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 a b s t r a c t

Discrete gradient methods are a powerful tool for the time discretization of dynamical systems, 
since they are structure-preserving regardless of the form of the total energy. In this work, 
we discuss the application of discrete gradient methods to the system class of nonlinear port-
Hamiltonian differential-algebraic equations - as they emerge from the port- and energy-based 
modeling of physical systems in various domains. We introduce a novel numerical scheme tai-
lored for semi-explicit differential-algebraic equations and further address more general settings 
using the concepts of discrete gradient pairs and Dirac-dissipative structures. Additionally, the 
behavior under system transformations is investigated and we demonstrate that under suitable 
assumptions port-Hamiltonian differential-algebraic equations admit a representation which con-
sists of a parametrized port-Hamiltonian semi-explicit system and an unstructured equation. Fi-
nally, we present the application to multibody system dynamics and discuss numerical results to 
demonstrate the capabilities of our approach.

1.  Introduction

Port-Hamiltonian (pH) systems have gained significant importance in various research areas, with a particular focus on the mod-
eling, simulation, and control of dynamical systems [1,2]. pH systems offer a valuable framework for analyzing complex problems, 
where the complexity may arise from multi-physical interactions, non-trivial domains, and various nonlinearities. One of the key 
advantages of the pH representation is its explicit description of power interfaces, known as ports, which facilitate power-preserving 
interconnections between submodules. Thus, this approach simplifies the modular composition of models, which often leads to the 
presence of algebraic constraints. Correspondingly, the governing equations at hand are differential-algebraic equations (DAEs), also 
known as descriptor systems in the context of control theory. If the system has in addition a pH structure, we speak of port-Hamiltonian 
differential-algebraic equations (pHDAEs). A definition for linear time-varying pHDAEs was provided in [3] and a full, nonlinear gen-
eralization has been provided in [4]. An important subclass consists of semi-explicit pHDAEs, see e.g. [5, Eq. 3.16], where local 
representations of implicit port-Hamiltonian DAEs are discussed. In [6,7], the Hamiltonian as a backbone of pH systems is replaced 
by Lagrangian subspaces or submanifolds to define generalized pHDAEs.
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\begin {equation}\label {eq:DAEquasilinear} E(t,x)\dot x = f(t,x),\end {equation}
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\begin {equation*}\hamiltonian (\state ) = \frac {1}{2} v\transp M v + V(q) = T(v) + V(q)\end {equation*}


$E\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$\lambda $


$\hfill \Diamond $


$x=(I,p,\theta ) \in \R ^8$


\begin {align}\label {eq:syncMachAltdyn} \begin {bmatrix} L(\theta ) & 0 & L'(\theta )I \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix} \begin {bmatrix} \dot {I} \\ \dot p \\ \dot \theta \end {bmatrix} &= \begin {bmatrix} -R_{s,r} & 0 & 0 \\ 0 & -d & -1 \\ 0 & 1 & 0 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} + \begin {bmatrix} I_3 & 0 & 0 \\ 0 & e_1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}, \\ \label {eq:syncMachAltout} \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix} &= \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1\transp & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} .\end {align}


$e_1\in \R ^{3}$


$\R ^3$


$I\in \R ^6$


$p \in \R $


$\theta \in \R $


$R_{s,r}\coloneqq \diag (R_s,R_r)\succ 0$


$R_s,R_r\in \R ^{3,3}$


$d>0$


$V_s,I_s\in \R ^3$


$V_f,I_f\in \R $


$\tau ,\omega \in \R $


$J_r>0$


$L:\R \to \R ^{6,6}$


$\cont ^\infty $


$2\pi $


$L'$


$V_s,V_f,\tau $


$I_s,I_f,\omega $


\begin {equation*}\label {eqsyncMachHam} \hamiltonian (I,p,\theta ) = \frac {1}{2}I\transp L(\theta )I + \frac {1}{2J_r}p^2 ,\end {equation*}


$E(\state )\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$E$


$L(\theta )$


$\hfill \Diamond $


$0=t^0<t^1<\ldots <t^\ntimesteps =\finaltime $


$N$


$h = t\none - t\n $


$k=0,\ldots ,\ntimesteps -1$


\begin {equation}\label {blockpHDAEtimestepping} \begin {aligned} \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) &= h \pset [\big ]{ \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \discretecostate (\discretestate \n ,\discretestate \none ) + h\discreteB (\discretestate \n ,\discretestate \none ) \discreteinput , \\ \discreteoutput & = \discreteB (\discretestate \n ,\discretestate \none )\transp \discretecostate (\discretestate \n ,\discretestate \none ) . \end {aligned}\end {equation}


$k = 0, \ldots , \ntimesteps -1$


$\discretestate \n \approx \state (t\n )$


$\state \n \in \statespace $


$\discreteE , \discreteJ , \discreteR , \discreteB $


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$\discreteinput $


$t\n $


$\discreteoutput $


$y(t)$


$(\overline {E},\overline {\costate })$


$(\hamiltonian ,E,\costate )$


\begin {align}{\hamiltonian }(\discretestate \none ) - {\hamiltonian }(\discretestate \n ) & = - h\discretecostate (\discretestate \n ,\discretestate \none ) \transp \discreteR (\discretestate \n ,\discretestate \none ) \discretecostate (\discretestate \n ,\discretestate \none ) + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput .\end {align}


\begin {align*}{\hamiltonian }(\discretestate \none ) - {\hamiltonian }(\discretestate \n ) & = \discretecostate (\discretestate \n ,\discretestate \none )\transp \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) \\ & = h \discretecostate (\discretestate \n ,\discretestate \none )\transp \pset [\big ]{\discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \discretecostate (\discretestate \n ,\discretestate \none ) + h \discretecostate (\discretestate \n ,\discretestate \none )\transp \discreteB (\discretestate \n ,\discretestate \none ) \discreteinput \\ & = - h \discretecostate (\discretestate \n ,\discretestate \none ) \transp \discreteR (\discretestate \n ,\discretestate \none ) \discretecostate (\discretestate \n ,\discretestate \none ) + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput ,\end {align*}


$\costate _1$


$\specified \hamiltonian $


\begin {equation}\label {blockpHDAEconstdiscrete} \discreteE _{11}(\state \n ,\state \none )\transp \discretecostate _1(\state \n ,\state \none ) = \DG \specified \hamiltonian (\state \n ,\state \none ).\end {equation}


$\DG \specified \hamiltonian \in \cont (\statespace _1\times \statespace _1,\R ^{n_1})$


$\specified \hamiltonian $


$\discreteE _{11}\in \cont (\statespace \times \statespace ,\R ^{n_1,n_1})$


$E_{11}$


$\discretecostate _1$


$\state \n ,\state \none $


$\discreteE _{11}$


$\discreteE _{11}(\state ,\state ')\coloneqq E_{11}(\frac {\state +\state '}{2})$


$E_{11}$


$\statespace $


$\discreteE _{11}$


$\discretestate \n ,\discretestate \none $


\begin {equation}\label {ass:invertiblediscreteE11}\tag {A1} \text {$\discreteE _{11}$ is pointwise invertible on $\statespace \times \statespace $}.\end {equation}


$\discretecostate =(\discretecostate _1,\discretecostate _2)$


$\discretecostate _2$


$\costate _2$


\begin {align}\begin {bmatrix} \, \discreteE _{11}(\discretestate \n ,\discretestate \none ) & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \discretestate _1\none - \discretestate _1\n \\ \discretestate _2\none - \discretestate _2\n \end {bmatrix} & = h \pset [\big ]{\discreteJ (\discretestate \n , \discretestate \none )-\discreteR (\discretestate \n , \discretestate \none )} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h\discreteB (\discretestate \n , \discretestate \none ) \discreteinput , \label {blockpHDAEtimestepping21} \\ \discreteoutput & = \discreteB (\discretestate \n , \discretestate \none )\transp \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} , \\ \discreteE _{11}(\discretestate \n , \discretestate \none )\transp \discretecostateone & = \DG \specified {\hamiltonian }(\discretestate _1\n , \discretestate _1\none ) , \label {blockpHDAEtimestepping24}\end {align}


$(\discretestate _1\none , \discretestate _2\none , \discretecostateone , \discreteoutput )$


$\discretecostateone $


$\discretecostate _1$


$\discretecostate _2$


$\costate _2$


$E$


\begin {align*}\begin {bmatrix} 1 & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \discretestate _1\none - \discretestate _1\n \\ \discretestate _2\none - \discretestate _2\n \end {bmatrix} & = h \begin {bmatrix} 0 & 1 \\ -1 & -1 \end {bmatrix} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} . \\ \discretecostateone & = \DG \specified {\hamiltonian }(\discretestate _1\n , \discretestate _1\none ) = \frac {1}{2}(\discretestate _1\n + \discretestate _1\none ) .\end {align*}


$\discretecostateone $


$\discretecostate _2(\discretestate \n ,\discretestate \none )$


$\costate _2(x) = x_2$


\begin {equation*}\discretecostate _2(\discretestate \n ,\discretestate \none ) = \discretestate _2\n \qquad \text {or} \qquad \discretecostate _2(\discretestate \n ,\discretestate \none ) = \discretestate _2\none \qquad \text {or} \qquad \discretecostate _2(\discretestate \n ,\discretestate \none ) = \frac {1}{2}(\discretestate _2\n + \discretestate _2\none )\end {equation*}


$\hfill \Diamond $


\begin {align}\hamiltonian (\discretestate \none ) - \hamiltonian (\discretestate \n ) & = - h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} \transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput .\end {align}


$\DG \specified {\hamiltonian }$


\begin {align*}\hamiltonian (\discretestate \none ) - \hamiltonian (\discretestate \n ) & = \specified {\hamiltonian }(\discretestate _1\none ) - \specified {\hamiltonian }(\discretestate _1\n ) = \DG \specified {\hamiltonian }(\discretestate \n ,\discretestate \none ) \transp (\discretestate \none -\discretestate \n ) \\ & = (\discretecostateone )\transp \discreteE _{11}(\discretestate \n ,\discretestate \none ) (\discretestate _1\none - \discretestate _1\n ) = \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) \\ & = h\begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \pset [\big ]{\discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none )} \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteB (\discretestate \n ,\discretestate \none ) \discreteinput \\ & = - h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}\transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} + h (\discreteoutput )\transp \discreteinput \leq h (\discreteoutput )\transp \discreteinput ,\end {align*}


$f_1\in \mathbb R^{n_1}$


$E_{11}(\state )^\top f_1=\gradient \hamiltonian _1(\state _1)$


\begin {align}\dot x_1 & = F(x_1,u,f_1,x_2), \\ 0 & = G_1(x_1,u,f_1,x_2), \\ 0 & = G_2(x_1,f_1,x_2), \\ 0 & = G_3(x_1,f_1,x_2,y),\end {align}


\begin {align*}F(x_1,u,f_1,x_2) & \coloneqq E_{11}(x)^{-1}\pset [\Big ]{\pset [\big ]{J_{11}(x_1,x_2)-R_{11}(x_1,x_2)}f_1 + \pset [\big ]{J_{12}(x_1,x_2)-R_{12}(x_1,x_2)}z_2(x_1,x_2) + B_1(x_1,x_2)u}, \\ G_1(x_1,u,f_1,x_2) & \coloneqq \pset [\big ]{J_{21}(x_1,x_2)-R_{21}(x_1,x_2)}f_1 + \pset [\big ]{J_{22}(x_1,x_2)-R_{22}(x_1,x_2)}z_2(x_1,x_2) + B_2(x_1,x_2)u, \\ G_2(x_1,f_1,x_2) & \coloneqq E_{11}(x_1,x_2)^\top f_1 - \gradient \hamiltonian _1(\state _1), \\ G_3(x_1,f_1,x_2,y) & \coloneqq y - B_1(x_1,x_2)^\top f_1 - B_2(x_1,x_2)^\top z_2(x_1,x_2).\end {align*}


$G_1$


$\jacobian _{x_2}G_1$


$\mathcal R\in \cont ^1(\R ^{n_1},\R ^{n_2})$


$x_2=\mathcal R(x_1)$


\begin {equation}\label {eq:indexreduction} \dot x_1 = \widetilde F\pset [\big ]{x_1,\gradient \hamiltonian _1(x_1), u} \coloneqq F\pset [\Big ]{ x_1 , u , E_{11}\pset [\big ]{x_1,\mathcal R(x_1)}^{-\top }\gradient \hamiltonian _1(x_1) , \mathcal R(x_1) },\end {equation}


$x_1$


$\DG \hamiltonian _1$


\begin {align*}x_1\none -x_1\n & = h F\pset [\big ]{ x_1\nonehalf , \discreteinput , \discretecostateone , x_2\nonehalf }, \\ 0 & = \begin {bmatrix} G_1\pset [\big ]{ x_1\nonehalf , \discreteinput , \discretecostateone , x_2\nonehalf } \\ G_2\pset [\big ]{ x_1\nonehalf , \discretecostateone , x_2\nonehalf } \\ G_3\pset [\big ]{ x_1\nonehalf , \discretecostateone , x_2\nonehalf , \discreteoutput } \end {bmatrix},\end {align*}


$x_1\nonehalf =\frac {x_1\n +x_1\none }{2}$


$x_2\nonehalf =\frac {x_2\n +x_2\none }{2}$


$x_2\nonehalf =\mathcal R(x_1\nonehalf )$


$k\geq 0$


$\mathcal R$


\begin {equation*}x_1\none -x_1\n = h F\pset [\Big ]{ x_1\nonehalf , \discreteinput , E_{11}\pset [\big ]{x_1\nonehalf ,\mathcal R(x_1\nonehalf )}^{-\top }\DG \hamiltonian _1(x_1\n ,x_1\none ) , \mathcal R(x_1\nonehalf ) } = h\widetilde F\pset [\big ]{ x_1\nonehalf , \DG \hamiltonian _1(\state \n ,\state \none ) , \discreteinput }.\end {equation*}


$x_1$


$x_1$


$x_1$


$x_2$


\begin {equation}\label {eqDDRdiscrete} \begin {bmatrix} \, \DG \hamiltonian (\discretestate \n , \discretestate \none ) \\ 0 \\ \discreteoutput \end {bmatrix}+ \begin {bmatrix} 0 & & - \discreteE (\discretestate \n ,\discretestate \none )\transp & & 0 \\ \discreteE (\discretestate \n ,\discretestate \none ) & & \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none ) & & \discreteB (\discretestate \n ,\discretestate \none ) \\ 0 & & -\discreteB (\discretestate \n ,\discretestate \none ) \transp & & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(\discretestate \none - \discretestate \n ) \\ \discretetimestep {f} \\ \discreteinput \end {bmatrix} = 0 .\end {equation}


\begin {equation}\label {pHDAEtimestepping} \begin {aligned} \discreteE (\discretestate \n ,\discretestate \none ) (\discretestate \none - \discretestate \n ) &= h \pset [\big ]{ \discreteJ (\discretestate \n ,\discretestate \none )-\discreteR (\discretestate \n ,\discretestate \none ) } \discretetimestep {f} + h\discreteB (\discretestate \n ,\discretestate \none ) \discreteinput , \\ \discreteoutput & = \discreteB (\discretestate \n ,\discretestate \none )\transp \discretetimestep {f} , \end {aligned}\end {equation}


\begin {align}\label {eqncolsp} \discreteE (\discretestate \n ,\discretestate \none ) \transp \discretetimestep {f} & = \DG \hamiltonian (\discretestate \n , \discretestate \none ) .\end {align}


$\discretetimestep {f}$


$(\discretestate \none ,\discretetimestep {f},\discreteoutput )$


$\discreteE $


$\discretetimestep {f}$


$\discretestate \none $


$\state \n $


$\state \none $


$\discreteE $


$\hamiltonian (\state ) = \frac {1}{2} \state _1^2$


\begin {equation*}E = \begin {bmatrix} 1 & 0 \\ 0 & 0 \end {bmatrix}, \quad J = \begin {bmatrix} 0 & 1 \\ -1 & 0 \end {bmatrix}, \quad R = \begin {bmatrix} 0 & 0 \\ 0 & 1 \end {bmatrix}, \quad B = \begin {bmatrix} 0 \\ 0 \end {bmatrix}, \quad \nabla \hamiltonian (\state ) = \begin {bmatrix} \state _1 \\ 0 \end {bmatrix}.\end {equation*}


\begin {equation}\label {eq:exm:DDR:contDDR} \begin {bmatrix} x_1 \\ 0 \\ 0 \\ 0 \end {bmatrix} + \begin {bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 \end {bmatrix} \begin {bmatrix} -\dot x_1 \\ -\dot x_2 \\ f_1 \\ f_2 \end {bmatrix} = 0\end {equation}


$f=\costate (\state )$


\begin {equation}\label {eq:exm:DDR:discDDR} \discretetimestep {f_1} = -\discretetimestep {f_2} = \frac {\discretestate _1\n + \discretestate _1\none }{2}, \qquad \discretestate _1\none = \discretestate _1\n - h \frac {\discretestate _1\n + \discretestate _1\none }{2},\end {equation}


$\dot \state _1=-\state _1$


$\discretestate _2$


$f_2$


$\state _2$


$\discretestate _2\none =-\discretestate _1\none $


$\state _1+\state _2=0$


$(f_1,f_2)=\costate (\state )=(\state _1,\state _2)$


$\discretestate _2\none =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$\discretecostate $


$\costate $


$\discretetimestep {f}=\discretecostate (\discretestate \n ,\discretestate \none )$


$(\discretestate \none ,\discretetimestep {f})$


$\norm {\discretetimestep {f}-\discretecostate (\discretestate \n ,\discretestate \none )}$


$\discretecostate $


$\discretecostate (\discretestate \n ,\discretestate \none )=\discretestate \none $


$\discretestate _2\none =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$k\geq 0$


$\discretecostate (\discretestate \n ,\discretestate \none )=\discretestate \n $


$\discretestate _2\none $


$\norm {\discretetimestep {f}-\discretecostate (\discretestate \n ,\discretestate \none )}$


$\discretestate _2\n $


$\discretestate _2\n =\discretetimestep {f_2}=-\frac {1}{2}(\discretestate _1\n +\discretestate _1\none )$


$1\leq k\leq N-1$


$k=0$


$\state _2^0$


$\state _2\n $


$\state _1\none $


$\state _1\none $


$\state _2\n $


$\state _2^N$


$\state _2\n $


$\state _2(t\n +\frac {h}{2})$


$\state _2(t\n )$


$\state _2^0$


$\state _2^{N-1}$


$\discretecostate (\discretestate \n ,\discretestate \none )=\frac {1}{2}(\discretestate \n +\discretestate \none )$


$\discretestate _2\none =-\discretestate _1\n -\discretestate _1\none -\discretestate _2\n $


$\discretestate ^0$


$\discretestate _2^0=-\discretestate _1^0$


$\discretestate _2\none =-\discretestate _1\none $


$k\geq 0$


$\hfill \Diamond $


$E$


$\hamiltonian $


$\DG \hamiltonian (x, x')$


$\discreteE (x,x')\transp $


\begin {equation}\label {eqncolsp2} \DG \hamiltonian (x, x')\in \mathrm {colsp}(\discreteE (x,x')\transp ),\end {equation}


$x,x'\in \R ^n$


$\discretetimestep {f}$


$(E,\costate )$


$\hamiltonian $


$\costate =(\costate _1,\costate _2)$


$\discreteE _{11}\in \cont (\statespace \times \statespace ,\R ^{n_1,n_1})$


$\discretecostate _2\in \cont (\statespace \times \statespace ,\R ^{n_2})$


$E_{11}$


$\costate _2$


$\discreteE _{11}$


$\DG \specified \hamiltonian $


$\specified \hamiltonian \in \cont ^1(\statespace _1,\R )$


$(\discrete E,\discretecostate )$


\begin {equation}\label {eq:DGPlink1} \discreteE = \begin {bmatrix} \discreteE _{11} & 0 \\ 0 & 0 \end {bmatrix}, \qquad \discretecostate = \begin {bmatrix} \discreteE _{11}\ntransp (\DG \specified \hamiltonian \circ \pi _1) \\ \discretecostate _2 \end {bmatrix}\end {equation}


$(\hamiltonian ,E,\costate )$


\begin {align*}\overline z(x,x) & = \begin {bmatrix} \discreteE _{11}(\state ,\state )\ntransp \DG \specified {\hamiltonian }(\state _1,\state _1) \\ \discretecostate _2(\state ,\state ) \end {bmatrix} = \begin {bmatrix} E_{11}(\state )\ntransp \gradient \specified {\hamiltonian }(\state _1) \\ \costate _2(\state ) \end {bmatrix} = \begin {bmatrix} \costate _1(\state ) \\ \costate _2(\state ) \end {bmatrix} = \costate (\state )\end {align*}


\begin {align*}\overline \costate (x,x')\transp \overline {E}(x,x')(x'-x) & = \overline \costate _1(x,x')\transp \overline {E}_{11}(x,x')(x'_1-x_1) = \DG \specified \hamiltonian (x_1,x_1')\transp (x_1'-x_1) = \specified \hamiltonian (x_1') - \specified \hamiltonian (x_1) = \hamiltonian (x') - \hamiltonian (x) ,\end {align*}


$\state =(\state _1,\state _2),\state '=(\state _1',\state _2')\in \statespace $


$\DG \hamiltonian _1$


$\discreteE _{11}$


$\discretecostate _2$


$\discreteE $


$\discretecostate $


$J$


$R$


$B$


$\DG \hamiltonian _1$


$(\discreteE ,\discretecostate )$


\begin {equation*}\discretecostate (\discretestate \n ,\discretestate \none ) = \begin {bmatrix} \discreteE _{11}(\discretestate \n ,\discretestate \none )\ntransp \DG \specified {\hamiltonian }(\discretestate _1\n ,\discretestate _1\none ) \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} = \begin {bmatrix} \discretetimestep {\costate _1} \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix}. \qedhere \end {equation*}


$\discretetimestep {f_2}=\discretecostate _2(\discretestate \n ,\discretestate \none )$


\begin {equation}\label {eq:DDRsemiexplicit} \begin {bmatrix} \DG \specified \hamiltonian (\discretestate _1\n ,\discretestate _1\none ) \\ 0 \\ 0 \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & 0 & -\discreteE _{11}\transp & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \discreteE _{11} & 0 & \discreteJ _{11}-\discreteR _{11} & \discreteJ _{12}-\discreteR _{12} & \discreteB _1 \\ 0 & 0 & \discreteJ _{21}-\discreteR _{21} & \discreteJ _{22}-\discreteR _{22} & \discreteB _2 \\ 0 & 0 & -\discreteB _1\transp & -\discreteB _2\transp & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(\discretestate _1\none -\discretestate _1\n ) \\ -\frac {1}{h}(\discretestate _2\none -\discretestate _2\n ) \\ \discretetimestep {f_1} \\ \discretetimestep {f_2} \\ \discreteinput \end {bmatrix} = 0,\end {equation}


$(\discretestate \n ,\discretestate \none )$


\begin {equation*}\discreteE _{11}(\discretestate \n ,\discretestate \none )\transp \discretetimestep {f_1} = \DG \specified {\hamiltonian }(\discretestate \n ,\discretestate \none ),\end {equation*}


$\discretetimestep {f_1}$


$\discretetimestep {\costate _1}$


$\discretetimestep {f_2}$


$\discretecostate _2(\discretestate \n ,\discretestate \none )$


$\varphi \in \cont ^1(\widetilde \statespace ,\statespace )$


$U\in \cont (\widetilde \statespace ,\R ^{n,n})$


$(\varphi ,U)$


$\state =\varphi (\tilde \state )$


$U(\tilde \state )\transp $


\begin {equation}\label {eq:pHDAEtransf} \begin {split} \widetilde E(\tilde \state )\dot {\tilde \state } & = \pset [\big ]{ \widetilde J(\tilde \state ) - \widetilde R(\tilde \state ) } \tilde \costate (\tilde \state ) + \widetilde {B}(\tilde \state )u, \\ y & = \widetilde {B}(\tilde \state ) \tilde \costate (\tilde \state ), \end {split}\end {equation}


$\widetilde E=U\transp (E\circ \varphi )\jacobian {\varphi }$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\tilde \costate =U^{-1}(\costate \circ \varphi )$


$\widetilde B=U\transp (B\circ \varphi )$


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\widetilde \hamiltonian $


$(\varphi ,U)$


$(\varphi ^{-1},U^{-1})$


$(\varphi ^{-1},U^{-1})$


$(\varphi ^{-1},U^{-1})$


$(\varphi ,U)$


$U=(\jacobian \varphi )\ntransp $


$U$


$(\widetilde E,\tilde \costate )$


$(E,\costate )$


$(\varphi ,U)$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


\begin {equation}(\widetilde E,\tilde \costate ) = \pset [\big ]{U\transp (E\circ \varphi )\jacobian \varphi , U^{-1}(\costate \circ \varphi )} \label {Xeqn27-33}\end {equation}


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$(E,\costate )$


$(\varphi ,U)$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete {U} \in \cont (\widetilde \statespace \times \widetilde \statespace ,\R ^{n,n})$


$U$


$(\widehat E,\hat \costate )$


\begin {equation}\label {eq:DGPchainRule} \widehat E = \discrete U\transp (\discreteE \circ \varphi ){\overline {\rm {D}}}{\varphi }, \qquad \hat \costate = \discrete U^{-1}(\discretecostate \circ \varphi )\end {equation}


$(\widetilde \hamiltonian ,\widetilde {E},\tilde \costate )$


\begin {equation*}\widetilde E\transp \tilde \costate = (\jacobian \varphi )\transp (E\circ \varphi )\transp U U^{-1} (\costate \circ \varphi ) = (\jacobian \varphi )\transp (E\transp \costate \circ \varphi ) = (\jacobian \varphi )\transp (\gradient \hamiltonian \circ \varphi ) = \gradient \widetilde \hamiltonian ,\end {equation*}


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian $


$\tilde \state ,\tilde \state '\in \widetilde {\statespace }$


\begin {align*}\hat \costate (\tilde \state ,\tilde \state ')\transp \widehat {E}(\tilde \state ,\tilde \state ') (\tilde \state '-\tilde \state ) & = \discretecostate \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')}\transp \discreteE \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')} {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ') (\tilde \state '-\tilde \state ) \\ & = \discretecostate \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')}\transp \discreteE \pset [\big ]{\varphi (\tilde \state ),\varphi (\tilde \state ')} \pset [\big ]{ \varphi (\tilde \state ') - \varphi (\tilde \state ) } \\ & = \hamiltonian \pset [\big ]{\varphi (\tilde \state ')} - \hamiltonian \pset [\big ]{\varphi (\tilde \state )} = \widetilde \hamiltonian (\tilde \state ') - \widetilde \hamiltonian (\tilde \state ).\end {align*}


$\widehat E(\tilde \state ,\tilde \state )=\widetilde E(\tilde \state )$


$\hat \costate (\tilde \state ,\tilde \state )=\tilde \costate (\tilde \state )$


$\tilde \state \in \widetilde \statespace $


$(E,\costate )=(I_n,\gradient \hamiltonian )$


$(\discrete {E},\discretecostate )=(I_n,\DG \hamiltonian )$


$\DG \hamiltonian $


$\hamiltonian $


$U=\discrete {U}=I_n$


$({\overline {\rm {D}}}{\varphi },\DG \hamiltonian \circ \varphi )$


$(\widetilde \hamiltonian ,I_n,\gradient \widetilde \hamiltonian )$


\begin {equation}\label {eq:DGchainRule} \DG \widetilde \hamiltonian = ({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi )\end {equation}


$\widetilde \hamiltonian $


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$(\hamiltonian ,E,\costate )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi \in \cont ^1(\widetilde \statespace ,\R )$


$\specified {\widetilde \hamiltonian }$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$(\widehat E,\hat \costate )$


$(\widetilde \hamiltonian ,\widetilde E,\tilde \costate )$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$(\widehat E,\hat \costate )$


$(\varphi ^{-1},U^{-1})$


$U^{-1}$


$\varphi ^{-1}$


$(\varphi ,U)$


$E$


$E$


$(E,\costate )$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$E\in \R ^{n,n}$


$E=U\Sigma V\transp $


$E$


$U=[U_1,U_2]$


$V=[V_1,V_2]$


$\Sigma =\diag (\Sigma _1,0)$


$U_1,W_1\in \R ^{n,r}$


$\Sigma _1\in \R ^{r,r}$


$r=\rank (E)$


$(\varphi ,U)$


$\varphi (\state )=V\state $


$(E,\costate )$


$\specified {\widetilde \hamiltonian }:\widetilde \statespace _1\to \R $


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\specified {\widetilde \hamiltonian }(\tilde \state _1)=\hamiltonian (V_1\tilde \state _1)$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\hat \costate _2$


$U_2\transp (\costate \circ \varphi )$


$(E,\discretecostate _2)$


$\discretecostate _2=U_1\Sigma _1^{-1}\DG \specified {\widetilde \hamiltonian }+U_2\hat \costate $


$(\hamiltonian ,E,\costate )$


$q=(x_1, q_2, x_2)$


$m_1$


$m_2$


\begin {equation}\label {singularM} M = \begin {bmatrix} m_1 & & 0 & & 0 \\ 0 & & m_2 & & m_2 \\ 0 & & m_2 & & m_2 \end {bmatrix} ,\end {equation}


$E =\diag {(I_{3 , 3}, M, 0)}$


$\hfill \Diamond $


$E$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$E$


$\varphi $


$\jacobian \varphi $


\begin {equation*}\rank \pset [\big ]{ E(\state ) } = \rank \pset [\big ]{ U(\tilde \state )\transp E(\state ) \jacobian \varphi (\tilde \state ) } = \rank \pset [\big ]{ \widetilde {E}(\tilde \state ) } = n_1\end {equation*}


$\state \in \statespace $


$\tilde \state =\varphi ^{-1}(\state )$


$E$


$U,V\in \cont (\statespace ,\R ^{n,n})$


\begin {equation*}U\transp EV = \begin {bmatrix} E_{11} & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$E_{11}$


$V$


$\varphi $


$(E,\costate )$


$E$


$(E,\costate )$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$E\in \cont (\statespace ,\R ^{n,n})$


$(E,\costate )$


$(\widetilde E,\tilde \costate )$


$\widetilde \hamiltonian \in \cont ^1(\widetilde \statespace ,\R )$


$\widetilde \hamiltonian $


$\specified {\widetilde \hamiltonian }\in \cont ^1(\pi _1(\widetilde \statespace ),\R )$


\begin {equation}\widetilde E = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32} & I_{r-p} \end {bmatrix}, \qquad \tilde \costate = \begin {bmatrix} \gradient \specified {\widetilde \hamiltonian }\circ \pi _1 \\ \costate _2 \\ 0 \end {bmatrix}, \label {Xeqn31-37}\end {equation}


$\pi _1:\R ^n\to \R ^p$


$p$


$E$


\begin {equation}\label {eq:canonicalSemiExplicit} \begin {aligned} \begin {bmatrix} I_{n_1} & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \dot x_1 \\ \dot x_2 \end {bmatrix} & = \pset [\big ]{J(x,\theta )-R(x,\theta )} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x,\theta ) \end {bmatrix} + \begin {bmatrix} B_1(x,\theta ) \\ B_2(x,\theta ) \end {bmatrix} u, \\ y &= \begin {bmatrix} B_1(x,\theta )\transp & B_2(x,\theta )\transp \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x,\theta ) \end {bmatrix} \end {aligned}\end {equation}


$\specified \hamiltonian $


$x_1$


$\theta $


\begin {equation}\label {eq:unstrucpart} \dot \theta + E_{32}(x,\theta )\dot x_2 = A_{31}(x,\theta )\gradient \specified {\hamiltonian }(x_1) + A_{32}(x,\theta )z_2(x,\theta ) + B_3(x,\theta )u,\end {equation}


$x=(x_1,x_2)$


$\hamiltonian $


$\specified {\hamiltonian }\in \cont ^1(\pi _1(\statespace ),\R )$


\begin {equation*}E = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32} & I_{r-p} \end {bmatrix}, \qquad \costate = \begin {bmatrix} \gradient \specified \hamiltonian \circ \pi _1 \\ \costate _2 \\ 0 \end {bmatrix}.\end {equation*}


\begin {align*}\begin {bmatrix} \dot x_1 \\ 0 \\ E_{32}(x)\dot x_2 + \dot x_3 \end {bmatrix} & = \begin {bmatrix} J_{11}(x)-R_{11}(x) & J_{12}(x)-R_{12}(x) & J_{13}(x)-R_{13}(x) \\ J_{21}(x)-R_{21}(x) & J_{22}(x)-R_{22}(x) & J_{23}(x)-R_{23}(x) \\ J_{31}(x)-R_{31}(x) & J_{32}(x)-R_{32}(x) & J_{33}(x)-R_{33}(x) \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x) \\ 0 \end {bmatrix} + \begin {bmatrix} B_1(x) \\ B_2(x) \\ B_3(x) \end {bmatrix} u, \\ y & = \begin {bmatrix} B_1(x)\transp & B_2(x)\transp & B_3(x)\transp \end {bmatrix} \begin {bmatrix} \gradient \specified {\hamiltonian }(x_1) \\ z_2(x) \\ 0 \end {bmatrix}.\end {align*}


$z_3=0$


$J-R$


$A_{31}=J_{31}-R_{31}$


$A_{32}=J_{32}-R_{32}$


$\state \coloneqq (\state _1,\state _2)$


$\theta \coloneqq \state _3$


$\statespace $


$\statespace _1\times \statespace _2\times \statespace _3$


$\statespace _1\subseteq \R ^{n_1}$


$\statespace _2\subseteq \R ^{n_2}$


$\statespace _3\subseteq \R ^{n_3}$


$\gradient \specified {\hamiltonian }(x_1)$


$q \in \cont (\timeinterval ,\mathcal {Q})$


$\mathcal {Q}$


$\R ^d$


$d$


$\mathcal {Q}$


$v=\dot {q}$


$T_q\mathcal {Q}$


$g\in \cont ^1(\mathcal {Q},\R ^m)$


$\R ^d$


\begin {align}\label {eqposconstraint} g \pset [\big ]{ q(t) } = 0\end {align}


\begin {align}\label {eqvelconstraint} \jacobian g \pset [\big ]{ q(t) } v(t) = 0 .\end {align}


$\lambda \in \cont (\timeinterval , \R ^m)$


$\state _2 = \lambda $


$\state _1 = (q,v)$


\begin {align}\label {hamiltonianmbsdetail} \hamiltonian (\state ) =\specified {\hamiltonian }(\state _1) = \frac {1}{2} v\transp M v + V(q),\end {align}


$M \in \R ^{d,d}$


$V \in \cont (\mathcal {Q},\R )$


$F_{\mathrm {p}} = \gradient V(q)$


$G(q,v) = \frac {1}{2} v\transp R_{\mathrm {R}}(q) v$


$R_{\mathrm {R}}(q) \in \cont (\mathcal {Q},\R ^{d,d})$


$F_{\mathrm {np}}(q,v) = - \nabla _{v} G(q,v) = - R_{\mathrm {R}}(q) v$


\begin {align}\dot {q} & = v , \\ M \dot v & = - \gradient V(q) - R_{\mathrm {R}}(q) v - \jacobian g(q)\transp \lambda + u , \\ 0 & = \jacobian g(q) v ,\end {align}


$u$


\begin {align}\label {blockMBSdetailled} \begin {bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} \dot {q} \\ \dot {v} \\ \dot {\lambda } \end {bmatrix} & = \left ( \begin {bmatrix} 0 & I & 0 \\ -I & -R_{\mathrm {R}}(q) & -\jacobian g(q)\transp \\ 0 & \jacobian g(q) & 0 \end {bmatrix} \right ) \begin {bmatrix} \gradient V(q) \\ v \\ \lambda \end {bmatrix} + \begin {bmatrix} 0 \\ I \\ 0 \end {bmatrix} u , \\ y & = \begin {bmatrix} 0 & I & 0 \end {bmatrix} \begin {bmatrix} \gradient V(q) \\ v \\ \lambda \end {bmatrix} .\end {align}


$E\transp \costate (\state ) = \gradient \hamiltonian (\state )$


$y=v$


\begin {align}\begin {bmatrix} I & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} {q}\none - {q}\n \\ {v}\none - {v}\n \\ {\lambda }\none -{\lambda }\n \end {bmatrix} &= h \begin {bmatrix} 0 & I & 0 \\ -I & -R_{\mathrm {R}}({q}\nonehalf ) & -{\overline {\rm {D}}}{g}({q}\n ,{q}\none )\transp \\ 0 & {\overline {\rm {D}}}{g}({q}\n ,{q}\none ) & 0 \end {bmatrix} \begin {bmatrix} \discretecostateoneq \\ \discretecostateonev \\ \discretetimestep {\lambda } \end {bmatrix} + h \begin {bmatrix} 0 \\ I \\ 0 \end {bmatrix} \discreteinput , \label {MBSintegratorDGa} \\ \begin {bmatrix} \discretecostateoneq \\ \discretecostateonev \end {bmatrix} & = \begin {bmatrix} I & 0 \\ 0 & M \end {bmatrix}\ntransp \DG \specified {\hamiltonian }(x_1\n ,x_1\none ) , \\ \discreteoutput & = \discretecostateonev ,\end {align}


$q\nonehalf =\frac {1}{2}(q\n +q\none )$


${\overline {\rm {D}}}{g}$


$g$


$R_{\mathrm {R}}$


$\discretetimestep {\lambda } := \lambda \none $


$\lambda ^0$


$\jacobian {g}$


\begin {align}\label {eqnodrift} g(q\none ) - g(q\n ) = {\overline {\rm {D}}}{g}(q\n ,q\none )(q\none -q\n ) = h {\overline {\rm {D}}}{g}(q\n ,q\none ) \discretecostateonev = 0,\end {align}


$g(q^0)=0$


$\jacobian {g}$


$\DG \hamiltonian $


\begin {equation}\begin {bmatrix} \DG _q\hamiltonian (\state \n ,\state \none ) \\ \DG _v\hamiltonian (\state \n ,\state \none ) \\ \DG _\lambda \hamiltonian (\state \n ,\state \none ) \\ 0 \\ 0 \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & 0 & 0 & -I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -M & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 & I & 0 & 0 \\ 0 & M & 0 & -I & -R_{\mathrm {R}}({q}\nonehalf ) & -\DG g(q\n ,q\none )^\top & I \\ 0 & 0 & 0 & 0 & \DG g(q\n ,q\none ) & 0 & 0 \\ 0 & 0 & 0 & 0 & -I & 0 & 0 \end {bmatrix} \begin {bmatrix} -\frac {1}{h}(q\none -q\n ) \\ -\frac {1}{h}(v\none -v\n ) \\ -\frac {1}{h}(\lambda \none -\lambda \n ) \\ \discretetimestep {f_{1,q}} \\ \discretetimestep {f_{1,v}} \\ \discretetimestep {f_{1,\lambda }} \\ \discreteinput \end {bmatrix} = 0, \label {Xeqn34-46}\end {equation}


$\DG \hamiltonian $


$\DG \hamiltonian _q,\DG \hamiltonian _v,\DG \hamiltonian _\lambda $


$\DG \hamiltonian $


$\DG \hamiltonian _1$


$\specified \hamiltonian $


\begin {equation*}\DG \hamiltonian (\state ,\state ') = \begin {bmatrix} \DG \hamiltonian _1(q,v,q',v') \\ 0 \end {bmatrix} ,\end {equation*}


$\discretetimestep {f_{1,q}}=\lambda \none $


$q=(q_1,q_2,q_3,q_4) \in \R ^{12}$


$m_i$


$i=1,\ldots ,4$


\begin {equation}\label {eq:potential-4mass-system} V(q) = \frac {1}{2} k_{13} \pset [\big ]{ \norm {q_3 - q_1}^2 - 1 }^2 + \frac {1}{2} k_{24} \pset [\big ]{ \norm {q_4 - q_2}^2 - 1 }^2 ,\end {equation}


$k_{13}$


$k_{24}$


$M = \diag \{m_1 I, m_2 I, m_3 I, m_4 I\}$


\begin {align}G(q,v) = \frac {1}{2} \eta (q) v_{\mathrm {rel}}^2, \qquad v_{\mathrm {rel}} = \norm {v_3 -v_2},\end {align}


$\eta (q) = \eta _0 (1 + \alpha q_{\mathrm {rel}}^2) \geq 0$


$q_{\mathrm {rel}}=\norm {q_3-q_2}$


$\eta _0 >0$


$\alpha >0$


\begin {align}R_{\mathrm {R}}(q) & = \eta (q) \begin {bmatrix} 0 & 0 & 0 & 0 \\ 0 & I & -I & 0 \\ 0 & -I & I & 0 \\ 0 & 0 & 0 & 0 \end {bmatrix}.\end {align}


\begin {equation}\label {exconstraints} g_1(q) = \frac {1}{2}\pset [\big ]{ \norm {q_2-q_1}^2 - 1 } =0, \qquad g_2(q) = \frac {1}{2}\pset [\big ]{ \norm {q_4-q_3}^2 - 1 } =0.\end {equation}


\begin {equation}\begin {aligned} {q}_1^0 & = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {q}_2^0 = \begin {bmatrix} 1 , 0 , 0 \end {bmatrix}\transp \ , \ {q}_3^0 = \begin {bmatrix} 0 , 1 , 0 \end {bmatrix}\transp \ , \ {q}_4^0 = \begin {bmatrix} 1 , 1 , 0 \end {bmatrix}\transp , \\ {v}_1^0 & = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_2^0 = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_3^0 = \begin {bmatrix} 0 , 0 , 0 \end {bmatrix}\transp \ , \ {v}_4^0 = \begin {bmatrix} 0 , 0 , \frac {20}{17} \end {bmatrix}\transp , \end {aligned} \label {Xeqn37-51}\end {equation}


$\epsilon _{\mathrm {Newton}}$


\begin {equation}\discretedissipation := h \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none ) \end {bmatrix} \transp \discreteR (\discretestate \n ,\discretestate \none ) \begin {bmatrix} \discretecostateone \\ \discretecostate _2(\discretestate \n ,\discretestate \none )\end {bmatrix} = h \discretecostateonev \transp R_{\mathrm {R}}({q}\nonehalf ) \discretecostateonev \geq 0 \label {Xeqn38-52}\end {equation}


$i=1$


$i=2$


$10^{-4}$


$\eta _0=0$


$\eta _0 = 0$


$h$


$h$


\begin {equation*}e_x = \frac {|| x_{\mathrm {ref}} - x||}{|| x_{\mathrm {ref}}||} ,\end {equation*}


$x \in \{{q}_4\n , {v}_4\n , \discretetimestep {\lambda _1}\}$


$t\n = 0.1$


$x_{\mathrm {ref}}$


$h=10^{-4}$


$0.4$


$h=0.25$


$\hat {\state }_2\in \statespace _2$


$\specified {f}:\statespace _1\to \R ,\ x_1\mapsto f(x_1,\hat {\state }_2)$


$\statespace _{2}$


$(x_1,x_2)\in \statespace $


\begin {equation*}\hat f:[0,1]\to \R ,\qquad s\mapsto f\pset [\big ]{ x_1 , sx_2 + (1-s)\hat {\state }_2}\end {equation*}


\begin {equation*}\frac {\mathrm {d}\hat f}{\mathrm {d}s}(s) = \gradient _{x_2}f\pset [\big ]{ x_1 , sx_2 + (1-s)\hat {\state }_2} \transp \pset [\big ]{x_2-\hat {\state }_2} = 0\end {equation*}


$s\in [0,1]$


$\hat f$


\begin {equation*}f(x_1,x_2) = \hat f(1) = \hat f(0) = f\pset [\big ]{x_1,\hat {\state }_2} = \specified {f}(x_1).\end {equation*}


$x_1\in \statespace _1$


$h\in \R ^{n_1}$


$(x_1+h,\hat {\state }_2)\in \statespace $


$(x_1,\hat {\state }_2)\in \statespace $


$\statespace $


\begin {equation*}\specified {f}(x_1 + h) - \specified {f}(x_1) = f\pset [\big ]{x_1+h,\hat {\state }_2} - f\pset [\big ]{x_1,\hat {\state }_2}\end {equation*}


$x_1\in \statespace _1$


$h\in \R ^{n_1}$


$\specified {f}$


$\gradient \specified {f}(x_1)=\gradient _{x_1}f(x_1,x_2)$


$(x_1,x_2)\in \statespace $


\begin {align}\label {eq:syncMachdyn} \begin {bmatrix} \dot \psi _s \\ \dot \psi _r \\ \dot p \\ \dot \theta \end {bmatrix} & = \begin {bmatrix} -R_s & 0 & 0 & 0 \\ 0 & -R_r & 0 & 0 \\ 0 & 0 & -d & -1 \\ 0 & 0 & 1 & 0 \end {bmatrix} \gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) + \begin {bmatrix} I_3 & 0 & 0 \\ 0 & e_1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end {bmatrix} \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}, \\ \label {eq:syncMachout} \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix} & = \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1^\top & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix} \gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ),\end {align}


\begin {equation*}\widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) = \frac {1}{2} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix}^\top L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} + \frac {1}{2J_r}p^2,\end {equation*}


\begin {equation*}\gradient \widetilde {\hamiltonian }(\psi _s,\psi _r,p,\theta ) = \begin {bmatrix} L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} \\ J_r^{-1}p \\ -\frac {1}{2} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix}^\top L(\theta )^{-1} L'(\theta ) L(\theta )^{-1} \begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} \end {bmatrix}.\end {equation*}


$\psi _s,\psi _r\in \R ^3$


\begin {equation*}\begin {bmatrix} \psi _s \\ \psi _r \end {bmatrix} = L(\theta )I .\end {equation*}


\begin {align*}& x = \begin {bmatrix} I \\ p \\ \theta \end {bmatrix}\in \R ^8, \qquad u = \begin {bmatrix} V_s \\ V_f \\ \tau \end {bmatrix}\in \R ^5, \qquad y = \begin {bmatrix} I_s \\ I_f \\ \omega \end {bmatrix}\in \R ^5, \\ & E(I,\theta ) = \begin {bmatrix} L(\theta ) & 0 & L'(\theta )I \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix} \in \R ^{8,8}, \qquad z(I,p,\theta ) = \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} \in \R ^8, \\ & J = \begin {bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end {bmatrix} \in \R ^{8,8}, \qquad R = \begin {bmatrix} R_{s,r} & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & 0 \end {bmatrix} \in \R ^{8,8}, \qquad B = \begin {bmatrix} I_3 & 0 & 0 & 0 \\ 0 & e_1^\top & 0 & 0 \\ 0 & 0 & 1 & 0 \end {bmatrix}^{\top }.\end {align*}


$E(\state )\transp \costate (\state ) = \gradient \hamiltonian (\state )$


\begin {align*}\begin {bmatrix} L(\theta ) & 0 & 0 \\ 0 & 1 & 0 \\ I^\top L'(\theta ) & 0 & 1 \end {bmatrix} \begin {bmatrix} I \\ J_r^{-1}p \\ -\frac {1}{2}I^\top L'(\theta )I \end {bmatrix} = \begin {bmatrix} L(\theta )I \\ J_r^{-1}p \\ \frac {1}{2}I^\top L'(\theta )I \end {bmatrix} .\end {align*}


$E$


$\discreteE $


$\discreteE $


\begin {equation}\label {eq:midpointE} \discreteE (x,x') := E(\tfrac {x+x'}2),\end {equation}


$x,x'\in \R ^n$


$E$


\begin {align*}\hamiltonian (x) & = \exp (\tfrac 12x_1^2)-1+\tfrac 12x_2^2,\quad \gradient \hamiltonian (x) = \begin {bmatrix} x_1\exp (\tfrac 12x_1^2) \\ x_2 \end {bmatrix} , \\ E(x) & = \begin {bmatrix} 1 \\ 1 \end {bmatrix} \gradient \hamiltonian (x)\transp = \begin {bmatrix} x_1\exp (\tfrac 12x_1^2) & x_2 \\ x_1\exp (\tfrac 12x_1^2) & x_2 \end {bmatrix} ,\quad \costate (x) = \tfrac 12 \begin {bmatrix} 1 \\ 1 \end {bmatrix} .\end {align*}


$E$


$\costate $


$E\transp \costate =\gradient \hamiltonian $


$J,R,B$


$\mathrm {colsp}(E\transp ) = \mathrm {span}(\gradient \hamiltonian )$


$E$


$\discreteE $


\begin {equation*}\mathrm {colsp}\pset [\big ]{\discreteE (x,x')\transp } = \mathrm {colsp}\pset [\big ]{E(\tfrac {\state +\state '}{2})\transp } = \mathrm {span}\pset [\big ]{\gradient \hamiltonian (\tfrac {x+x'}2)} .\end {equation*}


$\DG \hamiltonian $


$\hamiltonian $


$\DG \hamiltonian $


\begin {equation}\label {eq:discretegradientgeneralexpression} \DG \hamiltonian (x,x') = \frac {\hamiltonian (x')-\hamiltonian (x)}{\lVert x'-x\rVert ^2}(x'-x)+w(x,x')\end {equation}


$x\ne x'$


$w$


$w(x,x')\in \mathrm {span}(\state '-\state )^\perp $


\begin {equation*}\lim _{x'\to x} \pset [\big ]{ w(x,x')-\pi _{\mathrm {span}(x'-x)^\perp }\gradient \hamiltonian (x) } =0,\end {equation*}


\begin {equation*}\pi _{\mathrm {span}(x'-x)^\perp } = \frac {I-(x'-x)(x'-x)\transp }{\norm {x'-x}^2}\end {equation*}


$\mathrm {span}(x'-x)^\perp $


\begin {equation*}x = \begin {bmatrix} a \\ 0 \end {bmatrix} ,\quad x' = \begin {bmatrix} 0 \\ b \end {bmatrix} , \quad a,b \in \R \setminus \{0\},\end {equation*}


$b:= \pm a \sqrt {\exp (\frac {1}{2}(a/2)^2)}$


$\hamiltonian (x')\ne \hamiltonian (x)$


$\gradient \hamiltonian (\tfrac {x+x'}2) \transp (x'-x) = 0$


\begin {equation*}x'-x\in \mathrm {span}\pset [\big ]{\gradient \hamiltonian (\tfrac {x+x'}2)}^\perp = \mathrm {colsp}(\discreteE (x,x')\transp )^\perp .\end {equation*}


$\DG \hamiltonian (x,x')\notin \mathrm {colsp}(\discreteE (x,x')\transp )$


$f$


$\discreteE (x,x')\transp f = \DG \hamiltonian (x,x')$


$x,x'$


$\hfill \Diamond $


$(\varphi ,U):\widetilde \statespace \to \statespace \times \R ^{n,n}$


$(\tilde \varphi ,\widetilde U):\widehat \statespace \to \widetilde \statespace \times \R ^{n,n}$


\begin {equation*}(\varphi ,U) \circ (\tilde \varphi ,\widetilde U) = \pset [\big ]{\varphi \circ \tilde \varphi ,(U\circ \tilde \varphi )\widetilde U}:\widehat \statespace \to \statespace \times \R ^{n,n},\end {equation*}


$(\varphi ,U) \circ (\tilde \varphi ,\widetilde U)$


$(\varphi ,U)$


$(\tilde \varphi ,\widetilde U)$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\tilde \varphi }$


$\varphi $


$\tilde \varphi $


$\discrete {U}$


$\widehat {U}$


$U$


$\widetilde U$


$({\overline {\rm {D}}}{\varphi }\circ \tilde \varphi ){\overline {\rm {D}}}{\tilde \varphi }$


$\varphi \circ \tilde \varphi $


$(\discrete U\circ \tilde \varphi )\widehat U$


$(U\circ \tilde \varphi )\widetilde U$


$(\varphi ,U)$


$(\varphi ,U)^{-1} = (\varphi ^{-1},U^{-1}\circ \varphi ^{-1})$


\begin {equation*}(\varphi ^{-1},U^{-1}\circ \varphi ^{-1})\circ (\varphi ,U)=(\mathrm {Id}_{\widetilde \statespace },I_n) \quad \text {and}\quad (\varphi ,U)\circ (\varphi ^{-1},U^{-1}\circ \varphi ^{-1})=(\mathrm {Id}_{\statespace },I_n)\end {equation*}


$\psi =\varphi ^{-1}$


$V=U^{-1}\circ \varphi ^{-1}$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\psi }$


$\varphi $


$\discrete {U}$


$\discrete {V}$


$U$


$V$


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$(\varphi ,U)$


$(\psi ,V)$


\begin {equation*}(\widehat E,\hat \costate ) = \pset [\big ]{ \discrete V\transp (\discrete U\circ \psi )\transp \discreteE \,({\overline {\rm {D}}}{\varphi }\circ \psi ){\overline {\rm {D}}}{\psi } \; , \; \discrete V^{-1}(\discrete U^{-1}\circ \psi )\discretecostate },\end {equation*}


$(\hamiltonian ,E,\costate )$


$(\varphi ,U)$


$(\psi ,V)$


${\overline {\rm {D}}}{\psi }$


$\discrete {V}$


$(\widehat E,\hat \costate )=(\discreteE ,\discretecostate )$


$(E,\costate )$


$\discrete {V}=\discrete {U}^{-1}\circ \psi $


$({\overline {\rm {D}}}{\varphi }\circ \psi ){\overline {\rm {D}}}{\psi }=I_n$


$\discrete {V}$


$V$


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}{\psi }=({\overline {\rm {D}}}{\varphi }\circ \psi )^{-1}$


$\varphi \in \cont ^1(\widetilde \statespace ,\statespace )$


$\statespace ,\widetilde \statespace \subseteq \R ^n$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\varphi ^{-1}$


$\varphi $


${\overline {\rm {D}}}{\varphi }$


${\overline {\rm {D}}}(\varphi ^{-1})=\left ({\overline {\rm {D}}}{\varphi }\circ \varphi ^{-1}\right )^{-1}.$


$\state ,\state '\in \statespace $


$\tilde \state =\varphi ^{-1}(\state ),\ \tilde \state '=\varphi ^{-1}(\state ')$


\begin {equation*}{\overline {\rm {D}}}(\varphi ^{-1})(\state ,\state ')(\state '-\state ) = {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ')^{-1} \pset [\big ]{\varphi (\tilde \state ')-\varphi (\tilde \state )} = {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ')^{-1} {\overline {\rm {D}}}{\varphi }(\tilde \state ,\tilde \state ') (\tilde \state ' - \tilde \state ) = \varphi ^{-1}(\state ') - \varphi ^{-1}(\state )\end {equation*}


${\overline {\rm {D}}}(\varphi ^{-1})(\state ,\state )=\jacobian {\varphi }(\tilde \state )^{-1}=\jacobian (\varphi ^{-1})(\state )$


${\overline {\rm {D}}}{\varphi }$


$\varphi :\R ^2\to \R ^2,\ \varphi (\state )=\mathrm {Rot}(\state \transp \state )x$


$\mathrm {Rot}:\R \to \R ^{2,2}$


\begin {equation*}\mathrm {Rot}(\theta ) = \begin {bmatrix} \cos (\theta ) & -\sin (\theta ) \\ \sin (\theta ) & \cos (\theta ) \end {bmatrix}\end {equation*}


$\theta \in \R $


$\varphi $


$\cont ^\infty $


$0\in \R ^2$


\begin {equation*}\frac {\mathrm {d}\mathrm {Rot}}{\mathrm {d}\theta }(\theta ) = \begin {bmatrix} -\sin (\theta ) & -\cos (\theta ) \\ \cos (\theta ) & -\sin (\theta ) \end {bmatrix} = \begin {bmatrix} \cos (\theta + \tfrac {\pi }{2}) & -\sin (\theta + \tfrac {\pi }{2}) \\ \sin (\theta + \tfrac {\pi }{2}) & \cos (\theta + \tfrac {\pi }{2}) \end {bmatrix} = \mathrm {Rot}(\theta + \tfrac {\pi }{2}) = \mathrm {Rot}(\theta )\mathrm {Rot}(\tfrac {\pi }{2}),\end {equation*}


\begin {equation*}\jacobian \varphi (x) = \jacobian \pset [\big ]{ \mathrm {Rot}(\state \transp \state )\state } = \mathrm {Rot}(\state \transp \state ) + \frac {\mathrm {d}\mathrm {Rot}}{\mathrm {d}\theta }(\state \transp \state )\gradient (\state \transp \state )\state \transp = \mathrm {Rot}(\state \transp \state ) \pset [\big ]{ I_2 + 2\mathrm {Rot}(\tfrac {\pi }{2})\state \state \transp }.\end {equation*}


$\jacobian \varphi $


$\state ,w\in \R ^2$


$\jacobian \varphi (\state )w=0$


$\pset [\big ]{I+2\mathrm {Rot}(\tfrac {\pi }{2})\state \state \transp }w = 0$


$w = - 2\state \transp w\,\mathrm {Rot}(\tfrac {\pi }{2})\state $


\begin {equation*}\state \transp w = -2\state \transp w \pset [\big ]{ \state \transp \mathrm {Rot}(\tfrac {\pi }{2})\state } = 0,\end {equation*}


$w=0$


$\jacobian \varphi $


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\state ,\state '\in \R ^2$


$z\in (\state '-\state )^\perp $


\begin {equation*}{\overline {\rm {D}}}{\varphi }(\state ,\state ')(\state '-\state ) = \varphi (\state ') - \varphi (\state ) \quad \text {and}\quad {\overline {\rm {D}}}{\varphi }(\state ,\state ')z = \jacobian \varphi (\tfrac {\state +\state '}{2})z.\end {equation*}


$\state =0$


$\state '=(\sqrt {2\pi },0)$


$e_1=(1,0)$


$e_2=(0,1)$


$\state '=\sqrt {2\pi }e_1$


$\state '-\state =\state '\perp e_2$


\begin {equation*}{\overline {\rm {D}}}{\varphi }(0,\state ')e_1 = \frac {{\overline {\rm {D}}}{\varphi }(0,\state ')\state '}{\sqrt {2\pi }} = \frac {\varphi (\state ')-\varphi (\state )}{\sqrt {2\pi }} = \frac {\mathrm {Rot}(2\pi )x'-\mathrm {Rot}(0)0}{\sqrt {2\pi }} = \frac {x'}{\sqrt {2\pi }} = e_1\end {equation*}


\begin {equation*}{\overline {\rm {D}}}{\varphi }(0,\state ')e_2 = \jacobian \varphi (\tfrac {x+x'}{2})e_2 = \mathrm {Rot}(\tfrac {\pi }{2})\pset [\big ]{ e_2 + \tfrac {1}{2}\mathrm {Rot}(\tfrac {\pi }{2})x'(x')\transp e_2 } = \mathrm {Rot}(\tfrac {\pi }{2})e_2 = -e_1.\end {equation*}


\begin {equation*}{\overline {\rm {D}}}{\varphi }(\state ,\state ') = [e_1,-e_1] = \begin {bmatrix} 1 & -1 \\ 0 & 0 \end {bmatrix},\end {equation*}


$\hfill \Diamond $


$\varphi $


${\overline {\rm {D}}}{\varphi }$


$\varphi ^{-1}$


$f:\R ^2\to \R ,\ f(x)=\frac {1}{4}\norm {x^4}$


$\varphi :\R ^2\to \R ^2,\ \varphi (x_1,x_2)=(x_1+x_2,x_2)$


\begin {equation*}\gradient f = \norm {x}^2 x, \qquad \jacobian \varphi = \begin {bmatrix} 1 & 1 \\ 0 & 1 \end {bmatrix},\end {equation*}


$\DG _Gf$


${\overline {\rm {D}}}_G\varphi $


${\overline {\rm {D}}}_G\varphi =\jacobian \varphi $


$\tilde f=f\circ \varphi $


$\DG _G\tilde f$


$\DG \tilde f={\overline {\rm {D}}}_G\varphi \transp \DG _Gf$


\begin {equation*}\DG _G\tilde f(0,2e_1)\transp e_2 = \gradient \tilde f(e_1)\transp e_2 = \gradient f\pset [\big ]{\varphi (e_1)}\transp \jacobian \varphi \, e_2 = e_1\transp \begin {bmatrix} 1 & 1 \\ 0 & 1 \end {bmatrix} e_2 = 1\end {equation*}


\begin {align*}\DG \tilde f(0,2e_1)\transp e_2 & = \DG _G\tilde f(0,2e_1)\transp {\overline {\rm {D}}}{\varphi }\, e_2 = \DG _G f(0,2e_1)\transp (e_1+e_2) \\ & = \tfrac {1}{2} \DG _G f(0,2e_1)\transp 2e_1 + \DG _G f(0,2e_1)\transp e_2 = \tfrac {1}{2}\pset [\big ]{f(2e_1)-f(0)} + \gradient f(e_1)\transp e_2 = 2,\end {align*}


$\DG \tilde f$


$\DG _G\tilde f$


$\hfill \Diamond $


$(\discreteE ,\discretecostate )$


$(\hamiltonian ,E,\costate )$


$\discreteJ ,\discreteR ,\discreteB $


$J,R,B$


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$(\varphi ,U)$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete U$


$U$


$(\discreteE ,\discretecostate )$


$\discreteJ ,\discreteR ,\discreteB $


$(\varphi ,U)$


$(\widehat E,\hat \costate )$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R=\discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


$\varphi $


$(\state \n ,\state \none )$


$(\tilde \state \n ,\tilde \state \none )$


$\widehat J$


$\widehat R$


$\widehat B$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\widetilde B=U\transp (B\circ \varphi )$


$\widehat J=-\widehat J\transp $


$\widehat R=\widehat R\transp \succeq 0$


$\state ^0$


$(\state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\tilde \state \n =\varphi ^{-1}(\state \n )$


$k=0,\ldots ,N$


\begin {align*}& \widehat E(\tilde \state \none -\tilde \state \n ) - h \pset [\big ]{ (\widehat J-\widehat R)\hat \costate + \widehat B\discreteinput } = \discrete {U}\transp \discrete {E}({\overline {\rm {D}}}{\varphi })(\tilde \state \none -\tilde \state \n ) - h\pset [\big ]{ (\discrete {U}\transp \discreteJ \discrete {U}-\discrete {U}\transp \discreteR \discrete {U})\discrete {U}^{-1}\discretecostate + \discrete {U}\transp \discreteB \discreteinput } \\ &\hspace {4.6cm} = \discrete {U}\transp \pset [\Big ]{ \discrete {E}(\state \none -\state \n ) - h\pset [\big ]{(\discreteJ -\discreteR )\discretecostate + \discreteB \discreteinput } } = 0, \\ & \discreteoutput - \widehat {B}\transp \hat \costate = \discreteoutput - \discreteB \transp \discrete {U}\,\discrete {U}^{-1}\discretecostate = \discreteoutput - \discreteB \transp \discretecostate = 0.\end {align*}


$\tilde \state ^0$


$(\tilde \state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\tilde \state ^0$


$(\tilde \state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$\state \n =\varphi (\tilde \state \n )$


$k=0,\ldots ,N$


\begin {align*}& \discreteE (\state \none -\state \n ) - h\pset [\big ]{(\discreteJ -\discreteR )\discretecostate + \discreteB \discreteinput } = \discrete {U}\ntransp \pset [\Big ] { \discrete {U}\transp \discrete {E}({\overline {\rm {D}}}{\varphi })(\tilde \state \none -\tilde \state \n ) - h\pset [\big ]{ (\discrete {U}\transp \discreteJ \discrete {U}-\discrete {U}\transp \discreteR \discrete {U})\discrete {U}^{-1}\discretecostate + \discrete {U}\transp \discreteB \discreteinput } } \\ &\hspace {4.6cm} = \discrete {U}\ntransp \pset [\Big ]{ \widehat E(\tilde \state \none -\tilde \state \n ) - h \pset [\big ]{ (\widehat J-\widehat R)\hat \costate + \widehat B\discreteinput } } = 0, \\ & \discreteoutput - \discreteB \transp \discretecostate = \discreteoutput - \discreteB \transp \discrete {U}\,\discrete {U}^{-1}\discretecostate = \discreteoutput - \widehat {B}\transp \hat \costate = 0,\end {align*}


$\state ^0$


$(\state \none ,\discreteinput ,\discreteoutput )$


$k=0,\ldots ,N-1$


$(E,\costate )$


$\hamiltonian $


$(\varphi ,U)$


$\widetilde \statespace =\widetilde \statespace _1\times \widetilde \statespace _2$


$\widetilde \statespace _2$


$\varphi =(\varphi _1,\varphi _2)$


$U=\left [\begin {smallmatrix}U_{11} & U_{12} \\ U_{21} & U_{22}\end {smallmatrix}\right ]$


$\jacobian _{\tilde \state _2}\varphi _1=0$


$U_{12}=0$


$(\widetilde E,\tilde \costate )$


\begin {equation*}\widetilde E = U\transp (E\circ \varphi )\jacobian \varphi = \begin {bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end {bmatrix}\transp \begin {bmatrix} E_{11}\circ \varphi & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \jacobian _{\tilde \state _1}{\varphi _1} & \jacobian _{\tilde \state _2}{\varphi _1} \\ \jacobian _{\tilde \state _1}{\varphi _2} & \jacobian _{\tilde \state _2}{\varphi _2} \end {bmatrix} = \begin {bmatrix} U_{11}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _1}{\varphi _1} & U_{11}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _2}{\varphi _1} \\ U_{12}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _1}{\varphi _1} & U_{12}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _2}{\varphi _1} \end {bmatrix}.\end {equation*}


$U$


$\jacobian \varphi $


$\rank (\widetilde E)=\rank (E)$


$(\widetilde E,\tilde \costate )$


$\widetilde E_{ij}=U_{1i}\transp (E_{11}\circ \varphi ) \jacobian _{\tilde \state _j}{\varphi _1}$


$i=j=1$


$\widetilde E$


$\widetilde E_{11}$


$U_{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\widetilde E_{12},\widetilde E_{21}=0$


$U_{12},\jacobian _{\tilde \state _2}\varphi _1=0$


$U_{12},\jacobian _{\tilde \state _2}\varphi _1=0$


$\widetilde E_{ij}=0$


$(i,j)\neq (1,1)$


$U$


$\jacobian \varphi $


$U_{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\widetilde E_{11}$


$\varphi $


$\jacobian _{\tilde \state _2}\varphi _1=0$


$\varphi _{11}\in \cont ^1(\widetilde \statespace _1,\statespace _1)$


$\varphi _{11}\circ \pi _1=\varphi _1$


$\jacobian \varphi _{11}\circ \pi _1=\jacobian _{\tilde \state _1}\varphi _1$


$\hamiltonian \in \cont ^1(\statespace ,\R )$


$\gradient _{\state _2}\hamiltonian =0$


$\specified \hamiltonian \in \cont ^1(\statespace _1,\R )$


$\DG \specified \hamiltonian $


$\specified \hamiltonian $


${\overline {\rm {D}}}{\varphi }_{11}$


$\varphi _{11}$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\specified {\widetilde \hamiltonian }\in \cont ^1(\widetilde \statespace _1,\R )$


\begin {equation}\label {eq:DGspecChainRule} \DG \specified {\widetilde \hamiltonian } = ({\overline {\rm {D}}}{\varphi }_{11})\transp (\DG \specified \hamiltonian \circ \varphi _{11})\end {equation}


$\specified {\widetilde \hamiltonian }$


$\varphi _{11}\in \cont ^1(\widetilde \statespace _1,\statespace _1)$


$\varphi _{11}\circ \pi _1=\varphi _1$


$\jacobian \varphi \circ \pi _1=\jacobian _{\tilde \state _1}\varphi _1$


$\psi =(\psi _1,\psi _2)=\varphi ^{-1}$


$\jacobian \psi =(\jacobian \varphi \circ \psi )^{-1}$


$\jacobian \varphi $


$\psi _{11}\in \cont ^1(\statespace _1,\widetilde \statespace _1)$


$\varphi _{11}$


$\varphi _{11}\circ \psi _{11}$


$\psi _{11}\circ \varphi _{11}$


$\jacobian \varphi _{11}$


$\jacobian _{\tilde \state _1}\varphi _1$


$\jacobian \varphi $


$\varphi _{11}$


\begin {equation*}\gradient \widetilde \hamiltonian = (\jacobian \varphi )\transp (\gradient \hamiltonian \circ \varphi ) = \begin {bmatrix} \jacobian _{\tilde \state _1}\varphi _1\transp & \jacobian _{\tilde \state _1}\varphi _2\transp \\ 0 & \jacobian _{\tilde \state _2}\varphi _2\transp \end {bmatrix} \begin {bmatrix} \gradient _{\state _1}\hamiltonian \circ \varphi \\ 0 \end {bmatrix} = \begin {bmatrix} \jacobian _{\tilde \state _1}\varphi _1\transp (\gradient _{\state _1}\hamiltonian \circ \varphi ) \\ 0 \end {bmatrix},\end {equation*}


$\specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }=\specified \hamiltonian \circ \varphi _{11}$


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\DG \specified \hamiltonian $


$\specified \hamiltonian $


$\discrete E_{11},\discretecostate _2,\discreteJ ,\discreteR ,\discreteB $


$E_{11},\costate _2,J,R,B$


$\discreteJ =-\discreteJ \transp $


$\discreteR =\discreteR \transp \succeq 0$


$(\varphi ,U)$


${\overline {\rm {D}}}{\varphi }_{11}$


$\varphi _{11}$


$\discrete U=\Big [\begin {smallmatrix}\discrete U_{11} & 0 \\ \discrete U_{21} & \discrete U_{22}\end {smallmatrix}\Big ]$


$U$


$\DG \specified \hamiltonian $


$\discrete E_{11},\discretecostate _2,\discreteJ ,\discreteR ,\discreteB $


$(\varphi ,U)$


$\DG \specified {\widetilde \hamiltonian }$


$\widehat E_{11}=\discrete {U}_{11}\transp (\discreteE _{11}\circ \varphi )({\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1)$


$\hat \costate _2 = \discrete {U}_{22}^{-1} \pset [\big ]{ (\discretecostate _2\circ \varphi ) - \discrete U_{21}\widehat E_{11}\ntransp (\DG \specified {\widetilde \hamiltonian }\circ \pi _1)}$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R=\discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


$\varphi $


$\DG \specified {\widetilde \hamiltonian }$


$\specified {\widetilde \hamiltonian }$


$\widehat E_{11}$


$\widehat J$


$\widehat R$


$\widehat B$


$\widetilde E_{11}=U_{11}\transp (E_{11}\circ \varphi )\jacobian _{\tilde \state _1}\varphi _1 = U_{11}\transp (E_{11}\circ \varphi )(\jacobian \varphi _{11}\circ \pi _1)$


$\widetilde J=U\transp (J\circ \varphi )U$


$\widetilde R=U\transp (R\circ \varphi )U$


$\widetilde B=U\transp (B\circ \varphi )$


$\widehat J=-\widehat J\transp $


$\widehat R=\widehat R\transp \succeq 0$


$\widehat E_{11}$


\begin {align*}\tilde \costate _2 & = [0,I_{n_2}]U^{-1}(\costate \circ \varphi ) = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}U_{11}^{-1}(\costate _1\circ \varphi ) } \\ & = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}U_{11}^{-1}(E_{11}\circ \varphi )\ntransp (\gradient _{\state _1}\hamiltonian \circ \varphi )} = U_{22}^{-1}\pset [\big ]{ (\costate _2\circ \varphi ) - U_{21}\widetilde E_{11}\ntransp (\gradient \specified {\widetilde \hamiltonian }\circ \pi _1) },\end {align*}


$\hat \costate _2$


$\tilde \costate _2$


${\overline {\rm {D}}}{\varphi }$


$\varphi $


${\overline {\rm {D}}}_{\tilde \state _1}\varphi _1={\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1$


${\overline {\rm {D}}}{\varphi }_2$


$\varphi _2=\pi _2\circ \varphi $


\begin {equation*}{\overline {\rm {D}}}{\varphi } = \begin {bmatrix} {\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1 & 0 \\ {\overline {\rm {D}}}_{\tilde \state _1}\varphi _2 & {\overline {\rm {D}}}_{\tilde \state _2}\varphi _2 \end {bmatrix},\end {equation*}


$(\discreteE ,\discretecostate )$


\begin {equation*}\discreteE = \begin {bmatrix} \discreteE _{11} & 0 \\ 0 & 0 \end {bmatrix}, \qquad \discretecostate = \begin {bmatrix} \discreteE _{11}\ntransp (\DG \specified \hamiltonian \circ \pi _1) \\ \discretecostate _2 \end {bmatrix},\end {equation*}


$\pi _1$


$\statespace $


$\statespace _1$


$\varphi $


$(\widehat E,\hat \costate )$


\begin {align*}\widehat E & = \discrete U\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi } = \begin {bmatrix} \discrete U_{11}\transp (\discreteE _{11}\circ \varphi ) ({\overline {\rm {D}}}{\varphi }_{11}\circ \pi _1) & 0 \\ 0 & 0 \end {bmatrix} = \begin {bmatrix} \widehat E_{11} & 0 \\ 0 & 0 \end {bmatrix}, \\ \hat \costate & = \discrete {U}^{-1}(\discretecostate \circ \varphi ) = \begin {bmatrix} \discrete U_{11}^{-1}(\discreteE _{11}\circ \varphi )\ntransp (\DG \specified \hamiltonian \circ \pi _1\circ \phi ) \\ \discrete {U}_{22}^{-1} \pset [\big ]{ (\discretecostate _2\circ \varphi ) - \discrete U_{21}\discrete U_{11}^{-1}(\discreteE _{11}\circ \varphi )\ntransp (\DG \specified \hamiltonian \circ \pi _1\circ \phi ) } \end {bmatrix} = \begin {bmatrix} \widehat {E}_{11}\ntransp (\DG \specified {\widetilde \hamiltonian }\circ \pi _1) \\ \hat \costate _2 \end {bmatrix} ,\end {align*}


$\widehat J,\widehat R,\widehat B$


$(\widehat E,\hat \costate )$


$\DG \specified {\widetilde \hamiltonian }$


$\widehat E_{11}$


$\hat \costate _2$


$\widehat J$


$\widehat R$


$\widehat B$


$(\varphi ,U)$


\begin {equation}\begin {bmatrix} (\jacobian {\varphi })\transp (\gradient \hamiltonian \circ \varphi ) \\ 0 \\ y \end {bmatrix} + \begin {bmatrix} 0 & -\jacobian \varphi \transp (E\circ \varphi )\transp U & 0 \\ U\transp (E\circ \varphi ) \jacobian \varphi & U\transp \pset [\big ]{(J-R)\circ \varphi } U & U\transp (B\circ \varphi ) \\ 0 & (B\circ \varphi )\transp U & 0 \end {bmatrix} \begin {bmatrix} -\dot {\tilde \state } \\ \tilde f \\ u \end {bmatrix} = 0, \label {Xeqn42-D.2}\end {equation}


$\tilde f=U^{-1}(\costate \circ \varphi )$


$\DG \hamiltonian $


$\hamiltonian $


$\discreteE $


$\discreteJ $


$\discreteR $


$\discreteB $


$E$


$J$


$R$


$B$


$({\overline {\rm {D}}}{\varphi })\transp $


$\discrete U\transp $


${\overline {\rm {D}}}{\varphi }$


$\varphi $


$\discrete U$


$U$


$\state \none -\state \n ={\overline {\rm {D}}}{\varphi }(\tilde \state \n ,\tilde \state \none )(\tilde \state \none -\tilde \state \n )$


$\discretetimestep {f}=\discrete {U}(\tilde \state \n ,\tilde \state \none )\discretetimestep {\tilde f}$


$\tilde \state \n =\varphi ^{-1}(\state \n )$


$\tilde \state \none =\varphi ^{-1}(\state \none )$


\begin {equation}\label {eq:transfDiscDDR} \begin {bmatrix} ({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi ) \\ 0 \\ \discreteoutput \end {bmatrix} + \begin {bmatrix} 0 & -{\overline {\rm {D}}}{\varphi }\transp (\discreteE \circ \varphi )\transp \discrete {U} & 0 \\ \discrete {U}\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi } & \discrete {U}\transp \pset [\big ]{(\discreteJ -\discreteR )\circ \varphi } \discrete {U} & \discrete U\transp (\discreteB \circ \varphi ) \\ 0 & (\discreteB \circ \varphi )\transp \discrete U & 0 \end {bmatrix} \begin {bmatrix} -\frac {\tilde \state \none -\tilde \state \n }{h} \\ \discretetimestep {\tilde f} \\ \discreteinput \end {bmatrix} = 0,\end {equation}


$(\tilde \state \n ,\tilde \state \none )$


$\DG \widetilde \hamiltonian =({\overline {\rm {D}}}{\varphi })\transp (\DG \hamiltonian \circ \varphi )$


$\widetilde \hamiltonian =\hamiltonian \circ \varphi $


$\widehat E=\discrete {U}\transp (\discreteE \circ \varphi ) {\overline {\rm {D}}}{\varphi }$


$\widehat J=\discrete {U}\transp (\discreteJ \circ \varphi )\discrete {U}$


$\widehat R = \discrete {U}\transp (\discreteR \circ \varphi )\discrete {U}$


$\widehat B=\discrete {U}\transp (\discreteB \circ \varphi )$


${\overline {\rm {D}}}{\varphi }(\state \n ,\state \none )$


${\overline {\rm {D}}}{\varphi }(\state \n ,\state \n )=\jacobian \varphi (\state \n )$


$\state \n \in \statespace $


$F(\state \n ,\state \none ,\discretetimestep {f})=0$


$F:\statespace \times \statespace \times \R ^m\to \R ^p$


$\widetilde F(\tilde \state \n ,\tilde \state \none ,\discretetimestep {\tilde f})=0$


\begin {equation*}\widetilde F(\tilde \state \n ,\tilde \state \none ,\discretetimestep {\tilde f}) = F(\varphi (\tilde \state \n ),\varphi (\tilde \state \none ),\discrete U(\tilde \state \n ,\tilde \state \none )\discretetimestep {\tilde f}).\end {equation*}


$\norm {\discretetimestep {f}-\discretecostate (\state \n ,\state \none )}$


$\discretecostate $


$\costate $


\begin {equation*}\norm {\discretetimestep {f}-\discretecostate (\state \n ,\state \none )} = \norm {\discrete {U}(\tilde \state \n ,\tilde \state \none )(\discretetimestep {\tilde f}-\hat \costate (\tilde \state \n ,\tilde \state \none ))}\end {equation*}


$\hat \costate =\discrete U^{-1}(\discretecostate \circ \varphi )$


$\tilde \costate $


$m_i$


$k_i$


$l_{i0}$


$i \in \{1,2 \}$


$x_1$


$x_2$


$q_2$


\begin {align*}{q}= \begin {bmatrix} x_1 \\ q_2 \\ x_2 \end {bmatrix} \quad \text {and} \quad {v} = \begin {bmatrix} v_1 \\ v_2 \\ v_3 \end {bmatrix} = \begin {bmatrix} \dot {x}_1 \\ \dot {q}_2 \\ \dot {x}_2 \end {bmatrix}\end {align*}


$q_2 = x_1 + l_{10} + w$


\begin {align}\label {exkineticenergysingularM} T({v}) = \frac {1}{2} m_1 v_1^2 + \frac {1}{2} m_2 (v_2 + v_3)^2 = \frac {1}{2} {v} \transp M v\end {align}


$M$


\begin {align}E =\begin {bmatrix} I_{3 \times 3} & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 0 \end {bmatrix}.\end {align}


$E$


$E=U\Sigma V\transp =[U_1,U_2]\diag (\Sigma _1,0)[V_1,V_2]\transp $


$\Sigma _1 = \diag {(1,1,1,m_1,2m_2)}$


\begin {align}V_1 = W_1 = \begin {bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \frac {1}{\sqrt {2}} \\ 0 & 0 & 0 & 0 & \frac {1}{\sqrt {2}} \\ 0 & 0 & 0 & 0 & 0 \end {bmatrix} \ , V_2 = W_2 = \begin {bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -\frac {1}{\sqrt {2}} & 0 \\ \frac {1}{\sqrt {2}} & 0 \\ 0 & 1 \end {bmatrix} .\end {align}


$E\in \cont (\statespace ,\R ^{m,n})$


$\rank (E(\state ))=r$


$\state \in \statespace $


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$U\in \cont (\statespace _0,\R ^{m,m})$


$V\in \cont (\statespace _0,\R ^{n,n})$


\begin {equation}U\transp EV = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix} , \label {Xeqn44-F.1}\end {equation}


$\Sigma \in \cont (\statespace _0,\R ^{r,r})$


$E$


$\cont ^\ell $


$\ell \in \N _0\cup \{\infty \}$


$U$


$V$


$\Sigma $


\begin {equation*}U_0\transp E(\state _0)V_0 = \begin {bmatrix} \Sigma _0 & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$E(\state _0)$


$U_0\in \R ^{m,m}$


$V_0\in \R ^{n,n}$


$\Sigma _0\in \R ^{r,r}$


\begin {equation*}U_0\transp E(\state )V_0 = \begin {bmatrix} E_{11}(\state ) & E_{12}(\state ) \\ E_{21}(\state ) & E_{22}(\state ) \end {bmatrix}\end {equation*}


$\state \in \statespace $


$E_{11}(\state _0)=\Sigma _0$


$E$


$\statespace _0\subseteq \statespace $


$\state _0$


$E_{11}(\state )$


$\state \in \statespace _0$


$E_{ij}$


$E$


$i,j$


$E_{11}$


$\statespace _0$


\begin {equation*}E_{11}(\state )^{-1} = \frac {\mathrm {adj}(E_{11}(\state ))}{\det (E_{11}(\state ))},\end {equation*}


$\mathrm {adj}(E_{11}(\state ))$


$E_{11}(\state )$


$E_{11}(\state )$


$\det (E_{11}(\state ))$


$\statespace _0$


$E_{11}$


$E$


$\statespace _0$


\begin {equation*}\widetilde U(\state )\transp \coloneqq \begin {bmatrix} I_r & 0 \\ -E_{21}(\state )E_{11}(\state )^{-1} & I_{m-r} \end {bmatrix}U_0\transp , \qquad \widetilde V(\state ) \coloneqq V_0\begin {bmatrix} I_r & -E_{11}(\state )^{-1}E_{12}(\state ) \\ 0 & I_{n-r} \end {bmatrix},\end {equation*}


\begin {equation*}\widetilde U(\state )\transp E(x)\widetilde V(\state ) = \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & E_{22}(\state ) - E_{21}(\state )E_{11}(\state )^{-1}E_{12}(\state ) \end {bmatrix}\end {equation*}


$\state \in \statespace _0$


$E_{11}(\state )\in \R ^{r,r}$


$\state \in \statespace _0$


$E$


$r$


\begin {equation*}\widetilde U(\state )\transp E(x)\widetilde V(\state ) = \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix}\end {equation*}


$\state \in \statespace _0$


$\widetilde U$


$\widetilde V$


$E$


$\widetilde U$


$\widetilde V$


$\widetilde U(\state )=U(\state )L_U(\state )$


$\widetilde V(\state )=V(\state )L_V(\state )$


$\widetilde U$


$\widetilde V$


$\state \in \statespace _0$


$U$


$V$


$L_U$


$L_V$


$\widetilde U$


$\widetilde V$


$U,V,L_U,L_V$


$\widetilde U,\widetilde V$


\begin {align*}U(\state )\transp E(\state )V(\state ) &= L_U(\state )^{-\top }\widetilde U(\state )\transp E(\state )\widetilde V(\state )L_V(\state )^{-1} = \begin {bmatrix} \widetilde L_{11}(\state )\transp & \widetilde L_{21}(\state )\transp \\ 0 & \widetilde L_{22}(\state )\transp \end {bmatrix} \begin {bmatrix} E_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix} \begin {bmatrix} \widehat L_{11}(\state ) & \widehat L_{21}(\state ) \\ 0 & \widehat L_{22}(\state ) \end {bmatrix} \\ & = \begin {bmatrix} \widetilde L_{11}(\state )\transp E_{11}(\state )\widehat L_{11}(\state ) & 0 \\ 0 & 0 \end {bmatrix},\end {align*}


$\widetilde L(\state )=L_U(\state )^{-1}$


$\widehat L(\state )=L_V(\state )^{-1}$


$L_U$


$L_V$


$E_{11}$


$U$


$V$


$E$


$V$


$E\in \cont (\statespace ,\R ^{m,n})$


$\rank (E(\state ))=r$


$\state \in \statespace $


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$U\in \cont (\statespace _0,\R ^{m,m})$


$\Pi \in \R ^{n,n}$


\begin {equation}U\transp E\Pi = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix} , \label {Xeqn45-F.2}\end {equation}


$E_{12}\in \cont (\statespace _0,\R ^{r,n-r})$


$E$


$\cont ^\ell $


$\ell \in \N _0\cup \{\infty \}$


$U$


$E_{12}$


$\state _0\in \statespace $


$\statespace _0\subseteq \statespace $


$\state _0$


$\widetilde U,\widetilde V$


$\Sigma \in \cont (\statespace _0,\R ^{r,r})$


$\widetilde U,\widetilde V,\Sigma $


$E$


\begin {equation*}\widetilde U\transp E\widetilde V = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix}.\end {equation*}


\begin {equation*}\widetilde U\transp E = \begin {bmatrix} \Sigma & 0 \\ 0 & 0 \end {bmatrix} \widetilde V\transp = \begin {bmatrix} \widetilde E_{11} & \widetilde E_{12} \\ 0 & 0 \end {bmatrix}.\end {equation*}


$\rank (U\transp E(x_0))=\rank (E(x_0))=r$


$\Pi \in \R ^{n,n}$


\begin {equation*}\widetilde U\transp E\Pi = \begin {bmatrix} \widehat E_{11} & \widehat E_{12} \\ 0 & 0 \end {bmatrix} ,\end {equation*}


$\widehat E_{11}(\state _0)$


$\widehat E_{11}$


$\statespace _0$


$\widehat E_{11}$


$\statespace _0$


\begin {equation*}U = \widetilde U \begin {bmatrix} \widehat E_{11}\ntransp & 0 \\ 0 & I_{n-r} \end {bmatrix},\end {equation*}


\begin {equation*}U\transp E\Pi = \begin {bmatrix} \widehat {E}_{11}^{-1} & 0 \\ 0 & I_{n-r} \end {bmatrix} \widetilde U\transp E\Pi = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix}\end {equation*}


$E_{12}=\widehat E_{11}^{-1}\widehat E_{12}$


$\widetilde E$


$E_{12}$


$E$


$\Pi $


$\Pi =\jacobian \sigma $


$\sigma (\state )=\Pi \state $


$\state _0\in \statespace $


$\statespace _0$


$U$


$\Pi $


$E_{12}$


$(\sigma ,U)$


$\sigma (\state )=\Pi \state $


$E$


\begin {equation*}E = \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix},\end {equation*}


$E_{12}\in \cont (\statespace ,\R ^{r,n-r})$


\begin {equation}\label {eq:PDEforchangeOfVar} \gradient _{x_2}v(x) = E_{12}(x)\transp \gradient _{x_1}v(x),\end {equation}


$f_1,\ldots ,f_p\in \cont ^1(\statespace ,\R )$


$\gradient f_1,\ldots ,\gradient f_p$


$v(x)=V(f_1(x),\ldots ,f_p(x))$


$V\in \cont ^1(\R ^k,\R )$


$E_{12}$


$\psi _1=(f_1,\ldots ,f_p)\in \cont ^1(\statespace ,\R ^p)$


$\jacobian _{x_2}\psi _1=(\jacobian _{x_1}\psi _1)E_{12}$


$f_1,\ldots ,f_p$


$f_1,\ldots ,f_n\in \cont ^1(\statespace ,\R )$


$\state _1,\ldots ,\state _n$


\begin {equation*}\psi =(f_1,\ldots ,f_n)=(\psi _1,f_{p+1},\ldots ,f_n)\in \cont ^1(\statespace ,\R ^n)\end {equation*}


$\statespace _0$


$\state _0$


$\psi :\statespace _0\to \psi (\statespace _0)$


$\widetilde \statespace _0=\psi (\statespace _0)$


$\varphi =\psi ^{-1}\in \cont ^1(\widetilde \statespace _0,\statespace _0)$


$\hamiltonian $


$\hamiltonian =\specified {\widetilde \hamiltonian }\circ \psi _1$


$\specified {\widetilde \hamiltonian }\in \cont ^1(\pi _1(\widetilde \statespace _0),\R )$


$\pi _1:\R ^n\to \R ^p$


$p$


\begin {align*}\jacobian \psi \begin {bmatrix} I_r & E_{12} \\ 0 & 0 \end {bmatrix} (\jacobian \varphi \circ \psi ) = \begin {bmatrix} \jacobian _{\state _1}\psi _1 & (\jacobian _{\state _1}\psi _1)E_{12} \\ \star & \star \end {bmatrix} (\jacobian \psi )^{-1} = \begin {bmatrix} \jacobian \psi _1 \\ \star \end {bmatrix} (\jacobian \psi )^{-1} = \begin {bmatrix} I_p & 0 \\ \star & \star \end {bmatrix}.\end {align*}


$(\varphi ,(\jacobian \psi \circ \varphi ))$


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 \\ E_{12}(x) & E_{22}(x) \end {bmatrix}.\end {equation*}


$\hamiltonian $


$\specified \hamiltonian \in \cont ^1(\pi _1(\statespace _0),\R )$


$(\sigma ,U)$


$\sigma (\state )=\Pi \state $


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32}(x) & E_{33}(x) \end {bmatrix},\end {equation*}


$E_{32}\in \cont (\statespace _0,\R ^{r-p,n-r})$


$E_{33}\in \cont (\statespace _0,\R ^{r-p,r-p})$


$E_{33}(\state _0)$


$\statespace _0$


$\state _0$


$E_{33}$


$E$


\begin {equation*}E(x) = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & 0 \\ 0 & E_{32}(x) & I_{r-p} \end {bmatrix}.\end {equation*}


$x=(x_1,x_2,x_3)\in \R ^p\times \R ^{n-r}\times \R ^{r-p}$


$z=(z_1,z_2,z_3)\in \R ^p\times \R ^{n-r}\times \R ^{r-p}$


$E\transp \costate =\gradient \hamiltonian $


\begin {equation*}\begin {bmatrix} z_1 \\ E_{32}\transp z_3 \\ z_3 \end {bmatrix} = \begin {bmatrix} I_p & 0 & 0 \\ 0 & 0 & E_{32}\transp \\ 0 & 0 & I_{r-p} \end {bmatrix} \begin {bmatrix} z_1 \\ z_2 \\ z_3 \end {bmatrix} = E\transp z = \gradient \hamiltonian = \begin {bmatrix} \gradient \specified {\hamiltonian }\circ \pi _1 \\ 0 \\ 0 \end {bmatrix},\end {equation*}


$\costate _1=\gradient \specified {\hamiltonian }\circ \pi _1$


$z_3=0$
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In general, discretizing a structured dynamical system, such as a pH system, can result in the loss of its continuous-time properties, 
potentially leading to numerical solutions that exhibit unphysical behavior (see, for example, [8, Ch. 1]). One way to mitigate this 
issue is by employing a structure-preserving time discretization scheme, as the system’s properties are often embedded in the algebraic 
or geometric structure of the original continuous-time model. Examples of such systems include gradient [9], Hamiltonian [10], and, 
particularly relevant to this work, pH systems. Structure-preserving time discretization approaches for Hamiltonian systems have 
been widely studied, with [8] offering a general overview. Notably, the development of structure-preserving discretization methods 
has been driven by computational mechanics [11–15], where variational integrators [14,16,17] represent an important discretization 
approach within the group of symplectic methods [18]. An interesting approach is also given by time finite element methods (see, 
e.g. [19–23]). Structure-preserving techniques for other system classes are for example explored in [24–27].

Compared to those works, the structure-preserving time discretization of pH systems is still a relatively young field. When per-
forming numerical integration of pH systems, it is essential to account for the energy exchange through the ports resulting in the 
presence of a power balance equation. The following developments have been made in recent years:

• In [28], the authors show that certain collocation methods can achieve an exact power balance at the discrete level, provided that 
the total energy function, the Hamiltonian, is a quadratic function of the state. This result is further extended to descriptor systems 
in [4].

• Structure-preserving discretization approaches based on Petrov-Galerkin projections have been proposed in [23,29] and are closely 
connected to the aforementioned time finite element approaches. Although these methods can provide continuous solutions also 
between discrete points in time, and one can obtain arbitrarily high convergence rates, they require the numerical approximation 
of integrals in time. If the integrand is non-polynomial, one may not be able to integrate these formulas sufficiently accurately, 
which can lead to the loss of the desired convergence and conservation properties [20]. Moreover, this numerical quadrature 
imposes additional numerical costs for the emanating schemes.

• In several recent works, e.g. [30–32], the authors consider splitting schemes that separate the energy-conserving and dissipative 
parts of the dynamics. While this approach can achieve high order convergence and seems quite promising, to the best of our 
knowledge, it has been so far only applied to linear port-Hamiltonian systems with quadratic Hamiltonian.

• Another approach consists in dropping the requirement for an exact time-discrete power balance, while focusing on minimizing 
its violation, for example by refining adaptively the time grid of the discretization, see e.g. [33].

Contrary to these approaches, the present work pursues a discrete gradient approach, which achieves exact time-discrete power balances 
also for non-quadratic Hamiltonians. Additionally, the implementation of such schemes is comparably simple and straightforward. 
While most of the known discrete gradient schemes are restricted to second order convergence rates, there are recent developments 
to obtain higher accuracy as well (see [34] and the references therein). Another notable work [35] deals with DAEs with a gradient 
structure and constant descriptor matrix.

Most of the approaches in the literature for pH systems [36–42], which achieve an exact power balance at the discrete level 
for general Hamiltonians, share the characteristic that they focus on pH ordinary-differential equations, where the gradient of the 
Hamiltonian explicitly appears in the system equations. A challenge with applying methods like discrete gradient techniques to more 
general systems as introduced in [4] lies in the fact that the gradient of the Hamiltonian in general only appears implicitly in the 
system equations. The development of discrete gradient pairs [43] has recently addressed this issue.

In contrast to the works focusing on ordinary differential equations, we want to generalize the application field of discrete gradient 
methods to pHDAEs with possibly state-dependent descriptor matrices, as introduced in [4]. The primary contributions of this work 
are outlined in the following:

1. Discussion of discrete gradient pairs for general pHDAEs along with a corresponding time integration approach, see Section 4.1.
2. Development of a tangible discrete gradient method for semi-explicit pHDAEs, see Section 4.2. This already covers many application 
problems.

3. Introduction of discrete gradient methods for general pHDAEs, based on a different modeling approach which emphasizes the 
underlying Dirac structure, see Section 4.3.

4. In-depth analysis of relations between the proposed methods and their behavior under coordinate transformations, see Section 5.

The remainder of this work is structured as follows: Preliminary basics are recapitualed in Section 2, including the definition of 
pHDAEs and discrete gradients. In Section 3 we focus on a certain class of pHDAEs, namely semi-explicit pHDAEs. We then introduce 
new methods for the numerical integration of pHDAEs using discrete gradients in Section 4. We analyze their behavior under system 
transformations and provide conditions for the existence of a semi-explicit representation in Section 5. Section 6 is entirely devoted 
to the application of our approaches to multibody systems, including numerical experiments. Conclusions and a brief outlook are 
given in Section 7.

1.1.  Notation

We denote by ℕ the positive natural numbers and by ℕ0 the natural numbers including zero. With 𝐼𝑛 ∈ ℝ𝑛,𝑛 or simply 𝐼 we denote 
the identity matrix and with 0 the zero matrix or vector. We mostly assume that the dimension should become clear from the context. 
For every matrix 𝐴 ∈ ℝ𝑛,𝑚 or vector 𝑣 ∈ ℝ𝑛 = ℝ𝑛,1 we denote by 𝐴⊤ ∈ ℝ𝑚,𝑛 and 𝑣⊤ ∈ ℝ1,𝑛 their corresponding transposes. For the sake 
of readability, we sometimes abbreviate less important, unspecified terms by “⋆”.
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We denote by (𝑋, 𝑌 ) the continuous functions between two topological spaces 𝑋 and 𝑌 . For 𝑘 ∈ ℕ0 ∪ {∞} we denote by 𝑘(1,2)
the 𝑘-times continuously differentiable functions from 1 to 2, where typically 1 ⊆ ℝ𝑛 and 2 ⊆ ℝ𝑚 are open subsets for some 
𝑛, 𝑚 ∈ ℕ.

If 𝑓 ∈ 1( ,ℝ) with  ⊆ ℝ𝑛 open, we denote by ∇𝑓 ∈ ( ,ℝ𝑛) the gradient of 𝑓 , intended as a column vector function. If 𝐹 ∈
1( ,ℝ𝑚) with  ⊆ ℝ𝑛 open, we denote by D𝐹 ∈ ( ,ℝ𝑚,𝑛) the Jacobian of 𝐹 , intended as a matrix function whose rows transposed 
are the gradients of the entries of 𝐹 . Furthermore, given a partition 𝐹 = (𝐹1,… , 𝐹𝑚) for the function and 𝑥 = (𝑥1,… , 𝑥𝑟) of the state 
variable, with 𝑥𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑛𝑖 ) ∈ ℝ𝑛𝑖  for 𝑖 = 1,… , 𝑟, we denote the corresponding partial gradients and partial Jacobians as

∇𝑥𝑖𝑓 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑓
𝜕𝑥𝑖,1
⋮
𝜕𝑓
𝜕𝑥𝑖,𝑛𝑖

⎤

⎥

⎥

⎥

⎦

, D𝑥𝑖𝐹 =

⎡

⎢

⎢

⎢

⎣

𝜕𝐹1
𝜕𝑥𝑖,1

⋯ 𝜕𝐹1
𝜕𝑥𝑖,𝑛𝑖

⋮ ⋱ ⋮
𝜕𝐹𝑚
𝜕𝑥𝑖,1

⋯ 𝜕𝐹𝑚
𝜕𝑥𝑖,𝑛𝑖

⎤

⎥

⎥

⎥

⎦

,

such that in particular

∇𝑓 =
⎡

⎢

⎢

⎣

∇𝑥1𝑓
⋮

∇𝑥𝑟𝑓

⎤

⎥

⎥

⎦

, D𝐹 =
[

D𝑥1𝐹 ⋯ D𝑥𝑟𝐹
]

. (1)

Additionally, the derivative with respect to time 𝑡 deserves its own notation, which is 𝑥̇ ∶= d𝑥
d𝑡 .

If 𝑓 ∶  →  and 𝑔 ∶  →  are two maps, we denote as usual with 𝑔◦𝑓 ∶  →  their composition, i.e., 𝑔◦𝑓 (𝑥) = 𝑔(𝑓 (𝑥)). When 
𝑔 ∶  ×  → , we sometimes abuse the notation and write 𝑔◦𝑓 ∶  ×  →  to denote the map 𝑔◦𝑓 (𝑥, 𝑥′) = 𝑔(𝑓 (𝑥), 𝑓 (𝑥′)).

For every matrix function 𝐴 ∈ ( ,ℝ𝑚,𝑛), we denote by 𝐴⊤ ∈ ( ,ℝ𝑛,𝑚) its pointwise transpose 𝐴⊤(𝑥) = 𝐴(𝑥)⊤. If furthermore 
𝑚 = 𝑛 and 𝐴 is pointwise invertible, we usually denote by 𝐴−1 ∈ ( ,ℝ𝑛,𝑛) its pointwise inverse 𝐴−1(𝑥) = 𝐴(𝑥)−1, instead of the 
inverse map, unless otherwise specified. We also introduce the short notation 𝐴−⊤ for (𝐴−1)⊤ = (𝐴⊤)−1. Given a subset  ⊆ ℝ𝑛, we 
denote by span() ⊆ ℝ𝑛 the smallest linear subspace of ℝ𝑛 containing  , and by

⟂ = {𝑣 ∈ ℝ𝑛 ∣ 𝑣 ⟂ 𝑤 for all 𝑤 ∈ }

its orthogonal complement. When  consists of only one vector 𝑣 ∈ ℝ𝑛, we simply write span(𝑣) and 𝑣⟂ instead of span({𝑣}) and {𝑣}⟂. 
Given a subset  ⊆ ℝ𝑛1 ×ℝ𝑛2 , we usually denote by 𝜋1 ∶  → ℝ𝑛1  and 𝜋2 ∶  → ℝ𝑛2  the corresponding orthogonal projections, i.e., 
𝜋1(𝑥1, 𝑥2) = 𝑥1 and 𝜋2(𝑥1, 𝑥2) = 𝑥2 for all (𝑥1, 𝑥2) ∈  .

2.  Preliminaries

In this section, we recall some preliminary concepts and definitions that will be useful in the remainder of this work.

2.1.  Differential-algebraic equations

Differential-algebraic equations are systems of the form

𝐹
(

𝑡, 𝑥, d𝑥
d𝑡
,… , d

𝑘𝑥
d𝑡𝑘

)

= 0 (2)

for some map 𝐹 ∶ 𝐹 → ℝ𝑚, where 𝑡 ∈ 𝕋 ⊆ ℝ denotes the time variable, 𝑥 ∈  ⊆ ℝ𝑛 the state variable, and 𝐹 ⊆ ℝ1+(𝑘+1)𝑛 is the 
domain of 𝐹 . Here 𝑛 is the dimension of the state variable, 𝑚 the number of equations, and 𝑘 is the order of the DAE. Typically, the 
domain of 𝐹  is of the form 𝐹 = 𝕋 ×  ×ℝ𝑘𝑛, where 𝕋 ⊆ ℝ is an open (possibly unbounded) interval and  ⊆ ℝ𝑛 is an open subset, 
while the solutions of (2) are to be found in 𝑘(𝕋 ,).

We are particularly interested in first order quasilinear DAEs, i.e., equations of the form

𝐸(𝑡, 𝑥)𝑥̇ = 𝑓 (𝑡, 𝑥), (3)

see e.g. [44,45], for some maps 𝐸 ∶ 𝐸 → ℝ𝑚,𝑛 and 𝑓 ∶ 𝑓 → ℝ𝑚, where 𝐸 ,𝑓 ⊆ ℝ1+𝑛. In particular, if we had 𝑛 = 𝑚 and 𝐸 were 
pointwise invertible, then (3) would be equivalent to 𝑥̇ = 𝐸(𝑡, 𝑥)−1𝑓 (𝑡, 𝑥), which is a system of first order ordinary differential equations 
(ODEs). However, when this property is not satisfied, the system might include algebraic constraints and be under- or overdetermined. 
This presents several challenges, both in the study of the existence and uniqueness of solutions and in the time discretization of the 
system, see e.g. [46]. In particular, dedicated numerical methods are often necessary.

Enriching a DAE with input and output variables 𝑢 ∈ ℝ𝑝 and 𝑦 ∈ ℝ𝑞 we obtain a descriptor system
𝐸(𝑡, 𝑥)𝑥̇ = 𝑓 (𝑡, 𝑥, 𝑢),

𝑦 = 𝑔(𝑡, 𝑥, 𝑢),
(4)

for some maps 𝐸 ∶ 𝐸 → ℝ𝑚,𝑛, 𝑓 ∶ 𝑓 → ℝ𝑚, and 𝑔 ∶ 𝑔 → ℝ𝑞 , where 𝐸 ⊆ ℝ1+𝑛 and 𝑓 ,𝑔 ⊆ ℝ1+𝑛+𝑝. In applications, the input 𝑢
is typically a given fixed time-varying function, a state feedback, or an output feedback.
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2.2.  Port-Hamiltonian descriptor systems

In this paper we focus on time-invariant port-Hamiltonian descriptor systems. We introduce first the concept of gradient pair, which 
will replace the gradient of the Hamiltonian in the equations.
Definition 1.  Let  ⊆ ℝ𝑛 be an open set and let  ∈ 1( ,ℝ), 𝐸 ∈ ( ,ℝ𝑛,𝑛), and 𝑧 ∈ ( ,ℝ𝑛). We say that (𝐸, 𝑧) is a gradient pair
for  if

𝐸(𝑥)⊤𝑧(𝑥) = ∇(𝑥) (5)

holds for all 𝑥 ∈  . 
Port-Hamiltonian descriptor systems are then defined as follows.
Definition 2  (see also [4]). Consider a time interval 𝕋 = [0, 𝑡end] with 𝑡end > 0 and an open state space  ⊆ ℝ𝑛. A time-invariant 
port-Hamiltonian descriptor system, in short pHDAE, is a descriptor system of the form

𝐸(𝑥)𝑥̇ =
(

𝐽 (𝑥) − 𝑅(𝑥)
)

𝑧(𝑥) + 𝐵(𝑥)𝑢,

𝑦 = 𝐵(𝑥)⊤𝑧(𝑥),
(6)

together with a Hamiltonian  ∈ 1( ,ℝ), where 𝐸, 𝐽 ,𝑅 ∈ ( ,ℝ𝑛,𝑛), 𝐵 ∈ ( ,ℝ𝑛,𝑚), and 𝑧 ∈ ( ,ℝ𝑛) satisfy the properties 𝐽 (𝑥) =
−𝐽 (𝑥)⊤, 𝑅(𝑥) = 𝑅(𝑥)⊤ ⪰ 0 for all 𝑥 ∈  , and (𝐸, 𝑧) is a gradient pair for . Here 𝐸, 𝐽 ,𝑅 are called the descriptor, structure, and dissipation
matrix functions, respectively, and 𝑧 is called the costate function. 
Remark 1. 

In the context of the modeling of pH systems, the state variables 𝑥 are also sometimes called energy variables (see e.g. [5] and 
[2, Ch. 11]), since the Hamiltonian  ∶ 𝑥↦ (𝑥) depends on them. Likewise, the coenergy variables 𝑒 are given as the derivative 
of the Hamiltonian with respect to the energy variables, i.e., 𝑒 = ∇(𝑥). While the energy variables can be interpreted as points 
on a differential manifold 𝑥 ∈  , the coenergy variables are elements of the cotangent bundle 𝑒 ∈ 𝑇 ∗ . We have then a natural 
duality induced by the pair (𝑇 , 𝑇 ∗), which yields a power balance equation given as d

d𝑡(𝑥(𝑡)) = ⟨𝑥̇, 𝑒(𝑥)⟩ = ⟨𝑥̇,∇(𝑥)⟩. This also 
corresponds to the duality between flow and effort variables.

In the present case however, the coenergy variables 𝑒 do not directly correspond to the costate function 𝑥↦ 𝑧(𝑥), but to 𝑥 ↦ 𝑒(𝑥) =
𝐸(𝑥)⊤𝑧(𝑥) = ∇(𝑥) instead. Furthermore, as we will see in more detail in Section 3, the presence of algebraic equations typically 
induces a partition on both the state and costate of the system, which decouples some of the variables from the energy. Thus, to avoid 
ambiguity, in the context of pHDAEs we refer to 𝑥 as the state and to 𝑧 as the costate, evading the energy/coenergy nomenclature 
altogether. 
Remark 2.  In this work we formally consider only systems without a feedthrough term in the output equation. Nevertheless, our 
results can be easily adapted for systems with feedthrough, i.e., replacing the output equation with 𝑦 = 𝐶(𝑥)⊤𝑧(𝑥) +𝐷(𝑥)𝑢 for some 
matrix functions 𝐶,𝐷 and requiring some additional dissipative structure involving 𝑅,𝐵, 𝐶,𝐷, see e.g. definitions in [4,47]. 
Remark 3.  Although the system from Definition 2 could emerge from a change of variables of a pH ODE system with state 𝑥̃ and 
Jacobian D𝑥̃(𝑥) = 𝐸(𝑥) inducing 𝑧(𝑥) = ∇̃(𝑥̃(𝑥)), the presented framework additionally covers many more cases. 
Note that in Definition 2 the input and output variables, usually taken as functions in (𝕋 ,ℝ𝑚), have the same size. In fact, the product 
𝑦⊤𝑢 typically has the same physical dimension as power. In particular, one can easily verify (see e.g. [4]) that every pHDAE of the 
form (6) satisfies the power balance equation (PBE)

d
d𝑡

(

𝑥(𝑡)
)

= −𝑧
(

𝑥(𝑡)
)⊤𝑅

(

𝑥(𝑡)
)

𝑧
(

𝑥(𝑡)
)

+ 𝑦(𝑡)⊤𝑢(𝑡) (7)

and the dissipation inequality
d
d𝑡

(

𝑥(𝑡)
)

≤ 𝑦(𝑡)⊤𝑢(𝑡), (8)

along every solution (𝑥, 𝑢, 𝑦) of (6), for all 𝑡 ∈ 𝕋 . Note that the PBE and the dissipation inequality can be reinterpreted in integral form 
as


(

𝑥(𝑡1)
)

−
(

𝑥(𝑡0)
)

= ∫

𝑡1

𝑡0

(

− 𝑧(𝑥(𝑡))⊤𝑅(𝑥(𝑡))𝑧(𝑥(𝑡)) + 𝑦(𝑡)⊤𝑢(𝑡)
)

d𝑡 (9)

and


(

𝑥(𝑡1)
)

−
(

𝑥(𝑡0)
)

≤ ∫

𝑡1

𝑡0
𝑦(𝑡)⊤𝑢(𝑡)d𝑡 (10)

respectively, for every 𝑡0, 𝑡1 ∈ 𝕋 , 𝑡0 ≤ 𝑡1.
Let us now briefly introduce another equivalent representation of pHDAEs, which will be used throughout this work. Similarly as 

introduced in [48], by defining a new variable 𝑓 = 𝑧(𝑥) representing the costate, and adding the gradient pair condition 𝐸(𝑥)⊤𝑓 =
∇(𝑥) explicitly to the pHDAE Eqs.  (6), we obtain an equivalent system defined as follows.
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Definition 3  (Dirac-dissipative representation). Consider a pHDAE (6), then 
⎡

⎢

⎢

⎣

∇(𝑥)
0
𝑦

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0 −𝐸(𝑥)⊤ 0
𝐸(𝑥) 𝐽 (𝑥) − 𝑅(𝑥) 𝐵(𝑥)
0 −𝐵(𝑥)⊤ 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−𝑥̇
𝑓
𝑢

⎤

⎥

⎥

⎦

= 0, (11a)

𝑓 = 𝑧(𝑥), (11b)

is referred to as the Dirac-dissipative representation related to (6). Shorthand we can call it DDR-pHDAE. 
Note that we use a different letter to denote the costate as a variable, to avoid ambiguity with the costate function and its discrete 
approximations that will be introduced in the following sections. Moreover, it should be highlighted that the pH structure is entirely 
encoded in (11a). In fact, this equation corresponds to the intersection of the Dirac structure and the dissipative relation of the pH 
system, and has the form 𝔢 + (𝔍(𝑥) −ℜ(𝑥))𝔣 = 0, where 𝔣 = (−𝑥̇, 𝑓 , 𝑢) and 𝔢 = (∇(𝑥), 0, 𝑦) are the flow and effort vectors, and 𝔍 = −𝔍⊤

and ℜ = ℜ ⪰ 0 hold pointwise, see [48] for further details.
As we will discuss in Section 4.3, similarly as in [48], the Dirac-dissipative representation can be particularly useful for the 

structure-preserving discretization of pHDAEs. This can be deducted particularly due to its structure yielding the following result.
Theorem 1.  Every solution (𝑥, 𝑓 , 𝑢, 𝑦) of (11a) satisfies the PBE and dissipation inequality, since

d
d𝑡

(

𝑥(𝑡)
)

− 𝑦(𝑡)⊤𝑢(𝑡) = −𝔣⊤𝔢 = 𝔣⊤
(

𝔍(𝑥) −ℜ(𝑥)
)

𝔣 = −𝔣⊤ℜ(𝑥)𝔣 = −𝑓⊤𝑅(𝑥)𝑓 ≤ 0.

Remark 4.  The reader should not confuse the acronym DDR with the notion of difference and differential representations, which has 
been coined in, e.g. [49]. While both concepts are related to pH systems and both can be combined with discrete gradient methods, 
the works related to the difference and differential representation propose a hybrid approach combining discrete-time equations with 
differential equations. Contrarily, the DDR in the present work lives in continuous time and highlights the underlying geometric 
structure. 

Since the PBE (7) and dissipation inequality (8) are fundamental properties satisfied by every pH system, there is much effort in 
the literature [4,23,28,29,40,41,43] in developing time-discretization schemes to preserve them on a discrete level. This is also the 
focus of this paper.

2.3.  Discrete gradients

Discrete gradients are a popular tool for generating structure-preserving integration methods for dynamical systems [8,50,51]. A 
general definition is as follows.
Definition 4  (Discrete gradients, see [8]). Given a function 𝑓 ∈ 1( ,ℝ) with  ⊆ ℝ𝑛 open, a discrete gradient for 𝑓 is any vector 
function ∇𝑓 ∈ ( ×  ,ℝ𝑛) that satisfies the properties

1. ∇𝑓 (𝑥, 𝑥′)⊤(𝑥′ − 𝑥) = 𝑓 (𝑥′) − 𝑓 (𝑥) for all 𝑥, 𝑥′ ∈  ,
2. ∇𝑓 (𝑥, 𝑥) = ∇𝑓 (𝑥) for all 𝑥 ∈  ,

where (i) is referred to as directionality and (ii) as consistency condition. 
Especially the directionality property will be handy later on for the design of structure-preserving discretizations. The following 
definition provides an example for a discrete gradient, which can yield a symmetric method of second order accuracy, as it represents 
a second-order approximation to the exact gradients.
Definition 5  (Gonzalez discrete gradient, see [51]).  For a given function 𝑓 ∈ 1( ,ℝ) with  ⊆ ℝ𝑛 convex open subset, its Gonzalez 
(or midpoint) discrete gradient ∇𝑓 ∈ ( ×  ,ℝ𝑛) is defined by

∇𝑓 (𝑥, 𝑥′) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇𝑓
(

𝑥+𝑥′
2

)

+
𝑓 (𝑥′) − 𝑓 (𝑥) − ∇𝑓

(

𝑥+𝑥′
2

)⊤
(𝑥′ − 𝑥)

||𝑥′ − 𝑥||2
(𝑥′ − 𝑥) if 𝑥′ ≠ 𝑥,

∇𝑓 (𝑥) otherwise.

(12)

Notably, the Gonzalez discrete gradient is determined by the directionality condition together with its action on the orthogonal 
complement (𝑥′ − 𝑥)⟂, that is, ∇𝑓 (𝑥, 𝑥′)⊤𝑧 = ∇𝑓 ( 𝑥+𝑥

′

2 )⊤𝑧 for all 𝑥, 𝑥′ ∈  and 𝑧 ∈ (𝑥′ − 𝑥)⟂. 
Note that for the special case of polynomial functions with degree of at most two, the Gonzalez discrete gradient is equivalent to 
a midpoint evaluation of the analytical gradient. Next, the concept of discrete gradients may also be generalized to vector-valued 
functions.

Definition 6  (Discrete Jacobians, see [50, Def. 3.3]). Given a vector-valued function 𝐹 ∈ 1( ,ℝ𝑚) with  ⊆ ℝ𝑛 open, a discrete 
Jacobian for 𝐹  is any matrix function D𝐹 ∈ ( ×  ,ℝ𝑚,𝑛) that satisfies the directionality and consistency properties

1. D𝐹 (𝑥, 𝑥′)(𝑥′ − 𝑥) = 𝐹 (𝑥′) − 𝐹 (𝑥) for all 𝑥, 𝑥′ ∈  ,
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2. D𝐹 (𝑥, 𝑥) = D𝐹 (𝑥) for all 𝑥 ∈  .

As pointed out in [50], a discrete Jacobian D𝐹  may be equivalently characterized by the fact that all of its rows are discrete gradients 
of the corresponding component functions of 𝐹 . In a similar notation as in (1), we write

∇𝐹 =

⎡

⎢

⎢

⎢

⎣

∇𝑥1𝐹
⋮

∇𝑥𝑟𝐹

⎤

⎥

⎥

⎥

⎦

, D𝐹 =
[

D𝑥1𝐹 ⋯ D𝑥𝑟𝐹
]

for partial discrete derivatives and a partition 𝑥 = (𝑥1,… , 𝑥𝑟) of the state variable. In particular, as long as  ⊆ ℝ𝑛 is convex, we 
define the Gonzalez discrete Jacobian of a differentiable vector field 𝐹 ∈ 1( ,ℝ𝑚) as

D𝐹 (𝑥, 𝑥′) =

⎧

⎪

⎨

⎪

⎩

D𝐹
(

𝑥+𝑥′
2

)

+
𝐹 (𝑥′) − 𝐹 (𝑥) − D𝐹

(

𝑥+𝑥′
2

)

(𝑥′ − 𝑥)

‖𝑥′ − 𝑥‖2
(𝑥′ − 𝑥)⊤ if 𝑥′ ≠ 𝑥,

D𝐹 (𝑥) otherwise,

which is again determined by the directionality condition together with D𝐹 (𝑥, 𝑥′)𝑤 = D𝐹 ( 𝑥+𝑥
′

2 )𝑤 for all 𝑥, 𝑥′ ∈  and 𝑤 ∈ (𝑥′ − 𝑥)⟂.

Remark 5. For the construction of classical discrete gradients or discrete Jacobians, some assumptions on the state space  , like its 
convexity, are usually necessary. However, in general the existence of discrete gradients is actually independent from the structure 
of  . For example, replacing ∇𝑓 ( 𝑥+𝑥′2 ) by ∇𝑓 (𝑥) or ∇𝑓 (𝑥′) in (12) yields a discrete gradient regardless of the structure of  , although 
its usefulness for discretization is unclear.
Let us focus again on discrete gradients and observe the following property.
Lemma 1. Let 𝑓 ∈ 1( ,ℝ) with  = 1 × 2, where 1 ⊆ ℝ𝑛1  and 2 ⊆ ℝ𝑛2  are open and 2 is convex, let us partition 𝑥 = (𝑥1, 𝑥2) ∈ ℝ𝑛1 ×
ℝ𝑛2 , and suppose that ∇𝑥2𝑓 = 0 holds everywhere in  . Then there is 𝑓1 ∈ 1(1,ℝ) such that 𝑓1(𝑥1) = 𝑓 (𝑥1, 𝑥2) and ∇𝑓1(𝑥1) = ∇𝑥1𝑓 (𝑥1, 𝑥2)
for every (𝑥1, 𝑥2) ∈  , or in short 𝑓1◦𝜋1 = 𝑓 and ∇𝑓1◦𝜋1 = ∇𝑥1𝑓 . Let now ∇𝑓1 be a discrete gradient for 𝑓1 and ∇𝑓 = (∇𝑓1◦𝜋1, 0) ∶  ×  →
ℝ𝑛1 ×ℝ𝑛2 , i.e.,

∇𝑓 (𝑥, 𝑥′) =
[

∇𝑓1
(

𝑥1, 𝑥′1
)

0

]

for every 𝑥 = (𝑥1, 𝑥2), 𝑥′ = (𝑥′1, 𝑥
′
2) ∈  . Then ∇𝑓 is a discrete gradient for 𝑓 .

Proof.  The interested reader is referred to Appendix A for some detailed lines showing that there is 𝑓1 ∈ 1(1,ℝ) such that 𝑓1(𝑥1) =
𝑓 (𝑥1, 𝑥2) and ∇𝑓1(𝑥1) = ∇𝑥1𝑓 (𝑥1, 𝑥2) for every (𝑥1, 𝑥2) ∈  . We now show that ∇𝑓 is a discrete gradient for 𝑓 . In fact, for every 
𝑥 = (𝑥1, 𝑥2), 𝑥′ = (𝑥′1, 𝑥

′
2) ∈  it holds that

∇𝑓 (𝑥, 𝑥) =
[

∇𝑓1(𝑥1, 𝑥1)
0

]

=
[

∇𝑓1(𝑥)
0

]

=
[

∇𝑥1𝑓 (𝑥)
∇𝑥2𝑓 (𝑥)

]

= ∇𝑓 (𝑥)

and 

∇𝑓 (𝑥, 𝑥′)⊤(𝑥′ − 𝑥) =
[

∇𝑓1(𝑥1, 𝑥′1)
0

]⊤[
𝑥′1 − 𝑥1
𝑥′2 − 𝑥2

]

= ∇𝑓1(𝑥1, 𝑥′1)
⊤(𝑥′1 − 𝑥1) = 𝑓1(𝑥′1) − 𝑓1(𝑥1) = 𝑓 (𝑥′) − 𝑓 (𝑥),

which concludes the proof. ∎
Remark 6. We note that the previous lemma is still true when replacing the assumption that  has the form 1 × 2 with convex 2
by the weaker assumption that there exist an open set ̃ ⊆ ℝ𝑛1 ×ℝ𝑛2  and a diffeomorphism 𝜑 = (𝜑1, 𝜑2) ∶ ̃ →  such that 𝜋2(̃) is 
convex and 𝜑1 ∶ 𝜋1(̃) → 𝜋1() is well-defined. However, in order to keep the setting simple, in this paper we will focus on the case 
where  = 1 × 2 with convex 2, with the awareness that this setting can be extended.
Remark 7. Moreover, assuming the convexity of  is in practice not restrictive. Since discrete gradients and other consistent approx-
imations are used for time discretization, it can be usually assumed that they will only be evaluated for arbitrarily close 𝑥, 𝑥′ ∈  , 
up to reducing the time step accordingly. Then, for every 𝑥 ∈  we can restrict them to 0 × 0, where 0 is an appropriate open 
neighborhood of 𝑥, which can be selected to have even stronger structure, like being a ball for the ∞-norm on ℝ𝑛. This choice in 
particular ensures that 0 is convex and can be written in the form 1 × 2 for every partition of the state variable 𝑥 = (𝑥1, 𝑥2).

Discrete gradients have been applied successfully to the time discretization of pH ODEs, see e.g. [39–41]. Here, we want to tackle 
pHDAEs as described in Definition 2. This brings with it the striking challenge that the gradient of the Hamiltonian, which is supposed 
to be approximated with a discrete gradient, appears only implicitly within the relation (5) and is not directly part of the DAEs (6), 
which govern the dynamics of the system. Particularly for singular descriptor matrices, this leads to a non-invertible relation to the 
costate function. In this context the recent work [43] proposed the notion of discrete gradient pairs, which we regard to be helpful 
throughout the present work.
Definition 7  (Discrete gradient pair, see [43]). Let (𝐸, 𝑧) be a gradient pair for . We call (𝐸, 𝑧) ∈ ( ×  ,ℝ𝑛,𝑛) × ( ×  ,ℝ𝑛) a 
discrete gradient pair for (, 𝐸, 𝑧) if the following conditions are satisfied.
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1. 𝑧(𝑥, 𝑥′)⊤𝐸(𝑥, 𝑥′)(𝑥′ − 𝑥) = (𝑥′) −(𝑥) for all (𝑥′, 𝑥) ∈  ×  ,
2. 𝐸(𝑥, 𝑥) = 𝐸(𝑥) for all 𝑥 ∈  ,
3. 𝑧(𝑥, 𝑥) = 𝑧(𝑥) for all 𝑥 ∈  .

These conditions essentially yield that 𝐸⊤𝑧 is a discrete gradient, see Definition 4. Property (i) can be interpreted as the directionality 
condition, while conditions (ii) and (iii) ensure the consistency condition for this specific discrete gradient. As it has become obvious 
from the previous definitions in this section, the property of consistency is rather crucial. We therefore make the following statement.

Definition 8. Given two functions 𝐹 ∈ ( ,ℝ𝑛) and 𝐹 ∈ ( ×  ,ℝ𝑛), we call 𝐹  a consistent approximation or discretization of 𝐹  if 
𝐹 (𝑥, 𝑥) = 𝐹 (𝑥) for all 𝑥 ∈  .

Having discussed basic notions of pHDAEs and discrete gradients, we stress that a special class of pHDAEs is pivotal in this work, see 
the upcoming section.

3.  Semi-explicit port-Hamiltonian descriptor systems

We now specify that the pHDAE under investigation is semi-explicit . This subclass already covers many applications and will be 
the starting point pivotal for derivations of corresponding time integration methods. We start by introducing the related concept of 
semi-explicit gradient pairs.

Definition 9. Let (𝐸, 𝑧) be a gradient pair for . We say that (𝐸, 𝑧) is a semi-explicit gradient pair if  = 1 × 2 with 1 ⊆ ℝ𝑛1  and 
2 ⊆ ℝ𝑛2  open and 2 convex , and 𝐸 = diag(𝐸11, 0) for some pointwise invertible matrix function 𝐸11 ∈ ( ,ℝ𝑛1 ,𝑛1 ). 

Semi-explicit gradient pairs satisfy the following property.

Lemma 2. Let (𝐸, 𝑧) be a semi-explicit gradient pair for . Then there exists 1 ∈ 1(1,ℝ) such that 1◦𝜋1 =  and ∇1◦𝜋1 = ∇𝑥1, 
i.e., 

1(𝑥1) = (𝑥1, 𝑥2), ∇1(𝑥1) = ∇𝑥1(𝑥1, 𝑥2) (13)

for all 𝑥1 ∈ 1, 𝑥2 ∈ 2. In particular, the gradient pair property (5) is determined by

∇1(𝑥1) = 𝐸11(𝑥1, 𝑥2)⊤𝑧1(𝑥1, 𝑥2), (14)

for all 𝑥1 ∈ 1, 𝑥2 ∈ 2, where 𝑧 = (𝑧1, 𝑧2) is the corresponding partition of 𝑧.

Proof.  Due to the structure of 𝐸, the gradient pair property (5) can be written as ∇𝑥1 = 𝐸⊤11𝑧1, ∇𝑥2 = 0. The latter equation 
implies with Lemma 1 that there exists 1 ∈ 1(1,ℝ) satisfying (13), while the former is immediately reinterpreted as (14). ∎
By abuse of terminology, we will also refer to 1 as Hamiltonian in the remainder of this work, while ensuring that it is clear from 
the context whether we refer to  ∶  → ℝ or to 1 ∶ 1 → ℝ.

Definition 10. Consider a state space  = 1 × 2 ⊆ ℝ𝑛 with 1 ⊆ ℝ𝑛1  open and 2 ⊆ ℝ𝑛2  open convex, and let us partition the 
state 𝑥 = (𝑥1, 𝑥2) ∈  accordingly. A semi-explicit pHDAE is a port-Hamiltonian descriptor system in the sense of Definition 2 with 
𝐸 = diag(𝐸11, 0), where 𝐸11 ∈ ( ,ℝ𝑛1 ,𝑛1 ) is pointwise invertible. In particular it admits the form

[

𝐸11(𝑥) 0
0 0

][

𝑥̇1
𝑥̇2

]

= (𝐽 (𝑥) − 𝑅(𝑥))
[

𝑧1(𝑥)
𝑧2(𝑥)

]

+ 𝐵(𝑥)𝑢,

𝑦 = 𝐵(𝑥)⊤
[

𝑧1(𝑥)
𝑧2(𝑥)

]

,
(15)

together with a Hamiltonian 1 ∈ 1(1,ℝ) that satisfies the gradient pair property (14) and conforms with Lemma 2. Since only the 
time-derivative of 𝑥1 appears in (15), 𝑥1 is termed differential state and 𝑥2 is called algebraic state. Conforming with Lemma 2, the 
algebraic state does not contribute to the Hamiltonian of the system.

Note that systems of the form (15) have also been considered in [48], where the application of partitioned Runge-Kutta schemes for 
their time discretization was considered. We now illustrate Lemma 2 and Definition 10 by exploring some examples.

Example 1. Consider the simple linear semi-explicit pHDAE of index 1 with 𝑥 = (𝑥1, 𝑥2) governed by
[

1 0
0 0

][

𝑥̇1
𝑥̇2

]

=
[

0 1
−1 −1

][

𝑥1
𝑥2

]

, (16)

together with its Hamiltonian 1(𝑥1) =
1
2𝑥

2
1. Conforming with Definition 10, 𝑥1 is the differential state, 𝑥2 is the algebraic state, and the 

Hamiltonian only depends on 𝑥1. Moreover, the gradient pair property (14) is satisfied with 𝐸11 = 1 and 𝑧1(𝑥1, 𝑥2) = 𝑥1. ◊
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Example 2  (Constrained input-output pH systems in classical form). The above framework naturally includes all systems which are 
covered by the standard notion of pH systems in constrained input-output representation (see e.g. [1, Eq. 2.154] or [5, Eq. 4.44]) described 
by local coordinates 𝑥̃ satisfying

̇̃𝑥 =
(

𝐽 (𝑥̃) − 𝑅(𝑥̃)
)

∇̃(𝑥̃) + 𝑔(𝑥̃)𝑢 + 𝑏(𝑥̃)𝜆,

𝑦 = 𝑔(𝑥̃)⊤∇̃(𝑥̃),

0 = 𝑏(𝑥̃)⊤∇̃(𝑥̃),

with 𝑥 = (𝑥1, 𝑥2) = (𝑥̃, 𝜆), 1(𝑥1) = ̃(𝑥̃), 𝐸11 = 𝐼 , 𝑧1 = ∇̃(𝑥̃), 𝑧2 = 𝜆, 𝐵(𝑥)⊤ = [𝑔(𝑥̃)⊤, 0] and

𝐽 (𝑥) − 𝑅(𝑥) =
[

𝐽 (𝑥̃) − 𝑅(𝑥̃) 𝑏(𝑥̃)
−𝑏(𝑥̃)⊤ 0

]

.

Note that the Lagrange multipliers 𝑥2 = 𝜆 are here algebraic state variables. ◊

Example 3  (Nonlinear multibody systems). It can be shown that the governing equations for nonlinear multibody systems fit well into the 
above framework of semi-explicit pHDAEs. The equations of motion are given as

⎡

⎢

⎢

⎣

𝐼 0 0
0 𝑀 0
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞̇
𝑣̇
𝜆̇

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 𝐼 0
−𝐼 −𝑅R(𝑞) −D𝑔(𝑞)⊤

0 D𝑔(𝑞) 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎣

∇𝑉 (𝑞)
𝑣
𝜆

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
𝐼
0

⎤

⎥

⎥

⎦

𝑢,

𝑦 =
[

0 𝐼 0
]

⎡

⎢

⎢

⎣

∇𝑉 (𝑞)
𝑣
𝜆

⎤

⎥

⎥

⎦

.

The Hamiltonian
(𝑥) = 1

2
𝑣⊤𝑀𝑣 + 𝑉 (𝑞) = 𝑇 (𝑣) + 𝑉 (𝑞)

denotes the total energy. Verifying that 𝐸⊤𝑧(𝑥) = ∇(𝑥) holds true is straightforward. In this example, the Lagrange multipliers 𝜆 appear 
as algebraic states, that do not appear in the Hamiltonian. For more details, especially concerning an introduction of the unknowns, see 
Section 6.1. ◊

Example 4  (Synchronous machine). Let us consider a synchronous machine, modeled as described e.g. in [52], and interpreted as a pH 
system like in [53]. After a change of variables, which is detailed in Appendix B, such that we obtain 𝑥 = (𝐼, 𝑝, 𝜃) ∈ ℝ8, the governing equations 
can be found in a suitable representation 

⎡

⎢

⎢

⎣

𝐿(𝜃) 0 𝐿′(𝜃)𝐼
0 1 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼̇
𝑝̇
𝜃̇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑅𝑠,𝑟 0 0
0 −𝑑 −1
0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼
𝐽−1
𝑟 𝑝

− 1
2 𝐼

⊤𝐿′(𝜃)𝐼

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐼3 0 0
0 𝑒1 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑉𝑠
𝑉𝑓
𝜏

⎤

⎥

⎥

⎦

, (17a)

⎡

⎢

⎢

⎣

𝐼𝑠
𝐼𝑓
𝜔

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐼3 0 0 0
0 𝑒⊤1 0 0
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼
𝐽−1
𝑟 𝑝

− 1
2 𝐼

⊤𝐿′(𝜃)𝐼

⎤

⎥

⎥

⎦

. (17b)

Here 𝑒1 ∈ ℝ3 denotes the first vector of the standard basis of ℝ3, 𝐼 ∈ ℝ6 contains the currents in the stator and rotor, 𝑝 ∈ ℝ represents the 
angular momentum of the rotor, 𝜃 ∈ ℝ the angle of the rotor, and 𝑅𝑠,𝑟 ∶= diag(𝑅𝑠, 𝑅𝑟) ≻ 0, where 𝑅𝑠, 𝑅𝑟 ∈ ℝ3,3 are positive diagonal matrices 
representing the stator and rotor resistances. Additionally, 𝑑 > 0 is the mechanical friction, 𝑉𝑠, 𝐼𝑠 ∈ ℝ3 are the three-phase stator terminal 
voltages and currents, 𝑉𝑓 , 𝐼𝑓 ∈ ℝ are the rotor field winding voltage and current, 𝜏, 𝜔 ∈ ℝ are the mechanical torque and angular velocity, 
𝐽𝑟 > 0 is the rotational inertia of the rotor, 𝐿 ∶ ℝ → ℝ6,6 is the inductance matrix, usually assumed to be ∞, pointwise symmetric positive 
definite, and periodic of period 2𝜋, and 𝐿′ denotes its first derivative. Note that 𝑉𝑠, 𝑉𝑓 , 𝜏 are interpreted as the input variables of the system, 
while 𝐼𝑠, 𝐼𝑓 , 𝜔 as the corresponding output variables. The system is completed by the Hamiltonian

(𝐼, 𝑝, 𝜃) = 1
2
𝐼⊤𝐿(𝜃)𝐼 + 1

2𝐽𝑟
𝑝2,

which verifies 𝐸(𝑥)⊤𝑧(𝑥) = ∇(𝑥), see Appendix B for further details.
While one might argue that (17a) is not really a DAE, since 𝐸 is pointwise invertible, it still fits into Definition 10 for semi-explicit pHDAEs 

as a special case without algebraic states.This representation has potential advantages compared to the original example from Appendix B. 
For example, the inductance matrix 𝐿(𝜃) does not appear under inversion anymore. Furthermore, synchronous machines can be components 
in complex interconnected systems, e.g. in the modeling of power networks, typically resulting in actual semi-explicit pHDAEs anyway due to 
the application of Kirchhoff’s laws. ◊

In the upcoming section we focus on the discretization of pHDAEs - as discussed both in Definitions 2 and 10.
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4.  Structure-preserving time discretization

We start by discussing integration methods for general pHDAEs of the form (6) in Section 4.1. Here the concept of discrete gradient 
pairs will be of central importance. We continue with the discretization of semi-explicit pHDAEs of the form (15) in Section 4.2, 
yielding a tangible time stepping method. Then, in Section 4.3 we discuss an alternative approach, based on the Dirac-dissipative 
representation associated to the pHDAE, that does not require the semi-explicit structure. Lastly, in Section 4.4 we investigate how 
the three different approaches are connected, when a semi-explicit representation is available.

4.1.  Discrete gradient pair methods for general pHDAEs

Consider a pHDAE of the form (6) and a temporal grid 0 = 𝑡0 < 𝑡1 <… < 𝑡𝑁 = 𝑡end with 𝑁 time intervals of constant time step size 
ℎ = 𝑡𝑘+1 − 𝑡𝑘 for 𝑘 = 0,… , 𝑁 − 1. We consider uniform time grids for the sake of brevity and propose the scheme

𝐸(𝑥𝑘, 𝑥𝑘+1)(𝑥𝑘+1 − 𝑥𝑘) = ℎ
(

𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1)
)

𝑧(𝑥𝑘, 𝑥𝑘+1) + ℎ𝐵(𝑥𝑘, 𝑥𝑘+1)𝑢𝑘,𝑘+1,

𝑦𝑘,𝑘+1 = 𝐵(𝑥𝑘, 𝑥𝑘+1)⊤𝑧(𝑥𝑘, 𝑥𝑘+1).
(18)

for 𝑘 = 0,… , 𝑁 − 1.
In (18), we define discrete approximations of the state 𝑥𝑘 ≈ 𝑥(𝑡𝑘) assuming that also 𝑥𝑘 ∈  for sufficiently small time steps. The 

matrices 𝐸, 𝐽 ,𝑅, 𝐵 are arbitrary consistent approximations of the matrix functions (see Definition 8), still satisfying 𝐽 = −𝐽
⊤ and 

𝑅 = 𝑅
⊤
⪰ 0 pointwise. Moreover, 𝑢𝑘,𝑘+1 is not necessarily the evaluation of the (possibly discontinuous) input function at 𝑡𝑘, but 

at some point within the time interval of interest or an average value of it. Correspondingly, the discrete-time output 𝑦𝑘,𝑘+1 is an 
approximation for 𝑦(𝑡) for the whole time step interval.

Most importantly, we require that (𝐸, 𝑧) is a discrete gradient pair for (, 𝐸, 𝑧) in the sense of Definition 7. Finding such a discrete 
gradient pair is not trivial, but we will study how to construct one in certain special cases in Section 5. For self-containedness of this 
work, we show that the usage of discrete gradient pairs yields an energy-consistent time integration.
Theorem 2. Scheme (18) yields an energy-consistent approximation of the time-continuous power balance (7) given by 

(𝑥𝑘+1) −(𝑥𝑘) = −ℎ𝑧(𝑥𝑘, 𝑥𝑘+1)⊤𝑅(𝑥𝑘, 𝑥𝑘+1)𝑧(𝑥𝑘, 𝑥𝑘+1) + ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1 ≤ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1. (19)

Proof.  Combining the directionality property (i) of the discrete gradient pair with (18) one obtains
(𝑥𝑘+1) −(𝑥𝑘) = 𝑧(𝑥𝑘, 𝑥𝑘+1)⊤𝐸(𝑥𝑘, 𝑥𝑘+1)(𝑥𝑘+1 − 𝑥𝑘)

= ℎ𝑧(𝑥𝑘, 𝑥𝑘+1)⊤
(

𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1)
)

𝑧(𝑥𝑘, 𝑥𝑘+1) + ℎ𝑧(𝑥𝑘, 𝑥𝑘+1)⊤𝐵(𝑥𝑘, 𝑥𝑘+1)𝑢𝑘,𝑘+1

= −ℎ𝑧(𝑥𝑘, 𝑥𝑘+1)⊤𝑅(𝑥𝑘, 𝑥𝑘+1)𝑧(𝑥𝑘, 𝑥𝑘+1) + ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1 ≤ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1,

which is the desired result. ∎

4.2.  Discrete gradient methods for semi-explicit pHDAEs

In the following we consider the special case of a semi-explicit pHDAE of the form (15) for which we present a concrete time 
discretization scheme. The scheme itself is outlined in Section 4.2.1 whereas a corresponding convergence analysis is presented in 
Section 4.2.2.

4.2.1.  Time discretization scheme for semi-explicit pHDAEs
For a semi-explicit pHDAE of the form (15), the partitioning of the state and the block matrix structure allow for a straightforward 
approach using discrete gradients, which leads to a concrete time stepping method outlined in the following. Particularly, the semi-
explicit gradient pair property (14) allows for a direct approximation of 𝑧1 in terms of the Hamiltonian 1. Essentially, the proposed 
method can be written just like Eqs.  (18), which have to be completed by the additional constraint

𝐸11(𝑥𝑘, 𝑥𝑘+1)⊤𝑧1(𝑥𝑘, 𝑥𝑘+1) = ∇1(𝑥𝑘, 𝑥𝑘+1). (20)

We now choose ∇1 ∈ (1 × 1,ℝ𝑛1 ) to be a discrete gradient of 1 and 𝐸11 ∈ ( ×  ,ℝ𝑛1 ,𝑛1 ) to be a consistent discretization of 
𝐸11. This allows to determine uniquely 𝑧1 as a function of 𝑥𝑘, 𝑥𝑘+1, as long 𝐸11 is ensured to be invertible within our search scope.

This is for example the case if we choose the midpoint approximation 𝐸11(𝑥, 𝑥′) ∶= 𝐸11(
𝑥+𝑥′
2 ), since 𝐸11 is invertible in the convex 

space  . More in general, any consistent approximation 𝐸11 will be invertible for sufficiently close 𝑥𝑘, 𝑥𝑘+1.
While there is in general no guarantee that a discrete matrix function is pointwise invertible, cf. Example 9 in the appendix, 

we expect to achieve this condition up to refining the time grid sufficiently. For the sake of simplicity, we introduce the following 
assumption.

𝐸11 is pointwise invertible on  ×  . (A1)

Furthermore, since 𝑧 = (𝑧1, 𝑧2) is not given as part of a gradient pair anymore, we will choose 𝑧2 as a consistent discretization of the 
time-continuous function 𝑧2.

Applied Numerical Mathematics 223 (2026) 45–75 

53 



P.L. Kinon, R. Morandin and P. Schulze

In a more detailed fashion, also highlighting the partitioned state, we rewrite (18) and (20) combined as 
[

𝐸11(𝑥𝑘, 𝑥𝑘+1) 0
0 0

][

𝑥𝑘+11 − 𝑥𝑘1
𝑥𝑘+12 − 𝑥𝑘2

]

= ℎ
(

𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1)
)

[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

+ ℎ𝐵(𝑥𝑘, 𝑥𝑘+1)𝑢𝑘,𝑘+1, (21a)

𝑦𝑘,𝑘+1 = 𝐵(𝑥𝑘, 𝑥𝑘+1)⊤
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

, (21b)

𝐸11(𝑥𝑘, 𝑥𝑘+1)⊤𝑧
𝑘,𝑘+1
1 = ∇1(𝑥𝑘1 , 𝑥

𝑘+1
1 ), (21c)

which can be solved for the unknowns (𝑥𝑘+11 , 𝑥𝑘+12 , 𝑧𝑘,𝑘+11 , 𝑦𝑘,𝑘+1) in each time step (assuming that a solution exists). Note that 𝑧𝑘,𝑘+11 , 
which here replaces the uniquely determined function 𝑧1, is considered as an unknown of the time-discrete system, whereas 𝑧2 is a 
consistent discretization of 𝑧2. This scheme extends the discrete gradient method from [41,54] to semi-explicit pHDAE systems with 
the specific structure of the descriptor matrix 𝐸.

Let us illustrate the proposed method by an example and show that it preserves the power balance equation in discrete time.
Example 5.  We consider again the running example system from Example 1. Its discretization (21) is given by

[

1 0
0 0

][

𝑥𝑘+11 − 𝑥𝑘1
𝑥𝑘+12 − 𝑥𝑘2

]

= ℎ
[

0 1
−1 −1

][

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

.

𝑧𝑘,𝑘+11 = ∇1(𝑥𝑘1 , 𝑥
𝑘+1
1 ) = 1

2
(𝑥𝑘1 + 𝑥

𝑘+1
1 ).

where we chose the Gonzalez discrete gradient for the latter relation, which corresponds to (21c). While 𝑧𝑘,𝑘+11  is an unknown of the system, 
𝑧2(𝑥𝑘, 𝑥𝑘+1) still requires a consistent discretization of 𝑧2(𝑥) = 𝑥2. Sensible choices like

𝑧2(𝑥𝑘, 𝑥𝑘+1) = 𝑥𝑘2 or 𝑧2(𝑥𝑘, 𝑥𝑘+1) = 𝑥𝑘+12 or 𝑧2(𝑥𝑘, 𝑥𝑘+1) =
1
2
(𝑥𝑘2 + 𝑥

𝑘+1
2 )

complete the set of equations. ◊

Theorem 3. Scheme (21) yields an energy-consistent approximation of the time-continuous power balance (7) given by 

(𝑥𝑘+1) −(𝑥𝑘) = −ℎ
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤

𝑅(𝑥𝑘, 𝑥𝑘+1)
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

+ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1 ≤ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1. (22)

Proof.  Combining the directionality property of the discrete gradient ∇1 with (21) one obtains
(𝑥𝑘+1) −(𝑥𝑘) = 1(𝑥𝑘+11 ) −1(𝑥𝑘1) = ∇1(𝑥𝑘, 𝑥𝑘+1)⊤(𝑥𝑘+1 − 𝑥𝑘)

= (𝑧𝑘,𝑘+11 )⊤𝐸11(𝑥𝑘, 𝑥𝑘+1)(𝑥𝑘+11 − 𝑥𝑘1) =
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤

𝐸(𝑥𝑘, 𝑥𝑘+1)(𝑥𝑘+1 − 𝑥𝑘)

= ℎ
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤
(

𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1)
)

[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

+ ℎ
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤

𝐵(𝑥𝑘, 𝑥𝑘+1)𝑢𝑘,𝑘+1

= −ℎ
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤

𝑅(𝑥𝑘, 𝑥𝑘+1)
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

+ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1 ≤ ℎ(𝑦𝑘,𝑘+1)⊤𝑢𝑘,𝑘+1,

which is the desired result. ∎
The semi-explicit discrete gradient method introduced in this section can of course be applied to constrained input-output pH systems 
as introduced in Example 2, always achieving the desired exact PBE. While there is in general no guarantee that the algebraic 
constraints are satisfied exactly by the discrete solution, specific implementation choices may allow to meet additional requirements 
stemming from the particular application problem. This is shown for the example of nonlinear multibody systems in Section 6.2.

4.2.2.  Convergence analysis for semi-explicit pHDAEs
To further motivate the proposed method, let us show that, under some additional assumptions on the structure of the system, 

second order convergence can be achieved. Following a similar idea as for the Dirac-dissipative representation, let us introduce the 
costate variable 𝑓1 ∈ ℝ𝑛1  and the corresponding gradient pair equation 𝐸11(𝑥)⊤𝑓1 = ∇1(𝑥1). We can then rewrite (15) as a semi-
explicit DAE of the form 

𝑥̇1 = 𝐹 (𝑥1, 𝑢, 𝑓1, 𝑥2), (23a)

0 = 𝐺1(𝑥1, 𝑢, 𝑓1, 𝑥2), (23b)

0 = 𝐺2(𝑥1, 𝑓1, 𝑥2), (23c)

0 = 𝐺3(𝑥1, 𝑓1, 𝑥2, 𝑦), (23d)

where

𝐹 (𝑥1, 𝑢, 𝑓1, 𝑥2) ∶= 𝐸11(𝑥)−1
(

(

𝐽11(𝑥1, 𝑥2) − 𝑅11(𝑥1, 𝑥2)
)

𝑓1 +
(

𝐽12(𝑥1, 𝑥2) − 𝑅12(𝑥1, 𝑥2)
)

𝑧2(𝑥1, 𝑥2) + 𝐵1(𝑥1, 𝑥2)𝑢
)

,
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𝐺1(𝑥1, 𝑢, 𝑓1, 𝑥2) ∶=
(

𝐽21(𝑥1, 𝑥2) − 𝑅21(𝑥1, 𝑥2)
)

𝑓1 +
(

𝐽22(𝑥1, 𝑥2) − 𝑅22(𝑥1, 𝑥2)
)

𝑧2(𝑥1, 𝑥2) + 𝐵2(𝑥1, 𝑥2)𝑢,

𝐺2(𝑥1, 𝑓1, 𝑥2) ∶= 𝐸11(𝑥1, 𝑥2)⊤𝑓1 − ∇1(𝑥1),

𝐺3(𝑥1, 𝑓1, 𝑥2, 𝑦) ∶= 𝑦 − 𝐵1(𝑥1, 𝑥2)⊤𝑓1 − 𝐵2(𝑥1, 𝑥2)⊤𝑧2(𝑥1, 𝑥2).

Suppose now that this augmented DAE has differentiation index 1, i.e., that 𝐺1 is continuously differentiable and its partial Jacobian 
D𝑥2𝐺1 is pointwise invertible. Then there exists  ∈ 1(ℝ𝑛1 ,ℝ𝑛2 ) such that every solution of the augmented DAE satisfies 𝑥2 = (𝑥1), 
due to the implicit function theorem. In particular, every solution also satisfies

𝑥̇1 = 𝐹
(

𝑥1,∇1(𝑥1), 𝑢
)

∶= 𝐹
(

𝑥1, 𝑢, 𝐸11
(

𝑥1,(𝑥1)
)−⊤∇1(𝑥1),(𝑥1)

)

, (24)

which is an ODE in the variable 𝑥1.
Let us now consider the discrete system (21) obtained using a discrete gradient ∇1 and the consistent discretizations stemming 

from midpoint evaluations, which we write as
𝑥𝑘+11 − 𝑥𝑘1 = ℎ𝐹

(

𝑥𝑘+1∕21 , 𝑢𝑘,𝑘+1, 𝑧𝑘,𝑘+11 , 𝑥𝑘+1∕22
)

,

0 =

⎡

⎢

⎢

⎢

⎣

𝐺1
(

𝑥𝑘+1∕21 , 𝑢𝑘,𝑘+1, 𝑧𝑘,𝑘+11 , 𝑥𝑘+1∕22
)

𝐺2
(

𝑥𝑘+1∕21 , 𝑧𝑘,𝑘+11 , 𝑥𝑘+1∕22
)

𝐺3
(

𝑥𝑘+1∕21 , 𝑧𝑘,𝑘+11 , 𝑥𝑘+1∕22 , 𝑦𝑘,𝑘+1
)

⎤

⎥

⎥

⎥

⎦

,

where 𝑥𝑘+1∕21 =
𝑥𝑘1+𝑥

𝑘+1
1

2  and 𝑥𝑘+1∕22 =
𝑥𝑘2+𝑥

𝑘+1
2

2 . In particular, the discrete solutions also satisfy 𝑥𝑘+1∕22 = (𝑥𝑘+1∕21 ) for all 𝑘 ≥ 0, for the 
same map , and therefore

𝑥𝑘+11 − 𝑥𝑘1 = ℎ𝐹
(

𝑥𝑘+1∕21 , 𝑢𝑘,𝑘+1, 𝐸11
(

𝑥𝑘+1∕21 ,(𝑥𝑘+1∕21 )
)−⊤∇1(𝑥𝑘1 , 𝑥

𝑘+1
1 ),(𝑥𝑘+1∕21 )

)

= ℎ𝐹
(

𝑥𝑘+1∕21 ,∇1(𝑥𝑘, 𝑥𝑘+1), 𝑢𝑘,𝑘+1
)

.

In particular, applying a discrete gradient to a semi-explicit pHDAE using midpoint evaluations yields the same discrete sequence 
for 𝑥1 as if we applied the same discrete gradient and midpoint evaluations to the ODE (24). Thus, the convergence error for the 
differential state variable 𝑥1 will also be the same; in the case of the Gonzalez discrete gradient, this ensures second convergence 
order for 𝑥1 [34,50]. Then, proceeding analogously as in the second part of the proof of [46, Theorem 5.16], one can deduce that 𝑥2
also converges with order 2.  We summarize this discussion in the following statement.
Proposition 1.  Consider a semi-explicit pHDAE of the form (15), to which the discretization scheme (21) obtained using the Gonzalez 
discrete gradient and midpoint evaluations is applied. If the augmented DAE (23) has differentiation index 1, then the method has convergence 
order 2. 
More in general, the convergence of the method both depends on the differentiation index of the DAE and on the choice of discrete 
gradient and consistent discretizations. In the numerical example that we present in Section 6, which is a semi-explicit pHDAE with 
differentiation index 2, this same method appears to have convergence order 2 for the differential variables, but only convergence 
order 1 for the algebraic variable. We postpone further analysis to future works.

4.3.  Discrete gradient methods applied to the Dirac-dissipative representation

We will now discuss an alternative structure-preserving discretization method, which requires neither a semi-explicit form nor a 
discrete gradient pair, based on the Dirac-dissipative representation, that can also be linked to previous works for ODE systems 
[41,54,55]. Given a DDR-pHDAE (11), the DDR-method governs time-stepping via

⎡

⎢

⎢

⎣

∇(𝑥𝑘, 𝑥𝑘+1)
0

𝑦𝑘,𝑘+1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0 −𝐸(𝑥𝑘, 𝑥𝑘+1)⊤ 0
𝐸(𝑥𝑘, 𝑥𝑘+1) 𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1) 𝐵(𝑥𝑘, 𝑥𝑘+1)

0 −𝐵(𝑥𝑘, 𝑥𝑘+1)⊤ 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

− 1
ℎ (𝑥

𝑘+1 − 𝑥𝑘)
𝑓𝑘,𝑘+1

𝑢𝑘,𝑘+1

⎤

⎥

⎥

⎦

= 0. (25)

or written out 
𝐸(𝑥𝑘, 𝑥𝑘+1)(𝑥𝑘+1 − 𝑥𝑘) = ℎ

(

𝐽 (𝑥𝑘, 𝑥𝑘+1) − 𝑅(𝑥𝑘, 𝑥𝑘+1)
)

𝑓𝑘,𝑘+1 + ℎ𝐵(𝑥𝑘, 𝑥𝑘+1)𝑢𝑘,𝑘+1,

𝑦𝑘,𝑘+1 = 𝐵(𝑥𝑘, 𝑥𝑘+1)⊤𝑓𝑘,𝑘+1,
(26a)

as well as 
𝐸(𝑥𝑘, 𝑥𝑘+1)⊤𝑓𝑘,𝑘+1 = ∇(𝑥𝑘, 𝑥𝑘+1). (26b)

Therein, 𝑓𝑘,𝑘+1 are discrete-time approximations of the costate quantities. Additionally, we have borrowed definitions from Section 4.1 
concerning the discrete state and matrices.

It is in general unclear whether these equations can be solved simultaneously for the unknowns (𝑥𝑘+1, 𝑓𝑘,𝑘+1, 𝑦𝑘,𝑘+1) in each time 
step. While for pointwise invertible 𝐸 one can at least recover 𝑓𝑘,𝑘+1 as a function of 𝑥𝑘+1, and rewrite the discrete system only in 
terms of 𝑥𝑘 and 𝑥𝑘+1, for an arbitrary, non-invertible 𝐸 further analysis is required. In particular, (26a) could be underdetermined 
even if the original DAE was regular, thus it might be necessary to introduce additional constraints. We show this with an example.
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Example 6.  Consider the regular linear semi-explicit pHDAE from Example 1 with Hamiltonian (𝑥) = 1
2𝑥

2
1, where we can identify

𝐸 =
[

1 0
0 0

]

, 𝐽 =
[

0 1
−1 0

]

, 𝑅 =
[

0 0
0 1

]

, 𝐵 =
[

0
0

]

, ∇(𝑥) =
[

𝑥1
0

]

.

The system’s DDR (11) reads
⎡

⎢

⎢

⎢

⎢

⎣

𝑥1
0
0
0

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

0 0 −1 0
0 0 0 0
1 0 0 1
0 0 −1 −1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

−𝑥̇1
−𝑥̇2
𝑓1
𝑓2

⎤

⎥

⎥

⎥

⎥

⎦

= 0 (27)

with 𝑓 = 𝑧(𝑥). Discretizing (27) with the Gonzalez discrete gradient and discarding the trivial parts of the equation yields

𝑓𝑘,𝑘+11 = −𝑓𝑘,𝑘+12 =
𝑥𝑘1 + 𝑥

𝑘+1
1

2
, 𝑥𝑘+11 = 𝑥𝑘1 − ℎ

𝑥𝑘1 + 𝑥
𝑘+1
1

2
, (28)

which is equivalent to reducing (16) to 𝑥̇1 = −𝑥1 and solving this subsystem with the implicit midpoint method. However, 𝑥2 remains undeter-
mined, since the DDR-method discarded the connection between 𝑓2 and 𝑥2.

One possible solution is to use our original knowledge from (16) and define 𝑥𝑘+12 = −𝑥𝑘+11 , conforming with the algebraic condition 
𝑥1 + 𝑥2 = 0. Another possibility would be to observe that (𝑓1, 𝑓2) = 𝑧(𝑥) = (𝑥1, 𝑥2) and define 𝑥𝑘+12 = 𝑓𝑘,𝑘+12 = − 1

2 (𝑥
𝑘
1 + 𝑥

𝑘+1
1 ). Note that both 

these ideas are based on a priori knowledge of the equation structure.
A more robust and generalizable approach would be to select a consistent discretization 𝑧 for 𝑧. Since imposing 𝑓𝑘,𝑘+1 = 𝑧(𝑥𝑘, 𝑥𝑘+1)

might make the system overdetermined, we choose (𝑥𝑘+1, 𝑓𝑘,𝑘+1) instead so that it satisfies (28) while minimizing ‖𝑓𝑘,𝑘+1 − 𝑧(𝑥𝑘, 𝑥𝑘+1)‖. We 
investigate three different choices for 𝑧:

1. If 𝑧(𝑥𝑘, 𝑥𝑘+1) = 𝑥𝑘+1, then we obtain again 𝑥𝑘+12 = 𝑓𝑘,𝑘+12 = − 1
2 (𝑥

𝑘
1 + 𝑥

𝑘+1
1 ) for all 𝑘 ≥ 0.

2. If 𝑧(𝑥𝑘, 𝑥𝑘+1) = 𝑥𝑘, then 𝑥𝑘+12  does not appear in ‖𝑓𝑘,𝑘+1 − 𝑧(𝑥𝑘, 𝑥𝑘+1)‖. However, since 𝑥𝑘2 appears, we obtain 𝑥𝑘2 = 𝑓𝑘,𝑘+12 = − 1
2 (𝑥

𝑘
1 +

𝑥𝑘+11 ) for 1 ≤ 𝑘 ≤ 𝑁 − 1 (and additionally 𝑘 = 0 if we allow to redefine 𝑥02). Note that in this case 𝑥𝑘2 is to be computed after 𝑥𝑘+11 , since 
the iteration defining 𝑥𝑘+11  is independent of 𝑥𝑘2 . However, the final state 𝑥𝑁2  remains undefined. In fact, this definition suggests that 𝑥𝑘2
actually approximates 𝑥2(𝑡𝑘 + ℎ

2 ) instead of 𝑥2(𝑡𝑘), thus justifying redefining 𝑥02 and stopping at 𝑥𝑁−1
2 .

3. If 𝑧(𝑥𝑘, 𝑥𝑘+1) = 1
2 (𝑥

𝑘 + 𝑥𝑘+1), then we obtain 𝑥𝑘+12 = −𝑥𝑘1 − 𝑥
𝑘+1
1 − 𝑥𝑘2 . If the initial condition 𝑥0 satisfies 𝑥02 = −𝑥01, then 𝑥𝑘+12 = −𝑥𝑘+11

holds inductively for all 𝑘 ≥ 0.

◊

Let us emphasize that the choice of additional constraints does not affect the power balance equation, which remains satisfied by
(26a) and (26b). We also refer to [48, Ex. 7.4.1] where analogous deductions are made in the context of Galerkin projection schemes.

In the case where 𝐸 is singular, the question arises whether there exists a discrete gradient of , which ensures that ∇(𝑥, 𝑥′) is 
in the column space of 𝐸(𝑥, 𝑥′)⊤, i.e.,

∇(𝑥, 𝑥′) ∈ colsp(𝐸(𝑥, 𝑥′)⊤), (29)

for all 𝑥, 𝑥′ ∈ ℝ𝑛. This ensures that (26b) can be solved for 𝑓𝑘,𝑘+1, although not necessarily uniquely. Further details and a corre-
sponding counterexample can be found in Appendix C. Let us now focus on the connections between the discrete methods introduced 
in this section.

4.4.  Relations between the presented methods in the semi-explicit setting

In this subsection, it is demonstrated that the semi-explicit discrete gradient method from Section 4.2 is equivalent to special cases 
of the discrete gradient pair approach from Section 4.1 and of the DDR approach from Section 4.3.

First, we observe that scheme (21) for semi-explicit pHDAEs of the form (15) corresponds to an underlying discrete gradient pair, 
see Definition 7. This is stated in the following theorem and corollary.
Theorem 4. Let (𝐸, 𝑧) be a semi-explicit gradient pair for  in the sense of Definition 9 and let 𝑧 = (𝑧1, 𝑧2) be split correspondingly. 
Furthermore, let 𝐸11 ∈ ( ×  ,ℝ𝑛1 ,𝑛1 ) and 𝑧2 ∈ ( ×  ,ℝ𝑛2 ) be consistent discretizations of 𝐸11 and 𝑧2, respectively, suppose that 𝐸11
satisfies the Assumption  A1, and let ∇1 be a discrete gradient for 1 ∈ 1(1,ℝ). Then (𝐸, 𝑧) with

𝐸 =
[

𝐸11 0
0 0

]

, 𝑧 =

[

𝐸
−⊤
11 (∇1◦𝜋1)

𝑧2

]

(30)

is a discrete gradient pair for (, 𝐸, 𝑧).
Proof.  Property (i) in Definition 7 is part of our hypotheses. We proceed to show that the properties (i) and (iii) are also valid. In 
fact, it holds that 

𝑧(𝑥, 𝑥) =
[

𝐸11(𝑥, 𝑥)−⊤∇1(𝑥1, 𝑥1)
𝑧2(𝑥, 𝑥)

]

=
[

𝐸11(𝑥)−⊤∇1(𝑥1)
𝑧2(𝑥)

]

=
[

𝑧1(𝑥)
𝑧2(𝑥)

]

= 𝑧(𝑥)
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and 
𝑧(𝑥, 𝑥′)⊤𝐸(𝑥, 𝑥′)(𝑥′ − 𝑥) = 𝑧1(𝑥, 𝑥′)⊤𝐸11(𝑥, 𝑥′)(𝑥′1 − 𝑥1) = ∇1(𝑥1, 𝑥′1)

⊤(𝑥′1 − 𝑥1) = 1(𝑥′1) −1(𝑥1) = (𝑥′) −(𝑥),

for all 𝑥 = (𝑥1, 𝑥2), 𝑥′ = (𝑥′1, 𝑥
′
2) ∈  . ∎

Corollary 1. Consider a semi-explicit pHDAE of the form (15), let ∇1, 𝐸11, 𝑧2, 𝐸, and 𝑧 be defined as in Theorem 4, and let us fix 
consistent discretizations for 𝐽 , 𝑅, and 𝐵. Then the semi-explicit discrete gradient method applied with ∇1 governed by (21) and the discrete 
gradient pair method (18) applied with (𝐸, 𝑧) yield the same solution.
Proof.  The claim immediately follows by construction, since

𝑧(𝑥𝑘, 𝑥𝑘+1) =

[

𝐸11(𝑥𝑘, 𝑥𝑘+1)−⊤∇1(𝑥𝑘1 , 𝑥
𝑘+1
1 )

𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

=
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

.

holds true. ∎
We will now see that the discrete gradient method applied to semi-explicit pHDAEs can be equivalently reinterpreted as a specific 
DDR-method.

Theorem 5. Under the same assumptions as in Theorem 4, the semi-explicit discrete gradient method (21) yields the same one-step method 
as the DDR-method (25) with the completing constraint 𝑓𝑘,𝑘+12 = 𝑧2(𝑥𝑘, 𝑥𝑘+1).

Proof.  Due to the structure of the system, the DDR-method applied to (15) yields the one-step method

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇1(𝑥𝑘1 , 𝑥
𝑘+1
1 )

0
0
0

𝑦𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −𝐸
⊤
11 0 0

0 0 0 0 0
𝐸11 0 𝐽 11 − 𝑅11 𝐽 12 − 𝑅12 𝐵1
0 0 𝐽 21 − 𝑅21 𝐽 22 − 𝑅22 𝐵2

0 0 −𝐵
⊤
1 −𝐵

⊤
2 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
ℎ (𝑥

𝑘+1
1 − 𝑥𝑘1)

− 1
ℎ (𝑥

𝑘+1
2 − 𝑥𝑘2)
𝑓𝑘,𝑘+11
𝑓𝑘,𝑘+12
𝑢𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0, (31)

where the arguments (𝑥𝑘, 𝑥𝑘+1) have been omitted for simplicity. In particular, the first equation of (31) yields
𝐸11(𝑥𝑘, 𝑥𝑘+1)⊤𝑓

𝑘,𝑘+1
1 = ∇1(𝑥𝑘, 𝑥𝑘+1),

thus it is equivalent to the Eq.  (21c), up to replacing 𝑓𝑘,𝑘+11  with 𝑧𝑘,𝑘+11 . Then, since the second equation of (31) is trivial, we can 
remove it. Finally, by replacing 𝑓𝑘,𝑘+12  with 𝑧2(𝑥𝑘, 𝑥𝑘+1) due to the stated constraint, we get exactly (21). ∎

In summary, Corollary 1 and Theorem 5 demonstrate that the concrete time discretization scheme for semi-explicit pHDAEs 
provided in Section 4.2 may be regarded as a special case of the discrete gradient pair approach from Section 4.1 and of the DDR 
method discussed in Section 4.3.

5.  Relating general pHDAEs to semi-explicit pHDAEs using system transformations

The goal of this section is to investigate when it is possible to reformulate general pHDAEs as semi-explicit pHDAEs, by employing sys-
tem transformations. To this end, we first analyze in Section 5.1 the behavior of the proposed schemes under system transformations. 
In Section 5.2 we then shed more light on the existence of semi-explicit representations of pHDAEs.

5.1.  Behavior of gradient pairs under system transformations

We are now interested in studying how the methods introduced in Section 4 behave under structure-preserving system transformations. 
Our motivation is to construct discrete gradient pairs for general gradient pairs. One possibility would be to transform the general 
system into an equivalent semi-explicit one, apply Theorem 4, and then apply the inverse transformation. However, this requires to 
understand more accurately the behavior of discrete gradient pairs under invertible transformations.

We start by formalizing what is meant by structure-preserving system transformation. In fact, given a pHDAE of the form (6), a 
diffeomorphism 𝜑 ∈ 1(̃ ,), and a pointwise invertible matrix function 𝑈 ∈ (̃ ,ℝ𝑛,𝑛), we call the pair (𝜑,𝑈 ) an (invertible) system 
transformation. This is motivated by the fact that we can obtain an equivalent system by applying the change of variables 𝑥 = 𝜑(𝑥̃)
and left-multiplication of the first equation of (6) by 𝑈 (𝑥̃)⊤. In fact, this transformation yields the new system

𝐸(𝑥̃) ̇̃𝑥 =
(

𝐽 (𝑥̃) − 𝑅(𝑥̃)
)

𝑧̃(𝑥̃) + 𝐵(𝑥̃)𝑢,

𝑦 = 𝐵(𝑥̃)𝑧̃(𝑥̃),
(32)

where 𝐸 = 𝑈⊤(𝐸◦𝜑)D𝜑, 𝐽 = 𝑈⊤(𝐽◦𝜑)𝑈 , 𝑅 = 𝑈⊤(𝑅◦𝜑)𝑈 , 𝑧̃ = 𝑈−1(𝑧◦𝜑), and 𝐵 = 𝑈⊤(𝐵◦𝜑). Remarkably, (𝐸, 𝑧̃) is a gradient pair for 
̃ = ◦𝜑, and the system (32) is a pHDAE with Hamiltonian ̃, see [4, Thm. 1] for more details. Furthermore, we observe that, 
if (𝜑,𝑈 ) is an invertible system transformation, then (𝜑−1, 𝑈−1) is also an invertible system transformation. In particular, applying 
(𝜑−1, 𝑈−1) to the transformed system (32) we obtain again the original system (6). This motivates calling (𝜑−1, 𝑈−1) the inverse of the 
system transformation (𝜑,𝑈 ). We will discuss the composition and inversion of system transformations further in Appendix D.1.
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Remark 8.  Note that, if the original system is an ODE and we want to ensure that (32) is also an ODE, we need to choose 𝑈 = (D𝜑)−⊤, 
while in the more general case of DAEs this requirement is unnecessary and the choice of 𝑈 is free. 
Since (𝐸, 𝑧̃) only depends on the gradient pair (𝐸, 𝑧) and on the system transformation (𝜑,𝑈 ), we deduce that system transformations 
can be applied directly to (discrete) gradient pairs. This leads to the following result.
Theorem 6. Let (𝐸, 𝑧) be a gradient pair for , let (𝜑,𝑈 ) be a system transformation. Then

(𝐸, 𝑧̃) =
(

𝑈⊤(𝐸◦𝜑)D𝜑,𝑈−1(𝑧◦𝜑)
)

(33)

is a gradient pair for ̃ = ◦𝜑, which we call the gradient pair transformed from (𝐸, 𝑧) via (𝜑,𝑈 ). Furthermore, let (𝐸, 𝑧) be a discrete 
gradient pair for (, 𝐸, 𝑧), let D𝜑 be a discrete Jacobian for 𝜑, and let 𝑈 ∈ (̃ × ̃ ,ℝ𝑛,𝑛) be a pointwise invertible consistent discretization 
for 𝑈 . Then (𝐸, 𝑧̂) with

𝐸 = 𝑈
⊤
(𝐸◦𝜑)D𝜑, 𝑧̂ = 𝑈

−1
(𝑧◦𝜑) (34)

is a discrete gradient pair for (̃, 𝐸, 𝑧̃).
Proof.  Analogously to what was proven in [4] in the case of pHDAEs, we have

𝐸⊤𝑧̃ = (D𝜑)⊤(𝐸◦𝜑)⊤𝑈𝑈−1(𝑧◦𝜑) = (D𝜑)⊤(𝐸⊤𝑧◦𝜑) = (D𝜑)⊤(∇◦𝜑) = ∇̃,

thus (𝐸, 𝑧̃) is a gradient pair for ̃. Concerning the second statement, for every 𝑥̃, 𝑥̃′ ∈ ̃ we have
𝑧̂(𝑥̃, 𝑥̃′)⊤𝐸(𝑥̃, 𝑥̃′)(𝑥̃′ − 𝑥̃) = 𝑧

(

𝜑(𝑥̃), 𝜑(𝑥̃′)
)⊤𝐸

(

𝜑(𝑥̃), 𝜑(𝑥̃′)
)

D𝜑(𝑥̃, 𝑥̃′)(𝑥̃′ − 𝑥̃)

= 𝑧
(

𝜑(𝑥̃), 𝜑(𝑥̃′)
)⊤𝐸

(

𝜑(𝑥̃), 𝜑(𝑥̃′)
)(

𝜑(𝑥̃′) − 𝜑(𝑥̃)
)

= 
(

𝜑(𝑥̃′)
)

−
(

𝜑(𝑥̃)
)

= ̃(𝑥̃′) − ̃(𝑥̃).

It is furthermore clear that 𝐸(𝑥̃, 𝑥̃) = 𝐸(𝑥̃) and 𝑧̂(𝑥̃, 𝑥̃) = 𝑧̃(𝑥̃) hold for all 𝑥̃ ∈ ̃ . ∎
Remark 9.  Note that, for (𝐸, 𝑧) = (𝐼𝑛,∇), (𝐸, 𝑧) = (𝐼𝑛,∇) with ∇ being a discrete gradient of , and 𝑈 = 𝑈 = 𝐼𝑛, Theorem 6 
yields that (D𝜑,∇◦𝜑) is a discrete gradient pair for (̃, 𝐼𝑛,∇̃), and therefore

∇̃ = (D𝜑)⊤(∇◦𝜑) (35)

is a discrete gradient for ̃. This is the well-known chain rule for discrete derivatives, see [50, Prop. 3.4]. 
Remark 10.  One might wonder whether applying the same numerical methods under different coordinate systems would yield 
different results. To answer this question, we first need to make it more precise. One possibility would be to consider a discrete 
gradient pair on the original system and the one obtained via a system transformation as in Theorem 6; in this case, the discrete 
solutions are the same up to applying the same coordinate change. This could still bring some numerical advantages, e.g. by applying 
preconditioning. Another option would be to use the same discrete gradient construction, e.g. the Gonzalez midpoint discrete gradient, 
for both the original system and the transformed one; in this other case, the obtained discrete solutions can be in fact different. The 
interested reader can find more details in Section D. 

We also deduce from Theorem 6 the following result, which fulfills our motivation mentioned at the beginning of this subsection.
Corollary 2. Let (𝐸, 𝑧) be a gradient pair for , and suppose that there exists an invertible system transformation (𝜑,𝑈 ) that maps it into a 
semi-explicit gradient pair. Then (, 𝐸, 𝑧) admits a discrete gradient pair.
Proof.  In this proof we employ the fact that discrete gradients and discrete Jacobians exist regardless of the structure of the state 
space, as discussed in Remark 5. Let ̃ = ◦𝜑 ∈ 1(̃ ,ℝ) be the transformed Hamiltonian, ̃1 be defined according to Lemma 2, 
and ∇̃1 be any discrete gradient for ̃1. We apply Theorem 4 to construct a discrete gradient pair (𝐸, 𝑧̂) for (̃, 𝐸, 𝑧̃). Then, we 
construct a discrete gradient pair (𝐸, 𝑧) for (, 𝐸, 𝑧) by applying Theorem 6 to the discrete gradient pair (𝐸, 𝑧̂) via the inverse system 
transformation (𝜑−1, 𝑈−1). For that, any consistent discretization of 𝑈−1 (e.g. the midpoint discretization) and any discrete Jacobian 
for 𝜑−1 can be employed. ∎

Theorem 6 and Corollary 2 provide us with a basis for determining a discrete gradient pair for any gradient pair which may be 
transformed to a semi-explicit one. It remains to find conditions under which a gradient pair allows for a semi-explicit representation, 
which is the content of the next subsection.

5.2.  On the existence of a semi-explicit representation

Corollary 2 requires the existence of an invertible system transformation (𝜑,𝑈 ) which brings the system to semi-explicit form. In the 
special case where 𝐸 is constant, such a transformation can be obtained based on a singular value decomposition (SVD) of 𝐸, as 
detailed in the following proposition.
Proposition 2. Let (𝐸, 𝑧) be a gradient pair for  ∈ 1( ,ℝ), assume that 𝐸 ∈ ℝ𝑛,𝑛 is constant, and let 𝐸 = 𝑈Σ𝑉 ⊤ be an SVD of 
𝐸. Furthermore, let 𝑈 = [𝑈1, 𝑈2], 𝑉 = [𝑉1, 𝑉2], and Σ = diag(Σ1, 0) with 𝑈1,𝑊1 ∈ ℝ𝑛,𝑟, Σ1 ∈ ℝ𝑟,𝑟, and 𝑟 = rank(𝐸). Then the following 
statements hold:
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Fig. 1. Mass-spring system.

1. (𝜑,𝑈 ) with 𝜑(𝑥) = 𝑉 𝑥 is an invertible system transformation that maps (𝐸, 𝑧) into a semi-explicit gradient pair.
2. The function ̃1 ∶ ̃1 → ℝ associated with ̃ = ◦𝜑 via Lemma 2 satisfies ̃1(𝑥̃1) = (𝑉1𝑥̃1).
3. If ∇̃1 is a discrete gradient for ̃1 and 𝑧̂2 is a consistent approximation for 𝑈⊤

2 (𝑧◦𝜑), then (𝐸, 𝑧2) with 𝑧2 = 𝑈1Σ−1
1 ∇̃1 + 𝑈2𝑧̂ is a 

discrete gradient pair for (, 𝐸, 𝑧).

Proof.  Straightforward calculations yield that the result follows from Theorem 4 and Theorem 6. ∎
Proposition 2 can find its use in several application instances. We demonstrate this in the following example.
Example 7  (Multibody system with singular mass matrix). Using Proposition 2, one can design a discrete gradient pair with corresponding 
integration method for a multibody system example fitting into the aforementioned Example 3. The specific problem as depicted in Fig. 1 (see 
[56, Sec. 5, Ex. 3] and [57]) has two degrees of freedom but is modeled by means of three redundant coordinates 𝑞 = (𝑥1, 𝑞2, 𝑥2). This leads 
to a singular mass matrix with masses 𝑚1 and 𝑚2 given by

𝑀 =
⎡

⎢

⎢

⎣

𝑚1 0 0
0 𝑚2 𝑚2
0 𝑚2 𝑚2

⎤

⎥

⎥

⎦

, (36)

which is contained in the pHDAE’s descriptor matrix 𝐸 = diag(𝐼3,3,𝑀, 0). Performing the steps as shown above yields the desired discrete 
gradient pair. Further details are contained in Appendix E. ◊

In the general case of a state-dependent 𝐸, one might wonder whether it is possible to transform any pHDAE (6) into an equivalent 
one in the semi-explicit form (15). We start by deducing the following necessary condition:
Theorem 7. Let (𝐸, 𝑧) be a gradient pair for , and suppose that there exists an invertible system transformation (𝜑,𝑈 ) that maps it into a 
semi-explicit gradient pair. Then 𝐸 has constant rank.
Proof.  Since 𝜑 is a diffeomorphism, D𝜑 is pointwise invertible, thus we deduce that

rank
(

𝐸(𝑥)
)

= rank
(

𝑈 (𝑥̃)⊤𝐸(𝑥)D𝜑(𝑥̃)
)

= rank
(

𝐸(𝑥̃)
)

= 𝑛1

for all 𝑥 ∈  , where 𝑥̃ = 𝜑−1(𝑥). ∎
We investigate now whether this condition is also sufficient. A simple extension of [25, Thm. 3.9] (see Theorem 11 in the appendix) 
shows that 𝐸 being continuous and constant rank is sufficient to find pointwise unitary 𝑈, 𝑉 ∈ ( ,ℝ𝑛,𝑛) satisfying

𝑈⊤𝐸𝑉 =
[

𝐸11 0
0 0

]

for some pointwise invertible matrix function 𝐸11, at least locally. Unfortunately, since such 𝑉  is not necessarily the Jacobian of a 
diffeomorphism 𝜑, we cannot exploit this result directly. However, we are still able to provide a crucial local canonical form for a 
gradient pair (𝐸, 𝑧), as long as 𝐸 is analytic and has constant rank.
Theorem 8. Let (𝐸, 𝑧) be a gradient pair for  ∈ 1( ,ℝ), and suppose that 𝐸 ∈ ( ,ℝ𝑛,𝑛) is analytic and has constant rank. Then (𝐸, 𝑧)
is locally equivalent to a gradient pair (𝐸, 𝑧̃) for ̃ ∈ 1(̃ ,ℝ), such that ̃ admits an associated function ̃1 ∈ 1(𝜋1(̃),ℝ) in the sense of 
Lemma 1, and

𝐸 =
⎡

⎢

⎢

⎣

𝐼𝑝 0 0
0 0 0
0 𝐸32 𝐼𝑟−𝑝

⎤

⎥

⎥

⎦

, 𝑧̃ =
⎡

⎢

⎢

⎣

∇̃1◦𝜋1
𝑧2
0

⎤

⎥

⎥

⎦

, (37)

where 𝜋1 ∶ ℝ𝑛 → ℝ𝑝 denotes the projection onto the first 𝑝 coordinates.
Proof.  See Appendix F. ∎
The canonical form in Theorem 8 allows us then to find a canonical form for pHDAEs, which allows to split them into a structured 
semi-explicit DAE and an additional unstructured DAE.
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Corollary 3. Consider a pHDAE of the form (6), and suppose that the descriptor matrix 𝐸 is analytic and has constant rank. Then the system 
is locally equivalent to the combination of a parametrized semi-explicit pHDAE of the form 

[

𝐼𝑛1 0
0 0

][

𝑥̇1
𝑥̇2

]

=
(

𝐽 (𝑥, 𝜃) − 𝑅(𝑥, 𝜃)
)

[

∇1(𝑥1)
𝑧2(𝑥, 𝜃)

]

+
[

𝐵1(𝑥, 𝜃)
𝐵2(𝑥, 𝜃)

]

𝑢,

𝑦 =
[

𝐵1(𝑥, 𝜃)⊤ 𝐵2(𝑥, 𝜃)⊤
]

[

∇1(𝑥1)
𝑧2(𝑥, 𝜃)

]

(38a)

with Hamiltonian 1 depending only on 𝑥1, and an unstructured DAE for the parameter 𝜃 given by
𝜃̇ + 𝐸32(𝑥, 𝜃)𝑥̇2 = 𝐴31(𝑥, 𝜃)∇1(𝑥1) + 𝐴32(𝑥, 𝜃)𝑧2(𝑥, 𝜃) + 𝐵3(𝑥, 𝜃)𝑢, (38b)

with state 𝑥 = (𝑥1, 𝑥2), up to invertible system transformations.
Proof.  Because of Theorem 8 we can assume, up to restricting the state space to an appropriate open neighborhood and applying a 
certain invertible system transformation, that  admits an associated function 1 ∈ 1(𝜋1(),ℝ) in the sense of Lemma 1 and

𝐸 =
⎡

⎢

⎢

⎣

𝐼𝑝 0 0
0 0 0
0 𝐸32 𝐼𝑟−𝑝

⎤

⎥

⎥

⎦

, 𝑧 =
⎡

⎢

⎢

⎣

∇1◦𝜋1
𝑧2
0

⎤

⎥

⎥

⎦

.

The pHDAE then can be written as
⎡

⎢

⎢

⎣

𝑥̇1
0

𝐸32(𝑥)𝑥̇2 + 𝑥̇3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐽11(𝑥) − 𝑅11(𝑥) 𝐽12(𝑥) − 𝑅12(𝑥) 𝐽13(𝑥) − 𝑅13(𝑥)
𝐽21(𝑥) − 𝑅21(𝑥) 𝐽22(𝑥) − 𝑅22(𝑥) 𝐽23(𝑥) − 𝑅23(𝑥)
𝐽31(𝑥) − 𝑅31(𝑥) 𝐽32(𝑥) − 𝑅32(𝑥) 𝐽33(𝑥) − 𝑅33(𝑥)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∇1(𝑥1)
𝑧2(𝑥)
0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐵1(𝑥)
𝐵2(𝑥)
𝐵3(𝑥)

⎤

⎥

⎥

⎦

𝑢,

𝑦 =
[

𝐵1(𝑥)⊤ 𝐵2(𝑥)⊤ 𝐵3(𝑥)⊤
]

⎡

⎢

⎢

⎣

∇1(𝑥1)
𝑧2(𝑥)
0

⎤

⎥

⎥

⎦

.

Note that, since 𝑧3 = 0, the third block column of 𝐽 − 𝑅 can be arbitrarily modified without affecting the solutions of the system. 
Therefore, 𝐴31 = 𝐽31 − 𝑅31 and 𝐴32 = 𝐽32 − 𝑅32 are actually unstructured, and the system can be equivalently interpreted as (38), up 
to relabeling 𝑥 ∶= (𝑥1, 𝑥2) and 𝜃 ∶= 𝑥3.

We finally note that, up to restricting  further, we can assume that it is an open convex of the form 1 × 2 × 3 with 1 ⊆ ℝ𝑛1 , 
2 ⊆ ℝ𝑛2 , and 3 ⊆ ℝ𝑛3 . ∎
Remark 11.  In the proof of Corollary 3 we reinterpreted part of the state as a time-varying parameter. While this choice might seem 
arbitrary, it allows us to highlight and exploit the underlying semi-explicit pHDAE structure. In fact, while the full system (38) is not a 
semi-explicit pHDAE, the fact that the subsystem (38a) is a parametrized semi-explicit pHDAE allows to apply a structure-preserving 
time-discretization scheme by approximating ∇1(𝑥1) by a corresponding discrete gradient. Additionally, one is free to choose an 
approximation of the unstructured part (38b), which however does not spoil the discrete time power balance equation. It should 
be emphasized that the derivation of the system (38) requires a suitable system transformation, which may be difficult to obtain in 
practice. 
While we leave further in-depth analyses for future research, we subsequently highlight the applicability of our proposed approach 
to a mechanical problem class.

6.  Application to multibody system dynamics

Let us consider the example of nonlinear and constrained multibody systems (see Example 3). We discuss the modeling as a semi-
explicit pHDAE in Section 6.1, showcase the application of a discrete gradient method in Section 6.2 and present a numerical exper-
iment in Section 6.3.

6.1.  Modeling multibody systems as semi-explicit pHDAEs

The class of nonlinear multibody systems with redundant coordinates 𝑞 ∈ (𝕋 ,) fits well into the semi-explicit framework (15). 
More details on the derivations of the following equations may be found for example in the textbook [58, Ch. 1]. The configuration 
space  is typically a differential manifold, but it can also be regarded as an open subset of ℝ𝑑 up to switching to local coordinates, 
where the dimension 𝑑 of  determines the number of coordinates. Correspondingly, admissible velocities 𝑣 = 𝑞̇ are elements of the 
tangent space 𝑇𝑞 defined through the presence of holonomic constraints 𝑔 ∈ 1(,ℝ𝑚), and can be reinterpreted in local coordinates 
as vectors in ℝ𝑑 . Since 

𝑔
(

𝑞(𝑡)
)

= 0 (39)

gives rise to the kinematic (i.e. velocity level) constraints (sometimes in the MBS community referred to as hidden constraints), 
admissible velocities need to satisfy 

D𝑔
(

𝑞(𝑡)
)

𝑣(𝑡) = 0. (40)
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These constraints are enforced by means of Lagrange multipliers 𝜆 ∈ (𝕋 ,ℝ𝑚), which now represent the purely algebraic states, i.e., 
𝑥2 = 𝜆. Correspondingly, with 𝑥1 = (𝑞, 𝑣) one defines the non-quadratic Hamiltonian as 

(𝑥) = 1(𝑥1) =
1
2
𝑣⊤𝑀𝑣 + 𝑉 (𝑞), (41)

where the first term represents the kinetic energy with the symmetric and positive-definite mass matrix 𝑀 ∈ ℝ𝑑,𝑑 and 𝑉 ∈ (,ℝ)
denotes an arbitrary potential energy. The emanating potential forces are derived by taking the partial derivative with respect to the 
coordinates, i.e., 𝐹p = ∇𝑉 (𝑞). Additionally, we consider velocity-dependent viscous dissipation governed by the Rayleigh dissipation 
function 𝐺(𝑞, 𝑣) = 1

2𝑣
⊤𝑅R(𝑞)𝑣, where 𝑅R(𝑞) ∈ (,ℝ𝑑,𝑑 ) is a symmetric and positive semi-definit dissipation matrix. The non-potential 

forces appearing in the balance of linear momentum are obtained through differentiation, i.e., 𝐹np(𝑞, 𝑣) = −∇𝑣𝐺(𝑞, 𝑣) = −𝑅R(𝑞)𝑣. This 
eventually yields the equations of motion as index-2 DAEs given by 

𝑞̇ = 𝑣, (42a)

𝑀𝑣̇ = −∇𝑉 (𝑞) − 𝑅R(𝑞)𝑣 − D𝑔(𝑞)⊤𝜆 + 𝑢, (42b)

0 = D𝑔(𝑞)𝑣, (42c)

where 𝑢 represents external input loads. These equations can be brought into the semi-explicit pHDAE representation (15) by rewriting 
them as 

⎡

⎢

⎢

⎣

𝐼 0 0
0 𝑀 0
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞̇
𝑣̇
𝜆̇

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

0 𝐼 0
−𝐼 −𝑅R(𝑞) −D𝑔(𝑞)⊤

0 D𝑔(𝑞) 0

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎣

∇𝑉 (𝑞)
𝑣
𝜆

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0
𝐼
0

⎤

⎥

⎥

⎦

𝑢, (43a)

𝑦 =
[

0 𝐼 0
]

⎡

⎢

⎢

⎣

∇𝑉 (𝑞)
𝑣
𝜆

⎤

⎥

⎥

⎦

. (43b)

The verification that 𝐸⊤𝑧(𝑥) = ∇(𝑥) holds true is straightforward. Moreover, the system output collocated with the input forces 
coincides with the velocity, i.e., 𝑦 = 𝑣.

Note that the pH formulation of the multibody system dynamics is characterized by explicitely accounting for the hidden velocity 
constraints (40) instead of the constraints on position level (39). Care has to be taken when it comes to the numerical discretization 
in order to avoid the violation of the constraints on position level during simulations (drift-off ).

6.2.  Structure-preserving time integration of multibody systems

For the time discretization of (43a), we propose the application of the semi-explicit discrete gradient method (21) with additional 
specifications, leading to the discrete time mapping 

⎡

⎢

⎢

⎣

𝐼 0 0
0 𝑀 0
0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑞𝑘+1 − 𝑞𝑘

𝑣𝑘+1 − 𝑣𝑘

𝜆𝑘+1 − 𝜆𝑘

⎤

⎥

⎥

⎦

= ℎ
⎡

⎢

⎢

⎣

0 𝐼 0
−𝐼 −𝑅R(𝑞𝑘+1∕2) −D𝑔(𝑞𝑘, 𝑞𝑘+1)⊤

0 D𝑔(𝑞𝑘, 𝑞𝑘+1) 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑧𝑘,𝑘+11,𝑞
𝑧𝑘,𝑘+11,𝑣
𝜆𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎦

+ ℎ
⎡

⎢

⎢

⎣

0
𝐼
0

⎤

⎥

⎥

⎦

𝑢𝑘,𝑘+1, (44a)

[

𝑧𝑘,𝑘+11,𝑞
𝑧𝑘,𝑘+11,𝑣

]

=
[

𝐼 0
0 𝑀

]−⊤

∇1(𝑥𝑘1 , 𝑥
𝑘+1
1 ), (44b)

𝑦𝑘,𝑘+1 = 𝑧𝑘,𝑘+11,𝑣 , (44c)

where 𝑞𝑘+1∕2 = 1
2 (𝑞

𝑘 + 𝑞𝑘+1) is the midpoint, and D𝑔 is a discrete Jacobian for 𝑔. Here we discretized the Rayleigh dissipation term using 
the implicit midpoint rule, but we emphasize that any other consistent approximation which preserves the positive semi-definiteness 
of 𝑅R would be suitable as well. For the multipliers we make the choice 𝜆𝑘,𝑘+1 ∶= 𝜆𝑘+1 such that no appropriate initialization for 𝜆0
is required.

As already mentioned, one might wonder about the drift-off effect. Since we approximate D𝑔 with a discrete Jacobian, combining 
the first and third row of (44a) yields 

𝑔(𝑞𝑘+1) − 𝑔(𝑞𝑘) = D𝑔(𝑞𝑘, 𝑞𝑘+1)(𝑞𝑘+1 − 𝑞𝑘) = ℎD𝑔(𝑞𝑘, 𝑞𝑘+1)𝑧𝑘,𝑘+11,𝑣 = 0, (45)

and therefore the drift-off vanishes, as long as the initial condition satisfies 𝑔(𝑞0) = 0. Thus, this scheme not only yields energy 
consistency in terms of Theorem 3, but also prevents the drift-off effect.

Remark 12. The choice of using a discrete Jacobian to approximate D𝑔 in general only guarantees that the velocity constraint (40) 
itself is satisfied approximately. For an energy-consistent multibody system integrator, which captures constraints both on position 
and on velocity level exactly, the interested reader is referred to [15, Sec. 5].

Remark 13. For lossless systems, one might be additionally interested in preserving momentum maps, like the angular momentum. 
This can be achieved by using G-equivariant discrete gradients, see [51, Ch. 3.7].
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Fig. 2. Four-particle system.

Remark 14.  Alternatively to applying the semi-explicit discrete gradient method (21), one could also apply the DDR-method (25) 
with a discrete gradient ∇, yielding the discrete time mapping

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∇𝑞(𝑥𝑘, 𝑥𝑘+1)
∇𝑣(𝑥𝑘, 𝑥𝑘+1)
∇𝜆(𝑥𝑘, 𝑥𝑘+1)

0
0
0

𝑦𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −𝐼 0 0 0
0 0 0 0 −𝑀 0 0
0 0 0 0 0 0 0
𝐼 0 0 0 𝐼 0 0
0 𝑀 0 −𝐼 −𝑅R(𝑞𝑘+1∕2) −∇𝑔(𝑞𝑘, 𝑞𝑘+1)⊤ 𝐼
0 0 0 0 ∇𝑔(𝑞𝑘, 𝑞𝑘+1) 0 0
0 0 0 0 −𝐼 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
ℎ (𝑞

𝑘+1 − 𝑞𝑘)
− 1
ℎ (𝑣

𝑘+1 − 𝑣𝑘)
− 1
ℎ (𝜆

𝑘+1 − 𝜆𝑘)
𝑓𝑘,𝑘+11,𝑞
𝑓𝑘,𝑘+11,𝑣
𝑓𝑘,𝑘+11,𝜆
𝑢𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0, (46)

where we split ∇ into its entries ∇𝑞 ,∇𝑣,∇𝜆, consistently with the notation introduced in Section 2.3. Note that this is completely 
equivalent to applying (44), up to constructing the discrete gradient ∇ based on the discrete gradient ∇1 of the Hamiltonian 1, 
i.e.,

∇(𝑥, 𝑥′) =
[

∇1(𝑞, 𝑣, 𝑞′, 𝑣′)
0

]

,

and adding the constraint 𝑓𝑘,𝑘+11,𝑞 = 𝜆𝑘+1, see also Lemma 1 and Theorem 5. 

6.3.  Numerical experiment

Let us now focus on a specific problem from the literature to highlight the applicability of our approach and discuss its performance.

6.3.1.  Problem description
The four-particle system depicted in Fig. 2 has been adapted from the literature [11,15] and extended to include dissipation. The 
configuration of the system is characterized by the coordinate vector 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) ∈ ℝ12 comprising the Cartesian coordinates of 
four masses 𝑚𝑖, 𝑖 = 1,… , 4 in three dimensions. Two nonlinear springs give rise to the potential function

𝑉 (𝑞) = 1
2
𝑘13

(

‖𝑞3 − 𝑞1‖2 − 1
)2 + 1

2
𝑘24

(

‖𝑞4 − 𝑞2‖2 − 1
)2, (47)

with the spring stiffness parameters 𝑘13 and 𝑘24. The mass matrix is block diagonal, i.e. 𝑀 = diag{𝑚1𝐼, 𝑚2𝐼, 𝑚3𝐼, 𝑚4𝐼}. Additionally, 
we consider configuration-dependent viscous dissipation in terms of the Rayleigh dissipation function 

𝐺(𝑞, 𝑣) = 1
2
𝜂(𝑞)𝑣2rel, 𝑣rel = ‖𝑣3 − 𝑣2‖, (48)

where 𝜂(𝑞) = 𝜂0(1 + 𝛼𝑞2rel) ≥ 0 is the dynamic viscosity parameter and 𝑞rel = ‖𝑞3 − 𝑞2‖. We have also introduced 𝜂0 > 0 and 𝛼 > 0 as 
constant parameters. This leads to the dissipation matrix 

𝑅R(𝑞) = 𝜂(𝑞)

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 𝐼 −𝐼 0
0 −𝐼 𝐼 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (49)

There are two rigid bars connecting two masses, respectively, leading to the constraints on position level given by
𝑔1(𝑞) =

1
2
(

‖𝑞2 − 𝑞1‖2 − 1
)

= 0, 𝑔2(𝑞) =
1
2
(

‖𝑞4 − 𝑞3‖2 − 1
)

= 0. (50)

In the numerical simulations the initial conditions
𝑞01 =

[

0, 0, 0
]⊤ , 𝑞02 =

[

1, 0, 0
]⊤ , 𝑞03 =

[

0, 1, 0
]⊤ , 𝑞04 =

[

1, 1, 0
]⊤,

𝑣01 =
[

0, 0, 0
]⊤ , 𝑣02 =

[

0, 0, 0
]⊤ , 𝑣03 =

[

0, 0, 0
]⊤ , 𝑣04 =

[

0, 0, 2017
]⊤
,

(51)

have been chosen consistently with the constraints (50) and their velocity level counterparts induced by (40).
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Table 1 
Simulation parameters for four-particle system.
ℎ 𝑡end 𝜀Newton {𝑘13 , 𝑘24} 𝑚𝑖 𝜂0 𝛼

0.01 10 10−10 {50, 500} {1, 3, 2.3, 1.7} 1 0.5

Fig. 3. Hamiltonian evolution (left), increments (center) and comparison with midpoint approach (right). “DG” denotes our approach and “MP” is 
the midpoint scheme.

6.3.2.  Methods
The simulations have been conducted using our discrete gradient scheme for semi-explicit systems (21), or the equivalent DDR-
method, implemented as suggested in (44). Results obtained with this scheme are labeled “DG” . The equations have been solved 
in each time step using Newton’s method with a tolerance of 𝜀Newton. For the discrete gradients and Jacobians, we use the Gonzalez 
discrete gradient (12). Since the constraints (50) are quadratic, the application of the Gonzalez discrete Jacobian boils down to a 
midpoint evaluation. In this example we assume zero inputs.

The generated data along with the source code for the simulations are openly available for verification purposes in the repository 
https://github.com/plkinon/phdae_discrete_gradients and are archived at [59].

6.3.3.  Results & discussion
We simulate the four-particle system using the parameters comprised in Table 6.3.3. On the left part of Fig. 3 one can observe the 

discrete evolution of the Hamiltonian in time. The exact representation of the power balance in discrete time (see (44) and Theorem 3) 
is demonstrated in the central part of Fig. 3, since the Hamiltonian increments are always less or equal to zero and the dissipated 
work in each time step

𝑊 𝑘,𝑘+1
diss ∶= ℎ

[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]⊤

𝑅(𝑥𝑘, 𝑥𝑘+1)
[

𝑧𝑘,𝑘+11
𝑧2(𝑥𝑘, 𝑥𝑘+1)

]

= ℎ𝑧𝑘,𝑘+11,𝑣
⊤
𝑅R(𝑞𝑘+1∕2)𝑧

𝑘,𝑘+1
1,𝑣 ≥ 0 (52)

is equally large. The sum of the two terms is numerically zero. For comparison, a pure midpoint-based scheme (labeled “MP”) does 
not achieve energy-consistency, as depicted on the right part of Fig. 3.

On the left side of Fig. 4 one can observe that the scheme under investigation does not suffer from drift-off, i.e., it accurately 
captures the constraints on position level (50), as expected from (45). On the right side of the same figure, the kinematic constraint is 
shown to have order of magnitude of 10−4 for each discrete point in time, due to the intermediate approximation of (40), as discussed 
in Remark (12). Next, we switch off viscous dissipation by setting 𝜂0 = 0 in the dissipation law. The discrete-time energy conservation 
in the non-dissipative case is verified in Fig. 5.

We have also performed a numerical convergence analysis (see Fig. 6, left side) using the relative error measure

𝑒𝑥 =
||𝑥ref − 𝑥||
||𝑥ref ||

,

where 𝑥 ∈ {𝑞𝑘4 , 𝑣
𝑘
4 , 𝜆

𝑘,𝑘+1
1 } are the solutions evaluated at 𝑡𝑘 = 0.1 for different time step sizes and methods. The respective reference 

solution 𝑥ref  was obtained using our DG method with ℎ = 10−4. The scheme exhibits second order accuracy for the differential 
unknowns of position and velocity and approximately a first order convergence behavior in the Lagrange multiplier. It should be 
noted that the order of convergence can be affected by the discretization method used for the equation coefficients. The compared 
midpoint scheme MP yields similar convergence results.
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Fig. 4. Constraints on position level (left) and on velocity level (right); 𝑖 = 1, 𝑖 = 2.

Fig. 5. Hamiltonian evolution (left) and increments (right) without dissipation, i.e., 𝜂0 = 0.

Fig. 6. ℎ-convergence (left) and robustness comparison with larger ℎ (right).

Lastly, we investigated the numerical robustness of the proposed DG scheme compared to the MP scheme when choosing larger 
time step sizes. Both methods did not converge with time step sizes of 0.4 or larger. However, our DG method provided physically 
meaningful results up until ℎ = 0.25, showing a qualitatively similar behavior as with the previous simulation (see Fig. 6, right side). 
Contrarily to that, MP exhibits occasional total energy increase, thus violating the dissipativity of the system. This is in accordance 
with literature showing that discrete gradient methods are relatively robust compared to the midpoint rule in the nonlinear regime, 
see e.g. [15,60].

7.  Conclusion

In this work, we introduced discrete gradient methods for port-Hamiltonian differential-algebraic equations (pHDAEs), addressing the 
challenges associated with state-dependent and non-invertible descriptor matrices. We developed a promising time integration method 
for semi-explicit systems, discussed more general pHDAEs, and explored a method based on an alternative representation of pHDAEs. 
Additionally, we outlined conditions for constructing discrete gradient pairs for general pHDAEs, analyzed state transformations and 
the equivalence of different methods. In particular we proved that, under appropriate regularity assumptions, every pHDAE can be 
reinterpreted as the combination of a parametrized semi-explicit pHDAE and an unstructured DAE on the time-varying parameter. 
Lastly, we applied the proposed framework to the important application case of nonlinear multibody system dynamics, providing 
convincing simulation results.
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Future research could focus on refining the conditions needed to apply discrete gradients to general pHDAEs, improving the 
numerical efficiency and accuracy. It will be of major interest to apply our framework to large-scale and multiphysics systems, as 
their modeling is seamlessly possible in the pH framework. Moreover, a rigorous convergence analysis of the time discretization 
schemes presented in this paper should be pursued in the future.
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Appendix A.  Proof details for Lemma 1

To prove the first claim in Lemma 1, we consider a fixed 𝑥̂2 ∈ 2 and define 𝑓1 ∶ 1 → ℝ, 𝑥1 ↦ 𝑓 (𝑥1, 𝑥̂2). Since 2 is convex, we 
deduce that for every fixed (𝑥1, 𝑥2) ∈  the map

𝑓 ∶ [0, 1] → ℝ, 𝑠 ↦ 𝑓
(

𝑥1, 𝑠𝑥2 + (1 − 𝑠)𝑥̂2
)

is well-defined, continuously differentiable, and its derivative satisfies
d𝑓
d𝑠

(𝑠) = ∇𝑥2𝑓
(

𝑥1, 𝑠𝑥2 + (1 − 𝑠)𝑥̂2
)⊤(𝑥2 − 𝑥̂2

)

= 0

for all 𝑠 ∈ [0, 1], i.e., 𝑓 is constant. Thus,
𝑓 (𝑥1, 𝑥2) = 𝑓 (1) = 𝑓 (0) = 𝑓

(

𝑥1, 𝑥̂2
)

= 𝑓1(𝑥1).

We observe that for every 𝑥1 ∈ 1 and sufficiently small ℎ ∈ ℝ𝑛1  it holds that (𝑥1 + ℎ, 𝑥̂2) ∈  , since (𝑥1, 𝑥̂2) ∈  and  is an open set. 
In particular, we can write

𝑓1(𝑥1 + ℎ) − 𝑓1(𝑥1) = 𝑓
(

𝑥1 + ℎ, 𝑥̂2
)

− 𝑓
(

𝑥1, 𝑥̂2
)

for every 𝑥1 ∈ 1 and every ℎ ∈ ℝ𝑛1  of appropriately bounded norm, from which we immediately deduce that 𝑓1 is continuously 
differentiable and ∇𝑓1(𝑥1) = ∇𝑥1𝑓 (𝑥1, 𝑥2) for every (𝑥1, 𝑥2) ∈  . The second claim of Lemma 1 is proven in the main part of the 
manuscript.

Appendix B.  Details on the synchronous machine

Another example for the present framework is the synchronous machine, see Example 4. The pH system, as shown in [53] reads 
⎡

⎢

⎢

⎢

⎢

⎣

𝜓̇𝑠
𝜓̇𝑟
𝑝̇
𝜃̇

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−𝑅𝑠 0 0 0
0 −𝑅𝑟 0 0
0 0 −𝑑 −1
0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

∇̃(𝜓𝑠, 𝜓𝑟, 𝑝, 𝜃) +

⎡

⎢

⎢

⎢

⎢

⎣

𝐼3 0 0
0 𝑒1 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑉𝑠
𝑉𝑓
𝜏

⎤

⎥

⎥

⎦

, (B.1a)

⎡

⎢

⎢

⎣

𝐼𝑠
𝐼𝑓
𝜔

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐼3 0 0 0
0 𝑒⊤1 0 0
0 0 1 0

⎤

⎥

⎥

⎦

∇̃(𝜓𝑠, 𝜓𝑟, 𝑝, 𝜃), (B.1b)
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with Hamiltonian

̃(𝜓𝑠, 𝜓𝑟, 𝑝, 𝜃) =
1
2

[

𝜓𝑠
𝜓𝑟

]⊤

𝐿(𝜃)−1
[

𝜓𝑠
𝜓𝑟

]

+ 1
2𝐽𝑟

𝑝2,

from which

∇̃(𝜓𝑠, 𝜓𝑟, 𝑝, 𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐿(𝜃)−1
[

𝜓𝑠
𝜓𝑟

]

𝐽−1
𝑟 𝑝

− 1
2

[

𝜓𝑠
𝜓𝑟

]⊤

𝐿(𝜃)−1𝐿′(𝜃)𝐿(𝜃)−1
[

𝜓𝑠
𝜓𝑟

]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Therein, 𝜓𝑠, 𝜓𝑟 ∈ ℝ3 represent the stator and rotor fluxes, respectively. For the further variable declarations, please refer to Example 4 
in the bulk part of this work. Suppose we now want to rewrite (B.1a), (B.1b) replacing the magnetic fluxes with the corresponding 
currents, through the constitutive relation

[

𝜓𝑠
𝜓𝑟

]

= 𝐿(𝜃)𝐼.

This change of variables allows us to rewrite the system equivalently in its pHDAE form given in (17a) and (17b) with the corre-
sponding Hamiltonian (4). These fit into the general pHDAE formulation with

𝑥 =
⎡

⎢

⎢

⎣

𝐼
𝑝
𝜃

⎤

⎥

⎥

⎦

∈ ℝ8, 𝑢 =
⎡

⎢

⎢

⎣

𝑉𝑠
𝑉𝑓
𝜏

⎤

⎥

⎥

⎦

∈ ℝ5, 𝑦 =
⎡

⎢

⎢

⎣

𝐼𝑠
𝐼𝑓
𝜔

⎤

⎥

⎥

⎦

∈ ℝ5,

𝐸(𝐼, 𝜃) =
⎡

⎢

⎢

⎣

𝐿(𝜃) 0 𝐿′(𝜃)𝐼
0 1 0
0 0 1

⎤

⎥

⎥

⎦

∈ ℝ8,8, 𝑧(𝐼, 𝑝, 𝜃) =
⎡

⎢

⎢

⎣

𝐼
𝐽−1
𝑟 𝑝

− 1
2 𝐼

⊤𝐿′(𝜃)𝐼

⎤

⎥

⎥

⎦

∈ ℝ8,

𝐽 =
⎡

⎢

⎢

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

∈ ℝ8,8, 𝑅 =
⎡

⎢

⎢

⎣

𝑅𝑠,𝑟 0 0
0 𝑑 0
0 0 0

⎤

⎥

⎥

⎦

∈ ℝ8,8, 𝐵 =
⎡

⎢

⎢

⎣

𝐼3 0 0 0
0 𝑒⊤1 0 0
0 0 1 0

⎤

⎥

⎥

⎦

⊤

.

Eventually, the relation 𝐸(𝑥)⊤𝑧(𝑥) = ∇(𝑥) can be checked as 
⎡

⎢

⎢

⎣

𝐿(𝜃) 0 0
0 1 0

𝐼⊤𝐿′(𝜃) 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼
𝐽−1
𝑟 𝑝

− 1
2 𝐼

⊤𝐿′(𝜃)𝐼

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐿(𝜃)𝐼
𝐽−1
𝑟 𝑝

1
2 𝐼

⊤𝐿′(𝜃)𝐼

⎤

⎥

⎥

⎦

.

Appendix C.  Further details on the DDR-method with singular descriptor matrix

Towards the end of Section 4.3 we discussed possible limitations of the DDR-approach, questioning whether one can always find a 
discrete gradient that ensures the solvability of the system Eq.  (26b), even for a singular descriptor matrix 𝐸. This of course also 
depends on the choice of 𝐸, but for simplicity one would hope that for some suitable choice of 𝐸, such as the midpoint approximation

𝐸(𝑥, 𝑥′) ∶= 𝐸( 𝑥+𝑥
′

2 ), (C.1)

one can always construct a discrete gradient satisfying (29) for all 𝑥, 𝑥′ ∈ ℝ𝑛. The following example demonstrates that this is not in 
general the case when considering a fixed consistent approximation for 𝐸, like the one in (C.1).
Example 8.  Consider a (non-semi-explicit) pHDAE with given

(𝑥) = exp( 12𝑥
2
1) − 1 + 1

2𝑥
2
2, ∇(𝑥) =

[

𝑥1 exp(
1
2𝑥

2
1)

𝑥2

]

,

𝐸(𝑥) =
[

1
1

]

∇(𝑥)⊤ =

[

𝑥1 exp(
1
2𝑥

2
1) 𝑥2

𝑥1 exp(
1
2𝑥

2
1) 𝑥2

]

, 𝑧(𝑥) = 1
2

[

1
1

]

.

Here, 𝐸 and 𝑧 are constructed such that 𝐸⊤𝑧 = ∇ holds, while the choice of the coefficients 𝐽 ,𝑅, 𝐵 is free and they can be set e.g. to zero, 
since they do not explicitly influence (26b). Correspondingly, we know that colsp(𝐸⊤) = span(∇) holds pointwise. For 𝐸 we consider the 
midpoint approximation 𝐸 as in (C.1), which results in

colsp
(

𝐸(𝑥, 𝑥′)⊤
)

= colsp
(

𝐸( 𝑥+𝑥
′

2 )⊤
)

= span
(

∇( 𝑥+𝑥
′

2 )
)

.

A priori, we want to allow the choice of an arbitrary discrete gradient ∇ of . By [50, Proposition 3.2], ∇ may be split up into orthogonal 
contributions as

∇(𝑥, 𝑥′) =
(𝑥′) −(𝑥)
‖𝑥′ − 𝑥‖2

(𝑥′ − 𝑥) +𝑤(𝑥, 𝑥′) (C.2)
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for 𝑥 ≠ 𝑥′, where 𝑤 satisfies 𝑤(𝑥, 𝑥′) ∈ span(𝑥′ − 𝑥)⟂ and
lim
𝑥′→𝑥

(

𝑤(𝑥, 𝑥′) − 𝜋span(𝑥′−𝑥)⟂∇(𝑥)
)

= 0,

where

𝜋span(𝑥′−𝑥)⟂ =
𝐼 − (𝑥′ − 𝑥)(𝑥′ − 𝑥)⊤

‖𝑥′ − 𝑥‖2

denotes the orthogonal projection onto span(𝑥′ − 𝑥)⟂. Straightforward calculations yield that for the special choice

𝑥 =
[

𝑎
0

]

, 𝑥′ =
[

0
𝑏

]

, 𝑎, 𝑏 ∈ ℝ ⧵ {0},

where 𝑏 ∶= ±𝑎
√

exp( 12 (𝑎∕2)
2), we have (𝑥′) ≠ (𝑥) and ∇( 𝑥+𝑥

′

2 )⊤(𝑥′ − 𝑥) = 0, and therefore

𝑥′ − 𝑥 ∈ span
(

∇( 𝑥+𝑥
′

2 )
)⟂ = colsp(𝐸(𝑥, 𝑥′)⊤)⟂.

Due to (C.2), this implies ∇(𝑥, 𝑥′) ∉ colsp(𝐸(𝑥, 𝑥′)⊤), i.e., there exists no vector 𝑓 satisfying 𝐸(𝑥, 𝑥′)⊤𝑓 = ∇(𝑥, 𝑥′) for this choice of 𝑥, 𝑥′. 
The discrete Eq.  (26b) is therefore unsolvable. ◊

Appendix D.  Interplay of system transformation and discretization

In this section we investigate the impact of system transformations on a subsequent time discretization by the methods discussed 
in Section 4. To this end, we first provide some preliminary results on inverses and compositions of system transformations and 
the corresponding discrete Jacobians in Appendix D.1. Afterwards, we analyze the application of the discretization schemes from 
Section 4 based on different coordinate systems in Appendix D.2.

D.1.  Discrete Jacobians of composite and inverse maps

Suppose that (𝜑,𝑈 ) ∶ ̃ →  ×ℝ𝑛,𝑛 and (𝜑̃, 𝑈 ) ∶ ̂ → ̃ ×ℝ𝑛,𝑛 are two system transformations. Then it is natural to define their com-
position as

(𝜑,𝑈 )◦(𝜑̃, 𝑈 ) =
(

𝜑◦𝜑̃, (𝑈◦𝜑̃)𝑈
)

∶ ̂ →  ×ℝ𝑛,𝑛,

since applying (𝜑,𝑈 )◦(𝜑̃, 𝑈 ) to a system or gradient pair is equivalent to applying (𝜑,𝑈 ) and (𝜑̃, 𝑈 ) consecutively.
Let now D𝜑 and D𝜑̃ be discrete Jacobians for 𝜑 and 𝜑̃, and let 𝑈 and 𝑈 be consistent approximations of 𝑈 and 𝑈 , respectively. 

Because of (35), (D𝜑◦𝜑̃)D𝜑̃ is a discrete Jacobian for 𝜑◦𝜑̃, while (𝑈◦𝜑̃)𝑈 is obviously a consistent approximation of (𝑈◦𝜑̃)𝑈 . Note 
that this choice is consistent with Theorem 6.

Consider now an invertible state transformation (𝜑,𝑈 ). We define its inverse as (𝜑,𝑈 )−1 = (𝜑−1, 𝑈−1◦𝜑−1), since the compositions
(𝜑−1, 𝑈−1◦𝜑−1)◦(𝜑,𝑈 ) = (Id̃ , 𝐼𝑛) and (𝜑,𝑈 )◦(𝜑−1, 𝑈−1◦𝜑−1) = (Id , 𝐼𝑛)

leave all systems and gradient pairs they are applied to invariant. Let us now denote 𝜓 = 𝜑−1 and 𝑉 = 𝑈−1◦𝜑−1. Then, given discrete 
Jacobians D𝜑 and D𝜓 for 𝜑 and its inverse, and pointwise invertible consistent approximations 𝑈 and 𝑉  for 𝑈 and 𝑉 , by applying 
Theorem 6 to a discrete gradient pair (𝐸, 𝑧) for (, 𝐸, 𝑧) with the system transformation (𝜑,𝑈 ) and its inverse (𝜓, 𝑉 ) consecutively, 
we obtain the discrete gradient pair

(𝐸, 𝑧̂) =
(

𝑉
⊤
(𝑈◦𝜓)⊤𝐸 (D𝜑◦𝜓)D𝜓 , 𝑉

−1
(𝑈

−1
◦𝜓)𝑧

)

,

for the same (, 𝐸, 𝑧) and the same state space. Since the composition of (𝜑,𝑈 ) and (𝜓, 𝑉 ) leaves the gradient pair unaltered, it is 
sensible to choose D𝜓 and 𝑉  in such a way that (𝐸, 𝑧̂) = (𝐸, 𝑧). If we want this choice to be independent of (𝐸, 𝑧), this is equivalent to 
the conditions 𝑉 = 𝑈

−1
◦𝜓 and (D𝜑◦𝜓)D𝜓 = 𝐼𝑛. While the former condition can always be imposed and ensures that 𝑉  is a consistent 

approximation of 𝑉 , the latter condition requires D𝜑 to be pointwise invertible, and in that case is equivalent to D𝜓 = (D𝜑◦𝜓)−1. 
This leads to the following canonical construction for the inverse discrete Jacobian.
Lemma 3. Let 𝜑 ∈ 1(̃ ,) be a diffeomorphism between two open spaces  , ̃ ⊆ ℝ𝑛, and let D𝜑 be a pointwise invertible discrete Jacobian 
for 𝜑. Then a discrete Jacobian for 𝜑−1, which we call the inverse discrete Jacobian of 𝜑 based on D𝜑, is D(𝜑−1) =

(

D𝜑◦𝜑−1
)−1

.

Proof.  For 𝑥, 𝑥′ ∈  and 𝑥̃ = 𝜑−1(𝑥), 𝑥̃′ = 𝜑−1(𝑥′) we have
D(𝜑−1)(𝑥, 𝑥′)(𝑥′ − 𝑥) = D𝜑(𝑥̃, 𝑥̃′)−1

(

𝜑(𝑥̃′) − 𝜑(𝑥̃)
)

= D𝜑(𝑥̃, 𝑥̃′)−1D𝜑(𝑥̃, 𝑥̃′)(𝑥̃′ − 𝑥̃) = 𝜑−1(𝑥′) − 𝜑−1(𝑥)

and D(𝜑−1)(𝑥, 𝑥) = D𝜑(𝑥̃)−1 = D(𝜑−1)(𝑥). ∎
Note that the requirement for D𝜑 to be pointwise invertible in the construction of the inverse discrete Jacobian is often in practice 
not restrictive, since the discrete Jacobians of diffeomorphisms are locally pointwise invertible, as discussed in Remark 15. However, 
it can happen that such discrete Jacobians are not globally pointwise invertible, as the following example highlights.
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Example 9. Let us consider 𝜑 ∶ ℝ2 → ℝ2, 𝜑(𝑥) = Rot(𝑥⊤𝑥)𝑥, where Rot ∶ ℝ → ℝ2,2 is the rotation matrix function, i.e.,

Rot(𝜃) =
[

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]

for all 𝜃 ∈ ℝ. We note that 𝜑 is ∞ and that it is a bijective map, since it decomposes into rotations of fixed angle on every circle centered in 
0 ∈ ℝ2. Furthermore, since

dRot
d𝜃

(𝜃) =
[

− sin(𝜃) − cos(𝜃)
cos(𝜃) − sin(𝜃)

]

=

[

cos(𝜃 + 𝜋
2 ) − sin(𝜃 + 𝜋

2 )
sin(𝜃 + 𝜋

2 ) cos(𝜃 + 𝜋
2 )

]

= Rot(𝜃 + 𝜋
2 ) = Rot(𝜃)Rot( 𝜋2 ),

we deduce that

D𝜑(𝑥) = D
(

Rot(𝑥⊤𝑥)𝑥
)

= Rot(𝑥⊤𝑥) + dRot
d𝜃

(𝑥⊤𝑥)∇(𝑥⊤𝑥)𝑥⊤ = Rot(𝑥⊤𝑥)
(

𝐼2 + 2Rot( 𝜋2 )𝑥𝑥
⊤).

We now show that D𝜑 is pointwise invertible. Suppose that 𝑥,𝑤 ∈ ℝ2 satisfy D𝜑(𝑥)𝑤 = 0: then (𝐼 + 2Rot( 𝜋2 )𝑥𝑥
⊤)𝑤 = 0, from which 𝑤 =

−2𝑥⊤𝑤Rot( 𝜋2 )𝑥. In particular,

𝑥⊤𝑤 = −2𝑥⊤𝑤
(

𝑥⊤Rot( 𝜋2 )𝑥
)

= 0,

and therefore 𝑤 = 0, allowing us to conclude that D𝜑 is pointwise invertible.
Let now D𝜑 denote the Gonzalez discrete Jacobian of 𝜑 (see (1)). In particular, for every 𝑥, 𝑥′ ∈ ℝ2 and 𝑧 ∈ (𝑥′ − 𝑥)⟂ we have

D𝜑(𝑥, 𝑥′)(𝑥′ − 𝑥) = 𝜑(𝑥′) − 𝜑(𝑥) and D𝜑(𝑥, 𝑥′)𝑧 = D𝜑( 𝑥+𝑥
′

2 )𝑧.

For 𝑥 = 0, 𝑥′ = (
√

2𝜋, 0), 𝑒1 = (1, 0), and 𝑒2 = (0, 1), we obtain then 𝑥′ =
√

2𝜋𝑒1 and 𝑥′ − 𝑥 = 𝑥′ ⟂ 𝑒2, and therefore

D𝜑(0, 𝑥′)𝑒1 =
D𝜑(0, 𝑥′)𝑥′

√

2𝜋
=
𝜑(𝑥′) − 𝜑(𝑥)

√

2𝜋
=

Rot(2𝜋)𝑥′ − Rot(0)0
√

2𝜋
= 𝑥′

√

2𝜋
= 𝑒1

and

D𝜑(0, 𝑥′)𝑒2 = D𝜑( 𝑥+𝑥
′

2 )𝑒2 = Rot( 𝜋2 )
(

𝑒2 +
1
2Rot(

𝜋
2 )𝑥

′(𝑥′)⊤𝑒2
)

= Rot( 𝜋2 )𝑒2 = −𝑒1.

Thus,

D𝜑(𝑥, 𝑥′) = [𝑒1,−𝑒1] =
[

1 −1
0 0

]

,

which is singular. ◊

Note that, while in Example 9 the inverse discrete Jacobian of 𝜑 based on D𝜑 cannot be constructed, the inverse diffeomorphism 
𝜑−1 still admits discrete Jacobians, e.g. the Gonzalez one. This in particular shows that the Gonzalez discrete Jacobian of the inverse 
diffeomorphism does not in general coincide with the inverse discrete Jacobian based on the Gonzalez discrete Jacobian.

We also present the following example, that shows that the Gonzalez discrete gradient construction does not in general commute 
with system transformations.

Example 10.  Consider the function 𝑓 ∶ ℝ2 → ℝ, 𝑓 (𝑥) = 1
4‖𝑥

4
‖ and the change of variables 𝜑 ∶ ℝ2 → ℝ2, 𝜑(𝑥1, 𝑥2) = (𝑥1 + 𝑥2, 𝑥2), which 

yield

∇𝑓 = ‖𝑥‖2𝑥, D𝜑 =
[

1 1
0 1

]

,

and let ∇𝐺𝑓 and D𝐺𝜑 denote the corresponding Gonzalez discrete gradient and Gonzalez discrete Jacobian, noting in particular that D𝐺𝜑 =
D𝜑, since it is a constant matrix. We have now two natural ways to construct a discrete gradient for the composed map 𝑓 = 𝑓◦𝜑: either as 
its Gonzalez discrete gradient ∇𝐺𝑓 , or by using the chain rule (35), i.e., ∇𝑓 = D𝐺𝜑⊤∇𝐺𝑓 . We have then

∇𝐺𝑓 (0, 2𝑒1)⊤𝑒2 = ∇𝑓 (𝑒1)⊤𝑒2 = ∇𝑓
(

𝜑(𝑒1)
)⊤D𝜑𝑒2 = 𝑒⊤1

[

1 1
0 1

]

𝑒2 = 1

and

∇𝑓 (0, 2𝑒1)⊤𝑒2 = ∇𝐺𝑓 (0, 2𝑒1)⊤D𝜑𝑒2 = ∇𝐺𝑓 (0, 2𝑒1)⊤(𝑒1 + 𝑒2)

= 1
2∇𝐺𝑓 (0, 2𝑒1)

⊤2𝑒1 + ∇𝐺𝑓 (0, 2𝑒1)⊤𝑒2 =
1
2

(

𝑓 (2𝑒1) − 𝑓 (0)
)

+ ∇𝑓 (𝑒1)⊤𝑒2 = 2,

thus ∇𝑓 and ∇𝐺𝑓 do not coincide. ◊
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D.2.  Discrete system invariance under system transformations

We would like to understand whether applying the same proposed numerical methods under different coordinate systems yields 
different results. We start by studying the discrete gradient pair scheme (18), in the form of the following theorem.
Theorem 9. Consider a pHDAE of the form (6), let (𝐸, 𝑧) be a discrete gradient pair for (, 𝐸, 𝑧), and let 𝐽 ,𝑅, 𝐵 be consistent approximations 
for 𝐽 ,𝑅, 𝐵, respectively, such that 𝐽 = −𝐽

⊤ and 𝑅 = 𝑅
⊤
⪰ 0 pointwise. Let (𝜑,𝑈 ) be an invertible system transformation, let D𝜑 be a discrete 

Jacobian for 𝜑, and let 𝑈 be a pointwise invertible consistent approximation for 𝑈 . Then the discrete gradient pair scheme (18) applied to the 
original system, with the discrete gradient pair (𝐸, 𝑧) and the consistent approximations 𝐽 ,𝑅, 𝐵, is equivalent to the same scheme applied to 
the system transformed via (𝜑,𝑈 ), with the discrete gradient pair (𝐸, 𝑧̂) defined as in (34) and the consistent approximations 𝐽 = 𝑈

⊤
(𝐽◦𝜑)𝑈 , 

𝑅 = 𝑈
⊤
(𝑅◦𝜑)𝑈 , and 𝐵 = 𝑈

⊤
(𝐵◦𝜑), up to the change of variables 𝜑.

Proof.  In this proof we will often omit the arguments (𝑥𝑘, 𝑥𝑘+1) and (𝑥̃𝑘, 𝑥̃𝑘+1), for the sake of readability. It is clear that 𝐽 , 𝑅, and 
𝐵 are consistent approximations for the coefficients 𝐽 = 𝑈⊤(𝐽◦𝜑)𝑈 , 𝑅 = 𝑈⊤(𝑅◦𝜑)𝑈 , and 𝐵 = 𝑈⊤(𝐵◦𝜑) of the transformed system, 
and that 𝐽 = −𝐽⊤ and 𝑅 = 𝑅⊤ ⪰ 0 hold pointwise. Thus, the discrete gradient pair scheme applied on the transformed system is 
well-defined.

Let now 𝑥0, (𝑥𝑘+1, 𝑢𝑘,𝑘+1, 𝑦𝑘,𝑘+1) for 𝑘 = 0,… , 𝑁 − 1 denote a solution of the discrete gradient pair scheme applied to the original 
system, and let 𝑥̃𝑘 = 𝜑−1(𝑥𝑘) for 𝑘 = 0,… , 𝑁 . Then we have

𝐸(𝑥̃𝑘+1 − 𝑥̃𝑘) − ℎ
(

(𝐽 − 𝑅)𝑧̂ + 𝐵𝑢𝑘,𝑘+1
)

= 𝑈
⊤
𝐸(D𝜑)(𝑥̃𝑘+1 − 𝑥̃𝑘) − ℎ

(

(𝑈
⊤
𝐽𝑈 − 𝑈

⊤
𝑅𝑈 )𝑈

−1
𝑧 + 𝑈

⊤
𝐵𝑢𝑘,𝑘+1

)

= 𝑈
⊤(
𝐸(𝑥𝑘+1 − 𝑥𝑘) − ℎ

(

(𝐽 − 𝑅)𝑧 + 𝐵𝑢𝑘,𝑘+1
)

)

= 0,

𝑦𝑘,𝑘+1 − 𝐵⊤𝑧̂ = 𝑦𝑘,𝑘+1 − 𝐵
⊤
𝑈 𝑈

−1
𝑧 = 𝑦𝑘,𝑘+1 − 𝐵

⊤
𝑧 = 0.

Thus, 𝑥̃0, (𝑥̃𝑘+1, 𝑢𝑘,𝑘+1, 𝑦𝑘,𝑘+1) for 𝑘 = 0,… , 𝑁 − 1 is a solution of the scheme applied to the transformed system.
Analogously, if ̃𝑥0, (𝑥̃𝑘+1, 𝑢𝑘,𝑘+1, 𝑦𝑘,𝑘+1) for 𝑘 = 0,… , 𝑁 − 1 is a solution of the transformed discrete system, and we define 𝑥𝑘 = 𝜑(𝑥̃𝑘)

for 𝑘 = 0,… , 𝑁 , then
𝐸(𝑥𝑘+1 − 𝑥𝑘) − ℎ

(

(𝐽 − 𝑅)𝑧 + 𝐵𝑢𝑘,𝑘+1
)

= 𝑈
−⊤(

𝑈
⊤
𝐸(D𝜑)(𝑥̃𝑘+1 − 𝑥̃𝑘) − ℎ

(

(𝑈
⊤
𝐽𝑈 − 𝑈

⊤
𝑅𝑈 )𝑈

−1
𝑧 + 𝑈

⊤
𝐵𝑢𝑘,𝑘+1

)

)

= 𝑈
−⊤(

𝐸(𝑥̃𝑘+1 − 𝑥̃𝑘) − ℎ
(

(𝐽 − 𝑅)𝑧̂ + 𝐵𝑢𝑘,𝑘+1
)

)

= 0,

𝑦𝑘,𝑘+1 − 𝐵
⊤
𝑧 = 𝑦𝑘,𝑘+1 − 𝐵

⊤
𝑈 𝑈

−1
𝑧 = 𝑦𝑘,𝑘+1 − 𝐵⊤𝑧̂ = 0,

such that 𝑥0, (𝑥𝑘+1, 𝑢𝑘,𝑘+1, 𝑦𝑘,𝑘+1) for 𝑘 = 0,… , 𝑁 − 1 is a solution of the original discrete system. ∎
Next, we analyze the semi-explicit discrete gradient scheme (21). For that purpose, we first have to investigate which system trans-
formations preserve the semi-explicit structure.
Proposition 3. Let (𝐸, 𝑧) be a semi-explicit gradient pair for , let (𝜑,𝑈 ) be an invertible system transformation from another open state 
space ̃ = ̃1 × ̃2, where ̃2 is convex, and let us split 𝜑 = (𝜑1, 𝜑2) and 𝑈 =

[

𝑈11 𝑈12
𝑈21 𝑈22

]

 accordingly. Then the transformed gradient pair is 
semi-explicit if and only if D𝑥̃2𝜑1 = 0 and 𝑈12 = 0.

Proof.  Denoting by (𝐸, 𝑧̃) the transformed gradient pair, we have

𝐸 = 𝑈⊤(𝐸◦𝜑)D𝜑 =
[

𝑈11 𝑈12
𝑈21 𝑈22

]⊤[𝐸11◦𝜑 0
0 0

][

D𝑥̃1𝜑1 D𝑥̃2𝜑1
D𝑥̃1𝜑2 D𝑥̃2𝜑2

]

=
[

𝑈⊤
11(𝐸11◦𝜑)D𝑥̃1𝜑1 𝑈⊤

11(𝐸11◦𝜑)D𝑥̃2𝜑1
𝑈⊤
12(𝐸11◦𝜑)D𝑥̃1𝜑1 𝑈⊤

12(𝐸11◦𝜑)D𝑥̃2𝜑1

]

.

Note that, since 𝑈 and D𝜑 are pointwise invertible, rank(𝐸) = rank(𝐸) pointwise, and therefore (𝐸, 𝑧̃) is a semi-explicit gradient pair 
if and only if 𝐸𝑖𝑗 = 𝑈⊤

1𝑖(𝐸11◦𝜑)D𝑥̃𝑗𝜑1 is invertible for 𝑖 = 𝑗 = 1 and zero otherwise.
Suppose first that 𝐸 has the wished structure. Since 𝐸11 is invertible, so are 𝑈11 and D𝑥̃1𝜑1. Then we deduce from 𝐸12, 𝐸21 = 0

that 𝑈12,D𝑥̃2𝜑1 = 0. Suppose now that 𝑈12,D𝑥̃2𝜑1 = 0. Then it is clear that 𝐸𝑖𝑗 = 0 for (𝑖, 𝑗) ≠ (1, 1). Furthermore, since 𝑈 and D𝜑 are 
pointwise invertible and block lower triangular, we deduce that 𝑈11 and D𝑥̃1𝜑1 are also pointwise invertible, and so is 𝐸11. ∎
We also need the following result, which provides conditions ensuring that the Hamiltonian of the transformed system only depends 
on the differential state.
Lemma 4. Let 𝜑 be a diffeomorphism as in Lemma 3 satisfying D𝑥̃2𝜑1 = 0. Then, the following assertions hold.

1. There is a diffeomorphism 𝜑11 ∈ 1(̃1,1) such that 𝜑11◦𝜋1 = 𝜑1 and D𝜑11◦𝜋1 = D𝑥̃1𝜑1.
2. Let  ∈ 1( ,ℝ) be such that ∇𝑥2 = 0, let 1 ∈ 1(1,ℝ) be the associated function defined as in Lemma 1, let ∇1 be a discrete 
gradient for 1, and let D𝜑11 be a discrete Jacobian for 𝜑11. Then ̃ = ◦𝜑 satisfies the assumptions of Lemma 1 with associated function 
̃1 ∈ 1(̃1,ℝ), and

∇̃1 = (D𝜑11)⊤(∇1◦𝜑11) (D.1)

is a discrete gradient for ̃1.
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Proof.  Let us prove the two statements separately:
1. It is clear that 𝜑11 ∈ 1(̃1,1) satisfying 𝜑11◦𝜋1 = 𝜑1 and D𝜑◦𝜋1 = D𝑥̃1𝜑1 exists because of Lemma 1. Let now 𝜓 = (𝜓1, 𝜓2) = 𝜑−1. 
Since D𝜓 = (D𝜑◦𝜓)−1 has the same block lower triangular structure as D𝜑, we construct 𝜓11 ∈ 1(1, ̃1) analogously to 𝜑11, and 
deduce that 𝜑11◦𝜓11 and 𝜓11◦𝜑11 are both the identity. Since D𝜑11 inherits from D𝑥̃1𝜑1 (and therefore from D𝜑) the property of 
being pointwise invertible, we conclude that 𝜑11 is indeed a diffeomorphism.

2. Since

∇̃ = (D𝜑)⊤(∇◦𝜑) =
[

D𝑥̃1𝜑
⊤
1 D𝑥̃1𝜑

⊤
2

0 D𝑥̃2𝜑
⊤
2

][

∇𝑥1◦𝜑
0

]

=
[

D𝑥̃1𝜑
⊤
1 (∇𝑥1◦𝜑)

0

]

,

the assumptions of Lemma 1 are satisfied and ̃1 is well-defined, and clearly satisfies ̃1 = 1◦𝜑11. The fact that ∇̃1 is a discrete 
gradient for ̃1 follows immediately from the chain rule (35).

This proves the Lemma. ∎
We can now prove the following result, which states that applying the semi-explicit discrete gradient scheme from Section 4.2 to a 
semi-explicit system and to a corresponding transformed semi-explicit system leads to equivalent time-discrete systems.
Theorem 10. Consider a semi-explicit pHDAE of the form (15), let ∇1 be a discrete gradient for the Hamiltonian 1, and let 𝐸11, 𝑧2, 𝐽 , 𝑅, 𝐵
be consistent approximations for 𝐸11, 𝑧2, 𝐽 , 𝑅, 𝐵, respectively, such that Assumption  A1 is satisfied, and 𝐽 = −𝐽

⊤ and 𝑅 = 𝑅
⊤
⪰ 0 hold 

pointwise. Let (𝜑,𝑈 ) be an invertible system transformation preserving the semi-explicit structure as in Lemma 3, let D𝜑11 be a pointwise 
invertible discrete Jacobian of 𝜑11 as specified in Lemma 4, and let 𝑈 =

[

𝑈11 0
𝑈21 𝑈22

]

 be a pointwise invertible consistent approximation for 
𝑈 . Then the semi-explicit discrete gradient scheme (21) applied to the original system, with the discrete gradient ∇1 and the consistent 
approximations 𝐸11, 𝑧2, 𝐽 , 𝑅, 𝐵, is equivalent to the same scheme applied to the system transformed via (𝜑,𝑈 ), with the discrete gradient ∇̃1

defined as in (D.1) and the consistent approximations 𝐸11 = 𝑈
⊤
11(𝐸11◦𝜑)(D𝜑11◦𝜋1), ̂𝑧2 = 𝑈

−1
22
(

(𝑧2◦𝜑) − 𝑈21𝐸−⊤
11 (∇̃1◦𝜋1)

)

, 𝐽 = 𝑈
⊤
(𝐽◦𝜑)𝑈 , 

𝑅 = 𝑈
⊤
(𝑅◦𝜑)𝑈 , and 𝐵 = 𝑈

⊤
(𝐵◦𝜑), up to the change of variables 𝜑.

Proof.  We first show that the semi-explicit discrete gradient scheme applied to the transformed system is well-defined. To this end, 
we observe that the transformed system is semi-explicit by assumption, ∇̃1 is a discrete gradient of ̃1 because of Lemma 4, 𝐸11, 
𝐽 , 𝑅, and 𝐵 are consistent approximations of 𝐸11 = 𝑈⊤

11(𝐸11◦𝜑)D𝑥̃1𝜑1 = 𝑈⊤
11(𝐸11◦𝜑)(D𝜑11◦𝜋1), 𝐽 = 𝑈⊤(𝐽◦𝜑)𝑈 , 𝑅 = 𝑈⊤(𝑅◦𝜑)𝑈 , and 

𝐵 = 𝑈⊤(𝐵◦𝜑), respectively, and 𝐽 = −𝐽⊤ and 𝑅 = 𝑅⊤ ⪰ 0 hold pointwise. Furthermore, note that 𝐸11 satisfies Assumption  A1 and 
that, since

𝑧̃2 = [0, 𝐼𝑛2 ]𝑈
−1(𝑧◦𝜑) = 𝑈−1

22
(

(𝑧2◦𝜑) − 𝑈21𝑈
−1
11 (𝑧1◦𝜑)

)

= 𝑈−1
22

(

(𝑧2◦𝜑) − 𝑈21𝑈
−1
11 (𝐸11◦𝜑)−⊤(∇𝑥1◦𝜑)

)

= 𝑈−1
22

(

(𝑧2◦𝜑) − 𝑈21𝐸
−⊤
11 (∇̃1◦𝜋1)

)

,

𝑧̂2 is a consistent approximation of 𝑧̃2.
Let us now construct a discrete Jacobian D𝜑 of 𝜑, in such a way that D𝑥̃1𝜑1 = D𝜑11◦𝜋1. This can be simply done by choosing a 

discrete Jacobian D𝜑2 of 𝜑2 = 𝜋2◦𝜑 and defining

D𝜑 =

[

D𝜑11◦𝜋1 0
D𝑥̃1𝜑2 D𝑥̃2𝜑2

]

,

which, as it can be easily verified, fulfills the discrete Jacobian definition.
To prove the statement of the theorem it is then sufficient to combine Corollary 1 and Theorem 9. In fact, the semi-explicit discrete 

gradient scheme applied to the original system is equivalent to the discrete gradient pair scheme applied to the same system with the 
discrete gradient pair (𝐸, 𝑧) defined as in (30), i.e.,

𝐸 =
[

𝐸11 0
0 0

]

, 𝑧 =

[

𝐸
−⊤
11 (∇1◦𝜋1)

𝑧2

]

,

where 𝜋1 here is to be intended as the projection of  onto 1. This discrete system is then equivalent up to the change of variables 
𝜑 to the one yielded by the discrete gradient pair scheme applied to the transformed system with the discrete gradient pair (𝐸, 𝑧̂)
defined as in Theorem 9, i.e.,

𝐸 = 𝑈
⊤
(𝐸◦𝜑)D𝜑 =

[

𝑈
⊤
11(𝐸11◦𝜑)(D𝜑11◦𝜋1) 0

0 0

]

=
[

𝐸11 0
0 0

]

,

𝑧̂ = 𝑈
−1
(𝑧◦𝜑) =

[

𝑈
−1
11 (𝐸11◦𝜑)−⊤(∇1◦𝜋1◦𝜑)

𝑈
−1
22
(

(𝑧2◦𝜑) − 𝑈21𝑈
−1
11 (𝐸11◦𝜑)−⊤(∇1◦𝜋1◦𝜑)

)

]

=
[

𝐸−⊤
11 (∇̃1◦𝜋1)

𝑧̂2

]

,

and the consistent approximations 𝐽 ,𝑅, 𝐵. Finally, due to the structure of (𝐸, 𝑧̂), we can apply again Corollary 1 and conclude that 
the latest discrete system is equivalent to the one obtained by applying the semi-explicit discrete gradient scheme to the transformed 
system with the discrete gradient ∇̃1 and the consistent approximations 𝐸11, 𝑧̂2, 𝐽 , 𝑅, and 𝐵. ∎

Applied Numerical Mathematics 223 (2026) 45–75 

70 



P.L. Kinon, R. Morandin and P. Schulze

Remark 15. A similar result holds for the DDR-method applied to a given DDR-pHDAE (11). On the one hand, its corresponding 
DDR-pHDAE transformed via (𝜑,𝑈 ) is

⎡

⎢

⎢

⎣

(D𝜑)⊤(∇◦𝜑)
0
𝑦

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

0 −D𝜑⊤(𝐸◦𝜑)⊤𝑈 0
𝑈⊤(𝐸◦𝜑)D𝜑 𝑈⊤((𝐽 − 𝑅)◦𝜑

)

𝑈 𝑈⊤(𝐵◦𝜑)
0 (𝐵◦𝜑)⊤𝑈 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

− ̇̃𝑥
𝑓
𝑢

⎤

⎥

⎥

⎦

= 0, (D.2)

together with 𝑓 = 𝑈−1(𝑧◦𝜑). On the other hand, by applying the DDR-method (25) for a fixed discrete gradient ∇ of  and some 
given consistent approximations 𝐸, 𝐽 , 𝑅, and 𝐵 of 𝐸, 𝐽 , 𝑅, and 𝐵, respectively, and multiplying the first block row by (D𝜑)⊤
and the second block row by 𝑈⊤

, where D𝜑 is a discrete Jacobian for 𝜑 and 𝑈 is a consistent approximation of 𝑈 , and replacing 
𝑥𝑘+1 − 𝑥𝑘 = D𝜑(𝑥̃𝑘, 𝑥̃𝑘+1)(𝑥̃𝑘+1 − 𝑥̃𝑘) and 𝑓𝑘,𝑘+1 = 𝑈 (𝑥̃𝑘, 𝑥̃𝑘+1)𝑓𝑘,𝑘+1 with 𝑥̃𝑘 = 𝜑−1(𝑥𝑘) and 𝑥̃𝑘+1 = 𝜑−1(𝑥𝑘+1), we obtain the one-step 
method

⎡

⎢

⎢

⎣

(D𝜑)⊤(∇◦𝜑)
0

𝑦𝑘,𝑘+1

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

0 −D𝜑⊤(𝐸◦𝜑)⊤𝑈 0
𝑈
⊤
(𝐸◦𝜑)D𝜑 𝑈

⊤(
(𝐽 − 𝑅)◦𝜑

)

𝑈 𝑈
⊤
(𝐵◦𝜑)

0 (𝐵◦𝜑)⊤𝑈 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

− 𝑥̃𝑘+1−𝑥̃𝑘
ℎ

𝑓𝑘,𝑘+1

𝑢𝑘,𝑘+1

⎤

⎥

⎥

⎥

⎦

= 0, (D.3)

where the arguments (𝑥̃𝑘, 𝑥̃𝑘+1) have been omitted to keep the notation short. Note that, since ∇̃ = (D𝜑)⊤(∇◦𝜑) is a discrete gradient 
for ̃ = ◦𝜑 because of the chain rule, and 𝐸 = 𝑈

⊤
(𝐸◦𝜑)D𝜑, 𝐽 = 𝑈

⊤
(𝐽◦𝜑)𝑈 , 𝑅 = 𝑈

⊤
(𝑅◦𝜑)𝑈 , and 𝐵 = 𝑈

⊤
(𝐵◦𝜑) are consistent 

approximations of the correspondent coefficients of the transformed system (32), the one-step method (D.3) is equivalent to an 
appropriate DDR-method applied to the transformed system.

This construction immediately shows that every solution of the original discrete DDR system is uniquely mapped into a solution 
of the transformed discrete DDR system. However, to be able to uniquely associate to every solution of the transformed discrete DDR 
system one solution of the original discrete DDR system, we need to invert the construction, which requires the discrete Jacobian 
D𝜑(𝑥𝑘, 𝑥𝑘+1) to be invertible.

Similarly to our considerations leading to Assumption  A1 we note that, for small enough time steps, this is guaranteed by 
consistency, since D𝜑(𝑥𝑘, 𝑥𝑘) = D𝜑(𝑥𝑘) is invertible for every 𝑥𝑘 ∈  . However, there is in general no guarantee that the discrete 
Jacobian of a diffeomorphism is pointwise invertible, cf. Example 9.

It remains to discuss how the additional constraints used in the DDR-methods change under system transformations. This strongly 
depends on the specific form of these constraints, which can be quite diverse. For example, if in the original coordinates we have a 
constraint of the form 𝐹 (𝑥𝑘, 𝑥𝑘+1, 𝑓𝑘,𝑘+1) = 0 for some function 𝐹 ∶  ×  ×ℝ𝑚 → ℝ𝑝, then to obtain an equivalent one-step method 
the corresponding constraint in the new coordinates would be 𝐹 (𝑥̃𝑘, 𝑥̃𝑘+1, 𝑓𝑘,𝑘+1) = 0 with

𝐹 (𝑥̃𝑘, 𝑥̃𝑘+1, 𝑓𝑘,𝑘+1) = 𝐹 (𝜑(𝑥̃𝑘), 𝜑(𝑥̃𝑘+1), 𝑈 (𝑥̃𝑘, 𝑥̃𝑘+1)𝑓𝑘,𝑘+1).

Similarly, if in the original coordinates we require ‖𝑓𝑘,𝑘+1 − 𝑧(𝑥𝑘, 𝑥𝑘+1)‖ to be minimal for some fixed consistent discretization 𝑧 of 𝑧, 
in the new coordinates we would minimize

‖𝑓𝑘,𝑘+1 − 𝑧(𝑥𝑘, 𝑥𝑘+1)‖ = ‖𝑈 (𝑥̃𝑘, 𝑥̃𝑘+1)(𝑓𝑘,𝑘+1 − 𝑧̂(𝑥̃𝑘, 𝑥̃𝑘+1))‖

instead, where 𝑧̂ = 𝑈
−1
(𝑧◦𝜑) is a consistent discretization of 𝑧̃.

Appendix E.  Details on the mass-spring multibody system example

The multibody system with singular mass matrix from Example 7, with masses 𝑚𝑖 and springs with constants 𝑘𝑖 and resting lengths 
𝑙𝑖0, with 𝑖 ∈ {1, 2}, takes up the considerations in Section 6.1. The system can be regarded as a modular multibody system comprising 
two separate subsystems with two degrees of freedom. However, we decide to use two coordinates for the elongations of the springs 
(𝑥1 and 𝑥2) and one coordinate 𝑞2 for the point where the two subsystems are interconnected. Correspondingly, we use 

𝑞 =
⎡

⎢

⎢

⎣

𝑥1
𝑞2
𝑥2

⎤

⎥

⎥

⎦

and 𝑣 =
⎡

⎢

⎢

⎣

𝑣1
𝑣2
𝑣3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥̇1
𝑞̇2
𝑥̇2

⎤

⎥

⎥

⎦

and the interconnection constraint 𝑞2 = 𝑥1 + 𝑙10 +𝑤 arises. The total kinetic energy is given by 

𝑇 (𝑣) = 1
2
𝑚1𝑣

2
1 +

1
2
𝑚2(𝑣2 + 𝑣3)2 =

1
2
𝑣⊤𝑀𝑣 (E.1)

and thus we identify the mass matrix 𝑀 from (36), which is constant and singular for all configurations.
Following Proposition 2, we perform a singular value decomposition to arrive at a semi-explicit pHDAE formulation. For the 

present case, we have 

𝐸 =
⎡

⎢

⎢

⎣

𝐼3×3 0 0
0 𝑀 0
0 0 0

⎤

⎥

⎥

⎦

. (E.2)
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Here we identify the SVD of 𝐸 given by 𝐸 = 𝑈Σ𝑉 ⊤ = [𝑈1, 𝑈2]diag(Σ1, 0)[𝑉1, 𝑉2]⊤, where Σ1 = diag(1, 1, 1, 𝑚1, 2𝑚2) and 

𝑉1 = 𝑊1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

√

2
0 0 0 0 1

√

2
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑉2 = 𝑊2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 0
0 0

− 1
√

2
0

1
√

2
0

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (E.3)

Appendix F.  Transformation to semi-explicit form

The following theorem provides an SVD-like decomposition for a matrix function with constant rank. This result is helpful in deriving 
conditions for the existence of a semi-explicit representation of a pHDAE.
Theorem 11. Let 𝐸 ∈ ( ,ℝ𝑚,𝑛), with rank(𝐸(𝑥)) = 𝑟 for all 𝑥 ∈  . Then for every 𝑥0 ∈  there exists an open neighborhood 0 ⊆  of 
𝑥0 and pointwise unitary functions 𝑈 ∈ (0,ℝ𝑚,𝑚) and 𝑉 ∈ (0,ℝ𝑛,𝑛) such that

𝑈⊤𝐸𝑉 =
[

Σ 0
0 0

]

, (F.1)

with pointwise invertible Σ ∈ (0,ℝ𝑟,𝑟). Furthermore, if the entries of 𝐸 are analytic or 𝓁 for some 𝓁 ∈ ℕ0 ∪ {∞}, then 𝑈 , 𝑉 , and Σ can 
be chosen to have that same regularity.
Proof.  Let

𝑈⊤
0 𝐸(𝑥0)𝑉0 =

[

Σ0 0
0 0

]

denote the singular value decomposition of 𝐸(𝑥0), with 𝑈0 ∈ ℝ𝑚,𝑚 and 𝑉0 ∈ ℝ𝑛,𝑛 unitary matrices, and Σ0 ∈ ℝ𝑟,𝑟 nonsingular, and let 
us split correspondingly

𝑈⊤
0 𝐸(𝑥)𝑉0 =

[

𝐸11(𝑥) 𝐸12(𝑥)
𝐸21(𝑥) 𝐸22(𝑥)

]

for all 𝑥 ∈  . Since 𝐸11(𝑥0) = Σ0 is invertible and 𝐸 is continuous, there is an open neighborhood 0 ⊆  of 𝑥0 such that 𝐸11(𝑥) is 
invertible for all 𝑥 ∈ 0. We note that 𝐸𝑖𝑗 has at least the same regularity as 𝐸 for all 𝑖, 𝑗, and that, since the determinant of a matrix 
function clearly has the same regularity as its entries, and the pointwise inverse of 𝐸11 on 0 can be expressed in the form

𝐸11(𝑥)−1 =
adj(𝐸11(𝑥))
det(𝐸11(𝑥))

,

where adj(𝐸11(𝑥)) denotes the adjugate matrix of 𝐸11(𝑥) (whose entries are determinants of submatrices of 𝐸11(𝑥)), and det(𝐸11(𝑥))
does not vanish on 0, 𝐸11 will also have the same regularity as 𝐸 on 0.

Let now

𝑈 (𝑥)⊤ ∶=
[

𝐼𝑟 0
−𝐸21(𝑥)𝐸11(𝑥)−1 𝐼𝑚−𝑟

]

𝑈⊤
0 , 𝑉 (𝑥) ∶= 𝑉0

[

𝐼𝑟 −𝐸11(𝑥)−1𝐸12(𝑥)
0 𝐼𝑛−𝑟

]

,

so that

𝑈 (𝑥)⊤𝐸(𝑥)𝑉 (𝑥) =
[

𝐸11(𝑥) 0
0 𝐸22(𝑥) − 𝐸21(𝑥)𝐸11(𝑥)−1𝐸12(𝑥)

]

for all 𝑥 ∈ 0. Since 𝐸11(𝑥) ∈ ℝ𝑟,𝑟 is invertible for all 𝑥 ∈ 0 and the rank of 𝐸 is constantly 𝑟, we deduce that actually

𝑈 (𝑥)⊤𝐸(𝑥)𝑉 (𝑥) =
[

𝐸11(𝑥) 0
0 0

]

for all 𝑥 ∈ 0. We note that 𝑈 and 𝑉  also have the same regularity as 𝐸.
It remains to show that 𝑈 and 𝑉  can be replaced by pointwise unitary matrix functions with the same regularity. Let 𝑈 (𝑥) =

𝑈 (𝑥)𝐿𝑈 (𝑥) and 𝑉 (𝑥) = 𝑉 (𝑥)𝐿𝑉 (𝑥) be the QL factorizations of 𝑈 and 𝑉 , which can be computed for all 𝑥 ∈ 0 with the Gram-Schmidt 
orthogonalization process, in particular 𝑈 and 𝑉  are pointwise unitary, and 𝐿𝑈  and 𝐿𝑉  are pointwise lower triangular with positive 
diagonal entries. Note that, due to the pointwise invertibility of 𝑈 and 𝑉 , the construction of the Gram-Schmidt process ensures that 
𝑈, 𝑉 , 𝐿𝑈 , 𝐿𝑉  have the same regularity as 𝑈, 𝑉 . Furthermore, since lower triangular matrices form a multiplicative group, we deduce 
that

𝑈 (𝑥)⊤𝐸(𝑥)𝑉 (𝑥) = 𝐿𝑈 (𝑥)−⊤𝑈 (𝑥)⊤𝐸(𝑥)𝑉 (𝑥)𝐿𝑉 (𝑥)−1 =
[

𝐿̃11(𝑥)⊤ 𝐿̃21(𝑥)⊤

0 𝐿̃22(𝑥)⊤

][

𝐸11(𝑥) 0
0 0

]

[

𝐿̂11(𝑥) 𝐿̂21(𝑥)
0 𝐿̂22(𝑥)

]
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=
[

𝐿̃11(𝑥)⊤𝐸11(𝑥)𝐿̂11(𝑥) 0
0 0

]

,

where 𝐿̃(𝑥) = 𝐿𝑈 (𝑥)−1 and 𝐿̂(𝑥) = 𝐿𝑉 (𝑥)−1 have again the same regularity as 𝐿𝑈  and 𝐿𝑉 , due to the same observations that we made 
for 𝐸11. We conclude that 𝑈 and 𝑉  have all the requested properties. ∎
While Theorem 11 is quite powerful, unfortunately it cannot be directly applied to obtain system transformations that bring a de-
scriptor matrix 𝐸 into its semi-explicit form, since the matrix function 𝑉  is not guaranteed to be the Jacobian of a diffeomorphism. 
However, this result is the first step in the direction of proving Theorem 8. The second step is to deduce the following corollary.
Corollary 4. Let 𝐸 ∈ ( ,ℝ𝑚,𝑛) with rank(𝐸(𝑥)) = 𝑟 for all 𝑥 ∈  . Then for every 𝑥0 ∈  there exist an open neighborhood 0 ⊆  of 𝑥0, 
a pointwise invertible matrix function 𝑈 ∈ (0,ℝ𝑚,𝑚), and a permutation matrix Π ∈ ℝ𝑛,𝑛, such that

𝑈⊤𝐸Π =
[

𝐼𝑟 𝐸12
0 0

]

, (F.2)

with 𝐸12 ∈ (0,ℝ𝑟,𝑛−𝑟). Furthermore, if the entries of 𝐸 are analytic or 𝓁 for some 𝓁 ∈ ℕ0 ∪ {∞}, then 𝑈 and 𝐸12 can be chosen to have 
that same regularity.
Proof.  Because of Theorem 11, for every 𝑥0 ∈  there exist an open neighborhood 0 ⊆  of 𝑥0, pointwise unitary 𝑈, 𝑉 , and a 
pointwise invertible Σ ∈ (0,ℝ𝑟,𝑟), such that 𝑈, 𝑉 ,Σ have the same regularity as 𝐸, and

𝑈⊤𝐸𝑉 =
[

Σ 0
0 0

]

.

In particular,

𝑈⊤𝐸 =
[

Σ 0
0 0

]

𝑉 ⊤ =
[

𝐸11 𝐸12
0 0

]

.

Since rank(𝑈⊤𝐸(𝑥0)) = rank(𝐸(𝑥0)) = 𝑟, there is a permutation matrix Π ∈ ℝ𝑛,𝑛 such that

𝑈⊤𝐸Π =
[

𝐸11 𝐸12
0 0

]

,

with 𝐸11(𝑥0) invertible. Since 𝐸11 is continuous, up to further restricting the open neighborhood 0, we obtain that 𝐸11 is invertible 
in 0. Then, by choosing

𝑈 = 𝑈
[

𝐸−⊤
11 0
0 𝐼𝑛−𝑟

]

,

we obtain that

𝑈⊤𝐸Π =
[

𝐸−1
11 0
0 𝐼𝑛−𝑟

]

𝑈⊤𝐸Π =
[

𝐼𝑟 𝐸12
0 0

]

for 𝐸12 = 𝐸−1
11 𝐸12. Finally, 𝐸 and 𝐸12 have the same regularity as 𝐸, by construction. ∎

One advantage of Lemma 4 over Theorem 11 is that Π can be interpreted as the Jacobian of a diffeomorphism, in fact Π = D𝜎 with 
𝜎(𝑥) = Π𝑥. We can now proceed with the proof of Theorem 8.

Proof of Theorem 8. Let us fix 𝑥0 ∈  , and let us choose 0, 𝑈 , Π, 𝐸12 as in Lemma 4. Then, up to applying the invertible system 
transformation (𝜎, 𝑈 ) with 𝜎(𝑥) = Π𝑥 to 𝐸, we assume without loss of generality that

𝐸 =
[

𝐼𝑟 𝐸12
0 0

]

,

where 𝐸12 ∈ ( ,ℝ𝑟,𝑛−𝑟) is a matrix function with analytic entries. Consider now the linear first order PDE system
∇𝑥2𝑣(𝑥) = 𝐸12(𝑥)⊤∇𝑥1𝑣(𝑥), (F.3)

and let 𝑓1,… , 𝑓𝑝 ∈ 1( ,ℝ) be functionally independent functions that generate the solutions of (F.3), i.e., such that ∇𝑓1,… ,∇𝑓𝑝
are (pointwise) linearly independent, and that the solutions of (F.3) are the functions of the form 𝑣(𝑥) = 𝑉 (𝑓1(𝑥),… , 𝑓𝑝(𝑥)) for any 
𝑉 ∈ 1(ℝ𝑘,ℝ). For the existence of such set of solutions for 𝐸12 with analytic entries, see e.g. [62,63].

Let us now define 𝜓1 = (𝑓1,… , 𝑓𝑝) ∈ 1( ,ℝ𝑝). In particular, we have that D𝑥2𝜓1 = (D𝑥1𝜓1)𝐸12. Let us now complete 𝑓1,… , 𝑓𝑝 to 
a maximal set of functionally independent functions 𝑓1,… , 𝑓𝑛 ∈ 1( ,ℝ), which can be done locally e.g. by selecting an appropriate 
subset of 𝑥1,… , 𝑥𝑛, and let

𝜓 = (𝑓1,… , 𝑓𝑛) = (𝜓1, 𝑓𝑝+1,… , 𝑓𝑛) ∈ 1( ,ℝ𝑛)

be the corresponding local diffeomorphism. In particular, up to further restricting the open neighborhood 0 of 𝑥0, we assume that 
𝜓 ∶ 0 → 𝜓(0) is a diffeomorphism. Let then ̃0 = 𝜓(0) and let 𝜑 = 𝜓−1 ∈ 1(̃0,0) denote the inverse diffeomorphism.
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Note that, since the original Hamiltonian  is also a solution of (F.3), it must be of the form  = ̃1◦𝜓1 for some ̃1 ∈
1(𝜋1(̃0),ℝ), where 𝜋1 ∶ ℝ𝑛 → ℝ𝑝 denotes the projection onto the first 𝑝 coordinates. Furthermore, it holds that 

D𝜓
[

𝐼𝑟 𝐸12
0 0

]

(D𝜑◦𝜓) =
[

D𝑥1𝜓1 (D𝑥1𝜓1)𝐸12
⋆ ⋆

]

(D𝜓)−1 =
[

D𝜓1
⋆

]

(D𝜓)−1 =
[

𝐼𝑝 0
⋆ ⋆

]

.

Then, up to applying the invertible system transformation (𝜑, (D𝜓◦𝜑)), we assume without loss of generality that 𝐸 is of the form

𝐸(𝑥) =
[

𝐼𝑝 0
𝐸12(𝑥) 𝐸22(𝑥)

]

.

and that  only depends on the first block component of the state, which allows to introduce 1 ∈ 1(𝜋1(0),ℝ) as in Lemma 1.
With subsequent left multiplications and right permutations (and therefore system transformations of the form (𝜎, 𝑈 ) with 𝜎(𝑥) =

Π𝑥), we further bring 𝐸 to the form

𝐸(𝑥) =
⎡

⎢

⎢

⎣

𝐼𝑝 0 0
0 0 0
0 𝐸32(𝑥) 𝐸33(𝑥)

⎤

⎥

⎥

⎦

,

where 𝐸32 ∈ (0,ℝ𝑟−𝑝,𝑛−𝑟) and 𝐸33 ∈ (0,ℝ𝑟−𝑝,𝑟−𝑝), with 𝐸33(𝑥0) invertible. In particular, up to restricting 0 to an open neighbor-
hood of 𝑥0 where 𝐸33 is pointwise invertible, and applying an appropriate left multiplication with its inverse, we can assume without 
loss of generality that 𝐸 is of the form

𝐸(𝑥) =
⎡

⎢

⎢

⎣

𝐼𝑝 0 0
0 0 0
0 𝐸32(𝑥) 𝐼𝑟−𝑝

⎤

⎥

⎥

⎦

.

Let us partition 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ𝑝 ×ℝ𝑛−𝑟 ×ℝ𝑟−𝑝 and 𝑧 = (𝑧1, 𝑧2, 𝑧3) ∈ ℝ𝑝 ×ℝ𝑛−𝑟 ×ℝ𝑟−𝑝 . The gradient pair property 𝐸⊤𝑧 = ∇ then 
implies

⎡

⎢

⎢

⎣

𝑧1
𝐸⊤32𝑧3
𝑧3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐼𝑝 0 0
0 0 𝐸⊤32
0 0 𝐼𝑟−𝑝

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑧1
𝑧2
𝑧3

⎤

⎥

⎥

⎦

= 𝐸⊤𝑧 = ∇ =
⎡

⎢

⎢

⎣

∇1◦𝜋1
0
0

⎤

⎥

⎥

⎦

,

i.e., 𝑧1 = ∇1◦𝜋1 and 𝑧3 = 0.
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