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Abstract
Introduction  Out-of-hospital cardiac arrest (OHCA) is a critical medical emergency where rapid access to automated 
external defibrillators (AED) can significantly improve survival rates. However, there is currently a lack of well-
established frameworks and guidelines concerning the optimal placement of AED. Additionally, historical data on the 
locations of OHCA incidents is often unavailable or incomplete. This study seeks to address these gaps by analyzing 
the most effective AED placement strategies and evaluating the impact of additional AED locations on suspected 
OHCA cases. To achieve this, a machine learning (ML) model is developed that relies exclusively on demographic and 
infrastructural factors, without the need for historical OHCA location data.

Methods  In this data-driven predictive modelling study, 5,076 alerts of suspected OHCA and 95 AED locations in 
Freiburg were analysed (October 7, 2018, to May 28, 2024). Demographic and infrastructural data were integrated into 
a three-step approach to identify and prioritize optimal AED placements. A Decision Tree was trained to predict OHCA 
risk at possible locations, followed by the application of a greedy algorithm to determine AED locations. The models 
were validated using several performance metrics and historical OHCA data to ensure accuracy. Additionally, different 
scenarios were evaluated to maximize AED coverage of OHCA incidents.

Results  Optimizing AED placement using predicted data increased coverage from 21.6% to 42.4%, without adding 
more devices. The ML model’s coverage was only 6.7% lower than that achieved using historical alert data. Adding 19 
AEDs (a 20% increase) to the existing network raised coverage to 30.5%.

Conclusion  The findings demonstrate the feasibility of using ML models for AED placement in regions lacking 
comprehensive historical data. Integrating advanced ML techniques can further refine strategies for AED deployment 
in urban areas, ultimately improving emergency response effectiveness.
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Background
Every year, millions of people worldwide suffer from out-
of-hospital cardiac arrest (OHCA) where rapid access to 
automated external defibrillators (AED) potentially could 
improve survival rates significantly [1–4]. The American 
Heart Task Force first formulated the concept of Public 
Access Defibrillators (PAD) in 1990, calling for the avail-
ability of AED in high-traffic areas that can be operated 
by trained or untrained laypersons in the event of an 
OHCA [5]. However, AED are rarely used in OHCA [2]. 
In addition, there are smartphone alerting systems (SAS), 
which aim to improve the use and availability of AED/
PAD [6–8]. SAS are designed to notify nearby registered 
first responders via an app, enabling them to reach the 
scene faster than emergency services, initiate life-saving 
measures, and bring a nearby AED to the patient. There-
fore those systems should be linked to AED location 
registries [9]. A SAS has been implemented in the met-
ropolitan area of Freiburg/Germany (1,531 km2, 493,036 
inhabitants) in 2018 by the non-profit organisation 
Region of Lifesavers (“Region der Lebensretter”). Part of 
the project is to improve AED availability and establish 
additional AED locations [6, 10]. Generally, the use of 
AED in easily accessible locations with a high probabil-
ity of OHCA is recommended [11, 12]. Demographic and 
infrastructural characteristics can be considered as key 
factors for the strategic placement of AED in public areas 
[13–17]. For example, locations with an older population 
structure, transportation or leisure facilities have been 
identified in several studies as high-risk areas that could 
benefit [14–16]. The 2021 European Resuscitation Coun-
cil (ERC) guidelines recommend two AED per km2 [12]. 
However, generally applicable guidelines or strategies for 
the placement of AED in public areas are not available 
yet. Although demographic and infrastructural factors 
are considered essential in most studies, few models have 
been developed for the placement of AED [18–20].

The aim of this study is to develop a predictive model 
based on a machine learning (ML) algorithm for strategic 
AED placement resulting in highest possible AED cover-
age in Freiburg, excluding data of preceding locations of 
OHCA alerts.

Methods
Study sample and design
For this data-driven forecast modelling study, the geo-
graphic coordinates of 5,076 SAS alerts from the dispatch 
centre Freiburg (Germany) for suspected OHCA between 

October 7, 2018 and May 28, 2024 were analysed. Fur-
thermore, the geolocation data (effective May 28, 2024) 
of 95 AED with 24/7 availability in Freiburg were inte-
grated in the analysis (semi-automatic AEDs).

The demographic data was provided by “The Humani-
tarian Data Exchange” (Meta, USA, Version 01.07.2019) 
[21] while the infrastructural characteristics were pro-
vided by the Overpass API (DinoTools, Overpy 0.7, 
04.12.2023) [22]. A three-step approach was conducted 
to identify and characterize possible AED locations, pre-
dicting the risk for OHCA at the identified locations and 
prioritize AED placements based on a greedy algorithm.

Identification and characterization of possible AED 
locations (Step 1)
Based on the study by Berg and colleagues [23], the area 
of Freiburg was divided into 31,023 isochrones around 
road intersections, with their centres serving as possible 
locations for AED (Fig. 1). Each isochrone covers a three-
minute walking distance, equivalent to 297 m at a speed 
of 1.65 m/s [24]. Possible locations are then characterized 
based on the demographic and infrastructural features 
of the associated isochrones, which are used as inputs 
for a Decision Tree Model to predict OHCA alert loca-
tions (sex, population density, age structure, public build-
ings, residential areas/industrial areas, sport facilities, 
transportation stations and public parking spaces). These 
characterized features help identify risk areas for inci-
dence of OHCA cases (Supplement). The target variable 
for the prediction model is a risk area based on the aver-
age number of OHCA alerts per year during the observa-
tion period (Table 1).

Predicting the risk for OHCA at possible AED locations 
(Step 2)
A Decision Tree was trained to predict the risk area of 
potential locations for OHCA based on historical data 
from the dispatch center. By using supervised learning, 
the model can estimate risk areas using demographic 
and infrastructural data, even in regions where detailed 
information is lacking. To improve accuracy, any highly 
correlated factors were removed during data preparation. 
All input variables were tested for statistical significance 
using an F-test, with a threshold value of less than 0.05 
[25]. Modelling the raw OHCA alert locations counts 
directly proved unreliable given the limited and hetero-
geneous data. We therefore chose to predict a continu-
ous risk score on a scale between 1 and 9 that is based 
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on certain thresholds on the number of alerts per year 
(Table 1). This proved to be a stable and interpretable 
approximation of the underlying risk pattern [26, 27].

Two types of models were used to find a balance 
between simplicity and performance: Simple algorithms 
such as linear regression and decision trees and the auto-
matic machine learning platform AutoML (H2O Driv-
erless AI), which provides an automated fine-tuning of 
these algorithms. In the end, the Decision Tree provided 
the best results with regard to the simplicity-perfor-
mance trade-off. The data was split into 80% for train-
ing and 20% for testing, with five-fold cross-validation to 
avoid overfitting.

Greedy prioritization of AED placements (Step 3)
The predictive model classifies 31,023 possible AED 
locations in Freiburg into risk areas. As the associated 
isochrones partially overlap, placing an AED at every 
high-risk OHCA location would result in overlapping 
coverage and ineffective placements. A greedy-based 
algorithm is designed to address the goal of finding the 
appropriate subset of AED locations. A detailed pseudo-
code is provided in the supplement. The algorithm 
iteratively places AED at the respective location with 
the highest risk area. Locations within the 3-minute iso-
chrone of the selected site are removed to avoid redun-
dant coverage. The risk area of locations within the 
five-minute isochrone is reduced by a constant to bal-
ance overlap with newly covered areas, ensuring high-
risk locations can still be considered in later iterations. 
The process repeats until either a fixed number of AED 
is selected, or a certain risk area is covered. A sensitivity 
analysis revealed that the choice of the constant for the 
reduction of the risk level has a marginal effect on the 
resulting coverage. In the present dataset with a reduc-
tion by two results in the largest coverage in the given 
data set. In scenarios where AED are already installed, 
potential locations are pre-processed by removing those 
that fall within a three-minute isochrone of an existing 
AED or reducing the risk area by the constant of those 

Table 1  Risk areas and the corresponding number of alerts per 
year
Risk area Number of alerts per year
1 0
2 (0–1]
3 (1–2]
4 (2–3]
5 (3–4]
6 (4–5]
7 (5–10]
8 (10–20]
9 (> 20)

Fig. 1  Example of the representation of an isochrone in Freiburg. The red marker symbolizes a road junction, while the blue area represents a three-
minute isochrone (walking). Within the isochrone are infrastructural features such as the main train station (green marker), the theatre (orange marker), or 
parking spaces (blue marker). The isochrone also contains demographic features, such as the number of people living in the isochrone
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that fall within a five-minute isochrone of an existing 
AED.

Validation and scenarios
The scenarios used in the validation are presented in 
Table  2. The study compares the coverage of historical 
alerts when AED are installed based on the historical 
alerts versus AED placement using the predictive model. 
In this comparison, Scenario 1 represents installation 
using the predictive model, while Scenario 2 uses his-
torical OHCA dispatches. In both scenarios, 95 new AED 
are installed, the same number as currently installed, to 
ensure a fair comparison to the current status (Scenario 
0). The primary metric for validation is the percentage of 
historical alerts covered, defined by the presence of an 
AED within 300 m of the event. This analysis allows for 
a comprehensive comparison of different AED placement 
strategies and their effectiveness in improving emergency 
response coverage. Scenarios A, B, and C, along with the 
current AED status (Scenario 0), evaluate the impact of 
additional AED placement using a predictive model. Sce-
nario A assumes a 20% increase in the number of AED, 
while in Scenario B and C AED are placed to cover a 
certain risk area (risk area 5 or risk area 3, see Table 1). 
These scenarios evaluate how an increase in the number 
of AED increases the coverage of historical OHCA alerts.

Statistical analysis and Ethics
The following software tools were used in this study: 
PyCharm 2024.1.1 (JetBrains) served as the integrated 
development environment, while Python (Versions 
3.12.1 and 3.11.6, scikit-learn Version 1.5.2, Python 
Software Foundation) was utilized for programming. 
Docker Desktop 4.30.0 (Docker Inc.) was used to oper-
ate a Docker container, and OpenRouteService (ORS) 
vOPENAPI_3_0, executed within a Docker container 
via ors-docker compose (HeiGIT gGmbH, Heidelberg, 
Germany), was used to generate isochrones and calcu-
late distances. Additionally, Visual Studio Code (Version 
1.89, Microsoft) was also utilized. Statistical analyses 
were conducted using ANOVA, Variance Inflation Factor 
(VIF), Mean Squared Error (MSE), and Mean Absolute 
Error (MAE). A significance level of P < .05 was consid-
ered statistically significant.

The study has been approved by the Ethics Committee 
of the Albert-Ludwigs-University Freiburg (482/18 and 
23-1450-S1). The research data was used based on the 
End User License Agreement (EULA), which was agreed 
by the participating first responders upon registration. 
Informed consent to participate was obtained from all of 
the participants. The data protection concept has been 
reviewed and approved by the state data protection offi-
cer. The trial is registered with the German Clinical Tri-
als Register (DRKS, ID: DRKS00016625 15/04/2019 and 
DRKS00032957 30/10/2023), which is a WHO primary 
register.

Results
Comparison of coverage based on the predictive model 
and OHCA data (Scenario 1, 2)
In the current situation, 95 AED are installed in Freiburg, 
providing 21.6% coverage (Scenario 0). In Scenario 1 and 
2, the same number of AED were installed, but in dif-
ferent locations. Scenario 1 used the predictive model, 
while Scenario 2 relied on historical alert data. Cover-
age reached 42.4% in Scenario 1 and 49.1% in Scenario 2, 
showing a nominal difference of 6.7% (Fig. 2). Both meth-
ods improve AED coverage, with the predictive model 
yielding slightly less favourable results than the historical 
data.

Figure 3 focuses on a section of downtown Freiburg, 
where the majority of the 95 AED are installed. In some 
cases, AED are placed outside the depicted area. The cur-
rent distribution shows a concentration in the city centre 
and a few residential areas. In contrast, both Scenario 1 
and Scenario 2 demonstrate a more balanced AED place-
ment, covering the city centre as well as multiple residen-
tial areas. This leads to a more even distribution of AED 
compared to the existing situation.

Expanded AED coverage considering current AED locations 
(Scenario A, B, C)
In Scenario A with 20% higher number of AED (total 
number of 114 AED) placed by the predictive model, the 
coverage raises to 30.5% (Fig. 4).

In Scenarios B and C, the required number of AED was 
analyzed based on the coverage of different risk areas 
with AED locations. For Scenario B, which targets risk 
area 5 (characterized by 2–3 alerts per year), it was deter-
mined that 140 AED would be necessary, resulting in a 
coverage rate of 40.2% for historical alerts. In Scenario C, 
focusing on risk area 3 (characterized by 1–2 alerts per 
year), the analysis indicated a requirement of 254 AED, 
achieving a coverage rate of 58.4% for historical alerts.

Of the 5,076 alerts during the observation period, only 
1,098 could be covered with the current AED locations 
(three minutes walking distance). This rises to 2,962 

Table 2  Scenarios used in the investigation
Scenario Considering 

installed AED
Termination 
criteria

Data basis

Scenario 0 Yes - -
Scenario 1 No N = 95 AED Predictive model
Scenario 2 No N = 95 AED Historical alerts
Scenario A Yes N = 19 AED Predictive model
Scenario B Yes Risk area 5 Predictive model
Scenario C Yes Risk area 3 Predictive model
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alerts in Scenario C. All scenarios used in the validation 
are presented in Table 2.

Discussion
The findings of this study align with existing literature, 
which suggests that AED placements based solely on 
local initiatives without strategic planning are less effec-
tive [14, 28]. The study’s scenario analysis demonstrates 
that increasing the number of strategically placed AED 
can significantly enhance coverage. A 20% increase in 
AED installation results in a 41% improvement in cov-
erage, underscoring the efficacy of well-planned AED 
placements (Scenario A). The additional benefits or util-
ity gained from more AED locations decrease in Sce-
narios B and C compared to the initial benefits observed 
in Scenario A. As a result, the marginal benefit of each 
additional AED diminishes, even though the overall 
coverage improves. These findings suggest that while 
expanding AED coverage is beneficial, cost-effectiveness 
also has to be taken into account to avoid over-satura-
tion in low-risk areas. There are multiple strategies for 
AED placement released by the European Resuscita-
tion Council (ERC) and the American Heart Association 
(AHA), however they also address a relevant knowledge 
gap in this field implying continued research [12, 29, 
30]. Although the accessibility of AED was not the pri-
mary focus of this study, it is important to highlight that 
AED should be available 24/7, clearly marked, and eas-
ily accessible to ensure prompt use in emergencies [31, 
32]. The approach of this study is designed to be generally 
applicable, assuming that temporarily accessible AEDs 

cannot be relied upon, particularly during nighttime or 
off-hours. Consequently, only AEDs with 24/7 availability 
were considered to ensure consistent and realistic cover-
age assessment.

It is conceivable, that there is no way for a 100% AED 
coverage for OHCA scenarios. However, to enable rapid 
defibrillation in a very high proportion of OHCA cases 
it may be helpful to combine strategic placement of AED 
with a current concept to integrate AED drones [33]. 
While most common approaches focus on data analysis 
of historical OHCA aim to identify and equip high-risk 
areas [13], this strategy may be influenced by various 
factors, such as the consideration of historical alert data 
of OHCA [34], demographic and infrastructural factors 
[35], geographical and temporal availability of AED [15] 
or the daytime population [13, 14]. Current studies are 
increasingly focusing on the limited or unlimited avail-
ability of AED at different times of the day [28]. The spa-
tial restrictions indicate that AED cannot be available 
around the clock. This factor should be considered when 
strategically planning the availability of AED.

The analysis highlights population density as the most 
important factor influencing OHCA location likelihood, 
confirming previous research on the correlation between 
high traffic areas and OHCA risk. Although age-related 
data were unavailable for this study, there is a suggested 
trend between regions frequented by older individuals 
and elevated OHCA risk [36, 37]. Additionally, infra-
structural features like public buildings and transporta-
tion hubs, also play an essential role, as these areas attract 

Fig. 2  Coverage of historical OHCA alerts in Freiburg with current AED locations (Scenario 0), with AED locations based on predictive ML model (Scenario 
1) and with AED locations based on historical alert data (Scenario 2)
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large transient populations, further increasing OHCA 
alert risk.

The comparison between AED placement based on 
historical data and the predictive model reveals only a 
minor difference in coverage (6.7%), affirming the model’s 
reliability. This demonstrates that predictive ML models 
based on demographic and infrastructural data may be 
effectively applied in regions lacking historical OHCA 
location data, offering a robust alternative for strategic 
AED planning.

The objective in everyday practice is to ensure that 
every OHCA alert (Operation via Smartphone Alerting 
System) is equipped with an AED. Consequently, the pri-
mary goal is not solely to address cases that later confirm 

to be OHCA, but to have an AED available for every SAS 
operation, thereby covering all suspected cases of OHCA.

Conclusion
This study highlights the role of integrating demographic 
and infrastructural characteristics into ML models for 
the optimal placement of AED. The findings may indi-
cate that these models provide coverage nearly equivalent 
to that achieved using historical OHCA location data, 
affirming their reliability and effectiveness. Additionally, 
the strategic addition of AED greatly enhances coverage, 
particularly in high-risk areas identified through the ML 
model.

The study offers a robust methodological framework 
for AED placement in urban settings, emphasizing 
data-driven decision-making in public health initiatives. 
Future applications may be further strengthened by 
incorporating advanced ML techniques to identify com-
plex patterns within extensive datasets, enabling more 
accurate predictions of ideal AED locations.

Limitation
Time-related factors, such as AED availability at differ-
ent times of day, operational hours, and time-dependent 
characteristics like population density, were not included 
in the current model. Additionally, distance calculations 
were limited to horizontal distances, excluding vertical 
dimensions within buildings and calculation was based 
on walking speed. Vertical accessibility is likely of minor 
relevance in this analysis, as only AEDs with 24/7 avail-
ability were considered, which are typically installed 
at ground level rather than on upper floors. It can be 
assumed that the first responders run and can therefore 
cover the distance in less time. Whereas traffic should 
also be taken into account.

The greedy algorithm used in this study tends to find 
local rather than global optima, which may result in sub-
optimal outcomes, especially in complex problems like 
AED placement. Greedy algorithms are known to be 
quick and simple to implement but can miss better global 
solutions [38]. Introducing an improvement heuristic 
could enhance optimization.

The predictive model relies on a limited amount of 
labelled training data, restricting its ability to general-
ize. This effect is amplified when predicting OHCA alert 
locations per isochrone, as the dataset contains a high 
proportion of zero events. Insufficient data may cause 
the model to overfit specific patterns, struggling to 
adapt to new, unseen scenarios. Expanding the training 
data would improve generalizability and enable a more 
detailed validation explicitly accounting for spatial or 
temporal aspects. In addition, while several predictors 
already capture key spatial characteristics, we did not for-
mally test for residual spatial autocorrelation. Given the 

Fig. 3  Placement of AED in Freiburg. Scenario 0 (= current AED locations) 
(red), Scenario 1 (blue) with AED locations based on predictive ML model, 
Scenario 2 (green) with AED locations based on historical alert data
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model’s explanatory performance, however, any remain-
ing spatial dependence is expected to be limited.

Lastly, model validation is necessary when applied 
to other regions. Testing predictions in different areas 
with known data would assess the model’s robustness 
and ensure its applicability across varying geographi-
cal and demographic contexts. The presented approach 
represents an initial framework for strategic AED plan-
ning and invites further research and methodological 
advancement to evaluate and adapt the concept in differ-
ent urban and regional settings.
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