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Abstract

Introduction Out-of-hospital cardiac arrest (OHCA) is a critical medical emergency where rapid access to automated
external defibrillators (AED) can significantly improve survival rates. However, there is currently a lack of well-
established frameworks and guidelines concerning the optimal placement of AED. Additionally, historical data on the
locations of OHCA incidents is often unavailable or incomplete. This study seeks to address these gaps by analyzing
the most effective AED placement strategies and evaluating the impact of additional AED locations on suspected
OHCA cases. To achieve this, a machine learning (ML) model is developed that relies exclusively on demographic and
infrastructural factors, without the need for historical OHCA location data.

Methods In this data-driven predictive modelling study, 5,076 alerts of suspected OHCA and 95 AED locations in
Freiburg were analysed (October 7, 2018, to May 28, 2024). Demographic and infrastructural data were integrated into
a three-step approach to identify and prioritize optimal AED placements. A Decision Tree was trained to predict OHCA
risk at possible locations, followed by the application of a greedy algorithm to determine AED locations. The models
were validated using several performance metrics and historical OHCA data to ensure accuracy. Additionally, different
scenarios were evaluated to maximize AED coverage of OHCA incidents.

Results Optimizing AED placement using predicted data increased coverage from 21.6% to 42.4%, without adding
more devices. The ML model’s coverage was only 6.7% lower than that achieved using historical alert data. Adding 19
AEDs (a 20% increase) to the existing network raised coverage to 30.5%.

Conclusion The findings demonstrate the feasibility of using ML models for AED placement in regions lacking
comprehensive historical data. Integrating advanced ML techniques can further refine strategies for AED deployment
in urban areas, ultimately improving emergency response effectiveness.
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Background

Every year, millions of people worldwide suffer from out-
of-hospital cardiac arrest (OHCA) where rapid access to
automated external defibrillators (AED) potentially could
improve survival rates significantly [1-4]. The American
Heart Task Force first formulated the concept of Public
Access Defibrillators (PAD) in 1990, calling for the avail-
ability of AED in high-traffic areas that can be operated
by trained or untrained laypersons in the event of an
OHCA [5]. However, AED are rarely used in OHCA [2].
In addition, there are smartphone alerting systems (SAS),
which aim to improve the use and availability of AED/
PAD [6-8]. SAS are designed to notify nearby registered
first responders via an app, enabling them to reach the
scene faster than emergency services, initiate life-saving
measures, and bring a nearby AED to the patient. There-
fore those systems should be linked to AED location
registries [9]. A SAS has been implemented in the met-
ropolitan area of Freiburg/Germany (1,531 km? 493,036
inhabitants) in 2018 by the non-profit organisation
Region of Lifesavers (“Region der Lebensretter”). Part of
the project is to improve AED availability and establish
additional AED locations [6, 10]. Generally, the use of
AED in easily accessible locations with a high probabil-
ity of OHCA is recommended [11, 12]. Demographic and
infrastructural characteristics can be considered as key
factors for the strategic placement of AED in public areas
[13-17]. For example, locations with an older population
structure, transportation or leisure facilities have been
identified in several studies as high-risk areas that could
benefit [14—16]. The 2021 European Resuscitation Coun-
cil (ERC) guidelines recommend two AED per km? [12].
However, generally applicable guidelines or strategies for
the placement of AED in public areas are not available
yet. Although demographic and infrastructural factors
are considered essential in most studies, few models have
been developed for the placement of AED [18-20].

The aim of this study is to develop a predictive model
based on a machine learning (ML) algorithm for strategic
AED placement resulting in highest possible AED cover-
age in Freiburg, excluding data of preceding locations of
OHCA alerts.

Methods

Study sample and design

For this data-driven forecast modelling study, the geo-
graphic coordinates of 5,076 SAS alerts from the dispatch
centre Freiburg (Germany) for suspected OHCA between

October 7, 2018 and May 28, 2024 were analysed. Fur-
thermore, the geolocation data (effective May 28, 2024)
of 95 AED with 24/7 availability in Freiburg were inte-
grated in the analysis (semi-automatic AEDs).

The demographic data was provided by “The Humani-
tarian Data Exchange” (Meta, USA, Version 01.07.2019)
[21] while the infrastructural characteristics were pro-
vided by the Overpass API (DinoTools, Overpy 0.7,
04.12.2023) [22]. A three-step approach was conducted
to identify and characterize possible AED locations, pre-
dicting the risk for OHCA at the identified locations and
prioritize AED placements based on a greedy algorithm.

Identification and characterization of possible AED
locations (Step 1)

Based on the study by Berg and colleagues [23], the area
of Freiburg was divided into 31,023 isochrones around
road intersections, with their centres serving as possible
locations for AED (Fig. 1). Each isochrone covers a three-
minute walking distance, equivalent to 297 m at a speed
of 1.65 m/s [24]. Possible locations are then characterized
based on the demographic and infrastructural features
of the associated isochrones, which are used as inputs
for a Decision Tree Model to predict OHCA alert loca-
tions (sex, population density, age structure, public build-
ings, residential areas/industrial areas, sport facilities,
transportation stations and public parking spaces). These
characterized features help identify risk areas for inci-
dence of OHCA cases (Supplement). The target variable
for the prediction model is a risk area based on the aver-
age number of OHCA alerts per year during the observa-
tion period (Table 1).

Predicting the risk for OHCA at possible AED locations
(Step 2)

A Decision Tree was trained to predict the risk area of
potential locations for OHCA based on historical data
from the dispatch center. By using supervised learning,
the model can estimate risk areas using demographic
and infrastructural data, even in regions where detailed
information is lacking. To improve accuracy, any highly
correlated factors were removed during data preparation.
All input variables were tested for statistical significance
using an F-test, with a threshold value of less than 0.05
[25]. Modelling the raw OHCA alert locations counts
directly proved unreliable given the limited and hetero-
geneous data. We therefore chose to predict a continu-
ous risk score on a scale between 1 and 9 that is based
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Fig. 1 Example of the representation of an isochrone in Freiburg. The red marker symbolizes a road junction, while the blue area represents a three-
minute isochrone (walking). Within the isochrone are infrastructural features such as the main train station (green marker), the theatre (orange marker), or
parking spaces (blue marker). The isochrone also contains demographic features, such as the number of people living in the isochrone

Table 1 Risk areas and the corresponding number of alerts per

year

Risk area Number of alerts per year
1 0

2 (0-1]

3 (1-2]

4 (2-3]

5 (3-4]

6 (4-5]

7 (5-10]
8 (10-20]
9 (>20)

on certain thresholds on the number of alerts per year
(Table 1). This proved to be a stable and interpretable
approximation of the underlying risk pattern [26, 27].

Two types of models were used to find a balance
between simplicity and performance: Simple algorithms
such as linear regression and decision trees and the auto-
matic machine learning platform AutoML (H2O Driv-
erless Al), which provides an automated fine-tuning of
these algorithms. In the end, the Decision Tree provided
the best results with regard to the simplicity-perfor-
mance trade-off. The data was split into 80% for train-
ing and 20% for testing, with five-fold cross-validation to
avoid overfitting.

Greedy prioritization of AED placements (Step 3)

The predictive model classifies 31,023 possible AED
locations in Freiburg into risk areas. As the associated
isochrones partially overlap, placing an AED at every
high-risk OHCA location would result in overlapping
coverage and ineffective placements. A greedy-based
algorithm is designed to address the goal of finding the
appropriate subset of AED locations. A detailed pseudo-
code is provided in the supplement. The algorithm
iteratively places AED at the respective location with
the highest risk area. Locations within the 3-minute iso-
chrone of the selected site are removed to avoid redun-
dant coverage. The risk area of locations within the
five-minute isochrone is reduced by a constant to bal-
ance overlap with newly covered areas, ensuring high-
risk locations can still be considered in later iterations.
The process repeats until either a fixed number of AED
is selected, or a certain risk area is covered. A sensitivity
analysis revealed that the choice of the constant for the
reduction of the risk level has a marginal effect on the
resulting coverage. In the present dataset with a reduc-
tion by two results in the largest coverage in the given
data set. In scenarios where AED are already installed,
potential locations are pre-processed by removing those
that fall within a three-minute isochrone of an existing
AED or reducing the risk area by the constant of those
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that fall within a five-minute isochrone of an existing
AED.

Validation and scenarios

The scenarios used in the validation are presented in
Table 2. The study compares the coverage of historical
alerts when AED are installed based on the historical
alerts versus AED placement using the predictive model.
In this comparison, Scenario 1 represents installation
using the predictive model, while Scenario 2 uses his-
torical OHCA dispatches. In both scenarios, 95 new AED
are installed, the same number as currently installed, to
ensure a fair comparison to the current status (Scenario
0). The primary metric for validation is the percentage of
historical alerts covered, defined by the presence of an
AED within 300 m of the event. This analysis allows for
a comprehensive comparison of different AED placement
strategies and their effectiveness in improving emergency
response coverage. Scenarios A, B, and C, along with the
current AED status (Scenario 0), evaluate the impact of
additional AED placement using a predictive model. Sce-
nario A assumes a 20% increase in the number of AED,
while in Scenario B and C AED are placed to cover a
certain risk area (risk area 5 or risk area 3, see Table 1).
These scenarios evaluate how an increase in the number
of AED increases the coverage of historical OHCA alerts.

Statistical analysis and Ethics

The following software tools were used in this study:
PyCharm 2024.1.1 (JetBrains) served as the integrated
development environment, while Python (Versions
3.12.1 and 3.11.6, scikit-learn Version 1.5.2, Python
Software Foundation) was utilized for programming.
Docker Desktop 4.30.0 (Docker Inc.) was used to oper-
ate a Docker container, and OpenRouteService (ORS)
vOPENAPI_3_0, executed within a Docker container
via ors-docker compose (HeiGIT gGmbH, Heidelberg,
Germany), was used to generate isochrones and calcu-
late distances. Additionally, Visual Studio Code (Version
1.89, Microsoft) was also utilized. Statistical analyses
were conducted using ANOVA, Variance Inflation Factor
(VIF), Mean Squared Error (MSE), and Mean Absolute
Error (MAE). A significance level of P<.05 was consid-
ered statistically significant.

Table 2 Scenarios used in the investigation

Scenario Considering Termination Data basis
installed AED criteria

Scenario 0 Yes - -

Scenario 1 No N=95 AED Predictive model

Scenario 2 No N=95 AED Historical alerts

Scenario A Yes N=19 AED Predictive model

Scenario B Yes Risk area 5 Predictive model

Scenario C Yes Risk area 3 Predictive model

Page 4 of 9

The study has been approved by the Ethics Committee
of the Albert-Ludwigs-University Freiburg (482/18 and
23-1450-S1). The research data was used based on the
End User License Agreement (EULA), which was agreed
by the participating first responders upon registration.
Informed consent to participate was obtained from all of
the participants. The data protection concept has been
reviewed and approved by the state data protection offi-
cer. The trial is registered with the German Clinical Tri-
als Register (DRKS, ID: DRKS00016625 15/04/2019 and
DRKS00032957 30/10/2023), which is a WHO primary
register.

Results

Comparison of coverage based on the predictive model
and OHCA data (Scenario 1, 2)

In the current situation, 95 AED are installed in Freiburg,
providing 21.6% coverage (Scenario 0). In Scenario 1 and
2, the same number of AED were installed, but in dif-
ferent locations. Scenario 1 used the predictive model,
while Scenario 2 relied on historical alert data. Cover-
age reached 42.4% in Scenario 1 and 49.1% in Scenario 2,
showing a nominal difference of 6.7% (Fig. 2). Both meth-
ods improve AED coverage, with the predictive model
yielding slightly less favourable results than the historical
data.

Figure 3 focuses on a section of downtown Freiburg,
where the majority of the 95 AED are installed. In some
cases, AED are placed outside the depicted area. The cur-
rent distribution shows a concentration in the city centre
and a few residential areas. In contrast, both Scenario 1
and Scenario 2 demonstrate a more balanced AED place-
ment, covering the city centre as well as multiple residen-
tial areas. This leads to a more even distribution of AED
compared to the existing situation.

Expanded AED coverage considering current AED locations
(Scenario A, B, C)

In Scenario A with 20% higher number of AED (total
number of 114 AED) placed by the predictive model, the
coverage raises to 30.5% (Fig. 4).

In Scenarios B and C, the required number of AED was
analyzed based on the coverage of different risk areas
with AED locations. For Scenario B, which targets risk
area 5 (characterized by 2-3 alerts per year), it was deter-
mined that 140 AED would be necessary, resulting in a
coverage rate of 40.2% for historical alerts. In Scenario C,
focusing on risk area 3 (characterized by 1-2 alerts per
year), the analysis indicated a requirement of 254 AED,
achieving a coverage rate of 58.4% for historical alerts.

Of the 5,076 alerts during the observation period, only
1,098 could be covered with the current AED locations
(three minutes walking distance). This rises to 2,962
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Scenarios considered with identical number of 95 AED

Fig.2 Coverage of historical OHCA alerts in Freiburg with current AED locations (Scenario 0), with AED locations based on predictive ML model (Scenario

1) and with AED locations based on historical alert data (Scenario 2)

alerts in Scenario C. All scenarios used in the validation
are presented in Table 2.

Discussion

The findings of this study align with existing literature,
which suggests that AED placements based solely on
local initiatives without strategic planning are less effec-
tive [14, 28]. The study’s scenario analysis demonstrates
that increasing the number of strategically placed AED
can significantly enhance coverage. A 20% increase in
AED installation results in a 41% improvement in cov-
erage, underscoring the efficacy of well-planned AED
placements (Scenario A). The additional benefits or util-
ity gained from more AED locations decrease in Sce-
narios B and C compared to the initial benefits observed
in Scenario A. As a result, the marginal benefit of each
additional AED diminishes, even though the overall
coverage improves. These findings suggest that while
expanding AED coverage is beneficial, cost-effectiveness
also has to be taken into account to avoid over-satura-
tion in low-risk areas. There are multiple strategies for
AED placement released by the European Resuscita-
tion Council (ERC) and the American Heart Association
(AHA), however they also address a relevant knowledge
gap in this field implying continued research [12, 29,
30]. Although the accessibility of AED was not the pri-
mary focus of this study, it is important to highlight that
AED should be available 24/7, clearly marked, and eas-
ily accessible to ensure prompt use in emergencies [31,
32]. The approach of this study is designed to be generally
applicable, assuming that temporarily accessible AEDs

cannot be relied upon, particularly during nighttime or
off-hours. Consequently, only AEDs with 24/7 availability
were considered to ensure consistent and realistic cover-
age assessment.

It is conceivable, that there is no way for a 100% AED
coverage for OHCA scenarios. However, to enable rapid
defibrillation in a very high proportion of OHCA cases
it may be helpful to combine strategic placement of AED
with a current concept to integrate AED drones [33].
While most common approaches focus on data analysis
of historical OHCA aim to identify and equip high-risk
areas [13], this strategy may be influenced by various
factors, such as the consideration of historical alert data
of OHCA [34], demographic and infrastructural factors
[35], geographical and temporal availability of AED [15]
or the daytime population [13, 14]. Current studies are
increasingly focusing on the limited or unlimited avail-
ability of AED at different times of the day [28]. The spa-
tial restrictions indicate that AED cannot be available
around the clock. This factor should be considered when
strategically planning the availability of AED.

The analysis highlights population density as the most
important factor influencing OHCA location likelihood,
confirming previous research on the correlation between
high traffic areas and OHCA risk. Although age-related
data were unavailable for this study, there is a suggested
trend between regions frequented by older individuals
and elevated OHCA risk [36, 37]. Additionally, infra-
structural features like public buildings and transporta-
tion hubs, also play an essential role, as these areas attract
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Fig. 3 Placement of AED in Freiburg. Scenario 0 (=current AED locations)
(red), Scenario 1 (blue) with AED locations based on predictive ML model,
Scenario 2 (green) with AED locations based on historical alert data

large transient populations, further increasing OHCA
alert risk.

The comparison between AED placement based on
historical data and the predictive model reveals only a
minor difference in coverage (6.7%), affirming the model’s
reliability. This demonstrates that predictive ML models
based on demographic and infrastructural data may be
effectively applied in regions lacking historical OHCA
location data, offering a robust alternative for strategic
AED planning.

The objective in everyday practice is to ensure that
every OHCA alert (Operation via Smartphone Alerting
System) is equipped with an AED. Consequently, the pri-
mary goal is not solely to address cases that later confirm
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to be OHCA, but to have an AED available for every SAS
operation, thereby covering all suspected cases of OHCA.

Conclusion

This study highlights the role of integrating demographic
and infrastructural characteristics into ML models for
the optimal placement of AED. The findings may indi-
cate that these models provide coverage nearly equivalent
to that achieved using historical OHCA location data,
affirming their reliability and effectiveness. Additionally,
the strategic addition of AED greatly enhances coverage,
particularly in high-risk areas identified through the ML
model.

The study offers a robust methodological framework
for AED placement in urban settings, emphasizing
data-driven decision-making in public health initiatives.
Future applications may be further strengthened by
incorporating advanced ML techniques to identify com-
plex patterns within extensive datasets, enabling more
accurate predictions of ideal AED locations.

Limitation

Time-related factors, such as AED availability at differ-
ent times of day, operational hours, and time-dependent
characteristics like population density, were not included
in the current model. Additionally, distance calculations
were limited to horizontal distances, excluding vertical
dimensions within buildings and calculation was based
on walking speed. Vertical accessibility is likely of minor
relevance in this analysis, as only AEDs with 24/7 avail-
ability were considered, which are typically installed
at ground level rather than on upper floors. It can be
assumed that the first responders run and can therefore
cover the distance in less time. Whereas traffic should
also be taken into account.

The greedy algorithm used in this study tends to find
local rather than global optima, which may result in sub-
optimal outcomes, especially in complex problems like
AED placement. Greedy algorithms are known to be
quick and simple to implement but can miss better global
solutions [38]. Introducing an improvement heuristic
could enhance optimization.

The predictive model relies on a limited amount of
labelled training data, restricting its ability to general-
ize. This effect is amplified when predicting OHCA alert
locations per isochrone, as the dataset contains a high
proportion of zero events. Insufficient data may cause
the model to overfit specific patterns, struggling to
adapt to new, unseen scenarios. Expanding the training
data would improve generalizability and enable a more
detailed validation explicitly accounting for spatial or
temporal aspects. In addition, while several predictors
already capture key spatial characteristics, we did not for-
mally test for residual spatial autocorrelation. Given the
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Scenario B [140 AED] Scenario C [254 AED]

cover risk area of 5 or higher) cover risk area of 3 or higher)

Scenarios considered with different numbers of AED placed based on the predictive model

Fig.4 Coverage of historical alerts in Freiburg considering current AED locations (95 AED) already installed. Scenario 0 Shows coverage with current AED
locations. Scenario A shows coverage with additional 20% (= 114) AED locations placed by predictive model. Scenario B and C show coverage of historical
alerts and needed number of AED when risk area 5 (Scenario B) or risk area 3 (Scenario C) is covered by AED locations

model’s explanatory performance, however, any remain-
ing spatial dependence is expected to be limited.

Lastly, model validation is necessary when applied
to other regions. Testing predictions in different areas
with known data would assess the model’s robustness
and ensure its applicability across varying geographi-
cal and demographic contexts. The presented approach
represents an initial framework for strategic AED plan-
ning and invites further research and methodological
advancement to evaluate and adapt the concept in differ-
ent urban and regional settings.
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