relevant statistic, we instead evaluate the measure with regard to moments up to a given
order. Finding an accurate discretized measure therefore boils down to the following problem:

Moment-matching problem
Given prescribed polynomial statistics up to a degree n (2.28), along with a set of N volume fractions v, (2.16), find a
discrete set of N orientations Q, to approximate integrals of polynomials up to order » exactly.

This is a classic quadrature problem, except that, usually, when searching for quadrature points Q,, the quadrature weights v,
are not prescribed. In Appendix B, we prove the existence of approximate solutions requiring large numbers of crystallites.

The established technique for the problem of generating discrete orientations is random or pseudo-random sampling [48]. A set of
random samples {Q,} of the ODF eventually reproduces all statistics of the ODF, including polynomial statistics of arbitrary degree,
as the number of samples tends towards infinity. Using pseudo-random techniques enhances the convergence rate of this process. By
contrast, we propose an approach which yields a prescribed number N of quadrature points which are accurate to arbitrary precision
in selected polynomial statistics.
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2.3. Texture tensors

To compactly describe finite sets of polynomials and their moments, we construct a basis of polynomial functions on SO(3)
following the tensorial approach of Guidi et al. [37]. In Eq. (2.26), polynomials are represented by tensor pairs (A", B"). Multiple
tensor pairs may represent the same polynomial. Indeed, for any index permutation II, the permuted pair (I[I(A"), [1(B")) represents
the same polynomial as the pair (A", B"). Additionally, by multiplying both tensors by the scaled identity tensor I/ \/5, we find

1 1 1
A®—I |- 0x(B"®—I|=(A"Qx®B)U
( V3 ) < V3 > 3

=A"-0x (B") =p(Q), (2.29)

which shows that the pair (A" ® I/ \/3 B"®1I/ \/5) also describes the same polynomial. Guidi et al. [37] avoid this ambiguity by
choosing basis tensors which are fully index-symmetric

I(B") = B" for all index permutations I, (2.30)
and traceless, i.e., vanish upon contraction by the second-order identity tensor I
B"[I] = 0"2. (2.31)

By analogy with the second-order case, we call index-symmetric traceless tensors deviatoric. For convenience, we define zeroth- and
first-order tensors to be deviatoric tensors as well.

Using methods of group representation theory, it can be shown that the deviatoric tensors of order n comprise a (2n+ 1)-
dimensional vector space [70]. If a polynomial representation comprising tensor pairs (2.25) uses deviatoric basis tensors B”, the
corresponding coefficient tensors A” can also be assumed to be deviatoric, since the non-deviatoric parts vanish in the dot product.

The question of finding a basis of polynomial functions on the group SO(3) reduces to finding bases for the deviatoric spaces. We
construct an orthonormal basis by choosing an arbitrary rotation axis, performing an eigenvector decomposition of the representations
of rotations around that axis, and recombining complex-valued eigenvector pairs to obtain a real-valued deviatoric basis [71]. The
resulting deviatoric basis tensors are denoted by D i€ {1,2,...,2n+ 1}. Using this basis, a probability measure y can be quantified
using the polynomial moments

\/,."=/ 0 xD'du(Q), ie€fl,2,....2n+1}, (2.32)
SO0Q3)

also called tensorial texture coefficients in the literature [37]. For a discrete probability measure p4 (2.22) with volume fractions v,
and discrete orientations Q,, the moments compute as

N
V= D 0,0 kDY, i€ (1,2, 2n+1}). (2.33)

a=1
The polynomial p} associated with a texture coefficient V" and a corresponding basis tensor D reads
1
Q)= m\/{’ (@ D). (2.34)
Using the texture coefficient polynomials as a basis, we may write any mth order polynomial p” as a sum

m 2n+1

o= Zo 2n1+ P&V (Q+Dy). (2.35)

Classically, texture terms of order n are represented using a set of (2n + 1) tensorial texture coefficients V" [37]. However, those
tensors depend on the choice of deviatoric basis. This defect is easily repaired by combining all tensorial texture coefficients of order
n to define the texture tensor

2n+1

"= V'eD, (2.36)
i=1

which permits representing the full polynomial expansion of the ODF in the basis-invariant form

m

P"(Q) = Z:,) ﬁvz" -Qx, (2.37)

where the Kronecker power Q*" [60] is used to represent the action of the group SO(3) on nth order tensors
0 % A" =Q*"[A"] forall A"e (R)®". (2.38)

Since the deviatoric tensors V" and D? are elements of a (2n + 1)-dimensional vector space, the texture tensor T can be represented by
a (2n+ 1) x (2n + 1) matrix. If the basis chosen for this representation is the set of basis tensors { D!}, the tensorial texture coefficients
V" are recovered as the column vectors of this matrix. The dot product in Eq. (2.37) implies that the Rayleigh action Q%" may also

7
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be treated as a (2n + 1) X (2n + 1) matrix in this context, significantly reducing the number of components compared to a full tensor
of order 2n.

Texture tensors reflect the properties of the ODF (2.12). One direct consequence is that the zeroth-order texture tensor equals unity
due to the normalization condition (2.19). Symmetry properties of the ODF apply to the texture tensors as described in Appendix C.

Before moving on to algorithmic details, we provide a short summary. To an arbitrary degree of accuracy, any statistics of the
ODF can be represented by a finite set of texture tensors. When generating polycrystal microstructures, matching the texture tensors
of the discrete orientations with the ODF leads to microstructures which are statistically representative for polynomial statistics up to
a given degree. The discrete orientations are essentially quadrature rules with prescribed weights, which are exact when integrating
polynomials up to a specified degree. This ODF-based approach uses only one-point statistics and therefore does not take into account
spatial correlations. Compared with random samples of the ODF, orientations which are polynomially exact enhance the statistical
representativity of a given microstructure. In computational homogenization, generated microstructures are realizations of a statistical
ensemble, which are used to quantify the effective properties. In this context, texture-tensor fitting is a variance reduction approach
intended to yield faster convergence of the computed effective properties to the actual effective properties.

3. Generating polycrystalline microstructures
3.1. Problem statement

We consider polycrystal microstructures which consist of crystallites with homogeneous lattice orientations, neglecting defects and
presuming infinitely thin crystallite boundaries. The microstructures under consideration are infinitely large and random, forming
a statistical ensemble. Computational homogenization, however, requires microstructures of finite volume. Any particular periodic
realization contains only a finite number of crystallites instead of the infinite variety of general polycrystalline microstructures. We
seek to generate representative finite periodic microstructures corresponding to an ensemble of infinitely large microstructures with
known statistical properties.

To represent the microstructure, we use Laguerre tessellations on the cubic domain Y = [0, L)3, which consist of N distinct tiles
characterized by seed positions s, € Y and weights w, € R, where each tile represents a single crystallite. With the periodic distance
function

d(x,y)=min |[|[x —y+ Lhie]l, x,y€Y, 3.1
heZ3

we define the characteristic function of tile « € {1,2,..., N} as

Ia(x):{l’ ifd2(x,su,)—wa<d2(x,s,,)—w,; forall f#a, pe{l,2,...,N},

(3.2
0, else.

Almost every point in Y is associated with one tile via its characteristic function. For points on the boundaries, we choose arbitrary
but fixed tiles among those close to the boundary [20]. Each Laguerre tile a has a volume

v, = / 1,(x)dV (x) (3.3)
Y
and a volume fraction
Va
Uy = F (34)

The centroid ¢, of a tile « is defined as the point with minimum distance from all points in the tile in an integral sense, i.e., it
solves the optimization problem

/ d(x,c,)* 1, (x)dV (x) — min . (3.5)
Y Cu €Y
For tiles which do not intersect the domain boundaries, the tile’s centroid is given, as in the non-periodic case, by the center of “mass”
C, = i/ 1,(x) xdV (x). (3.6)
Va Y

In Section 2, we discussed the problem of generating discrete orientations which are representative of the ODF. Similarly, we
impose conditions on the generated tessellations to reproduce the statistical properties of the ensemble as closely as possible:

¢ The volume fractions v, must accurately sample the ensemble’s volume fraction distribution p : [0, 1] — R. In terms of the cumu-
lative volume fraction distribution function

F :10,1] = [0,1] F(v) =/ p(w) dw, 3.7)
0

this requirement means that

V<V

- F(v) as N - o forany ve]0,1], (3.8)
where N, _, denotes the number of samples v, which are smaller than v.

8
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Fig. 1. Overview of the three separate steps involved in the microstructure generation algorithm. From left to right: volume fraction sampling,
tessellation sampling, and orientation sampling.

e To enhance shape regularity, we seek centroidal tessellations [72], i.e., tessellations whose centroids equal the seeds
Y = Sg 3.9
e The tile orientations Q, must match prescribed texture tensors V" up to a prescribed order n

N
> Q,xDy=V", forall i€{l,2,...2m+1}, m<n (3.10)

a=1

Our proposed microstructure generation algorithm comprises three steps as illustrated in Fig. 1. Both the tessellation sampling
and the orientation sampling depend on prescribed volume fractions, but are independent of each other. More detailed explanations
are given in the following.

3.2. Volume fraction sampling

In step 1, we generate samples of the volume fraction distribution. A scrambled Sobol sequence [73] on the interval [0, 1] serves
as a set of samples u, of the uniform probability distribution. We find volume fraction samples using inverse transform sampling

v = Fl(uy), (3.11)

with the cumulative volume fraction distribution F (3.7). Because the generated crystallites need to fill the volume of the periodic
cube exactly, we rescale the volume fractions to
U*
v, = N_” (3.12)
2p=1Yp
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3.3. Tessellation sampling

In step 2, we generate a tessellation that is both centroidal and corresponds to the volume fractions determined in step 1. The
centroidality error reads

rc(wl,.‘.,wN,sl,...,sN)=Zd(ca,sn)‘ (3.13)

a=1

The error in the volume fractions is given by

FoWys oo WON Sy SN) = Z(v ~ Dyargeta)? (3.14)
where vgyreec denotes the volume fractions from step 1. Both 7, and r, depend on the weights and seeds of the Laguerre tessellation,
which means that the optimization problems for both errors are coupled. For fixed seeds, finding weights to realize specific volume
fractions is a convex optimization problem [20]. For fixed weights, centroidal seeds can be found by Lloyd’s fixed-point iteration
scheme [72]. We follow Kuhn et al. [74] and combine Lloyd’s fixed-point scheme for centroidalization with a Barzilai-Borwein ap-
proach to weight optimization in a nested optimization approach. Initially, we assign seeds based on a scrambled Sobol sequence [73]
and set all weights to unity. In one outer iteration step, we perform a single step of the fixed-point centroidalizing algorithm, then fit
the weights to realize the prescribed volume fractions. We prescribe separate tolerances for volume fractions ¢, and centroidality 7,.
We terminate the optimization procedure once the condition

rU rC
max | —, — | <1 (3.15)
tU c

is fulfilled. Our algorithm for choosing the tessellation is almost identical to the prior work by Kuhn et al. [74]. The only difference
is that we stop the inner weight optimization after only ten steps, regardless of the residual, because exacting precision in weight
fitting is unnecessary while the seed position are still imprecise.

3.4. Orientation sampling

In step 3, we generate discrete orientations matching prescribed texture coefficients. For implementation reasons, we use unit
quaternions q to represent the orientations. We identify the unit quaternions with unit vectors in R*, i.e., elements of the three-
dimensional unit sphere S3. We choose basis vectors

e €RY, a€(1,2,3,4}, (3.16)

such that ey, represents a purely real quaternion. The projection from the quaternion unit vector onto the vector of non-real compo-
nents reads as a mixed tensor

01 0 0
PeR’®@RY, P20 0 1 0 . (3.17)
0 0 0
(e/',eq/)

The relationship between orientation tensors and quaternions is given by the formula
0=Pylg®aql (3.18)

with the constant (3,3,4,4)-dimensional tensor P given by

Po=1Q®eqy ®eq —26PQeg + (P —P°)(PXP), (3.19)
or in index notation,
P, = 861481 = 2 Prabin + (Pl = Poua ) Pra P (3.20)

where indices starting from i take values from one to three, and indices a, b take values from one to four. This is a tensorial form of
the well-known relationship between quaternions and rotation matrices, which is usually stated in component form Shepperd [75].

To generate an initial set of orientations, we sample the uniform distribution. For a start, we generate pseudo-random samples of
the uniform distribution on the hypercube [0, 1]* using a scrambled Sobol sequence. Each component of that four-dimensional uniform
distribution is transformed using the inverse cumulative distribution function of the standard normal distribution. The uncorrelated
four-dimensional multivariate normal distribution has isotropic statistics. Therefore, if we project the multivariate normal samples
onto the four-dimensional embedding of the unit sphere 5> € R*, we obtain a uniform sampling of the unit sphere S [76]. By the
relationship between orientation tensors and quaternions (3.18), we obtain samples of the uniform distribution on SO(3).

We define the square texture coefficient error [51] up to order np,,,

Nmax 2j+1 2

r:SOBYN >R, 10,0, ...,0x) = Z Z v — Zana*lD;‘ . (3.21)

n=0 j=1

10
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To match the orientation samples 0, to the prescribed texture coefficients V', we minimize

r(Q;,Q0,...,0n) — (3.22)

0, 550(3)

The objective function (3.21) is a polynomial on the N-fold product space SO(3)". Due to the index symmetry of the deviatoric basis
tensors ID;.', its derivative simplifies to

Nmax 2j+1
W i <v —ZuﬂQﬂ*D"> "D (o@D x DDA ), (3.23)
a n=0 j=1

where the operation (=21 denotes an (n — 1)-fold tensor contraction.

Computing the objective function and its gradient becomes increasingly numerically expensive for a high tensor order n. A direct
calculation of the term Q % D7, implemented via successive matrix multiplications of the orientation matrix Q,; and the component
array D, requires one matrix multiplication for each tensor axis, which in total necessitate 3"*!n floating-point operations [71].
Instead, we may as in Eq. (2.38) compute rotations using the Kronecker power Q*" and exploit its sparsity. The tensor D" is an
element of the nth order deviatoric tensor space, which is an eigenspace of Q*". It is therefore sufficient to represent the tensor Q*"
by its deviatoric components

(@) = Q™ (D} x DY), (3.24)

which form a (2n+ 1) X (2n + 1)-dimensional matrix. The numerical effort of this matrix-vector multiplication is quadratic in the
order n, and the asymptotic efficiency bottleneck is caused by the calculation of the deviatoric rotation matrix. To compute the
matrix (QX")/. > We use a basis transformation from Wigner-d-symbols [71]. The computation of Wigner-d symbols is possible with

an asymptotic complexity of O(n®) using the algorithm by Dachsel [77]. By exploiting the sparsity of the rotation matrix (QX")/. o we
therefore reduce the asymptotic complexity of evaluating the objective function from ©(3") to O(n). Effectively, the sparse matrix
representation of the rotation matrix allows us to overcome the computational inefficiency of using full tensorial texture coefficients,
in the process recovering the computational efficiency of classical texture coefficients [34,35] in the tensorial setting.
In the expression for the gradient (3.23), a similar multiplication by the Q*"~!-tensor appears. We efficiently implement this
operation by first transforming the tensor D} into the mixed I]]J;."l ® D,i basis, which reads
Oy =D - (07! ® D). (3.25)
Using the Clebsch-Gordan decomposition, the right-hand side of Eq. (3.25) arises as the jk/-component of the Clebsch-Gordan tensor
¢"=L1 [71]. On the matrix of Clebsch-Gordan components, the gradient rotation tensor acts via the matrix-matrix product
(@VxDDy) =@y (5) (3.26)
km Im

The objective function from Eq. (3.21) is expressed in terms of quaternions as

rq(@, 9y, ... »qn) =r(Polg; X qi], ... .Polgn X qn D, (3.27)

and the gradient g of ry follows via the chain rule

_ 0@ an) o [q® ar(Ql,...,QN)].

8a = oa, =%o
To minimize the objective function, we use the Barzilai-Borwein method [59]. For step k, the linear increment of the quaternion
q, is computed from the quaternion gradient g, (3.28) via
Aght! = sk gk, (3.29)
where the step size s* is given by

N k k
At A
sk = _—Z?v,l 9o 2 (3.30)
Zazl Agﬁ . AQ{:

(3.28)

with

Agy=g5—gy ', (3.31)

qu = qf: - qﬁ’l. (3.32)

Because the optimization takes place on the unit sphere .S3, not the ambient vector space R*, the updated value g**! of the

quaternion is not computed via straightforward addition, but requires taking the geometry of the Riemannian manifold S into
account [78]. We project the quaternion increment (3.29) to the tangent space at g, using the formula

Aqk+1 Aqﬁ“ _ (Aqﬁ“ 'q:)q§~ (3.33)
The additive tangent space increment is mapped to a multiplicative manifold increment using the exponential map relating the tangent
space with the manifold S3 [79]. The updated value of the quaternion g, computes as

; k1
Foigt 4 SUAEED oy
llags* ¢

k+1

q," =cos(]|Ag, (3.34)
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Fig. 2. Normalized crystallite volume distribution used for the example Fig. 3. Realization of the example material with 8192 crystallites re-
material. solved using 5123 voxels. Colors show the first Euler angle.
Table 1
Material parameters for viscoplastic simulations of copper.
Cubic stiffness  Cy;y, Ciin Cin
170.2 GPa 114.9GPa 61.0GPa
Flow rule 7o 75 7 m
0.001s7! 12 MPa 4MPa 20

4. Computational investigations
4.1. Example microstructure

We investigate microstructure generation for polycrystalline copper. For the probability distribution of crystallite equivalent
diameters, we assume a log-normal distribution, as typically observed in experimental results [80]. Following Kuhn et al. [51], we
set the mean of the log-normal distribution to unity and assume a standard deviation of

\/(D?) — (D)2 = 0.15. 4.1)
The crystallite volume V is related to the equivalent diameter D by the relation
V= % D’ (4.2)

The logarithm of a log-normally distributed value is normally distributed with mean x and standard deviation ¢. The corresponding
parameters of the volume distribution read

uy = log (g) +3up, (4.3)
oy =30p. 4.4

The mean and standard deviation of a log-normally distributed value compute as

oy
VY= + L, 4.5)

Vo =07 =\l (02) - ) exp (2 +.07). 4o

We re-normalize the volume distribution to a mean of 1, leading to a standard deviation of roughly

\/ (V)2 = (V*)2 =0.15. 4.7)

This distribution is illustrated in Fig. 2.

We consider copper with a rolling texture as obtained after cold-rolling to a thickness reduction of 28 %. The texture data was
obtained in a previous work [81], using a Taylor-Lin [82,83] texture simulation, i.e., by prescribing a homogeneous deformation
process to initially randomly oriented crystallites. The material model used is slip-based crystal plasticity with the slip systems
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180°

Fig. 4. Copper rolling texture pole figures based on samples interpolated with a Mises—Fischer Kernel and a half-width of 5°.
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0
Fig. 5. Pole figures reconstructed using texture coefficients of order up to 10.
{111}(110), as is typical for an FCC lattice. The slip rate y, in system « is modeled using a Chaboche model [84],
o |Ta| —TF "
Ta =To sgn(ra) —_) . 4.8)
D

Material parameters for the Chaboche slip rate and the elastic stiffness with respect to the single crystal lattice vectors are given
in Table 1. For the viscoplastic large-deformation simulation, hardening is neglected. For more details on the Taylor-Lin texture
simulation, we refer to the more detailed explanation in the work [81].
The texture simulations result in 11000 discrete orientations representing the rolled copper texture. To obtain a continuous ODF
for visualization purposes, we interpolate the discrete measure (2.22) with a Mises-Fisher kernel
exp (kQ, - Q) log (2)

= k= i 4.9
fa(Q) fso@)eXP(KQa'Q)dlliso K T cos () (4.9)

with a half-width w = 5°. We visualize the interpolated texture by computing (1,0,0) and (1,1,1) pole figures, which are stereographic
projections of the ODF values associated with the (1,0,0) and (1,1,1) lattice vectors, respectively [85]. The resulting figures are shown
in Fig. 4, with the rolling direction at 0°. Note that the pole figures exhibit the typical texture expected of pure copper [86].
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Table 2
Computational effort of generating the baseline microstructure.
Sampled property Volume fractions  Orientation  Tessellation
Total time 0.001s 254s 82.8s
Optimization steps - 37 26 (outer) and 251 (inner)
=== TTolerance ) Gradient descent (step size 500) —— Gradient descent (step size 1500)
Barzilai-Borwein Gradient descent (step size 1000) —— Gradient descent (step size 2000)
107" 4 T
10—3 .
= 5 =
g1 3
0 |9}
[} D
~ ~
1077 .
1079 + b
T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 120
Step Step

Fig. 6. Convergence behavior of texture coefficient error minimization for the Barzilai-Borwein method compared to a gradient descent algorithm
with a step size of 500, 1000, 1500 or 2000. On the left, convergence is shown for the baseline microstructure parameters, while on the right, only
texture coefficients up to sixth order are prescribed.

As discussed in Section 2, this texture can be approximately quantified as a finite set of texture tensors. We use cubic deviatoric
basis tensors up to tenth order as listed in Appendix D, and compute texture coefficients directly from the samples using Eq. (2.33).
For visualization purposes, we use the polynomials (2.37) to reconstruct approximate pole figures as shown in Fig. 5. Note that
in this visualization, we assume all texture coefficients of higher order are zero, which is not the case for the real samples or the
microstructures which will be generated in the following. Nonetheless, the visualization is sufficient to observe that the set of cubic

polynomials up to order ten seems to approximate the pole figures of the interpolated texture well enough to reproduce salient
features.

4.2. Performance of the microstructure generation algorithm

We investigate the performance of the microstructure generation algorithm in terms of total time and steps taken. All time mea-
surements were recorded on a laptop computer with an Intel i7 CPU and 64 GB RAM. As the code is not parallelized, only one core
is used.

We begin by evaluating the microstructure generator for the copper material discussed in the previous section. We generate a
8192-crystallite-microstructure with a normalized volume standard deviation of 0.47 and prescribed texture coefficients up to order
ten, as illustrated in Fig. 3. The tolerance of the texture coefficient error is set to 1078, for the weight error to 10, and for the
centroidality error to 10~*. The computational effort to achieve these tolerances is summarized in Table 2. The volume fraction
sampling, involving no optimization, takes negligible time. Both orientation and tessellation sampling require double-digit seconds.
As the tessellation optimization procedure we use was investigated in detail by Kuhn et al. [74], we focus on the impact of various
optimization parameters on the orientation sampling.

For orientation sampling, we compare the Barzilai-Borwein optimization algorithm with the gradient descent algorithm. For the
gradient descent algorithm, we choose four different step size values, 500, 1000, 1500 and 2000. As illustrated in Fig. 6, the conver-
gence speed of the gradient descent algorithm increases with the step size, until a critical value is reached, for which convergence is
no longer monotonic. For prescribed texture coefficients up to tenth order, a step size of 1500 exceeds that critical value, while for
texture coefficients up to sixth order, it is the quickest choice among those investigated. We conclude that the choice of step size is
critical and depends in a complex manner on the problem parameters. The Barzilai-Borwein method avoids the problem of choosing a
fixed step size. As can be seen particularly for the baseline microstructure, there does not necessarily exists an optimal fixed step size,
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Fig. 9. Convergence behavior of the orientation sampling procedure Fig. 10. Computation time per orientation optimization step depend-
for different prescribed texture orders. ing on the prescribed texture order.

such that the adaptable step size of the Barzilai-Borwein method is a major advantage. In all considered cases, the Barzilai-Borwein
method leads to convergence in the fewest steps.

In Fig. 7, the convergence behavior of the orientation optimization problem is shown for different numbers of crystallites. The
microstructure with the lowest amount of crystallites, 64, takes 74 steps to convergence, as the few crystallites present are heavily
constrained by the prescribed texture coefficients up to order ten. With increasing numbers of crystallites, convergence becomes
easier to achieve. Above roughly 500 crystallites, no further significant reduction in steps taken is observed. As shown in Fig. 8, the
time required for each optimization step increases linearly in the number of crystallites.

Next, we consider the influence of the prescribed texture coefficients. As discussed in Section 3.4, the algebraic operations involved
in both the residual and the gradient calculations are asymptotically cubic in the tensor order. This cubic relationship holds for the
finite tensor orders under consideration as well, as shown in Fig. 10. The texture order also influences the convergence behavior, as
shown in Fig. 9. Prescribing additional texture tensors excludes previously viable solutions. As the set of solutions shrinks, more steps
are required to reach convergence.

In addition to texture order, the convergence behavior is influenced by texture strength. We decrease the sharpness of the texture
by scaling each texture coefficient by the factor 6 € [0, 1]. In terms of the probability measure g, this is equivalent to a convex
combination of the existing measure with the isotropic measure, weighted as

1(0) = Opteopper + (1 = O)tiso- (4.10)

In Fig. 11, the number of required steps to convergence is shown to decrease with a decreasing texture anisotropy factor 6.

Finally, we discuss the influence of grain size variance. For the tessellation sampling procedure, increasing the grain size variance
has a large effect on the number of optimization steps [74]. For the baseline microstructure example with a normalized volume
standard deviation of 0.47, we observe that a total of 251 inner optimization steps are required. If the standard deviation vanishes,
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Fig. 11. Convergence behavior of the orientation sampling procedure Fig. 12. Orientation optimization convergence for different normal-
given different texture strengths 0 (4.10). ized grain volume standard deviations (4.7).

yielding an equal-sized grain distribution, only 6 outer steps and 17 inner steps are necessary to reach the same centroidality and
weight tolerances. However, the number of orientation optimization steps remains roughly the same, decreasing from 37 to 30. In
Fig. 12, the optimization convergence is shown for the baseline microstructure parameters and three different standard deviations.
We note that convergence is reached even for a normalized volume standard deviation of 2, for which the randomly generated volume
fraction samples span eight orders of magnitude.

4.3. Elastic homogenization

We investigate the influence of texture coefficients on the effective stiffness of a linear elastic polycrystal. Since the convergence
rate of the orientation sampling procedure appears to depend heavily on the number of prescribed texture coefficients, we seek to
find out whether some higher-order texture coefficients can be neglected when generating microstructures for linear elastic homog-
enization. As an example material, we use copper with the stiffness given in Table 1. The microstructures under consideration are
centroidal Laguerre tessellations generated using the algorithm described in Section 3. Each microstructure is converted to a voxel
representation by evaluating the characteristic function (3.2) on an equally-spaced grid.

We compute the apparent stiffness (2.8) of the generated microstructures using an in-house numerical homogenization code
based on the fast-Fourier-transform (FFT) method. The local stress and strain fields are discretized using the staggered grid discretiza-
tion [87]. To solve the discretized system, we use the conjugate gradient method [88]. For each microstructure, we perform six
simulations with applied strains that are pairwise orthogonal to each other, then reconstruct the effective stiffness from the computed
effective stresses.

Before investigating the influence of texture coefficients, we perform a resolution study using microstructures with prescribed
vanishing texture coefficients up to order ten. As no non-vanishing texture coefficients are prescribed, in the infinite-volume limit,
the microstructures reach an isotropic orientation probability measure y;y,, which we take as the ground truth of this resolution study.
For symmetry reasons, the ground truth effective stiffness is isotropic. Because the compressive behavior of a cubic single crystal is
independent of its orientation, the effective compression modulus is directly available from the local stiffness properties as

~ 1
K:g(Cm, +2C ). (4.11)

The effective shear modulus of the ground truth ensemble is not known, which is why we approximate it as the apparent shear
modulus of a microstructure consisting of 16384 crystallites discretized using 1024 voxels each, for a total resolution of 256> voxels.
We compute this effective shear modulus by projecting the stiffness via

I
G=—C-P. 4.12
0 ( )
We define the relative stiffness error of a computationally homogenized apparent stiffness Capp as
ICapp = ClI
o= —BP 77 (4.13)
Iappl
The apparent stiffness naturally splits into an isotropic projection and an anisotropic part,
o o Capp P
Cappiiso = 3KP® + —5 P, (414
Capp,aniso = Capp - Capp,iso- (4.15)

16



M. Krause et al. Computer Methods in Applied Mechanics and Engineering 452 (2026) 118690

0.10 4 i

X

A JL 3

2 0.08 ’ N

S | N S

& o 8

2 0.06 1 ~ = ]

- 3 “ ~ i & ( 3

z R N

£ 0.04 1 A I i EE T g |

g L 8

g N
= 1 % = i
[ L4 0 it
j<¥)

A

L VI

4 8 16 32 64 128 256 512 4 4 128 256 512
Voxels per crystallite Voxels per crystallite

Fig. 13. Deviation from isotropy (left) and shear modulus error (right) for microstructures with 8192 crystallites and varying numbers of voxels
per crystallite, with 100 realizations each. The reference shear modulus for the shear modulus error is obtained from one simulation with 16,384
crystallites using a resolution of 1024 voxels per crystallite.

In our simulations, we find that the apparent compression modulus K is identical for all simulations to within the tolerance of the
solver, as expected in light of Eq. (4.11). Based on the stiffness decomposition, we define the shear modulus error and the deviation
from isotropy,

”Capp,iso - C” 2\/§|G_app -

e, = = s (4.16)
¢ ICappll ICappll
” Capp aniso ”
so = ————. 4.17
€aniso I Capp I ( )

We note that the deviation from isotropy does not depend on the reference stiffness.

We begin with a resolution study. As shown in Fig. 13, the mean deviation from isotropy is roughly 0.08 % for microstructures
with as few as four voxels per crystallite. With increasing resolution, the deviation from isotropy decreases further to around 0.04 %.
The mean shear modulus error is significantly lower at roughly 0.01 %, and does not decrease significantly with increasing resolution.
Presumably, a higher number of crystallites, e.g., a larger cell size, would be required to reduce the error further. We conclude that
even for low resolutions, high stiffness accuracy can be reached.

Next, we study the impact of the number of crystallites, i.e., the size of the volume element, which influences whether the volume
element is representative. In Fig. 14, the anisotropic and shear modulus errors decrease as the number of crystals increases. The
initial mean deviation from isotropy is 0.4 %, which reduces to about 0.04 %. The shear modulus error is lower than the deviation
from isotropy for every considered set of parameters. It decreases significantly until it reaches a value of about 0.4 % at roughly 2048
crystallites, after which a further decrease cannot be conclusively observed. For both error values, the effect of increasing the number
of crystallites appears greater than the effect of increasing the resolution.

After investigating the resolution dependence of the isotropic state, we turn our attention to textured polycrystals. We seek to
quantify the influence of higher-order texture tensors on the effective stiffness for the copper example microstructure. To do so,
we prescribe all texture tensors up to a given order, and compute the relative stiffness error as in (4.13), where the ground truth
stiffness C computes as the statistical average of the effective stiffnesses of the 100 realizations with fully prescribed texture tensors.
Simulation results with 8192 crystallites and 256 voxels per crystallite are visualized in Fig. 15. The microstructures without any
prescribed texture coefficients, which do not take texture into account at all, show a sizable stiffness error of roughly 1.35%. The
fourth-order texture shows a slightly increased mean error of roughly 0.034 % versus 0.026 % for all higher-order microstructures. In
addition to the visualized mean errors, we also observe a discrepancy between the averaged stiffnesses for each order, which is also
roughly 1.35 % for the zeroth-order results, 0.02 % for the fourth-order results, and negligible for the other orders. This suggests that
neglecting texture coefficients of fourth and sixth order induces a systematic error, not only a random error. For the material under
consideration, prescribing texture tensors of eighth and higher order does not lead to a measurable improvement in accuracy.

Note that there is an established hypothesis in homogenization theory of polycrystals that the effective stiffness tensor depends
only on texture tensors of up to fourth-order for weakly anisotropic materials [39]. In light of our results, it appears that copper is
not weakly anisotropic (see Huang et al. [89]). We note that the improvement in accuracy due to including the sixth-order texture
coefficient is rather small, although the corresponding coefficient is large.
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Fig. 15. Stiffness error for the copper example microstructure with prescribed texture tensors up to the given order. 100 simulations were performed
for each order, with 8192 crystallites and 256 voxels per crystallite.

The Zener ratio [90]
__ 2Cnn 4.18)
Cinn —Cum

for the elastic constants of copper given in Table 3 is roughly 2.21. Values far from unity indicate high anisotropy. To study the
influence of the degree of anisotropy, we modify the Zener ratio, keeping the isotropic part of the single crystal stiffness, the moduli
K =Cyyy +2C 2, (4.19)

2 6
G= g(cml —Cin) + 5C12127 (4.20)

constant. The modified stiffness components compute as
I5G+3KZ*+2K

cr ==TFr2Bs ¥ToR 4.21
i 93Z* +2) (4-21)
-15G+6 KZ*+4K
Cct. ., = .22
122 18(3Z* +2) ’ (4.22)
" 5GZ*

=72 4.23
12127 437 +2) (4.23)
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Table 3
Material parameters for single-crystal elastoviscoplasticity
simulations of copper [92].

Cubic stiffness  Cyyy, Cin Cionn
170.2 GPa 114.9 GPa 61.0GPa
Flow rule 7o 7 N m
0.001s~! 6.5 MPa 8 MPa 20
Hardening 0y 0y T
250 MPa 14 MPa 113.5 MPa
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Fig. 16. Stiffness error for the example microstructure with modified Zener ratios Z* = 10 (left) and Z* = 0.1 (right) with prescribed texture tensors
up to the given order. 100 simulations were performed for each order, with 8192 crystallites and 256 voxels per crystallite.

In Fig. 16, the stiffness error (4.13) is visualized for modified Zener ratios Z* = 10 and Z = 0.1. These strongly anisotropic values serve
as extremes of a range which covers most cubic materials, including the commonly encountered forms of elementary metals [91].
For either of the materials with modified Zener ratios, we find that the errors are significantly larger than for copper. However, the
relative influence of the higher-order texture tensors remains the same. At extremely high anisotropy values, higher-order texture
tensors might have a non-negligible influence on the stiffness. In the range of anisotropy investigated above, no higher-order influence
is evident. We conclude that using texture tensors up to order six suffices for linear elastic homogenization of commonly encountered
cubic materials.

4.4. Onset of plastic yield

The previous investigations confirmed that the influence of texture coefficients of order eight and above seems negligible for
elasticity. In the section at hand, we investigate the related question for plastic properties of polycrystals. In particular, we investigate
the transition between elastic and plastic regimes, i.e., plastic yielding.

Following experimental considerations, we define the yield stress R,y as the stress in tensile direction reached in a uniaxial
tensile test once the plastic strain in tensile direction — quantified by the equivalent von Mises plastic strain — reaches the value X.
For plastically anisotropic materials, the yield stress R,y depends on the tensile test direction n. Having observed a clear dependence
of the anisotropic stiffness on the texture coefficient of fourth order in Section 4.3, we wish to quantify the influence of the individual
texture coefficients on the plastic response of an anisotropic polycrystal.

We investigate this question via numerical homogenization of centroidal Laguerre tessellations of copper. We model the material
using crystal elastoviscoplasticity with a Chaboche overstress model for the viscoplastic flow rule (4.8), with a linear-exponential
hardening curve

0y — 6
R =7 + (T —TO)(I —exp <—T0—°°y>> + 60,7, (4.24)

o ~ 70

where y refers to the accumulated plastic slip over all N slip systems, with rate
N
P z |J7k|- (4.25)
k=1
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We use the efficient numerical implementation of this material model by Wicht et al. [92]. Material parameters for copper are given
in Table 3. As in the elastic computations, we discretize the voxelized microstructure on a staggered grid [87]. For the solver, we use
a dual Newton-CG algorithm [93,94].

Given that our example material exhibits a rolling texture, we may imagine it as sheet metal. In this case, the yield stress anisotropy
is of interest particularly in the sheet plane. Consequently, we perform tensile tests with a stress direction of

n = R;(w)e, (4.26)

where R;(w) is a rotation around the sheet normal axis e; by an angle w. For w = 0°, the loading direction is e;, while for @ = 90°
it is e,. To compute the yield stress anisotropy, we perform tensile tests for each angle » in 5° increments between those values.
Each tensile test consists of ten loading steps up to a final effective strain of 0.25 %. In Fig. 17, the resulting macroscopic stress in
load direction is plotted versus the plastic strain in load direction. For the small deformations under consideration, the hardening is
well-approximated by a linear hardening rule with a constant hardening modulus of 250 MPa. The nonlinearity below 0.05 % plastic
strain is related to the elastic-plastic transition, where an increasing number of crystallites plastify [95]. We linearly interpolate the
obtain stress-plastic-strain curves to approximate the stress at a plastic strain of 0.2 %, i.e., Ry,. Given the above results, a lower
threshold plastic strain would also be appropriate, such as 0.05 %. However, the value Ry, is commonly reported from experiments.
For brevity, we denote Ry, as R.
We define the isotropic yield stress R;y, as the mean yield stress

1 2r
Riso = ﬂ 4/0 R(w) do, (4.27)

leaving an anisotropic remainder
Raniso(@) = R(w) — Rigo- (4.28)

We investigate the influence of the number of crystallites and voxels with a resolution study. As in the elastic case, the ground
truth is an infinitely large polycrystal microstructure without prescribed texture tensors, leading to an isotropic orientation probability
measure u;,,. The anisotropic yield stress vanishes for the ground truth. As the isotropic yield stress is not known, we approximate it
as the mean yield stress of the same reference microstructure as in the elastic case. We define the mean yield error

R = Rigo — Rref (4.29)

iso iso

and the yield deviation from isotropy

2z
efniso = V/() Ranisc(w)z do. (4.30)

In Fig. 18, both errors are shown for microstructures with 8192 grains each and different resolutions. The yield deviation from isotropy
is larger than the mean yield error in every case. As the number of voxels per crystallite increases, the means of both errors decreases.
However, the trend is not particularly pronounced, suggesting that, even more so than in the elastic case, increasing the number of
voxels per crystallite only brings small increases in accuracy.

We investigate the influence of the number of crystallites. Results with 512 voxels per crystallite and different numbers of crystal-
lites are shown in Fig. 19. As in the elastic simulations, the number of crystallites has a large influence on the observed yield deviation
from isotropy, which reduces with increasing numbers of crystallites from roughly 3 % to roughly 0.2 %. The mean yield error is lower
than the yield deviation from isotropy error for every realization, and appears to plateau beyond roughly 1024 crystallites, at a value
of roughly 0.06 %.
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Fig. 18. Anisotropic (left) and isotropic (right) yield errors for microstructures with 8192 crystallites resolved using various numbers of voxels per
crystallite, with ten realizations each. The reference isotropic yield stress for the isotropic errors was computed using one simulation with 16,384
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Fig. 19. Yield deviation from isotropy (left) and mean yield error (right) for microstructures with varying numbers of crystallites resolved at 512
voxels per crystallite, with 100 realizations each. The reference isotropic yield stress for the isotropic errors was computed using one simulation
with 16,384 crystals and a resolution of 1024 voxels per crystallite.

In Fig. 20, the yield anisotropy is shown for different prescribed texture tensors. The shown yield values compute as the averaged
yield stresses of 100 simulations each with 8162 crystallites and 256 voxels per crystallite. Unlike the stiffness anisotropy, the yield
anisotropy is not well-approximated by prescribing only the fourth-order texture tensor. By including the sixth-order texture tensor,
most relevant features of the yield surface appear to be incorporated. The tenth-order texture tensor is required to model a slight
increase of the yield stress near the 30° angle.

In Fig. 21, yield errors are illustrated which compute as

16

K =1]Y (R@) - Rw))’. (4.31)

i=0

For the reference yield stiffness R(w), the average of tenth-order results is used. The average error decreases monotonically with
increasing prescribed texture order. This is unlike the linear elastic case, where no significant error reduction was observed for
texture tensors higher than sixth order.
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Fig. 20. Uniaxial tensile yield stress in different load directions for the Fig. 21. Yield errors for the copper example microstructure with pre-
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In addition to anisotropic yield stresses, we investigate the r-value, a measure of plastic anisotropy commonly studied in sheet
metal experiments and simulations. Following Hill [96], we define the r-value as the ratio
£
[ (4.32)

£pxx
where £, denotes the plastic strain rate component in load direction and ¢, the same in sheet-plane direction orthogonal to the
loading. The r-values are computed for same steps as the yield stress, i.e., as the x-component of the plastic strain reaches 0.2 %.
The mean r-values computed over a hundred simulations — each with different prescribed texture orders — are shown in Fig. 22. As
with the yield stress, including texture tensors up to order six appears sufficient to compute qualitatively accurate r-values, but for
quantitative accuracy, including further texture tensors up to order ten is necessary.
In Fig. 23, errors in the r-values are illustrated, which compute as

16

e =1 Y, (r@) - rwp)™. (4.33)

i=0

in direct analogy to the yield stress error (4.31). A similar dependence on the texture error is observed as in Fig. 21 for the yield
errors. However, the r-value errors are quantitatively larger, with up to 10 % error if texture is not taken into account at all.

We study the effect of single crystal elastic anisotropy by changing the Zener ratio (4.18), leading to modified stiffness compo-
nents (4.21) as computed for the elastic simulations. Fig. 24 visualizes yield stress errors for Zener ratios of Z* = 10 (left) and Z* = 0.1
(right). Comparing the results with those for copper in Fig. 21, we find that the change of Zener ratio does not strongly affect the
error. A minor change of the fourth-order influence for the low Zener ratio Z* = 0.1 is observed. Otherwise, the results for different
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Fig. 24. Yield stress error for the example microstructure with modified Zener ratios Z* = 10 (left) and Z* = 0.1 (right) with prescribed texture
tensors up to the given order. 100 simulations were performed for each order, with 8192 crystallites and 256 voxels per crystallite.

Zener ratios are indistinguishable. We conclude that the relative influence of the various texture orders of the onset of plastic yielding
does not depend strongly on the degree of elastic anisotropy.

Based on our results, no general recommendation can be made to restrict texture tensors to less than tenth order. Consequently,
efficient implementations of texture constraints on orientation sampling are critical to accurate microstructure generation.

5. Summary and conclusion

This work presents an algorithm for generating polycrystal microstructures with specified texture tensors. A special feature of this
algorithm is the efficient performance for higher-order texture tensors, which allows us to investigate the influence of higher-order
texture terms on effective properties of polycrystals computationally. We used the algorithm to investigate the anisotropy of stiffness
and yield stress of rolled copper.

Prescribing texture tensors increases the accuracy of polycrystal simulations significantly. Notably, the microstructure generation
procedure is significantly less computationally expensive than the homogenization procedure, making this accuracy improvement
essentially free in terms of computational resources. As discussed in Section 2, prescribing texture coefficients is equivalent to a
quadrature problem, suggesting a straightforward explanation for the increased accuracy: With properly chosen quadrature points,
polynomials can be integrated exactly. Some aspects of computational homogenization involve integrals. Apparently, some of the
involved functions are well-approximated by polynomials. As discussed in Appendix B, we did not manage to provide a proof that the
quadrature problem with prescribed weights admits a solution with a finite number of crystallites. Our algorithm, as demonstrated in
Section 4.2, is nonetheless capable of finding accurate computational solutions for this problem. Consequently, it may be possible to
prove the existence of a solution with a finite lower bound on the number of crystallites. We note that in our approximate quadrature
construction in Appendix B, we used the very general result of the Carathéodory theorem, which applies to any convex hull. Perhaps
a proof using specific features of the problem at hand, such as the underlying rotation group SO(3), is possible.

Matching texture coefficients in orientation sampling does not ensure that the generated microstructure is perfectly representative.
As with any approach relying entirely on the ODF, a one-point statistic, spatial correlations between different grains are neglected.
Correspondingly, we expect some remaining errors in the effective properties. Generally, we observe that the influence of low-order
texture tensors is larger than that of higher-order texture tensors, where the rate at which the influence decreases depends on the
material property which is being investigated. If texture tensors of sufficiently high order are taken into account, the non-texture
error overshadows the error due to texture. While a texture model using only a finite number of coefficients may not be exact in
the strict sense, it can still be sufficiently accurate that prescribing even higher coefficients brings no further improvements. For our
example of rolled copper, we investigated these sufficient texture orders.

In linear elasticity, it appears that prescribing the fourth-order texture tensor takes care of the bulk of the texture-induced error.
Indeed, many analytical homogenization approaches take only the fourth-order texture tensor into account [40]. We do however
observe a further small influence of the sixth-order texture tensor, suggesting that the analytical approaches may be refined by
including a sixth-order term. Prescribing texture tensors beyond order six brings no accuracy improvement in our simulation. The
achieved stiffness error equals 0.026 %, which is already very small. We therefore conclude that prescribing texture tensors up to order
six is sufficient for linear elastic homogenization of the material under consideration.

Studying the anisotropy of the macroscopic yield stress in the same material, we find that sixth-order texture tensors are not
sufficient. Indeed, up to order ten, we observe a noticeable influence of prescribing further texture tensors not only on the value of
the error, but also on the shape of yield anisotropy. Further studies are necessary to show whether the remaining error of roughly 0.6 %
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can be further reduced by prescribing texture tensors of even higher order. We conclude that for nonlinear properties, prescribing
higher-order texture tensors is crucial for accurate simulations.

The presented texture orientation optimization algorithm is not restricted to polycrystal microstructure generation methods based
on tessellation models. More precisely, each polycrystal microstructure generation algorithm which assigns orientations in a post-
processing step can be straightforwardly modified to use our orientation sampling algorithm.

As our orientation sampling algorithm takes only ODF-based statistics into account, it disregards higher-order correlation func-
tions [12]. Deka et al. [19] propose an algorithm to incorporate misorientation statistics [18] of neighboring grains for microstructures
with grains of equal size. Their algorithm re-assigns previously generated grain orientations as a post-processing step, making it com-
patible with our method. A more general approach to higher-order correlation may involve adding spatial correlation terms to the
objective function of the orientation optimization problem. Either of these approaches seem viable for further study.
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Appendix A. Approximating arbitrary continuous functions on SO(3) using polynomials

The goal of this section is to use the polynomials P, (2.27) to approximate arbitrary continuous functions g € C°(SO(3)) on the
group SO(3) to arbitrary precision, i.e., to show that for any continuous function g € C°(SO(3)) and any margin of error § > 0, there
is a polynomial p such that the estimate

[p(Q) — g(O)| <6 (A1)

holds for any element Q € SO(3). If this property holds, the polynomials are dense in the continuous functions C°(SO(3)).
To establish that the polynomials are dense (A.1), we resort to the Stone-Weierstrass Theorem. As a subset of continuous functions
P, € C%(SO(3)), the polynomials on the topological space SO(3) are dense provided the following two conditions are valid:

(A) The set P, forms a subalgebra of the space C(SO(3)), i.e., the set P, is closed under linear combinations and multiplication.
(B) The set P, separates points, i.e., if for any two distinct orientations on the manifold .SO(3) there exists a polynomial which has
different values for the two points.

Condition (A) results directly from the fact that the set of tensors of arbitrary order are closed under addition and multiplication.
The sum of two polynomials p,, p, is a polynomial by definition (2.26). Two arbitrary polynomials p, and p, with coefficient pairs
(AT, BT and (A", B2) have the product

p1(Q@)p(Q) = (AT ® AL) - (Q * (B @ B})), (A.2)

which is a polynomial by definition (2.26) because it is represented by the coefficient pair (A7 ® A7, Bf ® BY). For polynomials given
by sums of other polynomials, a similar result follows after evaluating the distributive law. The set of polynomials P, is closed under
addition and multiplication, therefore forming a subalgebra of the continuous functions C%(SO(3)).

We establish the validity of condition (B) constructively. For a fixed orientation Q,, we consider the linear polynomial

p:SOB)-R, p@ =00, (A.3)
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where - denotes the inner product on the space of second-order tensors R3 ®2, i.e., a full tensor contraction. Due to the Cauchy-Schwarz
inequality,

pQ)=0,-0<10,-0| <o, llQll. (A.4)
The Frobenius norm ||Q|| of an orthogonal 3 x 3 matrix is \/3 Consequently, the upper bound

p(Q) <3, (A.5)

holds, and the equality p(Q) = 3 is satisfied under the condition Q = Q, only. Therefore, the polynomial p separates the orientation
Q, from any other orientation, and condition (B) follows. As both prerequisites (A) and (B) of the Stone-Weierstrass Theorem are
satisfied, the polynomials are dense in the continuous functions C°(SO(3)).

Appendix B. Existence of a solution to the quadrature problem

We consider the moment-matching problem introduced in Section 2.2, and discuss the existence of a solution. Without prescribed
weights, we find an existence proof by adapting prior results for the related fiber orientation tensor realization problem. However,
with prescribed weights, we find only an approximate solution using an excessively large amount of crystallites.

First, we show the existence of a solution for a simplified quadrature problem with non-prescribed weights. We use a similar
approach to Bauer et al. [97], who investigated a related realizability problem for fiber orientation tensors. Formally stated, we
wish to show that for a given Borel probability measure u, there exists a set of m orientations Q; € SO(3) with associated weights
wg €10,1] such that

m
Ywy=1, (B.1)
p=1

/ §Q) du(@) = Y, wyp(Qy) forall peP, (B.2)
SO3) p=1

where P, denotes the set of nth order polynomials (2.26). In other words, we seek to approximate a given Borel measure u by a
convex combination of a finite number of Dirac measures 6y, in such a way that polynomial functions up to degree n are integrated
exactly. Convex sums of Dirac measures are dense in the space of Borel probability measures with respect to the weak- topology,
which is a classical result of functional analysis, e.g., as a direct consequence of the Krein-Milman theorem [98]. Analogously to the
statement (A.1), this fact implies that for the measure , there is a sequence y; », such that for every function p € Cy(SO(3)), we have

/ P(Q)dyis 4(Q) / PQ)du(Q) as £ — co. 8.3)
SO(3) S0(3)

According to Eq. (2.22), each discrete measure y; , is a convex combination of r, Dirac measures b0, with associated weights wj ;.
Substituting the convex sum into Eq. (B.3) leads to
r'e
wg e P(Qpr) = / p(Q)du(Q) as ¢ — oo. (B.4)
st S0(3)
The next step is to show that if we restrict the approximation to a finite-dimensional space of functions p, there is an upper bound to
the number of Dirac measures r;. We use the polynomials of up to nth order P,, which form a vector space of dimension

n
d= Z(Zi +1)% = %(1 +n)(1+2n)(3 + 2n), (B.5)
i=0
which follows explicitly as the sum of the number of independent coefficients of the texture tensors {T%|i < n}, see (2.36). By choosing
tensorial bases as discussed in Section 2.3, we identify basis polynomials {p;|i < d} which span the space of nth order polynomials
P". We require Eq. (B.3) to hold for precisely those basis polynomials and write

r¢
Zw,,fp,.(QM)—»/ p(Q)du(Q@) as £ —oo forall ie({l,2,...,d}. (B.6)
=1 S0(3)

We interpret the basis functions p; as components of a vector-valued function p : SO(3) — R¢. Consequently, the values Qs ER
are components of a vector p; , € R¢. Carathéodory’s theorem [99] states that any element in the convex hull Conv(H) of a set
H c R? in a finite-dimensional space with dimension d can be represented by a convex combination of elements of a finite subset
I C H with at most d + 1 elements. In our case, the set H, is given by the set of polynomial value tensors {pj .}, containing r,
elements. Since the left-hand side of Eq. (B.6) is an element of the convex hull Conv(H,), we find that a convex combination of at
most d + 1 elements is needed to represent it. We write

Yt~ [ p0w@ s ¢-w. ®7)
SOB3)

tel,
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Fig. 25. Schematic illustration of three different quadrature approaches and their weights, with three orientations, a numerator M = 10 and N =4
prescribed volume fractions.

The weight-value pairs (w,, t) are points in the product space [0, 1] x SO(3). Consequently, the discrete measure on the left-hand side
of Eq. (B.7) is characterized by a point in the space [0, 1]%*! x SO(3)?*!, which is compact. Being uniquely parametrized by a sequence
in a compact space, the discrete measures contain a convergent subsequence. The limit of this subsequence as # goes to infinity is
again characterized by a point in the space [0, 1]%*! x SO(3)?*! and yields the exact integral

D wt = / P(Q)du(Q), (B.8)
50(3)

tel

with I ¢ R? containing at most d + 1 elements. Thus, a finite number of quadrature points is sufficient to integratefactly.

However, this result holds only if the weights are not prescribed, whereas in our present case, the weights are given by volume
fractions v,. We could not find an existence proof for polynomially exact quadratures with prescribed weights in the literature. To
begin with, we discuss the case of M equally-weighted quadrature points. From Eq. (B.8), we find a quadrature consisting of d + 1
weighted orientations. Each weight w; € [0, 1] can be approximated to arbitrary precision by a rational number, i.e., for a given
denominator M € NN, there exists a numerator g; € IN such that

4 1
s - | < 5 ®.9)

For sufficiently large M, this approximation becomes arbitrarily precise. When approximating the set of weights {w;}, we seek a set
of numerators {g,} such that

d+1

Z aGp=M (B.10)
p=1

holds. In Fig. 25(b), this approximation is illustrated for three quadrature points and a denominator of M = 10.

The discussed technique for realizing equal volume fractions is readily modified to realize N prescribed volume fractions v,. As
illustrated in Fig. 25(c), we subdivide each of the M = 10 equal-volume crystallites into N sub-crystallites with volume fractions
v,/M. The final microstructure consists of M N crystallites and satisfies the prescribed crystallite sizes exactly, while satisfying the
orientation statistics approximately, depending on the choice of the denominator M. This constructive example, while involving an
excessive number of crystallites, illustrates the general feasibility of solving the moment-matching problem with prescribed volume
fractions.

Appendix C. Symmetry properties of texture tensors

We discuss symmetry properties of the texture tensors introduced in Section 2.3. More precisely, we discuss the restrictions arising
from material and statistical symmetries of a texture on its representation as a set of texture tensors. From these restrictions, we derive
projector operators to compute symmetric texture tensors, allowing for efficient representation of symmetric textures.

Material symmetry requires that the crystal lattice is invariant under a subgroup of rotations

S CS0@3). (C.1

As the orientation statistics are meant to quantify the impact of lattice orientations on the material properties, only symmetry-invariant
statistics are relevant. Therefore, we only need to consider polynomials respecting the invariance condition

p'(Q)=p'(QR) forall ReS. (C.2)
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Right-hand rotations apply to the texture tensors via

P"(QR) = 22 T (0 R), (C.3)
2n pXxn\ . oXn
Z,,HTR)Q’ (C.4)

where the multiplication between 2nth order tensors is to be understood as a matrix-matrix multiplication between (2n + 1) X 2n + 1)
matrices. Right-hand symmetry restricts the texture tensor T?” to a right-hand symmetric subspace. As a tensor space, this subspace
admits a right-hand basis consisting of tensors D's ; which satisfy the symmetry condition

R % IDZ’W = ID”SJ. forall ReS. (C.5)

Depending on the symmetry class under consideration, the number of symmetric basis tensors k ¢(n) is significantly reduced compared
to the full (2n + 1) degrees of freedom. The associated tensorial texture coefficients

vi= QxD'du, i€ (L2 ... ksn) (C.6)
’ S03)

are not generally .S-symmetric. Using them, we write the symmetric texture tensor T2 explicitly as

kg (n)

=) Vi, @D}, (€7
i=1

As an example, we consider the cubic lattice symmetry group, which is generated by 90° rotations around the three lattice vectors.
A cubic set of deviatoric basis tensors up to order ten is listed in Appendix D. There are only five cubic basis tensors of up to order
ten, whereas, in the fully anisotropic case, 120 basis tensors would be required in total.

Statistical symmetries of the texture correspond to left-hand symmetries of the texture tensors, which reduce the number of
components of the coefficient tensor V" just as the material symmetries reduce the number of deviatoric basis tensors D". Of particular
relevance is statistical isotropy, where the symmetry group S (C.1) equals the full group SO(3). Because no deviatoric tensors of non-
zero order are isotropic, statistical isotropy requires that all texture tensors of non-zero order vanish.

Appendix D. Cubic deviatoric basis tensors
The cubic deviatoric basis tensors are computed from the regular basis tensors by applying cubic symmetry, then re-

orthonormalizing using the Gram-Schmidt procedure [100]. For texture tensors up order eleven, this procedure yields one tensor
D¢, per order n € {0,4,6,8,9,10} As the results are ambiguous in their signs, we list the values we used explicitly for completeness:

Dg =1, (D.1)
V15 V21
D¢, = TDI + TDQ’ (D.2)
6 Vid o V2 ¢
DCI ——TDS-FTDB, (D3)

(D.4)

D =-— D) + ~——D? (D.5)

C1 12 12 12°

Do _ \/1122"])10 \/ZZDIO \/390D10 D.6)
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