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ABSTRACT: Preserving the structural integrity of biomimetic foldamers
upon surface deposition is essential for their integration into functional
molecular architectures and devices. When assembled in well-ordered
monolayers, these molecules can exhibit distinctive characteristics. In this
study, we investigate the electrospray-controlled ion beam deposition of
foldamer molecules in an ultrahigh vacuum (UHV) environment on an
Au(111) surface and examine how their conformation depends on the
mean landing energy during deposition. At a low mean landing energy of
about 0.6 eV, intact foldamers are observed on the surface, whereas
higher landing energies predominantly result in unfolded molecules and
partially folded states. Additionally, annealing of the substrate converts
folded conformations into unfolded ones. These results highlight the
importance of soft-landing conditions to maintain hydrogen-bond-
stabilized architectures on surfaces, offering a model platform for studying the structure−function relationship of surface-supported
thermolabile biomolecules.
KEYWORDS: electrospray ionization, scanning tunneling microscopy, foldamer molecules, landing energy, adsorption

Numerous functionalities of macromolecules are driven by
their two-dimensional (2D) and three-dimensional (3D)

conformations. This concept is omnipresent in nature, as seen
in proteins or DNA, and has inspired chemists to design
macromolecules with well-defined 3D conformations to tailor
conformation-related properties. Aromatic helical foldamers
make up one of these synthetic molecular classes. Their
potential applications range from molecular machinery1,2 and
molecular recognition3−6 to charge transfer in molecular
electronics.7,8 For example, helical oligoquinoline foldamers
have been shown to promote unidirectional charge transport
along their helices, thereby behaving as insulated molecular
wires.9 In addition, the intrinsic chirality of helical molecules
has been associated with polarized electron transport through
chiral-induced spin selectivity,10−12 which is of interest for spin
devices, quantum information processing, and novel quantum
materials. Hence, achieving supported well-ordered 2D
networks of these molecules may enable their future
incorporation as monolayers in devices. There are reports of
helical foldamer molecules on surfaces.13,14 However, their
helical axes were often oriented parallel to the surface. The
adsorption, self-assemblies, and properties of other helical
molecules, for example helicenes, have been more extensively
investigated on the surface.15−18 To develop a comprehensive

understanding, a better control of the adsorption of foldamer
molecules is clearly needed.
However, many of these macromolecules cannot be

deposited intact and pure onto surfaces in ultrahigh vacuum
(UHV) using conventional techniques such as organic
molecular beam epitaxy. Other methods, such as drop casting,
are often accompanied by a high level of contaminants.
Electrospray ionization (ESI) is a technique used to transfer
intact, charged molecules into the gas phase.19 Nondestructive
ionization has been demonstrated for a variety of non-
sublimable molecules, such as spin crossover complexes,20,21

nanoribbon precursors,22−24 molecules with thermally respon-
sive side chains25,26 and biomolecules.27−30 Electrospray ion
beam deposition (ESIBD) is an advanced technique that
combines ESI with mass filtering and controlled landing-
energy deposition onto surfaces under UHV conditions,
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enabling nondestructive adsorption with minimal contami-
nation.31−39

A critical factor for the deposition of intact molecules under
gentle ionization conditions is careful selection of the ion
landing energy. In most cases, electrically conductive substrates
are used, with an applied electricpotential controlling the ions’
landing energy. It is common practice to distinguish between
the soft- and reactive-landing regimes. Soft landing refers to the
retention of the molecular chemical structure,36,40−42 while
reactive landing involves conformational changes, bond
cleavage and chemical reactions.43−45

Anggara et al. investigated the deposition of coiled
cellohexaose molecules on Cu(100) at landing energies
ranging from 0.5 to 5 eV.46 They observed that at the lowest
landing energy, the majority of molecules retained their gas-
phase conformation, whereas at higher energies, open-chain
molecules prevailed on the surface. Molecular dynamics
simulations revealed a transfer of translational energy into
other degrees of freedom (rotational, vibrational, and surface
vibrational modes) resulting from collisions with the surface in
the picosecond regime. Furthermore, the molecular conforma-
tion dynamics were found to depend on increases in the
molecular vibrational energy. The different initial translational
energies (0.5 and 5 eV) produced either insufficient or
sufficient energy transfer to induce conformational changes,
respectively. In another study, the influence of the substrate on
the transfer of translational energy was examined.47 Free-
standing graphene dispersed the translational energy of a
protein within a few picoseconds, acting like a trampoline and
enabling deposition without major conformational changes.
Furthermore, for the deposition of Reichardt’s dye (RD)
molecules on Cu(100) in the landing energy range of 2−50
eV,43 C−N bond cleavage was observed at landing energies of
5 eV and above. In this study, the influence of molecular
orientation relative to the surface during collision was
investigated by using molecular dynamics simulations of a
positively charged RD molecule approaching a surface
including image charge effects. Different molecular impact

orientations were found to result in either molecular
fragmentation or the deposition of intact RD species.
Previously, we have reported on the unfolding of the

otherwise helical oligoamides of 8-amino-2-quinoline-carbox-
ylic acid with a pyrene platform as foot (pyr-Qn, Figure 1b)
upon deposition on Ag(111) with a landing energy of 4.5 eV,
which can be hence ascribed to reactive landing.48 The term
“unfolding” in the present context refers to an ordered flat
ribbon-like surface conformation as opposed to “unfolding” of
other macromolecules, such as DNA or certain proteins,
implying disordered structures. This prompted the question of
whether the metallic substrate or the collision impact caused
the unfolding, since ion mobility (IM) measurements ruled out
significant conformational changes induced by the electrospray
process and confirmed intact helical foldamers in the gas
phase.48

Here, we report on the room temperature (RT) deposition
of both pyr-Q4 and pyr-Q7 with a custom-designed system
designated ‘electrospray-controlled ion beam deposition (ES-
CIBD)’36 on the Au(111) surface and on the parameters that
determine the foldamers’ conformation upon adsorption
(Figure 1a). The surface conformations of the foldamers
were analyzed by low-temperature scanning tunneling
microscopy (LT-STM) following deposition at RT and
vacuum suitcase transfer. At very low landing energy, we
were able to deposit significant proportions of pyr-Q4 and pyr-
Q7 in a folded conformation onto the surface. Increasing the
energy or annealing the decorated substrate entailed unfolding.
Therefore, we identify the impact during deposition as a
driving force for the unfolding of the helical molecules and we
assess the landing energies and their influence on the
molecular conformation. Due to their well-defined secondary
structure stabilized by hydrogen-bonding, the foldamer
molecules also offer a simple model system for studying
fundamental aspects of biomolecular adsorption and structural
integrity in UHV environments.

Figure 1. Electrospray ion beam deposition of foldamer molecules. (a) Scheme of the operational principle. (b) Molecular structure of pyr-Qn.
Example of a mass spectrum of singly charged (c) [pyr-Q4 + H]+ (m = 1230 u) and (d) [pyr-Q7 + H]+ (m = 1957 u).
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■ RESULTS AND DISCUSSION
To test the influence of the collision with the surface on the
conformation, we first conducted deposition experiments with
the smaller foldamer, pyr-Q4, sprayed in positive mode (see
Methodology for details). Singly charged [pyr-Q4 + H]+ ions
were mass selected by a digital quadrupole mass filter (m/z
1230, Figure 1c) and deposited on Au(111). The foldamer’s
translational energy distribution in the ion beam was
determined by measuring the deposition current as a function
of the cutoff-energy (Figure 2a). The cutoff-energy, exper-
imentally adjusted by the voltage drop between the last ion
optics (BLADE) and the sample (Figure 1a), is defined as the
energy where (nearly) no ion reaches the sample (see
Methodology and SI for further information). Assuming a
Gaussian translational energy distribution, we obtain a center
energy at −2.4 eV and an energy width of 2.7 eV (FWHM)
(Figure 2b).
To distinguish between the different depositions described

in this study, we evaluate the mean landing energy. This value
is defined as the mean translational energy of all ions reaching
the surface. However, these values can be somewhat
misleading due to the contribution of the energy distribution
perpendicular to the direction of ion motion. To achieve
precise energy control, narrowing the translational energy
distribution is desirable. A more confined energy spread allows
for a better definition of the landing energy, thereby improving
reproducibility and minimizing unwanted unfolding upon
impact. Several factors influence the narrowing of the energy
distribution in the high-pressure stages of the ES-CIBD system.
Other authors observed that the pressures in the early stages of
ESIBD or introducing a buffer gas can play a significant role in
energy thermalization.49 Nevertheless, a narrow kinetic energy

distribution in the last vacuum region downstream, where ions
still frequently scatter with residual gas, is crucial for the
resulting energy distribution entering the quadrupole mass
filter.38 Furthermore, optimization of the ion optics and mass
filter parameters can further refine the energy distribution,
enabling precise control over the ion landing conditions.
The first deposition of pyr-Q4 was performed with a mean

landing energy of 1.9 ± 0.2 eV (Figure 2b). This is a 2.6 eV
reduction in mean landing energy compared to the 4.5 eV in
earlier experiments on Ag(111).48 Figure 2c shows an overview
STM image of the Au(111) surface after deposition. The
majority of the adsorbed pyr-Q4 molecules show similar
features as previously on Ag(111), suggesting a similar
unfolded surface conformation.48 We also reported on IM
measurements, which implied that ESI itself does not unfold
the molecules, and, hence, the impact on a metal substrate in
UHV was causing the unfolding.48 Due to the low coverage,
mostly unfolded single molecules with a few molecules forming
dimers were observed (blue circle in Figure 2d). Interdigitation
between the iso-butyl side chains of adjacentfoldamer
molecules may promote dimer formation. This interaction
motif is in good agreement with the observed self-assembly on
Ag(111), similarly formed by dimers. In solution, the helical
structure of the foldamers is stabilized through hydrogen
bonding. Furthermore, the unfolding is hindered by repulsive
interactions between the carbonyl oxygen atom and the
quinoline endocyclic nitrogen atom at each quinoline-
carboxamide linkage. These interactions render the helical
structure of the foldamer molecules extremely stable in
solution.50,51 On the other hand, hydrogen-bond energies are
typically in the regime of several tenths of electron volts. Thus,
most of the molecules in the ion beam should possess sufficient

Figure 2. Pyr-Q4 depositions on Au(111). (a) Ion current measured on the sample as a function of the sample potential (gray dots). The black line
represents the fit using a “Gaussian error function”. The sample potentials used for the “high” (blue dotted line) and “low” (magenta dotted line)
landing energies are indicated. (b) Energy distribution of the ion beam (see Methodology and SI for more information). The cutoff-energy for the
blue line corresponds to a “high” landing energy of 1.9 ± 0.2 eV, and the cutoff-energy for the magenta line corresponds to a “low” landing energy
of 0.6 ± 0.2 eV. STM images of pyr-Q4 after high mean landing energy deposition of 1.9 ± 0.2 eV: (c) overview (−1000 mV, 20 pA), (d) a high-
magnification of a pyr-Q4 dimer (−700 mV, 20 pA), and (e) an intermediate state between fully unfolded and folded (−300 mV, 40 pA). C, H, N,
and O atoms are in gray, white, blue, and red. STM images after deposition with a low mean landing energy of 0.6 ± 0.2 eV: (f) overview (−400
mV, 20 pA) and (g) folded (left) and an unfolded (right) pyr-Q4 molecule coexisting (−50 mV, 100 pA). (h) Overview STM image of this surface
after 10 min of annealing to 423 K (−500 mV, 30 pA). The molecules encircled in blue, magenta, and yellow correspond to unfolded, partially
unfolded, and folded pyr-Q4 molecules, respectively. The white circle shows a contaminant.
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translational energy to break hydrogen bonds upon adsorption.
However, whether the hydrogen bonds break or remain intact
strongly depends on how efficient the energy is dissipated
during surface collision, rather than solely on the amount of
translational energy.43,46,47

In addition to unfolded molecules, a small amount of sligthly
smaller surface species was observed (magenta circle in Figure
2c,e) with a length of about 2.5 nm. This species are
approximately 1 nm smaller than a fully unfolded molecule
(length: ∼3.5 nm, apparent height: ∼0.17 nm, Figure 2d) and
feature a characteristic protrusion with an apparent height of
about 0.3 nm, which is absent in the unfolded molecule.-
Considering the shape and increased apparent height, we
assign these species to partially unfolded molecules. Besides
these partly unfolded molecules a second species occurs even
less frequently and appears as more compact objects with an
apparent height of ∼0.34 nm and a diameter of approximately
2 nm (yellow circle in Figure 2c). This second surface speciesis
associated with a fully folded molecule.
Intrigued by these observations, we decreased the mean

landing energy to 0.6 ± 0.2 eV in a second preparation (Figure
2b) to investigate whether we could observe an increase in the
occurrence of folded molecules. Indeed, STM measurements
reveal a distinct change in the appearance of the surface species
(Figure 2f and SI, Figure S2). Protrusions with a diameter of 2
nm and an apparent height of 0.34 nm were predominantly
observed (yellow circle in Figure 2f), whereas only a few
unfolded pyr-Q4 molecules existed (Figure 2f,g). Note that
there are further protrusions with an even lower apparent
height of just 0.15 nm (white circle in Figure 2f), identified as
contaminants (see SI, Figure S3) from the vacuum suitcase
transfer or other neutral adsorbents.
However, the STM observations of the folded pyr-Q4 surface

species do not allow determination of whether the pyrene foot
is adsorbed onto or lifted away from the surface, nor do they
provide information about the handedness (right or left) of the
helical conformation at the single-molecule level. In another
study of an electrosprayed cyclic glucose oligomer, β-
cyclodextrin, on Au(111), Grabarics et al. combined AFM
imaging with theoretical calculations to successfully deduce
distinct adsorption geometries.52 Remarkably, they were also
able to resolve the orientation of hydroxyl groups and the
presence of intramolecular hydrogen bonds.
The sample was subsequently annealed stepwise to 373, 423,

463, and 513 K for 10 min to investigate the thermal stability
of the folded pyr-Q4. After the first annealing step to 373 K, we
observed a significant increase in unfolded pyr-Q4 species (see
SI, Figure S2) compared to the as-deposited sample, while the
overall coverage was similar as before. After annealing to 423
K, unfolded pyr-Q4 surface species prevail (Figure 2h and SI,
Figure S2). A further increase in temperature did not
significantly affect the ratio between folded and unfolded
molecules (see SI, Figure S2). After the thermal treatment at
513 K, the coverage of adsorbed molecules strongly decreased
due to desorption (see SI, Figure S2). The ratios of unfolded,
intermediate, and folded pyr-Q4 molecules for the different
landing-energy depositions and after annealing to 423 K are
summarized in Figure 3a. This evaluation shows that folded
surface species observed after 0.6 ± 0.2 eV landing energy
deposition can be thermally converted to the unfolded state of
the foldamer molecule on the Au(111) surface. Overall, these
findings substantiate the assignment of surface species
identified by STM to the respective configurations.

To gain further insights into the effect of adsorption impact
on the conformation, we studied the longer foldamer pyr-Q7
(m/z 1957, Figure 1d). The preparation of the solution and
the charging were carried out in the same way as for pyr-Q4.
The current as a function of the sample potential and the
corresponding fitted dI/dV curve are shown in Figure 4a,b,
respectively. The Gaussian translational energy distribution has
a center at −4.3 eV and an energy width of 4.4 eV (FWHM).
After deposition with a mean landing energy of 1.0 ± 0.2 eV,
pyr-Q7 is mostly present in the unfolded conformation (Figure
4c and the SI, Figure S4). Figure 4d shows a dimer in which
the two molecules show an organization similar to that
observed for the shorter foldamer. However, different unfolded
surface conformations can be observed. This can be
rationalized by the amount of different possible rotamers of
pyr-Q7 obtained by rotation of the aryl-NH bonds and/or the
aryl-carbonyl bonds.
After a deposition with a lower mean landing energy of 0.7 ±

0.2 eV (Figure 4b), we observed bright protrusions (yellow
circle in Figure 4e,f) on the elbows of the Au(111)
reconstruction and unfolded pyr-Q7 at step edges (see the
SI, Figures S4 and S5). The sample was first annealed to 373 K
to investigate thermal effects on the folded molecules.
However, only folded molecules were observed on the terraces.
We cannot entirely exclude the possibility that unfolded
molecules diffused to the step edges, which are already
decorated with unfolded and partially unfolded molecules. In a
second step, the sample was annealed at 423 K for 30 min,
where the largest increase in unfolded molecules appeared for
pyr-Q4 experiments. The amount of bright protrusions
decreased after this thermal treatment, and unfolded pyr-Q7
molecules were now also observed on the terraces (Figure 4g
and SI, Figure S5). No aggregation of unfolded molecules was
observed on the terraces. These observations suggest that
intermolecular interactions do not contribute significantly to
the thermal unfolding process. After annealing, the contami-
nants were no longer observed. Thus, we attribute the bright
protrusions to the folded pyr-Q7 molecules, which unfold upon
annealing, similar to the pyr-Q4 molecules. Notably, pyr-Q7
exhibits a higher thermal stability than pyr-Q4. Its thermally
driven unfolding cannot be directly compared to the
mechanochemical unfolding by surface collision since it
certainly proceeds via different pathways.53

The statistical evaluation of the folded and unfolded
conformation ratios of foldamer molecules on terraces is

Figure 3. Statistical evaluation of surface conformations of (a) pyr-Q4
and (b) pyr-Q7 on Au(111). The folded, partially folded, and
unfolded conformation of the foldamers on the terraces were counted
for two landing energies and for the low landing energy after
annealing to 423 K for 10 min (pyr-Q4) and for 30 min (pyr-Q7). For
each preparation, at least 80 molecules were counted.
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summarized in Figure 3b. The proportion of folded
conformations undergoes a major change when comparing
deposition at 1 ± 0.2 eV to that at 0.7 ± 0.2 eV. The folded
species now becomes the predominant form on the terraces.
However, it is worth noting that pyr-Q7 molecules remain
mostly unfolded at step edges, even at low translational
energies (see SI, Figures S4 and S5). Therefore, it cannot be
ruled out that step edges act as active sites for the unfolding of
pyr-Q7. If one assumes that the step edges are not active in the
unfolding process and includes these molecules in the statistics,
an approximate folded-to-unfolded/partially folded ratio of 6:4
is obtained. Molecules adsorbed at the step edges often cannot
be clearly distinguished between partially unfolded and fully
unfolded conformations; hence, they are grouped into the
same category for this evaluation.

■ CONCLUSIONS
We report on the influence of the mean landing energy on the
surface conformation of two helical foldamer molecules with
different lengths on Au(111) under UHV conditions. At a
landing energy below 0.7 eV, the helical conformation of the
foldamers was largely preserved following deposition at RT.
Although it may seem surprising at first glance that both
species (with a mass ratio of ca. 1.6) exhibit a similar
dependence of the landing energy, this behavior may indicate
that unfolding is triggered by a process during adsorption in
which the energy is not efficiently distributed throughout the
entire molecule. Annealing or choosing higher landing energies
results in the unfolding of the helical structure of the foldamer.
Remarkably, partially folded states were also observed. With
this comparative study of landing energy profiles, we
demonstrate a strong influence on the conformation of
molecules. The next step should be a more detailed
investigation of the landing geometry of the molecules, for

example, using AFM as well as improved control of the
orientation of even longer aromatic helices to achieve a well-
ordered 2D assembly and investigate their properties,
particularly charge transfer along the helix.
Further, these results shed light on possible approaches to

conserve the intact secondary structure of a foldamer, opening
up novel avenues to steer the behavior of adsorbed bio- or
synthetic molecules with more complex 2D and 3D
conformations. The ability to preserve the secondary structure
of molecules will enable researchers to explore or exploit the
conformation-dependent properties of these molecules in
functional devices. Furthermore, the findings are useful for
realizing the supported 2D assembly of molecules with
controllable conformations.

■ METHODS

ESIBD
The synthesis of the foldamer molecules was reported previously.48

The foldamers were dissolved in a mixture of acetonitrile (69 vol %),
methanol (29 vol %), and acetic acid (2 vol %). The sprayed solutions
had a concentration of 10−4 mol/L. The ESI emitter was a fused silica
capillary with inner and outer diameters of 0.075 and 0.360 mm,
respectively. The emitter voltage was set to ∼5 kV and the flow rate to
60−90 μL/h. Before each deposition, a mass spectrum was recorded
to ensure pure deposition. The pressure during the depositions was
below 5 × 10−10 mbar, and the sample was kept at room temperature
during deposition. To ensure a high as possible reproducibility, several
precautions were taken. First, identically prepared solutions were used
for each deposition of pyr-Q4 and pyr-Q7, respectively. The ESI
emitter voltage was set to 5 kV for all of the depositions. The
temperature of the capillary at the vacuum interface was maintained at
350 K throughout the experiments. All parameters of the ion guides
were kept constant within each series of pyr-Q4 and pyr-Q7
experiments, respectively.

Figure 4. Pyr-Q7 depositions on Au(111). (a) Ion current measured on the sample as a function of the sample potential (gray dots). The black line
represents the fit using a “Gaussian error function”. The sample potentials used for “high” (blue line) and “low” (magenta line) landing energies are
indicated. (b) Energy distribution of the ion beam (see SI for more information). The cutoff-energy for the blue line corresponds to a “high”
landing energy of 1.0 ± 0.2 eV, and the cutoff-energy for the magenta line corresponds to a “low” landing energy of 0.7 ± 0.2 eV. (c) Overview
STM image of pyr-Q7 after deposition with a mean landing energy of 1.0 ± 0.2 eV (300 mV, 100 pA). (d) STM image of an unfolded pyr-Q7 dimer
(−50 mV and 50 pA). C, H, N, and O atoms are in gray, white, blue, and red. (e) Overview STM image of pyr-Q7 with a lower mean landing
energy of 0.7 ± 0.2 eV (1000 mV, 100 pA). (f) STM image of folded pyr-Q7 (−1000 mV, 100 pA). (g) Overview STM image after annealing to
423 K for 30 min (1000 mV, 100 pA). The molecules encircled in blue, magenta, and yellow correspond to unfolded, partially unfolded, and folded
pyr-Q7 molecules, respectively. The white circle shows a contaminant.
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Sample Preparation
The Au(111) single-crystal surface was prepared in situ by multiple
cycles of Ar+ sputtering and annealing to 650 K. The cleanliness of the
substrate was assessed by STM. After depositing the molecule on
Au(111), the sample was transferred with a vacuum suitcase (base
pressure of 2 × 10−10 mbar) to an LT-STM.

LT-STM
All STM measurements were performed by using a commercial Joule-
Thomson STM (SPECS GmbH) with a chamber base pressure of 2 ×
10−10 mbar. The tungsten tip was prepared through electrochemical
etching. The tunneling bias is applied to the sample. The tunneling
conditions for each STM image are given in the respective captions.
All measurements were performed at 4.5 K. STM images were
analyzed with the help of SpmImage Tycoon.54
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Y.; Narita, A.; Glatzel, T.; Müllen, K.; Meyer, E. The Role of Alkyl
Chains in the Thermoresponse of Supramolecular Network. Small
2024, 20 (51), No. e2405472.
(27) Wu, X.; Delbianco, M.; Anggara, K.; Michnowicz, T.; Pardo-
Vargas, A.; Bharate, P.; Sen, S.; Pristl, M.; Rauschenbach, S.;
Schlickum, U.; et al. Imaging single glycans. Nature 2020, 582 (7812),
375−378.
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M.; Kotschy, A.; Huc, I. Controlling Helix Handedness in Water-
Soluble Quinoline Oligoamide Foldamers. Eur. J. Org. Chem. 2014,
2014 (20), 4265−4275.
(52) Grabarics, M.; Mallada, B.; Edalatmanesh, S.; Jiménez-Martín,
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