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ARTICLE INFO ABSTRACT
2020 MSC: Discrete gradient methods are a powerful tool for the time discretization of dynamical systems,
34A09 since they are structure-preserving regardless of the form of the total energy. In this work,
Z?E?g we discuss the application of discrete gradient methods to the system class of nonlinear port-
7055 Hamiltonian differential-algebraic equations - as they emerge from the port- and energy-based
93C10 modeling of physical systems in various domains. We introduce a novel numerical scheme tai-
lored for semi-explicit differential-algebraic equations and further address more general settings
Keywords: using the concepts of discrete gradient pairs and Dirac-dissipative structures. Additionally, the
Port-Hamiltonian systems behavior under system transformations is investigated and we demonstrate that under suitable

Differential-algebraic equations
Structure-preserving discretization
Time integration methods
Discrete gradients

assumptions port-Hamiltonian differential-algebraic equations admit a representation which con-
sists of a parametrized port-Hamiltonian semi-explicit system and an unstructured equation. Fi-
nally, we present the application to multibody system dynamics and discuss numerical results to
demonstrate the capabilities of our approach.

1. Introduction

Port-Hamiltonian (pH) systems have gained significant importance in various research areas, with a particular focus on the mod-
eling, simulation, and control of dynamical systems [1,2]. pH systems offer a valuable framework for analyzing complex problems,
where the complexity may arise from multi-physical interactions, non-trivial domains, and various nonlinearities. One of the key
advantages of the pH representation is its explicit description of power interfaces, known as ports, which facilitate power-preserving
interconnections between submodules. Thus, this approach simplifies the modular composition of models, which often leads to the
presence of algebraic constraints. Correspondingly, the governing equations at hand are differential-algebraic equations (DAEs), also
known as descriptor systems in the context of control theory. If the system has in addition a pH structure, we speak of port-Hamiltonian
differential-algebraic equations (pHDAEs). A definition for linear time-varying pHDAESs was provided in [3] and a full, nonlinear gen-
eralization has been provided in [4]. An important subclass consists of semi-explicit pHDAEs, see e.g. [5, Eq. 3.16], where local
representations of implicit port-Hamiltonian DAEs are discussed. In [6,7], the Hamiltonian as a backbone of pH systems is replaced
by Lagrangian subspaces or submanifolds to define generalized pHDAEs.
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\begin {equation*}\hamiltonian (\state ) = \frac {1}{2} v\transp M v + V(q) = T(v) + V(q)\end {equation*}


$E\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$\lambda $


$\hfill \Diamond $


$x=(I,p,\theta ) \in \R ^8$


\begin {align}\label {eq:syncMachAltdyn} \begin {bmatrix} L(\theta ) & 0 & L'(\theta )I \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix} \begin {bmatrix} \dot {I} \\ \dot p \\ \dot \theta \end {bmatrix} &= \begin {bmatrix} -R_{s,r} & 0 & 0 \\ 0 & -d & -1 \\ 0 & 1 & 0 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} + \begin {bmatrix} I_3 & 0 & 0 \\ 0 & e_1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}, \\ \label {eq:syncMachAltout} \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix} &= \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1\transp & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} .\end {align}


$e_1\in \R ^{3}$


$\R ^3$


$I\in \R ^6$


$p \in \R $


$\theta \in \R $


$R_{s,r}\coloneqq \diag (R_s,R_r)\succ 0$


$R_s,R_r\in \R ^{3,3}$


$d>0$


$V_s,I_s\in \R ^3$


$V_f,I_f\in \R $


$\tau ,\omega \in \R $


$J_r>0$


$L:\R \to \R ^{6,6}$


$\cont ^\infty $


$2\pi $


$L'$


$V_s,V_f,\tau $


$I_s,I_f,\omega $


\begin {equation*}\label {eqsyncMachHam} \hamiltonian (I,p,\theta ) = \frac {1}{2}I\transp L(\theta )I + \frac {1}{2J_r}p^2 ,\end {equation*}


$E(\state )\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$E$


$L(\theta )$


$\hfill \Diamond $


$0=t^0<t^1<\ldots <t^\ntimesteps =\finaltime $


$N$


$h = t\none - t\n $


$k=0,\ldots ,\ntimesteps -1$


\begin {equation}\label {blockpHDAEtimestepping} \begin {aligned} \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) &= h \pset [\big ]{ \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \discretecostate (\discretestate \n ,\discretestate \none ) + h\discreteB (\discretestate \n ,\discretestate \none ) \discreteinput , \\ \discreteoutput & = \discreteB (\discretestate \n ,\discretestate \none )\transp \discretecostate (\discretestate \n ,\discretestate \none ) . \end {aligned}\end {equation}


$k = 0, \ldots , \ntimesteps -1$


$\discretestate \n \approx \state (t\n )$


$\state \n \in \statespace $


$\discreteE , \discreteJ , \discreteR , \discreteB $


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$\discreteinput $


$t\n $


$\discreteoutput $


$y(t)$


$(\overline {E},\overline {\costate })$


$(\hamiltonian ,E,\costate )$


\begin {align}{\hamiltonian }(\discretestate \none ) - {\hamiltonian }(\discretestate \n ) & = - h\discretecostate (\discretestate \n ,\discretestate \none ) \transp \discreteR (\discretestate \n ,\discretestate \none ) \discretecostate (\discretestate \n ,\discretestate \none ) + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput .\end {align}


\begin {align*}{\hamiltonian }(\discretestate \none ) - {\hamiltonian }(\discretestate \n ) & = \discretecostate (\discretestate \n ,\discretestate \none )\transp \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) \\ & = h \discretecostate (\discretestate \n ,\discretestate \none )\transp \pset [\big ]{\discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \discretecostate (\discretestate \n ,\discretestate \none ) + h \discretecostate (\discretestate \n ,\discretestate \none )\transp \discreteB (\discretestate \n ,\discretestate \none ) \discreteinput \\ & = - h \discretecostate (\discretestate \n ,\discretestate \none ) \transp \discreteR (\discretestate \n ,\discretestate \none ) \discretecostate (\discretestate \n ,\discretestate \none ) + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput ,\end {align*}


$\costate _1$


$\specified \hamiltonian $


\begin {equation}\label {blockpHDAEconstdiscrete} \discreteE _{11}(\state \n ,\state \none )\transp \discretecostate _1(\state \n ,\state \none ) = \DG \specified \hamiltonian (\state \n ,\state \none ).\end {equation}


$\DG \specified \hamiltonian \in \cont (\statespace _1\times \statespace _1,\R ^{n_1})$


$\specified \hamiltonian $


$\discreteE _{11}\in \cont (\statespace \times \statespace ,\R ^{n_1,n_1})$


$E_{11}$


$\discretecostate _1$


$\state \n ,\state \none $


$\discreteE _{11}$


$\discreteE _{11}(\state ,\state ')\coloneqq E_{11}(\frac {\state +\state '}{2})$


$E_{11}$


$\statespace $


$\discreteE _{11}$


$\discretestate \n ,\discretestate \none $


\begin {equation}\label {ass:invertiblediscreteE11}\tag {A1} \text {$\discreteE _{11}$ is pointwise invertible on $\statespace \times \statespace $}.\end {equation}


$\discretecostate =(\discretecostate _1,\discretecostate _2)$


$\discretecostate _2$


$\costate _2$


\begin {align}\begin {bmatrix} \, \discreteE _{11}(\discretestate \n ,\discretestate \none ) & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \discretestate _1\none - \discretestate _1\n \\ \discretestate _2\none - \discretestate _2\n \end {bmatrix} & = h \pset [\big ]{\discreteJ (\discretestate \n , \discretestate \none )-\discreteR (\discretestate \n , \discretestate \none )} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h\discreteB (\discretestate \n , \discretestate \none ) \discreteinput , \label {blockpHDAEtimestepping21} \\ \discreteoutput & = \discreteB (\discretestate \n , \discretestate \none )\transp \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} , \\ \discreteE _{11}(\discretestate \n , \discretestate \none )\transp \discretecostateone & = \DG \specified {\hamiltonian }(\discretestate _1\n , \discretestate _1\none ) , \label {blockpHDAEtimestepping24}\end {align}


$(\discretestate _1\none , \discretestate _2\none , \discretecostateone , \discreteoutput )$


$\discretecostateone $


$\discretecostate _1$


$\discretecostate _2$


$\costate _2$


$E$


\begin {align*}\begin {bmatrix} 1 & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \discretestate _1\none - \discretestate _1\n \\ \discretestate _2\none - \discretestate _2\n \end {bmatrix} & = h \begin {bmatrix} 0 & 1 \\ -1 & -1 \end {bmatrix} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} . \\ \discretecostateone & = \DG \specified {\hamiltonian }(\discretestate _1\n , \discretestate _1\none ) = \frac {1}{2}(\discretestate _1\n + \discretestate _1\none ) .\end {align*}


$\discretecostateone $


$\discretecostate _2(\discretestate \n ,\discretestate \none )$


$\costate _2(x) = x_2$


\begin {equation*}\discretecostate _2(\discretestate \n ,\discretestate \none ) = \discretestate _2\n \qquad \text {or} \qquad \discretecostate _2(\discretestate \n ,\discretestate \none ) = \discretestate _2\none \qquad \text {or} \qquad \discretecostate _2(\discretestate \n ,\discretestate \none ) = \frac {1}{2}(\discretestate _2\n + \discretestate _2\none )\end {equation*}


$\hfill \Diamond $


\begin {align}\hamiltonian (\discretestate \none ) - \hamiltonian (\discretestate \n ) & = - h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} \transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput .\end {align}


$\DG \specified {\hamiltonian }$


\begin {align*}\hamiltonian (\discretestate \none ) - \hamiltonian (\discretestate \n ) & = \specified {\hamiltonian }(\discretestate _1\none ) - \specified {\hamiltonian }(\discretestate _1\n ) = \DG \specified {\hamiltonian }(\discretestate \n ,\discretestate \none ) \transp (\discretestate \none -\discretestate \n ) \\ & = (\discretecostateone )\transp \discreteE _{11}(\discretestate \n ,\discretestate \none ) (\discretestate _1\none - \discretestate _1\n ) = \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) \\ & = h\begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \pset [\big ]{\discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteB (\discretestate \n ,\discretestate \none ) \discreteinput \\ & = - h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput ,\end {align*}


$f_1\in \mathbb R^{n_1}$


$E_{11}(\state )^\top f_1=\gradient \hamiltonian _1(\state _1)$


\begin {align}\dot x_1 & = F(x_1,u,f_1,x_2), \\ 0 & = G_1(x_1,u,f_1,x_2), \\ 0 & = G_2(x_1,f_1,x_2), \\ 0 & = G_3(x_1,f_1,x_2,y),\end {align}


\begin {align*}F(x_1,u,f_1,x_2) & \coloneqq E_{11}(x)^{-1}\pset [\Big ]{\pset [\big ]{J_{11}(x_1,x_2)-R_{11}(x_1,x_2)}f_1 + \pset [\big ]{J_{12}(x_1,x_2)-R_{12}(x_1,x_2)}z_2(x_1,x_2) + B_1(x_1,x_2)u}, \\ G_1(x_1,u,f_1,x_2) & \coloneqq \pset [\big ]{J_{21}(x_1,x_2)-R_{21}(x_1,x_2)}f_1 + \pset [\big ]{J_{22}(x_1,x_2)-R_{22}(x_1,x_2)}z_2(x_1,x_2) + B_2(x_1,x_2)u, \\ G_2(x_1,f_1,x_2) & \coloneqq E_{11}(x_1,x_2)^\top f_1 - \gradient \hamiltonian _1(\state _1), \\ G_3(x_1,f_1,x_2,y) & \coloneqq y - B_1(x_1,x_2)^\top f_1 - B_2(x_1,x_2)^\top z_2(x_1,x_2).\end {align*}


$G_1$


$\jacobian _{x_2}G_1$


$\mathcal R\in \cont ^1(\R ^{n_1},\R ^{n_2})$


$x_2=\mathcal R(x_1)$


\begin {equation}\label {eq:indexreduction} \dot x_1 = \widetilde F\pset [\big ]{x_1,\gradient \hamiltonian _1(x_1), u} \coloneqq F\pset [\Big ]{ x_1 , u , E_{11}\pset [\big ]{x_1,\mathcal R(x_1)}^{-\top }\gradient \hamiltonian _1(x_1) , \mathcal R(x_1) },\end {equation}


$x_1$


$\DG \hamiltonian _1$


\begin {align*}x_1\none -x_1\n & = h F\pset [\big ]{ x_1\nonehalf , \discreteinput , \discretecostateone , x_2\nonehalf }, \\ 0 & = \begin {bmatrix} G_1\pset [\big ]{ x_1\nonehalf , \discreteinput , \discretecostateone , x_2\nonehalf } \\ G_2\pset [\big ]{ x_1\nonehalf , \discretecostateone , x_2\nonehalf } \\ G_3\pset [\big ]{ x_1\nonehalf , \discretecostateone , x_2\nonehalf , \discreteoutput } \end {bmatrix},\end {align*}


$x_1\nonehalf =\frac {x_1\n +x_1\none }{2}$


$x_2\nonehalf =\frac {x_2\n +x_2\none }{2}$


$x_2\nonehalf =\mathcal R(x_1\nonehalf )$


$k\geq 0$


$\mathcal R$


\begin {equation*}x_1\none -x_1\n = h F\pset [\Big ]{ x_1\nonehalf , \discreteinput , E_{11}\pset [\big ]{x_1\nonehalf ,\mathcal R(x_1\nonehalf )}^{-\top }\DG \hamiltonian _1(x_1\n ,x_1\none ) , \mathcal R(x_1\nonehalf ) } = h\widetilde F\pset [\big ]{ x_1\nonehalf , \DG \hamiltonian _1(\state \n ,\state \none ) , \discreteinput }.\end {equation*}


$x_1$


$x_1$


$x_1$


$x_2$


\begin {equation}\label {eqDDRdiscrete} \begin {bmatrix} \, \DG \hamiltonian (\discretestate \n , \discretestate \none ) \\ 0 \\ \discreteoutput \end {bmatrix}+ \begin {bmatrix} 0 & & - \discreteE (\discretestate \n ,\discretestate \none )\transp & & 0 \\ \discreteE (\discretestate \n ,\discretestate \none ) & & \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none ) & & \discreteB (\discretestate \n ,\discretestate \none ) \\ 0 & & -\discreteB (\discretestate \n ,\discretestate \none ) \transp & & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(\discretestate \none - \discretestate \n ) \\ \discretetimestep {f} \\ \discreteinput \end {bmatrix} = 0 .\end {equation}


\begin {equation}\label {pHDAEtimestepping} \begin {aligned} \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) &= h \pset [\big ]{ \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none ) } \discretetimestep {f} + h\discreteB (\discretestate \n ,\discretestate \none ) \discreteinput , \\ \discreteoutput & = \discreteB (\discretestate \n ,\discretestate \none )\transp \discretetimestep {f} , \end {aligned}\end {equation}


\begin {align}\label {eqncolsp} \discreteE (\discretestate \n ,\discretestate \none ) \transp \discretetimestep {f} & = \DG \hamiltonian (\discretestate \n , \discretestate \none ) .\end {align}


$\discretetimestep {f}$


$(\discretestate \none ,\discretetimestep {f},\discreteoutput )$


$\discreteE $


$\discretetimestep {f}$


$\discretestate \none $


$\state \n $


$\state \none $


$\discreteE $


$\hamiltonian (\state ) = \frac {1}{2} \state _1^2$


\begin {equation*}E = \begin {bmatrix} 1 & 0 \\ 0 & 0 \end {bmatrix}, \quad J = \begin {bmatrix} 0 & 1 \\ -1 & 0 \end {bmatrix}, \quad R = \begin {bmatrix} 0 & 0 \\ 0 & 1 \end {bmatrix}, \quad B = \begin {bmatrix} 0 \\ 0 \end {bmatrix}, \quad \nabla \hamiltonian (\state ) = \begin {bmatrix} \state _1 \\ 0 \end {bmatrix}.\end {equation*}


\begin {equation}\label {eq:exm:DDR:contDDR} \begin {bmatrix} x_1 \\ 0 \\ 0 \\ 0 \end {bmatrix} + \begin {bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 \end {bmatrix} \begin {bmatrix} -\dot x_1 \\ -\dot x_2 \\ f_1 \\ f_2 \end {bmatrix} = 0\end {equation}


$f=\costate (\state )$


\begin {equation}\label {eq:exm:DDR:discDDR} \discretetimestep {f_1} = -\discretetimestep {f_2} = \frac {\discretestate _1\n + \discretestate _1\none }{2}, \qquad \discretestate _1\none = \discretestate _1\n - h \frac {\discretestate _1\n + \discretestate _1\none }{2},\end {equation}


$\dot \state _1=-\state _1$


$\discretestate _2$


$f_2$


$\state _2$


$\discretestate _2\none =-\discretestate _1\none $


$\state _1+\state _2=0$


$(f_1,f_2)=\costate (\state )=(\state _1,\state _2)$


$\discretestate _2\none =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$\discretecostate $


$\costate $


$\discretetimestep {f}=\discretecostate (\discretestate \n ,\discretestate \none )$


$(\discretestate \none ,\discretetimestep {f})$


$\norm {\discretetimestep {f}-\discretecostate (\discretestate \n ,\discretestate \none )}$


$\discretecostate $


$\discretecostate (\discretestate \n ,\discretestate \none )=\discretestate \none $


$\discretestate _2\none =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$k\geq 0$


$\discretecostate (\discretestate \n ,\discretestate \none )=\discretestate \n $


$\discretestate _2\none $


$\norm {\discretetimestep {f}-\discretecostate (\discretestate \n ,\discretestate \none )}$


$\discretestate _2\n $


$\discretestate _2\n =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$1\leq k\leq N-1$


$k=0$


$\state _2^0$


$\state _2\n $


$\state _1\none $


$\state _1\none $


$\state _2\n $


$\state _2^N$


$\state _2\n $


$\state _2(t\n +\frac {h}{2})$


$\state _2(t\n )$


$\state _2^0$


$\state _2^{N-1}$


$\discretecostate (\discretestate \n ,\discretestate \none )=\frac {1}{2}(\discretestate \n +\discretestate \none )$


$\discretestate _2\none =-\discretestate _1\n -\discretestate _1\none -\discretestate _2\n $


$\discretestate ^0$


$\discretestate _2^0=-\discretestate _1^0$


$\discretestate _2\none =-\discretestate _1\none $


$k\geq 0$


$\hfill \Diamond $


$E$


$\hamiltonian $


$\DG \hamiltonian (x, x')$


$\discreteE (x,x')\transp $


\begin {equation}\label {eqncolsp2} \DG \hamiltonian (x, x')\in \mathrm {colsp}(\discreteE (x,x')\transp ),\end {equation}


$x,x'\in \R ^n$


$\discretetimestep {f}$


$(E,\costate )$


$\hamiltonian $


$\costate =(\costate _1,\costate _2)$


$\discreteE _{11}\in \cont (\statespace \times \statespace ,\R ^{n_1,n_1})$


$\discretecostate _2\in \cont (\statespace \times \statespace ,\R ^{n_2})$


$E_{11}$


$\costate _2$


$\discreteE _{11}$


$\DG \specified \hamiltonian $


$\specified \hamiltonian \in \cont ^1(\statespace _1,\R )$


$(\discrete E,\discretecostate )$


\begin {equation}\label {eq:DGPlink1} \discreteE = \begin {bmatrix} \discreteE _{11} & 0 \\ 0 & 0 \end {bmatrix}, \qquad \discretecostate = \begin {bmatrix} \discreteE _{11}\ntransp (\DG \specified \hamiltonian \circ \pi _1) \\ \discretecostate _2 \end {bmatrix}\end {equation}


$(\hamiltonian ,E,\costate )$


\begin {align*}\overline z(x,x) & = \begin {bmatrix} \discreteE _{11}(\state ,\state )\ntransp \DG \specified {\hamiltonian }(\state _1,\state _1) \\ \discretecostate _2(\state ,\state ) \end {bmatrix} = \begin {bmatrix} E_{11}(\state )\ntransp \gradient \specified {\hamiltonian }(\state _1) \\ \costate _2(\state ) \end {bmatrix} = \begin {bmatrix} \costate _1(\state ) \\ \costate _2(\state ) \end {bmatrix} = \costate (\state )\end {align*}


\begin {align*}\overline \costate (x,x')\transp \overline {E}(x,x')(x'-x) & = \overline \costate _1(x,x')\transp \overline {E}_{11}(x,x')(x'_1-x_1) = \DG \specified \hamiltonian (x_1,x_1')\transp (x_1'-x_1) = \specified \hamiltonian (x_1') - \specified \hamiltonian (x_1) = \hamiltonian (x') - \hamiltonian (x) ,\end {align*}


$\state =(\state _1,\state _2),\state '=(\state _1',\state _2')\in \statespace $


$\DG \hamiltonian _1$


$\discreteE _{11}$


$\discretecostate _2$


$\discreteE $


$\discretecostate $


$J$


$R$


$B$


$\DG \hamiltonian _1$


$(\discreteE ,\discretecostate )$


\begin {equation*}\discretecostate (\discretestate \n ,\discretestate \none ) = \begin {bmatrix} \discreteE _{11}(\discretestate \n ,\discretestate \none )\ntransp \DG \specified {\hamiltonian }(\discretestate _1\n ,\discretestate _1\none ) \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} = \begin {bmatrix} \discretetimestep {\costate _1} \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}. \qedhere \end {equation*}


$\discretetimestep {f_2}=\discretecostate _2(\discretestate \n ,\discretestate \none )$


\begin {equation}\label {eq:DDRsemiexplicit} \begin {bmatrix} \DG \specified \hamiltonian (\discretestate _1\n ,\discretestate _1\none ) \\ 0 \\ 0 \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & 0 & -\discreteE _{11}\transp & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \discreteE _{11} & 0 & \discreteJ _{11}-\discreteR _{11} & \discreteJ _{12}-\discreteR _{12} & \discreteB _1 \\ 0 & 0 & \discreteJ _{21}-\discreteR _{21} & \discreteJ _{22}-\discreteR _{22} & \discreteB _2 \\ 0 & 0 & -\discreteB _1\transp & -\discreteB _2\transp & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(\discretestate _1\none -\discretestate _1\n ) \\ -\frac {1}{h}(\discretestate _2\none -\discretestate _2\n ) \\ \discretetimestep {f_1} \\ \discretetimestep {f_2} \\ \discreteinput \end {bmatrix} = 0,\end {equation}


$(\discretestate \n ,\discretestate \none )$


\begin {equation*}\discreteE _{11}(\discretestate \n ,\discretestate \none )\transp \discretetimestep {f_1} = \DG \specified {\hamiltonian }(\discretestate \n ,\discretestate \none ),\end {equation*}


$\discretetimestep {f_1}$


$\discretetimestep {\costate _1}$


$\discretetimestep {f_2}$


$\discretecostate _2(\discretestate \n ,\discretestate \none )$


$\varphi \in \cont ^1(\widetilde \statespace ,\statespace )$


$U\in \cont (\widetilde \statespace ,\R ^{n,n})$


$(\varphi ,U)$


$\state =\varphi (\tilde \state )$


$U(\tilde \state )\transp $


\begin {equation}\label {eq:pHDAEtransf} \begin {split} \widetilde E(\tilde \state )\dot {\tilde \state } & = \pset [\big ]{ \widetilde J(\tilde \state ) - \widetilde R(\tilde \state ) } \tilde \costate (\tilde \state ) + \widetilde {B}(\tilde \state )u, \\ y & = \widetilde {B}(\tilde \state ) \tilde \costate (\tilde \state ), \end {split}\end {equation}


$\widetilde E=U\transp (E\circ \varphi )\jacobian {\varphi }$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\tilde \costate =U^{-1}(\costate \circ \varphi )$


$\widetilde B=U\transp (B\circ \varphi )$


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\widetilde \hamiltonian $


$(\varphi ,U)$


$(\varphi ^{-1},U^{-1})$


$(\varphi ^{-1},U^{-1})$


$(\varphi ^{-1},U^{-1})$


$(\varphi ,U)$


$U=(\jacobian \varphi )\ntransp $


$U$


$(\widetilde E,\tilde \costate )$


$(E,\costate )$


$(\varphi ,U)$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


\begin {equation}(\widetilde E,\tilde \costate ) = \pset [\big ]{U\transp (E\circ \varphi )\jacobian \varphi , U^{-1}(\costate \circ \varphi )} \label {Xeqn27-33}\end {equation}


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$(E,\costate )$


$(\varphi ,U)$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete {U} \in \cont (\widetilde \statespace \times \widetilde \statespace ,\R ^{n,n})$


$U$


$(\widehat E,\hat \costate )$


\begin {equation}\label {eq:DGPchainRule} \widehat E = \discrete U\transp (\discreteE \circ \varphi ){\overline {\rm {D}}}{\varphi }, \qquad \hat \costate = \discrete U^{-1}(\discretecostate \circ \varphi )\end {equation}


$(\widetilde \hamiltonian ,\widetilde {E},\tilde \costate )$


\begin {equation*}\widetilde E\transp \tilde \costate = (\jacobian \varphi )\transp (E\circ \varphi )\transp U U^{-1} (\costate \circ \varphi ) = (\jacobian \varphi )\transp (E\transp \costate \circ \varphi ) = (\jacobian \varphi )\transp (\gradient \hamiltonian \circ \varphi ) = \gradient \widetilde \hamiltonian ,\end {equation*}


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian $


$\tilde \state ,\tilde \state '\in \widetilde {\statespace }$


\begin {align*}\hat \costate (\tilde \state ,\tilde \state ')\transp \widehat {E}(\tilde \state ,\tilde \state ') (\tilde \state '-\tilde \state ) & = \discretecostate \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')}\transp \discreteE \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')} {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ') (\tilde \state '-\tilde \state ) \\ & = \discretecostate \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')}\transp \discreteE \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')} \pset [\big ]{ \varphi (\tilde \state ') - \varphi (\tilde \state ) } \\ & = \hamiltonian \pset [\big ]{\varphi (\tilde \state ')} - \hamiltonian \pset [\big ]{\varphi (\tilde \state )} = \widetilde \hamiltonian (\tilde \state ') - \widetilde \hamiltonian (\tilde \state ).\end {align*}


$\widehat E(\tilde \state ,\tilde \state )=\widetilde E(\tilde \state )$


$\hat \costate (\tilde \state ,\tilde \state )=\tilde \costate (\tilde \state )$


$\tilde \state \in \widetilde \statespace $


$(E,\costate )=(I_n,\gradient \hamiltonian )$


$(\discrete {E},\discretecostate )=(I_n,\DG \hamiltonian )$


$\DG \hamiltonian $


$\hamiltonian $


$U=\discrete {U}=I_n$


$({\overline {\rm {D}}}{\varphi },\DG \hamiltonian \circ \varphi )$


$(\widetilde \hamiltonian ,I_n,\gradient \widetilde \hamiltonian )$


\begin {equation}\label {eq:DGchainRule} \DG \widetilde \hamiltonian = ({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi )\end {equation}


$\widetilde \hamiltonian $


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$(\hamiltonian ,E,\costate )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi \in \cont ^1(\widetilde \statespace ,\R )$


$\specified {\widetilde \hamiltonian }$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$(\widehat E,\hat \costate )$


$(\widetilde \hamiltonian ,\widetilde E,\tilde \costate )$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$(\widehat E,\hat \costate )$


$(\varphi ^{-1},U^{-1})$


$U^{-1}$


$\varphi ^{-1}$


$(\varphi ,U)$


$E$


$E$


$(E,\costate )$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$E\in \R ^{n,n}$


$E=U\Sigma V\transp $


$E$


$U=[U_1,U_2]$


$V=[V_1,V_2]$


$\Sigma =\diag (\Sigma _1,0)$


$U_1,W_1\in \R ^{n,r}$


$\Sigma _1\in \R ^{r,r}$


$r=\rank (E)$


$(\varphi ,U)$


$\varphi (\state )=V\state $


$(E,\costate )$


$\specified {\widetilde \hamiltonian }:\widetilde \statespace _1\to \R $


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\specified {\widetilde \hamiltonian }(\tilde \state _1)=\hamiltonian (V_1\tilde \state _1)$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\hat \costate _2$


$U_2\transp (\costate \circ \varphi )$


$(E,\discretecostate _2)$


$\discretecostate _2=U_1\Sigma _1^{-1}\DG \specified {\widetilde \hamiltonian }+U_2\hat \costate $


$(\hamiltonian ,E,\costate )$


$q=(x_1, q_2, x_2)$


$m_1$


$m_2$


\begin {equation}\label {singularM} M = \begin {bmatrix} m_1 & & 0 & & 0 \\ 0 & & m_2 & & m_2 \\ 0 & & m_2 & & m_2 \end {bmatrix} ,\end {equation}


$E =\diag {(I_{3 , 3}, M, 0)}$


$\hfill \Diamond $


$E$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$E$


$\varphi $


$\jacobian \varphi $


\begin {equation*}\rank \pset [\big ]{ E(\state ) } = \rank \pset [\big ]{ U(\tilde \state )\transp E(\state ) \jacobian \varphi (\tilde \state ) } = \rank \pset [\big ]{ \widetilde {E}(\tilde \state ) } = n_1\end {equation*}


$\state \in \statespace $


$\tilde \state =\varphi ^{-1}(\state )$


$E$


$U,V\in \cont (\statespace ,\R ^{n,n})$


\begin {equation*}U\transp EV = \begin {bmatrix} E_{11} & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$E_{11}$


$V$


$\varphi $


$(E,\costate )$


$E$


$(E,\costate )$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$E\in \cont (\statespace ,\R ^{n,n})$


$(E,\costate )$


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian \in \cont ^1(\widetilde \statespace ,\R )$


$\widetilde \hamiltonian $


$\specified {\widetilde \hamiltonian }\in \cont ^1(\pi _1(\widetilde \statespace ),\R )$


\begin {equation}\widetilde E = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32} & I_{r-p} \end {bmatrix}, \qquad \tilde \costate = \begin {bmatrix} \gradient \specified {\widetilde \hamiltonian }\circ \pi _1 \\ \costate _2 \\ 0 \end {bmatrix}, \label {Xeqn31-37}\end {equation}


$\pi _1:\R ^n\to \R ^p$


$p$


$E$


\begin {equation}\label {eq:canonicalSemiExplicit} \begin {aligned} \begin {bmatrix} I_{n_1} & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \dot x_1 \\ \dot x_2 \end {bmatrix} & = \pset [\big ]{J(x,\theta )-R(x,\theta )} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x,\theta ) \end {bmatrix} + \begin {bmatrix} B_1(x,\theta ) \\ B_2(x,\theta ) \end {bmatrix} u, \\ y &= \begin {bmatrix} B_1(x,\theta )\transp & B_2(x,\theta )\transp \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x,\theta ) \end {bmatrix} \end {aligned}\end {equation}


$\specified \hamiltonian $


$x_1$


$\theta $


\begin {equation}\label {eq:unstrucpart} \dot \theta + E_{32}(x,\theta )\dot x_2 = A_{31}(x,\theta )\gradient \specified {\hamiltonian }(x_1) + A_{32}(x,\theta )z_2(x,\theta ) + B_3(x,\theta )u,\end {equation}


$x=(x_1,x_2)$


$\hamiltonian $


$\specified {\hamiltonian }\in \cont ^1(\pi _1(\statespace ),\R )$


\begin {equation*}E = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32} & I_{r-p} \end {bmatrix}, \qquad \costate = \begin {bmatrix} \gradient \specified \hamiltonian \circ \pi _1 \\ \costate _2 \\ 0 \end {bmatrix}.\end {equation*}


\begin {align*}\begin {bmatrix} \dot x_1 \\ 0 \\ E_{32}(x)\dot x_2 + \dot x_3 \end {bmatrix} & = \begin {bmatrix} J_{11}(x)-R_{11}(x) & J_{12}(x)-R_{12}(x) & J_{13}(x)-R_{13}(x) \\ J_{21}(x)-R_{21}(x) & J_{22}(x)-R_{22}(x) & J_{23}(x)-R_{23}(x) \\ J_{31}(x)-R_{31}(x) & J_{32}(x)-R_{32}(x) & J_{33}(x)-R_{33}(x) \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x) \\ 0 \end {bmatrix} + \begin {bmatrix} B_1(x) \\ B_2(x) \\ B_3(x) \end {bmatrix} u, \\ y & = \begin {bmatrix} B_1(x)\transp & B_2(x)\transp & B_3(x)\transp \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x) \\ 0 \end {bmatrix}.\end {align*}


$z_3=0$


$J-R$


$A_{31}=J_{31}-R_{31}$


$A_{32}=J_{32}-R_{32}$


$\state \coloneqq (\state _1,\state _2)$


$\theta \coloneqq \state _3$


$\statespace $


$\statespace _1\times \statespace _2\times \statespace _3$


$\statespace _1\subseteq \R ^{n_1}$


$\statespace _2\subseteq \R ^{n_2}$


$\statespace _3\subseteq \R ^{n_3}$


$\gradient \specified {\hamiltonian }(x_1)$


$q \in \cont (\timeinterval ,\mathcal {Q})$


$\mathcal {Q}$


$\R ^d$


$d$


$\mathcal {Q}$


$v=\dot {q}$


$T_q\mathcal {Q}$


$g\in \cont ^1(\mathcal {Q},\R ^m)$


$\R ^d$


\begin {align}\label {eqposconstraint} g \pset [\big ]{ q(t) } = 0\end {align}


\begin {align}\label {eqvelconstraint} \jacobian g \pset [\big ]{ q(t) } v(t) = 0 .\end {align}


$\lambda \in \cont (\timeinterval , \R ^m)$


$\state _2 = \lambda $


$\state _1 = (q,v)$


\begin {align}\label {hamiltonianmbsdetail} \hamiltonian (\state ) =\specified {\hamiltonian }(\state _1) = \frac {1}{2} v\transp M v + V(q),\end {align}


$M \in \R ^{d,d}$


$V \in \cont (\mathcal {Q},\R )$


$F_{\mathrm {p}} = \gradient V(q)$


$G(q,v) = \frac {1}{2} v\transp R_{\mathrm {R}}(q) v$


$R_{\mathrm {R}}(q) \in \cont (\mathcal {Q},\R ^{d,d})$


$F_{\mathrm {np}}(q,v) = - \nabla _{v} G(q,v) = - R_{\mathrm {R}}(q) v$


\begin {align}\dot {q} & = v , \\ M \dot v & = - \gradient V(q) - R_{\mathrm {R}}(q) v - \jacobian g(q)\transp \lambda + u , \\ 0 & = \jacobian g(q) v ,\end {align}


$u$


\begin {align}\label {blockMBSdetailled} \begin {bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} \dot {q} \\ \dot {v} \\ \dot {\lambda } \end {bmatrix} & = \left ( \begin {bmatrix} 0 & I & 0 \\ -I & -R_{\mathrm {R}}(q) & -\jacobian g(q)\transp \\ 0 & \jacobian g(q) & 0 \end {bmatrix} \right ) \begin {bmatrix} \gradient V(q) \\ v \\ \lambda \end {bmatrix} + \begin {bmatrix} 0 \\ I \\ 0 \end {bmatrix} u , \\ y & = \begin {bmatrix} 0 & I & 0 \end {bmatrix} \begin {bmatrix} \gradient V(q) \\ v \\ \lambda \end {bmatrix} .\end {align}


$E\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$y=v$


\begin {align}\begin {bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} {q}\none - {q}\n \\ {v}\none - {v}\n \\ {\lambda }\none -{\lambda }\n \end {bmatrix} &= h \begin {bmatrix} 0 & I & 0 \\ -I & -R_{\mathrm {R}}({q}\nonehalf ) & -{\overline {\rm {D}}}{g}({q}\n ,{q}\none )\transp \\ 0 & {\overline {\rm {D}}}{g}({q}\n ,{q}\none ) & 0 \end {bmatrix} \begin {bmatrix} \discretecostateoneq \\ \discretecostateonev \\ \discretetimestep {\lambda } \end {bmatrix} + h \begin {bmatrix} 0 \\ I \\ 0 \end {bmatrix} \discreteinput , \label {MBSintegratorDGa} \\ \begin {bmatrix} \discretecostateoneq \\ \discretecostateonev \end {bmatrix} & = \begin {bmatrix} I & 0 \\ 0 & M \end {bmatrix}\ntransp \DG \specified {\hamiltonian }(x_1\n ,x_1\none ) , \\ \discreteoutput & = \discretecostateonev ,\end {align}


$q\nonehalf =\frac {1}{2}(q\n +q\none )$


${\overline {\rm {D}}}{g}$


$g$


$R_{\mathrm {R}}$


$\discretetimestep {\lambda } := \lambda \none $


$\lambda ^0$


$\jacobian {g}$


\begin {align}\label {eqnodrift} g(q\none ) - g(q\n ) = {\overline {\rm {D}}}{g}(q\n ,q\none )(q\none -q\n ) = h {\overline {\rm {D}}}{g}(q\n ,q\none ) \discretecostateonev = 0,\end {align}


$g(q^0)=0$


$\jacobian {g}$


$\DG \hamiltonian $


\begin {equation}\begin {bmatrix} \DG _q\hamiltonian (\state \n ,\state \none ) \\ \DG _v\hamiltonian (\state \n ,\state \none ) \\ \DG _\lambda \hamiltonian (\state \n ,\state \none ) \\ 0 \\ 0 \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & 0 & 0 & -I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -M & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 & I & 0 & 0 \\ 0 & M & 0 & -I & -R_{\mathrm {R}}({q}\nonehalf ) & -\DG g(q\n ,q\none )^\top & I \\ 0 & 0 & 0 & 0 & \DG g(q\n ,q\none ) & 0 & 0 \\ 0 & 0 & 0 & 0 & -I & 0 & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(q\none -q\n ) \\ -\frac {1}{h}(v\none -v\n ) \\ -\frac {1}{h}(\lambda \none -\lambda \n ) \\ \discretetimestep {f_{1,q}} \\ \discretetimestep {f_{1,v}} \\ \discretetimestep {f_{1,\lambda }} \\ \discreteinput \end {bmatrix} = 0, \label {Xeqn34-46}\end {equation}


$\DG \hamiltonian $


$\DG \hamiltonian _q,\DG \hamiltonian _v,\DG \hamiltonian _\lambda $


$\DG \hamiltonian $


$\DG \hamiltonian _1$


$\specified \hamiltonian $


\begin {equation*}\DG \hamiltonian (\state ,\state ') = \begin {bmatrix} \DG \hamiltonian _1(q,v,q',v') \\ 0 \end {bmatrix} ,\end {equation*}


$\discretetimestep {f_{1,q}}=\lambda \none $


$q=(q_1,q_2,q_3,q_4) \in \R ^{12}$


$m_i$


$i=1,\ldots ,4$


\begin {equation}\label {eq:potential-4mass-system} V(q) = \frac {1}{2} k_{13} \pset [\big ]{ \norm {q_3 - q_1}^2 - 1 }^2 + \frac {1}{2} k_{24} \pset [\big ]{ \norm {q_4 - q_2}^2 - 1 }^2 ,\end {equation}


$k_{13}$


$k_{24}$


$M = \diag \{m_1 I, m_2 I, m_3 I, m_4 I\}$


\begin {align}G(q,v) = \frac {1}{2} \eta (q) v_{\mathrm {rel}}^2, \qquad v_{\mathrm {rel}} = \norm {v_3 -v_2},\end {align}


$\eta (q) = \eta _0 (1 + \alpha q_{\mathrm {rel}}^2) \geq 0$


$q_{\mathrm {rel}}=\norm {q_3-q_2}$


$\eta _0 >0$


$\alpha >0$


\begin {align}R_{\mathrm {R}}(q) & = \eta (q) \begin {bmatrix} 0 & 0 & 0 & 0 \\ 0 & I & -I & 0 \\ 0 & -I & I & 0 \\ 0 & 0 & 0 & 0 \end {bmatrix}.\end {align}


\begin {equation}\label {exconstraints} g_1(q) = \frac {1}{2}\pset [\big ]{ \norm {q_2-q_1}^2 - 1 } =0, \qquad g_2(q) = \frac {1}{2}\pset [\big ]{ \norm {q_4-q_3}^2 - 1 } =0.\end {equation}


\begin {equation}\begin {aligned} {q}_1^0 & = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {q}_2^0 = \begin {bmatrix} 1 , 0 , 0 \end {bmatrix}\transp \ , \ {q}_3^0 = \begin {bmatrix} 0 , 1 , 0 \end {bmatrix}\transp \ , \ {q}_4^0 = \begin {bmatrix} 1 , 1 , 0 \end {bmatrix}\transp , \\ {v}_1^0 & = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_2^0 = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_3^0 = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_4^0 = \begin {bmatrix} 0 , 0 , \frac {20}{17} \end {bmatrix}\transp , \end {aligned} \label {Xeqn37-51}\end {equation}


$\epsilon _{\mathrm {Newton}}$


\begin {equation}\discretedissipation := h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} \transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none )\end {bmatrix} = h \discretecostateonev \transp R_{\mathrm {R}}({q}\nonehalf ) \discretecostateonev \geq 0 \label {Xeqn38-52}\end {equation}


$i=1$


$i=2$


$10^{-4}$


$\eta _0=0$


$\eta _0 = 0$


$h$


$h$


\begin {equation*}e_x = \frac {|| x_{\mathrm {ref}} - x||}{|| x_{\mathrm {ref}}||} ,\end {equation*}


$x \in \{{q}_4\n , {v}_4\n , \discretetimestep {\lambda _1}\}$


$t\n = 0.1$


$x_{\mathrm {ref}}$


$h=10^{-4}$


$0.4$


$h=0.25$


$\hat {\state }_2\in \statespace _2$


$\specified {f}:\statespace _1\to \R ,\ x_1\mapsto f(x_1,\hat {\state }_2)$


$\statespace _{2}$


$(x_1,x_2)\in \statespace $


\begin {equation*}\hat f:[0,1]\to \R ,\qquad s\mapsto f\pset [\big ]{ x_1 , sx_2 + (1-s)\hat {\state }_2}\end {equation*}


\begin {equation*}\frac {\mathrm {d}\hat f}{\mathrm {d}s}(s) = \gradient _{x_2}f\pset [\big ]{ x_1 , sx_2 + (1-s)\hat {\state }_2} \transp \pset [\big ]{x_2-\hat {\state }_2} = 0\end {equation*}


$s\in [0,1]$


$\hat f$


\begin {equation*}f(x_1,x_2) = \hat f(1) = \hat f(0) = f\pset [\big ]{x_1,\hat {\state }_2} = \specified {f}(x_1).\end {equation*}


$x_1\in \statespace _1$


$h\in \R ^{n_1}$


$(x_1+h,\hat {\state }_2)\in \statespace $


$(x_1,\hat {\state }_2)\in \statespace $


$\statespace $


\begin {equation*}\specified {f}(x_1 + h) - \specified {f}(x_1) = f\pset [\big ]{x_1+h,\hat {\state }_2} - f\pset [\big ]{x_1,\hat {\state }_2}\end {equation*}


$x_1\in \statespace _1$


$h\in \R ^{n_1}$


$\specified {f}$


$\gradient \specified {f}(x_1)=\gradient _{x_1}f(x_1,x_2)$


$(x_1,x_2)\in \statespace $


\begin {align}\label {eq:syncMachdyn} \begin {bmatrix} \dot \psi _s \\ \dot \psi _r \\ \dot p \\ \dot \theta \end {bmatrix} & = \begin {bmatrix} -R_s & 0 & 0 & 0 \\ 0 & -R_r & 0 & 0 \\ 0 & 0 & -d & -1 \\ 0 & 0 & 1 & 0 \end {bmatrix} \gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) + \begin {bmatrix} I_3 & 0 & 0 \\ 0 & e_1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}, \\ \label {eq:syncMachout} \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix} & = \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1^\top & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix} \gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ),\end {align}


\begin {equation*}\widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) = \frac {1}{2} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix}^\top L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} + \frac {1}{2J_r}p^2,\end {equation*}


\begin {equation*}\gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) = \begin {bmatrix} L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} \\ J_r^{-1}p \\ -\frac {1}{2} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix}^\top L(\theta )^{-1} L'(\theta ) L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} \end {bmatrix}.\end {equation*}


$\psi _s,\psi _r\in \R ^3$


\begin {equation*}\begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} = L(\theta )I .\end {equation*}


\begin {align*}& x = \begin {bmatrix} I \\ p \\ \theta \end {bmatrix}\in \R ^8, \qquad u = \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}\in \R ^5, \qquad y = \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix}\in \R ^5, \\ & E(I,\theta ) = \begin {bmatrix} L(\theta ) & 0 & L'(\theta )I \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix} \in \R ^{8,8}, \qquad z(I,p,\theta ) = \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} \in \R ^8, \\ & J = \begin {bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end {bmatrix} \in \R ^{8,8}, \qquad R = \begin {bmatrix} R_{s,r} & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & 0 \end {bmatrix} \in \R ^{8,8}, \qquad B = \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1^\top & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix}^{\top }.\end {align*}


$E(\state )\transp \costate (\state ) = \gradient \hamiltonian (\state )$


\begin {align*}\begin {bmatrix} L(\theta ) & 0 & 0 \\ 0 & 1 & 0 \\ I^\top L'(\theta ) & 0 & 1 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} = \begin {bmatrix} L(\theta )I \\ J_r^{-1}p \\ \frac {1}{2}I^\top L'(\theta )I \end {bmatrix} .\end {align*}


$E$


$\discreteE $


$\discreteE $


\begin {equation}\label {eq:midpointE} \discreteE (x,x') := E(\tfrac {x+x'}2),\end {equation}


$x,x'\in \R ^n$


$E$


\begin {align*}\hamiltonian (x) & = \exp (\tfrac 12x_1^2)-1+\tfrac 12x_2^2,\quad \gradient \hamiltonian (x) = \begin {bmatrix} x_1\exp (\tfrac 12x_1^2) \\ x_2 \end {bmatrix} , \\ E(x) & = \begin {bmatrix} 1 \\ 1 \end {bmatrix} \gradient \hamiltonian (x)\transp = \begin {bmatrix} x_1\exp (\tfrac 12x_1^2) & x_2 \\ x_1\exp (\tfrac 12x_1^2) & x_2 \end {bmatrix} ,\quad \costate (x) = \tfrac 12 \begin {bmatrix} 1 \\ 1 \end {bmatrix} .\end {align*}


$E$


$\costate $


$E\transp \costate =\gradient \hamiltonian $


$J,R,B$


$\mathrm {colsp}(E\transp ) = \mathrm {span}(\gradient \hamiltonian )$


$E$


$\discreteE $


\begin {equation*}\mathrm {colsp}\pset [\big ]{\discreteE (x,x')\transp } = \mathrm {colsp}\pset [\big ]{E(\tfrac {\state +\state '}{2})\transp } = \mathrm {span}\pset [\big ]{\gradient \hamiltonian (\tfrac {x+x'}2)} .\end {equation*}


$\DG \hamiltonian $


$\hamiltonian $


$\DG \hamiltonian $


\begin {equation}\label {eq:discretegradientgeneralexpression} \DG \hamiltonian (x,x') = \frac {\hamiltonian (x')-\hamiltonian (x)}{\lVert x'-x\rVert ^2}(x'-x)+w(x,x')\end {equation}


$x\ne x'$


$w$


$w(x,x')\in \mathrm {span}(\state '-\state )^\perp $


\begin {equation*}\lim _{x'\to x} \pset [\big ]{ w(x,x')-\pi _{\mathrm {span}(x'-x)^\perp }\gradient \hamiltonian (x) } =0,\end {equation*}


\begin {equation*}\pi _{\mathrm {span}(x'-x)^\perp } = \frac {I-(x'-x)(x'-x)\transp }{\norm {x'-x}^2}\end {equation*}


$\mathrm {span}(x'-x)^\perp $


\begin {equation*}x = \begin {bmatrix} a \\ 0 \end {bmatrix} ,\quad x' = \begin {bmatrix} 0 \\ b \end {bmatrix} , \quad a,b \in \R \setminus \{0\},\end {equation*}


$b:= \pm a \sqrt {\exp (\frac {1}{2}(a/2)^2)}$


$\hamiltonian (x')\ne \hamiltonian (x)$


$\gradient \hamiltonian (\tfrac {x+x'}2) \transp (x'-x) = 0$


\begin {equation*}x'-x\in \mathrm {span}\pset [\big ]{\gradient \hamiltonian (\tfrac {x+x'}2)}^\perp = \mathrm {colsp}(\discreteE (x,x')\transp )^\perp .\end {equation*}


$\DG \hamiltonian (x,x')\notin \mathrm {colsp}(\discreteE (x,x')\transp )$


$f$


$\discreteE (x,x')\transp f = \DG \hamiltonian (x,x')$


$x,x'$


$\hfill \Diamond $


$(\varphi ,U):\widetilde \statespace \to \statespace \times \R ^{n,n}$


$(\tilde \varphi ,\widetilde U):\widehat \statespace \to \widetilde \statespace \times \R ^{n,n}$


\begin {equation*}(\varphi ,U) \circ (\tilde \varphi ,\widetilde U) = \pset [\big ]{\varphi \circ \tilde \varphi ,(U\circ \tilde \varphi )\widetilde U}:\widehat \statespace \to \statespace \times \R ^{n,n},\end {equation*}


$(\varphi ,U) \circ (\tilde \varphi ,\widetilde U)$


$(\varphi ,U)$


$(\tilde \varphi ,\widetilde U)$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\tilde \varphi }$


$\varphi $


$\tilde \varphi $


$\discrete {U}$


$\widehat {U}$


$U$


$\widetilde U$


$({\overline {\rm {D}}}{\varphi }\circ \tilde \varphi ){\overline {\rm {D}}}{\tilde \varphi }$


$\varphi \circ \tilde \varphi $


$(\discrete U\circ \tilde \varphi )\widehat U$


$(U\circ \tilde \varphi )\widetilde U$


$(\varphi ,U)$


$(\varphi ,U)^{-1} = (\varphi ^{-1},U^{-1}\circ \varphi ^{-1})$


\begin {equation*}(\varphi ^{-1},U^{-1}\circ \varphi ^{-1})\circ (\varphi ,U)=(\mathrm {Id}_{\widetilde \statespace },I_n) \quad \text {and}\quad (\varphi ,U)\circ (\varphi ^{-1},U^{-1}\circ \varphi ^{-1})=(\mathrm {Id}_{\statespace },I_n)\end {equation*}


$\psi =\varphi ^{-1}$


$V=U^{-1}\circ \varphi ^{-1}$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\psi }$


$\varphi $


$\discrete {U}$


$\discrete {V}$


$U$


$V$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$(\varphi ,U)$


$(\psi ,V)$


\begin {equation*}(\widehat E,\hat \costate ) = \pset [\big ]{ \discrete V\transp (\discrete U\circ \psi )\transp \discreteE \,({\overline {\rm {D}}}{\varphi }\circ \psi ){\overline {\rm {D}}}{\psi } \; , \; \discrete V^{-1}(\discrete U^{-1}\circ \psi )\discretecostate },\end {equation*}


$(\hamiltonian ,E,\costate )$


$(\varphi ,U)$


$(\psi ,V)$


${\overline {\rm {D}}}{\psi }$


$\discrete {V}$


$(\widehat E,\hat \costate )=(\discreteE ,\discretecostate )$


$(E,\costate )$


$\discrete {V}=\discrete {U}^{-1}\circ \psi $


$({\overline {\rm {D}}}{\varphi }\circ \psi ){\overline {\rm {D}}}{\psi }=I_n$


$\discrete {V}$


$V$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\psi }=({\overline {\rm {D}}}{\varphi }\circ \psi )^{-1}$


$\varphi \in \cont ^1(\widetilde \statespace ,\statespace )$


$\statespace ,\widetilde \statespace \subseteq \R ^n$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\varphi ^{-1}$


$\varphi $


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}(\varphi ^{-1})=\left ({\overline {\rm {D}}}{\varphi }\circ \varphi ^{-1}\right )^{-1}.$


$\state ,\state '\in \statespace $


$\tilde \state =\varphi ^{-1}(\state ),\ \tilde \state '=\varphi ^{-1}(\state ')$


\begin {equation*}{\overline {\rm {D}}}(\varphi ^{-1})(\state ,\state ')(\state '-\state ) = {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ')^{-1} \pset [\big ]{\varphi (\tilde \state ')-\varphi (\tilde \state )} = {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ')^{-1} {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ') (\tilde \state ' - \tilde \state ) = \varphi ^{-1}(\state ') - \varphi ^{-1}(\state )\end {equation*}


${\overline {\rm {D}}}(\varphi ^{-1})(\state ,\state )=\jacobian {\varphi }(\tilde \state )^{-1}=\jacobian (\varphi ^{-1})(\state )$


${\overline {\rm {D}}}{\varphi }$


$\varphi :\R ^2\to \R ^2,\ \varphi (\state )=\mathrm {Rot}(\state \transp \state )x$


$\mathrm {Rot}:\R \to \R ^{2,2}$


\begin {equation*}\mathrm {Rot}(\theta ) = \begin {bmatrix} \cos (\theta ) & -\sin (\theta ) \\ \sin (\theta ) & \cos (\theta ) \end {bmatrix}\end {equation*}


$\theta \in \R $


$\varphi $


$\cont ^\infty $


$0\in \R ^2$


\begin {equation*}\frac {\mathrm {d}\mathrm {Rot}}{\mathrm {d}\theta }(\theta ) = \begin {bmatrix} -\sin (\theta ) & -\cos (\theta ) \\ \cos (\theta ) & -\sin (\theta ) \end {bmatrix} = \begin {bmatrix} \cos (\theta + \tfrac {\pi }{2}) & -\sin (\theta + \tfrac {\pi }{2}) \\ \sin (\theta + \tfrac {\pi }{2}) & \cos (\theta + \tfrac {\pi }{2}) \end {bmatrix} = \mathrm {Rot}(\theta + \tfrac {\pi }{2}) = \mathrm {Rot}(\theta )\mathrm {Rot}(\tfrac {\pi }{2}),\end {equation*}


\begin {equation*}\jacobian \varphi (x) = \jacobian \pset [\big ]{ \mathrm {Rot}(\state \transp \state )\state } = \mathrm {Rot}(\state \transp \state ) + \frac {\mathrm {d}\mathrm {Rot}}{\mathrm {d}\theta }(\state \transp \state )\gradient (\state \transp \state )\state \transp = \mathrm {Rot}(\state \transp \state ) \pset [\big ]{ I_2 + 2\mathrm {Rot}(\tfrac {\pi }{2})\state \state \transp }.\end {equation*}


$\jacobian \varphi $


$\state ,w\in \R ^2$


$\jacobian \varphi (\state )w=0$


$\pset [\big ]{I+2\mathrm {Rot}(\tfrac {\pi }{2})\state \state \transp }w = 0$


$w = - 2\state \transp w\,\mathrm {Rot}(\tfrac {\pi }{2})\state $


\begin {equation*}\state \transp w = -2\state \transp w \pset [\big ]{ \state \transp \mathrm {Rot}(\tfrac {\pi }{2})\state } = 0,\end {equation*}


$w=0$


$\jacobian \varphi $


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\state ,\state '\in \R ^2$


$z\in (\state '-\state )^\perp $


\begin {equation*}{\overline {\rm {D}}}{\varphi }(\state ,\state ')(\state '-\state ) = \varphi (\state ') - \varphi (\state ) \quad \text {and}\quad {\overline {\rm {D}}}{\varphi }(\state ,\state ')z = \jacobian \varphi (\tfrac {\state +\state '}{2})z.\end {equation*}


$\state =0$


$\state '=(\sqrt {2\pi },0)$


$e_1=(1,0)$


$e_2=(0,1)$


$\state '=\sqrt {2\pi }e_1$


$\state '-\state =\state '\perp e_2$


\begin {equation*}{\overline {\rm {D}}}{\varphi }(0,\state ')e_1 = \frac {{\overline {\rm {D}}}{\varphi }(0,\state ')\state '}{\sqrt {2\pi }} = \frac {\varphi (\state ')-\varphi (\state )}{\sqrt {2\pi }} = \frac {\mathrm {Rot}(2\pi )x'-\mathrm {Rot}(0)0}{\sqrt {2\pi }} = \frac {x'}{\sqrt {2\pi }} = e_1\end {equation*}


\begin {equation*}{\overline {\rm {D}}}{\varphi }(0,\state ')e_2 = \jacobian \varphi (\tfrac {x+x'}{2})e_2 = \mathrm {Rot}(\tfrac {\pi }{2})\pset [\big ]{ e_2 + \tfrac {1}{2}\mathrm {Rot}(\tfrac {\pi }{2})x'(x')\transp e_2 } = \mathrm {Rot}(\tfrac {\pi }{2})e_2 = -e_1.\end {equation*}


\begin {equation*}{\overline {\rm {D}}}{\varphi }(\state ,\state ') = [e_1,-e_1] = \begin {bmatrix} 1 & -1 \\ 0 & 0 \end {bmatrix},\end {equation*}


$\hfill \Diamond $


$\varphi $


${\overline {\rm {D}}}{\varphi }$


$\varphi ^{-1}$


$f:\R ^2\to \R ,\ f(x)=\frac {1}{4}\norm {x^4}$


$\varphi :\R ^2\to \R ^2,\ \varphi (x_1,x_2)=(x_1+x_2,x_2)$


\begin {equation*}\gradient f = \norm {x}^2 x, \qquad \jacobian \varphi = \begin {bmatrix} 1 & 1 \\ 0 & 1 \end {bmatrix},\end {equation*}


$\DG _Gf$


${\overline {\rm {D}}}_G\varphi $


${\overline {\rm {D}}}_G\varphi =\jacobian \varphi $


$\tilde f=f\circ \varphi $


$\DG _G\tilde f$


$\DG \tilde f={\overline {\rm {D}}}_G\varphi \transp \DG _Gf$


\begin {equation*}\DG _G\tilde f(0,2e_1)\transp e_2 = \gradient \tilde f(e_1)\transp e_2 = \gradient f\pset [\big ]{\varphi (e_1)}\transp \jacobian \varphi \, e_2 = e_1\transp \begin {bmatrix} 1 & 1 \\ 0 & 1 \end {bmatrix} e_2 = 1\end {equation*}


\begin {align*}\DG \tilde f(0,2e_1)\transp e_2 & = \DG _G\tilde f(0,2e_1)\transp {\overline {\rm {D}}}{\varphi }\, e_2 = \DG _G f(0,2e_1)\transp (e_1+e_2) \\ & = \tfrac {1}{2} \DG _G f(0,2e_1)\transp 2e_1 + \DG _G f(0,2e_1)\transp e_2 = \tfrac {1}{2}\pset [\big ]{f(2e_1)-f(0)} + \gradient f(e_1)\transp e_2 = 2,\end {align*}


$\DG \tilde f$


$\DG _G\tilde f$


$\hfill \Diamond $


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$\discreteJ ,\discreteR ,\discreteB $


$J,R,B$


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$(\varphi ,U)$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete U$


$U$


$(\discreteE ,\discretecostate )$


$\discreteJ ,\discreteR ,\discreteB $


$(\varphi ,U)$


$(\widehat E,\hat \costate )$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R=\discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


$\varphi $


$(\state \n ,\state \none )$


$(\tilde \state \n ,\tilde \state \none )$


$\widehat J$


$\widehat R$


$\widehat B$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\widetilde B=U\transp (B\circ \varphi )$


$\widehat J=-\widehat J\transp $


$\widehat R=\widehat R\transp \succeq 0$


$\state ^0$


$(\state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\tilde \state \n =\varphi ^{-1}(\state \n )$


$k=0,\ldots ,N$


\begin {align*}& \widehat E(\tilde \state \none -\tilde \state \n ) - h \pset [\big ]{ (\widehat J-\widehat R)\hat \costate + \widehat B\discreteinput } = \discrete {U}\transp \discrete {E}({\overline {\rm {D}}}{\varphi })(\tilde \state \none -\tilde \state \n ) - h\pset [\big ]{ (\discrete {U}\transp \discreteJ \discrete {U}-\discrete {U}\transp \discreteR \discrete {U})\discrete {U}^{-1}\discretecostate + \discrete {U}\transp \discreteB \discreteinput } \\ &\hspace {4.6cm} = \discrete {U}\transp \pset [\Big ]{ \discrete {E}(\state \none -\state \n ) - h\pset [\big ]{(\discreteJ -\discreteR )\discretecostate + \discreteB \discreteinput } } = 0, \\ & \discreteoutput - \widehat {B}\transp \hat \costate = \discreteoutput - \discreteB \transp \discrete {U}\,\discrete {U}^{-1}\discretecostate = \discreteoutput - \discreteB \transp \discretecostate = 0.\end {align*}


$\tilde \state ^0$


$(\tilde \state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\tilde \state ^0$


$(\tilde \state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\state \n =\varphi (\tilde \state \n )$


$k=0,\ldots ,N$


\begin {align*}& \discreteE (\state \none -\state \n ) - h\pset [\big ]{(\discreteJ -\discreteR )\discretecostate + \discreteB \discreteinput } = \discrete {U}\ntransp \pset [\Big ] { \discrete {U}\transp \discrete {E}({\overline {\rm {D}}}{\varphi })(\tilde \state \none -\tilde \state \n ) - h\pset [\big ]{ (\discrete {U}\transp \discreteJ \discrete {U}-\discrete {U}\transp \discreteR \discrete {U})\discrete {U}^{-1}\discretecostate + \discrete {U}\transp \discreteB \discreteinput } } \\ &\hspace {4.6cm} = \discrete {U}\ntransp \pset [\Big ]{ \widehat E(\tilde \state \none -\tilde \state \n ) - h \pset [\big ]{ (\widehat J-\widehat R)\hat \costate + \widehat B\discreteinput } } = 0, \\ & \discreteoutput - \discreteB \transp \discretecostate = \discreteoutput - \discreteB \transp \discrete {U}\,\discrete {U}^{-1}\discretecostate = \discreteoutput - \widehat {B}\transp \hat \costate = 0,\end {align*}


$\state ^0$


$(\state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$\widetilde \statespace =\widetilde \statespace _1\times \widetilde \statespace _2$


$\widetilde \statespace _2$


$\varphi =(\varphi _1,\varphi _2)$


$U=\left [\begin {smallmatrix}U_{11} & U_{12} \\ U_{21} & U_{22}\end {smallmatrix}\right ]$


$\jacobian _{\tilde \state _2}\varphi _1=0$


$U_{12}=0$


$(\widetilde E,\tilde \costate )$


\begin {equation*}\widetilde E = U\transp (E\circ \varphi )\jacobian \varphi = \begin {bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end {bmatrix}\transp \begin {bmatrix} E_{11}\circ \varphi & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \jacobian _{\tilde \state _1}{\varphi _1} & \jacobian _{\tilde \state _2}{\varphi _1} \\ \jacobian _{\tilde \state _1}{\varphi _2} & \jacobian _{\tilde \state _2}{\varphi _2} \end {bmatrix} = \begin {bmatrix} U_{11}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _1}{\varphi _1} & U_{11}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _2}{\varphi _1} \\ U_{12}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _1}{\varphi _1} & U_{12}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _2}{\varphi _1} \end {bmatrix}.\end {equation*}


$U$


$\jacobian \varphi $


$\rank (\widetilde E)=\rank (E)$


$(\widetilde E,\tilde \costate )$


$\widetilde E_{ij}=U_{1i}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _j}{\varphi _1}$


$i=j=1$


$\widetilde E$


$\widetilde E_{11}$


$U_{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\widetilde E_{12},\widetilde E_{21}=0$


$U_{12},\jacobian _{\tilde \state _2}\varphi _1=0$


$U_{12},\jacobian _{\tilde \state _2}\varphi _1=0$


$\widetilde E_{ij}=0$


$(i,j)\neq (1,1)$


$U$


$\jacobian \varphi $


$U_{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\widetilde E_{11}$


$\varphi $


$\jacobian _{\tilde \state _2}\varphi _1=0$


$\varphi _{11}\in \cont ^1(\widetilde \statespace _1,\statespace _1)$


$\varphi _{11}\circ \pi _1=\varphi _1$


$\jacobian \varphi _{11}\circ \pi _1=\jacobian _{\tilde \state _1}\varphi _1$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$\gradient _{\state _2}\hamiltonian =0$


$\specified \hamiltonian \in \cont ^1(\statespace _1,\R )$


$\DG \specified \hamiltonian $


$\specified \hamiltonian $


${\overline {\rm {D}}}{\varphi }_{11}$


$\varphi _{11}$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\specified {\widetilde \hamiltonian }\in \cont ^1(\widetilde \statespace _1,\R )$


\begin {equation}\label {eq:DGspecChainRule} \DG \specified {\widetilde \hamiltonian } = ({\overline {\rm {D}}}{\varphi }_{11})\transp (\DG \specified \hamiltonian \circ \varphi _{11})\end {equation}


$\specified {\widetilde \hamiltonian }$


$\varphi _{11}\in \cont ^1(\widetilde \statespace _1,\statespace _1)$


$\varphi _{11}\circ \pi _1=\varphi _1$


$\jacobian \varphi \circ \pi _1=\jacobian _{\tilde \state _1}\varphi _1$


$\psi =(\psi _1,\psi _2)=\varphi ^{-1}$


$\jacobian \psi =(\jacobian \varphi \circ \psi )^{-1}$


$\jacobian \varphi $


$\psi _{11}\in \cont ^1(\statespace _1,\widetilde \statespace _1)$


$\varphi _{11}$


$\varphi _{11}\circ \psi _{11}$


$\psi _{11}\circ \varphi _{11}$


$\jacobian \varphi _{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\jacobian \varphi $


$\varphi _{11}$


\begin {equation*}\gradient \widetilde \hamiltonian = (\jacobian \varphi )\transp (\gradient \hamiltonian \circ \varphi ) = \begin {bmatrix} \jacobian _{\tilde \state _1}\varphi _1\transp & \jacobian _{\tilde \state _1}\varphi _2\transp \\ 0 & \jacobian _{\tilde \state _2}\varphi _2\transp \end {bmatrix} \begin {bmatrix} \gradient _{\state _1}\hamiltonian \circ \varphi \\ 0 \end {bmatrix} = \begin {bmatrix} \jacobian _{\tilde \state _1}\varphi _1\transp (\gradient _{\state _1}\hamiltonian \circ \varphi ) \\ 0 \end {bmatrix},\end {equation*}


$\specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }=\specified \hamiltonian \circ \varphi _{11}$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\DG \specified \hamiltonian $


$\specified \hamiltonian $


$\discrete E_{11},\discretecostate _2,\discreteJ ,\discreteR ,\discreteB $


$E_{11},\costate _2,J,R,B$


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$(\varphi ,U)$


${\overline {\rm {D}}}{\varphi }_{11}$


$\varphi _{11}$


$\discrete U=\Big [\begin {smallmatrix}\discrete U_{11} & 0 \\ \discrete U_{21} & \discrete U_{22}\end {smallmatrix}\Big ]$


$U$


$\DG \specified \hamiltonian $


$\discrete E_{11},\discretecostate _2,\discreteJ ,\discreteR ,\discreteB $


$(\varphi ,U)$


$\DG \specified {\widetilde \hamiltonian }$


$\widehat E_{11}=\discrete {U}_{11}\transp (\discreteE _{11}\circ \varphi )({\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1)$


$\hat \costate _2 = \discrete {U}_{22}^{-1} \pset [\big ]{ (\discretecostate _2\circ \varphi ) - \discrete U_{21}\widehat E_{11}\ntransp (\DG \specified {\widetilde \hamiltonian }\circ \pi _1)}$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R=\discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


$\varphi $


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\widehat E_{11}$


$\widehat J$


$\widehat R$


$\widehat B$


$\widetilde E_{11}=U_{11}\transp (E_{11}\circ \varphi )\jacobian _{\tilde \state _1}\varphi _1 = U_{11}\transp (E_{11}\circ \varphi )(\jacobian \varphi _{11}\circ \pi _1)$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\widetilde B=U\transp (B\circ \varphi )$


$\widehat J=-\widehat J\transp $


$\widehat R=\widehat R\transp \succeq 0$


$\widehat E_{11}$


\begin {align*}\tilde \costate _2 & = [0,I_{n_2}]U^{-1}(\costate \circ \varphi ) = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}U_{11}^{-1}(\costate _1\circ \varphi ) } \\ & = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}U_{11}^{-1}(E_{11}\circ \varphi )\ntransp (\gradient _{\state _1}\hamiltonian \circ \varphi )} = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}\widetilde E_{11}\ntransp (\gradient \specified {\widetilde \hamiltonian }\circ \pi _1) },\end {align*}


$\hat \costate _2$


$\tilde \costate _2$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


${\overline {\rm {D}}}_{\tilde \state _1}\varphi _1={\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1$


${\overline {\rm {D}}}{\varphi }_2$


$\varphi _2=\pi _2\circ \varphi $


\begin {equation*}{\overline {\rm {D}}}{\varphi } = \begin {bmatrix} {\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1 & 0 \\ {\overline {\rm {D}}}_{\tilde \state _1}\varphi _2 & {\overline {\rm {D}}}_{\tilde \state _2}\varphi _2 \end {bmatrix},\end {equation*}


$(\discreteE ,\discretecostate )$


\begin {equation*}\discreteE = \begin {bmatrix} \discreteE _{11} & 0 \\ 0 & 0 \end {bmatrix}, \qquad \discretecostate = \begin {bmatrix} \discreteE _{11}\ntransp (\DG \specified \hamiltonian \circ \pi _1) \\ \discretecostate _2 \end {bmatrix},\end {equation*}


$\pi _1$


$\statespace $


$\statespace _1$


$\varphi $


$(\widehat E,\hat \costate )$


\begin {align*}\widehat E & = \discrete U\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi } = \begin {bmatrix} \discrete U_{11}\transp (\discreteE _{11}\circ \varphi ) ({\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1) & 0 \\ 0 & 0 \end {bmatrix} = \begin {bmatrix} \widehat E_{11} & 0 \\ 0 & 0 \end {bmatrix}, \\ \hat \costate & = \discrete {U}^{-1}(\discretecostate \circ \varphi ) = \begin {bmatrix} \discrete U_{11}^{-1}(\discreteE _{11}\circ \varphi )\ntransp (\DG \specified \hamiltonian \circ \pi _1\circ \phi ) \\ \discrete {U}_{22}^{-1} \pset [\big ]{ (\discretecostate _2\circ \varphi ) - \discrete U_{21}\discrete U_{11}^{-1}(\discreteE _{11}\circ \varphi )\ntransp (\DG \specified \hamiltonian \circ \pi _1\circ \phi ) } \end {bmatrix} = \begin {bmatrix} \widehat {E}_{11}\ntransp (\DG \specified {\widetilde \hamiltonian }\circ \pi _1) \\ \hat \costate _2 \end {bmatrix} ,\end {align*}


$\widehat J,\widehat R,\widehat B$


$(\widehat E,\hat \costate )$


$\DG \specified {\widetilde \hamiltonian }$


$\widehat E_{11}$


$\hat \costate _2$


$\widehat J$


$\widehat R$


$\widehat B$


$(\varphi ,U)$


\begin {equation}\begin {bmatrix} (\jacobian {\varphi })\transp (\gradient \hamiltonian \circ \varphi ) \\ 0 \\ y \end {bmatrix} + \begin {bmatrix} 0 & -\jacobian \varphi \transp (E\circ \varphi )\transp U & 0 \\ U\transp (E\circ \varphi ) \jacobian \varphi & U\transp \pset [\big ]{(J-R)\circ \varphi } U & U\transp (B\circ \varphi ) \\ 0 & (B\circ \varphi )\transp U & 0 \end {bmatrix} \begin {bmatrix} -\dot {\tilde \state } \\ \tilde f \\ u \end {bmatrix} = 0, \label {Xeqn42-D.2}\end {equation}


$\tilde f=U^{-1}(\costate \circ \varphi )$


$\DG \hamiltonian $


$\hamiltonian $


$\discreteE $


$\discreteJ $


$\discreteR $


$\discreteB $


$E$


$J$


$R$


$B$


$({\overline {\rm {D}}}{\varphi })\transp $


$\discrete U\transp $


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete U$


$U$


$\state \none -\state \n ={\overline {\rm {D}}}{\varphi }(\tilde \state \n ,\tilde \state \none )(\tilde \state \none -\tilde \state \n )$


$\discretetimestep {f}=\discrete {U}(\tilde \state \n ,\tilde \state \none )\discretetimestep {\tilde f}$


$\tilde \state \n =\varphi ^{-1}(\state \n )$


$\tilde \state \none =\varphi ^{-1}(\state \none )$


\begin {equation}\label {eq:transfDiscDDR} \begin {bmatrix} ({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi ) \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & -{\overline {\rm {D}}}{\varphi }\transp (\discreteE \circ \varphi )\transp \discrete {U} & 0 \\ \discrete {U}\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi } & \discrete {U}\transp \pset [\big ]{(\discreteJ -\discreteR )\circ \varphi } \discrete {U} & \discrete U\transp (\discreteB \circ \varphi ) \\ 0 & (\discreteB \circ \varphi )\transp \discrete U & 0 \end {bmatrix} \begin {bmatrix} -\frac {\tilde \state \none -\tilde \state \n }{h} \\ \discretetimestep {\tilde f} \\ \discreteinput \end {bmatrix} = 0,\end {equation}


$(\tilde \state \n ,\tilde \state \none )$


$\DG \widetilde \hamiltonian =({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\widehat E=\discrete {U}\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi }$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R = \discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


${\overline {\rm {D}}}{\varphi }(\state \n ,\state \none )$


${\overline {\rm {D}}}{\varphi }(\state \n ,\state \n )=\jacobian \varphi (\state \n )$


$\state \n \in \statespace $


$F(\state \n ,\state \none ,\discretetimestep {f})=0$


$F:\statespace \times \statespace \times \R ^m\to \R ^p$


$\widetilde F(\tilde \state \n ,\tilde \state \none ,\discretetimestep {\tilde f})=0$


\begin {equation*}\widetilde F(\tilde \state \n ,\tilde \state \none ,\discretetimestep {\tilde f}) = F(\varphi (\tilde \state \n ),\varphi (\tilde \state \none ),\discrete U(\tilde \state \n ,\tilde \state \none )\discretetimestep {\tilde f}).\end {equation*}


$\norm {\discretetimestep {f}-\discretecostate (\state \n ,\state \none )}$


$\discretecostate $


$\costate $


\begin {equation*}\norm {\discretetimestep {f}-\discretecostate (\state \n ,\state \none )} = \norm {\discrete {U}(\tilde \state \n ,\tilde \state \none )(\discretetimestep {\tilde f}-\hat \costate (\tilde \state \n ,\tilde \state \none ))}\end {equation*}


$\hat \costate =\discrete U^{-1}(\discretecostate \circ \varphi )$


$\tilde \costate $


$m_i$


$k_i$


$l_{i0}$


$i \in \{1,2 \}$


$x_1$


$x_2$


$q_2$


\begin {align*}{q}= \begin {bmatrix} x_1 \\ q_2 \\ x_2 \end {bmatrix} \quad \text {and} \quad {v} = \begin {bmatrix} v_1 \\ v_2 \\ v_3 \end {bmatrix} = \begin {bmatrix} \dot {x}_1 \\ \dot {q}_2 \\ \dot {x}_2 \end {bmatrix}\end {align*}


$q_2 = x_1 + l_{10} + w$


\begin {align}\label {exkineticenergysingularM} T({v}) = \frac {1}{2} m_1 v_1^2 + \frac {1}{2} m_2 (v_2 + v_3)^2 = \frac {1}{2} {v} \transp M v\end {align}


$M$


\begin {align}E =\begin {bmatrix} I_{3 \times 3} & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix}.\end {align}


$E$


$E=U\Sigma V\transp =[U_1,U_2]\diag (\Sigma _1,0)[V_1,V_2]\transp $


$\Sigma _1 = \diag {(1,1,1,m_1,2m_2)}$


\begin {align}V_1 = W_1 = \begin {bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac {1}{\sqrt {2}} \\ 0 & 0 & 0 & 0 & \frac {1}{\sqrt {2}} \\ 0 & 0 & 0 & 0 & 0 \end {bmatrix} \ , V_2 = W_2 = \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -\frac {1}{\sqrt {2}} & 0 \\ \frac {1}{\sqrt {2}} & 0 \\ 0 & 1 \end {bmatrix} .\end {align}


$E\in \cont (\statespace ,\R ^{m,n})$


$\rank (E(\state ))=r$


$\state \in \statespace $


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$U\in \cont (\statespace _0,\R ^{m,m})$


$V\in \cont (\statespace _0,\R ^{n,n})$


\begin {equation}U\transp EV = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix} , \label {Xeqn44-F.1}\end {equation}


$\Sigma \in \cont (\statespace _0,\R ^{r,r})$


$E$


$\cont ^\ell $


$\ell \in \N _0\cup \{\infty \}$


$U$


$V$


$\Sigma $


\begin {equation*}U_0\transp E(\state _0)V_0 = \begin {bmatrix} \Sigma _0 & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$E(\state _0)$


$U_0\in \R ^{m,m}$


$V_0\in \R ^{n,n}$


$\Sigma _0\in \R ^{r,r}$


\begin {equation*}U_0\transp E(\state )V_0 = \begin {bmatrix} E_{11}(\state ) & E_{12}(\state ) \\ E_{21}(\state ) & E_{22}(\state ) \end {bmatrix}\end {equation*}


$\state \in \statespace $


$E_{11}(\state _0)=\Sigma _0$


$E$


$\statespace _0\subseteq \statespace $


$\state _0$


$E_{11}(\state )$


$\state \in \statespace _0$


$E_{ij}$


$E$


$i,j$


$E_{11}$


$\statespace _0$


\begin {equation*}E_{11}(\state )^{-1} = \frac {\mathrm {adj}(E_{11}(\state ))}{\det (E_{11}(\state ))},\end {equation*}


$\mathrm {adj}(E_{11}(\state ))$


$E_{11}(\state )$


$E_{11}(\state )$


$\det (E_{11}(\state ))$


$\statespace _0$


$E_{11}$


$E$


$\statespace _0$


\begin {equation*}\widetilde U(\state )\transp \coloneqq \begin {bmatrix} I_r & 0 \\ -E_{21}(\state )E_{11}(\state )^{-1} & I_{m-r} \end {bmatrix}U_0\transp , \qquad \widetilde V(\state ) \coloneqq V_0\begin {bmatrix} I_r & -E_{11}(\state )^{-1}E_{12}(\state ) \\ 0 & I_{n-r} \end {bmatrix},\end {equation*}


\begin {equation*}\widetilde U(\state )\transp E(x)\widetilde V(\state ) = \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & E_{22}(\state ) - E_{21}(\state )E_{11}(\state )^{-1}E_{12}(\state ) \end {bmatrix}\end {equation*}


$\state \in \statespace _0$


$E_{11}(\state )\in \R ^{r,r}$


$\state \in \statespace _0$


$E$


$r$


\begin {equation*}\widetilde U(\state )\transp E(x)\widetilde V(\state ) = \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$\state \in \statespace _0$


$\widetilde U$


$\widetilde V$


$E$


$\widetilde U$


$\widetilde V$


$\widetilde U(\state )=U(\state )L_U(\state )$


$\widetilde V(\state )=V(\state )L_V(\state )$


$\widetilde U$


$\widetilde V$


$\state \in \statespace _0$


$U$


$V$


$L_U$


$L_V$


$\widetilde U$


$\widetilde V$


$U,V,L_U,L_V$


$\widetilde U,\widetilde V$


\begin {align*}U(\state )\transp E(\state )V(\state ) &= L_U(\state )^{-\top }\widetilde U(\state )\transp E(\state )\widetilde V(\state )L_V(\state )^{-1} = \begin {bmatrix} \widetilde L_{11}(\state )\transp & \widetilde L_{21}(\state )\transp \\ 0 & \widetilde L_{22}(\state )\transp \end {bmatrix} \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \widehat L_{11}(\state ) & \widehat L_{21}(\state ) \\ 0 & \widehat L_{22}(\state ) \end {bmatrix} \\ & = \begin {bmatrix} \widetilde L_{11}(\state )\transp E_{11}(\state )\widehat L_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix},\end {align*}


$\widetilde L(\state )=L_U(\state )^{-1}$


$\widehat L(\state )=L_V(\state )^{-1}$


$L_U$


$L_V$


$E_{11}$


$U$


$V$


$E$


$V$


$E\in \cont (\statespace ,\R ^{m,n})$


$\rank (E(\state ))=r$


$\state \in \statespace $


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$U\in \cont (\statespace _0,\R ^{m,m})$


$\Pi \in \R ^{n,n}$


\begin {equation}U\transp E\Pi = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix} , \label {Xeqn45-F.2}\end {equation}


$E_{12}\in \cont (\statespace _0,\R ^{r,n-r})$


$E$


$\cont ^\ell $


$\ell \in \N _0\cup \{\infty \}$


$U$


$E_{12}$


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$\widetilde U,\widetilde V$


$\Sigma \in \cont (\statespace _0,\R ^{r,r})$


$\widetilde U,\widetilde V,\Sigma $


$E$


\begin {equation*}\widetilde U\transp E\widetilde V = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix}.\end {equation*}


\begin {equation*}\widetilde U\transp E = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix} \widetilde V\transp = \begin {bmatrix} \widetilde E_{11} & \widetilde E_{12} \\ 0 & 0 \end {bmatrix}.\end {equation*}


$\rank (U\transp E(x_0))=\rank (E(x_0))=r$


$\Pi \in \R ^{n,n}$


\begin {equation*}\widetilde U\transp E\Pi = \begin {bmatrix} \widehat E_{11} & \widehat E_{12} \\ 0 & 0 \end {bmatrix} ,\end {equation*}


$\widehat E_{11}(\state _0)$


$\widehat E_{11}$


$\statespace _0$


$\widehat E_{11}$


$\statespace _0$


\begin {equation*}U = \widetilde U \begin {bmatrix} \widehat E_{11}\ntransp & 0 \\ 0 & I_{n-r} \end {bmatrix},\end {equation*}


\begin {equation*}U\transp E\Pi = \begin {bmatrix} \widehat {E}_{11}^{-1} & 0 \\ 0 & I_{n-r} \end {bmatrix} \widetilde U\transp E\Pi = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix}\end {equation*}


$E_{12}=\widehat E_{11}^{-1}\widehat E_{12}$


$\widetilde E$


$E_{12}$


$E$


$\Pi $


$\Pi =\jacobian \sigma $


$\sigma (\state )=\Pi \state $


$\state _0\in \statespace $


$\statespace _0$


$U$


$\Pi $


$E_{12}$


$(\sigma ,U)$


$\sigma (\state )=\Pi \state $


$E$


\begin {equation*}E = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix},\end {equation*}


$E_{12}\in \cont (\statespace ,\R ^{r,n-r})$


\begin {equation}\label {eq:PDEforchangeOfVar} \gradient _{x_2}v(x) = E_{12}(x)\transp \gradient _{x_1}v(x),\end {equation}


$f_1,\ldots ,f_p\in \cont ^1(\statespace ,\R )$


$\gradient f_1,\ldots ,\gradient f_p$


$v(x)=V(f_1(x),\ldots ,f_p(x))$


$V\in \cont ^1(\R ^k,\R )$


$E_{12}$


$\psi _1=(f_1,\ldots ,f_p)\in \cont ^1(\statespace ,\R ^p)$


$\jacobian _{x_2}\psi _1=(\jacobian _{x_1}\psi _1)E_{12}$


$f_1,\ldots ,f_p$


$f_1,\ldots ,f_n\in \cont ^1(\statespace ,\R )$


$\state _1,\ldots ,\state _n$


\begin {equation*}\psi =(f_1,\ldots ,f_n)=(\psi _1,f_{p+1},\ldots ,f_n)\in \cont ^1(\statespace ,\R ^n)\end {equation*}


$\statespace _0$


$\state _0$


$\psi :\statespace _0\to \psi (\statespace _0)$


$\widetilde \statespace _0=\psi (\statespace _0)$


$\varphi =\psi ^{-1}\in \cont ^1(\widetilde \statespace _0,\statespace _0)$


$\hamiltonian $


$\hamiltonian =\specified {\widetilde \hamiltonian }\circ \psi _1$


$\specified {\widetilde \hamiltonian }\in \cont ^1(\pi _1(\widetilde \statespace _0),\R )$


$\pi _1:\R ^n\to \R ^p$


$p$


\begin {align*}\jacobian \psi \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix} (\jacobian \varphi \circ \psi ) = \begin {bmatrix} \jacobian _{\state _1}\psi _1 & (\jacobian _{\state _1}\psi _1)E_{12} \\ \star & \star \end {bmatrix} (\jacobian \psi )^{-1} = \begin {bmatrix} \jacobian \psi _1 \\ \star \end {bmatrix} (\jacobian \psi )^{-1} = \begin {bmatrix} I_p & 0 \\ \star & \star \end {bmatrix}.\end {align*}


$(\varphi ,(\jacobian \psi \circ \varphi ))$


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 \\ E_{12}(x) & E_{22}(x) \end {bmatrix}.\end {equation*}


$\hamiltonian $


$\specified \hamiltonian \in \cont ^1(\pi _1(\statespace _0),\R )$


$(\sigma ,U)$


$\sigma (\state )=\Pi \state $


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32}(x) & E_{33}(x) \end {bmatrix},\end {equation*}


$E_{32}\in \cont (\statespace _0,\R ^{r-p,n-r})$


$E_{33}\in \cont (\statespace _0,\R ^{r-p,r-p})$


$E_{33}(\state _0)$


$\statespace _0$


$\state _0$


$E_{33}$


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32}(x) & I_{r-p} \end {bmatrix}.\end {equation*}


$x=(x_1,x_2,x_3)\in \R ^p\times \R ^{n-r}\times \R ^{r-p}$


$z=(z_1,z_2,z_3)\in \R ^p\times \R ^{n-r}\times \R ^{r-p}$


$E\transp \costate =\gradient \hamiltonian $


\begin {equation*}\begin {bmatrix} z_1 \\ E_{32}\transp z_3 \\ z_3 \end {bmatrix} = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & E_{32}\transp \\ 0 & 0 & I_{r-p} \end {bmatrix} \begin {bmatrix} z_1 \\ z_2 \\ z_3 \end {bmatrix} = E\transp z = \gradient \hamiltonian = \begin {bmatrix} \gradient \specified {\hamiltonian }\circ \pi _1 \\ 0 \\ 0 \end {bmatrix},\end {equation*}


$\costate _1=\gradient \specified {\hamiltonian }\circ \pi _1$


$z_3=0$

https://orcid.org/0000-0003-2511-041X
https://orcid.org/0000-0002-7299-4628
mailto:philipp.kinon@kit.edu
mailto:riccardo.morandin@ovgu.de
mailto:pschulze@math.tu-berlin.de
https://doi.org/10.1016/j.apnum.2025.12.006
https://doi.org/10.1016/j.apnum.2025.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2025.12.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/

P.L. Kinon, R. Morandin and P. Schulze Applied Numerical Mathematics 223 (2026) 45-75

In general, discretizing a structured dynamical system, such as a pH system, can result in the loss of its continuous-time properties,
potentially leading to numerical solutions that exhibit unphysical behavior (see, for example, [8, Ch. 1]). One way to mitigate this
issue is by employing a structure-preserving time discretization scheme, as the system’s properties are often embedded in the algebraic
or geometric structure of the original continuous-time model. Examples of such systems include gradient [9], Hamiltonian [10], and,
particularly relevant to this work, pH systems. Structure-preserving time discretization approaches for Hamiltonian systems have
been widely studied, with [8] offering a general overview. Notably, the development of structure-preserving discretization methods
has been driven by computational mechanics [11-15], where variational integrators [14,16,17] represent an important discretization
approach within the group of symplectic methods [18]. An interesting approach is also given by time finite element methods (see,
e.g. [19-23]). Structure-preserving techniques for other system classes are for example explored in [24-27].

Compared to those works, the structure-preserving time discretization of pH systems is still a relatively young field. When per-
forming numerical integration of pH systems, it is essential to account for the energy exchange through the ports resulting in the
presence of a power balance equation. The following developments have been made in recent years:

o In [28], the authors show that certain collocation methods can achieve an exact power balance at the discrete level, provided that
the total energy function, the Hamiltonian, is a quadratic function of the state. This result is further extended to descriptor systems
in [4].
Structure-preserving discretization approaches based on Petrov-Galerkin projections have been proposed in [23,29] and are closely
connected to the aforementioned time finite element approaches. Although these methods can provide continuous solutions also
between discrete points in time, and one can obtain arbitrarily high convergence rates, they require the numerical approximation
of integrals in time. If the integrand is non-polynomial, one may not be able to integrate these formulas sufficiently accurately,
which can lead to the loss of the desired convergence and conservation properties [20]. Moreover, this numerical quadrature
imposes additional numerical costs for the emanating schemes.
In several recent works, e.g. [30-32], the authors consider splitting schemes that separate the energy-conserving and dissipative
parts of the dynamics. While this approach can achieve high order convergence and seems quite promising, to the best of our
knowledge, it has been so far only applied to linear port-Hamiltonian systems with quadratic Hamiltonian.
¢ Another approach consists in dropping the requirement for an exact time-discrete power balance, while focusing on minimizing
its violation, for example by refining adaptively the time grid of the discretization, see e.g. [33].

Contrary to these approaches, the present work pursues a discrete gradient approach, which achieves exact time-discrete power balances
also for non-quadratic Hamiltonians. Additionally, the implementation of such schemes is comparably simple and straightforward.
While most of the known discrete gradient schemes are restricted to second order convergence rates, there are recent developments
to obtain higher accuracy as well (see [34] and the references therein). Another notable work [35] deals with DAEs with a gradient
structure and constant descriptor matrix.

Most of the approaches in the literature for pH systems [36-42], which achieve an exact power balance at the discrete level
for general Hamiltonians, share the characteristic that they focus on pH ordinary-differential equations, where the gradient of the
Hamiltonian explicitly appears in the system equations. A challenge with applying methods like discrete gradient techniques to more
general systems as introduced in [4] lies in the fact that the gradient of the Hamiltonian in general only appears implicitly in the
system equations. The development of discrete gradient pairs [43] has recently addressed this issue.

In contrast to the works focusing on ordinary differential equations, we want to generalize the application field of discrete gradient
methods to pHDAEs with possibly state-dependent descriptor matrices, as introduced in [4]. The primary contributions of this work
are outlined in the following:

1. Discussion of discrete gradient pairs for general pHDAEs along with a corresponding time integration approach, see Section 4.1.

2. Development of a tangible discrete gradient method for semi-explicit pHDAEs, see Section 4.2. This already covers many application
problems.

3. Introduction of discrete gradient methods for general pHDAEs, based on a different modeling approach which emphasizes the
underlying Dirac structure, see Section 4.3.

4. In-depth analysis of relations between the proposed methods and their behavior under coordinate transformations, see Section 5.

The remainder of this work is structured as follows: Preliminary basics are recapitualed in Section 2, including the definition of
pHDAES and discrete gradients. In Section 3 we focus on a certain class of pHDAEs, namely semi-explicit pHDAEs. We then introduce
new methods for the numerical integration of pHDAEs using discrete gradients in Section 4. We analyze their behavior under system
transformations and provide conditions for the existence of a semi-explicit representation in Section 5. Section 6 is entirely devoted
to the application of our approaches to multibody systems, including numerical experiments. Conclusions and a brief outlook are
given in Section 7.

1.1. Notation

We denote by N the positive natural numbers and by N, the natural numbers including zero. With I, € R™" or simply I we denote
the identity matrix and with 0 the zero matrix or vector. We mostly assume that the dimension should become clear from the context.
For every matrix A € R™" or vector v € R" = R™! we denote by AT € R™" and vT € R!" their corresponding transposes. For the sake
of readability, we sometimes abbreviate less important, unspecified terms by “x”.
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We denote by C(X, Y) the continuous functions between two topological spaces X and Y. For k € N, U {0} we denote by C¥(X,, X,)
the k-times continuously differentiable functions from X, to &,, where typically X} C R” and X, C R” are open subsets for some
n,m e N.

If f € C'(X,R) with X C R” open, we denote by Vf € C(X,R") the gradient of f, intended as a column vector function. If F €
Cl(x,R™) with X C R" open, we denote by DF € C(X, R™") the Jacobian of F, intended as a matrix function whose rows transposed

are the gradients of the entries of F. Furthermore, given a partition F = (F}, ..., F,,) for the function and x = (x,, ..., x,) of the state
variable, with x; = (x;, ..., x;,,) € R" fori =1, ..., r, we denote the corresponding partial gradients and partial Jacobians as
of oF oF,
0x; | 0x; 0X;
Vof=| | D, F=| : - HE R
0% ; 0x; 1 X p;

such that in particular

V.. f
Vi=| : | DF = [DXIF Dx,F]- 1)
er f
Additionally, the derivative with respect to time ¢ deserves its own notation, which is x := %.

Iff: X - Yandg : Y — Z are two maps, we denote as usual with gof : X — Z their composition, i.e., go f(x) = g(f(x)). When
g Y XY — Z, we sometimes abuse the notation and write gof : X X X — Z to denote the map go f(x, x") = g(f (x), f(x)).

For every matrix function A € C(X,R™"), we denote by AT € C(X,R"™) its pointwise transpose AT(x) = A(x)T. If furthermore
m=n and A is pointwise invertible, we usually denote by A~! € C(X,R"") its pointwise inverse A~!(x) = A(x)"!, instead of the
inverse map, unless otherwise specified. We also introduce the short notation AT for (A~1)T = (4T)~!. Given a subset ¥ C R", we
denote by span(V) C R” the smallest linear subspace of R” containing V, and by

Vi={veR"|vlwforall weV)}

its orthogonal complement. When V consists of only one vector v € R”, we simply write span(v) and v instead of span({v}) and {v}*.
Given a subset X C R" x R"2, we usually denote by =, : X > R" and r, : X - R" the corresponding orthogonal projections, i.e.,
7 (x1,xy) = x; and m,(x, X,) = x, for all (x;, x,) € X.

2. Preliminaries

In this section, we recall some preliminary concepts and definitions that will be useful in the remainder of this work.

2.1. Differential-algebraic equations

Differential-algebraic equations are systems of the form

dx d*x
F(l,x,a,...,a>=0 (2)

for some map F : Dy — R", where t € T C R denotes the time variable, x € X C R” the state variable, and Dy C R**+D" i the
domain of F. Here n is the dimension of the state variable, m the number of equations, and k is the order of the DAE. Typically, the
domain of F is of the form Dy = T x X x R¥", where T C R is an open (possibly unbounded) interval and X C R” is an open subset,
while the solutions of (2) are to be found in C*(T, X).

We are particularly interested in first order quasilinear DAEs, i.e., equations of the form

E(t, x)x = f(1,x), 3

see e.g. [44,45], for some maps E : Dy — R™" and f : D; — R", where Dy, D, C R!*", In particular, if we had n = m and E were
pointwise invertible, then (3) would be equivalent to x = E(z, x)~! f(z, x), which is a system of first order ordinary differential equations
(ODEs). However, when this property is not satisfied, the system might include algebraic constraints and be under- or overdetermined.
This presents several challenges, both in the study of the existence and uniqueness of solutions and in the time discretization of the
system, see e.g. [46]. In particular, dedicated numerical methods are often necessary.
Enriching a DAE with input and output variables u € R? and y € R? we obtain a descriptor system
E(t,x)x = f(t,x,u), @
y =gt x,u),

for some maps E : Dy —» R™", f : D, - R", and g : D, — RY, where Dy C R!+" and D;,D, C R!+m+P_In applications, the input u
is typically a given fixed time-varying function, a state feedback, or an output feedback.

47



P.L. Kinon, R. Morandin and P. Schulze Applied Numerical Mathematics 223 (2026) 45-75

2.2. Port-Hamiltonian descriptor systems

In this paper we focus on time-invariant port-Hamiltonian descriptor systems. We introduce first the concept of gradient pair, which
will replace the gradient of the Hamiltonian in the equations.

Definition 1. Let X C R” be an open set and let H € C'(X,R), E € C(X,R™"), and z € C(X,R"). We say that (E, z) is a gradient pair
for H if

E(x)"z(x) = VH(x) )
holds for all x € X.
Port-Hamiltonian descriptor systems are then defined as follows.

Definition 2 (see also [4]). Consider a time interval T = [0,7,,4] with 7,4 > 0 and an open state space X C R". A time-invariant
port-Hamiltonian descriptor system, in short pHDAE, is a descriptor system of the form

E(x)x = (J(x) - R(x))z(x) + B(x)u,

6
y=B(x) z(x), ©

together with a Hamiltonian H € C'(X,R), where E,J, R € C(X,R™"), B € C(X,R"™), and z € C(X,R") satisfy the properties J(x) =
—J(x)T, R(x) = R(x)T > 0forall x € X, and (E, z) is a gradient pair for H. Here E, J, R are called the descriptor, structure, and dissipation
matrix functions, respectively, and z is called the costate function.

Remark 1.

In the context of the modeling of pH systems, the state variables x are also sometimes called energy variables (see e.g. [5] and
[2, Ch. 11]), since the Hamiltonian H : x — H(x) depends on them. Likewise, the coenergy variables e are given as the derivative
of the Hamiltonian with respect to the energy variables, i.e., e = VH(x). While the energy variables can be interpreted as points
on a differential manifold x € X, the coenergy variables are elements of the cotangent bundle e € T*X. We have then a natural
duality induced by the pair (T'X, T*X), which yields a power balance equation given as %H(x(t)) = (x, e(x)) = (x, VH(x)). This also
corresponds to the duality between flow and effort variables.

In the present case however, the coenergy variables e do not directly correspond to the costate function x — z(x), but to x — e(x) =
E(x)Tz(x) = VH(x) instead. Furthermore, as we will see in more detail in Section 3, the presence of algebraic equations typically
induces a partition on both the state and costate of the system, which decouples some of the variables from the energy. Thus, to avoid
ambiguity, in the context of pHDAEs we refer to x as the state and to z as the costate, evading the energy/coenergy nomenclature
altogether.

Remark 2. In this work we formally consider only systems without a feedthrough term in the output equation. Nevertheless, our
results can be easily adapted for systems with feedthrough, i.e., replacing the output equation with y = C(x)" z(x) + D(x)u for some
matrix functions C, D and requiring some additional dissipative structure involving R, B, C, D, see e.g. definitions in [4,47].

Remark 3. Although the system from Definition 2 could emerge from a change of variables of a pH ODE system with state X and
Jacobian Dx(x) = E(x) inducing z(x) = VH(%(x)), the presented framework additionally covers many more cases.

Note that in Definition 2 the input and output variables, usually taken as functions in C(T, R™), have the same size. In fact, the product
yTu typically has the same physical dimension as power. In particular, one can easily verify (see e.g. [4]) that every pHDAE of the
form (6) satisfies the power balance equation (PBE)

%H(x(t)) = —z(x(0) " R(x(0) 2(x(1)) + ¥ Tu(r) )
and the dissipation inequality
SH(x0) < 0 utr), ®)

along every solution (x, u, y) of (6), for all t € T. Note that the PBE and the dissipation inequality can be reinterpreted in integral form
as

1
H(x(t))) — H(x(1)) = / (= 2(x() T RGx(0)z(x(0)) + y() T u(t))dt 9)

To

and

1
H(x(t))) — H(x(ty)) < / y(0)Tu() dt (10)
fo
respectively, for every ¢y, 1, € T, 1) < t,.
Let us now briefly introduce another equivalent representation of pHDAESs, which will be used throughout this work. Similarly as
introduced in [48], by defining a new variable f = z(x) representing the costate, and adding the gradient pair condition E(x)" f =
VH(x) explicitly to the pHDAE Egs. (6), we obtain an equivalent system defined as follows.
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Definition 3 (Dirac-dissipative representation). Consider a pHDAE (6), then

VH(x) 0 —E(x)7 0 |[-x
0 |+|Ex) J(x) — R(x) Bx)| f |=0, (11a)

y 0 -B(x)T 0 u
f = z(x), (11b)

is referred to as the Dirac-dissipative representation related to (6). Shorthand we can call it DDR-pHDAE.

Note that we use a different letter to denote the costate as a variable, to avoid ambiguity with the costate function and its discrete
approximations that will be introduced in the following sections. Moreover, it should be highlighted that the pH structure is entirely
encoded in (11a). In fact, this equation corresponds to the intersection of the Dirac structure and the dissipative relation of the pH
system, and has the form e + (F(x) — R(x))f = 0, where f = (—x, f,u) and e = (VH(x), 0, y) are the flow and effort vectors, and § = —F "
and R =N > 0 hold pointwise, see [48] for further details.

As we will discuss in Section 4.3, similarly as in [48], the Dirac-dissipative representation can be particularly useful for the
structure-preserving discretization of pHDAEs. This can be deducted particularly due to its structure yielding the following result.

Theorem 1. Every solution (x, f,u,y) of (11a) satisfies the PBE and dissipation inequality, since
d

dz”("(’)) —y®Tu® = e =" (Fx) - R@)f = T R®F=-fTRE)f 0.

Remark 4. The reader should not confuse the acronym DDR with the notion of difference and differential representations, which has
been coined in, e.g. [49]. While both concepts are related to pH systems and both can be combined with discrete gradient methods,
the works related to the difference and differential representation propose a hybrid approach combining discrete-time equations with
differential equations. Contrarily, the DDR in the present work lives in continuous time and highlights the underlying geometric
structure.

Since the PBE (7) and dissipation inequality (8) are fundamental properties satisfied by every pH system, there is much effort in
the literature [4,23,28,29,40,41,43] in developing time-discretization schemes to preserve them on a discrete level. This is also the
focus of this paper.

2.3. Discrete gradients
Discrete gradients are a popular tool for generating structure-preserving integration methods for dynamical systems [8,50,51]. A

general definition is as follows.

Definition 4 (Discrete gradients, see [8]). Given a function f € C!(X,R) with X C R" open, a discrete gradient for f is any vector
function Vf € C(X x X, R") that satisfies the properties

1. VG, x)T(x' = x) = f(x') — f(x) for all x,x’ € X,
2. Vf(x,x) = Vf(x) forall x € X,

where (i) is referred to as directionality and (ii) as consistency condition.

Especially the directionality property will be handy later on for the design of structure-preserving discretizations. The following
definition provides an example for a discrete gradient, which can yield a symmetric method of second order accuracy, as it represents
a second-order approximation to the exact gradients.

Definition 5 (Gonzalez discrete gradient, see [51]). For a given function f € C!(&X, R) with X C R" convex open subset, its Gonzalez
(or midpoint) discrete gradient Vf € C(X x X,R") is defined by

INT
~ oy SO =@ =V(HE) o -x) .
Ve =V () + i = =) #x 12

Vf(x) otherwise.

Notably, the Gonzalez discrete gradient is determined by the directionality condition together with its action on the orthogonal

complement (x’ — x)*, that is, Vf(x,x")Tz = Vf(x;"/ )Tz forall x,x’ € X and z € (x' — x)*.

Note that for the special case of polynomial functions with degree of at most two, the Gonzalez discrete gradient is equivalent to
a midpoint evaluation of the analytical gradient. Next, the concept of discrete gradients may also be generalized to vector-valued
functions.

Definition 6 (Discrete Jacobians, see [50, Def. 3.3]). Given a vector-valued function F € C!(X,R™) with X C R” open, a discrete
Jacobian for F is any matrix function DF € C(X x X, R™") that satisfies the directionality and consistency properties

1. DF(x,x')(x' = x) = F(x') — F(x) for all x,x’ € X,
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2. DF(x,x) = DF(x) for all x € X.

As pointed out in [50], a discrete Jacobian DF may be equivalently characterized by the fact that all of its rows are discrete gradients
of the corresponding component functions of F. In a similar notation as in (1), we write

VF=| : || DF=|D,F - D

x| Xy

r]

for partial discrete derivatives and a partition x = (x,,...,x,) of the state variable. In particular, as long as X C R” is convex, we
define the Gonzalez discrete Jacobian of a differentiable vector field F € C' (X, R™) as

2
llx" = x|

DF(x) otherwise,

F(x') - F(x) — DF( i )(x’ —x)
&' =x)7 ifx #x,

_ x+x’
DF(x,x') = DF(T) +

x+x’
2

which is again determined by the directionality condition together with DF(x, x')w = DF( yw for all x,x’ € X and w € (x' — x)*.

Remark 5. For the construction of classical discrete gradients or discrete Jacobians, some assumptions on the state space X, like its
convexity, are usually necessary. However, in general the existence of discrete gradients is actually independent from the structure
of X. For example, replacing V f (%"') by Vf(x) or Vf(x') in (12) yields a discrete gradient regardless of the structure of X, although
its usefulness for discretization is unclear.

Let us focus again on discrete gradients and observe the following property.

Lemma 1. Let f € C1(X,R) with X = X} x X,, where X; C R™ and X, C R" are open and X, is convex, let us partition x = (x;,x,) € R" X
R, and suppose that V., f = 0 holds everywhere in X. Then there s f| € (X, R) such that f,(x,) = f(x;,xy) and V f(x;) = Vi fx1,x2)
forevery (x,x,) € X, orinshort fiom, = f and V fiom; =V, f. Letnow V f| be a discrete gradient for f; and V f = (V fiox;,0) : X X X —
R" x R™, ie.,

') = [W ! ("""II)]

0
for every x = (x,x,),x' = (x|, x}) € X. Then V£ is a discrete gradient for f.

Proof. The interested reader is referred to Appendix A for some detailed lines showing that there is f; € C!(X;,R) such that f,(x;) =
f(x1,xp) and Vfi(x)) = Vi fx1,x2) for every (x|,x,) € X. We now show that Vf is a discrete gradient for f. In fact, for every
x=(x1,%p),x = (x’l,x;) € X it holds that

v _(VAGLx)| _ (VA _ [V O] _
Vf(x,x)—r 0 ]—[ 0 :|_|:Vx;f(x) =Vf(x)

and

Vi) —x) = [Vfl()(c)]’xi) X! —x
-2

Tr, _

] [x} x‘] = Vi XTI = xp) = f16) = £160) = £ = f(0),
2

which concludes the proof. O

Remark 6. We note that the previous lemma is still true when replacing the assumption that X has the form X, x X, with convex X,
by the weaker assumption that there exist an open set X CR™ xR™ and a diffeomorphism ¢ = (¢, ¢,) : X — X such that 7:2((\7) is
convex and ¢, : 7[1(2?) — 7,(X) is well-defined. However, in order to keep the setting simple, in this paper we will focus on the case
where X = X; x X, with convex X,, with the awareness that this setting can be extended.

Remark 7. Moreover, assuming the convexity of X is in practice not restrictive. Since discrete gradients and other consistent approx-
imations are used for time discretization, it can be usually assumed that they will only be evaluated for arbitrarily close x,x’ € X,
up to reducing the time step accordingly. Then, for every x € X we can restrict them to X, X X, where X}, is an appropriate open
neighborhood of x, which can be selected to have even stronger structure, like being a ball for the co-norm on R". This choice in
particular ensures that X, is convex and can be written in the form X x X, for every partition of the state variable x = (x|, x,).

Discrete gradients have been applied successfully to the time discretization of pH ODEs, see e.g. [39-41]. Here, we want to tackle
PHDAES as described in Definition 2. This brings with it the striking challenge that the gradient of the Hamiltonian, which is supposed
to be approximated with a discrete gradient, appears only implicitly within the relation (5) and is not directly part of the DAEs (6),
which govern the dynamics of the system. Particularly for singular descriptor matrices, this leads to a non-invertible relation to the
costate function. In this context the recent work [43] proposed the notion of discrete gradient pairs, which we regard to be helpful
throughout the present work.

Definition 7 (Discrete gradient pair, see [43]). Let (E, z) be a gradient pair for H. We call (f, Z) EC(X X X,R")x C(X x X,R") a
discrete gradient pair for (H, E, z) if the following conditions are satisfied.
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1. 20, x)TE(x, x')(x' — x) = H(x') — H(x) for all (x,x) € X X X,
2. E(x,x) = E(x) for all x € X,
3. Z(x,x) = z(x) for all x € X.

—=T_. . . . . . . . .
These conditions essentially yield that E 7 is a discrete gradient, see Definition 4. Property (i) can be interpreted as the directionality
condition, while conditions (ii) and (iii) ensure the consistency condition for this specific discrete gradient. As it has become obvious
from the previous definitions in this section, the property of consistency is rather crucial. We therefore make the following statement.

Beﬁnition 8. Given two functions F € C(X,R") and F € C(X x X,R"), we call F a consistent approximation or discretization of F if
F(x,x) = F(x) for all x € X.

Having discussed basic notions of pHDAEs and discrete gradients, we stress that a special class of pHDAE:s is pivotal in this work, see
the upcoming section.

3. Semi-explicit port-Hamiltonian descriptor systems

We now specify that the pHDAE under investigation is semi-explicit . This subclass already covers many applications and will be
the starting point pivotal for derivations of corresponding time integration methods. We start by introducing the related concept of
semi-explicit gradient pairs.

Definition 9. Let (E, z) be a gradient pair for H. We say that (E, z) is a semi-explicit gradient pair if X = X; x X, with X, C R" and
X, C R" open and X, convex , and E = diag(E;,0) for some pointwise invertible matrix function E;; € C(X,R"1-"1).

Semi-explicit gradient pairs satisfy the following property.

Lemma 2. Let (E, z) be a semi-explicit gradient pair for H. Then there exists H, € C'(X;,R) such that H,ox, = H and VH oz, = Vo H,
ie.,

Hi(x)) = H(xy, xy), VH,(x)) =V, H(x{,Xp) (13)
fordll x; € X, x, € X,. In particular, the gradient pair property (5) is determined by

VH, (x)) = Eyy(x1.x5) " 2 (x1. %), 14
foradll x; € X, x, € X,, where z = (z,, z,) is the corresponding partition of z.

Proof. Due to the structure of E, the gradient pair property (5) can be written as V, H = Ellel, V., H =0. The latter equation
implies with Lemma 1 that there exists H, € C!(X;,R) satisfying (13), while the former is immediately reinterpreted as (14). [

By abuse of terminology, we will also refer to H, as Hamiltonian in the remainder of this work, while ensuring that it is clear from
the context whether wereferto H: X > Rorto H,: X, — R.

Definition 10. Consider a state space X = X} x X, C R"” with X C R" open and X, C R" open convex, and let us partition the
state x = (x|, x,) € X accordingly. A semi-explicit pHDAE is a port-Hamiltonian descriptor system in the sense of Definition 2 with
E = diag(E;,,0), where E|; € C(X,R™"-") is pointwise invertible. In particular it admits the form

E; () 0][x] _ _ z(x)
[ 0 O] [xz] = (J(x) = R(x)) [zz(x)] + B(x)u,
(15)
y= B(X)T ZI(X)]
z(x)|’

together with a Hamiltonian H, € C!(X;, R) that satisfies the gradient pair property (14) and conforms with Lemma 2. Since only the
time-derivative of x; appears in (15), x, is termed differential state and x, is called algebraic state. Conforming with Lemma 2, the
algebraic state does not contribute to the Hamiltonian of the system.

Note that systems of the form (15) have also been considered in [48], where the application of partitioned Runge-Kutta schemes for
their time discretization was considered. We now illustrate Lemma 2 and Definition 10 by exploring some examples.

Example 1. Consider the simple linear semi-explicit pHDAE of index 1 with x = (x, x,) governed by

1oolfx]_[o  1][x
b alfe= 5 A @
together with its Hamiltonian H,(x;) = %x% Conforming with Definition 10, x, is the differential state, x, is the algebraic state, and the

Hamiltonian only depends on x,. Moreover, the gradient pair property (14) is satisfied with E|; = 1 and z,(x, x;) = x;. O

51



P.L. Kinon, R. Morandin and P. Schulze Applied Numerical Mathematics 223 (2026) 45-75

Example 2 (Constrained input-output pH systems in classical form). The above framework naturally includes all systems which are
covered by the standard notion of pH systems in constrained input-output representation (see e.g. [1, Eq. 2.154] or [5, Eq. 4.44]) described
by local coordinates % satisfying

$= (f - E(;c))vﬁ(fc) + g(®u + bR A,
y=g® VH),
0= b(x)TVH),

with x = (x],x)) = (%, A), H,(x;) = H®), E;, =1, z, = VH(®), z, = 4, Bx)T = [¢g(®7,0] and

o [T® - R&) b(%)
J(x) — R(x) = [ b7 o |
Note that the Lagrange multipliers x, = A are here algebraic state variables. O

Example 3 (Nonlinear multibody systems). It can be shown that the governing equations for nonlinear multibody systems fit well into the
above framework of semi-explicit pHDAEs. The equations of motion are given as

I 0 0f4 0 I 0 vvig)] [0
0 M Ofo|=]|l-I -Rg(q) -Dg(@7 v |+ |
0 0 0|4 0 Dg(q) 0 A 0
VV(g)
y:[O 1 O] v
yl

The Hamiltonian

H(x) = %UTMU +V(@ =T+ V(g

denotes the total energy. Verifying that E" z(x) = VH(x) holds true is straightforward. In this example, the Lagrange multipliers ) appear
as algebraic states, that do not appear in the Hamiltonian. For more details, especially concerning an introduction of the unknowns, see
Section 6.1. O

Example 4 (Synchronous machine). Let us consider a synchronous machine, modeled as described e.g. in [52], and interpreted as a pH
system like in [53]. After a change of variables, which is detailed in Appendix B, such that we obtain x = (I, p,6) € R3, the governing equations
can be found in a suitable representation

i
)
7
S
=)

Loy o L@OIf] [-R, © 0 I 0 e g Vv,
0 1 o [sl=f 0 -a -1 S O L (17a)
] _LaT
0 0 1 fle] | o Looofrtrer] (g o ole
(1,7 [ 0 o o] 1
Ip[=|0 e o0 of J'p | (17b)
o] [0 0 1 of-3rTreu

Here e, € R? denotes the first vector of the standard basis of R?, I € R® contains the currents in the stator and rotor, p € R represents the
angular momentum of the rotor, 6 € R the angle of the rotor, and R, := diag(R;, R,) > 0, where R, R, € R*? are positive diagonal matrices
representing the stator and rotor resistances. Additionally, d > 0 is the mechanical friction, V,, I, € R> are the three-phase stator terminal
voltages and currents, V,, 1, € R are the rotor field winding voltage and current, 7, € R are the mechanical torque and angular velocity,
J,. > 0 is the rotational inertia of the rotor, L : R — R%® is the inductance matrix, usually assumed to be C*, pointwise symmetric positive
definite, and periodic of period 2z, and L' denotes its first derivative. Note that V,,V, are interpreted as the input variables of the system,
while I, I, as the corresponding output variables. The system is completed by the Hamiltonian

1 1
H(I,p,0) = EITL(G)I + ﬁpz,

r

which verifies E(x)" z(x) = VH(x), see Appendix B for further details.

While one might argue that (17a) is not really a DAE, since E is pointwise invertible, it still fits into Definition 10 for semi-explicit pHDAESs
as a special case without algebraic states.This representation has potential advantages compared to the original example from Appendix B.
For example, the inductance matrix L(0) does not appear under inversion anymore. Furthermore, synchronous machines can be components
in complex interconnected systems, e.g. in the modeling of power networks, typically resulting in actual semi-explicit pHDAEs anyway due to
the application of Kirchhoff’s laws. O

In the upcoming section we focus on the discretization of pHDAE:s - as discussed both in Definitions 2 and 10.
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4. Structure-preserving time discretization

We start by discussing integration methods for general pHDAE:s of the form (6) in Section 4.1. Here the concept of discrete gradient
pairs will be of central importance. We continue with the discretization of semi-explicit pHDAEs of the form (15) in Section 4.2,
yielding a tangible time stepping method. Then, in Section 4.3 we discuss an alternative approach, based on the Dirac-dissipative
representation associated to the pHDAE, that does not require the semi-explicit structure. Lastly, in Section 4.4 we investigate how
the three different approaches are connected, when a semi-explicit representation is available.

4.1. Discrete gradient pair methods for general pHDAEs

Consider a pHDAE of the form (6) and a temporal grid 0 =1 <! < ... <N =, with N time intervals of constant time step size
h=t*1 — ¢tk for k=0,..., N — 1. We consider uniform time grids for the sake of brevity and propose the scheme

E(xk, xk+1)(xk+1 _ xk) - h(j(xk,xk“) _ ﬁ(xk, xk+1))z(xk’xk+l) + hE(xk,xk+])uk‘k+1,

— (18)
bkt — Bk, kYT

y 2k, Xk,

fork=0,...,N —1.

In (18), we define discrete approximations of the state x* ~ x(¢*) assuming that also x* € X for sufficiently small time steps. The

. —_ === . . . . . . . . PP =T

matrices E, J, R, B are arbitrary consistent approximations of the matrix functions (see Definition 8), still satisfying J = —J and
= =T . . . . . . . . . .
R =R >0 pointwise. Moreover, u***! is not necessarily the evaluation of the (possibly discontinuous) input function at ¢*, but
at some point within the time interval of interest or an average value of it. Correspondingly, the discrete-time output y***! is an
approximation for y(¢) for the whole time step interval.

Most importantly, we require that (E, z) is a discrete gradient pair for (H, E, z) in the sense of Definition 7. Finding such a discrete
gradient pair is not trivial, but we will study how to construct one in certain special cases in Section 5. For self-containedness of this
work, we show that the usage of discrete gradient pairs yields an energy-consistent time integration.

Theorem 2. Scheme (18) yields an energy-consistent approximation of the time-continuous power balance (7) given by
HE) = HR) = =Rz, xF ) TREE, X2k, XKy 4 R T okt < okt )T okt (19)
Proof. Combining the directionality property (i) of the discrete gradient pair with (18) one obtains
HOE) — H(R) = 26k, <Y TE, Xk = by
= hZ(xck, T (j(xk’xkﬂ) _E(xk’xkﬂ))z(xk’xk#—l) + RE(xE, xEFYT Bk, xkt 1y hoke1
= —hE(k, ) TR, XA F)Z(k, x4 4 ORI T Rk < k)T hoker

which is the desired result. [
4.2. Discrete gradient methods for semi-explicit pHDAESs

In the following we consider the special case of a semi-explicit pHDAE of the form (15) for which we present a concrete time
discretization scheme. The scheme itself is outlined in Section 4.2.1 whereas a corresponding convergence analysis is presented in
Section 4.2.2.

4.2.1. Time discretization scheme for semi-explicit pHDAEs

For a semi-explicit pHDAE of the form (15), the partitioning of the state and the block matrix structure allow for a straightforward
approach using discrete gradients, which leads to a concrete time stepping method outlined in the following. Particularly, the semi-
explicit gradient pair property (14) allows for a direct approximation of z, in terms of the Hamiltonian #,. Essentially, the proposed
method can be written just like Eqs. (18), which have to be completed by the additional constraint

E“(xk, XHNTZ (K, X941y = T, (K, Xk ). (20)

We now choose VH; € C(X; x X;,R™) to be a discrete gradient of H; and E;; € C(X x X,R"-") to be a consistent discretization of
E,,. This allows to determine uniquely Z, as a function of x¥, x**!, as long E,, is ensured to be invertible within our search scope.

’
XX ), since Ey, is invertible in the convex

2
space X. More in general, any consistent approximation E;; will be invertible for sufficiently close x¥, x**1.

While there is in general no guarantee that a discrete matrix function is pointwise invertible, cf. Example 9 in the appendix,
we expect to achieve this condition up to refining the time grid sufficiently. For the sake of simplicity, we introduce the following
assumption.

This is for example the case if we choose the midpoint approximation E;(x,x') := E;;(

El | is pointwise invertible on X x X. (Al)

Furthermore, since z = (z;,z,) is not given as part of a gradient pair anymore, we will choose z, as a consistent discretization of the
time-continuous function z,.
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In a more detailed fashion, also highlighting the partitioned state, we rewrite (18) and (20) combined as

E11(Xk’Xk+1) 0 Xtk Tk kAN Rk kL okt Rk k1Y kk+L
0 11<+1 x% = h(J(*, x4y — R, X)) Zz(x}‘,xk“) + hB(x*, x*thyylktl (21a)
kk+l _ Rk Lk+INT 2
K+l _ +
y = B(x*,x**) [Ez(xl",x"“) s (21b)
Ell(xk’xk+l)Tzllc,k+l =§Hl(xllc’xllc+])’ (21¢)
kel

which can be solved for the unknowns (x’lchl x‘z‘“, z’l"k+l kk+1) in each time step (assuming that a solution exists). Note that z

which here replaces the uniquely determined function z,, is considered as an unknown of the time-discrete system, whereas z 22 isa
consistent discretization of z,. This scheme extends the discrete gradient method from [41,54] to semi-explicit pHDAE systems with
the specific structure of the descriptor matrix E.

Let us illustrate the proposed method by an example and show that it preserves the power balance equation in discrete time.

Example 5. We consider again the running example system from Example 1. Its discretization (21) is given by

e R | e

Zk,k+1 —

| le(xlf,xll‘“)— G+ xfHh.

where we chose the Gonzalez discrete gradient for the latter relation, which corresponds to (21c). While zk et
Z,(x*, x¥*+1) still requires a consistent discretization of z,(x) = x,. Sensible choices like

is an unknown of the system,

k+l) — k+l)

Z,(xF, xFHy = x’2‘ or Z,(xK, X1y = x’z‘+1 or Z,(xF, x

(x + X

complete the set of equations. O

Theorem 3. Scheme (21) yields an energy-consistent approximation of the time-continuous power balance (7) given by

kk+1 T zk,k+1
] Rk, xk+1)[ ]+h(yk,k+1)Tuk,k+l < h(FRFI)T okt (22)

HE) - 1R = —h[ .
Z(x* )

1
Zz(Xk, xk+1)

Proof. Combining the directionality property of the discrete gradient VH, with (21) one obtains
HO) = H(x) = l(xk+1) —Hy (k) = TV, (XD T (k+ = xky

_ kk+l
=(zllc,k+1)TE11(xk,xk+1)(xllc+l_xllc)_ sk x+])] Eek, Xk — ik

T

T k k+1 kk+1 _
[ ] B(xk, xkHykkt!

sy _
=h[_ 1 k+l)] (J(Xk’xk+1) Rx* xk+]))[

zz(xk,x k+l)

22(x X Zp (K, xk+1)

T

At k+1 Zk’kﬂ Kk 1NT | kekt1 Kk 1N keket]
=—/’l_ 1 Rx x+ +h Wkt u’* Sh Jk+ u,+7
[Zz(xk’xkﬂ)] ( )[Z (xck xk“)] (y ) (v )

which is the desired result. [

The semi-explicit discrete gradient method introduced in this section can of course be applied to constrained input-output pH systems
as introduced in Example 2, always achieving the desired exact PBE. While there is in general no guarantee that the algebraic
constraints are satisfied exactly by the discrete solution, specific implementation choices may allow to meet additional requirements
stemming from the particular application problem. This is shown for the example of nonlinear multibody systems in Section 6.2.

4.2.2. Convergence analysis for semi-explicit pHDAEs

To further motivate the proposed method, let us show that, under some additional assumptions on the structure of the system,
second order convergence can be achieved. Following a similar idea as for the Dirac-dissipative representation, let us introduce the
costate variable f; € R™ and the corresponding gradient pair equation E;;(x)" f; = VH,(x;). We can then rewrite (15) as a semi-
explicit DAE of the form

= F(xy,u, f1,%2), (23a)
0=G(x,u, f1,x3), (23b)
0= Gy(xq, f1.%2), (23c)
0=G3(xy, f1,%2, ), (23d)

where
F(xy,u, fi.x)) 1= E“(x)_l((.l“(xl,xz) — Ry1(x1,%0)) f1 + (J12(x1, X2) = Rip (1, %2)) 20(x1, %0) + Bl(xl,xz)u>,
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G (xp.u, f1.x9) 1= (Joy (x1,%0) = Ry (x1. X)) f1 + (Joa (1. Xp) — Ryp(X1, %)) 25(x1, X3) + By (xy, Xp)u,
Gy(xy, f1.%2) 1= Epy(x1,x0) " f1 = VH, (x)),
Gs(xy, f1.%0,9) 1=y = Bi(x1, %) f1 = By(x1, %) 25(x1, x5).

Suppose now that this augmented DAE has differentiation index 1, i.e., that G, is continuously differentiable and its partial Jacobian
D, G, is pointwise invertible. Then there exists R € C!(R™,R"™) such that every solution of the augmented DAE satisfies x, = R(x,),
due to the implicit function theorem. In particular, every solution also satisfies

i = Fx), VH (x))u) o= F(xl,u, Ep (x1, RG) T VH, (x)), R(xl)>, (24)

which is an ODE in the variable x;.
Let us now consider the discrete system (21) obtained using a discrete gradient VH, and the consistent discretizations stemming
from midpoint evaluations, which we write as
k+1/2 k+1/2
N SV hF(x H2 kel kbl kel )
1 1 1 1 2
k+1/2 k+1/2
G, xl+ / ,uk,k+1’z’1<,k+17x%+ /
k+1/2 k+172
0= Gz(x+/ okl ket ,
k+1/2
G (x Sk

,
e ’Xk+1/22’yk,k+l)

xk pxktl xkpxktl . . . .
where x’l‘“/ 20" and £V = % In particular, the discrete solutions also satisfy X2 - R(x'fﬂ/ 2) for all k > 0, for the

2
same map R, and therefore

x'lﬁ'l - x/]‘ = hF(xl](H/z,uk'kH, Ey (XTH/Z, R(XTH/Z))_T?HI(X’]‘,x’l‘“), R(x/]”l/z)) = hl?(xllﬁl/z,le(xk,xk“), Yokt )

In particular, applying a discrete gradient to a semi-explicit pHDAE using midpoint evaluations yields the same discrete sequence
for x, as if we applied the same discrete gradient and midpoint evaluations to the ODE (24). Thus, the convergence error for the
differential state variable x; will also be the same; in the case of the Gonzalez discrete gradient, this ensures second convergence
order for x; [34,50]. Then, proceeding analogously as in the second part of the proof of [46, Theorem 5.16], one can deduce that x,

also converges with order 2. We summarize this discussion in the following statement.

Proposition 1. Consider a semi-explicit pHDAE of the form (15), to which the discretization scheme (21) obtained using the Gonzalez
discrete gradient and midpoint evaluations is applied. If the augmented DAE (23) has differentiation index 1, then the method has convergence
order 2.

More in general, the convergence of the method both depends on the differentiation index of the DAE and on the choice of discrete
gradient and consistent discretizations. In the numerical example that we present in Section 6, which is a semi-explicit pHDAE with
differentiation index 2, this same method appears to have convergence order 2 for the differential variables, but only convergence
order 1 for the algebraic variable. We postpone further analysis to future works.

4.3. Discrete gradient methods applied to the Dirac-dissipative representation

We will now discuss an alternative structure-preserving discretization method, which requires neither a semi-explicit form nor a
discrete gradient pair, based on the Dirac-dissipative representation, that can also be linked to previous works for ODE systems
[41,54,55]. Given a DDR-pHDAE (11), the DDR-method governs time-stepping via

§H(Xk,xk+l) 0 _E(xk’karl)T 0 _l(xk+l _xk)
0 + E(xk, Xk+l) 7(Xk, Xk+l) _ E(xk’ xk+l) E(xk, xk+l) fk,k+l =0. (25)
phok+l 0 Bk, xk)T 0 ke

or written out

E(xk’ xk+1>(xk+l _ xk) — h(j(xk,xkﬂ) _ ﬁ(xk’ xk+1>)fk,k+] + hE(xk, xk+1)uk,k+| , 260
a

k.k+1 Rk Jk+HINT pkk+1
YOkl = Bk, xMHT plolrt

as well as
F(ck, k)T phktl Z gk, k1, (26b)

Therein, f%©**! are discrete-time approximations of the costate quantities. Additionally, we have borrowed definitions from Section 4.1
concerning the discrete state and matrices.

It is in general unclear whether these equations can be solved simultaneously for the unknowns (x¥+!, fok+1 ykk+1y in each time
step. While for pointwise invertible E one can at least recover f&**! as a function of x**!, and rewrite the discrete system only in
terms of x* and x**!, for an arbitrary, non-invertible E further analysis is required. In particular, (26a) could be underdetermined
even if the original DAE was regular, thus it might be necessary to introduce additional constraints. We show this with an example.
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Example 6. Consider the regular linear semi-explicit pHDAE from Example 1 with Hamiltonian H(x) = %x%, where we can identify

too Jo 1 fo o o [x
N R R

The system’s DDR (11) reads

X 0 0 -l (U
ol lo 0o o of-x

- 2
ot 0o o 1A 7° @27)
ol lo o =1 —tf 5,

with f = z(x). Discretizing (27) with the Gonzalez discrete gradient and discarding the trivial parts of the equation yields

k1 k+1
x +x; x +x;
Kkl _  phkktl _ K+l _ Lk
| =—f, T, = - hT, (28)
which is equivalent to reducing (16) to x; = —x; and solving this subsystem with the implicit midpoint method. However, x, remains undeter-
mined, since the DDR-method discarded the connection between f, and x,.
One possible solution is to use our original knowledge from (16) and define x’z‘“ = —x’l‘“, conforming with the algebraic condition
X + x, = 0. Another possibility would be to observe that (f,. f,) = z(x) = (x,.x,) and define x5! = fl*+! = _%(xlf + x¥*1). Note that both

these ideas are based on a priori knowledge of the equation structure.

A more robust and generalizable approach would be to select a consistent discretization Z for z. Since imposing f**+1 = Z(x*, x*+1)
might make the system overdetermined, we choose (x**!, f*k+1) instead so that it satisfies (28) while minimizing || f**+! — Z(x*, x*+1)||. We
investigate three different choices for z:

fkk+] = l(x" +xk+1)forall k>0.
2. If Z(x*, xk*1y = xk, then x’;rl does not appear in || f&**! — Z(x*, x*+1)||. However, since x¥ appears, we obtain x = fk drl - (x +

"“) for 1 <k < N —1 (and additionally k = 0 if we allow to redefine xO) Note that in thls case x is to be computed after x , since
the iteration defining xk+1 is lndependent of x . However, the final state x remains undefined. In fact, this definition suggests that x

1. If Z(x*, x¥*1) = xk*1 then we obtain again x

actually approximates xz(tk + 2) instead of x, (t"), thus justifying redeﬁmng x2 and stopping at x2
3. If Z(xk, Xkt = %(xk + xk+1), then we obtain x’2‘+1 =—xk - x1;+1 — x&. If the initial condition x° satisfies xg = —x(l), then x12<+1 = —x’l‘Jrl
holds inductively for all k > 0.

¢

Let us emphasize that the choice of additional constraints does not affect the power balance equation, which remains satisfied by
(26a) and (26b). We also refer to [48, Ex. 7.4.1] where analogous deductions are made in the context of Galerkin projection schemes.

In the case where E is singular, the question arises whether there exists a discrete gradient of H, which ensures that VH(x,x') is
in the column space of E(x,x")T, i.e.,

VH(x,x") € colsp(E(x,x")T), (29)

for all x,x’ € R". This ensures that (26b) can be solved for f%**!  although not necessarily uniquely. Further details and a corre-
sponding counterexample can be found in Appendix C. Let us now focus on the connections between the discrete methods introduced
in this section.

4.4. Relations between the presented methods in the semi-explicit setting

In this subsection, it is demonstrated that the semi-explicit discrete gradient method from Section 4.2 is equivalent to special cases
of the discrete gradient pair approach from Section 4.1 and of the DDR approach from Section 4.3.

First, we observe that scheme (21) for semi-explicit pHDAEs of the form (15) corresponds to an underlying discrete gradient pair,
see Definition 7. This is stated in the following theorem and corollary.

Theorem 4. Let (E,z) be a semi-explicit gradient pair for H in the sense of Definition 9 and let z = (z|,z,) be split correspondingly.
Furthermore, let E|; € C(X x X, R" ") and z, € C(X X X,R"2) be consistent discretizations of Ey) and z,, respectively, suppose that Eq
satisfies the Assumption A1, and let VH, be a discrete gradient for H, € C'(X,,R). Then (E,z) with

— — T —
E= Ey; 0 , 7= E,, (VHom) (30)
0 0 Z

is a discrete gradient pair for (H, E, z).

Proof. Property (i) in Definition 7 is part of our hypotheses. We proceed to show that the properties (i) and (iii) are also valid. In
fact, it holds that

) = Ey (6, x) 7 TVH Gepxp)| _ [EnGTTVH )] _ [210] _
’ Zy(x, %) zy(x)
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and
z(x, x')TE(x, ) = x) =7, (x, x')TE“(x, x')(x'1 —-x)= 67—[1(Xl,x’1)-r(x’1 —-x) = Hl(x'l) —H,(x)) = H(x") = H(x),
for all x = (x,xp), %' = (x|, x)) € x. O

Corollary 1. Consider a semi-explicit pHDAE of the form (15), let VH,, E,;, Z,, E, and Z be defined as in Theorem 4, and let us fix
consistent discretizations for J, R, and B._Then the semi-explicit discrete gradient method applied with VH, governed by (21) and the discrete
gradient pair method (18) applied with (E, z) yield the same solution.

Proof. The claim immediately follows by construction, since

= T k+1 kk+1
=k kil _ | EnGEXFOTVH K AT [ 2
Z(xh X = = vk k1 =z vk okt1n ]
Zo(x*, x*) Zo (X", x*T)

holds true. O

We will now see that the discrete gradient method applied to semi-explicit pHDAEs can be equivalently reinterpreted as a specific
DDR-method.

Theorem 5. Under the same assumptions as in Theorem 4, the semi-explicit discrete gradient method (21) yields the same one-step method
as the DDR-method (25) with the completing constraint f;"k“ = Z,(x¥, xk+1),

Proof. Due to the structure of the system, the DDR-method applied to (15) yields the one-step method

ek ] oo 0 -E) 0 0 —,',( Kl xky
0 _0 0 : 0_ B O_ _0 _h( k+1 k)
0 +|Eyn O Jy—-Ry Jp-Rp B fkkJrl =0, (31
0 0 0 Jy—-Ry Jp—-Ry B fkkJrl
yhok+1 0 0 —ET —ET 0 k k+1

1 2

where the arguments (x*, x¥*!) have been omitted for simplicity. In particular, the first equation of (31) yields
By (5 MDA = T (4 24,

ke,k+1

thus it is equivalent to the Eq. (21c), up to replacing £ with z'l"kH. Then, since the second equation of (31) is trivial, we can

k.k+1

remove it. Finally, by replacing £, with z,(x¥, x*1) due to the stated constraint, we get exactly (21). O

In summary, Corollary 1 and Theorem 5 demonstrate that the concrete time discretization scheme for semi-explicit pHDAEs
provided in Section 4.2 may be regarded as a special case of the discrete gradient pair approach from Section 4.1 and of the DDR
method discussed in Section 4.3.

5. Relating general pHDAEs to semi-explicit pHDAEs using system transformations

The goal of this section is to investigate when it is possible to reformulate general pHDAEs as semi-explicit pHDAESs, by employing sys-
tem transformations. To this end, we first analyze in Section 5.1 the behavior of the proposed schemes under system transformations.
In Section 5.2 we then shed more light on the existence of semi-explicit representations of pHDAEs.

5.1. Behavior of gradient pairs under system transformations

We are now interested in studying how the methods introduced in Section 4 behave under structure-preserving system transformations.
Our motivation is to construct discrete gradient pairs for general gradient pairs. One possibility would be to transform the general
system into an equivalent semi-explicit one, apply Theorem 4, and then apply the inverse transformation. However, this requires to
understand more accurately the behavior of discrete gradient pairs under invertible transformations.

We start by formalizing what is meant by structure-preserving system transformation. In fact, given a pHDAE of the form (6), a
diffeomorphism ¢ € C! (f, X), and a pointwise invertible matrix function U € C(f’?, R""), we call the pair (¢, U) an (invertible) system
transformation. This is motivated by the fact that we can obtain an equivalent system by applying the change of variables x = ¢(%)
and left-multiplication of the first equation of (6) by U(%)". In fact, this transformation yields the new system

E®3 = (J(%) - R®)z() + B,

~ (32)

y = B(%)Z(%),
where E=UT(Eop)Dp, T =UT(Jop)U, R=UT(Rop)U, % = 1(zow), and B = UT(Bog). Remarkably, (E, z) is a gradient pair for
H= Hogp, and the system (32) is a pHDAE with Hamlltonlan H see [4, Thm. 1] for more details. Furthermore, we observe that,
if (p,U) is an invertible system transformation, then (¢~!,U~!) is also an invertible system transformation. In particular, applying

(¢~', U to the transformed system (32) we obtain again the original system (6). This motivates calling (p~',U~") the inverse of the
system transformation (¢, U). We will discuss the composition and inversion of system transformations further in Appendix D.1.
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Remark 8. Note that, if the original system is an ODE and we want to ensure that (32) is also an ODE, we need to choose U = (D)™,
while in the more general case of DAEs this requirement is unnecessary and the choice of U is free.

Since (E, Z) only depends on the gradient pair (E, z) and on the system transformation (¢, U), we deduce that system transformations
can be applied directly to (discrete) gradient pairs. This leads to the following result.

Theorem 6. Let (E, z) be a gradient pair for H, let (¢, U) be a system transformation. Then
(E.2) = (UT(Eo@)Dep, U} (z00)) (33)
is a gradient pair for H = Hog, which we call the gradient pair transformed i‘rom~ (E, z) via (@, U). Furthermore, let (E,Z) be a discrete
gradient pair fgr (H, E, z), let Dy be a discrete Jacobian for ¢, and let U € C(X x X, R™") be a pointwise invertible consistent discretization
for U. Then (E, 2) with
E=TU'(FopDg. 2=U (Zon) (34)
is a discrete gradient pair for (H, E, 2).
Proof. Analogously to what was proven in [4] in the case of pHDAEs, we have
ETz=Dg) (Eop)"UU™! (z0p) = (Dp)  (E" z09) = (D) (VHop) = VH,
thus (E, ) is a gradient pair for 7. Concerning the second statement, for every %, % € X we have
2%, ) TE@3)E %) = Z(0@), 0(&)) E (9, 0(x)Dop(x, )% ~ %)
=Z(0(®), o)) "E(0(3), o)) (&) - 9(5)
= H(e(x)) - H(p(®) = H(E) - H ().
It is furthermore clear that E (%,%) = E(®) and 2(%,%) = 2% hold forall x € X. O

Remark 9. Note that, for (E,z) = (I,, VH), (E,Z) = (I,,,?H) with VH being a discrete gradient of H, and U = U= I,,, Theorem 6
yields that (Dg, VHog) is a discrete gradient pair for (M, I,,, VH), and therefore

VH = (D) (VHop) (35)
is a discrete gradient for . This is the well-known chain rule for discrete derivatives, see [50, Prop. 3.4].

Remark 10. One might wonder whether applying the same numerical methods under different coordinate systems would yield
different results. To answer this question, we first need to make it more precise. One possibility would be to consider a discrete
gradient pair on the original system and the one obtained via a system transformation as in Theorem 6; in this case, the discrete
solutions are the same up to applying the same coordinate change. This could still bring some numerical advantages, e.g. by applying
preconditioning. Another option would be to use the same discrete gradient construction, e.g. the Gonzalez midpoint discrete gradient,
for both the original system and the transformed one; in this other case, the obtained discrete solutions can be in fact different. The
interested reader can find more details in Section D.

We also deduce from Theorem 6 the following result, which fulfills our motivation mentioned at the beginning of this subsection.

Corollary 2. Let (E, z) be a gradient pair for H, and suppose that there exists an invertible system transformation (¢, U) that maps it into a
semi-explicit gradient pair. Then (H, E, z) admits a discrete gradient pair.

Proof. In this proof we employ the fact that discrete gradients and discrete Jacobians exist regardless of the structure of the state
space, as discussed in Remark 5. Let H= Hop € C 1(2?, R) be the transformed Hamiltonian, ﬁ] be defined according to Lemma 2,
and ?77[1 be any discrete gradient for fll. We apply Theorem 4 to construct a discrete gradient pair (£, 2) for (H, E, 2). Then, we
construct a discrete gradient pair (E, z) for (M, E, z) by applying Theorem 6 to the discrete gradient pair (E, 2) via the inverse system
transformation (¢~!, U~!). For that, any consistent discretization of U~' (e.g. the midpoint discretization) and any discrete Jacobian
for ~! can be employed. O

Theorem 6 and Corollary 2 provide us with a basis for determining a discrete gradient pair for any gradient pair which may be
transformed to a semi-explicit one. It remains to find conditions under which a gradient pair allows for a semi-explicit representation,
which is the content of the next subsection.

5.2. On the existence of a semi-explicit representation

Corollary 2 requires the existence of an invertible system transformation (¢, U) which brings the system to semi-explicit form. In the
special case where E is constant, such a transformation can be obtained based on a singular value decomposition (SVD) of E, as
detailed in the following proposition.

Proposition 2. Let (E,z) be a gradient pair for H € C'(X,R), assume that E € R™" is constant, and let E = UXV" be an SVD of
E. Furthermore, let U = [U,,U,], V = [V},V,], and T = diag(Z,,0) with U;, W, € R"", %, € R"™", and r = rank(E). Then the following
statements hold:
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Fig. 1. Mass-spring system.

1. (,U) with P(x)=Vx is an invertible system transformation that maps (E, 7). into a semi-explicit gradient pair.

2. The function H, : X, — R associated with H = Ho via Lemma 2 satisfies H,(%,) = H(V, %))

3. If VH, is a discrete gradient for H, and 2, is a consistent approximation for U2T (zog@), then (E,z,) with z, = U, 21‘1577[1 +UyZisa
discrete gradient pair for (H, E, z).

Proof. Straightforward calculations yield that the result follows from Theorem 4 and Theorem 6. O
Proposition 2 can find its use in several application instances. We demonstrate this in the following example.

Example 7 (Multibody system with singular mass matrix). Using Proposition 2, one can design a discrete gradient pair with corresponding
integration method for a multibody system example fitting into the aforementioned Example 3. The specific problem as depicted in Fig. 1 (see
[56, Sec. 5, Ex. 3] and [57]) has two degrees of freedom but is modeled by means of three redundant coordinates q = (x|, g,, x,). This leads
to a singular mass matrix with masses m; and m, given by

m; 0 0
M=|0 my my |, (36)
0 my m,

which is contained in the pHDAE’s descriptor matrix E = diag(I53, M,0). Performing the steps as shown above yields the desired discrete
gradient pair. Further details are contained in Appendix E. O

In the general case of a state-dependent E, one might wonder whether it is possible to transform any pHDAE (6) into an equivalent
one in the semi-explicit form (15). We start by deducing the following necessary condition:

Theorem 7. Let (E, z) be a gradient pair for H, and suppose that there exists an invertible system transformation (¢, U) that maps it into a
semi-explicit gradient pair. Then E has constant rank.

Proof. Since ¢ is a diffeomorphism, D¢ is pointwise invertible, thus we deduce that
rank (E(x)) = rank (U(X)" E(x)Dg(%)) = rank(E(fc)) =n
for all x € X, where X = ¢~ 1 (x). O

We investigate now whether this condition is also sufficient. A simple extension of [25, Thm. 3.9] (see Theorem 11 in the appendix)
shows that E being continuous and constant rank is sufficient to find pointwise unitary U, V € C(X, R™") satisfying

E 0
T _ |Fu
UEV_[0 0]

for some pointwise invertible matrix function E,;, at least locally. Unfortunately, since such V is not necessarily the Jacobian of a

diffeomorphism ¢, we cannot exploit this result directly. However, we are still able to provide a crucial local canonical form for a
gradient pair (E, z), as long as E is analytic and has constant rank.

Theorem 8. Let (E, z) be a gradient palr for H € C'(X,R), and suppose that E € C(X,R™") is analytic and has constant rank. Then (E, z)
is locally equivalent to a gradient pair (E z) for Hec 1(X R), such that H admits an associated function 7-[1 € Cl(r, (X) R) in the sense of
Lemma 1, and

I, 0 0 VH,om,
E=[o o o z=| =z | (7)
0 Ey I, 0

where ; : R" — RP denotes the projection onto the first p coordinates.
Proof. See Appendix F. [

The canonical form in Theorem 8 allows us then to find a canonical form for pHDAEs, which allows to split them into a structured
semi-explicit DAE and an additional unstructured DAE.
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Corollary 3. Consider a pHDAE of the form (6), and suppose that the descriptor matrix E is analytic and has constant rank. Then the system
is locally equivalent to the combination of a parametrized semi-explicit pHDAE of the form

[l"l O] [il] = (J(x,0) - R(x,0)) [VHI(XI)] + [Bl (x,6) u

0 0f|x 2y(x, 0) By(x,0)|
(38a)
VH,(xy)
=B T B T 1\
y=[B(x.0) ) (x,6) ][zz(x,e)
with Hamiltonian H, depending only on x,, and an unstructured DAE for the parameter 0 given by
6 + E3p(x,0)%, = Az (x,0)VH | (x)) + Azy(x, 0)25(x, 0) + By (x, 0)u, (38b)

with state x = (x,, x,), up to invertible system transformations.

Proof. Because of Theorem 8 we can assume, up to restricting the state space to an appropriate open neighborhood and applying a
certain invertible system transformation, that 7 admits an associated function H,; € C!(x,(X), R) in the sense of Lemma 1 and

I, 0 0 VH,om,
E=|0 0 0 | z= z)
0 Eyp I, 0

The pHDAE then can be written as

X Ji(x) = Ry(x)  Jp(x) = Rpp(x) Ji3(x) = Riz(x) [[ VH, (xp) B (%)
0 =1Jy1(x) = Ry (x)  Jyp(x) = Ryp(x)  Jp3(x) — Ryz(x) zy(x) |+ | By(x) [u,
E3p(x)%y + X3 J31(0) = Ry (x)  J3p(x) = Ryp(x)  J33(x) — R3z(x) 0 B;(x)
VH,(x})
y=[Bi®)T B,®T By®T]| z&)
0

Note that, since z; = 0, the third block column of J — R can be arbitrarily modified without affecting the solutions of the system.
Therefore, A3; = J3; — R3; and A3, = J3, — R3, are actually unstructured, and the system can be equivalently interpreted as (38), up
to relabeling x := (x;,x,) and 0 := x;.

We finally note that, up to restricting X further, we can assume that it is an open convex of the form X, x X, x X3 with x| C R™,
X, CR™,and X; CR™. O

Remark 11. In the proof of Corollary 3 we reinterpreted part of the state as a time-varying parameter. While this choice might seem
arbitrary, it allows us to highlight and exploit the underlying semi-explicit pHDAE structure. In fact, while the full system (38) is not a
semi-explicit pHDAE, the fact that the subsystem (38a) is a parametrized semi-explicit pHDAE allows to apply a structure-preserving
time-discretization scheme by approximating VH,(x,) by a corresponding discrete gradient. Additionally, one is free to choose an
approximation of the unstructured part (38b), which however does not spoil the discrete time power balance equation. It should
be emphasized that the derivation of the system (38) requires a suitable system transformation, which may be difficult to obtain in
practice.

While we leave further in-depth analyses for future research, we subsequently highlight the applicability of our proposed approach
to a mechanical problem class.

6. Application to multibody system dynamics

Let us consider the example of nonlinear and constrained multibody systems (see Example 3). We discuss the modeling as a semi-
explicit pHDAE in Section 6.1, showcase the application of a discrete gradient method in Section 6.2 and present a numerical exper-
iment in Section 6.3.

6.1. Modeling multibody systems as semi-explicit pHDAEs

The class of nonlinear multibody systems with redundant coordinates ¢ € C(T, Q) fits well into the semi-explicit framework (15).
More details on the derivations of the following equations may be found for example in the textbook [58, Ch. 1]. The configuration
space Q is typically a differential manifold, but it can also be regarded as an open subset of R¢ up to switching to local coordinates,
where the dimension d of Q determines the number of coordinates. Correspondingly, admissible velocities v = 4 are elements of the
tangent space T,Q defined through the presence of holonomic constraints g € C'(Q,R™), and can be reinterpreted in local coordinates
as vectors in R?. Since

g(q) =0 (39)

gives rise to the kinematic (i.e. velocity level) constraints (sometimes in the MBS community referred to as hidden constraints),
admissible velocities need to satisfy

Dg(q())v() = 0. (40)
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These constraints are enforced by means of Lagrange multipliers 4 € C(T, R™), which now represent the purely algebraic states, i.e.,
x, = A. Correspondingly, with x, = (¢, v) one defines the non-quadratic Hamiltonian as

H) = Hy(x)) = %UTMU +V(9), 41

where the first term represents the kinetic energy with the symmetric and positive-definite mass matrix M € R and V € C(Q,R)
denotes an arbitrary potential energy. The emanating potential forces are derived by taking the partial derivative with respect to the
coordinates, i.e., F, = VV(g). Additionally, we consider velocity-dependent viscous dissipation governed by the Rayleigh dissipation
function G(q,v) = %UT Rg(q)v, where Ry (q) € C(Q,R?%?) is a symmetric and positive semi-definit dissipation matrix. The non-potential
forces appearing in the balance of linear momentum are obtained through differentiation, i.e., Fp(q,v) = =V,G(q,v) = —Rg(q)v. This
eventually yields the equations of motion as index-2 DAEs given by

j=v, (42a)
Mv=-VV(g) — Rg(q)v - Dg()T A +u, (42b)
0 = Dg(q)v, (42¢)

where u represents external input loads. These equations can be brought into the semi-explicit pHDAE representation (15) by rewriting
them as

I 0 0f4 0 T 0 vvig)]| [0
0 M offol=||-I -Rg(®) -Dg@" v |+ | (43a)
0 0 o4 0 Dg(q) 0 A 0
\240)]
y=[0 1 o v | (43Db)
A

The verification that ET z(x) = VH(x) holds true is straightforward. Moreover, the system output collocated with the input forces
coincides with the velocity, i.e., y = v.

Note that the pH formulation of the multibody system dynamics is characterized by explicitely accounting for the hidden velocity
constraints (40) instead of the constraints on position level (39). Care has to be taken when it comes to the numerical discretization
in order to avoid the violation of the constraints on position level during simulations (drift-off).

6.2. Structure-preserving time integration of multibody systems

For the time discretization of (43a), we propose the application of the semi-explicit discrete gradient method (21) with additional
specifications, leading to the discrete time mapping

I 0 0 g~ - ¢ 0 I B 0 Zlf::H 0
0 M 0 Uk+l _ Uk =hn|l=1 _RR(qk+1/2) —Dg(qk,qk+l)T lec,£+l +hlT uk,k+l’ (443)
0 0 ol s Zx 0 Da(gk, gkl 0 prazs! 0
k,k+1 I 0 -T
1, — v kL k+1
L,f%ﬂ] = [0 M] VH, (xk, x4, (44b)
Yokt = ket (440)

where gF+1/2 = %(qk + g¥*1) is the midpoint, and Dg is a discrete Jacobian for g. Here we discretized the Rayleigh dissipation term using
the implicit midpoint rule, but we emphasize that any other consistent approximation which preserves the positive semi-definiteness
of Ry would be suitable as well. For the multipliers we make the choice A¥*! := J%+1 such that no appropriate initialization for 4°
is required.
As already mentioned, one might wonder about the drift-off effect. Since we approximate Dg with a discrete Jacobian, combining
the first and third row of (44a) yields
2(@**") - g(¢") = De(g", ¢+ )(g**" - ¢*) = hDg(d", gz} =0, (45)

1,0
and therefore the drift-off vanishes, as long as the initial condition satisfies g(q°) = 0. Thus, this scheme not only yields energy
consistency in terms of Theorem 3, but also prevents the drift-off effect.

Remark 12. The choice of using a discrete Jacobian to approximate Dg in general only guarantees that the velocity constraint (40)
itself is satisfied approximately. For an energy-consistent multibody system integrator, which captures constraints both on position
and on velocity level exactly, the interested reader is referred to [15, Sec. 5].

Remark 13. For lossless systems, one might be additionally interested in preserving momentum maps, like the angular momentum.
This can be achieved by using G-equivariant discrete gradients, see [51, Ch. 3.7].
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€3

(S5

Fig. 2. Four-particle system.

Remark 14. Alternatively to applying the semi-explicit discrete gradient method (21), one could also apply the DDR-method (25)
with a discrete gradient VH, yielding the discrete time mapping

[V, ek ] o 0 0 -1 0 0 0] ‘?(‘Ifi “IZ)

V,Hk x| jo 0 0 0 -M 0 of —7@+ =05

T HE [ o0 0 0 0 0 0ff -3 a4+ = 2%
0 +{r o o o 1 0 0 ff;“ =0, (46)
0 0 M 0 - =—Rg@*') Vg, g"thT Il gk
0 0 0 0 0 Vgt q+h 0 0 fk’,”k+1

| & o 0 0 o0 -1 0 of ka

where we split VH into its entries §Hq, VH,, VH,, consistently with the notation introduced in Section 2.3. Note that this is completely
equivalent to applying (44), up to constructing the discrete gradient VH based on the discrete gradient VH, of the Hamiltonian H,,
ie.,

0

kok+1
Lg

— I
VH () = FHl(q,u,q v )]’

and adding the constraint f = J**1  see also Lemma 1 and Theorem 5.

6.3. Numerical experiment

Let us now focus on a specific problem from the literature to highlight the applicability of our approach and discuss its performance.

6.3.1. Problem description

The four-particle system depicted in Fig. 2 has been adapted from the literature [11,15] and extended to include dissipation. The
configuration of the system is characterized by the coordinate vector g = (g, ¢». 43, q4) € R'? comprising the Cartesian coordinates of
four masses m;, i = 1,...,4 in three dimensions. Two nonlinear springs give rise to the potential function

1 2 1 2
V(@) = 5kis(llgs =il =1)" + Jka(llas = 2ll* = 1)°, “47)
with the spring stiffness parameters k3 and k,4. The mass matrix is block diagonal, i.e. M = diag{m I, m,I, m3I, m4I}. Additionally,
we consider configuration-dependent viscous dissipation in terms of the Rayleigh dissipation function
1
G@,0) = @0, ra =Nl = 2], (48)

where 7(q) = no(1 + “’qrzel) > 0 is the dynamic viscosity parameter and ¢, = |l¢; — ¢»||. We have also introduced 7, > 0 and « > 0 as

constant parameters. This leads to the dissipation matrix

0 0 0 0
0 1 -1 0
Re@=n@l,  _,  ; ol (49)

0 0 0 0

There are two rigid bars connecting two masses, respectively, leading to the constraints on position level given by

1 1
g@=3(le-al?-1)=0,  &@=7(la-al*-1)=0. (50)
In the numerical simulations the initial conditions

a) = [0.0.0]" . g = [1.0.0]" . g = [0.1.0] ", o = [1.1.0] .
0 T 0 T 0 T 0 2017 D
o) =[0.0,0]", g =[0.0.0]", o= [0.0.0]", S = [0.0.2] ,

have been chosen consistently with the constraints (50) and their velocity level counterparts induced by (40).
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Table 1
Simulation parameters for four-particle system.
h Tend  ENewton {kizkpg}  my mn a
0.01 10 10-10 {50,500} {1,3,2.3,1.7} 1 0.5
1073
: : 10~*
ol H(IkJrl) _ H(xk) |
1 W(fiss 1077
sum
1
— 1071} 9
£ . = DG
Si/ 0.5 = i 1013 MP
—1
10—16
0 -2
| | | | | | ]‘0719
0 2 4 6 8 10 o 2 4 6 8 10 0 2 4 6 8 10
tk tk tk

Fig. 3. Hamiltonian evolution (left), increments (center) and comparison with midpoint approach (right). “DG” denotes our approach and “MP” is
the midpoint scheme.

6.3.2. Methods
The simulations have been conducted using our discrete gradient scheme for semi-explicit systems (21), or the equivalent DDR-
method, implemented as suggested in (44). Results obtained with this scheme are labeled “DG” . The equations have been solved
in each time step using Newton’s method with a tolerance of eygyon- FOr the discrete gradients and Jacobians, we use the Gonzalez
discrete gradient (12). Since the constraints (50) are quadratic, the application of the Gonzalez discrete Jacobian boils down to a
midpoint evaluation. In this example we assume zero inputs.

The generated data along with the source code for the simulations are openly available for verification purposes in the repository
https://github.com/plkinon/phdae_discrete_gradients and are archived at [59].

6.3.3. Results & discussion

We simulate the four-particle system using the parameters comprised in Table 6.3.3. On the left part of Fig. 3 one can observe the
discrete evolution of the Hamiltonian in time. The exact representation of the power balance in discrete time (see (44) and Theorem 3)
is demonstrated in the central part of Fig. 3, since the Hamiltonian increments are always less or equal to zero and the dissipated
work in each time step

T

ksl s _
Wit gl RO, X+
diss zz(xk,xk“) ’

k,k+1

z g kk+1T k+1/2y k.k+1
Ez(x}f,xkﬂ) =hz," Re(@” / )z, 20 (52)

is equally large. The sum of the two terms is numerically zero. For comparison, a pure midpoint-based scheme (labeled “MP”) does
not achieve energy-consistency, as depicted on the right part of Fig. 3.

On the left side of Fig. 4 one can observe that the scheme under investigation does not suffer from drift-off, i.e., it accurately
captures the constraints on position level (50), as expected from (45). On the right side of the same figure, the kinematic constraint is
shown to have order of magnitude of 10~ for each discrete point in time, due to the intermediate approximation of (40), as discussed
in Remark (12). Next, we switch off viscous dissipation by setting 5, = 0 in the dissipation law. The discrete-time energy conservation
in the non-dissipative case is verified in Fig. 5.

We have also performed a numerical convergence analysis (see Fig. 6, left side) using the relative error measure

_ I Xrer = xII
T el
where x € {qff, vf, A’]“k“} are the solutions evaluated at t* = 0.1 for different time step sizes and methods. The respective reference
solution x,; was obtained using our DG method with 4 = 10™*. The scheme exhibits second order accuracy for the differential
unknowns of position and velocity and approximately a first order convergence behavior in the Lagrange multiplier. It should be
noted that the order of convergence can be affected by the discretization method used for the equation coefficients. The compared

midpoint scheme MP yields similar convergence results.
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Fig. 4. Constraints on position level (left) and on velocity level (right); i =1, i = 2.
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Fig. 5. Hamiltonian evolution (left) and increments (right) without dissipation, i.e., n, = 0.
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Fig. 6. h-convergence (left) and robustness comparison with larger 4 (right).

Lastly, we investigated the numerical robustness of the proposed DG scheme compared to the MP scheme when choosing larger
time step sizes. Both methods did not converge with time step sizes of 0.4 or larger. However, our DG method provided physically
meaningful results up until 2 = 0.25, showing a qualitatively similar behavior as with the previous simulation (see Fig. 6, right side).
Contrarily to that, MP exhibits occasional total energy increase, thus violating the dissipativity of the system. This is in accordance
with literature showing that discrete gradient methods are relatively robust compared to the midpoint rule in the nonlinear regime,
see e.g. [15,60].

7. Conclusion

In this work, we introduced discrete gradient methods for port-Hamiltonian differential-algebraic equations (pHDAEs), addressing the
challenges associated with state-dependent and non-invertible descriptor matrices. We developed a promising time integration method
for semi-explicit systems, discussed more general pHDAEs, and explored a method based on an alternative representation of pHDAEs.
Additionally, we outlined conditions for constructing discrete gradient pairs for general pHDAESs, analyzed state transformations and
the equivalence of different methods. In particular we proved that, under appropriate regularity assumptions, every pHDAE can be
reinterpreted as the combination of a parametrized semi-explicit pHDAE and an unstructured DAE on the time-varying parameter.
Lastly, we applied the proposed framework to the important application case of nonlinear multibody system dynamics, providing
convincing simulation results.
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Future research could focus on refining the conditions needed to apply discrete gradients to general pHDAEs, improving the
numerical efficiency and accuracy. It will be of major interest to apply our framework to large-scale and multiphysics systems, as
their modeling is seamlessly possible in the pH framework. Moreover, a rigorous convergence analysis of the time discretization
schemes presented in this paper should be pursued in the future.
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Appendix A. Proof details for Lemma 1

To prove the first claim in Lemma 1, we consider a fixed %, € &, and define f; : X; - R, x; — f(x,%,). Since X, is convex, we
deduce that for every fixed (x, x,) € X the map

Fi011=R, 5o fx,sx+(1-5)%,)

is well-defined, continuously differentiable, and its derivative satisfies

i
d_i(s) =V, f(x1, 5% + (1= %) (x - 2,) = 0

for all s € [0, 1], i.e., f is constant. Thus,

fG,x) = f(1) = £0) = f(x1,%,) = f1(x)).

We observe that for every x; € & and sufficiently small » € R" it holds that (x; + &, %,) € &, since (x;, %,) € X and X is an open set.
In particular, we can write

filxy +h) = fi(x)) = f(x1 + /’l,fcz) - f(xl,fcz)
for every x; € X; and every h € R" of appropriately bounded norm, from which we immediately deduce that f; is continuously
differentiable and Vf(x|) = V,, f(x;,x;) for every (x;,x,) € X. The second claim of Lemma 1 is proven in the main part of the
manuscript.

Appendix B. Details on the synchronous machine

Another example for the present framework is the synchronous machine, see Example 4. The pH system, as shown in [53] reads

il [-R, 0o 0o o o0 o,

j 0 -R 0 0| ~ 0 e s

"1’; =1 % o —g 1 |[VHwewep o+ o VL (B.1a)
) 0 0 10 o o of°

[1,] [ 0 0 0

I/ [={0 ¢ 0 OVHW,w,p.0), (B.1b)
o] [0 0 1 o0
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with Hamiltonian

.
~ 1| 1| 1 5
Hy,, v,,p,0)==|"°| L@ S|+ —p%,
(v, v, p, 0) 2[%] ) [wr] 277

from which

L(9)71 I:II/Y:|
r
VH,. w,.p.0) = I

T

-1 ["’S] L0 L' (0)L(©O)! [%]
Y 43

Therein, y,, y, € R? represent the stator and rotor fluxes, respectively. For the further variable declarations, please refer to Example 4

in the bulk part of this work. Suppose we now want to rewrite (B.1a), (B.1b) replacing the magnetic fluxes with the corresponding

currents, through the constitutive relation

Vs
Y

= L(O)]I.

This change of variables allows us to rewrite the system equivalently in its pHDAE form given in (17a) and (17b) with the corre-
sponding Hamiltonian (4). These fit into the general pHDAE formulation with

_I VY IS
x=|p|eRd  u=|V,|eR’, y=|I;|eR,
| 0 T w
LO) 0 LI I
ELLo)=| 0 1 0 [er®,  zu,po)= J7'p | eR?,
0 0 1 =1L o1
0 0 0] R, 0 0 L 0 o o]
J=|0 0 -1|eR¥,  R=|l0 d 0[eR*®  B=[{0 e 0 0
0 1 0 0 0 0 0 0 1 0

Eventually, the relation E(x)T z(x) = VH(x) can be checked as
Loy o of I LI
0 1 0 Iy = I |
L@ o 1] 7—%ITL’(0)I %ITL’(O)I

Appendix C. Further details on the DDR-method with singular descriptor matrix

Towards the end of Section 4.3 we discussed possible limitations of the DDR-approach, questioning whether one can always find a
discrete gradient that ensures the solvability of the system Eq. (26b), even for a singular descriptor matrix E. This of course also
depends on the choice of E, but for simplicity one would hope that for some suitable choice of E, such as the midpoint approximation

Eex) = E(*+;’ ) €1

one can always construct a discrete gradient satisfying (29) for all x, x’ € R". The following example demonstrates that this is not in
general the case when considering a fixed consistent approximation for E, like the one in (C.1).

Example 8. Consider a (non-semi-explicit) pHDAE with given

12
H(x):exp(%x%)— 1+ %x%, VH(x) = [xle"i’(le ]
2

1.2
B = H VT = [P = H
1 xpexp(3x7) X 1
Here, E and z are constructed such that ET z = VH holds, while the choice of the coefficients J, R, B is free and they can be set e.g. to zero,
since they do not explicitly influence (26b). Correspondingly, we know that colsp(ET) = span(VH) holds pointwise. For E we consider the
midpoint approximation E as in (C.1), which results in

— ! ’
colsp(E(x,x)") = colsp(E(%)T) = span(VH(%)).
A priori, we want to allow the choice of an arbitrary discrete gradient VH of H. By [50, Proposition 3.2], VH may be split up into orthogonal
contributions as
H(x') = H(x)

VH x,x') =
(X llx" — x]|2

(x" = x) + w(x,x") (C.2)
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for x # x, where w satisfies w(x,x") € span(x’ — x)*+ and

lim (w(x, ') = Tgpuner—t VH(X)) =0,
x'—x
where
I = =0 - x)7
Tspan(x’—x)L = W

denotes the orthogonal projection onto span(x’ — x)*. Straightforward calculations yield that for the special choice

= [g] X = [2], a,beR\ {0}

where b = +ay /exp(%(a/Z)z), we have H(x") # H(x) and VH(%"/)T(x’ — x) =0, and therefore

X' —xe span(VH(X;X/ ))l = colsp(E(x, )™

Due to (C.2), this implies VH(x,x') ¢ colsp(E(x, x")T), i.e., there exists no vector f satisfying EGx,x)T f=VH(x,x) for this choice of x, x'.
The discrete Eq. (26b) is therefore unsolvable. O

Appendix D. Interplay of system transformation and discretization

In this section we investigate the impact of system transformations on a subsequent time discretization by the methods discussed
in Section 4. To this end, we first provide some preliminary results on inverses and compositions of system transformations and
the corresponding discrete Jacobians in Appendix D.1. Afterwards, we analyze the application of the discretization schemes from
Section 4 based on different coordinate systems in Appendix D.2.

D.1. Discrete Jacobians of composite and inverse maps

Suppose that (¢, U) : X = X xR™ and (@, U ) : X — X xR™ are two system transformations. Then it is natural to define their com-
position as
(@.U)o(@.0) = (90, (Uop)U ) : & = X x R™",

since applying (¢, U)o(&, U) to a system or gradient pair is equivalent to applymg (¢.U) and (,T) consecutively.

Let now Dg and D¢ be discrete Jacobians for ¢ and ¢, and let U and U be consistent approximations of U and U, respectlvely
Because of (35), (Dpo@)D@ is a discrete Jacobian for go@, while (U O(p)U is obviously a consistent approximation of (U 0»)U. Note
that this choice is consistent with Theorem 6.

Consider now an invertible state transformation (¢, U). We define its inverse as (¢, U)™! = (¢p~!,U~'op™!), since the compositions

@ U op Do(p.U) = (ld3.1,) and (¢.U)o(¢~" .U op™") = (Idy. 1,)

leave all systems and gradient pairs they are applied to invariant. Let us now denote w = ¢! and V = U~!ogp~!. Then, given discrete
Jacobians D¢ and Dy for ¢ and its inverse, and pointwise invertible consistent approximations U and V for U and V, by applying
Theorem 6 to a discrete gradient pair (E,2) for (H, E, z) with the system transformation (¢, U) and its inverse (y, V) consecutively,
we obtain the discrete gradient pair
~ —T — — — - —1—1
(E.2)=(V (Uoy)"EDgoy)Dy , V (U oy)z),
for the same (M, E, z) and the same state space. Since the composition of (¢,U) and (y, V') leaves the gradient pair unaltered, it is
sensible to choose Dy and V in such a way that (E, £) = (E, 7). If we want this choice to be independent of (E, z), this is equivalent to

the conditions V = ﬁ oy and (Dpoy)Dy = 1,,. While the former condition can always be imposed and ensures that V is a consistent
approximation of V, the latter condition requires D¢ to be pointwise invertible, and in that case is equivalent to Dy = (Dgoy)~!.
This leads to the following canonical construction for the inverse discrete Jacobian.

Lemma 3. Let ¢ € C!(X, X) be a diffeomorphism between two open spaces X, X C R", and let D¢ be a pointwise invertible discrete Jacobian
for . Then a discrete Jacobian for ™", which we call the inverse discrete Jacobian of ¢ based on De, is D(¢p™') = (B(po(p*1 )71.
Proof. For x,x’ € X and X = ¢~ !(x), ¥ = ¢! (x") we have
D(e™)(x.x)(x" = x) = Doz, ¥) ! (9(&) — ¢(%)) = Dep(%, ¥) ' Dop(%, ¥ )& - %) = 9~ (') — 97" (x)
and D(¢™")(x,x) = Dp(®)™! =D(¢™)(x). O

Note that the requirement for De to be pointwise invertible in the construction of the inverse discrete Jacobian is often in practice
not restrictive, since the discrete Jacobians of diffeomorphisms are locally pointwise invertible, as discussed in Remark 15. However,
it can happen that such discrete Jacobians are not globally pointwise invertible, as the following example highlights.
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Example 9. Let us consider ¢ : R> — R?, ¢(x) = Rot(x" x)x, where Rot : R — R>? is the rotation matrix function, i.e.,

Rot(6) = [cos(&) —sin(G)]

sin(0) cos(0)

for all 6 € R. We note that ¢ is C* and that it is a bijective map, since it decomposes into rotations of fixed angle on every circle centered in
0 € R2. Furthermore, since

b . b
| cos(6 + 5) —sin(f + 5)

dRot —sin(@)  —cos(9)
~ | sin(0 + 5 cos@+3%)

ﬁ(e) = | cos(d) — sin(d) = Rot(d + 7) = Rot(§)Rot(3),

we deduce that

dRot

Do(x) = D(Rot(xTx)x) = Rot(x"x) + TR

TV Tx)x" = Rot(xTx)(Iz + 2Rot(’2—r)xxT).

We now show that D is pointwise invertible. Suppose that x,w € R* satisfy Do(x)w = 0: then (I +2Rot($)xx")w = 0, from which w =
-2xTw Rot(g)x. In particular,

xTw= —2xTw(xTRot(§)x) =0,
and therefore w = 0, allowing us to conclude that D¢ is pointwise invertible.
Let now Dg denote the Gonzalez discrete Jacobian of ¢ (see (1)). In particular, for every x,x’ € R? and z € (x' — x)* we have

’
X+X )Z.

Do(x, x")(x" = x) = p(x') —¢(x) and De(x,x)z =D (*;

For x =0, x’ = (/2x,0), ¢; = (1,0), and e, = (0, 1), we obtain then x' = \/2re, and x' — x = x’ L e,, and therefore

- , Dp0,x)x’ () —p(x) Rot(27)x’ — Rot(0)0 x!
Dg(0,x )e; = = = = =€

Vax Var Var Var

and
Dp(0.x")e, = Dp(*)e, = Rot(£)(e, + LRot(£)x' () Te,) = Rot(Z)e, = —e;.
Thus,
— 1 -1
Do(x,x') = e}, —e;] = [0 0]’
which is singular. O

Note that, while in Example 9 the inverse discrete Jacobian of ¢ based on D¢ cannot be constructed, the inverse diffeomorphism
@~ ! still admits discrete Jacobians, e.g. the Gonzalez one. This in particular shows that the Gonzalez discrete Jacobian of the inverse
diffeomorphism does not in general coincide with the inverse discrete Jacobian based on the Gonzalez discrete Jacobian.

We also present the following example, that shows that the Gonzalez discrete gradient construction does not in general commute
with system transformations.

Example 10. Consider the function f : R? - R, f(x) = i||x4|| and the change of variables ¢ : R? — R?, @(x;,x,) = (x| + x,, X,), which
yield

I 1
vi=iis pe=|o |

and let V; f and D¢ denote the corresponding Gonzalez discrete gradient and Gonzalez discrete Jacobian, noting in particular that Dgp =
D, since it is a constant matrix. We have now two natural ways to construct a discrete gradient for the composed map f = fog: either as
its Gonzalez discrete gradient V ; f, or by using the chain rule (35), i.e., Vf = Dgo' Vg f. We have then

- . = 11
Vol (0.2e)T e, = Vf(en)Ter = V1 (g(er) 'Dopes = ¢ [0 1]e2 =1

and
V7(0,2¢;) e, = V5 7(0,2¢;) Dpe, = Vg £(0,2¢)) (e + e5)
= V6 0.2¢) 2e; + V5. /(0. 2e) ey = 5(f(2e) = f(0)) + V(e ey =2,
thus V7 and V5 f do not coincide. O
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D.2. Discrete system invariance under system transformations

We would like to understand whether applying the same proposed numerical methods under different coordinate systems yields
different results. We start by studying the discrete gradient pair scheme (18), in the form of the following theorem.

Theorem 9. Consider a pHDAE of the form (6), let (E, Z) be a discrete gradient pair for (H, E, z), and let J, R, B be consistent approximations
— —T —_ —T —

for J, R, B, respectively, such that J = —J and R = R > 0 pointwise. Let (¢, U) be an invertible system transformation, let D¢ be a discrete

Jacobian for ¢, and let U be a pointwise invertible consistent approximation for U. Then the discrete gradient pair scheme (18) applied to the

original system, with the discrete gradient pair (E,z) and the consistent approximations J, R, B, is equivalent to the same scheme applled to
the system transformed via (¢, U), with the discrete gradient pair (E, %) defined as in (34) and the consistent approximations J= U (Jop)U,
R= ﬁT(ﬁwp)ﬁ and B = ﬁT(ﬁwp), up to the change of variables ¢.

Proof In this proof we will often omit the arguments (x¥, xk*1y and (x ,%k+1), for the sake of readability. It is clear that J, R, and

B are con51ster1t approxlmatlons for the coefficients J = UT(J op)U, R= UT(Rog)U, and B= UT(Bog) of the transformed system,

and that J = —JT and R = R > 0 hold pointwise. Thus, the discrete gradient pair scheme applied on the transformed system is

well-defined.
Let now x0, (x*+1, ykk+1 ykk+ly for k = 0,..., N — 1 denote a solution of the discrete gradient pair scheme applied to the original
system, and let ¥¥ = ¢~!(x*) for k = 0,..., N. Then we have

PPN ~ — T —T— —1_ —T—
EGH! — 35— n((J - Rz + Bk =T E(D(p)(”‘“—”‘)—h((U JU-U RU)U Z+U Bukk+!)

=T (B = x4 = h((T - RZ + Ba4+1) ) =0,

—1

okl _ BTs= okl —ETUU 7 = Ykt _ETE =0

Thus, %0, (&K1, ukk+1, ykk+1y for k = 0,..., N — 1 is a solution of the scheme applied to the transformed system.
Analogously, if 0, (&K1, ukk+1 yok+1y for k = 0,..., N — 1 is a solution of the transformed discrete system, and we define x* = ()
for k=0,...,N, then

EGH = x5 = h(T - Rz +Bu*) =T (T EO@)* -~ h(T TU-T ROU 2+T Bu*1))

T (E(fc“' — 5= n((J = Rz + Bukh! )) =0,

——1

—T_ _ N
Pkl Z B g = gkt 3TT 5= Yokt _ BT — 0,
such that x0, (xk*+!, ykk+1 ykk+1) for k = 0,..., N — 1 is a solution of the original discrete system. [

Next, we analyze the semi-explicit discrete gradient scheme (21). For that purpose, we first have to investigate which system trans-
formations preserve the semi-explicit structure.
Proposition 3. Let (E, z) be a semi-explicit gradient pair for H, let (p,U) be an invertible system transformation from another open state

Uy Uy

space X = 2?] X ;\;2, where §2 is convex, and let us split ¢ = (¢, p,) and U = [ Usl Un

] accordingly. Then the transformed gradient pair is
semi-explicit if and only if Dy, ¢, =0 and U, = 0.
Proof. Denoting by (E, %) the transformed gradient pair, we have
T
Uy UIZ] [Enofl’ 0] [Di] 1 szfl’l] _ [UITI(EHWP)Dzl @1 U] (E;j00)Ds @,
Uy Up 0 0 D;z, 92 Dz, UITQ(EHWP)chl @1 U1T2(E11 °@)D;, ¢

Note that, since U and Dg are pointwise invertible, rank(E) = rank(E) pointwise, and therefore (E,2)isa semi-explicit gradient pair
if and only if E;; = UI-E(EHWP)D;?]% is invertible for i = j = 1 and zero otherwise.

E=UT(Ecp)Dg = [

Suppose first that E has the wished structure. Since E,, is invertible, so are U,, and Dy, @1 Then we deduce from Ep. By =0
that Uj,, Dg, @, = 0. Suppose now that Uj,, Dg, @; = 0. Then it is clear that E,-j =0 for (i, j) # (1, 1). Furthermore, since U and D¢ are
pointwise invertible and block lower triangular, we deduce that U;; and Dy, ¢, are also pointwise invertible, and so is E;;. O

We also need the following result, which provides conditions ensuring that the Hamiltonian of the transformed system only depends
on the differential state.

Lemma 4. Let ¢ be a diffeomorphism as in Lemma 3 satisfying Dy, @, = 0. Then, the following assertions hold.
1. There is a diffeomorphism ¢, € C'(X,, X,) such that ¢, or, = @, and Do, or, = Dy, o

2. Let H € C}(X,R) be such that V,H=0, let H, € C'(X,,R) be the associated function defined as in Lemma 1, let §Hl be a discrete

gradient for H,, and let Dy, be a discrete Jacobian for ¢,,. Then H = Hog satisfies the assumptions of Lemma 1 with associated function
H, € C1(X,,R), and

VH, = D) (VH 001, (0.1)
is a discrete gradient for ﬁl.
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Proof. Let us prove the two statements separately:

1. Itis clear that @, € C'(¥,, X)) satisfying @, 0, = @, and Dgor,; = Dy, ¢, exists because of Lemma 1. Let now y = (yy, y) = o !
Since Dy = (Dgow)~! has the same block lower triangular structure as De, we construct ,, € C!(X,,X,) analogously to ¢,,, and
deduce that ¢, oy, and y; 09, are both the identity. Since Dg; inherits from Dy, ¢, (and therefore from D) the property of
being pointwise invertible, we conclude that ¢, is indeed a diffeomorphism.

2. Since
T T
— (D) (VHogp) = [Dxlw, Dxl%] [VX,HWP] _ [Dg,rpl(vx,pr)]’
0 D;, @) 0 0

the assumptions of Lemma 1 are satisfied and H, is well-defined, and clearly satisfies 7, = H, o¢,,. The fact that VH, is a discrete
gradient for H, follows immediately from the chain rule (35).

This proves the Lemma. O

We can now prove the following result, which states that applying the semi-explicit discrete gradient scheme from Section 4.2 to a
semi-explicit system and to a corresponding transformed semi-explicit system leads to equivalent time-discrete systems.
Theorem 10. Consider a semi-explicit pHDAE of the form (15), let VH, be a discrete gradient for the Hamiltonian H,, and let E;,Z,, J, R, B

- =T — T
be consistent approximations for E,;, z,,J, R, B, respectively, such that Assumption Al is satisfied, and J = —J and R=R >0 hold
pointwise. Let (¢,U) be an invertible system transformation preserving the semi-explicit structure as in Lemma 3, let Dg,, be a pointwise

Uy

invertible discrete Jacobian of ¢,, as specified in Lemma 4, and let U = [ 0 ] be a pointwise invertible consistent approximation for

U. Then the semi-explicit discrete gradient scheme (21) applied to the ongmal system with the discrete gradient VH, and the consistent

approximations E,;,Z,,J, R, B, is equivalent to the same scheme applied to the system transformed via (¢, U ), with the discrete gradlent VHl
defined as in (D.1) and the consistent approximations E,, = 11(En°fl’)(D(P11°7T1 ) 2y = 221 (Zy00) - Uy E (VHlonl)) 7=T Jo)U,
R= UT(ﬁo(p)U, and B = UT(Eo(p), up to the change of variables .

Proof. We first show that the semi-explicit discrete gradient scheme applied to the transformed system is well-defined. To this end,

we observe that the transformed system is semi- exphc1t by assumption, VHl is a discrete gradlent of Hl because of Lemma 4, E”,
J R, and B are consistent approximations of E1I = U“(E”o(p)Dx](p1 U“(E“o(p)(D(p“On]), J=UT(Jop)U, R=UT(Rop)U, and

= U (Bog), respectively, and J=-JT and R=R" >0 hold pointwise. Furthermore, note that E11 satisfies Assumption Al and
that, since
2, =10,1,,1U™ (z09) = U3 ((2209) — Uy U} (z/09))
= Uy, ((2200) = Uy Uy M (Ey109) T (V, Hop)) = Uy ((z009) — Uy, E [ (VH om)),
2, is a consistent approximation of z,.
Let us now construct a discrete Jacobian Dg of ¢, in such a way that D; ¢; = Dg;;oz;. This can be simply done by choosing a
discrete Jacobian D, of ¢, = 7,00 and defining

Dy = DfPl jorp 0 i
D; ¢,  D;,0
which, as it can be easily verified, fulfills the discrete Jacobian definition.
To prove the statement of the theorem it is then sufficient to combine Corollary 1 and Theorem 9. In fact, the semi-explicit discrete

gradient scheme applied to the original system is equivalent to the discrete gradient pair scheme applied to the same system with the
discrete gradient pair (E, z) defined as in (30), i.e.,

—T —
Z_|En O ’ = |En (VH o)) ’
0 0 zZ
where 7, here is to be intended as the projection of X onto X,. This discrete system is then equivalent up to the change of variables

@ to the one yielded by the discrete gradient pair scheme applied to the transformed system with the discrete gradient pair (E, 2)
defined as in Theorem 9, i.e.,

T — — ~
E=U (Eop)Dy = [Un(EuWP)(D(PuO”l) 0] - [En 0]7

0 ol Lo o
_ = — P

T Go) [ U Eae) T @Homop) ] _ [El_lT(VHlon:l)]
U,, (Z2090) = Uy U | (Ej109)” (VH ox 00)) 22

and the consistent approximations J, R, B. Finally, due to the structure of (E, £), we can apply again Corollary 1 and conclude that
the latest discrete system is equivalent to the one obtained by applying the semi- exp11c1t discrete gradient scheme to the transformed
system with the discrete gradient VH, and the consistent approximations E,,, 2,, J, R, and B. O
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Remark 15. A similar result holds for the DDR-method applied to a given DDR-pHDAE (11). On the one hand, its corresponding
DDR-pHDAE transformed via (¢, U) is

(D) (VHop) 0 —Dg ' (Eop)TU 0 —X
0 +|UT(Eo@)Dp  UT((J —Rop)U UT(Bog)| f |=0, (D.2)
y 0 (Bop)TU 0 u

together with f = U~!(zog). On the other hand, by applying the DDR-method (25) for a fixed discrete gradient VH of H and some

given consistent approximations E, J, R, and B of E, J, R, and B, respectively, and multiplying the first block row by (De)T
—T

and the second block row by U , where Dg is a discrete Jacobian for ¢ and U is a consistent approximation of U, and replacing

xktl — xk = D&k, *k+1)(xk+1 — %%y and fRA+1 = U(RK, k1) flok+l with 3% = =1 (x%) and %%+! = ¢~ (x¥*1), we obtain the one-step

method

(D@)T(VHog) 0 —5¢T(f°rp)T_ 0 _W
—T — = —T — -
0 +|U (Eop)Dg ((J Rop)U U (Bog)| fhi+t [=0, (D.3)
yk,k+1 0 (BO(p)TU 0 uk,k+1

where the arguments (%, x¥*!) have been omitted to keep the notation short. Note that, since VH = (D)7 (VHog) is a discrete gradient
for H = Hog because of the chain rule, and E= 5T(EO¢)5¢, J= ﬁT(joq;)ﬁ, R= 5T(§0(p)ﬁ, and B = ﬁT(EO(p) are consistent
approximations of the correspondent coefficients of the transformed system (32), the one-step method (D.3) is equivalent to an
appropriate DDR-method applied to the transformed system.

This construction immediately shows that every solution of the original discrete DDR system is uniquely mapped into a solution
of the transformed discrete DDR system. However, to be able to uniquely associate to every solution of the transformed discrete DDR
system one solution of the original discrete DDR system, we need to invert the construction, which requires the discrete Jacobian
Do(x*, xk+1) to be invertible.

Similarly to our considerations leading to Assumption Al we note that, for small enough time steps, this is guaranteed by
consistency, since Dgp(x¥, x*) = De(x*) is invertible for every x* € X. However, there is in general no guarantee that the discrete
Jacobian of a diffeomorphism is pointwise invertible, cf. Example 9.

It remains to discuss how the additional constraints used in the DDR-methods change under system transformations. This strongly
depends on the specific form of these constraints, which can be quite diverse. For example, if in the original coordinates we have a
constraint of the form F(x*,xk*1, f&k+1y = ( for some function F : X X X x R™ — R?, then to obtain an equivalent one-step method
the corresponding constraint in the new coordinates would be F(x*, #k+!, fkk+1y = 0 with

f(ik,ik+l, fk,k+l) — F((p(fck), (p(ik+1),ﬁ(ik, ik+1)fk’k+1).

Similarly, if in the original coordinates we require || f***! — Z(x*, x¥*1)|| to be minimal for some fixed consistent discretization z of z,
in the new coordinates we would minimize

AR = 2O D = UG DG - 26k 2 )|

—1
instead, where 2 = U (zog) is a consistent discretization of z.

Appendix E. Details on the mass-spring multibody system example

The multibody system with singular mass matrix from Example 7, with masses m; and springs with constants k; and resting lengths
l;p, with i € {1,2}, takes up the considerations in Section 6.1. The system can be regarded as a modular multibody system comprising
two separate subsystems with two degrees of freedom. However, we decide to use two coordinates for the elongations of the springs
(x; and x,) and one coordinate ¢, for the point where the two subsystems are interconnected. Correspondingly, we use

Xy 1 Xy
g=|g| and v=|v,[=]d,
Xy U3 Xy

and the interconnection constraint g, = x; + [, + w arises. The total kinetic energy is given by
>_1 7
Tw) = —mlv + = mz(uz+u3) = EU Mv (E.1)

and thus we identify the mass matrix M from (36), which is constant and singular for all configurations.
Following Proposition 2, we perform a singular value decomposition to arrive at a semi-explicit pHDAE formulation. For the
present case, we have

I3y 0 0
E=] 0 M 0] (E.2)
0 0 0
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Here we identify the SVD of E given by E = UV = [U,, U,]diag(Z,,0)[V, V517, where X, = diag(1, 1, 1,m,2m,) and

1 0 0 0 O] 0 0
01 0 0 0 0 0
0 0 1 0 0 0 0
V]—Wl—g g (0’ é Ym=m=| g E3)
0 0 0 0 v i 0
0 0 0 0 0] | o 1

Appendix F. Transformation to semi-explicit form

The following theorem provides an SVD-like decomposition for a matrix function with constant rank. This result is helpful in deriving
conditions for the existence of a semi-explicit representation of a pHDAE.

Theorem 11. Let E € C(X,R™"), with rank(E(x)) = r for all x € X. Then for every x, € X there exists an open neighborhood X, C X of
x( and pointwise unitary functions U € C(X,, R™™) and V € C(X,, R™") such that
z o]

T —
UEV—[0 0

(F.1)
with pointwise invertible T € C(X,, R""). Furthermore, if the entries of E are analytic or C? for some £ € Ny U {0}, then U, V, and X can
be chosen to have that same regularity.

Proof. Let

2 0
Uy E(xo)Vy = [00 O]
denote the singular value decomposition of E(x,), with U, € R™™ and ¥, € R™" unitary matrices, and X, € R"" nonsingular, and let
us split correspondingly

Ej(x)  Epx)

UTEx)V, =
o E6Vo [Em(x) Ex(x)

for all x € X. Since E|,(xy) = X, is invertible and E is continuous, there is an open neighborhood X, C X of x, such that E;(x) is
invertible for all x € &,. We note that E;; has at least the same regularity as E for all 7, j, and that, since the determinant of a matrix
function clearly has the same regularity as its entries, and the pointwise inverse of E;; on &, can be expressed in the form

E; (0" = adj(Ey;(x))
1 " det(E (x))

where adj(E|;(x)) denotes the adjugate matrix of E; (x) (whose entries are determinants of submatrices of E|,(x)), and det(E;;(x))
does not vanish on &, E,; will also have the same regularity as E on &X,,.
Let now

S I, 0|, = o[ —Ep)T Epx)
v ‘_[—Em(x)EH(x)-l I ]UO’ V(x)"VO[o I ’

m—r. n—r

so that

E (x) 0

rr T e _
vt E(XW(X)‘[ 0 Ep()— Ey(0E () Epw)

for all x € &,. Since E;;(x) € R™" is invertible for all x € X, and the rank of E is constantly r, we deduce that actually

U TE@V (x) = [E“(x) O]
0 0
for all x € X,,. We note that U and ¥’ also have the same regularity as E.

It remains to show that U and ¥ can be replaced by pointwise unitary matrix functions with the same regularity. Let U (x) =
U(x)Ly(x) and ﬁ(x) = V(x)Ly (x) be the QL factorizations of U and 17, which can be computed for all x € &, with the Gram-Schmidt
orthogonalization process, in particular U and V are pointwise unitary, and L, and L, are pointwise lower triangular with positive
diagonal entries. Note that, due to the pointwise invertibility of U and ¥, the construction of the Gram-Schmidt process ensures that
U.V.Ly. L, have the same regularity as U, V. Furthermore, since lower triangular matrices form a multiplicative group, we deduce
that

UXTE@V () = Ly(x) U@ E@V @)Ly (x)™" =

LT ;2]()‘)1— Ey(x) 0] |Ly;) EZI(X)
0 Ly(0)T 0 0 0 Lyy(x)
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_ LyoTE L) 0
0 o’

where L(x) = Ly(x)~! and f(x) = L, (x)~! have again the same regularity as L;, and Ly, due to the same observations that we made
for E|;. We conclude that U and V" have all the requested properties. [

While Theorem 11 is quite powerful, unfortunately it cannot be directly applied to obtain system transformations that bring a de-
scriptor matrix E into its semi-explicit form, since the matrix function V is not guaranteed to be the Jacobian of a diffeomorphism.
However, this result is the first step in the direction of proving Theorem 8. The second step is to deduce the following corollary.

Corollary 4. Let E € C(X, R™") with rank(E(x)) = r for all x € X. Then for every x, € X there exist an open neighborhood X, C X of x,
a pointwise invertible matrix function U € C(X,, R™"), and a permutation matrix IT € R™", such that

1, E
UTEN=|" "12|, F.2
[ 0 0 (F.2)
with E,, € C(X,, R""~"). Furthermore, if the entries of E are analytic or C’ for some £ € Ny U {0}, then U and E,, can be chosen to have
that same regularity.

Proof. Because of Theorem 11, for every x, € X there exist an open neighborhood X, C X of x, pointwise unitary U,V, and a
pointwise invertible X € C(&,, R"™"), such that U, V, £ have the same regularity as E, and

0

~r o= =
.

EV = :
v [0 0

In particular,

- > 0]~ E E
UTE = pT = [Fn 2|
[o 0] [o 0

Since rank(UT E(x,)) = rank(E(x,)) = r, there is a permutation matrix IT € R™" such that

FTEn= |En En
0 o]
with E|,(x,) invertible. Since E,, is continuous, up to further restricting the open neighborhood X;,, we obtain that E,, is invertible
in X,,. Then, by choosing
F-T
U=0 E 0 ,
0 1,

n—r

we obtain that

Aol
vTEn = Fn O lgTen=|lr Er
0 0 0

n—r
for E, = El‘ 11 E,,. Finally, E and E,, have the same regularity as E, by construction. [

One advantage of Lemma 4 over Theorem 11 is that IT can be interpreted as the Jacobian of a diffeomorphism, in fact I1 = Do with
o(x) = IIx. We can now proceed with the proof of Theorem 8.

Proof of Theorem 8. Let us fix x, € X, and let us choose &,, U, I, E,, as in Lemma 4. Then, up to applying the invertible system
transformation (¢, U) with o(x) = IIx to E, we assume without loss of generality that
I, Elz]

E =
0 0

where E|, € C(X,R™"™") is a matrix function with analytic entries. Consider now the linear first order PDE system
Vo, v0(x) = Ep()'V, v(x), (F.3)

and let f,....f, €C 1(X,R) be functionally independent functions that generate the solutions of (F.3), i.e., such that Vf,...,Vf »
are (pointwise) linearly independent, and that the solutions of (F.3) are the functions of the form v(x) = V(f,;(x), ..., f, (X)) for any
V € C'(R¥,R). For the existence of such set of solutions for E,, with analytic entries, see e.g. [62,63].

Let us now define y; = (f}, ..., f,) € C}(X,R?). In particular, we have that D, w; = Dy, w1)E},. Let us now complete fy, ..., f, to
a maximal set of functionally independent functions fi, ..., f,, € C'(X,R), which can be done locally e.g. by selecting an appropriate
subset of x,, ..., x,, and let

W=l f) = W1 Fopts oo £) e c'(x,R"

be the corresponding local diffeomorphism. In particular, up to further restricting the open neighborhood &, of x,, we assume that
v Xy = w(X,) is a diffeomorphism. Let then &, = y(X,) and let ¢ = y~! € C!(X,, X,) denote the inverse diffeomorphism.
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Note that, since the original Hamiltonian # is also a solution of (F.3), it must be of the form H = H,oy, for some H, €
Cl(z(X,),R), where 7; : R" — R” denotes the projection onto the first p coordinates. Furthermore, it holds that

D, w; (D4 w)E, ~1 _ |Dwy a_ |1 0
; 1* ](Dlll) —[*](Dlll) —[*{) NE

1 E
r (;2] (Dgoy) =

D
ks

Then, up to applying the invertible system transformation (¢, (Dy o)), we assume without loss of generality that E is of the form

1 0
Ex=|_"r .
) [E (&)  Ep (x)]

and that M only depends on the first block component of the state, which allows to introduce H; € C!(z,(X,), R) as in Lemma 1.
With subsequent left multiplications and right permutations (and therefore system transformations of the form (o, U) with o(x) =
I1x), we further bring E to the form

0 0
0 0 |
0  Ep(x)  Ep®)

I,
Ex)=|0

where E;, € C(X,, R"?"") and E;3 € C(X,, R"P"P), with E3;3(x,) invertible. In particular, up to restricting X, to an open neighbor-
hood of x, where E;; is pointwise invertible, and applying an appropriate left multiplication with its inverse, we can assume without
loss of generality that E is of the form

I, 0 0
Ex)={0 0 0

[0 Ep I,

Let us partition x = (x;, x5, x3) € R? X R"" X R" and z = (z;, 25, z3) € R? x R"”" x R"? . The gradient pair property E”z = VH then
implies

z | [1, 0 07z VH,or,
ELz|=|0 0 Elfz|=ETz=VH=| 0o |
zz | [0 0 1|z 0

i.e, z; = VH or and z; = 0.
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