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Abstract

Machine learning algorithms underpin many modern technologies but typically rely on
supervised learning, which assumes access to fully annotated, noise-free training data. In
practice, this assumption rarely holds: real-world datasets are often noisy, incomplete, or
ambiguous. In crowdsourcing, for example, experts can assign conflicting labels to the
same instances. While such datasets can be manually cleaned, sanitizing data is costly.

Partial-label learning (PLL) offers a principled framework to address such ambiguous
data. Thereby, each training instance is associated with a set of candidate labels, of which
only one is correct but unknown. The PLL framework aims at training classifiers in this
setting that perform well on unseen samples. However, the absence of exact ground truth
makes it particularly difficult to construct reliable and accurate classifiers. Ensuring that
such models make reliable predictions thus requires robust algorithms that can deal with
uncertainty, abstain from unreliable decisions, or adapt to imperfect data.

This thesis addresses these challenges by developing accurate and robust partial-label
learning methods. First, we introduce a method that allows models to abstain from
uncertain predictions through a reject option, enabling safer deployment in human-in-
the-loop scenarios such as medical diagnosis or crowdsourcing. Second, we present a
probabilistic approach that models predictive uncertainty via a Dirichlet distribution
over class probabilities, enhancing robustness against label noise, out-of-distribution
samples, and adversarial perturbations. Third, we propose a refinement technique based
on conformal prediction that iteratively cleans candidate label sets, providing confidence
guarantees while improving overall accuracy. Finally, we formulate label disambiguation
as a latent-variable inference problem and employ amortized variational inference to
approximate the posterior distribution over true labels, achieving state-of-the-art accuracy
in both synthetic and real-world experiments. Together, these contributions establish a
comprehensive framework for accurate and robust weakly supervised learning with PLL
candidate labels.
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1. Introduction

Machine learning algorithms lie at the core of countless applications powering today’s
technology. In many cases, these algorithms rely on supervised learning, which assumes
fully annotated, noise-free pairs of features and corresponding ground-truth labels to
predict the class labels of unseen samples. However, real-world data rarely meets these
ideal conditions—it is often noisy, incomplete, or ambiguous—violating the assumptions
underlying conventional supervised classification and thereby limiting its applicability
and performance.

Such noisy and conflicting data arises across a wide range of domains, including crowd-
sourcing (Lin et al., 2022), web mining (Guillaumin et al., 2010; Zeng et al., 2013), audio
classification (Briggs et al., 2012), and automated theorem proving (Zombori and Indruck,
2025), among many others. In crowdsourcing, for instance, different human annotators
may assign conflicting class labels to the same training instance, reflecting differing levels
of expertise, subjective judgment, or simple human error. Although it is often possible
to clean such datasets manually or to aggregate multiple annotations through majority
voting, this process is expensive, time-consuming, and not always reliable. The challenge
is particularly pronounced in medical domains, where labels must be provided by trained
specialists, such as radiologists or pathologists, making large-scale annotation prohibitively
costly (Wang et al., 2020).

In web mining, the problem manifests differently: data collected from the internet is
inherently noisy due to the uncurated and heterogeneous nature of online content (Gheisari
et al., 2023). For instance, Guillaumin et al. (2010) train image classifiers using labels derived
from the alternative text of online images. These textual descriptions often vary widely
in quality and relevance—some accurately reflect the image content, while others are
misleading or unrelated—yet they enable the creation of large-scale datasets without
manual labeling. Similar challenges appear in audio classification, where sound recordings
may contain overlapping acoustic events, such as multiple speakers talking simultaneously
or environmental noise obscuring the target signal (Briggs et al., 2012). In these cases, it is
not obvious how to derive a single definitive label for each training instance.

A more recent and conceptually distinct example arises in automated theorem proving
(Zombori and Indruck, 2025), where machine learning models guide the search for proofs
by predicting which logical atom to branch on next. Here, the class labels correspond to
proof decisions that may not be uniquely correct, since multiple proof paths can lead to
valid results. This structure creates an intrinsic form of label ambiguity that mirrors noise
in other domains.
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1. Introduction

Across all these scenarios, the data available for training is noisy, ambiguous, or conflicting.
Such imperfections fundamentally violate the assumptions underlying standard supervised
classification, which assumes unambiguous, fully labeled data. To deal with these real-
world challenges, weakly supervised learning has emerged as a broad paradigm that relaxes
the strict requirements of full supervision and enables model training under weaker forms
of label information.

Weakly supervised learning encompasses a wide range of problem settings, each reflecting
a different way in which supervision can be incomplete or imprecise. Examples include
semi-supervised learning (Hady and Schwenker, 2013), where only a subset of the data
is labeled; noisy label learning (Bylander, 1994), where annotations may be incorrect;
complementary label learning (Ishida et al., 2019), where the learner is told only what class
a training instance does not belong to; and partial-label learning (Feng et al., 2020)—the
main focus of this thesis—where each training instance is associated with a set of possible
candidate labels.

Among these settings, partial-label learning (PLL; Jin and Ghahramani 2002; Lv et al. 2020;
Xu et al. 2021; Tian et al. 2024) offers a principled approach to handling ambiguous or
conflicting annotations without the need for costly data cleaning. In PLL, each training
instance is associated with a set of possible labels, one of which is correct but unknown
to the learning algorithm. This framework captures the previously discussed scenarios—
disagreement among annotators in crowdsourcing, inconsistent or noisy information in
web mining, overlapping sources in audio classification, and multiple valid proof paths in
automated theorem proving—where uncertainty about the correct class label is intrinsic
to the data itself. PLL methods aim to leverage such weak supervision to train multi-class
classifiers capable of disambiguating candidate sets and predicting the correct class of
unseen samples.

Figure 1.1 illustrates the distinction between standard supervised classification and partial-
label learning: while the former assumes access to precise one-to-one mappings between
training instances and labels, the latter operates under one-to-many supervision, where
the correct label must be inferred from a set of possibilities.

The absence of exact class labels makes it particularly challenging to construct reliable
classifiers, as uncertainty arises at multiple levels of the learning process. First, there is
label ambiguity within each candidate set: the true label is hidden among several plausible
alternatives, and the likelihood of candidate labels can depend on both the instance’s
features and the relationships between classes. In some regions of the feature space,
annotators, or the processes generating the labels, are more prone to mislabeling, leading
to systematically biased or overlapping candidate sets. Moreover, certain classes may be
inherently more similar or harder to distinguish, further increasing the ambiguity.

Second, there is uncertainty concerning how the candidate labels of one example relate to
those of others. Since the reliability of a candidate label may vary across the dataset, it
becomes difficult to determine which training instances provide useful information for
guiding the learning process. Both types of uncertainty—within individual examples and

2
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(a) An example of a partial-label learning dataset.
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(b) An example of a supervised classification dataset.

Figure 1.1.: Comparison of partial-label learning (left) and supervised multi-class classification (right), using
the possible class labels {1, 2, 3}. Figure 1.1a shows an example of a partial-label learning dataset, where
each training data point (•) is associated with a set of candidate labels, of which only one unknown label is
correct. PLL admits training classifiers in this context without the need for manual data cleaning. In contrast,
Figure 1.1b shows an example of a standard multi-class classification dataset, where each training data point
(•) is associated with a known ground-truth class label. Note that the dataset in Figure 1.1b is a cleaned
version of that in Figure 1.1a. In both cases, the goal is to predict the class labels of unseen test instances (▲).

across the dataset—contribute to the difficulty of constructing reliable classifiers under the
PLL setting.

Given this inherent uncertainty, robustness naturally becomes a central concern. Machine-
learning models must not only resolve label ambiguity but also remain reliable when faced
with noisy, conflicting, or otherwise imperfect supervision. This is especially important
when model predictions influence human decisions or safety-critical systems. In high-
stakes domains such as medical diagnosis (Yang et al., 2009; Lambrou et al., 2011; Reamaroon
et al., 2019), financial fraud detection (Cheng et al., 2020; Berkmans and Karthick, 2023;
Xiang et al., 2023), or autonomous driving (Xu et al., 2014; Varshney and Alemzadeh,
2017; Hubmann et al., 2017; Shafaei et al., 2018; Michelmore et al., 2020), misclassifications
can have serious consequences, ranging from incorrect treatments to financial losses or
physical harm.

Although robustness has been extensively studied in conventional supervised learning,
it remains relatively underexplored in partial-label learning. Most existing PLL methods
focus on disambiguating candidate labels to improve predictive accuracy, yet few explicitly
consider how these models behave when faced with corrupted, adversarial, or out-of-
distribution data. However, because PLL inherently operates on uncertain and imperfect
supervision, as already elaborated above, robustness considerations are crucial. Developing
algorithms that are both accurate and robust under weak supervision is therefore essential
for ensuring trustworthy and dependable learning systems.

In the following, we detail our contributions toward building such accurate and robust
algorithms within the PLL framework.

3



1. Introduction

1.1. Contributions

In this work, we propose four partial-label learning methods that address the afore-
mentioned challenges of accurate and robust prediction-making in the PLL setting. We
summarize our contributions in the following.

PLL with a Reject Option (Chapter 4). Even the best algorithms make incorrect predictions,
which can have severe consequences in safety-critical domains. To mitigate such risks, we
employ what are known as reject options. Reject options allow an algorithm to abstain from
certain predictions if unsure and, instead, let humans decide on the label of an instance
or the actions to take. In the weakly supervised PLL setting, obtaining sensible reject
options is more challenging than in the supervised case as ground truth is not available.
Nevertheless, a reject option allows for mitigating incorrect predictions and improving
prediction quality. To the best of our knowledge, we are the first to address reject options
in the PLL context. Such a mechanism is especially valuable in crowdsourcing scenarios,
where rejected instances can be prioritized for manual re-annotation by human workers,
thereby improving data quality without excessive labeling effort. Similarly, in medical
image classification, rejected cases can be escalated to domain experts for verification,
reducing the risk of harmful misclassifications.

To introduce reject options in the PLL setting, we propose a nearest-neighbor-based PLL
method grounded in Dempster-Shafer theory. Unlike existing PLL approaches that rely
on point estimates of candidate-label weights, our method maintains a feasible region
that captures the range of plausible label assignments. This representation provides a
principled way to assess predictive uncertainty and decide when to reject a sample.

Robust PLL by Leveraging Class Activation Values (Chapter 5). Predictions of machine
learning algorithms should be robust regarding several criteria to limit incorrect predictions
and their effects on downstream applications. Three central robustness desiderata are:
(a) resilience to high noise levels, (b) stability under out-of-distribution inputs, and (c)
resistance to adversarial attacks. These aspects are critical in the PLL setting, where
supervision is inherently noisy and ambiguous. While prior work has examined robustness
to label noise (a), the impact of distributional shifts (b) and adversarial perturbations (c)
on PLL algorithms has remained largely unexplored.

To address this gap, we propose RobustPll, a novel PLL method that leverages class
activation values to construct reliable internal representations of the observed data. Specif-
ically, RobustPll learns a model that parameterizes a Dirichlet distribution over class
probabilities, providing a principled quantification of predictive uncertainty. This distribu-
tional modeling allows the algorithm to distinguish confident from ambiguous predictions,
improving robustness against label noise, out-of-distribution samples, and adversarial
perturbations.

4



1.1. Contributions

This capability is especially beneficial in real-world scenarios such as web mining, where
the closed-world assumption does rarely hold, or autonomous systems, where adversarial
or out-of-context inputs may arise unexpectedly. RobustPll maintains strong predictive
performance across all three robustness dimensions, establishing it as one of the first PLL
approaches to explicitly address this broad spectrum of robustness challenges.

PLL with Conformal Candidate Cleaning (Chapter 6). A wide range of algorithms have
been proposed to address the PLL problem. Recent work has introduced several extension
mechanisms designed to enhance their predictive performance. Such extensions are partic-
ularly valuable because different PLL classifiers tend to excel on different datasets, making
broadly compatible improvements highly desirable. However, most existing extensions
rely on heuristic rules to refine candidate label sets, lacking theoretical guarantees about
their reliability.

To overcome this limitation, we propose a principled extension that alternates between
training a PLL classifier and pruning candidate sets using conformal prediction. The
conformal prediction step outputs refined candidate sets that contain the true label with
a user-specified confidence level, thereby providing a statistically grounded mechanism
for reducing label ambiguity. This iterative conformal candidate cleaning process leads to
cleaner supervision signals and, consequently, more effective classifier training.

The approach is broadly applicable across existing PLL methods and demonstrates sub-
stantial improvements in predictive accuracy across diverse datasets and experimental
settings. In practical terms, this kind of principled candidate refinement is especially useful
in crowdsourcing and web-mining scenarios, where label noise is pervasive and heuristic
filtering often fails to provide reliable confidence estimates.

Amortized Variational Inference for PLL (Chapter 7). Early PLL methods approximate the
posterior distribution over true labels but are often computationally expensive and limited
in scalability. More recent deep learning approaches address scalability but typically
rely on surrogate loss functions or heuristic label refinement, which can compromise
probabilistic soundness and interpretability.

To bridge this gap, we propose a probabilistic framework that directly models the posterior
distribution over true labels using amortized variational inference. In our approach,
neural networks predict the variational parameters from input data, allowing for efficient
inference. This formulation combines the expressiveness of deep architectures with the
theoretical rigor of probabilistic modeling, while remaining architecture-agnostic.

Our method demonstrates strong empirical performance, consistently achieving state-of-
the-art accuracy compared to existing PLL methods across a diverse set of benchmark
experiments. These results highlight the effectiveness of modeling label uncertainty
through amortized variational inference. Such gains in predictive performance are partic-
ularly valuable in domains like crowdsourcing or medical diagnosis, where precise label
inference is essential for guiding reliable downstream reasoning and decision-making.
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1.2. Publications

This work is based on the following publications.

• Tobias Fuchs, Florian Kalinke, and Klemens Böhm. Partial-label learning with a
reject option. Transactions on Machine Learning Research, January 2025. https:

//openreview.net/pdf?id=wS1fD0ofay.

• Tobias Fuchs and Florian Kalinke. Robust partial-label learning by leveraging class
activation values. Machine Learning, 114(193), 2025. https://doi.org/10.1007/

s10994-025-06796-z.

• Tobias Fuchs and Florian Kalinke. Partial-label learning with conformal candidate
cleaning. In Uncertainty in Artificial Intelligence, pages 1337–1357, 2025. https:

//proceedings.mlr.press/v286/fuchs25a.html.

• Tobias Fuchs and Nadja Klein. Amortized variational inference for partial-label
learning: A probabilistic approach to label disambiguation. CoRR, abs/2510.21300,
2025. https://doi.org/10.48550/arXiv.2510.21300.

This dissertation reuses their content, with adaptations made to ensure a coherent and
consistent monograph. These prior publications contain the core contributions of this
work—yet, their presentation has been restructured where appropriate. Algorithms, def-
initions, equations, figures, etc. may not be identical to the originals, as adjustments
were made for consistency. Chapters 4–7 explicitly indicate which prior works they draw
upon.

All code and data associated with this dissertation has been released under permissive
licenses. Chapters 4–7 specify where the resources for reproducing the corresponding
experiments can be found. Each repository includes detailed instructions for reproducing
our results.

1.3. Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces notation
and reviews the partial-label learning problem, Chapter 3 discusses related work, and
Chapters 4–7 contain our main contributions, summarized in Section 1.1. Chapter 8
concludes and discusses future work.

Appendix A, B, and C complement Chapter 4, 5, and 6, respectively, and contain additional
proofs, results, and detail the experimental setups.

6

https://openreview.net/pdf?id=wS1fD0ofay
https://openreview.net/pdf?id=wS1fD0ofay
https://doi.org/10.1007/s10994-025-06796-z
https://doi.org/10.1007/s10994-025-06796-z
https://proceedings.mlr.press/v286/fuchs25a.html
https://proceedings.mlr.press/v286/fuchs25a.html
https://doi.org/10.48550/arXiv.2510.21300


2. Notation and Problem Statement

This section establishes the notations used throughout our work and states the partial-label
learning (PLL) problem. Table 2.1 gives an overview of all notations.

Partially-labeled dataset. Given a 𝑑-dimensional real-valued feature space X = R𝑑 and
a set Y = [𝑘] := {1, . . . , 𝑘} of 𝑘 ∈ N (𝑘 ≥ 3) classes, a partially-labeled training dataset
D = {(𝑥𝑖, 𝑠𝑖) ∈ X × 2Y : 𝑖 ∈ [𝑛], 𝑠𝑖 ≠ ∅} contains 𝑛 training instances with associated
feature vectors 𝑥𝑖 ∈ X and non-empty candidate labels 𝑠𝑖 ∈ 2Y , 𝑠𝑖 ≠ ∅, for each 𝑖 ∈ [𝑛].
Their respective ground-truth labels 𝑦𝑖 ∈ Y are unknown during training, but 𝑦𝑖 ∈ 𝑠𝑖 .

PLL model. In PLL, the observations (𝑥𝑖, 𝑠𝑖) and their associated ground-truth labels
𝑦𝑖 are random (𝑖 ∈ [𝑛]), which we model as follows. Let Ω = X ×Y × 2Y . Underlying
PLL is the measurable space (Ω,B(Ω)) with B denoting the Borel 𝜎-algebra. Further,
let P,Q ∈ M+1 (Ω,B(Ω)) be probability measures withM+1 (Ω,B(Ω)) denoting the set
of all probability measures on (Ω,B(Ω)). We denote by 𝑋 : Ω → X, 𝑌 : Ω → Y, and
𝑆 : Ω → 2Y the random variables governing the occurrence of an instance’s features,
ground-truth label, and its candidate labels, respectively. Their realizations are denoted
by 𝑥𝑖 , 𝑦𝑖 , and 𝑠𝑖 (𝑖 ∈ [𝑛]). We denote by P𝑋 the marginal distribution of 𝑋 and by P𝑋𝑌
and P𝑋𝑆 the joint distribution of (𝑋,𝑌 ) and (𝑋, 𝑆), respectively. P𝑋𝑌 coincides with the
probability measure usually underlying the supervised setting. We denote by P𝑛 := P𝑛𝑋𝑆
the 𝑛-fold product of P𝑋𝑆 . Assume P,Q ∈ M+1 (Ω,B(Ω)) are absolutely continuous with
respect to a suitable product measure composed of Lebesgue and counting measures, so
that Radon-Nikodym densities 𝑝 and 𝑞 exist. The cumulative distribution function of a
real-valued random variable𝑍 : Ω → R is 𝐹𝑍 (𝑡) = P𝑍 (𝑍 ≤ 𝑡) and its empirical counterpart
is 𝐹𝑍 (𝑡) = 1

𝑛

∑𝑛
𝑖=1 1{𝑍𝑖≤𝑡}, where 𝑍1, . . . , 𝑍𝑛

𝑖.𝑖 .𝑑 .∼ P𝑍 .

PLL objective. Having established our notations, we define the PLL problem as follows.
Let ∆k-1 = {𝑦 ∈ [0, 1]𝑘 | ∑𝑘

𝑗=1𝑦 𝑗 = 1}, where 𝑦 𝑗 denotes the 𝑗-th component of 𝑦, and
ℓ : ∆k-1 ×Y → R≥0 denote a measurable loss function, e.g., the log-loss (𝑝,𝑦) ↦→ − log𝑝𝑦
(𝑝𝑦 ≠ 0). Similar to the supervised classification setting, PLL aims to train a probabilistic
classifier 𝑓 : X → ∆k-1 that minimizes the risk

𝑅∗(𝑓 ) = E𝑋𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 )] . (2.1)
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2. Notation and Problem Statement

Table 2.1.: Overview of the notations used throughout this thesis.

Notation Description Chapter
𝑑 , 𝑘 , 𝑛 Number of feature dimensions, classes, and instances 4, 5, 6, 7
X, Y Instance and label space 4, 5, 6, 7
2Y Power set of the label space 4, 5, 6, 7
Ω, B(Ω) Sample space and Borel 𝜎-algebra 4, 5, 6, 7
𝑋 , 𝑌 , 𝑆 Random variables in the PLL setting 4, 5, 6, 7
𝑥𝑖 , 𝑦𝑖 , 𝑠𝑖 Realizations of 𝑋 , 𝑌 , and 𝑆 4, 5, 6, 7
M+1 (Ω,B(Ω)) Set of probability measures 4
P, Q Probability measures 4, 5, 6, 7
P𝑋𝑆 , P𝑋𝑌 , etc. Joint measures 4, 5, 6, 7
P𝑋 , P𝑌 , P𝑆 Marginal measures 4, 5, 6, 7
P𝑛 𝑛-fold product of P𝑋𝑆 6
E, E𝑋𝑆 Expectation w.r.t. P and P𝑋𝑆 5, 6, 7
𝑝 , 𝑞 Densities 6, 7
𝐹𝑋 (𝑡), 𝐹𝑋 (𝑡) (Empirical) cumulative distribution function of 𝑋 6
∆k-1 Probability simplex 4, 5, 6, 7
H Hypothesis space 6
𝑓 , 𝑔 Classifiers 4, 5, 6, 7
ℓ Loss function, e.g., log loss 4, 5, 6, 7
𝑅(𝑓 ), 𝑅(𝑓 ) True, empirical risk of 𝑓 4, 5, 6, 7
𝑓 ∗, 𝑓 True, empirical risk minimizer 4, 5, 6, 7
𝑊𝑋,𝑆,𝑦 , 𝑤𝑖𝑦 Label weights 4, 5, 6, 7

However, since 𝑌 is unobserved in PLL, one commonly considers

𝑅(𝑓 ) = E𝑋𝑆

[
𝑘∑︁

𝑦=1
𝑊𝑋,𝑆,𝑦 ℓ (𝑓 (𝑋 ), 𝑦)

]
, (2.2)

where (𝑊𝑋,𝑆,𝑦)𝑘𝑦=1 ∈ ∆k-1 are label weights to control the influence of different loss terms.
Common instantiations for𝑊𝑋,𝑆,𝑦 include the average strategy𝑊 (avg)

𝑋,𝑆,𝑦 = 1{𝑦∈𝑆}/|𝑆 | (Cour
et al., 2011) and the minimum strategy

𝑊 (min)
𝑋,𝑆,𝑦 =

P𝑌 |𝑋 (𝑌 = 𝑦)∑
𝑦′∈𝑆 P𝑌 |𝑋 (𝑌 = 𝑦′) (2.3)

(Lv et al., 2020), which weights the loss based on the relevancy of each label. Thereby, one
assumes that

∑
𝑦′∈𝑆 P𝑌 |𝑋 (𝑌 = 𝑦′) > 0 almost surely, so the above fractions are well-defined.

For the minimum strategy in (2.3), the true risk takes the form

𝑅(𝑓 ) = E𝑋𝑆

[
𝑘∑︁

𝑦=1

P𝑌 |𝑋 (𝑌 = 𝑦)∑
𝑦′∈𝑆 P𝑌 |𝑋 (𝑌 = 𝑦′) ℓ (𝑓 (𝑋 ), 𝑦)

]
. (2.4)
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2. Notation and Problem Statement

Under the uniform candidate-set generation model (Feng et al., 2020), where each nonempty
subset 𝑠 ⊆ Y containing the true label 𝑦 is drawn uniformly, the expected PLL risk in (2.4)
is an unbiased estimator of the supervised classification risk (2.1).

The empirical version of (2.4) is obtained by using a sample mean:

𝑅(𝑓 ) = 1
𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑦=1

𝑤𝑖𝑦ℓ (𝑓 (𝑥𝑖), 𝑦), (2.5)

where (𝑥𝑖, 𝑠𝑖) ∈ D and (𝑤𝑖𝑦)𝑘𝑦=1 ∈ ∆k-1 approximates the label relevancy𝑊 (min)
𝑋,𝑆,𝑦 in (2.3)

using

𝑤𝑖𝑦 =

{
𝑓𝑦 (𝑥𝑖)/

∑
𝑦′∈𝑠𝑖 𝑓𝑦′ (𝑥𝑖) if 𝑦 ∈ 𝑠𝑖 ,

0 else,
(2.6)

where 𝑓 : X → ∆k-1 is a classifier and 𝑓𝑦 (𝑥) denotes the 𝑦-th entry of 𝑓 (𝑥) ∈ ∆k-1.

H = {𝑓 : X → ∆k-1 | 𝑓 measurable } denotes the hypothesis space, 𝑓 ∗ = arg min𝑓 ∈H 𝑅(𝑓 )
the true risk minimizer, and 𝑓 = arg min𝑓 ∈H 𝑅(𝑓 ) the empirical risk minimizer. We make
the common assumption that the hypothesis spaceH is well-specified in the sense that the
Bayes posterior 𝑥 ↦→ P𝑌 |𝑋=𝑥 is contained inH , implying an exact minimizer of (2.1) exists
inH (Tsybakov, 2004; van Erven et al., 2015). The class label of each instance 𝑥 ∈ X with
the highest probabilistic prediction, that is, 𝑦𝑥 = arg max𝑦∈Y 𝑓𝑦 (𝑥), is called pseudo-label
(with ties broken at random).
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3. Related Work

Partial-label learning (PLL) is one out of many weakly supervised learning frameworks. In
PLL, each instance is associated with a set of candidate labels, among which only one is
correct. Section 3.1 reviews recent developments in the PLL literature.

Given that even the best machine-learning algorithms can give incorrect predictions—
potentially causing serious downstream consequences—Chapter 4 studies the integration
of reject options in the PLL setting. Section 3.2 discusses related work on reject options
in the supervised case. Also, machine-learning algorithms should be robust to reduce
the impact of misclassifications. Section 3.3 presents related work on robust decision-
making. Later, in Chapter 5, we propose a novel PLL algorithm with these robustness
considerations in mind. Finally, Section 3.4 discusses related work on variational inference:
while many recent PLL methods employ deep learning to optimize surrogate loss functions,
variational inference offers a principled approach to approximating the true label posterior
(Chapter 7).

3.1. Partial-Label Learning

Partial-label learning is a weakly supervised learning problem, where training instances are
annotated with multiple candidate labels. The PLL problem has gained significant attention
over the last decades. Most approaches adapt common supervised classification algorithms
to the PLL setting. Examples include a logistic regression formulation (Grandvalet, 2002),
expectation-maximization strategies (Jin and Ghahramani, 2002; Liu and Dietterich, 2012),
nearest-neighbor methods (Hüllermeier and Beringer, 2005; Zhang and Yu, 2015), support-
vector classifiers (Nguyen and Caruana, 2008; Cour et al., 2011; Yu and Zhang, 2017),
custom stacking and boosting ensembles (Zhang et al., 2017; Tang and Zhang, 2017; Wu
and Zhang, 2018), and label propagation strategies (Zhang and Yu, 2015; Zhang et al., 2016;
Xu et al., 2019; Wang et al., 2019; Feng and An, 2019).

Recent state-of-the-art methods (Lv et al., 2020; Feng et al., 2020; Xu et al., 2021; Zhang
et al., 2022a; Wang et al., 2022; Xu et al., 2023; Tian et al., 2024) leverage deep learning
methods to tackle the PLL problem. Since ground-truth labels are unavailable, however,
risk minimization is performed using surrogate loss functions. For example, Lv et al. (2020);
Feng et al. (2020) propose the minimum loss formulation, that is, they minimize (2.5) with
the label weights updated as in (2.6), Xu et al. (2021) introduce a self-training strategy
based on pseudo-labels, Zhang et al. (2022a) leverage the magnitudes of class activation
values, Wang et al. (2022) use ideas from contrastive learning, Xu et al. (2023) utilize level
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sets to iteratively remove incorrect labels from the candidate sets, Tian et al. (2024) propose
a cross-model selection strategy, where multiple models are trained simultaneously, Gong
et al. (2024) introduce a smoothing component to the loss term, and Yang et al. (2025) use
a pseudo-labeling framework based on the feature representations.

These methods iteratively refine the PLL candidate sets by alternating between training a
model using empirical risk minimization and updating the label weights 𝑤𝑖 𝑗 in (2.6) using
the trained classifier. Feng et al. (2020) further show that their classifier is risk consistent
with the Bayes classifier 𝑓 ∗, if the small-ambiguity-degree condition holds (Cour et al.,
2011; Liu and Dietterich, 2012). The condition requires that there is no incorrect label
𝑦 ≠ 𝑦, which co-occurs with the correct label 𝑦 in a candidate set with a probability of one.
Formally, one imposes that sup𝑥∈X,𝑦∈Y,𝑦∈Y,𝑦≠𝑦 P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆) < 1.

Because of the huge variety of PLL methods, there are recent extensions that can be
combined with any of the above to improve prediction performance further. Wang and
Zhang (2022) propose a feature augmentation technique based on class prototypes and Bao
et al. (2021, 2022); Zhang et al. (2022b) propose feature selection strategies for PLL data.
Existing state-of-the-art methods achieve significantly better accuracies when trained on
these modified feature sets. Xu et al. (2023) propose the method Pop, which gradually
removes unlikely class labels from the candidate sets if the margin between the most likely
and the second-most likely class label exceeds some heuristic threshold.

3.2. Reject Options

Recently, much attention has been given to the study of reject options (Mozannar et al.,
2023; Mao et al., 2024; Narasimhan et al., 2024). A reject option allows one to abstain from
predictions and defer them to humans rather than making possibly harmful decisions.

There are two common strategies in rejecting predictions in the supervised setting: The
confidence-based and the classifier-rejector approach (Ni et al., 2019; Cao et al., 2022).
The confidence-based strategy uses a threshold on the models’ confidence in order to
accept or reject predictions. Common model choices for quantifying the confidences
are Bayesian methods (Kingma and Welling, 2014; Kendall and Gal, 2017) and ensembles
(Lakshminarayanan et al., 2017; Wimmer et al., 2023). In contrast, the classifier-rejector
approach jointly learns the classifier and rejector (Ni et al., 2019; Mao et al., 2024), which
can have beneficial theoretical properties. However, the classifier-rejector approach is
less flexible than the confidence-based strategy as it is coupled with the concrete loss
formulation of the classifier. We propose an extension of the confidence-based strategy
for partial-label learning in Chapter 4.

Calibration methods (Naeini et al., 2015; Guo et al., 2017; Ao et al., 2023) are also related to
the confidence-based rejection strategy as both are used to make statements about the
certainty of predictions. While reject options provide a binary decision, calibration methods
modify the predicted confidences such that they align with the observed accuracies. In
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this sense, both approaches are orthogonal and cannot directly be compared. In Chapter 4,
we focus on reject options.

3.3. Robust Prediction-Making

Robust prediction-making encompasses a variety of aspects out of which we consider (a)
good predictive performance under high PLL noise (Zhang et al., 2021), (b) robustness
against out-of-distribution examples (OOD; Sensoy et al. 2018), and (c) robustness against
adversarial examples (Madry et al., 2018) to be the most important in PLL. Real-world
applications of PLL often entail web mining use cases, where the closed-world assumption
usually does not hold (requiring (b)). Also, PLL training data is commonly human-based
and therefore a possible surface for adversarial attacks (requiring (c)). Other robustness
objectives that we do not consider are, for example, the decomposition of the involved un-
certainties (Kendall and Gal, 2017; Wimmer et al., 2023) or the calibration of the confidences
(Ao et al., 2023; Mortier et al., 2023).

To address (a) in the supervised setting, one commonly employs Bayesian methods (Kingma
and Welling, 2014; Kendall and Gal, 2017) or ensembles1 (Lakshminarayanan et al., 2017;
Wimmer et al., 2023). To recognize OOD samples (b), one commonly employs techniques
from representation learning (Zhang and Yu, 2015; Xu et al., 2021) or leverages negative
examples using regularization or contrastive learning (Sensoy et al., 2018; Wang et al.,
2022). To address (c), methods incorporate adversarially corrupted features already in
the training process to strengthen predictions (Lakshminarayanan et al., 2017). To the
best of our knowledge, we are the first to propose a method that addresses (a), (b), and (c)
in PLL (see Chapter 5). Tackling all three aspects is particularly challenging in the PLL
domain as there is no exact ground truth on which an algorithm can rely to build robust
representations.

While evidential deep-learning (Sensoy et al., 2018) fails to learn a well-calibrated epistemic
uncertainty measure with respect to a reference distribution, it excels at forming a relative
notion of uncertainty, which is sufficient for most downstream tasks. We further improve
its performance in this respect by adding a regularization term (Section 5.3.3) and using an
optimal label-weight update strategy (Section 5.3.4). With these additions, we empirically
observe strong performances for the downstream tasks (a), (b), and (c) in the partial-label
learning setting. We refer to Jürgens et al. (2024) for an extended discussion regarding the
limitations of evidential deep-learning in the supervised setting.

1 Ensemble techniques also benefit (b) and (c) and are easy to implement. Therefore, we also consider an
ensemble approach of one of our competitors in our experiments as a strong baseline in Chapter 5.
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3.4. Variational Inference

Variational methods offer a principled framework for approximate Bayesian inference by
formulating posterior estimation as an optimization problem. Early methods (Jordan et al.,
1999; Attias, 1999; Beal, 2003) introduce mean-field approximations and EM algorithms for
latent variable models. These approaches typically rely on model-specific derivations and
coordinate ascent updates. Kingma and Welling (2014) introduce variational auto-encoders
(VAE) and amortized VI, which employ a neural network (the encoder) to predict the
variational parameters directly from input data. They also make use of the reparameteri-
zation trick to enable backpropagation through stochastic variables, facilitating scalable
and efficient inference. Rezende et al. (2014) propose a similar approach in the context of
deep latent Gaussian models. Subsequent extensions include VI with normalizing flows
(Rezende and Mohamed, 2015) and a model-agnostic optimization formulation (Ranganath
et al., 2014). Sohn et al. (2015) introduce conditional variational auto-encoders (CVAE),
which extend VAEs by conditioning the variational parameters on additional input data.
Our method builds on this formulation and is detailed in Chapter 7. An overview of recent
developments in amortized VI in general is that of Margossian and Blei (2024).
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4. Partial-Label Learning with
a Reject Option

This chapter’s contents are based on the following publication.

• Tobias Fuchs, Florian Kalinke, and Klemens Böhm. Partial-label learning with a
reject option. Transactions on Machine Learning Research, January 2025. https:

//openreview.net/pdf?id=wS1fD0ofay.

All code and data for reproducing this chapter’s experiments are available at https:

//github.com/mathefuchs/pll-with-a-reject-option.

4.1. Overview

Even the best machine-learning algorithms can give incorrect predictions. These errors can
have severe consequences when they impact actions or decisions. Consider, for example,
safety-critical domains such as the classification of medical images (Yang et al., 2009;
Lambrou et al., 2011; Kendall and Gal, 2017; Reamaroon et al., 2019) or the control of
self-driving cars (Xu et al., 2014; Varshney and Alemzadeh, 2017; Hubmann et al., 2017;
Shafaei et al., 2018; Michelmore et al., 2020). One option to limit fallacies is to employ
so-called reject options, which allow one to abstain from certain predictions if unsure and,
instead, let humans decide on the label of an instance or the actions to take (Mozannar
et al., 2023). Naturally, there is a trade-off arising between the number and accuracy
of non-rejected predictions. In the supervised setting, reject options have already been
studied, both, for multi-class classification (Charoenphakdee et al., 2021; Cao et al., 2022;
Mao et al., 2024; Narasimhan et al., 2024) and regression tasks (Zaoui et al., 2020; Cheng
et al., 2023).

In the weakly supervised PLL setting, obtaining sensible reject options is more challenging
than in the supervised case as ground truth is not available. Still, a reject option allows for
mitigating misclassifications and improving prediction quality. Determining whether to
reject a prediction of a PLL algorithm is difficult as the uncertainty involved in prediction-
making originates from multiple sources. On the one hand, there is inherent uncertainty
due to ambiguously labeled data. This ambiguity is influenced by both instances and
classes: In some regions of the instance space, annotators are more likely to mislabel
instances than in others. Additionally, some class labels are inherently more similar than
others. On the other hand, there is uncertainty due to the lack of knowledge regarding the
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4. Partial-Label Learning with a Reject Option

relevance of each candidate label. To the best of our knowledge, we are the first to study
reject options in the context of PLL.

We propose a novel partial-label learning approach based on Dempster-Shafer theory
(DST; Dempster 1967; Shafer 1986). In contrast to existing PLL approaches, which use
point estimates of the candidate label weights (Liu and Dietterich, 2012; Zhang and Yu,
2015; Ni et al., 2021; Xu et al., 2023), our method maintains a feasible region, also known
as credal set. Maintaining such a credal set is beneficial in assessing whether to reject
predictions as our experiments show.

In the PLL context, we consider (Hüllermeier and Beringer, 2005; Zhang and Yu, 2015;
Zhang et al., 2016; Xu et al., 2019; Wang et al., 2019) as most closely related to our proposed
method as these approaches consider an instance’s neighborhood to infer its class label. To
the best of our knowledge, we are the first to propose an extension of the 𝑙-NN classifier
leveraging Dempster-Shafer theory to tackle reject options in the PLL context.

Contributions. We summarize our contributions as follows.

• Algorithm with reject option. We introduce DstPll, a novel nearest-neighbor-based
partial-label learning algorithm with a reject option that learns from ambiguously
labeled data. The algorithm effectively determines whether to reject a prediction
and provides the best trade-off between the number and accuracy of non-rejected
predictions when compared to other state-of-the-art PLL methods.

• Experiments. Extensive experiments on artificial and real-world data support our
claims. Our code and data are openly available.

• Theoretical analysis. We analyze DstPll and show several desirable properties of
our reject option. The runtime analysis shows that the proposed method’s runtime
is dominated by 𝑙-nearest-neighbor search, which has an average time complexity of
O(𝑑𝑙 log𝑛), with 𝑑 features and 𝑛 training instances.

Outline. We discuss relevant background information in Section 4.2 and propose our
method in Section 4.3. Section 4.4 features experiments and Section 4.5 contains all proofs.
Auxiliary results and additional experiments are in Appendix A.

4.2. Background

In order to make well-informed decisions about when to reject predictions, we use
Dempster-Shafer theory, which we elaborate on in the following. Dempster-Shafer the-
ory (DST; Dempster 1967; Shafer 1986) allows for dealing with uncertainty by assigning
probability mass to sets of events without specifying the probabilities of individual labels;
incorrect labels do not obtain any probability mass. DST builds upon two core quantities,
so-called belief and plausibility. Informally, belief collects all evidence that supports a
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hypothesis and plausibility collects all evidence that does not contradict a hypothesis. We
argue that DST is a perfect fit for partial-label learning as one may interpret the ambiguous
candidate sets as evidence regarding a label hypothesis. We further exploit belief and
plausibility to inform our reject option, taking into account the difference between the sup-
porting and non-conflicting evidence. In contrast, existing PLL approaches (Hüllermeier
and Beringer, 2005; Cour et al., 2011; Liu and Dietterich, 2012; Zhang and Yu, 2015; Ni et al.,
2021; Xu et al., 2023) initially assign some probability mass to each label candidate and
subsequently refine them. By doing so, most probability mass is first allocated to labels
that are certainly incorrect, as only one candidate is the true label. This known method
renders handling the noise coming from incorrect candidate labels challenging.

With these intuitions, we now recall DST formally. In DST, a basic probability assignment
(bpa) m : 2Y → [0, 1] assigns probability mass to subsets of Y. m satisfies m(∅) = 0
and

∑
𝐴⊆Y m(𝐴) = 1. This differs from standard probability as P(Y) = 1 for any P ∈

M+1 (Y, 2Y) but m(Y) ≤ 1. Also, the mass allocated to non-intersecting sets does not
necessarily add up to the mass allocated to the union, that is, one can have m({1, 2}) ≠
m({1}) +m({2}). In this sense, DST allows for more flexibility as one can allocate mass
on the set {1, 2} without needing to specify any mass for {1} and {2} if uncertain. The
sets 𝐴 ⊆ Y with m(𝐴) > 0 are called focal sets of m. The mass allocated to the set of all
possible alternatives m(Y) can be interpreted as the degree of ignorance; it is the mass
not supporting a specific alternative within Y.

The basic probability assignment m does not induce a single probability measure P on
(Y, 2Y) but rather a set of probability measures Cm(Y, 2Y), which is called credal set
(Abellán et al., 2006; Cuzzolin, 2021). The probability measures P ∈ Cm(Y, 2Y) are
restricted by imposing lower and upper bounds, which are called belief and plausibility,
respectively. They are defined as

belm(𝐴) :=
∑︁
𝐵⊆𝐴

m(𝐵), plm(𝐴) := 1 − belm(Y \𝐴) =
∑︁

𝐵⊆Y,𝐴∩𝐵≠∅
m(𝐵), (4.1)

for 𝐴 ∈ 2Y . Recall that belief collects all evidence that supports a hypothesis 𝐴 ∈ 2Y (or a
more specific one 𝐵 ⊆ 𝐴), and plausibility collects all evidence that does not contradict
a hypothesis 𝐴 ∈ 2Y (or an overlapping one 𝐴 ∩ 𝐵 ≠ ∅). With belief and plausibility as
above, the set of all probability measures supporting m is

Cm(Y, 2Y) :=
{
P ∈ M+1 (Y, 2Y) | belm(𝐴) ≤ P(𝐴) ≤ plm(𝐴) for all 𝐴 ⊆ Y}

. (4.2)

Further, DST provides rules to combine m-s from multiple sources (Dempster, 1967; Yager,
1987a,b). This is beneficial in the PLL setting as there is several conflicting evidence about
the class labels within a neighborhood of instances. Estimating a credal set Cm(Y, 2Y)
from such a neighborhood allows us to construct an effective reject option, which we
detail in Section 4.3.2.

Several methods already leverage DST in supervised learning (Mandler and Schümann,
1988; Denoeux, 1995; Tabassian et al., 2012; Sensoy et al., 2018; Denoeux, 2019; Tong et al.,
2021). We consider the nearest neighbor approach by Denoeux (1995) to be most closely
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related to our approach. Here, basic probability assignments are constructed from the
nearest neighbors of an instance. Then, Dempster’s rule is used to combine them into a
single bpa. Their analysis is, however, not transferable to our case because they only have
singletons or the full label space as focal sets, making set intersections in the combination
rule easy to handle. In this sense, we examine a more general setting since we allocate
probability mass to arbitrary subsets.

4.3. Proposed Method: DSTPLL

This section introduces our novel partial-label learning method DstPll. Based on the
labeling information of an instance’s nearest neighbors, we construct basic probability
assignments within Dempster-Shafer theory. These bpas inform the prediction and re-
jection decisions as discussed in Section 4.3.1 and Section 4.3.2, respectively. Regarding
the reject option, we propose a novel variation of the confidence-based rejection strategy:
The confidence threshold is adaptively selected on a per-instance basis dependent on the
amount of incorrect label noise. The more noise from incorrect labels there is, the more
confident the model needs to be to accept a prediction.

Algorithm 1 outlines DstPll, which we summarize in the following. We denote by
NN𝑙 (𝑥) ⊆ X ×2Y the set of the 𝑙-nearest neighbors of instance 𝑥 with their associated
candidate labels. To predict the class label of an instance 𝑥 (Line 9), the algorithm first
transforms information from 𝑥 ’s neighbors NN𝑙 (𝑥) into bpas m𝑖 (Lines 3–6), collects these
into evidence set E (Line 7), and combines the bpas into m̃ using Yager’s rule (Line 8; Yager
1987a,b). Section 4.3.1 elaborates on these steps. Section 4.3.2 elaborates on how we extract
our reject option from m̃ (Line 10). We analyze our algorithm’s runtime in Section 4.3.3.

4.3.1. Making Predictions

Basic probability assignments. Following the standard assumption that neighboring
instances in feature space are also close in label space, we combine the evidence from the
𝑙-nearest neighbors (𝑥𝑖, 𝑠𝑖) ∈ NN𝑙 (𝑥) of a given instance 𝑥 ∈ X with its candidate labels
𝑠 ⊆ Y (𝑠 =Y if 𝑥 is a test instance).

When looking at a neighboring instance (𝑥𝑖, 𝑠𝑖) ∈ NN𝑙 (𝑥), there are generally two cases:
either (i) (𝑥𝑖, 𝑠𝑖) provides information about the correct label of 𝑥 or (ii) (𝑥𝑖, 𝑠𝑖) is irrelevant
for finding the correct label of 𝑥 . To address (i), we allocate probability mass on the
candidates 𝑠𝑖 of neighbor 𝑥𝑖 . To address (ii), we allocate probability mass on the full label
space Y indicating uncertainty about the correct label of 𝑥 .

More formally, for fixed 𝑖 ∈ [𝑙], the candidate labels 𝑠𝑖 do not provide any valuable
information if they support all (𝑠 ⊆ 𝑠𝑖 ) or none (𝑠 ∩ 𝑠𝑖 = ∅) of the labels in 𝑠 ; we use a bpa of
m𝑖 (𝑠) = 1 (Line 4). We set m𝑖 (𝐴) = 1/2 if𝐴 = 𝑠 or𝐴 = 𝑠∩𝑠𝑖 , else m𝑖 (𝐴) = 0 (Line 6), where
1/2 equally weights evidence. We later elaborate further on this choice and demonstrate
the application of the proposed classification rule in Example 4.3.1. Note that we make
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Algorithm 1 DstPll (Our proposed method)

Input: PLL dataset D = {(𝑥𝑖, 𝑠𝑖) ∈ X × 2Y | 𝑖 ∈ [𝑛]}, number of nearest neighbors 𝑙 ,
instance 𝑥 ∈ X for inference with candidate labels 𝑠 ⊆ Y (𝑠 =Y if 𝑥 is an unseen test
instance);

Output: Prediction 𝑔(𝑥) and reject option Γ𝑔 (𝑥) for instance 𝑥 ;
1: E ← ∅
2: for (𝑥𝑖, 𝑠𝑖) ∈ NN𝑙 (𝑥) do
3: if 𝑠 ⊆ 𝑠𝑖 or 𝑠 ∩ 𝑠𝑖 = ∅ then
4: m𝑖 : 2Y → [0, 1], 𝐴 ↦→

{
1 if 𝐴 = 𝑠 ,
0 else

5: else

6: m𝑖 : 2Y → [0, 1], 𝐴 ↦→
{

1/2 if 𝐴 = 𝑠 or 𝐴 = 𝑠 ∩ 𝑠𝑖 ,
0 else

7: E ← E ∪ {m𝑖}
8: m̃← yager_combination(𝑠, E)

9: 𝑔(𝑥) ←
{

arg max𝑦∈𝑠 m̃({𝑦}) if max𝑦∈𝑠 m̃({𝑦}) > 0,
Randomly pick from arg max𝐴⊆𝑠 m̃(𝐴) else;

10: Γ𝑔 (𝑥) ←
{
{𝑔(𝑥)} if Δm̃ > 0 as defined in (4.5),
∅ else;

11: return (𝑔(𝑥), Γ𝑔 (𝑥))

the common assumption that the true label of instance 𝑥 is always in 𝑠 (Cour et al., 2011;
Liu and Dietterich, 2012; Lv et al., 2020; Ni et al., 2021). While our definition of the m𝑖-s
is similar to (Denoeux, 1995), we target a more general setting as our focal sets can be
arbitrary subsets instead of only singletons or the full label set.

The bpa m𝑖 has the following four effects on belief and plausibility as defined in (4.1): (i) A
set of candidates 𝐴 has maximal belief, that is, belm𝑖

(𝐴) = 1, if it covers 𝑠 , that is, 𝑠 ⊆ 𝐴.
(ii) A set of candidates 𝐴 is plausible, that is, plm𝑖

(𝐴) > 0, if it supports at least one of the
candidate labels in 𝑠 , that is, 𝐴 ∩ 𝑠 ≠ ∅. (iii) There is a gap, that is, belm𝑖

(𝐴) < plm𝑖
(𝐴), if 𝐴

supports some candidate in 𝑠 ∩ 𝑠𝑖 but does not cover all candidates in 𝑠 ∩ 𝑠𝑖 or supports
some candidate in 𝑠 but does not cover all candidates of 𝑠 . (iv) Class labels 𝑦 ∈ 𝑠 ∩ 𝑠𝑖 are
maximally plausible, that is, plm𝑖

({𝑦}) = 1.

Evidence weighting. Our definition of the m𝑖-s (Algorithm 1, Line 6) also permits a more
general view, that is, m𝑖 (𝐴) = 𝛼 if 𝐴 = 𝑠 , m𝑖 (𝐴) = 1 − 𝛼 if 𝐴 = 𝑠 ∩ 𝑠𝑖 , and m𝑖 (𝐴) = 0
otherwise, for some 𝛼 ∈ (0, 1). However, without further assumptions, one cannot know
how relevant the information from a particular neighbor is. The setting of 𝛼 = 1/2, which
we use, weights supporting and conflicting evidence of all neighbors equally. In other
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words, if a neighbor’s evidence excludes some candidate labels from consideration, it is of
equal importance compared to supporting some candidate labels. We set 𝛼 = 1/2.

Evidence combination. Given the set E = {m𝑖 | 𝑖 ∈ [𝑙]}, we combine all m𝑖-s us-
ing Yager’s rule (Yager, 1987a,b). Dempster’s original rule (Dempster, 1967) enforces
m̃(∅) = 0 by normalization, which is criticized for its unintuitive results when facing
high conflict (Zadeh, 1984). Instead, Yager’s rule first collects overlapping evidence in
q : 2Y → [0, 1] and creates a valid bpa m̃ : 2Y → [0, 1] by

q(𝐴) :=
∑︁

𝐴1,...,𝐴𝑘⊆Y⋂𝑙
𝑖=1 𝐴𝑖=𝐴

𝑙∏
𝑗=1

m 𝑗 (𝐴 𝑗 ) and m̃(𝐴) :=


0 if 𝐴 = ∅,
q(Y) + q(∅) if 𝐴 =Y,
q(𝐴) else.

(4.3)

We implement this efficiently with hash maps storing only the focal sets.

Classification rule. After the combination into m̃ by (4.3), we extract a prediction 𝑔(𝑥)
for instance 𝑥 (Line 9). We predict the class label with the highest probability mass
arg max𝑦∈𝑠 m̃({𝑦}) if any has non-zero mass, or else randomly pick from the subset with
the most mass arg max𝐴⊆𝑠 m̃(𝐴). When tied, we use the subset with the smallest cardinality.
In the following, we present an example of our classification rule.
Example 4.3.1 (Classification rule). Let 𝑙 = 3, 𝑥 an unseen test instance, (𝑥𝑖, 𝑠𝑖) ∈ NN𝑙 (𝑥),
Y = {1, 2, 3}, 𝑠1 = {1}, 𝑠2 = {1, 2}, and 𝑠3 = {1, 3}. Then, m1({1}) = m1(Y) = 1/2,
m2({1, 2}) = m2(Y) = 1/2, and m3({1, 3}) = m3(Y) = 1/2. All other subsets receive
a mass of zero. Using Yager’s combination rule, we obtain m̃({1}) = 5/8, m̃({1, 2}) =
m̃({1, 3}) = m̃(Y) = 1/8, and m̃(𝐴) = 0 for the remaining 𝐴 ⊆ Y. Therefore, we predict
label 1 to be the class label of instance 𝑥 .

4.3.2. Reject Option

As misclassifications can be quite harmful, we look at the possibility of rejecting predictions,
that is, abstaining from making these predictions and, instead, deferring the decisions to
humans. In the PLL setting, a reject option Γ𝑔 : X → 2Y associated with a trained classifier
𝑔 : X → Y either returns 𝑔’s prediction (accept) or abstains from making any prediction
at all (reject), that is, Γ𝑔 (𝑥) ∈ {∅, {𝑔(𝑥)}} for 𝑥 ∈ X, with Γ𝑔 (𝑥) = ∅ denoting a reject. We
then define the rejection probability r(Γ𝑔) = P𝑋 (Γ𝑔 (𝑋 ) = ∅) and the expected error

err(Γ𝑔) = E𝑋𝑆

[
1{Γ𝑔 (𝑋 )≠∅}

𝑘∑︁
𝑦=1

𝑊𝑋,𝑆,𝑦 ℓ01(𝑔(𝑋 ), 𝑦)
]
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of accepted predictions, where ℓ01 : Y2 → [0, 1], (𝑦,𝑦′) ↦→ 1{𝑦≠𝑦′} is the 0-1-loss and
𝑊𝑋,𝑆,𝑦 weights the loss terms similar to (2.2). Naturally, a trade-off arises between the
number and accuracy of accepted predictions, leading us to the risk

R𝜆 (Γ𝑔) = E𝑋𝑆

[
1{Γ𝑔 (𝑋 )≠∅}

𝑘∑︁
𝑦=1

𝑊𝑋,𝑆,𝑦 ℓ01(𝑔(𝑋 ), 𝑦) + 𝜆1{Γ𝑔 (𝑋 )=∅}
]
= err(Γ𝑔) + 𝜆 r(Γ𝑔), (4.4)

for 𝜆 ≥ 0; err(Γ𝑔) characterizes the cost of misclassification and 𝜆 r(Γ𝑔) the cost of rejecting
a prediction.

Our method provides such a reject option Γ𝑔, that is, the algorithm can abstain from
individual predictions if unsure (Algorithm 1, Line 10). Our formulation builds on the
confidence-based rejection strategy (compare Section 3.2), that is, Δ := conf (𝑔) − 𝜃 with
conf (𝑔) ∈ [0, 1] being the model’s confidence and 𝜃 ∈ [0, 1] the confidence threshold. We
adapt this setting to the PLL context by changing the confidence threshold 𝜃m̃ based on
the amount of noise present.

Recall from (4.2) that the belief and plausibility regarding m̃ act as a lower and upper
bound of the probability mass, respectively. The intuition of our reject option is as follows.
If the lower bound (belief) on the probability mass of our predicted label exceeds the
maximal upper bound (plausibility) on the probability mass regarding any other label, we
can safely make the prediction.

In other words, if there is a class label different from the predicted one that is quite plausible
(high max𝑦∈𝑠\{𝑦} plm̃({𝑦})), we require a high belief mass to be certain about the prediction,
that is, the belief must satisfy belm̃({𝑦}) > max𝑦∈𝑠\{𝑦} plm̃({𝑦}). If, instead, there is no
other plausible candidate label, we can be sure of our prediction with less belief mass.

We formalize this intuition in the following. Let m̃ be the resulting bpa as determined by
Algorithm 1 and

Δm̃ := belm̃({𝑦})︸      ︷︷      ︸
(=conf (𝑔))

− max
𝑦∈𝑠\{𝑦}

plm̃({𝑦})︸             ︷︷             ︸
(=𝜃m̃)

with 𝑦 := arg max
𝑦∈𝑠

m̃({𝑦}). (4.5)

In other words, we instantiate the model’s confidence with the model’s belief mass
conf (𝑔) = belm̃({𝑦}) of the predicted instance 𝑦 and the confidence threshold 𝜃m̃ based on
the amount of noise regarding other labels 𝑦 ≠ 𝑦, that is, 𝜃m̃ = max𝑦∈𝑠\{𝑦} plm̃({𝑦}). Note
that the dependence on m̃ allows for setting the threshold adaptively.

(4.5) satisfies several desirable properties, which we collect in Theorem 4.3.2 and elaborate
on in the following.

Theorem 4.3.2. LetY be the label space, 𝑥 ∈ X the instance of interest, 𝑠 ⊆ Y its candidate
labels (𝑠 = Y if 𝑥 is a test instance), 𝑔(𝑥) our algorithm’s prediction, and m̃ the resulting
probability mass as determined by Algorithm 1. Then, the following hold:

(i) If 𝑔(𝑥) has been picked randomly (Algorithm 1, Line 9, second case), then Δm̃ ≤ 0,
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(ii) if Δm̃ > 0, then P({𝑔(𝑥)}) > P({𝑦}) for all P ∈ Cm̃(Y, 2Y) and 𝑦 ∈ 𝑠 \ {𝑔(𝑥)}, and
(iii) if m̃({𝑔(𝑥)}) > 1/2, then Δm̃ > 0. The converse of (iii) does not hold.

Based on these considerations, we define the accept and reject regions of our method as

1. Accept. When Δm̃ > 0, we are in the accept region and Γ𝑔 (𝑥) = {𝑦}: The lower-
bound probability of the class label 𝑦 is greater than the upper-bound probability of
any other label 𝑦 ≠ 𝑦, that is, P({𝑦}) > P({𝑦}) for all P ∈ Cm̃(Y, 2Y) and 𝑦 ≠ 𝑦.

2. Reject. When Δm̃ ≤ 0, we are in the reject region and Γ𝑔 (𝑥) = ∅: The lower-
bound probability of the class label 𝑦 is less than or equal to the upper-bound
probability of another class label 𝑦 ≠ 𝑦. There exists P ∈ Cm̃(Y, 2Y) and 𝑦 ≠ 𝑦 with
P({𝑦}) ≤ P({𝑦}).

We remark that Theorem 4.3.2 (𝑖𝑖𝑖) implies that DstPll rejects fewer predictions than the
𝑙-nearest neighbor reject option by Hellman (1970), which requires more than 1/2 of all
votes to be certain. Our method can accept predictions with less than 1/2 of all probability
mass on a single class label, while still satisfying Theorem 4.3.2 (𝑖𝑖), that is, if a prediction
is accepted, the decision remains unchanged independent of P ∈ Cm̃(Y, 2Y). It follows
that having fewer rejections does not come at the expense of an increase in the expected
error. In the following, we provide an example of the proposed reject option.
Example 4.3.3 (Reject option). Assume the setting and result of Example 4.3.1: m̃({1}) =
5/8, m̃({1, 2}) = m̃({1, 3}) = m̃(Y) = 1/8, and m̃(𝐴) = 0 for the remaining 𝐴 ⊆ Y.
Our prediction is 𝑦 = arg max𝑦∈𝑠 m̃({𝑦}) = 1 with 𝑠 = Y. Hence, Δm̃ = belm̃({𝑦}) −
max𝑦∈𝑠\{𝑦} plm̃({𝑦}) = belm̃({1}) − plm̃({2}) = 5/8 − 2/8 = 3/8. Since Δm̃ = 3/8 > 0, we
accept the prediction 𝑦 = 1.

4.3.3. Runtime Analysis

We decompose the overall runtime of our approach in Algorithm 1 into 𝑙-times querying
one nearest neighbor and creating its bpa (Lines 3–7), the cost of Yager’s rule (Line 8), as
well as extracting predictions in Lines 9-10. Using the ball-tree data structure (Omohundro,
1989), querying one neighbor takes O(𝑑 log𝑛) time on average. In the worst case, query
time is O(𝑑𝑛). One builds a ball-tree in O(𝑑𝑛 log𝑛) time. We construct a bpa m𝑖 by storing
its focal sets within a hash map and combine all m𝑖-s as defined in (4.3). There are at most
min

(
2𝑘 , 2𝑙

)
focal sets of m̃: Each m𝑖 has at most two focal sets producing 2𝑙 combinations

and there are at most 2𝑘 possible subsets of Y. We take the minimum as both are upper
bounds. Looking up a focal set in the hash-map requires O(𝑘) time as the key length is
variable. Extracting a prediction and the reject option then requiresO (

𝑘2) time. Combining
the above yields a worst-case complexity of O (

𝑑𝑙𝑛 + 𝑘 (
min

(
2𝑘 , 2𝑙

) +max(𝑘, 𝑙)) ) . Since 𝑙
and 𝑘 are constant, the nearest-neighbor search dominates. The average total runtime of
the search is O(𝑑𝑙 log𝑛).
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4.4. Experiments

Section 4.4.1 lists the tested methods, Section 4.4.2 shows our experimental setup, and
Section 4.4.3 collects our main findings. Additional results and a description of all hyper-
parameters can be found in Appendix A.

4.4.1. Algorithms for Comparison

While many PLL algorithms exist (see Section 3.1), we focus on state-of-the-art methods
commonly used in the literature. We consider ten methods: PlKnn (Hüllermeier and
Beringer, 2005), PlSvm (Nguyen and Caruana, 2008), Ipal (Zhang and Yu, 2015), PlEcoc
(Zhang et al., 2017), Proden (Lv et al., 2020), Cc (Feng et al., 2020), Valen (Xu et al., 2021),
Pop (Xu et al., 2023), CroSel (Tian et al., 2024), and DstPll (our proposed method).

We choose the parameters of all methods as recommended by their respective authors
and use the same base models for all of the neural network approaches. Appendix A.1
discusses the choices of all hyperparameters in more detail. As base models, we pick the
LeNet architecture (LeCun et al., 1998) for the mnist-like datasets and a 𝑑-300-300-300-𝑘
MLP (Werbos, 1974) for all other datasets. For PlKnn and our method, we use variational
auto-encoders (Kingma and Welling, 2014) to reduce the feature space dimensionality of
the mnist-like datasets and compute the nearest neighbors on the hidden representations.
As our competitors do not provide a reject option, we use a threshold on their model’s
confidences, that is, the maximum probability outputs, to evaluate the trade-off between
the fraction and accuracy of non-rejected predictions.

4.4.2. Experimental Setup

Data. Following the default protocol (Cour et al., 2011; Zhang and Yu, 2015; Lv et al., 2020;
Xu et al., 2023), we conduct several experiments using datasets for supervised learning
with added artificial noise as well as experiments on real-world partially-labeled data.
We repeat all experiments five times to report averages and standard deviations. For the
supervised datasets, we use the ecoli (Horton and Nakai, 1996), multiple-features (Duin,
2002), pen-digits (Alpaydin and Alimoglu, 1998), semeion (Buscema and Terzi, 2008), solar-
flare (Dodson and Hedeman, 1989), statlog-landsat (Srinivasan, 1993), and theorem datasets
(Bridge et al., 2013) from the UCI repository (Bache and Lichman, 2013). These datasets
contain between 336 and 10 992 instances each. Also, we use the popular mnist (LeCun
et al., 1999), kmnist (Clanuwat et al., 2018), and fmnist datasets (Xiao et al., 2018), which
contain 60 000 images each similar to other datasets like cifar10 and cifar100 (Krizhevsky,
2009). For the partially labeled data, we use the bird-song (Briggs et al., 2012), mir-flickr
(Huiskes and Lew, 2008), yahoo-news (Guillaumin et al., 2010), and msrc-v2 datasets (Liu
and Dietterich, 2012). They contain between 1755 and 22 762 instances.
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Table 4.1.: Average test-set accuracies (± std.) on the UCI, mnist-like, and real-world datasets. The UCI and
mnist-like datasets are artificially augmented with class-dependent and instance-dependent noise. The best
algorithms (highest accuracy) as well as algorithms with non-significant differences are emphasized. The
significance analysis uses a paired student t-test with level 𝛼 = 0.05.

Algorithms
UCI datasets mnist-like datasets

Real-world
Class-dep. Inst.-dep. Class-dep. Inst.-dep.

PlKnn (2005) 81.2 (± 13.9) 75.8 (± 11.1) 92.2 (± 4.1) 84.8 (± 7.2) 53.4 (± 10.9)
PlSvm (2008) 62.3 (± 16.3) 43.8 (± 16.4) 67.5 (± 9.8) 47.8 (± 8.2) 39.1 (± 9.6)
Ipal (2015) 79.3 (± 17.1) 75.3 (± 18.3) 92.9 (± 4.3) 88.5 (± 6.6) 58.7 (± 9.8)
PlEcoc (2017) 63.7 (± 13.1) 66.5 (± 12.5) 64.3 (± 14.3) 51.7 (± 10.7) 46.2 (± 10.2)
Proden (2020) 81.6 (± 14.0) 78.1 (± 13.2) 93.9 (± 4.4) 88.2 (± 6.0) 64.2 (± 8.2)
Cc (2020) 81.3 (± 14.2) 78.8 (± 13.6) 93.9 (± 4.5) 89.6 (± 5.7) 49.2 (± 29.7)
Valen (2021) 79.7 (± 15.3) 75.6 (± 12.7) 91.8 (± 4.2) 83.4 (± 8.4) 63.6 (± 9.7)
Pop (2023) 81.5 (± 14.0) 78.1 (± 13.1) 93.9 (± 4.5) 88.1 (± 6.0) 63.6 (± 8.4)
CroSel (2024) 79.9 (± 17.2) 78.4 (± 14.5) 94.2 (± 4.5) 88.9 (± 6.7) 46.3 (± 28.9)

DstPll (ours) 80.8 (± 14.1) 75.4 (± 10.7) 92.0 (± 4.2) 84.5 (± 7.2) 52.0 (± 11.6)

Noise Generation. We use three noise generation strategies to introduce candidate labels
into the supervised datasets: uniform, class-dependent, and instance-dependent noise.
Uniform noise (Liu and Dietterich, 2012) adds three uniform random noise labels to a
fraction of 70 % of all instances. Class-dependent noise (Cour et al., 2011) randomly
partitions all class labels into pairs and adds the partner label as noise to 70 % of all
instances having the other label. Instance-dependent noise (Zhang et al., 2021) first trains
a supervised probabilistic classifier 𝑔 : X → ∆k-1. Given an instance 𝑥 with true label 𝑦,
a flipping probability of 𝜉𝑦 (𝑥) := 𝑔𝑦 (𝑥)/max𝑦′∈Y \{𝑦} 𝑔𝑦′ (𝑥) for 𝑦 ≠ 𝑦 determines which
noise labels to randomly pick.

4.4.3. Results

Prediction Performance. Table 4.1 shows the average test-set accuracies and standard
deviations over all UCI datasets with class- and instance-dependent noise, mnist-like
datasets with class- and instance-dependent noise, and the real-world datasets. The
algorithms with the highest accuracies as well as the algorithms with non-significant
differences using a paired t-test with level 𝛼 = 0.05 are emphasized. Our approach (DstPll)
performs comparably to the other methods. We note that none of the methods is best across
all settings. For example, Cc performs best in four out of five settings but is significantly
outperformed by our approach on the real-world experiments.

Reject Option. To compare our reject option with the other methods, we use a threshold
of Δm̃ > 0 for our proposed approach (Algorithm 1, Line 10), a confidence threshold of 90 %
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4.4. Experiments

Table 4.2.: Average empirical reject option risk R̂𝜆 (Γ𝑔) as defined in (4.4) for various values of 𝜆. The
best algorithms (smallest risk) as well as algorithms with non-significant differences are emphasized. The
significance analysis uses a paired student t-test with level 𝛼 = 0.05.

Algorithms
Average R̂𝜆 (Γ𝑔) (± std.) across all experimental settings

𝜆 = 0.00 𝜆 = 0.05 𝜆 = 0.10 𝜆 = 0.15 𝜆 = 0.20

PlKnn (2005) 0.11 (± 0.17) 0.15 (± 0.18) 0.18 (± 0.19) 0.21 (± 0.20) 0.25 (± 0.21)
PlSvm (2008) 0.19 (± 0.27) 0.23 (± 0.28) 0.27 (± 0.29) 0.31 (± 0.30) 0.35 (± 0.31)
Ipal (2015) 0.19 (± 0.17) 0.20 (± 0.18) 0.21 (± 0.19) 0.22 (± 0.20) 0.23 (± 0.21)
PlEcoc (2017) 0.25 (± 0.27) 0.29 (± 0.27) 0.34 (± 0.28) 0.38 (± 0.28) 0.43 (± 0.28)
Proden (2020) 0.12 (± 0.11) 0.13 (± 0.11) 0.14 (± 0.12) 0.15 (± 0.12) 0.16 (± 0.13)
Cc (2020) 0.16 (± 0.18) 0.16 (± 0.19) 0.17 (± 0.20) 0.18 (± 0.20) 0.19 (± 0.21)
Valen (2021) 0.20 (± 0.14) 0.20 (± 0.14) 0.20 (± 0.14) 0.20 (± 0.14) 0.21 (± 0.14)
Pop (2023) 0.12 (± 0.11) 0.13 (± 0.11) 0.14 (± 0.12) 0.15 (± 0.12) 0.16 (± 0.13)
CroSel (2024) 0.15 (± 0.20) 0.16 (± 0.21) 0.17 (± 0.21) 0.18 (± 0.21) 0.19 (± 0.22)

DstPll (ours) 0.05 (± 0.07) 0.07 (± 0.08) 0.10 (± 0.10) 0.12 (± 0.11) 0.15 (± 0.12)

Table 4.3.: Fraction of rejects and non-rejected test-set accuracy of all methods with std. across all experimen-
tal settings and five repetitions with different random seeds. To obtain the results, we tune the thresholds 𝜃
such that each competitor has a number of rejects that is comparable to that of our method.

Algorithms Fraction of rejects (± std.) Non-rejected test accuracy (± std.)

PlKnn (2005) 50.19 % (± 20.98 %) 91.23 % (± 10.12 %)
PlSvm (2008) 50.19 % (± 20.98 %) 74.40 % (± 19.77 %)
Ipal (2015) 50.19 % (± 20.98 %) 83.52 % (± 16.08 %)
PlEcoc (2017) 50.19 % (± 20.98 %) 73.92 % (± 17.11 %)
Proden (2020) 50.19 % (± 20.98 %) 94.03 % (± 8.23 %)
Cc (2020) 50.19 % (± 20.98 %) 90.13 % (± 17.89 %)
Valen (2021) 50.19 % (± 20.98 %) 86.81 % (± 13.04 %)
Pop (2023) 50.19 % (± 20.98 %) 94.02 % (± 8.20 %)
CroSel (2024) 50.19 % (± 20.98 %) 89.71 % (± 18.67 %)

DstPll (ours) 50.15 % (± 21.16 %) 95.49% (± 7.01 %)

for classifiers outputting a probability distribution over the class labels, and a threshold
of 50 % of all votes for PlKnn to not reject a prediction, which is in line with the reject
option by Hellman (1970).

Table 4.2 shows the average empirical reject-option risk and standard deviation across all
experiments for varying 𝜆. We compute R̂𝜆 (Γ𝑔) = ˆerr(Γ𝑔) + 𝜆r̂(Γ𝑔) by using ground-truth
information to calculate the non-reject error ˆerr(Γ𝑔) and counting the number of rejects to
calculate the reject rate r̂(Γ𝑔). The algorithms with the lowest risks as well as the algorithms
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Figure 4.1.: Trade-off between the fraction of rejected predictions and the accuracy of non-rejected predictions
for three experiments: ecoli with instance-dependent noise, kmnist with instance-dependent noise, and the
real-world dataset msrc-v2. We show the trade-off curves for varying confidence (0 to 1) and Δm̃ (-1 to 1)
thresholds. We highlight the points corresponding to a threshold of Δm̃ = 0 for our method, a confidence
threshold of 90 % for methods with a probability output, and a threshold of 50 % of all votes for PlKnn. We
refer to Appendix A.3 for all reject trade-off curves across all experimental settings.

with non-significant differences using a paired t-test with level 𝛼 = 0.05 are emphasized.
When misclassification is costly (𝜆 ≤ 0.2), our method provides the significantly best
trade-off compared to our competitors. In contrast, when rejecting predictions is costly
(𝜆 > 0.2), the methods in Table 4.1 are to be preferred.

Table 4.3 shows the non-rejected test accuracy of all methods across all experimental
settings for a fixed fraction of rejects. To obtain the results, we tune the confidence
thresholds 𝜃 ∈ [0, 1] such that each competitor rejects a similar number of instances as
our proposed approach. Our approach uses the threshold Δ > 0, for which we have proved
several desirable guarantees in Theorem 4.3.2. Our method achieves superior test-set
accuracy on the non-rejected predictions.

Figure 4.1 shows the reject trade-off for varying confidence (0 to 1) and Δm̃ (-1 to 1)
thresholds on the ecoli and knnist datasets with instance-dependent noise as well as on
the msrc-v2 real-world dataset. The x-axes show the fractions of predictions that are
rejected. The y-axes show the accuracies of predictions that are not rejected. The plots
show (fraction of rejects, non-rejected test-set accuracy)-pairs corresponding to different
settings of the thresholds. Most methods have monotonic growth: The more predictions
are rejected, the more accurate are non-rejected predictions. Also, it is desirable to be close
to the top-left corner of the plots as one wants to achieve high accuracy while rejecting as
few predictions as possible. Note that the point (1, 1) cannot be observed as the test-set
accuracy is undefined if all predictions are rejected. Given a desired rejection rate r̂(Γ𝑔),
Figure 4.1 also allows for numerically finding the appropriate value of 𝜆 that minimizes
R̂𝜆 (Γ𝑔). Varying 𝜆 in (4.4), while having ˆerr(Γ𝑔) and r̂(Γ𝑔) fixed, yields a straight line in
Figure 4.1 showing all possible trade-offs.
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4.5. Proof of Theorem 4.3.2

Our method provides the significantly best trade-offs compared to competitors (Table 4.2).
These results empirically demonstrate our method’s superiority in reliably rejecting unsure
predictions.

4.5. Proof of Theorem 4.3.2

Part (𝑖). Given an instance 𝑥 ∈ X with its candidate set 𝑠 ⊆ Y and its associated
prediction𝑔(𝑥) as described in Algorithm 1, we assume that𝑔(𝑥) has been picked randomly
from arg max𝐴⊆𝑠 m̃(𝐴) (Algorithm 1, Line 9, second case), so max𝑦∈𝑠 m̃({𝑦}) must be zero
because we are not in the first case in Line 9. Therefore, belm̃({𝑦}) (4.1)

= m̃({𝑦}) = 0 for all
𝑦 ∈ Y. Substitution in Δm̃ yields

Δm̃ = belm̃({𝑦}) − max
𝑦′∈𝑠\{𝑦}

plm̃({𝑦′}) = 0 − max
𝑦′∈𝑠\{𝑦}

plm̃({𝑦′}) ≤ 0,

independent of the choice of 𝑦 ∈ Y. Therefore, Δm̃ ≤ 0.

Part (𝑖𝑖). Given an instance 𝑥 ∈ X with its candidate set 𝑠 ⊆ Y and its associated
prediction 𝑔(𝑥) as described in Algorithm 1, we assume that Δm̃ > 0. By the contraposition
of part (𝑖), 𝑔(𝑥) = 𝑦 with 𝑦 = arg max𝑦∈𝑠 m̃({𝑦}). From (4.5) and Δm̃ > 0, it follows that
belm̃({𝑦}) > max𝑦∈𝑠\{𝑦} plm̃({𝑦}), which is equivalent to belm̃({𝑦}) > plm̃({𝑦}) for all
𝑦 ∈ 𝑠 \ {𝑦}. For all P ∈ Cm̃(Y, 2Y), it holds that belm̃(𝐴) ≤ P(𝐴) ≤ plm̃(𝐴) for all 𝐴 ⊆ Y
by (4.2). Therefore, P({𝑦}) ≤ plm̃({𝑦}) < belm̃({𝑦}) ≤ P({𝑦}) for all 𝑦 ∈ 𝑠 \ {𝑦}.

Part (𝑖𝑖𝑖). (⇒): Given an instance 𝑥 ∈ X with its candidate set 𝑠 ⊆ Y and its associated
prediction 𝑔(𝑥) as described in Algorithm 1, we assume that m̃({𝑔(𝑥)}) > 1/2. Because
max𝑦∈𝑠 m̃({𝑦}) > 0, we are in the first case in Line 9 of Algorithm 1. Therefore, 𝑔(𝑥) =
𝑦 with 𝑦 = arg max𝑦∈𝑠 m̃({𝑦}). As

∑
𝐴⊆Y m̃(𝐴) = 1 and m̃({𝑦}) > 1/2, it holds that∑

𝐴⊆Y, 𝐴≠{𝑦} m̃(𝐴) < 1/2. Then, for all 𝑦 ∈ 𝑠 with 𝑦 ≠ 𝑦, plm̃({𝑦}) =
∑

𝐴⊆Y, 𝐴∩{𝑦}≠∅ m̃(𝐴) <
1/2. Hence, plm̃({𝑦}) < belm̃({𝑦}) for all 𝑦 ∈ 𝑠 with 𝑦 ≠ 𝑦. Therefore, Δm̃ = belm̃({𝑦}) −
max𝑦∈𝑠\{𝑦} plm̃({𝑦}) > 0.

(⇍): In the following, we provide a counter-example. Let 𝑠 = Y = {1, 2, 3} and m̃ be
defined by m̃(𝐴) = 0.4 if 𝐴 = {1}, m̃(𝐴) = 0.3 if 𝐴 = {1, 2} or 𝐴 = {1, 3}, else m̃(𝐴) = 0.
Then, 𝑦 = 1 is our prediction since it has the highest probability mass. The prediction is
not rejected because Δm̃ = 0.4 − 0.3 = 0.1 > 0. However, m̃({𝑦}) < 1/2.
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5. Robust Partial-Label Learning by
Leveraging Class Activation Values

This chapter’s contents are based on the following publication.

• Tobias Fuchs and Florian Kalinke. Robust partial-label learning by leveraging class
activation values. Machine Learning, 114(193), 2025. https://doi.org/10.1007/

s10994-025-06796-z.

All code and data for reproducing this chapter’s experiments are available at https:

//github.com/mathefuchs/robust-pll.

5.1. Overview

As predictions by machine-learning systems often impact actions or decisions by humans,
they should be robust regarding several criteria to limit misclassifications and their effects.
Three common criteria are robustness against (a) high noise levels (Zhang et al., 2021), (b)
out-of-distribution data (Sensoy et al., 2018), and (c) adversarial attacks (Madry et al., 2018).
Consider, for example, safety-critical domains such as medical image classification (Yang
et al., 2009; Lambrou et al., 2011; Reamaroon et al., 2019) or financial fraud detection (Cheng
et al., 2020; Berkmans and Karthick, 2023; Xiang et al., 2023), where all three criteria (a) – (c)
are of interest.

Robustness in terms of (a), (b), and (c) is especially important in PLL because of its noisy
and inexact supervision. While different noise generation processes (a) are well-examined
in PLL, it is still open to investigate the impact of (b) and (c) on PLL algorithms. Dealing
with out-of-distribution data (b) is essential in the web mining use case of PLL as the
closed-world assumption usually does not hold, that is, an algorithm should recognize
instances that do not belong to any known class. Addressing adversarial modifications
of input features (c) is also critical, given that much of the training data is human-based,
presenting a potential vulnerability. Tackling (a) – (c) is particularly challenging in the
PLL domain as there is no exact ground truth on which an algorithm can rely to build
robust representations. Our proposed PLL method is unique in its ability to perform well
across all three aspects.

In this work, we propose a novel PLL deep-learning algorithm that leverages the mag-
nitudes of class activation values within the subjective logic framework (Jøsang, 2016).
Subjective logic allows for explicitly representing uncertainty in predictions, which is
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5. Robust Partial-Label Learning by Leveraging Class Activation Values

highly beneficial in dealing with the challenges (a) – (c). The details are as follows. When
dealing with noise from the PLL candidate sets (a), having good uncertainty estimates
supports the propagation of meaningful labeling information as it allows us to put more
weight on class labels with a low uncertainty and to restrict the influence of noisy class
labels, which have high uncertainty. We tackle out-of-distribution data (b) by optimizing
for high uncertainty when the correct class label is excluded from the set of all possible
class labels. Adversarial modifications of the input features (c) are addressed similarly to
(a), as our approach provides reliable uncertainty estimates near the decision boundaries
of the class labels.

The supervised classification approach by Sensoy et al. (2018) is the most similar to the
proposed approach as both employ the subjective logic framework. However, it is highly
non-trivial to extend the methods from the supervised to the PLL setting as the existing
work relies on exact ground truth, which is generally unavailable in PLL. We attack this
problem by proposing a novel representation of partially-labeled data within the subjective
logic framework and give an optimal update strategy for the candidate label weights with
respect to the model’s loss term. Subjective logic allows us to deal with the partially labeled
data in a principled fashion by jointly learning the candidate labels’ weights and their
associated uncertainties.

Contributions. Our contributions are as follows.

• We introduce RobustPll, a novel partial-label learning algorithm, which leverages
the model’s class activation values within the subjective logic framework.

• We empirically demonstrate that RobustPll yields more robust predictions than our
competitors. The proposed method achieves state-of-the-art prediction performance
under high PLL noise and can deal with out-of-distribution examples and examples
corrupted by adversarial noise more reliably. Our code and data are publicly available.

• Our analysis of RobustPll shows that the proposed label weight update strategy is
optimal in terms of the mean-squared error and allows for reinterpretation within
the subjective logic framework. Further, we discuss our method’s runtime and show
that it yields the same runtime complexity as other state-of-the-art PLL algorithms.

Outline. Section 5.2 gives relevant background information on the subjective logic frame-
work. We propose our PLL method in Section 5.3 and show our experiments in Section 5.4.
Section 5.5 contains all proofs. Appendix B lists all hyperparameter choices and shows
additional results.

5.2. Background

Inspired by Dempster-Shafer theory (Dempster, 1967; Shafer, 1986), Jøsang (2016) proposes
a theory of evidence, called subjective logic (SL), that explicitly represents (epistemic)
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5.3. Proposed Method: RobustPll

uncertainty in prediction-making. In subjective logic, the tuple 𝜔𝑖 = (𝔟𝑖, 𝔞𝑖, 𝔲𝑖) ∈ [0, 1]𝑘 ×
[0, 1]𝑘 × [0, 1] denotes a multinomial opinion about instance 𝑖 ∈ [𝑛] with 𝔟𝑖 representing
the belief mass of the class labels, 𝔞𝑖 representing the prior knowledge about the class
labels, and 𝔲𝑖 explicitly represents the uncertainty involved in predicting 𝑖 . 𝜔𝑖 satisfies
∥𝔞𝑖 ∥1 = 1, where ∥𝔞𝑖 ∥𝑝 = (∑𝑘

𝑗=1 |𝔞𝑖 𝑗 |𝑝)1/𝑝 denotes the 𝑝-norm, and requires additivity, that
is, 𝔲𝑖 + ∥𝔟𝑖 ∥1 = 1 for all 𝑖 ∈ [𝑛]. The projected probability is defined by 𝑝𝑖 = 𝔟𝑖 + 𝔞𝑖𝔲𝑖 ∈
∆k-1 for 𝑖 ∈ [𝑛]. 𝑝𝑖 induces a probability measure P𝑖 on the measurable space (Y, 2Y)
with P𝑖 (𝐴) =

∑
𝑗∈𝐴 𝑝𝑖 𝑗 for all 𝐴 ∈ 2Y . Given instance 𝑖 ∈ [𝑛], features 𝑥𝑖 ∈ X, and

a prediction model 𝑓 : R𝑑 → R𝑘
≥0, we set 𝔟𝑖 = 𝑓 (𝑥𝑖)/(𝑘 + ∥ 𝑓 (𝑥𝑖)∥1), 𝔞𝑖 using prior

knowledge, and 𝔲𝑖 = 𝑘/(𝑘 + ∥ 𝑓 (𝑥𝑖)∥1). The multinomial opinion 𝜔𝑖 can be expressed in
terms of a Dirichlet-distributed random variable with parameters 𝛼𝑖 = 𝑓 (𝑥𝑖) + 1, that is,
E𝑝𝑖∼Dir(𝛼𝑖 ) [𝑝𝑖] := 𝛼𝑖/∥𝛼𝑖 ∥1 = 𝔟𝑖 + 𝔞𝑖𝔲𝑖 = 𝑝𝑖 , with 𝔟𝑖 and 𝔲𝑖 as defined above, and uniform
prior 𝔞𝑖 𝑗 = 1/𝑘 (𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]). A multinomial opinion 𝜔𝑖 that is maximally uncertain,
that is, 𝔲𝑖 = 1, defaults to prior knowledge 𝔞𝑖 : In this case, 𝑝𝑖 = 𝔞𝑖 for 𝑖 ∈ [𝑛]. In the
following, we provide an example of multinomial opinions in subjective logic.

Example 5.2.1. Let𝑛 = 2, 𝑘 = 3,Y = {1, 2, 3}, 𝔟1 = (2/3, 1/6, 1/6), 𝔟2 = (1/2, 0, 0), 𝔞1 = 𝔞2 =
(1/3, 1/3, 1/3), 𝔲1 = 0, and 𝔲2 = 1/2. Then, both multinomial opinions, 𝜔1 = (𝔟1, 𝔞1, 𝔲1)
and 𝜔2 = (𝔟2, 𝔞2, 𝔲2), yield the same projected probabilities 𝑝1 = 𝑝2 = (2/3, 1/6, 1/6).
While 𝜔1 and 𝜔2 both induce the same probability measure on (Y, 2Y), 𝜔2 contains more
uncertainty than 𝜔1, that is, there is more evidence that supports 𝜔1 than 𝜔2. Also, both
multinomial opinions induce a Dirichlet-distributed random variable with equal mean but
different variances indicating different degrees of certainty about the labeling, which will
be helpful in disambiguating the PLL data.

5.3. Proposed Method: ROBUSTPLL

We present a novel PLL method that yields robust predictions in terms of good predictive
performance, robustness against out-of-distribution examples, and robustness against
adversarial examples. Tackling all is especially challenging in PLL as full ground truth is
not available.

Given a prediction, one commonly uses softmax normalization, softmax : R𝑘 → [0, 1]𝑘 , to
output a discrete probability distribution over possible targets (Bishop, 2007). It has been
noted, however, that softmax normalization cannot represent the uncertainty involved
in prediction-making (Hüllermeier and Waegeman, 2021; Sale et al., 2023), which is also
evident from Example 5.2.1, where different amounts of uncertainty can be associated
with the same probability measure. In partial-label learning, where candidate labels are
iteratively refined, it is crucial to accurately reflect the uncertainty involved in the candidate
labels to effectively propagate labeling information. Our method explicitly represents
uncertainty through the SL framework by using a neural-network that parameterizes a
Dirichlet distribution rather than using softmax normalization. By jointly learning the
candidate label weights as well as their associated uncertainty, our approach builds robust
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5. Robust Partial-Label Learning by Leveraging Class Activation Values

Algorithm 2 RobustPll (Our proposed method)
Input: PLL dataset D = {(𝑥𝑖, 𝑠𝑖) ∈ X × 2Y | 𝑖 ∈ [𝑛]} with 𝑛 instances, 𝑘 classes;
Output: Model parameters 𝜃 ;

1: Init weights w𝑖 𝑗 ← 1{ 𝑗∈𝑠𝑖 }/|𝑠𝑖 | for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘];
2: Init model 𝑓 and its parameters 𝜃 ;
3: for 𝑡 = 1, . . . ,𝑇 do

4: 𝜆𝑡 ← min(2𝑡/𝑇, 1)
5: Compute the empirical risk R̂(𝑓 ; 𝜆𝑡 ) by (5.4);
6: Update 𝜃 by backpropagation;
7: Set label weights w𝑖 (𝑖 ∈ [𝑛]) to the solution w∗𝑖 of (5.5) using the closed-form

solution in Proposition 5.3.3;

representations, which help in dealing with out-of-distribution data and adversarially
corrupted features.

Similar to an expectation-maximization procedure, we interleave learning the parameters
of our prediction model with updating the current labeling information of all instances
based on the discovered knowledge and prior information.

Algorithm 2 outlines our method: RobustPll. First, we initialize the label weights w𝑖 𝑗 in
Line 1. These weights w𝑖 ∈ ∆k-1 represent the model’s knowledge about the labeling of
instance 𝑖 ∈ [𝑛]. w𝑖 𝑗 ∈ [0, 1] denotes class 𝑗 ’s weight regarding instance 𝑖 . Section 5.3.1
discusses their initialization and interpretation. In Line 2, we set up our model 𝑓 : R𝑑 →
R𝑘
≥0 and its parameters 𝜃 . Our framework is independent of the concrete model choice.

For example, one may use MLPs (Rumelhart et al., 1986), LeNet (LeCun et al., 1998), or
ResNet (He et al., 2016). One only needs to modify the last layer, which is required to be
a ReLU layer to enforce non-negative outputs for the SL framework. Lines 3–7 contain
the main training loop of our approach. We train for a total of 𝑇 epochs. Note that, in
practice, we make use of mini-batches. We set the annealing coefficient 𝜆𝑡 in Line 4. The
coefficient controls the influence of the regularization term in R̂(𝑓 ; 𝜆𝑡 ), which is discussed
in Section 5.3.3. In Line 5, we then compute the empirical risk R̂(𝑓 ; 𝜆𝑡 ) and update the
model parameters 𝜃 in Line 6. Those steps are discussed in Section 5.3.2. Thereafter, we
update the label weights w𝑖 𝑗 in Line 7 as shown in Section 5.3.4.

The remainder of Section 5.3 presents further analyses. In Section 5.3.5, we discuss our
reinterpretation of the label weight update within SL. Section 5.3.6 bounds the rate of
change of w𝑖 and Section 5.3.7 demonstrates why the squared error loss is superior to the
cross-entropy loss in our setting. Section 5.3.8 discusses our approach’s runtime.

5.3.1. Initializing the Label Weights

The label weights w𝑖 𝑗 represent the current knowledge of our method about instance 𝑖
having the correct label 𝑗 . They must sum to one, that is, ∥w𝑖 ∥1 = 1, and must be zero if 𝑗
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5.3. Proposed Method: RobustPll

is not a candidate label of instance 𝑖 , that is, w𝑖 𝑗 = 0 if 𝑗 ∉ 𝑠𝑖 (𝑖 ∈ [𝑛]). We initialize the label
weights with w𝑖 𝑗 = 1{ 𝑗∈𝑠𝑖 }/|𝑠𝑖 |, where 1{·} denotes the indicator function. w𝑖 𝑗 satisfies
both requirements. Also, w𝑖 𝑗 can be written as a multinomial opinion 𝜔𝑖 = (𝔟𝑖, 𝔞𝑖, 𝔲𝑖) in
SL with maximal uncertainty, that is, w𝑖 = 𝔟𝑖 + 𝔞𝑖𝔲𝑖 with zero belief 𝔟𝑖 𝑗 = 0, uniform prior
weights 𝔞𝑖 𝑗 = 1{ 𝑗∈𝑠𝑖 }/|𝑠𝑖 |, and maximal uncertainty 𝔲𝑖 = 1 (𝑖 ∈ [𝑛], 𝑗 ∈ [𝑘]). Note that
w𝑖 = 𝔞𝑖 at initialization: The label weights w𝑖 are solely determined by prior knowledge
about the candidate sets encoded in 𝔞𝑖 .

5.3.2. Training a Model

We interleave learning the parameters 𝜃 of a model 𝑓 : R𝑑 → R𝑘
≥0 (Lines 4–6) with

updating the label weights w𝑖 based on the discovered knowledge (Line 7). Our model 𝑓
does not directly output discrete probabilities (e.g., via softmax) as a single probability
mass function cannot reflect the degree of uncertainty involved in prediction-making,
which we illustrate in Example 5.3.1. Instead, the model 𝑓 outputs evidence supporting a
particular class label, which parameterizes a Dirichlet distribution Dir(𝛼𝑖) with

𝛼𝑖 = 𝑓 (𝑥𝑖 ;𝜃 ) + 1 ∈ R𝑘
≥1 , (5.1)

for 𝑖 ∈ [𝑛]. To fit 𝑓 to the label weights w𝑖 , we use a loss formulation similar to Sensoy
et al. (2018). The loss regarding a fixed instance 𝑖 is characterized by the expected value
of the squared distance of w𝑖 and 𝑝𝑖 ∼ Dir(𝛼𝑖) with 𝛼𝑖 as in (5.1). For an instance 𝑖 ∈ [𝑛]
with features 𝑥𝑖 ∈ X and label weights w𝑖 ∈ ∆k-1, the squared error using the bias-variance
decomposition is

ℓ (𝑓 (𝑥𝑖 ;𝜃 ),w𝑖) = E𝑝𝑖∼Dir(𝛼𝑖 ) ∥w𝑖 −𝑝𝑖 ∥22 (5.2)

=

𝑘∑︁
𝑗=1

E[(w𝑖 𝑗 −𝑝𝑖 𝑗 )2] (𝑖)=
𝑘∑︁
𝑗=1

[(w𝑖 𝑗 −E[𝑝𝑖 𝑗 ])2+Var[𝑝𝑖 𝑗 ]
]

(𝑖𝑖)
=

𝑘∑︁
𝑗=1

[
(w𝑖 𝑗 −𝑝𝑖 𝑗 )2︸       ︷︷       ︸

=:ℓerr
𝑖 𝑗

+ 𝑝𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )
1 + ∥𝛼𝑖 ∥1︸        ︷︷        ︸

=:ℓvar
𝑖 𝑗

]
, (5.3)

with 𝑝𝑖 = E𝑝𝑖∼Dir(𝛼𝑖 ) [𝑝𝑖] = 𝛼𝑖/∥𝛼𝑖 ∥1. (𝑖) holds by expansion of the squared term and
rearrangement and (𝑖𝑖) by the known variance of Dirichlet random variables. Fortunately,
one does not need to numerically approximate the integral of the expected value in (5.2).
One can directly compute ℓ using the outputs of 𝑓 only. In the following, we give an
example highlighting the differences to softmax normalization.
Example 5.3.1. Let 𝑛 = 2, 𝑘 = 3, Y = {1, 2, 3}, 𝑥1, 𝑥2 ∈ X, 𝑓 (𝑥1) = (4, 1, 1), and 𝑓 (𝑥2) =
(7, 4, 4). Using softmax normalization, both predictions yield the same discrete probabilities,
that is, softmax(𝑓 (𝑥1)) = softmax(𝑓 (𝑥2)) ≈ (0.910, 0.045, 0.045), although 𝑥1 and 𝑥2 have
different activation values. In our setting, 𝛼1 = 𝑓 (𝑥1) + 1 = (5, 2, 2) and 𝛼2 = 𝑓 (𝑥2) + 1 =

(8, 5, 5) by (5.1). The predicted probabilities are 𝑝1 = E𝑝1∼Dir(𝛼1) [𝑝1] = (5/9, 2/9, 2/9)
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and 𝑝2 = E𝑝2∼Dir(𝛼2) [𝑝2] = (4/9, 5/18, 5/18). While both probabilities are still close,
similar to the softmax normalization, the different variances of the Dirichlet distributions
represent different degrees of uncertainty, that is, Var𝑝1∼Dir(𝛼1) [𝑝1] ≈ (0.025, 0.017, 0.017)
and Var𝑝2∼Dir(𝛼2) [𝑝2] ≈ (0.013, 0.011, 0.011). Since 𝑓 (𝑥2) has higher activation values, there
is less associated uncertainty across all classes. Hence, Dir(𝛼2) has less variance.

The loss term ℓ in (5.3) can be separated into an error and variance component, ℓerr
𝑖 𝑗 and ℓvar

𝑖 𝑗 ,
respectively. ℓerr

𝑖 𝑗 enforces model fit and ℓvar
𝑖 𝑗 acts as regularization term and incentivizes

the decrease of the variance of the Dirichlet distribution parameterized by 𝑓 . To prioritize
model fit, it is desirable that ℓerr

𝑖 𝑗 > ℓvar
𝑖 𝑗 if w𝑖 𝑗 and 𝑝𝑖 𝑗 deviate too much, which we discuss

in the following.

Proposition 5.3.2. Given instance (𝑥𝑖, 𝑠𝑖) ∈ D, parameters 𝜃 , label weights w𝑖 , and 𝑝𝑖 =
𝛼𝑖/∥𝛼𝑖 ∥1, it holds that ℓerr

𝑖 𝑗 < ℓvar
𝑖 𝑗 if and only if

𝑝𝑖 𝑗 −
√︃
ℓvar
𝑖 𝑗 < w𝑖 𝑗 < 𝑝𝑖 𝑗 +

√︃
ℓvar
𝑖 𝑗 ,

for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘].

Proposition 5.3.2 sheds light on the magnitudes of ℓerr
𝑖 𝑗 and ℓvar

𝑖 𝑗 . When w𝑖 𝑗 is within one
standard deviation from 𝑝𝑖 𝑗 , w𝑖 𝑗 is close to 𝑝𝑖 𝑗 . In this regime, reducing variance is more
important than improving model fit, that is, ℓerr

𝑖 𝑗 < ℓvar
𝑖 𝑗 . Reducing the variance of the

Dirichlet distribution is equivalent to a reduction of the uncertainty about the prediction.
When w𝑖 𝑗 is outside one standard deviation from 𝑝𝑖 𝑗 , model fit is more important, that
is, ℓerr

𝑖 𝑗 > ℓvar
𝑖 𝑗 . This property guarantees that one can jointly learn the candidate label

weights as well as their associated uncertainty seamlessly, which helps in creating robust
representations to deal with out-of-distribution data and adversarial modifications of the
instance features.

5.3.3. Regularization

Given an instance 𝑥𝑖 ∈ X, the correct label 𝑦𝑖 ∈ Y is hidden within 𝑠𝑖 ⊆ Y (Section 2).
Therefore, our model 𝑓 should not allocate any evidence to incorrect labels, that is, 𝑓 𝑗 (𝑥𝑖 ;𝜃 )
should be zero for 𝑖 ∈ [𝑛] and 𝑗 ∉ 𝑠𝑖 . Similar to Sensoy et al. (2018), we add a regularization
term to the risk computation to avoid evidence supporting incorrect labels 𝑗 ∉ 𝑠𝑖 . Let
𝛼𝑖 𝑗 = 𝛼𝑖 𝑗 if 𝑗 ∉ 𝑠𝑖 , else 𝛼𝑖 𝑗 = 1, for 𝑖 ∈ [𝑛], 𝑗 ∈ 𝑠𝑖 . We then achieve maximal uncertainty
about predicting 𝑗 ∉ 𝑠𝑖 by considering the KL-divergence between Dir(𝛼𝑖) and Dir(1). We
compute the empirical risk as

R̂(𝑓 ; 𝜆𝑡 ) = 1
𝑛

𝑛∑︁
𝑖=1

[
ℓ (𝑓 (𝑥𝑖 ;𝜃 ),w𝑖) + 𝜆𝑡𝐷KL(Dir(𝛼𝑖)∥ Dir(1))] . (5.4)

This has a positive effect on classification as 𝑓 also learns from negative examples, that is,
𝑓 should be maximally uncertain about predicting 𝑗 ∉ 𝑠𝑖 . However, to avoid our model 𝑓
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from being uncertain about all labels, we gradually increase the regularization coefficient
𝜆𝑡 . This regularization directly benefits the robustness of our method when dealing with
out-of-distribution and adversarial data. Given two Dirichlet-distributed random variables
with parameters Dir(𝛼𝑖) and Dir(1) respectively, their KL divergence permits a closed-form
expression (Penny, 2001). One updates the parameters 𝜃 by backpropagation of (5.4). Note
that the KL term also depends on the parameters 𝜃 via 𝛼𝑖 .

5.3.4. Updating the Label Weights

After updating the parameters 𝜃 , we extract the learned knowledge about the class labels
to iteratively disambiguate the candidate sets 𝑠𝑖 . For a fixed instance (𝑥𝑖, 𝑠𝑖) ∈ D and model
parameters 𝜃 , we want to find the optimal label weights w𝑖 ∈ [0, 1]𝑘 that minimize (5.3),
while maintaining all prior information about the candidate set membership, that is,
w𝑖 𝑗 = 0 if 𝑗 ∉ 𝑠𝑖 . We cannot directly assign 𝑝𝑖 to the label weights w𝑖 since 𝑓 can allocate
evidence to incorrect labels, that is, 𝑓 𝑗 (𝑥𝑖 ;𝜃 ) ≥ 0 for 𝑗 ∉ 𝑠𝑖 . In Line 7 of Algorithm 2, we
assign w𝑖 ∈ [0, 1]𝑘 to the solution of

min
w′
𝑖
∈[0,1]𝑘

ℓ (𝑓 (𝑥𝑖 ;𝜃 ),w′𝑖) subject to ∥w′𝑖 ∥1 = 1 and w′𝑖 𝑗 = 0 if 𝑗 ∉ 𝑠𝑖 . (5.5)

(5.5) permits a closed-form solution, which is as follows.

Proposition 5.3.3. Given a fixed instance (𝑥𝑖, 𝑠𝑖) ∈ D, model parameters 𝜃 , and 𝑝𝑖 =

𝛼𝑖/∥𝛼𝑖 ∥1, the optimization problem (5.5), with ℓ as in (5.3), has the solution

w∗𝑖 𝑗 =
{
𝑝𝑖 𝑗 + 1

|𝑠𝑖 | (1 −
∑

𝑗 ′∈𝑠𝑖 𝑝𝑖 𝑗 ′) if 𝑗 ∈ 𝑠𝑖 ,
0 else.

The proof of Proposition 5.3.3 in Section 5.5.2 first shows that w∗𝑖 𝑗 is a feasible solution for
the constraints in (5.5) and then establishes optimality using the Lagrangian multiplier
method since ℓ is continuous and differentiable. The solution w∗𝑖 𝑗 uniformly re-distributes
all weight of labels not in 𝑠𝑖 to labels, which are in 𝑠𝑖 . This guarantees a minimal loss.
Notably, the update strategy in Proposition 5.3.3 differs from the heuristic ones proposed
in related work (Lv et al., 2020; Xu et al., 2023; Tian et al., 2024).

5.3.5. Reinterpreting the Label Weights

Recall from Section 5.2 that subjective logic allows decomposing the projected probabilities
𝑝𝑖 into a multinomial opinion 𝜔𝑖 with a belief and uncertainty term, that is, 𝑝𝑖 = 𝔟𝑖 + 𝔞𝑖𝔲𝑖 .
This representation directly allows quantifying the uncertainty involved in prediction-
making. It is desirable that the label weight update w∗𝑖 in Section 5.3.4 can also be written as
such a multinomial opinion to allow for the direct quantification of belief and uncertainty.
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Proposition 5.3.4. Given a fixed instance (𝑥𝑖, 𝑠𝑖) ∈ D and parameters 𝜃 , the solution w∗𝑖 𝑗
of (5.5), which is given by Proposition 5.3.3, is equivalent to w∗𝑖 = 𝔟𝑖 + 𝔞𝑖𝔲𝑖 with

𝔟𝑖 𝑗 = 1{ 𝑗∈𝑠𝑖 }
𝑓 𝑗 (𝑥𝑖 ;𝜃 )
∥𝛼𝑖 ∥1 , where 𝛼𝑖 = 𝑓 (𝑥𝑖 ;𝜃 ) + 1, 𝔲𝑖 = 1 −

∑︁
𝑗∈𝑠𝑖

𝔟𝑖 𝑗 , and 𝔞𝑖 𝑗 =
1{ 𝑗∈𝑠𝑖 }
|𝑠𝑖 | .

Proposition 5.3.4 allows reinterpreting w∗𝑖 (Proposition 5.3.3) as such a multinomial opinion
𝜔𝑖 about instance 𝑖 . Proposition 5.3.4 establishes that the belief of our prediction model
in non-candidate labels directly contributes to the uncertainty 𝔲𝑖 in predicting instance
𝑖 ∈ [𝑛]. The uncertainty term 𝔲𝑖 arises from unallocated belief mass 𝔟𝑖 𝑗 , that is, 1−∑

𝑗∈𝑠𝑖 𝔟𝑖 𝑗
for 𝑖 ∈ [𝑛]. Also, the prior weights 𝔞𝑖 𝑗 are defined similarly to the initial label weights w𝑖 𝑗

(Section 5.3.1). The prior weights are uniformly distributed among all candidate labels. The
result in Proposition 5.3.4 establishes that our proposed update strategy (Proposition 5.3.3)
is valid within subjective logic.

5.3.6. Bounding the Label Weights

This section examines how the model’s probability outputs 𝑝𝑖 and the label weights w𝑖

interact with each other. In the following, we provide an upper bound of the change of w𝑖 ’s
values over time. As the label weights w𝑖 are the prediction targets in (5.3), it is desirable
that the w𝑖 do not oscillate, which we detail in the following.
Proposition 5.3.5. Let (𝑥𝑖, 𝑠𝑖) ∈ D, its label weights w(𝑡)𝑖 ∈ [0, 1]𝑘 , and the model’s
probability outputs 𝑝 (𝑡)𝑖 at epoch 𝑡 ∈ N. Then,

0 ≤ ∥w(𝑡+1)
𝑖 −w(𝑡)𝑖 ∥22 ≤ ∥𝑝 (𝑡+1)

𝑖 − 𝑝 (𝑡)𝑖 ∥22,
for 𝑖 ∈ [𝑛].

This indicates that the label weights w𝑖 change at most as fast as the model’s probability
outputs 𝑝𝑖 between consecutive epochs. An immediate consequence is that the convergence
of the model training and its probability outputs 𝑝𝑖 , that is, ∥𝑝 (𝑡+1)

𝑖 −𝑝 (𝑡)𝑖 ∥22 → 0 for 𝑡 →∞,
implies the convergence of the label weight vectors w𝑖 , that is, ∥w(𝑡+1)

𝑖 −w(𝑡)𝑖 ∥22 → 0,
which are extracted from the model. This property is desirable as it shows that the label
weights w𝑖 do not oscillate if the model’s probability outputs 𝑝𝑖 , which depend on the
model parameters 𝜃 , converge.

5.3.7. Cross-Entropy Loss

Although we use the squared error loss (5.2), it is worth considering the commonly used
cross-entropy loss. Given an instance 𝑥𝑖 ∈ X, a model 𝑓 with parameters 𝜃 , and label
weights w𝑖 , a cross-entropy formalization similar to Sensoy et al. (2018) is given by

ℓCE(𝑓 (𝑥𝑖 ;𝜃 ),w𝑖) = E[−
𝑘∑︁
𝑗=1

w𝑖 𝑗 log 𝑝𝑖 𝑗 ] (𝑖)= w𝑖 ·Ψ𝑖 , (5.6)

36



5.4. Experiments

with Ψ𝑖 𝑗 = 𝜓 (∥𝛼𝑖 ∥1) −𝜓 (𝛼𝑖 𝑗 ) and 𝜓 denoting the digamma function. (𝑖) holds because
of the linearity of the expected value and E𝑝𝑖 𝑗∼Dir𝑗 (𝛼𝑖 ) log 𝑝𝑖 𝑗 = 𝜓 (𝛼𝑖 𝑗 ) −𝜓 (∥𝛼𝑖 ∥1). In the
following, we establish the optimal choice of w𝑖 in our optimization problem (5.5) using
the cross-entropy loss (5.6).

Proposition 5.3.6. Given a fixed instance (𝑥𝑖, 𝑠𝑖) ∈ D and parameters 𝜃 , optimization
problem (5.5), using the cross-entropy loss (5.6), has the closed-form solution

w∗𝑖 𝑗 =
{

1 if 𝑗 = arg min 𝑗 ′∈𝑠𝑖 Ψ𝑖 𝑗 ′ ,
0 else.

This suggests that the cross-entropy loss (5.6) enforces an aggressive label-weight update
strategy setting all mass on one class label. Also, the label weights given by Proposition 5.3.6
cannot be reinterpreted in SL as discussed in Section 5.3.5. The squared error loss also
performs better than the cross-entropy loss empirically. For these reasons, all experiments
are conducted using the update strategy in Proposition 5.3.3.

5.3.8. Runtime Analysis

Recall from Section 5.3.2 that one does not need to numerically approximate the integral
within the expectation value in (5.2). Given label weights w𝑖 , one can directly compute ℓ
using the outputs of 𝑓 only. The computation of the KL divergence between two Dirichlet-
distributed random variables with parameters Dir(𝛼𝑖) and Dir(1), respectively, admits a
closed-form expression (Penny, 2001), leading to an overall linear runtime in 𝑛 to compute
R̂(𝑓 ; 𝜆𝑡 ) (Algorithm 2, Line 5). In Line 7 of Algorithm 2, Proposition 5.3.3 also permits
updating w𝑖 𝑗 in linear time regarding 𝑛. Therefore, our method’s runtime is dominated
solely by the forward and backward pass of the employed model 𝑓 .

5.4. Experiments

Section 5.4.1 summarizes all methods that we compare against and Section 5.4.2 outlines
the experimental setup. Thereafter, Section 5.4.3 analyzes the methods’ robustness against
PLL noise, Section 5.4.4 against out-of-distribution samples, and Section 5.4.5 against
adversarial perturbations.

5.4.1. Algorithms for Comparison

There are many PLL algorithms from which we pick the best-performing and commonly
used ones for comparison. We cover classic algorithms and deep-learning techniques and
complement these methods with strong baselines.

37



5. Robust Partial-Label Learning by Leveraging Class Activation Values

We consider 13 methods: PlKnn (Hüllermeier and Beringer, 2005), PlSvm (Nguyen and
Caruana, 2008), Ipal (Zhang and Yu, 2015), PlEcoc (Zhang et al., 2017), Proden (Lv et al.,
2020), Rc (Feng et al., 2020), Cc (Feng et al., 2020), Valen (Xu et al., 2021), Cavl (Zhang
et al., 2022a), Pop (Xu et al., 2023), CroSel (Tian et al., 2024), DstPll (Fuchs et al., 2025),
and RobustPll (our method).

Additionally, we benchmark various extensions known to obtain robust results in the
supervised domain: Proden with L2-regularization (Proden+L2), Proden with dropout1

(Proden+Dropout; Srivastava et al. 2014), Proden for disambiguating the partial la-
bels and then training an evidential-deep-learning classifier (Sensoy et al., 2018) in a
supervised manner (Proden+Edl), an ensemble of 5 Proden classifiers (Proden+Ens;
Lakshminarayanan et al. 2017), an ensemble of 5 Proden classifiers trained on adversarial
examples (Proden+AdvEns; Lakshminarayanan et al. 2017), and an ensemble of our
method (RobustPll+Ens).

For a fair comparison, we use the same base model, that is, a 𝑑-300-300-300-𝑘 MLP (Werbos,
1974), which is a common choice in the literature (Lv et al., 2020; Feng et al., 2020; Xu
et al., 2023), for all neural-network-based approaches. Appendix B.1 discusses the specific
hyperparameter choices, including the neural network architectures, of all approaches in
more detail. We publicly provide all code and data for reproducibility.

5.4.2. Experimental Setup

As is common in the literature (Zhang et al., 2017; Xu et al., 2023), we conduct experiments
on supervised datasets with added noise as well as on real-world partially-labeled datasets.
We use four supervised datasets with added noise and six real-world PLL datasets and
refer to Appendix B.2 for the dataset characteristics. For the supervised datasets, we use
mnist (LeCun et al., 1999), kmnist (Clanuwat et al., 2018), fmnist (Xiao et al., 2018), and
not-mnist (Bulatov, 2011). For the real-world datasets, we use bird-song (Briggs et al., 2012),
lost (Cour et al., 2011), mir-flickr (Huiskes and Lew, 2008), msrc-v2 (Liu and Dietterich,
2012), soccer (Zeng et al., 2013), and yahoo-news (Guillaumin et al., 2010).

We use instance-dependent noise to introduce partial labels into the supervised datasets
(Zhang et al., 2021). This strategy first trains a supervised classifier 𝑔 : R𝑑 → ∆k-1,
which outputs probabilities 𝑔 𝑗 (𝑥𝑖) for instance 𝑖 ∈ [𝑛] and class labels 𝑗 ∈ [𝑘]. Given
an instance’s features 𝑥𝑖 ∈ X with correct label 𝑦𝑖 ∈ Y, a flipping probability of 𝜉 𝑗 (𝑥𝑖) =
𝑔 𝑗 (𝑥𝑖)/max 𝑗 ′∈Y \{𝑦𝑖 } 𝑔 𝑗 ′ (𝑥𝑖) determines whether to add the incorrect label 𝑗 ≠ 𝑦𝑖 to the
candidate set 𝑠𝑖 . Additionally, one divides 𝜉 𝑗 (𝑥𝑖) by the mean probability 1

𝑘−1
∑

𝑗 ′≠𝑦𝑖 𝜉 𝑗 ′ (𝑥𝑖)
of incorrect labels (Xu et al., 2021, 2023), which makes all labels more likely to appear.
While all mnist-like datasets have ten class labels, the averages (± std.) of the candidate
set cardinalities are 6.30 (± 0.06) for mnist, 5.95 (± 0.05) for fmnist, 6.34 (± 0.04) for kmnist,
and 6.34 (± 0.09) for not-mnist. We remark that five out of the ten datasets do not contain
a single instance with a candidate set that only consists of the ground truth label. This

1 Dropout is also applied in testing to form an explicit ensemble.
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Table 5.1.: Average test-set accuracies (± std.) on the mnist-like and real-world datasets. All experiments are
repeated five times with different seeds to report mean and standard deviations. The mnist-like datasets
have added instance-dependent noise as discussed in Section 5.4.2. The column for the real-world datasets
contains averages across all six real-world datasets; the corresponding non-aggregated results are collected
in Table B.2. We emphasize the best algorithm per dataset, as well as non-significant differences, using
a student t-test with level 𝛼 = 0.05. We consider non-ensemble and ensemble methods separately. The
triangles indicate our proposed methods.

All methods
mnist-like datasets with inst.-dep. noise Real-world

datasetsmnist fmnist kmnist not-mnist

PlKnn (2005) 46.6 (± 0.5) 41.9 (± 0.4) 52.2 (± 0.4) 31.3 (± 0.9) 50.3 (± 8.8)
PlSvm (2008) 32.4 (± 5.0) 37.3 (± 1.9) 31.6 (± 4.2) 39.2 (± 3.9) 40.7 (± 10.1)
Ipal (2015) 96.0 (± 0.4) 75.1 (± 0.7) 80.8 (± 0.9) 61.5 (± 1.6) 57.8 (± 7.1)
PlEcoc (2017) 61.6 (± 2.9) 49.6 (± 4.5) 40.6 (± 2.7) 39.8 (± 6.1) 42.7 (± 19.8)
Proden (2020) 93.2 (± 0.5) 77.8 (± 2.5) 76.6 (± 0.5) 84.6 (± 1.3) 64.1 (± 7.4)
Proden+L2 93.3 (± 0.4) 78.1 (± 1.7) 76.4 (± 0.6) 84.6 (± 1.2) 64.1 (± 7.5)
Proden+Edl 92.0 (± 0.5) 74.9 (± 2.4) 74.5 (± 0.7) 80.8 (± 0.5) 49.6 (± 21.0)
Rc (2020) 93.0 (± 0.4) 78.0 (± 2.3) 76.5 (± 0.7) 84.1 (± 1.6) 62.1 (± 8.9)
Cc (2020) 93.1 (± 0.2) 78.9 (± 0.9) 77.5 (± 0.8) 83.5 (± 0.9) 43.8 (± 31.2)
Valen (2021) 50.3 (± 5.3) 59.6 (± 1.9) 37.3 (± 1.3) 50.3 (± 2.4) 53.8 (± 9.0)
Cavl (2022) 79.5 (± 6.4) 72.9 (± 2.4) 64.6 (± 6.5) 61.5 (± 6.8) 61.4 (± 6.7)
Pop (2023) 92.5 (± 0.6) 79.0 (± 1.6) 77.6 (± 0.2) 84.5 (± 1.8) 64.1 (± 7.5)
CroSel (2024) 95.3 (± 0.1) 79.6 (± 0.9) 79.6 (± 0.6) 86.6 (± 0.7) 41.9 (± 30.1)
DstPll (2024) 62.2 (± 0.9) 50.3 (± 1.0) 68.4 (± 1.0) 38.2 (± 0.7) 48.5 (± 9.6)
▶ RobustPll 96.0 (± 0.1) 79.6 (± 3.0) 81.7 (± 0.3) 83.7 (± 1.9) 59.5 (± 6.8)

Proden+Dropout 92.5 (± 0.6) 72.7 (± 2.8) 72.1 (± 1.1) 78.0 (± 2.5) 65.0 (± 8.1)
Proden+Ens 93.7 (± 0.2) 78.0 (± 2.3) 77.3 (± 0.5) 85.6 (± 0.7) 65.8 (± 8.3)
Proden+AdvEns 95.3 (± 0.6) 77.9 (± 2.3) 77.7 (± 0.9) 84.3 (± 1.5) 66.7 (± 9.0)
▶ RPll+Ens 96.3 (± 0.1) 80.4 (± 2.3) 82.9 (± 0.5) 85.9 (± 1.6) 63.6 (± 7.8)

prohibits the application of algorithms from related fields, for example, semi-supervised
learning. We publicly provide all code and data for reproducibility.

5.4.3. Robustness under PLL Noise

Robust PLL algorithms should exhibit good predictive performance when confronted
with PLL noise from ambiguous candidate sets. Table 5.1 shows the accuracies of all
methods on the mnist-like and real-world datasets. All supervised datasets have added
noise (Section 5.4.2). We repeat all experiments five times to report averages and standard
deviations. The best algorithm per dataset, as well as algorithms with non-significant
differences, are emphasized. Thereby, we consider non-ensemble methods (top) and
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Table 5.2.: The difference in the predictive entropies on the test and OOD sets. The models have been trained
on the mnist train dataset with added noise as discussed in Section 5.4.2. We report the area between the
empirical CDFs, the KS statistic, and the maximum-mean discrepancy using the RBF kernel. A value of
one is optimal. Also compare Figure B.1 for a graphical representation. Negative values indicate that the
predictions on the out-of-distribution set are taken more confidently than the predictions on the test set.

All methods
Difference in entropy on MNIST and NotMNIST

CDF Area KS stat. MMD

PlKnn (2005) 0.0172 0.1587 0.0429
PlSvm (2008) 0.0114 0.2944 0.0296
Ipal (2015) 0.0896 0.3665 0.1285
PlEcoc (2017) -0.0216 -0.3674 -0.0544
Proden (2020) 0.1769 0.6550 0.4240
Proden+L2 0.1853 0.6844 0.4410
Proden+Edl 0.4379 0.7171 0.6714

Rc (2020) 0.1402 0.5560 0.3495
Cc (2020) 0.0607 0.5587 0.1378
Valen (2021) -0.7668 -0.9434 -1.2137
Cavl (2022) 0.0087 0.1555 0.0205
Pop (2023) 0.1345 0.5570 0.3361
CroSel (2024) 0.2278 0.8360 0.5202
DstPll (2024) 0.1723 0.5097 0.3243
▶ RobustPll 0.3855 0.7345 0.6707

Proden+Dropout 0.2541 0.7662 0.5700
Proden+Ens 0.2741 0.8559 0.6144
Proden+AdvEns 0.2017 0.6435 0.4506
▶ RobustPll+Ens 0.5560 0.8866 0.9996

ensemble methods (bottom) separately for fairness. We use a paired student t-test with
level 𝛼 = 0.05 to test for significance.

Our method (RobustPll) performs best on the four mnist-like datasets and comparably
on the real-world datasets. We observe a similar behavior regarding our ensemble method
(RobustPll+Ens). Our non-ensemble method even achieves comparable performance
to the ensemble methods on the mnist-like datasets. Summing up, we perform most
consistently well under high PLL noise levels.

5.4.4. Out-of-distribution Robustness

Out-of-distribution examples (OOD) are instances that are not represented within the
dataset. Since all methods output a discrete probability distribution over known class
labels, we evaluate the entropy of the predicted probability outputs. Test-set instances
should receive minimal predictive entropy, that is, the model is confident about one label,

40



5.4. Experiments

while the OOD examples should receive maximal predictive entropy, that is, no known
class label matches the features. Robust algorithms should maximize the distance between
the predictive entropies on the test and OOD sets. This is especially challenging in PLL as
no exact ground truth is available.

Table 5.2 shows the differences in the normalized entropies (range 0 to 1) on the test and
OOD samples for all methods. All methods are trained on the mnist train set, evaluated
on the mnist test set, and evaluated on the not-mnist test set. Samples from the not-
mnist test set contain letters instead of digits and are hence OOD examples. We measure
the differences between the entropies on the test and OOD set using the area between
the empirical CDFs, the value of the Kolmogorov-Smirnov statistic, and the maximum-
mean discrepancy with RBF kernel using the median distance heuristic to set the kernel’s
parameter. We highlight the best (and close-to-best) values and consider non-ensemble
and ensemble methods separately for fairness. Positive values indicate that test predictions
are taken more confidently and negative values indicate that OOD predictions are taken
more confidently.

Our methods (RobustPll and RobustPll+Ens) are among the best in almost all the three
settings in Table 5.2. Some other methods even give negative values, which means that
they are more sure about predicting the OOD than the test samples. Appendix B also
contains further results. OOD examples mislead most of the state-of-the-art PLL methods
into confidently predicting an incorrect label. In contrast, RobustPll+Ens achieves almost
perfect differences indicating small predictive entropies on the test set (one class label
receives most of the probability mass) and high predictive entropies on the OOD set (class
probabilities are almost uniformly distributed).

5.4.5. Performance on Adversarial Examples

In recent years, many attacks on neural networks have been discussed in the literature
(Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016; Madry et al.,
2018). Using the projected gradient descent (PGD; Madry et al. 2018), we modify all test
set examples, which are min-max-normalized to the range [0, 1], by iteratively adding
𝛼 := 𝜀/10 times sign∇𝑥 𝑓 (𝑥 ;𝜃 ) to an instance’s features 𝑥 ∈ X and then projecting the
newly obtained features back to an 𝜀-ball around the original feature values 𝑥 . We repeat
those steps 𝑇 = 10 times. The perturbed instances remain similar but moving against the
gradient with respect to an instance’s features decreases prediction performance rapidly.

Table 5.3 shows how all neural-network-based methods perform for varying values of
the adversarial parameter 𝜀 ∈ {0.0, 0.1, 0.2, 0.3, 0.4} on the real-world datasets. A value
of 𝜀 = 0.0 indicates no added adversarial noise. The first column in Table 5.3 therefore
matches the last column of Table 5.1. For values of 𝜀 ≥ 0.1, RobustPll and Proden+Edl
perform best among all non-ensemble techniques. Among the ensemble techniques, our
method (RobustPll+Ens) performs best. In general, all ensembling techniques make
Proden more robust against the corrupted features. Note that Proden+AdvEns has an
unfair advantage in the analysis in Table 5.3 as it is trained on adversarial examples, that
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Table 5.3.: Average test-set accuracies (± std.) on the real-world datasets. The instance features, which are
min-max-normalized to the range [0, 1], are corrupted using the projected gradient descent method (Madry
et al., 2018). As this attack applies to neural networks, we report only the performances of the deep learning
PLL methods. Note that the column with 𝜀 = 0.0 is identical to the last column of Table 5.1. The triangles
indicate our proposed methods.

Deep-learning
methods

Corrupted real-world datasets with adversarial parameter 𝜀

𝜀 = 0.0 𝜀 = 0.1 𝜀 = 0.2 𝜀 = 0.3 𝜀 = 0.4

Proden (2020) 64.1 (± 7.4) 28.9 (± 7.1) 22.6 (± 5.7) 18.8 (± 5.2) 17.2 (± 5.9)
Proden+L2 64.1 (± 7.5) 28.4 (± 7.6) 22.5 (± 6.1) 19.2 (± 5.3) 17.2 (± 5.3)
Proden+Edl 49.6 (± 21.0) 36.2 (± 14.8) 32.0 (± 14.0) 29.0 (± 13.8) 27.1 (± 13.0)
Rc (2020) 62.1 (± 8.9) 29.0 (± 6.5) 21.3 (± 6.4) 17.9 (± 6.0) 14.7 (± 5.3)
Cc (2020) 43.8 (± 31.2) 20.2 (± 14.9) 14.6 (± 11.2) 11.8 (± 9.1) 9.8 (± 7.7)
Valen (2021) 53.8 (± 9.0) 25.4 (± 7.8) 19.6 (± 6.9) 17.2 (± 6.5) 15.4 (± 6.5)
Cavl (2022) 61.4 (± 6.7) 25.8 (± 7.2) 19.3 (± 5.7) 16.4 (± 5.2) 13.9 (± 4.8)
Pop (2023) 64.1 (± 7.5) 28.6 (± 7.1) 22.3 (± 6.3) 18.8 (± 5.0) 16.7 (± 4.9)
CroSel (2024) 41.9 (± 30.1) 22.6 (± 16.8) 16.3 (± 12.6) 13.4 (± 10.3) 11.5 (± 8.6)
▶ RobustPll 59.5 (± 6.8) 40.3 (± 12.0) 31.8 (± 10.3) 27.4 (± 9.3) 23.8 (± 8.4)

Prod.+Dropout 65.0 (± 8.1) 30.7 (± 6.1) 23.4 (± 4.8) 19.8 (± 5.0) 17.9 (± 5.4)
Prod.+Ens 65.8 (± 8.3) 42.8 (± 6.9) 33.1 (± 8.4) 27.4 (± 8.7) 24.7 (± 10.3)
Prod.+AdvEns 66.7 (± 9.0) 48.7 (± 7.0) 37.1 (± 7.6) 30.5 (± 8.7) 26.6 (± 9.9)
▶ RPll+Ens 63.6 (± 7.8) 51.0 (± 10.3) 42.0 (± 10.2) 37.0 (± 9.4) 33.3 (± 9.1)

is, it has access to the corrupted features during training. Nevertheless, our ensemble
method RobustPll+Ens is significantly better for 𝜀 ≥ 0.1. RobustPll and RobustPll+Ens
consistently perform among the best for 𝜀 ≥ 0.1.

In summary, our non-ensemble and ensemble methods consistently perform the best
across almost all settings considered. Our methods are robust against high PLL noise,
out-of-distribution examples, and adversarial perturbations.

5.5. Proofs

This section collects all proofs of the propositions in the main text. The proof of Proposi-
tion 5.3.2 is in Section 5.5.1, that of Proposition 5.3.3 is in Section 5.5.2, that of Proposi-
tion 5.3.4 is in Section 5.5.3, and that of Proposition 5.3.5 is in Section 5.5.4.
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5.5.1. Proof of Proposition 5.3.2

Solving ℓerr
𝑖 𝑗 = ℓvar

𝑖 𝑗 for the label weights w𝑖 𝑗 yields

ℓerr
𝑖 𝑗 = ℓvar

𝑖 𝑗 ⇔ (w𝑖 𝑗 −𝑝𝑖 𝑗 )2 =
𝑝𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )
1 + ∥𝛼𝑖 ∥1

⇔ w𝑖 𝑗 = 𝑝𝑖 𝑗 ±
√︄
𝑝𝑖 𝑗 (1 − 𝑝𝑖 𝑗 )
1 + ∥𝛼𝑖 ∥1

⇔ w𝑖 𝑗 = 𝑝𝑖 𝑗 ±
√︃
ℓvar
𝑖 𝑗 .

Since ℓerr
𝑖 𝑗 = (w𝑖 𝑗 −𝑝𝑖 𝑗 )2 reaches its minimum when w𝑖 𝑗 = 𝑝𝑖 𝑗 , we have shown the statement

to be demonstrated.

5.5.2. Proof of Proposition 5.3.3

The proof first shows that w∗𝑖 is a feasible solution for the constraints in (5.5) and then
establishes that w∗𝑖 is indeed optimal using the Lagrangian multiplier method.

(Primal) Feasibility. To prove our solution’s feasibility, we need to show that (𝑖) ∥w∗𝑖 ∥1 =
1 and (𝑖𝑖) w∗𝑖 𝑗 = 0 for all 𝑗 ∉ 𝑠𝑖 . Constraint (𝑖) holds as

𝑘∑︁
𝑗=1

w∗𝑖 𝑗 =
∑︁
𝑗∈𝑠𝑖

(
𝑝𝑖 𝑗 + 1

|𝑠𝑖 | (1 −
∑︁
𝑗 ′∈𝑠𝑖

𝑝𝑖 𝑗 ′)
)

=
∑︁
𝑗∈𝑠𝑖

𝑝𝑖 𝑗 + 1
|𝑠𝑖 |

∑︁
𝑗∈𝑠𝑖
(1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑝𝑖 𝑗 ′)

=
∑︁
𝑗∈𝑠𝑖

𝑝𝑖 𝑗 + 1 −
∑︁
𝑗 ′∈𝑠𝑖

𝑝𝑖 𝑗 ′ = 1.

Constraint (𝑖𝑖) follows directly from the definition of w∗𝑖 𝑗 in Proposition 5.3.3.

Optimality. Since the loss ℓ is differentiable, continuous, and convex in w𝑖 , we incorporate
the constraints (𝑖) and (𝑖𝑖) using the Lagrangian multiplier method as follows:

L(w𝑖 ; 𝜆𝑖) =
𝑘∑︁
𝑗=1
(w𝑖 𝑗 −𝑝𝑖 𝑗 )2 + 𝜆𝑖

( 𝑘∑︁
𝑗=1

w𝑖 𝑗 −1
)
,

for instance 𝑖 ∈ [𝑛]. Constraint (𝑖𝑖) directly determines the value of w𝑖 𝑗 for all 𝑗 ∉ 𝑠𝑖 . We
then need to check the following Lagrange conditions:

𝜕

𝜕 w𝑖 𝑗
L(w𝑖 ; 𝜆𝑖) = 0⇔ 2(w𝑖 𝑗 −𝑝𝑖 𝑗 ) + 𝜆𝑖 = 0

⇔ w𝑖 𝑗 = 𝑝𝑖 𝑗 − 𝜆𝑖
2 , (5.7)
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for 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑠𝑖 . For 𝑗 ∉ 𝑠𝑖 , w𝑖 𝑗 = 0. Inserting (5.7) into constraint (𝑖) yields

∥w𝑖 ∥1 = 1⇔
𝑘∑︁
𝑗=1

w𝑖 𝑗 =
∑︁
𝑗∈𝑠𝑖
(𝑝𝑖 𝑗 − 𝜆𝑖

2 ) =
∑︁
𝑗∈𝑠𝑖

𝑝𝑖 𝑗 − |𝑠𝑖 |𝜆𝑖2 = 1

⇔ 𝜆𝑖 =
2
|𝑠𝑖 |

(∑︁
𝑗∈𝑠𝑖

𝑝𝑖 𝑗 − 1
)
. (5.8)

Putting (5.8) back into (5.7) gives us

w∗𝑖 𝑗 =
{
𝑝𝑖 𝑗 + 1

|𝑠𝑖 | (1 −
∑

𝑗 ′∈𝑠𝑖 𝑝𝑖 𝑗 ′) if 𝑗 ∈ 𝑠𝑖 ,
0 else,

which is the optimal solution to (5.5). Note that we do not need to show dual feasibility
and complementary slackness as there are no inequality constraints.

5.5.3. Proof of Proposition 5.3.4

We prove the statement by distinguishing two cases. (a) If 𝑖 ∈ [𝑛] and 𝑗 ∉ 𝑠𝑖 , w∗𝑖 = 𝔟𝑖 +𝔞𝑖𝔲𝑖
is true as both sides are zero. (b) If 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑠𝑖 , it follows

w∗𝑖 𝑗
(𝑖)
= 𝑝𝑖 𝑗 + 1

|𝑠𝑖 | (1 −
∑︁
𝑗 ′∈𝑠𝑖

𝑝𝑖 𝑗 ′)

(𝑖𝑖)
=

𝛼𝑖 𝑗

∥𝛼𝑖 ∥1 +
1
|𝑠𝑖 |

(
1 −

∑︁
𝑗 ′∈𝑠𝑖

𝛼𝑖 𝑗 ′

∥𝛼𝑖 ∥1
)

(𝑖𝑖𝑖)
=

𝑓 𝑗 (𝑥𝑖 ;𝜃 ) + 1
∥𝛼𝑖 ∥1 + 1

|𝑠𝑖 |
(
1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑓 𝑗 ′ (𝑥𝑖 ;𝜃 ) + 1
∥𝛼𝑖 ∥1

)
(𝑖𝑣)
=

𝑓 𝑗 (𝑥𝑖 ;𝜃 )
∥𝛼𝑖 ∥1 +

1
∥𝛼𝑖 ∥1 +

1
|𝑠𝑖 |

(
1 − |𝑠𝑖 |∥𝛼𝑖 ∥1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑓 𝑗 ′ (𝑥𝑖 ;𝜃 )
∥𝛼𝑖 ∥1

)
(𝑣)
=

𝑓 𝑗 (𝑥𝑖 ;𝜃 )
∥𝛼𝑖 ∥1︸   ︷︷   ︸
=𝔟𝑖 𝑗

+ 1
|𝑠𝑖 |︸︷︷︸
=𝔞𝑖 𝑗

(
1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑓 𝑗 ′ (𝑥𝑖 ;𝜃 )
∥𝛼𝑖 ∥1

)
︸                  ︷︷                  ︸

=𝔲𝑖

(𝑣𝑖)
= 𝔟𝑖 𝑗 + 𝔞𝑖 𝑗𝔲𝑖 ,

where (𝑖) holds by Proposition 5.3.3, (𝑖𝑖) by 𝑝𝑖 = 𝛼𝑖/∥𝛼𝑖 ∥1, (𝑖𝑖𝑖) by 𝛼𝑖 = 𝑓 (𝑥𝑖 ;𝜃 ) + 1, (𝑖𝑣) by
separating summands, (𝑣) by simplifying, and (𝑣𝑖) by the definitions in Proposition 5.3.4.
Note that we add the factor 1{ 𝑗∈𝑠𝑖 } to 𝔟𝑖 𝑗 and 𝔞𝑖 𝑗 to combine both cases, that is, (a) 𝑗 ∉ 𝑠𝑖
and (b) 𝑗 ∈ 𝑠𝑖 , into a single formula.
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5.5.4. Proof of Proposition 5.3.5

The proof of Proposition 5.3.5 proceeds as follows:

0 ≤ ∥w(𝑡+1)
𝑖 −w(𝑡)𝑖 ∥22

(𝑖)
=

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 + 1

|𝑠𝑖 |
(
1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑝 (𝑡+1)
𝑖 𝑗 ′

) − 𝑝 (𝑡)𝑖 𝑗 − 1
|𝑠𝑖 |

(
1 −

∑︁
𝑗 ′∈𝑠𝑖

𝑝 (𝑡)𝑖 𝑗 ′
) )2

(𝑖𝑖)
=

∑︁
𝑗∈𝑠𝑖

( (
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) + 1
|𝑠𝑖 |

∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 ′ − 𝑝 (𝑡+1)

𝑖 𝑗 ′
) )2

(𝑖𝑖𝑖)
=

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2 + 2
|𝑠𝑖 |

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) ∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 ′ − 𝑝 (𝑡+1)

𝑖 𝑗 ′
)

+ 1
|𝑠𝑖 |2

∑︁
𝑗∈𝑠𝑖

( ∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 ′ − 𝑝 (𝑡+1)

𝑖 𝑗 ′
) )2

(𝑖𝑣)
=

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2 − 2
|𝑠𝑖 |

(∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) )2
+ 1
|𝑠𝑖 |

( ∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 ′ − 𝑝 (𝑡+1)

𝑖 𝑗 ′
) )2

(𝑣)
=

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2 − 1
|𝑠𝑖 |

(∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) )2

(𝑣𝑖)≤
∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2

(𝑣𝑖𝑖)≤
𝑘∑︁
𝑗=1

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2

= ∥𝑝 (𝑡+1)
𝑖 − 𝑝 (𝑡)𝑖 ∥22,

where (𝑖) holds by Prop. 5.3.3, (𝑖𝑖) by reordering, (𝑖𝑖𝑖) by the binomial theorem, (𝑖𝑣) by∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 ′ − 𝑝 (𝑡+1)

𝑖 𝑗 ′
)
= −

∑︁
𝑗 ′∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 ′ − 𝑝 (𝑡)𝑖 𝑗 ′

)
,

and (𝑣) by(∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡)𝑖 𝑗 − 𝑝 (𝑡+1)

𝑖 𝑗

) )2
=

(
−

∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) )2
=

(∑︁
𝑗∈𝑠𝑖

(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

) )2
.

(𝑣𝑖) holds as |𝑠𝑖 | ≥ 1 and
∑𝑘

𝑗=1
(
𝑝 (𝑡+1)
𝑖 𝑗 − 𝑝 (𝑡)𝑖 𝑗

)2 ≥ 0 and (𝑣𝑖𝑖) holds by including further
non-negative summands within the summation.

5.5.5. Proof of Proposition 5.3.6

The proof first shows that w∗𝑖 𝑗 is a feasible solution for the constraints in (5.5) and then
establishes that w∗𝑖 𝑗 is optimal.
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Feasibility. As w∗𝑖 𝑗 is one for exactly one class label 𝑗 ∈ 𝑠𝑖 , it holds that ∥w𝑖 ∥1 = 1 for
𝑖 ∈ [𝑛]. Also, w∗𝑖 𝑗 = 0 for 𝑗 ∉ 𝑠𝑖 as only class labels 𝑗 ∈ 𝑠𝑖 can be different from zero.

Optimality. As the cross-entropy loss ℓCE in Section 5.3.7 is a linear combination of w𝑖 𝑗

with coefficients Ψ𝑖 𝑗 =𝜓 (∥𝛼𝑖 ∥1) −𝜓 (𝛼𝑖 𝑗 ) for fixed 𝑖 ∈ [𝑛] and w𝑖 𝑗 ∈ [0, 1], we minimize
ℓCE by assigning all label weight to the minimal coefficient Ψ𝑖 𝑗 , that is, arg min 𝑗∈𝑠𝑖 Ψ𝑖 𝑗 .
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6. Partial-Label Learning with Conformal
Candidate Cleaning

This chapter’s contents are based on the following publication.

• Tobias Fuchs and Florian Kalinke. Partial-label learning with conformal candidate
cleaning. In Uncertainty in Artificial Intelligence, pages 1337–1357, 2025. https:

//proceedings.mlr.press/v286/fuchs25a.html.

All code and data for reproducing this chapter’s experiments are available at https:

//github.com/mathefuchs/pll-with-conformal-candidate-cleaning.

6.1. Overview

Many algorithms targeting the PLL problem exist. Recently, several extensions (Bao et al.,
2021, 2022; Wang and Zhang, 2022; Zhang et al., 2022b; Xu et al., 2023) that can be combined
with a wide range of PLL methods have been proposed, which aim at further improving
their predictive performance. Typically, different PLL classifiers perform best on different
datasets. In this sense, having extensions that are applicable to a multitude of different
PLL algorithms is extremely beneficial. These extensions include feature selection and
candidate cleaning techniques, which clean the instance space and candidate label space,
respectively. However, many of these extensions depend on heuristics.

In contrast, this article proposes a novel method that alternates between training a PLL
classifier through empirical risk minimization and pruning the candidate sets using con-
formal prediction, which output sets of possible labels that contain the correct label with a
specified confidence level (Lei, 2014; Sadinle et al., 2019). In our pruning step, we remove
candidate labels if they are not part of these predicted conformal sets. This principled
way of reducing the candidate set ambiguity benefits the training of the PLL classifier
when compared to the existing heuristic thresholds. Our extension significantly improves
the prediction quality of several state-of-the-art PLL methods across a variety of datasets
and experimental settings. To guarantee the validity of the conformal classifier used in
the pruning step, one usually requires a labeled validation set for the calibration of the
coverage guarantee. In the PLL setting, however, ground truth is unavailable. To resolve
this serious issue, we propose a strategy that trains a PLL classifier, uses its predictions to
label the validation set, calibrates the conformal sets with the validation set, and prunes
candidate labels that are not part of these conformal sets. We show that our method
preserves the conformal validity with respect to the unknown ground truth.
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6. Partial-Label Learning with Conformal Candidate Cleaning

Contributions. Our contributions can be summarized as follows.

• Algorithm. We propose a novel candidate cleaning method that alternates between
training a PLL classifier and pruning the PLL candidate sets. Our algorithm sig-
nificantly improves the predictive performance of several state-of-the-art PLL ap-
proaches.

• Experiments. Extensive experiments on artificial and real-world partially labeled data
support our claims. An ablation study further demonstrates the usefulness of the
proposed strategy. Our code and data are openly available.

• Theoretical analysis. We analyze our method and show that the pruning step yields
valid conformal sets.

Outline. Section 6.2 contains relevant background information on conformal prediction,
Section 6.3 details our contributions, and Section 6.4 shows our experimental setup and
results. All proofs are in Section 6.5. Appendix C.1 and C.2 contain supplementary material
for our proofs, Appendix C.3 lists all hyperparameters used within our experiments in
detail, and Appendix C.4 contains additional experiments.

6.2. Background

Recent methods in supervised multi-class classification (Lei, 2014; Barber et al., 2023;
Mozannar et al., 2023; Mao et al., 2024; Narasimhan et al., 2024) explore training set-valued
predictors 𝐶 : X → 2Y rather than single-label classifiers as they offer more flexibility in
representing the uncertainty involved in prediction-making.

In conformal prediction, classifiers output sets of class labels 𝐶 (𝑥) ⊆ Y. Valid conformal
predictors guarantee that

P𝑋𝑌 (𝑌 ∈ 𝐶 (𝑋 )) ≥ 1 − 𝛼 , (6.1)

which means that the correct label is part of a conformal set with a given error level
of at most 𝛼 ∈ (0, 1). The conformal predictor 𝐶 that outputs 𝐶 (𝑥) = Y, for 𝑥 ∈ X, is
trivially valid as it covers the correct label with a probability of one. To avoid this case, one
searches for conformal predictors 𝐶 with minimal expected cardinality E𝑋 |𝐶 (𝑋 ) |, while
still being valid. In the supervised setting, this is captured by the following optimization
problem (Sadinle et al., 2019):

min
𝐶 :X→2Y

E𝑋 |𝐶 (𝑋 ) | subject to P𝑋𝑌 (𝑌 ∈ 𝐶 (𝑋 )) ≥ 1 − 𝛼 . (6.2)

Optimal solutions to (6.2) are of the form𝐶 (𝑥) = {𝑦 ∈ Y : P𝑌 |𝑋=𝑥 (𝑌 = 𝑦) ≥ 𝑡𝛼 }, for 𝑥 ∈ X,
where 𝑡𝛼 is set to

𝑡𝛼 = sup
{
𝑡 ∈ [0, 1] : P𝑋𝑌

[(𝑥,𝑦) : P𝑌 |𝑋=𝑥 (𝑌 = 𝑦) ≥ 𝑡 ] ≥ 1 − 𝛼}
, (6.3)
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where we assume that the quantile function of P𝑌 |𝑋=𝑥 (𝑌 = 𝑦) is continuous at 𝑡𝛼 .1 In
practice, one approximates 𝑡𝛼 by computing the empirical distribution function on a hold-
out validation set. One splits the datasetD into a datasetD𝑡 for model training andD𝑣 for
calibrating the conformal predictor𝐶 with respect to the confidence level 𝛼 . The validation
set D𝑣 is assumed to be exchangeable with respect to the joint distribution P𝑋𝑌 .

Conformal prediction is also a natural fit to PLL as both deal with sets of class labels.
Javanmardi et al. (2023) examine different ways of achieving valid conformal sets in the
PLL context. However, they do not propose any new PLL method against which we can
compare. Rather, they analyze the properties of different non-conformity measures in this
context. In contrast, our focus is on constructing and evaluating new PLL methods.

In the subsequent section, we propose a novel candidate cleaning method that is based on
conformal prediction and adapts (6.2) to the PLL setting to yield valid conformal sets. The
optimization problem (6.2) cannot directly be transferred to the PLL context as ground
truth for the calibration of the validity property is unavailable. We propose a strategy that
uses the PLL classifier to label the validation set and then leverages these pseudo-labels for
calibration. We show that this preserves the validity with respect to the ground truth.

6.3. PLL with Conformal Candidate Cleaning

We propose a novel candidate cleaning strategy that iteratively cleans the candidate sets
of the PLL dataset D by reducing the candidate set cardinalities. Our method alternates
between training a PLL classifier through empirical risk minimization and pruning the
candidate sets based on conformal prediction. Conformal predictors𝐶 : X → 2Y cover the
correct label 𝑦𝑖 of instance 𝑥𝑖 with a specified probability; see (6.1). This coverage property
is calibrated using a separate validation set of exchangeable PLL data points that are labeled
using the trained PLL algorithm. As the classifier can give wrong predictions, however,
we propose a novel correction strategy that accounts for possible misclassifications when
calibrating the coverage of the correct labels against the validation set, which maintains
the validity guarantee. We remove class labels from the candidate sets 𝑠𝑖 if they are not part
of the predicted conformal set 𝐶 (𝑥𝑖) since the correct label 𝑦𝑖 is in 𝐶 (𝑥𝑖) with a specified
confidence level.

This procedure iteratively removes noise from incorrect candidate labels, which benefits
the training of the PLL classifier by having to account for less and less noise in each
training step. Many PLL algorithms (Lv et al., 2020; Xu et al., 2023; Tian et al., 2024)
proceed in a similar manner. They have in common that they alternate between training
a PLL classifier and using its predictions to refine the candidate label weights. This can
equivalently be expressed from an expectation-maximization perspective (Wang et al.,
2022, Section 5). These label propagation strategies are state-of-the-art in many weakly
supervised learning domains. In contrast to the existing heuristic update rules, however,

1 See Sadinle et al. (2019, Theorem 1) for the general case.
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6. Partial-Label Learning with Conformal Candidate Cleaning

our proposed method provides a principled way of iteratively cleaning the candidate sets
using conformal predictors 𝐶 .

In the following sections, we discuss our method in detail. Section 6.3.1 elaborates on the
notion of conformal validity in the PLL context, Section 6.3.2 details how to correct for the
ambiguity in PLL compared to the supervised setting, Section 6.3.3 outlines the proposed
algorithm, Section 6.3.4 discusses the method’s runtime complexity, and Section 6.3.5
discusses the placement of our method with respect to related work.

6.3.1. PLL Validity

Since we use the conformal predictions 𝐶 (𝑥𝑖) to clean the associated candidate sets 𝑠𝑖 , for
(𝑥𝑖, 𝑠𝑖) ∈ D, we require that 𝑠𝑖 ∩𝐶 (𝑥𝑖) is nonempty with a specified confidence level as
otherwise 𝐶 (𝑥𝑖) does not contain the unknown correct label 𝑦𝑖 . Hence, we adapt (6.1) to
our setting and consider a conformal classifier 𝐶 valid with respect to the PLL candidate
sets if it holds that

P𝑋𝑆 (𝑆 ∩𝐶 (𝑋 ) ≠ ∅) ≥ 1 − 𝛼 , (6.4)

for a given error level 𝛼 ∈ (0, 1). In other words, conformal predictions𝐶 (𝑥𝑖) need to cover
the observed ambiguously labeled candidate sets 𝑠𝑖 with a specified probability. Recall
that 𝐶 (𝑥) = Y, for 𝑥 ∈ X, trivially satisfies (6.4). One therefore also wants to minimize
the cardinalities |𝐶 (𝑥) |. Given the standard PLL assumption that the correct label 𝑦𝑖 is
within the respective candidate set 𝑠𝑖 , which implies that P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆) = 1 for any
(𝑥,𝑦) ∈ X ×Y, an optimal solution to (6.2) is also valid in the sense of (6.4). Theorem 6.3.1
captures this relationship and underpins our proposed cleaning method, which we detail
in Section 6.3.3.

Theorem 6.3.1. Assume that P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆) = 1, for any (𝑥,𝑦) ∈ X ×Y, and 𝛼 ∈ (0, 1).
Then, an optimal solution 𝐶 of (6.2) satisfies (6.4): P𝑋𝑆 (𝑆 ∩𝐶 (𝑋 ) ≠ ∅) ≥ 1 − 𝛼 .

6.3.2. Correcting for Misclassification

Recall that, in the PLL setting, the ground-truth labels 𝑦 are unavailable during training,
which hinders the approximation of (6.3) needed for the solution of (6.2). Because a
solution to (6.2) is, however, also desirable in the PLL setting (Theorem 6.3.1), we make
use of existing PLL algorithms to generate pseudo-labels. This strategy iteratively learns a
prediction model 𝑓 : X → [0, 1]𝑘 that minimizes the empirical risk in (2.5). We use the
trained model 𝑓 to predict the labels on the validation set D𝑣 , which in turn is used for
the calibration of the validity guarantee. Notably, this strategy results in a valid conformal
predictor (Theorem 6.3.4). We note that it remains open to establish the minimality of the
resulting conformal sets (analogous to solutions of (6.2)).

At first glance, it might be counter-intuitive to use the trained model 𝑓 to label the
validation set and build conformal sets based on it. However, we want to recall that the
used base PLL classifier is risk consistent (Feng et al., 2020, Theorem 4). With this result
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and additional mild assumptions, we can prove that the PLL classifier’s predictions cannot
be arbitrarily bad (Lemma 6.3.3) and, leveraging this, that our conformal predictor is valid
for some adapted threshold and error level (Theorem 6.3.4).

One of our central assumptions is a Bernstein condition (Audibert, 2004; Bartlett and
Mendelson, 2006; Grünwald and Mehta, 2020) on the loss difference (Assumption 6.3.2).
The Bernstein condition is defined as follows.

Assumption 6.3.2 (Bernstein Condition). Let 𝐵 > 0, 𝛽 ∈ (0, 1], 𝑓 ∗ = arg min𝑓 ∈H 𝑅(𝑓 ) the
true risk minimizer, and ℓ : [0, 1]𝑘 × Y → R≥0 a loss function. We assume that the excess
loss 𝐿𝑓 (𝑥,𝑦) := ℓ (𝑓 (𝑥), 𝑦) − ℓ (𝑓 ∗(𝑥), 𝑦) satisfies the (𝛽, 𝐵)-Bernstein condition, that is, for
𝑓 ∈ H ,

E𝑋𝑌

[
𝐿𝑓 (𝑋,𝑌 )2

] ≤ 𝐵
(
E𝑋𝑌

[
𝐿𝑓 (𝑋,𝑌 )

] )𝛽 .

Assumption 6.3.2 is frequently made in ERM as it allows controlling the variance of the re-
sulting losses, since Var𝑋𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 )] ≤ E𝑋𝑌 [(ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 ))2].
In other words, the tail of the distribution of the excess loss must be well-behaved.

Building upon Assumption 6.3.2, we prove the results in the following Lemma 6.3.3, which
are the main building blocks underlying the proof of our main result.

Lemma6.3.3. Let 𝑓 = arg min𝑓 ∈H 𝑅(𝑓 ) the empirical riskminimizer, 𝑓 ∗ = arg min𝑓 ∈H 𝑅(𝑓 )
the true risk minimizer, 𝑦𝑥 = arg max𝑦 𝑓𝑦 (𝑥), 𝑦∗𝑥 = arg max𝑦 𝑓 ∗𝑦 (𝑥), and Assumption 6.3.2
hold for the excess loss 𝐿𝑓 .

(i) Then, for any 𝛿1 ∈ (0, 1) and some constant 𝑀1 > 0, it holds, with P𝑛-probability at
least 1 − 𝛿1, that

E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
≤ 𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

,

assuming that ℓ : (0, 1]𝑘 × Y → R≥0, (𝑝,𝑦) ↦→ − log 𝑝𝑦 is the log-loss.

(ii) Also, for any 𝛿2 ∈ (0, 1) and some constant 𝑀2 > 0, it holds, with P𝑛-probability at
least 1 − 𝛿2, that

P𝑋
[
𝑦𝑋 ≠ 𝑦∗𝑋

] ≤ 𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

,

given that, for any 𝑥 ∈ X and some constant 𝛿5 ∈ [0, 1), P𝑌 |𝑋=𝑥
(
𝑌 ∈ {𝑦𝑥 , 𝑦∗𝑥 }

) ≥ 1−𝛿5.

Intuitively, Lemma 6.3.3 (𝑖) and (𝑖𝑖) state that, under mild assumptions, a consistent
PLL classifier cannot, in expectation, provide arbitrarily bad predictions. More precisely,
Lemma 6.3.3 (𝑖) states that the expected absolute difference in the probabilistic predictions
of the empirical and true risk minimizer are upper-bounded. Lemma 6.3.3 (𝑖𝑖) states that
the probability of class label predictions of the empirical and true risk minimizer not
matching is upper-bounded. Note that, for 𝑛 →∞, both upper-bounds tend to zero.
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In the following, we comment on the assumptions made. Lemma 6.3.3 (𝑖) requires the
loss function to be the log-loss as it is a local proper loss function (Gneiting and Raftery,
2007), that is, ℓ is a proper loss function that only uses the 𝑦-th entry of the vector 𝑝 in
the computation of ℓ (𝑝,𝑦), which we use in our proof. Lemma 6.3.3 (𝑖𝑖) requires that
the correct label 𝑦∗𝑥 and pseudo-label 𝑦𝑥 have some lower-bound for their conditional
probability mass. Intuitively, the assumption captures that the true class posterior of the
correct label 𝑦∗𝑥 must have a probability mass that is not arbitrarily close to zero.

Based on the upper bounds in Lemma 6.3.3, one can adapt the threshold and confidence
levels in (6.2) and (6.3) such that the conformal guarantee is still valid when using the
pseudo-labels on the validation set. Theorem 6.3.4 states this result.

Theorem 6.3.4. Assume the setting of Lemma 6.3.3 (𝑖) and (𝑖𝑖) and, for any 𝛿6 ∈ (0, 1),
P𝑌 |𝑋=𝑥 (𝑌 = 𝑦∗𝑋 ) ≥ 1 − 𝛿6 with 𝑦∗𝑋 = arg max𝑦′∈Y 𝑓 ∗𝑦 (𝑋 ). For any 𝛼 ∈ (0, 1), let

𝑡𝛼 = sup{𝑡 ∈ [0, 1] | 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡) ≤ 𝛼}, (6.5)

with 𝑦𝑥 = arg max𝑦∈Y 𝑓𝑦 (𝑥). Then, the conformal set

𝐶 (𝑥) = {𝑦 ∈ Y | 𝑓𝑦 (𝑥) ≥ 𝑡𝛼 − 𝛿3} (6.6)

is valid, that is, P𝑋 (𝑦∗𝑋 ∈ 𝐶 (𝑋 )) ≥ 1−𝛼′𝑛 holds with a P𝑛-probability of at least 1−(𝛿1+𝛿2+𝛿4),
where, for any 𝛿1, 𝛿2, 𝛿4 ∈ (0, 1) and some constants 𝛽 ∈ (0, 1], 𝐵, 𝛿3, 𝑀1, 𝑀2 > 0,

𝛼′𝑛 := 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

+𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

+ 𝛼 +
(
log(2/𝛿4)

2𝑛

) 1
2
.

Intuitively, the tighter the upper bounds in Lemma 6.3.3 are, the smaller the necessary
correction of the threshold and confidence level in Theorem 6.3.4. In other words, loose
upper bounds in Lemma 6.3.3 lead to high cardinalities of 𝐶 (𝑥) in (6.6). In contrast, tight
upper bounds in Lemma 6.3.3 lead to small cardinalities of 𝐶 (𝑥) in (6.6). The following
Remark 6.3.5 details how to obtain conformal validity for a fixed error level.
Remark 6.3.5. Alternatively, one obtains a fixed error level 𝛼2 ∈ (0, 1) in Theorem 6.3.4,
that is, P𝑋 (𝑦∗𝑋 ∈ 𝐶 (𝑋 )) ≥ 1 − 𝛼2, by using

𝛼′′ = 𝛼2 − 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

−𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

−
(
log(2/𝛿4)

2𝑛

) 1
2

, (6.7)

in the computation of the threshold 𝑡𝛼 ′′ in (6.5).

While Remark 6.3.5 follows from a simple substitution, it explicitly links Theorem 6.3.4 to
the setting usually considered in conformal prediction: One wants to have a conformal
predictor that is valid regarding some specified confidence level 𝛼2, which Remark 6.3.5
achieves by using an altered 𝛼′′ in the computation of 𝑡𝛼 ′′ . If 𝛼′′ ≤ 0, the resulting
conformal predictor defaults to 𝐶 (𝑥) = Y, for 𝑥 ∈ X, which is valid. In contrast, given
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Algorithm 3 Conformal Candidate Cleaning

Input: PLL dataset D = {(𝑥𝑖, 𝑠𝑖) ∈ X ×2Y : 𝑖 ∈ [𝑛]}; conformal error level 𝛼 ∈ (0, 1);
number of epochs 𝑅; number of warm-up rounds 𝑅warmup;

Output: Predictor 𝑓 : X → [0, 1]𝑘 ,
∑

𝑦∈Y 𝑓𝑦 (𝑥) = 1;
1: (D𝑡 ,D𝑣 ) ← Partition D into D𝑡 for model training and D𝑣 for calibrating the con-

formal sets;
2: 𝑛′← | D𝑡 |;
3: (𝑓 , 𝜃 ) ← Initialize model 𝑓 and its weights 𝜃 ;
4: (𝑤𝑖 𝑗 )𝑖∈[𝑛′], 𝑗∈[𝑘] ← 1/|𝑠𝑖 | if 𝑗 ∈ 𝑠𝑖 , else 0;
5: for 𝑟 = 1, . . . , 𝑅 do

6: ⊲ Update predictions on the validation set
7: S ← {max𝑦∈𝑠𝑖 𝑓𝑦 (𝑥𝑖 ;𝜃 ) : (𝑥𝑖, 𝑠𝑖) ∈ D𝑣 };
8: ⊲ Update 𝑓 ’s weights 𝜃
9: 𝑅(𝑓 ;𝑤, 𝜃 ) ← − 1

𝑛′
∑𝑛′

𝑖=1
∑𝑘

𝑗=1𝑤𝑖 𝑗 log 𝑓 𝑗 (𝑥𝑖 ;𝜃 );
10: Update 𝜃 by backpropagation on−∇𝑅(𝑓 ;𝑤, 𝜃 );
11: ⊲ Clean candidate sets 𝑠𝑖
12: if 𝑟 ≥ 𝑅warmup then

13: 𝛼𝑟 ← Estimate the adapted error level in (6.7);
14: for (𝑥𝑖, 𝑠𝑖) ∈ D𝑡 do

15: 𝐶 (𝑥𝑖) ← Construct the conformal predictor as defined in (6.6) using S and 𝛼𝑟 ;
16: if 𝑠𝑖 ∩𝐶 (𝑥𝑖) ≠ ∅ then
17: 𝑠𝑖 ← 𝑠𝑖 ∩𝐶 (𝑥𝑖);
18: ⊲ Update label weights𝑤𝑖 𝑗

19: (𝑤𝑖 𝑗 )𝑖∈[𝑛′], 𝑗∈[𝑘] ← 𝑓𝑗 (𝑥𝑖 )∑
𝑗′ ∈𝑠𝑖 𝑓𝑗′ (𝑥𝑖 )

if 𝑗 ∈ 𝑠𝑖 , else 0;
20: return predictor 𝑓 ( · ;𝜃 );

some confidence level 𝛼 , Theorem 6.3.4 gives a conformal predictor that is valid with the
confidence level 𝛼′𝑛 ≠ 𝛼 .

Theorem 6.3.4 enables our proposed algorithm. When using a consistent PLL classifier
to label the validation set, a conformal predictor with a threshold set based on these
pseudo-labels still satisfies a conformal validity guarantee for an adapted threshold and
error level. The subsequent section discusses our approach.

6.3.3. Proposed Algorithm

Based on the conformal predictor in Theorem 6.3.4, we propose a novel candidate cleaning
strategy that alternates between training a neural-network-based PLL classifier and prun-

53



6. Partial-Label Learning with Conformal Candidate Cleaning

ing the candidate labels by conformal prediction. We outline our method in Algorithm 3.
In the following, we provide an overview. Thereafter, we discuss all parts in detail.

First, we randomly partition the dataset D into D𝑡 for training the model and D𝑣 for
calibrating the conformal predictor 𝐶 based on the current state of the prediction model 𝑓
(Line 1). The training set consists of 80 % and the validation set of 20 % of all instances. We
initialize the model 𝑓 and the label weights 𝑤𝑖 𝑗 in Lines 3–4. Lines 5–23 contain the main
training loop, which can be divided into four phases: (1) Updating the predictions on the
validation set D𝑣 for calibration (Lines 6–7), (2) updating the model’s weights 𝜃 through
backpropagation (Lines 8–10), (3) cleaning the candidate sets 𝑠𝑖 based on the predicted
conformal sets 𝐶 (𝑥𝑖) (Lines 11–20), and (4) updating the label weights 𝑤𝑖 𝑗 (Lines 21–22).
We detail these phases in the following.

In phase 1 (Lines 6–7), we use the current model 𝑓 to predict the labels on the hold-out
validation set D𝑣 , which are required for the computations in phase 3.

In phase 2 (Lines 8–10), we update the model weights 𝜃 of the neural network 𝑓 by
performing backpropagation on the risk term (2.5). As our candidate cleaning method is
agnostic to the concrete PLL classifier used, one can also use other commonly-used PLL
strategies instead.

In phase 3 (Lines 11–18), we compute the conformal predictor 𝐶 , which is used to clean
the candidate sets. After completing 𝑅warmup warm-up epochs, we start with our pruning
procedure. In Line 13, we compute 𝛼𝑟 for the current epoch 𝑟 . While it is desirable to use
the exact value of 𝛼′′ in (6.7) in Line 13 of Algorithm 3, its computation is unfortunately
infeasible as the constants 𝐵 and 𝛽 , for which the Bernstein condition (Assumption 6.3.2)
holds, cannot be known unless the true distribution P𝑋𝑌 is known. As the employed
PLL classifiers are consistent, that is, they converge to the Bayes classifier with enough
samples, we approximate the estimation error terms in (6.7) by the probability mass that
the PLL classifier allocates on false class labels, that is, class labels that are not part of
the candidate sets and hence cannot be the correct label. Given (𝑥𝑖, 𝑠𝑖) ∈ D𝑡 , we set
𝛼𝑟 =

1
𝑛′

∑𝑛′
𝑖=1

∑
𝑗∉𝑠𝑖 𝑓 𝑗 (𝑥𝑖) with 𝑛′ = | D𝑡 |. Then, we compute the conformal prediction sets

𝐶 (𝑥𝑖) in Line 15 for all training instances (𝑥𝑖, 𝑠𝑖) ∈ D𝑡 using the empirical distribution
function of the adapted scores on the validation set; this conformal predictor 𝐶 is valid by
Theorem 6.3.4. We use the conformal sets𝐶 (𝑥𝑖) to prune the candidate sets 𝑠𝑖 . If𝐶 (𝑥𝑖) and
𝑠𝑖 have a nonempty intersection, which is implied with high probability by the conformal
validity (Theorem 6.3.1), we assign 𝑠𝑖 ∩𝐶 (𝑥𝑖) to 𝑠𝑖 in Line 17.

Finally, in phase 4 (Lines 21–22), we update the label weights 𝑤𝑖 𝑗 based on the cleaned
candidate sets 𝑠𝑖 with (2.6).

6.3.4. Runtime Analysis

The main runtime cost of our cleaning method arises from the computation of the conformal
sets 𝐶 (𝑥𝑖) in Line 15 of Algorithm 3. Finding the rank of 𝑓𝑦 (𝑥𝑖) within S can be done by
first sorting S and then using a binary search. This requires a total runtime of O(𝑅𝑛 log𝑛),
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as we prune candidate labels in each epoch and, both, the training set D𝑡 and validation
set D𝑣 have a size of O(𝑛). Note that the runtime of our method is not dependent on the
number of feature dimensions 𝑑 as the considered scores S are scalars.

6.3.5. Placement regarding Related Work

In this section, we provide a brief comparison of our cleaning strategy with the one
employed by Pop (Xu et al., 2023). Pop uses level sets, which we sketch in the following.
Let 𝑒 > 0, (𝑥𝑖, 𝑠𝑖) ∈ D, the predicted label 𝑦𝑥𝑖 = arg max 𝑗∈𝑠𝑖 𝑓 𝑗 (𝑥𝑖), and the second-most
likely label 𝑜𝑥𝑖 = arg max 𝑗∈𝑠𝑖 , 𝑗≠𝑦 𝑓 𝑗 (𝑥𝑖). The level sets are of the form 𝐿(𝑒) = {𝑥 ∈ X :
𝑓𝑦𝑥 (𝑥) − 𝑓𝑜𝑥 (𝑥) ≥ 𝑒} to gradually clean the candidate labels for instances in 𝐿(𝑒). In other
words, one is confident in the predicted labels if the distance between the most likely and
second-most likely label exceeds some margin. Given 𝑥 ∈ 𝐿(𝑒), this implies

𝑓𝑦𝑥 (𝑥) − 𝑓𝑜𝑥 (𝑥) ≥ 𝑒
(†)⇔ 2𝑓𝑦𝑥 (𝑥) − 1 +

∑︁
𝑗 ′∈Y \{𝑦𝑥 ,𝑜𝑥 }

𝑓 𝑗 ′ (𝑥)︸               ︷︷               ︸
≤1

≥ 𝑒 ⇒ 𝑓𝑦𝑥 (𝑥) ≥
1
2𝑒 , (6.8)

with (†) holding as 𝑓𝑜𝑥 (𝑥) = 1 −∑
𝑗 ′∈Y \{𝑦𝑥 ,𝑜𝑥 } 𝑓 𝑗 ′ (𝑥) − 𝑓𝑦𝑥 (𝑥). Pop gradually decreases the

value of 𝑒 to enlarge the reliable region 𝐿(𝑒), which in turn requires 𝑓𝑦𝑥 (𝑥) ≥ 1
2𝑒 by (6.8).

In contrast, in Theorem 6.3.4, we find an appropriate value 𝑡 such that 𝑓𝑦𝑥 (𝑥) ≥ 𝑡 holds
with a specified probability. The conformal predictor 𝐶 can therefore also be interpreted
as a level set. However, our approach satisfies the conformal validity guarantee.

6.4. Experiments

Section 6.4.1 lists all PLL methods that we compare against, Section 6.4.2 summarizes the
experimental setup, and Section 6.4.3 shows our results.

6.4.1. Algorithms for Comparison

In our experiments, we benchmark six state-of-the-art PLL methods. These are Proden
(Lv et al., 2020), Cc (Feng et al., 2020), Valen (Xu et al., 2021), Cavl (Zhang et al., 2022a),
Pop (Xu et al., 2023), and CroSel (Tian et al., 2024). For each dataset, we use the same
base models across all approaches. For the colored-image datasets, we use a ResNet-9
architecture (He et al., 2016). Else, we use a standard 𝑑-300-300-300-𝑘 MLP (Werbos, 1974).
We train all models from scratch. An in-depth overview of all hyperparameters is in
Appendix C.3. Appendix C.4 contains additional experiments, including the use of the
pre-trained Blip-2 model (Li et al., 2023) on the vision datasets.
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6.4.2. Experimental Setup

Data. Using the standard PLL experimentation protocol (Lv et al., 2020; Zhang et al.,
2022a; Tian et al., 2024), we perform experiments on real-world PLL datasets and on
supervised datasets with artificially added incorrect candidate labels. To report averages
and standard deviations, we repeat all experiments five times with different seeds. For the
supervised multi-class datasets, we use mnist (LeCun et al., 1999), fmnist (Xiao et al., 2018),
kmnist (Clanuwat et al., 2018), cifar10 (Krizhevsky, 2009), cifar100 (Krizhevsky, 2009), and
svhn (Netzer et al., 2011). Regarding the real-world PLL datasets, we use bird-song (Briggs
et al., 2012), lost (Cour et al., 2011), mir-flickr (Huiskes and Lew, 2008), msrc-v2 (Liu and
Dietterich, 2012), soccer (Zeng et al., 2013), and yahoo-news (Guillaumin et al., 2010). An
overview of the dataset characteristics is in Appendix C.3.

Candidate generation. As is common in related work, we use two kinds of candidate
label generation methods to augment labeled multi-class data with partial labels: Uni-
form (Hüllermeier and Beringer, 2005; Liu and Dietterich, 2012) and instance-dependent
(Xu et al., 2021). For cifar10 and cifar100, we use the uniform generation strategy as
in Wang et al. (2022) and the instance-dependent strategy for all other datasets. For
adding instance-dependent candidate labels, we first train a supervised MLP classifier
𝑔 : X → [0, 1]𝑘 . Then, given an instance 𝑥 ∈ X with correct label 𝑦 ∈ Y, we add the
incorrect label 𝑦 ∈ Y \{𝑦} to the candidate set 𝑠 with a binomial flipping probability of
𝜉𝑦 (𝑥) = 𝑔𝑦 (𝑥)/max𝑦′∈Y \{𝑦} 𝑔𝑦′ (𝑥). For cifar10, we use a constant flipping probability of
𝜉𝑦 (𝑥) = 0.1. In the cifar100 dataset, all class labelsY are partitioned into 20 categories (for
example, aquatic mammals consisting of the labels beaver, dolphin, otter, seal, and whale)
and we use a constant flipping probability of 𝜉𝑦 (𝑥) = 0.1 if 𝑦 and 𝑦 belong to the same
category, else we set 𝜉𝑦 (𝑥) = 0.

6.4.3. Results

Predictive performance. Table 6.1 presents the average test-set accuracies for all competi-
tors on all datasets. We benchmark our conformal candidate cleaning technique combined
with all approaches in Section 6.4.1, which is marked by Conf+Method. An overview of
significant differences is in Table 6.2. There, we compare the respective method to all the
other approaches. All significance tests use a paired t-test with a confidence level of 5 %.

The approaches Conf+Proden, Conf+Pop, and Conf+CroSel that combine the respective
approaches with our candidate cleaning strategy win most often (Table 6.2). Conformal
candidate cleaning makes Proden win 18 more direct comparisons, Pop win 17 more direct
comparisons, and CroSel win 13 more direct comparisons advancing the state-of-the-art
prediction performance. These methods significantly benefit from our pruning.

The approaches Cc, Valen, and Cavl yield similar performances when combined with
conformal candidate cleaning. For Valen and Cavl, we attribute this to the fact that their
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Table 6.1.: Average test-set accuracies (std.) on the real-world datasets (top) and the supervised datasets with
added candidate labels (bottom). We benchmark our strategy (Conf+) combined with all existing methods.

Method bird-song lost mir-flickr msrc-v2 soccer yahoo-news

Proden (2020) 75.55 (1.08) 78.94 (3.01) 67.05 (1.18) 54.33 (1.76) 54.18 (0.55) 65.25 (1.00)
Conf+P. (no) 76.27 (0.94) 79.56 (1.96) 66.07 (1.63) 53.00 (2.24) 54.63 (0.81) 65.42 (0.36)
Conf+Proden 76.99 (0.90) 80.09 (4.40) 66.91 (1.57) 54.60 (3.42) 54.77 (0.84) 65.93 (0.42)

Cc (2020) 74.49 (1.57) 78.23 (2.11) 62.39 (1.87) 50.96 (2.03) 55.28 (0.96) 65.03 (0.51)
Conf+Cc 75.01 (1.84) 79.38 (1.79) 63.37 (0.45) 52.45 (3.64) 55.52 (0.74) 64.35 (0.64)

Valen (2021) 72.30 (1.83) 70.18 (3.44) 67.05 (1.48) 49.20 (1.37) 53.20 (0.88) 62.25 (0.45)
Conf+Valen 71.22 (1.03) 68.41 (2.95) 61.61 (2.79) 48.37 (2.24) 52.49 (1.00) 62.16 (0.74)

Cavl (2022) 69.78 (3.00) 72.12 (1.08) 65.02 (1.34) 52.67 (2.32) 55.06 (0.48) 61.91 (0.46)
Conf+Cavl 72.00 (1.22) 71.24 (3.81) 64.42 (0.89) 51.63 (5.03) 54.85 (0.92) 62.43 (0.43)

Pop (2023) 75.17 (1.04) 77.79 (2.11) 67.93 (1.44) 53.83 (0.69) 55.31 (0.71) 65.09 (0.64)
Conf+Pop 77.58 (1.01) 78.41 (2.13) 66.21 (2.19) 54.82 (3.60) 56.49 (1.10) 65.25 (0.23)

CroSel (2024) 75.11 (1.79) 81.24 (3.68) 67.58 (1.16) 52.23 (2.83) 52.64 (1.21) 67.72 (0.32)
Conf+CroSel 77.76 (0.50) 81.15 (2.57) 65.93 (1.94) 54.10 (2.75) 54.97 (0.65) 67.55 (0.22)

Method mnist fmnist kmnist svhn cifar10 cifar100

Proden (2020) 87.21 (0.83) 71.18 (2.95) 59.31 (1.22) 83.71 (0.37) 86.42 (0.39) 61.58 (0.20)
Conf+P. (no) 91.74 (0.34) 78.38 (0.50) 66.88 (0.76) 87.31 (0.30) 85.39 (0.49) 61.50 (0.20)
Conf+Proden 91.55 (0.23) 78.09 (0.33) 66.43 (0.38) 86.99 (0.41) 85.29 (0.44) 61.45 (0.49)

Cc (2020) 86.29 (2.18) 66.19 (2.77) 58.29 (0.32) 83.40 (0.42) 85.61 (0.27) 60.43 (0.53)
Conf+Cc 85.20 (4.16) 59.75 (2.68) 57.07 (0.66) 84.32 (0.31) 84.10 (0.38) 60.49 (0.37)

Valen (2021) 78.91 (0.80) 66.53 (2.65) 58.48 (0.45) 54.87 (15.83) 84.83 (0.23) 58.67 (0.17)
Conf+Valen 74.20 (21.99) 69.09 (2.71) 60.95 (2.59) 78.31 (3.15) 84.35 (0.22) 59.57 (0.71)

Cavl (2022) 71.11 (3.92) 59.85 (6.49) 48.15 (5.07) 72.57 (3.14) 84.00 (0.94) 61.97 (0.25)
Conf+Cavl 71.86 (4.57) 59.54 (6.62) 52.14 (3.89) 70.53 (2.94) 82.82 (1.58) 61.79 (0.36)

Pop (2023) 87.08 (0.58) 72.30 (2.63) 60.63 (1.15) 83.69 (0.28) 86.76 (0.29) 61.27 (0.60)
Conf+Pop 91.19 (0.29) 79.15 (1.23) 67.37 (0.28) 85.89 (0.48) 85.32 (0.38) 61.38 (0.30)

CroSel (2024) 91.84 (0.44) 76.34 (1.21) 65.55 (0.81) 75.95 (3.91) 87.32 (0.22) 63.69 (0.29)
Conf+CroSel 91.85 (0.61) 77.31 (0.46) 64.73 (1.52) 77.70 (3.84) 87.05 (0.09) 64.55 (0.31)

methods already use pseudo-labeling internally, that is, they treat the most likely label as
the possible correct label, which diminishes the positive effect of pruning candidates.

Ablation study. Additionally, we perform an ablation experiment regarding our correction
method proposed in Theorem 6.3.4. The approach Conf+Proden (no correction) uses
conformal predictions based on the labels provided by the PLL classifier without our
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Table 6.2.: Number of significant differences compared to all six methods on all twelve datasets using a
paired student t-test (level 5 %).

Comparison vs. all others Wins Ties Losses

Proden (2020) 26 36 10
Conf+Proden (no correction) 37 24 11
Conf+Proden 44 21 7

Cc (2020) 17 36 19
Conf+Cc 19 28 25

Valen (2021) 3 31 38

Conf+Valen 4 26 42

Cavl (2022) 8 28 36

Conf+Cavl 5 29 38

Pop (2023) 27 38 7
Conf+Pop 44 22 6

CroSel (2024) 36 29 7
Conf+CroSel 49 19 4

proposed correction method, which is equivalent to a fixed 𝛼𝑟 . Table 6.2 shows that, while
Conf+Proden (no correction) is already a significant improvement over Proden, our
PLL correction strategy improves performance even further by incorporating the possible
approximation error of the trained classifier. We limit our ablation study to Proden due
to runtime constraints.

Our experiments show that the proposed method yields significant improvements over a
wide range of existing PLL models (Proden, Pop, and CroSel) and advances the state-of-
the-art prediction performance with the method Conf+CroSel.

6.5. Proofs

This section collects our proofs. Section 6.5.1 contains the proof of Theorem 6.3.1, Sec-
tion 6.5.2 that of Lemma 6.3.3, and Section 6.5.3 that of Theorem 6.3.4.
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6.5.1. Proof of Theorem 6.3.1

Let 𝐶 be an optimal solution of (6.2). Then, we have

P𝑋𝑆 (𝑆 ∩𝐶 (𝑋 ) ≠ ∅) = 1 − P𝑋𝑆 (𝑆 ∩𝐶 (𝑋 ) = ∅) = 1 − P𝑋𝑆 (∀𝑦 ∈ 𝑆,𝑦 ∉ 𝐶 (𝑋 ))
≥ 1 − P𝑋𝑆 (∃𝑦 ∈ 𝑆,𝑦 ∉ 𝐶 (𝑋 ))
(𝑎)
= 1 −

∑︁
𝑦∈Y

P(𝑌 = 𝑦,𝑦 ∈ 𝑆,𝑦 ∉ 𝐶 (𝑋 )) = 1 − P(𝑌 ∈ 𝑆,𝑌 ∉ 𝐶 (𝑋 ))

(𝑏)
= 1 −

∫
X ×Y

P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆,𝑦 ∉ 𝐶 (𝑥)) d P𝑋𝑌 (𝑥,𝑦)
(𝑐)
= 1 −

∫
X ×Y

P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆)︸                ︷︷                ︸
(𝑑 )
= 1

P𝑆 |𝑋=𝑥,𝑌=𝑦,𝑦∈𝑆 (𝑦 ∉ 𝐶 (𝑥)) d P𝑋𝑌 (𝑥,𝑦)

= 1 −
∫
X ×Y

P𝑆 |𝑋=𝑥,𝑌=𝑦,𝑦∈𝑆 (𝑦 ∉ 𝐶 (𝑥)) d P𝑋𝑌 (𝑥,𝑦)
(𝑒)
= 1 −

∫
X ×Y

P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∉ 𝐶 (𝑥)) d P𝑋𝑌 (𝑥,𝑦)
(𝑓 )
= 1 −

∫
X ×Y

1{𝑦∉𝐶 (𝑥)} d P𝑋𝑌 (𝑥,𝑦)

= 1 − P𝑋𝑌 (𝑌 ∉ 𝐶 (𝑋 )) = P𝑋𝑌 (𝑌 ∈ 𝐶 (𝑋 ))
(𝑔)
≥ 1 − 𝛼 ,

where (𝑎) is implied by the law of total probability holding for the discrete 𝑌 taking
mutually exclusive values in 𝑦 ∈ Y, (𝑏) holds by the tower rule, (𝑐) holds by the chain
rule of conditional probability, (𝑑) holds as P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∈ 𝑆) = 1 for any (𝑥,𝑦) ∈ X ×Y,
(𝑒) holds by independence, (𝑓 ) holds as P𝑆 |𝑋=𝑥,𝑌=𝑦 (𝑦 ∉ 𝐶 (𝑥)) is either one if 𝑦 ∉ 𝐶 (𝑥) or
zero if 𝑦 ∈ 𝐶 (𝑥), and (𝑔) holds by our imposed assumption.

6.5.2. Proof of Lemma 6.3.3

We prove parts (i) and (ii) separately in the following.

Proof of (𝑖). To proof the result, we first show that for any 𝑓 , one has the expectation
bound

E𝑋𝑌

[���𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 )
���] ≤ 𝜆

√
𝐵

2 1
2 𝛽

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

) 1
2 𝛽
, (6.9)

for some constants 𝛽 ∈ (0, 1] and 𝐵, 𝜆 > 0. We then apply a known result (recalled in
Theorem C.2.4) to obtain the stated concentration inequality. The details are as follows.
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To prove (6.9), notice that

E𝑋𝑌

[���𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 )
���] = ((

E𝑋𝑌

[���𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 )
���] )2

) 1
2 (𝑎)≤

(
E𝑋𝑌

[���𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 )
���2] ) 1

2

(𝑏)≤ 𝜆

(
E𝑋𝑌

[���ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 )���2] ) 1
2
= 𝜆

(
E𝑋𝑌

[(
ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 )

)2
] ) 1

2

(𝑐)≤ 𝜆
√
𝐵

(
E𝑋𝑌

[
ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 )

] ) 1
2 𝛽

(𝑑)
= 𝜆
√
𝐵

(
E𝑋𝑌

[
ℓ (𝑓 (𝑋 ), 𝑌 )

]
− E𝑋𝑌 [ℓ (𝑓 ∗(𝑋 ), 𝑌 )]

) 1
2 𝛽

(𝑒)
= 𝜆
√
𝐵

1
2 1

2 𝛽

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

) 1
2 𝛽 ,

using the following observations. (a) is implied by Jensen’s inequality. Next, we note that
𝑧 ↦→ − log(𝑧) satisfies the 𝜆-bi-Lipschitz condition on [𝜖, 1] (Lemma C.1.1), implying���𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 )

��� ≤ 𝜆
���− log

(
𝑓𝑌 (𝑋 )

)
− (− log

(
𝑓 ∗𝑌 (𝑋 )

) ) ���
=

���ℓ (
𝑓 (𝑋 ), 𝑌

)
− ℓ (𝑓 ∗(𝑋 ), 𝑌 )

��� , (6.10)

where we used the definition of ℓ for the equality. Using (6.10) together with the mono-
tonicity of the 𝐿2-norm yields (b). (𝑐) holds by the assumed (𝛽, 𝐵)-Bernstein condition.
The linearity of expectations gives (d) and Theorem C.2.3 yields (e).

Now, to obtain the probabilistic bound, we observe that

P𝑛

(
E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
≤ 𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

)
(6.9)≥ P𝑛

(
𝜆
√
𝐵

1
2 1

2 𝛽

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

) 1
2 𝛽 ≤ 𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

)
(𝑎)
= P𝑛

(
𝜆

2
𝛽 𝐵

1
𝛽

1
2

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

)
≤ 𝑀1

(
log(1/𝛿1)

𝑛

) 1
2
)
(𝑏)≥ 1 − 𝛿1.

In (a), we notice that both sides of the inequality are nonnegative and apply the function
𝑧 ↦→ 𝑧2/𝛽 , which is monotonically increasing on R+. We conclude the proof of part (i) with
an application of Theorem C.2.4 in (b), where we let 𝑀1 = 𝑀𝜆

2
𝛽 𝐵

1
𝛽 1

2 (with 𝑀 defined in
the external result).

Proof of (𝑖𝑖). The proof proceeds in three steps. In step 1, we will show that

E𝑋𝑌

[
1{arg max𝑗∈Y 𝑓𝑗 (𝑋 )≠arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑋 )}

]
≤ 1

1 − 𝛿5
E𝑋𝑌

[(
1{arg max𝑗∈Y 𝑓𝑗 (𝑥)≠𝑦} − 1{arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑥)≠𝑦}

)2
]
,
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6.5. Proofs

which will allow us to obtain, in step 2, that for some constants 𝛽 ∈ (0, 1], 𝐵 > 0 and
𝛿5 ∈ [0, 1), one has

P𝑋

[
arg max

𝑗∈Y
𝑓 𝑗 (𝑋 ) ≠ arg max

𝑗∈Y
𝑓 ∗𝑗 (𝑋 )

]
≤ 𝐵

1 − 𝛿5

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

)𝛽
. (6.11)

The result will then follow by an application of Theorem C.2.4, which we elaborate in step
3. The details are as follows.

Step 1. Note that we have

1
(𝑎)≤ 1

1 − 𝛿5
P𝑌 |𝑋=𝑥

(
𝑌 ∈ {𝑦𝑥 , 𝑦∗𝑥 }

) (𝑏)≤ 1
1 − 𝛿5

∑︁
𝑦∈{𝑦𝑥 ,𝑦∗𝑥 }

P𝑌 |𝑋=𝑥 (𝑌 = 𝑦) , (6.12)

with the assumption used in (a) and a union bound implying (b).

To conclude the first step, we obtain

E𝑋𝑌

[
1{arg max𝑗∈Y 𝑓𝑗 (𝑋 )≠arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑋 )}

]
(𝑎)≤ 1

1 − 𝛿5
E𝑋


∑︁

𝑦∈{𝑦∗
𝑋
,𝑦𝑋 }

P𝑌 |𝑋 (𝑌 = 𝑦)1{𝑦𝑋≠𝑦∗𝑋 }


(𝑏)
=

1
1 − 𝛿5

E𝑋


∑︁

𝑦∈{𝑦∗
𝑋
,𝑦𝑋 }

P𝑌 |𝑋 (𝑌 = 𝑦) (1{𝑦𝑋≠𝑦} − 1{𝑦∗𝑋≠𝑦})
2


(𝑐)≤ 1
1 − 𝛿5

E𝑋


∑︁
𝑦∈Y

P𝑌 |𝑋 (𝑌 = 𝑦) (1{𝑦𝑋≠𝑦} − 1{𝑦∗𝑋≠𝑦})
2


(𝑑)
=

1
1 − 𝛿5

E𝑋𝑌

[(
1{arg max𝑗∈Y 𝑓𝑗 (𝑥)≠𝑦} − 1{arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑥)≠𝑦}

)2
]

, (6.13)

where (a) is implied by (6.12) and the indicator function being nonnegative. For (b), we
must show that 1{𝑦𝑥≠𝑦∗𝑥 } = (1{𝑦𝑥≠𝑦} − 1{𝑦∗𝑥≠𝑦})2 for any (fixed) 𝑥 ∈ X and 𝑦 ∈ {𝑦𝑥 , 𝑦∗𝑥 }; it
suffices to check the three cases.

• If 𝑦 = 𝑦𝑥 = 𝑦∗𝑥 , then 0 = 0,

• if 𝑦𝑥 ≠ 𝑦∗𝑥 and 𝑦 = 𝑦𝑥 , then 1 = 1, and

• if 𝑦𝑥 = 𝑦∗𝑥 and 𝑦 ≠ 𝑦𝑥 , then 1 = 1.

In (c), we add nonnegative terms and (d) holds by the definition of the expectation.
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Step 2. We relax the l.h.s. in (6.11) to

P𝑋

[
arg max

𝑗∈Y
𝑓 𝑗 (𝑋 ) ≠ arg max

𝑗∈Y
𝑓 ∗𝑗 (𝑋 )

]
(𝑎)
= E𝑋

[
1{arg max𝑗∈Y 𝑓𝑗 (𝑋 )≠arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑋 )}

]
(𝑏)
= E𝑋𝑌

[
1{arg max𝑗∈Y 𝑓𝑗 (𝑋 )≠arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑋 )}

]
(𝑐)≤ 1

1 − 𝛿5
E𝑋𝑌

[
(1{arg max𝑗∈Y 𝑓𝑗 (𝑋 )≠𝑌 } − 1{arg max𝑗∈Y 𝑓 ∗

𝑗
(𝑋 )≠𝑌 })2

]
(𝑑)
=

1
1 − 𝛿5

E𝑋𝑌

[
(ℓ (𝑓 (𝑋 ), 𝑌 ) − ℓ (𝑓 ∗(𝑋 ), 𝑌 ))2

] (𝑒)≤ 𝐵

1 − 𝛿5

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

)𝛽
,

obtaining the r.h.s. and establishing (6.11). The details are as follows. In (a), we use that a
probability can be written as the expectation of an indicator function. We notice in (b) that
the integrand does not depend on 𝑌 . Regarding (c), with 𝑦𝑥 , 𝑦

∗
𝑥 defined as in the statement,

we use (6.13) obtained in step 1. Defining ℓ : [0, 1]𝑘 → R≥0, (𝑝,𝑦) ↦→ 1{arg max𝑦′ ∈Y 𝑝𝑦′≠𝑦} as
the usual 0-1-loss yields (d) and the (𝛽, 𝐵)-Bernstein condition gives (e).

Step 3. It remains to obtain the probabilistic bound. We have that

P𝑛

(
P𝑋

[
arg max

𝑗∈Y
𝑓 𝑗 (𝑋 ) ≠ arg max

𝑗∈Y
𝑓 ∗𝑗 (𝑋 )

]
≤ 𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

)
(6.11)≥ P𝑛

(
𝐵

1 − 𝛿5

(
𝑅(𝑓 ) − 𝑅(𝑓 ∗)

)𝛽
≤ 𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

)
(𝑎)
= P𝑛

((
𝐵

1 − 𝛿5

) 1
𝛽 (

𝑅(𝑓 ) − 𝑅(𝑓 ∗)
)
≤ 𝑀

1
𝛽

2

(
log(1/𝛿2)

𝑛

) 1
2
)
(𝑏)≥ 1 − 𝛿2,

where we apply the monotonically increasing 𝑧 ↦→ 𝑧1/𝛽 in (a). In (b), we set 𝑀1/𝛽
2 =

𝑀
(

𝐵
1−𝛿5

)1/𝛽
and apply Theorem C.2.4 (with 𝑀 given there). This concludes the proof of

part (𝑖𝑖).

6.5.3. Proof of Theorem 6.3.4

To obtain the statement, we first show that one has the following decomposition. For any
𝛼 ∈ (0, 1) and some 𝛿3 ∈ (0, 1),

P𝑋
[
𝑓 ∗𝑦∗

𝑋
(𝑋 ) ≥ 𝑡𝛼 − 𝛿3

]
(6.14)

≥ P𝑋
[
𝑓 ∗𝑦∗

𝑋
(𝑋 ) ≥ 𝑓𝑦∗

𝑋
(𝑋 ) − 𝛿3

]
︸                             ︷︷                             ︸

=: 𝑡1

+ P𝑋
[
𝑓𝑦∗

𝑋
(𝑋 ) = 𝑓𝑦𝑋 (𝑋 )

]
︸                      ︷︷                      ︸

=: 𝑡2

+ P𝑋
[
𝑓𝑦𝑋 (𝑋 ) ≥ 𝑡𝛼

]
︸               ︷︷               ︸

=: 𝑡3

− 2.

We will then obtain lower bounds on the individual terms 𝑡1, 𝑡2, and 𝑡3, and show that their
combination implies the stated result.
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Decomposition. Let 𝐴1 = {𝑋 : 𝑓 ∗𝑦∗
𝑋

(𝑋 ) ≥ 𝑓𝑦∗
𝑋
(𝑋 ) − 𝛿3}, 𝐴2 = {𝑋 : 𝑓𝑦∗

𝑋
(𝑋 ) = 𝑓𝑦𝑋 (𝑋 )},

𝐴3 = {𝑋 : 𝑓𝑦𝑋 (𝑋 ) ≥ 𝑡𝛼 }, and 𝐵 = {𝑋 : 𝑓 ∗𝑦∗
𝑋

(𝑋 ) ≥ 𝑡𝛼 − 𝛿3}. Using these definitions, we first
obtain that

P𝑋
[
𝑓 ∗𝑦∗

𝑋
(𝑋 ) ≥ 𝑡𝛼 − 𝛿3

] (𝑎)
= P𝑋 [𝐵]

(𝑏)≥ P𝑋 [𝐴1 ∩𝐴2 ∩𝐴3] (𝑐)= 1 − P𝑋 [(𝐴1 ∩𝐴2 ∩𝐴3)𝑐]
(𝑑)
= 1 − P𝑋 [𝐴𝑐

1 ∪𝐴𝑐
2 ∪𝐴𝑐

3]
(𝑒)≥ 1 − P𝑋 [𝐴𝑐

1] − P𝑋 [𝐴𝑐
2] − P𝑋 [𝐴𝑐

2]
(𝑓 )
= 1 − (1 − P𝑋 [𝐴1]) − (1 − P𝑋 [𝐴2]) − (1 − P𝑋 [𝐴3])
(𝑔)
= P𝑋 [𝐴1]︸  ︷︷  ︸

=𝑡1

+ P𝑋 [𝐴2]︸  ︷︷  ︸
=𝑡2

+ P𝑋 [𝐴3]︸  ︷︷  ︸
=𝑡3

−2, (6.15)

with the following details. (a) is by the preceeding definition of the 𝐵 set. For (b), we
have to show that 𝐵 ⊇ 𝐴1 ∩𝐴2 ∩𝐴3, which implies that P𝑋 [𝐵] ≥ P𝑋 [𝐴1 ∩𝐴2 ∩𝐴3]. Let
𝑥 ∈ 𝐴1 ∩𝐴2 ∩𝐴3, then

𝑓 ∗𝑦∗𝑥 (𝑥) ≥ 𝑓𝑦∗𝑥 (𝑥) − 𝛿3 = 𝑓𝑦𝑥 (𝑥) − 𝛿3 ≥ 𝑡𝛼 − 𝛿3 =⇒ 𝑓 ∗𝑦∗𝑥 (𝑥) ≥ 𝑡𝛼 − 𝛿3.

Therefore, 𝑥 ∈ 𝐵, proving (b). (c) considers complementary events and De Morgan’s
laws yield (d). In (e), we use the inclusion-exclusion principle, where we ignore a few
positive terms to obtain the inequality. Considering complementary events gives (f) and
cancellations yield (g). This proves (6.14).

Term 𝑡1. To obtain a bound on 𝑡1, we use an expectation bound, which together with
Markov’s inequality and Lemma 6.3.3 (𝑖) will give the result. The expectation bound is

E𝑋

[
|𝑓𝑦∗

𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 ) |

] (𝑎)≤ E𝑋

[
P𝑌 |𝑋 (𝑌 = 𝑦∗𝑋 )

1 − 𝛿6
|𝑓𝑦∗

𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 ) |

]
(6.16)

(𝑏)≤ 1
1 − 𝛿6

E𝑋

[ ∑︁
𝑦∈Y

P𝑌 |𝑋 (𝑌 = 𝑦) |𝑓𝑦 (𝑋 ) − 𝑓 ∗𝑦 (𝑋 ) |
] (𝑐)
=

1
1 − 𝛿6

E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
,

with (a) implied by the assumption P𝑌 |𝑋 (𝑌 = 𝑦∗𝑋 ) ≥ 1−𝛿6 guaranteeing that 1 ≤ P𝑌 |𝑋 (𝑌=𝑦∗𝑋 )
1−𝛿6

.
In (b), we use that 𝑦∗𝑋 ∈ Y and that all terms in the sum are nonnegative. Using a property
of the expectation of a joint distribution yields (c).

Next, Markov’s inequality (recalled in Lemma C.2.5) implies that

P𝑋
[
|𝑓𝑦∗

𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 ) | ≥ 𝛿3

] C.2.5≤ 1
𝛿3

E𝑋

[
|𝑓𝑦∗

𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 ) |

]
(6.16)≤ 1

𝛿3(1 − 𝛿6) E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
. (6.17)
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Finally, we have that

P𝑛

[
P𝑋

[
𝑓 ∗𝑦∗

𝑋
(𝑋 ) ≥ 𝑓𝑦∗

𝑋
(𝑋 ) − 𝛿3

]
≥ 1 − 1

𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑎)
= P𝑛

[
P𝑋

[
𝑓𝑦∗

𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 ) ≤ 𝛿3

]
≥ 1 − 1

𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑏)≥ P𝑛

[
P𝑋

[���𝑓𝑦∗
𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 )

��� ≤ 𝛿3
]
≥ 1 − 1

𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑐)≥ P𝑛

[
1 − P𝑋

[���𝑓𝑦∗
𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 )

��� ≤ 𝛿3
]
≤ 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑑)≥ P𝑛

[
P𝑋

[���𝑓𝑦∗
𝑋
(𝑋 ) − 𝑓 ∗𝑦∗

𝑋
(𝑋 )

��� > 𝛿3
]
≤ 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(6.17)≥ P𝑛

[
1

𝛿3(1 − 𝛿6) E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
≤ 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑒)≥ P𝑛

[
E𝑋𝑌

[
|𝑓𝑌 (𝑋 ) − 𝑓 ∗𝑌 (𝑋 ) |

]
≤ 𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

]
(𝑓 )
≥ 1 − 𝛿1, (6.18)

where we rearrange the l.h.s. of the inequality in (a). In (b), we consider the absolute value,
decreasing the overall probability. In (c), we subtract 1 on both sides and multiply by −1.
In (d), we consider the complement of the event. In (e), we simplify and Lemma 6.3.3(i)
yields (f).

Term 𝑡2. The observation P𝑋
[
𝑓𝑦∗

𝑋
(𝑋 ) = 𝑓𝑦𝑋 (𝑋 )

]
≥ P𝑋

[
𝑦∗𝑋 = 𝑦𝑋

]
implies that

P𝑛

[
P𝑋

[
𝑓𝑦∗

𝑋
(𝑋 ) = 𝑓𝑦𝑋 (𝑋 )

]
≥ 1 −𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

]
(𝑎)≥ P𝑛

[
P𝑋

[
𝑦∗𝑋 = 𝑦𝑋

] ≥ 1 −𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

]
(𝑏)
= P𝑛

[
P𝑋

[
𝑦∗𝑋 ≠ 𝑦𝑋

] ≤ 𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

]
(𝑐)≥ 1 − 𝛿2, (6.19)

where (a) holds by the preceding observation. In (b), we subtract 1 on both sides, multiply by
−1, and consider the complement of the l.h.s. Inequality (c) was shown in Lemma 6.3.3(ii).
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Term 𝑡3. For bounding the third term, we use the Dvoretzky-Kiefer-Wolfowitz inequality
(recalled in Theorem C.2.1) In particular, we have

P𝑛

[
P𝑋 [𝑓𝑦𝑋 (𝑋 ) ≥ 𝑡𝛼 ] ≥ 1 −

(
𝛼 +

√︂
log(2/𝛿4)

2𝑛

)]
(𝑎)
= P𝑛

[
1 − 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 ) ≥ 1 −

(
𝛼 +

√︂
log(2/𝛿4)

2𝑛

)]
(𝑏)
= P𝑛

[
𝐹 𝑓𝑦̂𝑋 (𝑋 )

(𝑡𝛼 ) − 𝛼 ≤
√︂

log(2/𝛿4)
2𝑛

]
(𝑐)≥ P𝑛

[
𝐹 𝑓𝑦̂𝑋 (𝑋 )

(𝑡𝛼 ) − 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 ) ≤
√︂

log(2/𝛿4)
2𝑛

]
(𝑑)≥ P𝑛

[
sup
𝑡𝛼

���𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 ) − 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 )��� (𝑒)≤
√︂

log(2/𝛿4)
2𝑛

]
(𝑒)≥ 1 − 𝛿4, (6.20)

where (a) holds as

P𝑋 [𝑓𝑦𝑋 (𝑋 ) ≥ 𝑡𝛼 ] = 1 − P𝑋 [𝑓𝑦𝑋 (𝑋 ) ≤ 𝑡𝛼 ] = 1 − 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 ).

We rearrange in (b). For obtaining (c), we observe that 𝐹 𝑓𝑦̂𝑋 (𝑋 ) (𝑡𝛼 ) ≤ 𝛼 . In (d), we consider
the supremum, reducing the probability as the inequality becomes more strict. Theo-
rem C.2.1 gives (e).

Combination of 𝑡1, 𝑡2, and 𝑡3. The desired result is obtained by combining the intermediate
results using that

P𝑛
[
P𝑋

[
𝑦∗𝑋 ∈ 𝐶 (𝑋 )

] ≥ 1 − 𝛼′𝑛
] (6.15𝑎)

= P𝑛
[
P𝑋 [𝐵] ≥ 1 − 𝛼′𝑛

]
(6.15)≥ P𝑛

[
P𝑋 [𝐴1] + P𝑋 [𝐴2] + P𝑋 [𝐴3] − 2 ≥ 1 − 𝛼′𝑛

]
(𝑎)≥ 1 − (𝛿1 + 𝛿2 + 𝛿4),

where we use a union bound in (a) and the results obtained in (6.18), (6.19), and (6.20);
further, we observe that

1 − 1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

+ 1 −𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

+ 1 − 𝛼 −
√︂

log(2/𝛿4)
2𝑛 − 2

= 1 −
(

1
𝛿3(1 − 𝛿6)𝑀1

(
log(1/𝛿1)

𝑛

) 1
4 𝛽

+𝑀2

(
log(1/𝛿2)

𝑛

) 1
2 𝛽

+ 𝛼 +
√︂

log(2/𝛿4)
2𝑛

)
= 1 − 𝛼′𝑛 .
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7. Amortized Variational Inference for
Partial-Label Learning

This chapter’s contents are based on the following publication.

• Tobias Fuchs and Nadja Klein. Amortized variational inference for partial-label
learning: A probabilistic approach to label disambiguation. CoRR, abs/2510.21300,
2025. https://doi.org/10.48550/arXiv.2510.21300.

All code and data for reproducing this chapter’s experiments are available at https:

//github.com/mathefuchs/vi-pll.

7.1. Overview

Recent state-of-the-art PLL methods (Xu et al., 2021; Tian et al., 2024; Yang et al., 2025)
leverage deep learning to optimize surrogate loss functions, such as the minimum loss
(Lv et al., 2020), contrastive loss (Wang et al., 2022), or discriminative loss (Yang et al.,
2025); and to refine candidate label sets through heuristic strategies, including importance
reweighting (Feng et al., 2020), confidence thresholds (Xu et al., 2023), or label smoothing
(Gong et al., 2024). In contrast, earlier PLL methods (Jin and Ghahramani, 2002; Liu and
Dietterich, 2012) approximate the posterior distribution over true labels directly—typically
through expectation-maximization—rather than relying on heuristic refinements. However,
these methods are computationally intensive and hardly scale. Moreover, they do not fully
exploit recent advances in hardware acceleration, such as those enabling efficient training
of neural networks.

Our method addresses this gap by integrating two paradigms: direct approximation of
the true label posterior and the use of recent advances in neural network (NN) training
techniques. Specifically, we employ amortized variational inference (VI) to approximate
the posterior distribution over labels, while using NNs to predict the variational parameters
directly from the input data. This formulation enables efficient and scalable inference,
thereby overcoming the computational limitations of earlier expectation-maximization-
based methods.
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7. Amortized Variational Inference for Partial-Label Learning

Contributions. Our contributions are as follows.

• A principled PLL framework. We introduce ViPll, a novel PLL method that formu-
lates label disambiguation as amortized VI. Unlike prior approaches, ViPll directly
approximates the posterior over true labels without relying on surrogate losses or
heuristic refinements. Variational parameters are predicted via NNs, and the model
is trained end-to-end by minimizing the evidence lower bound using stochastic
gradient descent. Moreover, our algorithm is computationally efficient.

• Strong empirical evidence. We conduct extensive experiments on both synthetic and
real-world datasets, benchmarking ViPll against nine state-of-the-art PLL methods.
Our approach consistently outperforms existing baselines in predictive accuracy and
achieves top performance in the majority of settings. Code and datasets are publicly
available.

• Theoretical justification. We theoretically justify our optimization objective by de-
riving it from Bayes’ rule and leveraging the equivalence of different causal models
underlying PLL, which informs the design of our method.

Notation. Recall the PLL problem and our notations from Chapter 2. Different from
these definitions, we consider the measurable space (Ω,B(Ω)), where Ω = X ×∆k-1 × 2Y
(instead of Ω = X ×Y × 2Y), which allows for more flexibility in modeling an instance’s
labeling. We define the random variables 𝑋 : Ω → X, 𝑌 : Ω → ∆k-1, and 𝑆 : Ω → 2Y
to model the generation of instances, their latent label distributions, and the observed
candidate labels, respectively. We consider probability measures P and Q over (Ω,B(Ω)),
with corresponding densities 𝑝 and 𝑞 defined as the Radon-Nikodym derivatives with
respect to a suitable product measure composed of Lebesgue and counting measures.

Outline. Section 7.2 contains our contributions and Section 7.3 our experiments.

7.2. Variational Inference for PLL

We propose ViPll, a novel PLL approach that employs amortized VI as a principled
framework for disambiguating the candidate label sets. Specifically, we use fixed-form
distributions—Dirichlet and Gaussian in our case—whose parameters are learned by NNs.
This combines the flexibility of NNs with the probabilistic rigor of VI. Unlike standard VI,
which optimizes variational parameters independently for each data point, amortized VI
learns a shared inference model that maps input features to variational parameters via a
NN. Importantly, our method is architecture-agnostic, allowing seamless integration with
diverse neural architectures and facilitating adaptation to various data modalities.

Similar to an EM procedure, our method alternates between estimating all latent variables
via Monte Carlo sampling and optimizing NN parameters through backpropagation. In
practice, good predictive performance can be achieved with a relatively small number of
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Monte Carlo samples. This allows our method to scale efficiently, in contrast to standard
VI methods that are often computationally prohibitive.

Modeling the PLL problem within the VI framework offers a principled way for propagating
labeling information and resolving candidate label ambiguity. The following sections
provide a detailed exposition of our method. Section 7.2.1 introduces the optimization
objective, Sections 7.2.2 – 7.2.4 define the individual components of the objective function,
and Section 7.2.5 presents the resulting algorithm.

We note that several existing methods also incorporate probabilistic components, such
as modeling labels with a Dirichlet distribution (Xu et al., 2021; Fuchs and Kalinke, 2025).
However, unlike our approach, these methods employ the Dirichlet model as an auxiliary
mechanism, either as a regularization term or as an enhancement to classifier training,
rather than as the core of their method.

Our approach is closest to the expectation-maximization strategies by Jin and Ghahra-
mani (2002) and Liu and Dietterich (2012). However, these methods are computationally
expensive, which limits their application on real-world datasets. In contrast, our method
leverages NNs to amortize inference by directly predicting variational parameters from
input data, enabling efficient and scalable learning.

7.2.1. Optimization Objective

ViPll models the posterior distribution P𝜃,𝛾 (𝑌 | 𝑋, 𝑆), which represents the distribution
over an instance’s class labels given its features and candidate labels. We denote by 𝑝𝜃,𝛾 (𝑌 |
𝑋, 𝑆) the respective posterior density with parameters 𝜃 and 𝛾 (compare Section 7.2.2 for
details). Since the true posterior P𝜃,𝛾 (𝑌 | 𝑋, 𝑆) is intractable in practice, we approximate it
with a fixed-form variational distribution Q𝜙 (𝑌 | 𝑋, 𝑆) with density 𝑞𝜙 (𝑌 | 𝑋, 𝑆). We adopt
an amortized VI approach, where Q𝜙 (𝑌 | 𝑋, 𝑆) is modeled as a 𝑘-dimensional Dirichlet
distribution, with parameters 𝛼𝜙 ∈ R𝑘

≥1 learned by a NN 𝑓𝜙 , that is,

𝑞𝜙 (𝑦 | 𝑥, 𝑠) = Dir(𝑦;𝛼𝜙 ) with 𝛼𝜙 = 𝑓𝜙 (𝑥, 𝑠) + 1, (7.1)

where 𝑓𝜙 : X × 2Y → R𝑘
≥0 denotes a NN that maps input features and candidate label

sets to non-negative parameter vectors, and 𝑘 is the number of classes. Non-negativity is
enforced by applying a softplus activation function (Glorot et al., 2011) in the output layer
of the network, while the Dirichlet distribution enables modeling uncertainty over class
label assignments (Jøsang, 2016; Sensoy et al., 2018). Since 𝛼𝜙 ≥ 1, Dir(𝑦;𝛼𝜙 ) only has a
single mode, which eases its optimization.
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Following the standard VI setting, we minimize the expected value of the reverse Kullback-
Leibler (KL)-divergence between the variational and true posterior distributions, where
the expectation is taken with respect to P𝑋𝑆 , the joint distribution of 𝑋 and 𝑆 :

L(𝜙, 𝜃,𝛾) = E𝑋𝑆

[
𝐷KL

(
Q𝜙 (𝑌 | 𝑋, 𝑆) ∥ P𝜃,𝛾 (𝑌 | 𝑋, 𝑆)

)]
(𝑖)
= E(𝑥,𝑠)∼P𝑋𝑆

∫
∆k-1

𝑞𝜙 (𝑦 | 𝑥, 𝑠) log
𝑞𝜙 (𝑦 | 𝑥, 𝑠)
𝑝𝜃,𝛾 (𝑦 | 𝑥, 𝑠)

d𝑦

(𝑖𝑖)
= E(𝑥,𝑠)∼P𝑋𝑆

[
E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠)

[
log𝑞𝜙 (𝑦 | 𝑥, 𝑠) − log 𝑝𝜃,𝛾 (𝑦 | 𝑥, 𝑠)

] ]
, (7.2)

where (𝑖) applies the definition of the KL divergence, and (𝑖𝑖) that of the expectation.

To model 𝑝𝜃,𝛾 (𝑦 | 𝑥, 𝑠) in (7.2), we use Bayes’ rule:

P(𝑋,𝑌, 𝑆) = P(𝑋 ) P(𝑌 | 𝑋 ) P(𝑆 | 𝑋,𝑌 ) (7.3)
= P(𝑌 ) P(𝑋 | 𝑌 ) P(𝑆 | 𝑋,𝑌 ). (7.4)

We argue that (7.4) is beneficial in our setting as it explicitly allows modeling prior infor-
mation P(𝑌 ) on the class labels as well as a generative model of the observed features
P(𝑋 | 𝑌 ) given label information. Additionally, in (7.4), the unobserved variable 𝑌 is not
dependent on any other variables, which eases its modeling. In contrast, existing work (Liu
and Dietterich, 2012; Feng et al., 2020) relies on the factorization in (7.3). Our experiments
in Section 7.3.3 confirm our argument in favor of (7.4).

In other words, (7.3) corresponds to a discriminative perspective on the PLL problem,
modeling 𝑃 (𝑌 | 𝑋 ), whereas (7.4) adopts a generative perspective, modeling 𝑃 (𝑋 | 𝑌 ). The
discriminative formulation focuses on identifying which labels are most likely given an
instance’s features, while the generative formulation evaluates how well instance features
can be reconstructed given labeling information. In the generative setting, the underlying
auto-encoder can be pre-trained by learning to reconstruct instance features, providing a
useful initialization. Such pre-training is infeasible in the discriminative case, since the true
labels are not available, making the generative perspective particularly advantageous.
Example 7.2.1. Consider the cifar dataset, which contains images of various object classes
such as birds, cars, and airplanes. In the generative case, pre-training the underlying
auto-encoder enables the model to uncover latent representations corresponding to visual
components like bird wings, car tires, or airplane turbines. This, in turn, helps the model
disambiguate labels more effectively. For example, given the label bird, the instance’s
features are expected to include representations of wings.

Using (7.4), we have P𝜃,𝛾 (𝑌 | 𝑋, 𝑆) = P(𝑌 ) P𝜃,𝛾 (𝑋 | 𝑌 ) P(𝑆 | 𝑋,𝑌 )/P(𝑋, 𝑆), where in
Section 7.2.2, we model P𝜃,𝛾 (𝑋 | 𝑌 ) with a conditional variational auto-encoder (CVAE;
Kingma and Welling 2014; Sohn et al. 2015), Section 7.2.3 elaborates on the prior term
𝑝 (𝑦), and Section 7.2.4 details the candidate set distribution 𝑝 (𝑠 | 𝑥,𝑦).
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𝑋

𝑌 𝑆

(a) Standard graphical model.

𝑋

𝑌 𝑆

(b) Markov-equivalent model.

Figure 7.1.: Different DAGs used in PLL. Figure 7.1a shows the standard model from the literature (Cour et al.,
2011). Figure 7.1b shows the Markov-equivalent model (compare Proposition 7.2.3) that we use in our work.

Combined with (7.2), we obtain
L(𝜙, 𝜃,𝛾) = E(𝑥,𝑠)∼P𝑋𝑆

[
E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠) [log𝑞𝜙 (𝑦 | 𝑥, 𝑠) − log 𝑝𝜃,𝛾 (𝑦 | 𝑥, 𝑠)]

]
= E(𝑥,𝑠)∼P𝑋𝑆

[
E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠)

[
log𝑞𝜙 (𝑦 | 𝑥, 𝑠) − log 𝑝 (𝑦)︸                           ︷︷                           ︸

(𝑖 )
=𝐷KL (𝑞𝜙 (𝑦 |𝑥,𝑠) ∥ 𝑝 (𝑦))

− log𝑝𝜃,𝛾 (𝑥 | 𝑦)

− log 𝑝 (𝑠 | 𝑥,𝑦) + log 𝑝 (𝑥, 𝑠)︸      ︷︷      ︸
(𝑖𝑖) constant w.r.t. 𝜙,𝜃,𝛾

] ]
,

where (𝑖) acts as a regularization term, and (𝑖𝑖) can be omitted as it is constant in the
parameters 𝜙 , 𝜃 , and 𝛾 . This induces the 𝛽-ELBO, which is defined as

𝛽-ELBO = E(𝑥,𝑠)∼P𝑋𝑆

[
E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠) [log 𝑝𝜃,𝛾 (𝑥 | 𝑦) + log 𝑝 (𝑠 | 𝑥,𝑦)]

− 𝛽𝐷KL(𝑞𝜙 (𝑦 | 𝑥, 𝑠) ∥ 𝑝 (𝑦))
]
, (7.5)

where arg min𝜙,𝜃,𝛾 L(𝜙, 𝜃,𝛾) = arg max𝜙,𝜃,𝛾 𝛽-ELBO, for 𝛽 = 1. The scaling parameter
𝛽 ∈ (0, 1] allows weighting (7.5) for more flexibility (Higgins et al., 2017).

In practice, we replaceE(𝑥,𝑠)∼P𝑋𝑆
by a sample average over mini-batches (𝑥𝑖, 𝑠𝑖) ∈ Dmb ⊆ D.

Similarly, we replace E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠) by taking a sample average of 𝑏 Monte Carlo samples
𝑦𝑖 ∼ 𝑞𝜙 (𝑦 | 𝑥, 𝑠) for 𝑖 ∈ [𝑏]. Sampling from the variational distribution is straightforward,
since 𝑞𝜙 (𝑦 | 𝑥, 𝑠) = Dir(𝑦;𝛼𝜙 ) and 𝑝 (𝑦) = Dir(𝑦;𝛼𝜋 ) (compare Section 7.2.3) admit a
closed-form expression for their KL divergence in (7.5) (Penny, 2001).
Remark 7.2.2. Factorizing the joint distribution P(𝑋,𝑌, 𝑆) via either (7.3) or (7.4) has the
interpretation of a directed acyclic graph (DAG). Specifically, the factorization in (7.3)
corresponds to the DAG in Figure 7.1a (which is the standard in the literature; see Cour
et al., 2011) and the factorization in (7.4) to that in Figure 7.1b, which we use in our work.
Proposition 7.2.3 elaborates on their equivalence, that is, having offline data only, one
cannot distinguish the two. Both models explain the observed data equally well.
Proposition 7.2.3 (Markov equivalence). The causal models represented by the DAGs in
Figure 7.1a and 7.1b are Markov equivalent.

Proof. Recall from (Verma and Pearl, 1990, Theorem 1) that two DAGs are Markov equiva-
lent if and only if they have (1) the same skeleton, that is, the same edges ignoring direction,
and (2) the same v-structures, that is, the same set of nodes 𝐴→ 𝐶 ← 𝐵, where 𝐴 and 𝐵
are not connected. In our setting, (1) and (2) are satisfied. □
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7.2.2. Generative Model 𝑝𝜃,𝛾 (𝑥 | 𝑦)
To learn how an instance’s class label influences its feature distribution, we propose a
generative model 𝑝𝜃,𝛾 (𝑥 | 𝑦) based on a CVAE. In a CVAE, one encodes the labeling
information using𝑚-dimensional latent variables 𝑍 : Ω → R𝑚 . As the true posterior of
the latent variables is intractable in most cases, one approximates it using the variational
distribution 𝑟𝛾 (𝑧 | 𝑥,𝑦), which is commonly referred to as the conditional encoder.

Using the importance sampling trick, this yields

log 𝑝𝜃,𝛾 (𝑥 | 𝑦) (𝑖)= log
∫
R
𝑝𝜃 (𝑥 | 𝑦, 𝑧)𝑝 (𝑧 | 𝑦)d𝑧

(𝑖𝑖)
= log

∫
R
𝑟𝛾 (𝑧 | 𝑥,𝑦)𝑝𝜃 (𝑥 | 𝑦, 𝑧)𝑝 (𝑧 | 𝑦)

𝑟𝛾 (𝑧 | 𝑥,𝑦) d𝑧

(𝑖𝑖𝑖)
= logE𝑧∼𝑟𝛾 (𝑧 |𝑥,𝑦)

[
𝑝𝜃 (𝑥 | 𝑦, 𝑧)𝑝 (𝑧 | 𝑦)

𝑟𝛾 (𝑧 | 𝑥,𝑦)

]
(𝑖𝑣)≥ E𝑧∼𝑟𝛾 (𝑧 |𝑥,𝑦)

[
log 𝑝𝜃 (𝑥 | 𝑦, 𝑧)𝑝 (𝑧 | 𝑦)

𝑟𝛾 (𝑧 | 𝑥,𝑦)

]
(𝑣)
= E𝑧∼𝑟𝛾 (𝑧 |𝑥,𝑦)

[
log 𝑝𝜃 (𝑥 | 𝑦, 𝑧) − 𝐷KL(𝑟𝛾 (𝑧 | 𝑥,𝑦) ∥ 𝑝 (𝑧 | 𝑦))

]
, (7.6)

where (𝑖) marginalizes over the latent variable 𝑍 , (𝑖𝑖) introduces the approximate poste-
rior, (𝑖𝑖𝑖) uses the definition of the expectation, (𝑖𝑣) applies Jensen’s inequality, and (𝑣)
recognizes that the second term is the reverse KL-divergence between 𝑟𝛾 and 𝑝 (𝑧 | 𝑦). We
learn 𝑝𝜃,𝛾 (𝑥 | 𝑦) by jointly maximizing (7.6). For this, we make the following assumptions
on the decoder 𝑝𝜃 (𝑥 | 𝑦, 𝑧) and the encoder 𝑟𝛾 (𝑧 | 𝑥,𝑦).
We assume that the encoder 𝑟𝛾 (𝑧 | 𝑥,𝑦) uses NNs to parameterize a Gaussian distribution:

𝑟𝛾 (𝑧 | 𝑥,𝑦) =N(𝑧; 𝜇𝛾 (𝑥,𝑦), Σ𝛾 (𝑥,𝑦)). (7.7)

To compute the KL-term in (7.6) in closed-form, we further assume 𝑝 (𝑧 | 𝑦) =N(𝑧; 0, 𝐼𝑚),
such that

𝐷KL(𝑟𝛾 (𝑧 | 𝑥,𝑦) ∥ 𝑝 (𝑧 | 𝑦)) = 1
2

𝑚∑︁
𝑖=1

[
𝜎𝛾,𝑖 (𝑥,𝑦)2+ 𝜇𝛾,𝑖 (𝑥,𝑦)2− 1 − 2 log𝜎𝛾,𝑖 (𝑥,𝑦)2

]
. (7.8)

Further, 𝑝𝜃 (𝑥 | 𝑦, 𝑧) is referred to as the conditional decoder for which we also assume a
Gaussian distribution, that is,

𝑝𝜃 (𝑥 | 𝑦, 𝑧) =N(𝑥 ; 𝜇𝜃 (𝑦, 𝑧), 𝜎2𝐼𝑚), (7.9)

where 𝜇𝜃 (𝑦, 𝑧) uses a NN to parameterize the decoder and 𝜎 is assumed to be fixed. Its
expectation admits the following closed-form:

E𝑧∼𝑟𝛾 (𝑧 |𝑥,𝑦) log 𝑝𝜃 (𝑥 | 𝑦, 𝑧) = −
1

2𝜎2 ∥𝑥 − 𝜇𝜃 (𝑦, 𝑧)∥2︸             ︷︷             ︸
(𝑖)

−𝑚2 log(2𝜋𝜎2), (7.10)
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where ∥ · ∥ is the standard Euclidean norm. Note that (𝑖) coincides with the standard
mean-squared error and acts as the reconstruction loss of the auto-encoder. In contrast,
the KL-term in (7.8) acts as regularization for the encoding step.

In practice, we approximate 𝑝𝜃,𝛾 (𝑥 | 𝑦) by drawing 𝑏′ samples 𝑧𝑖 ∼ 𝑟𝛾 (𝑧 | 𝑥,𝑦) and compute
the importance-weighted average

𝑝𝜃,𝛾 (𝑥 | 𝑦) ≈
1
𝑏′

𝑏′∑︁
𝑖=1

𝑝𝜃 (𝑥 | 𝑦, 𝑧𝑖)𝑝 (𝑧𝑖 | 𝑦)
𝑟𝛾 (𝑧𝑖 | 𝑥,𝑦) , (7.11)

where we use the common log-sum-exp trick for numerical stability (Blanchard et al., 2021).
After warming-up the CVAE, we set 𝜎 in (7.9) to an exponential moving average of the
observed RMSE reconstruction loss.

7.2.3. Prior 𝑝 (𝑦)
Most existing work uses a non-informative prior to initialize labeling information. This
prior might not satisfy the constraints provided by the candidate sets, however. This
is because, given (𝑥𝑖, 𝑠𝑖) ∈ D, the class label 𝑦 ∈ Y needs to occur at least

∑
𝑖 1{𝑠𝑖={𝑦}}

and at most
∑

𝑖 1{𝑦∈𝑠𝑖 } times within the dataset D. Hence, we consider the optimization
problem (7.12) and find the maximum entropy prior that satisfies these constraints:

max
𝜋∈∆k-1

H(𝜋), s.t. 𝜋𝑦 ≥ 1
| D |

∑︁
(𝑥𝑖 ,𝑠𝑖 )∈D

1{𝑠𝑖={𝑦}} for all 𝑦 ∈ Y , (7.12)

𝜋𝑦 ≤ 1
| D |

∑︁
(𝑥𝑖 ,𝑠𝑖 )∈D

1{𝑦∈𝑠𝑖 } for all 𝑦 ∈ Y ,

where 𝐻 : ∆k-1 → R, 𝜋 ↦→ −∑𝑘
𝑦=1 𝜋𝑦 log𝜋𝑦 is the entropy.1 We optimize for 𝜋𝑦 using a

numerical solver as the entropy objective is non-convex. We set 𝑝 (𝑦) = Dir(𝑦;𝛼𝜋 ) with
𝛼𝜋
𝑗 = ( 𝜋 𝑗

min𝑗′ ∈Y 𝜋 𝑗′
)𝛿 ≥ 1 for 𝑗 ∈ Y, where 𝛿 ∈ [0, 1] allows weighting the prior information

and 𝛿 = 0 implies the uniform prior 𝑝 (𝑦) = Dir(𝑦; 1𝑘).

7.2.4. Candidate Set Distribution 𝑝 (𝑠 | 𝑥,𝑦)
The candidate set distribution 𝑝 (𝑠 | 𝑥,𝑦) governs how likely candidate sets 𝑠 ∈ 2Y are
observed given an instance 𝑥 ∈ X with associated labeling vector 𝑦 ∈ ∆k-1. We use

𝑝 (𝑠 | 𝑥,𝑦) (𝑖)= 𝑝 (𝑠 | 𝑦) (𝑖𝑖)= 1
2𝑘−1

∑︁
𝑗∈𝑠

𝑦 𝑗 , (7.13)

1 Note that 𝜋𝑦 log𝜋𝑦 is defined to be zero if 𝜋𝑦 = 0.
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where, in (𝑖), we assume that 𝑥 and 𝑠 are conditionally independent given 𝑦, which is a
common assumption in the literature (Liu and Dietterich, 2012; Feng et al., 2020). In (𝑖𝑖),
we express 𝑝 (𝑠 | 𝑦) as the amount of labeling information that agrees with the candidate
set 𝑠 . Therefore, (7.13) acts as a regularization term enforcing that the constraints from the
candidate sets are satisfied. Prop. 7.2.4 demonstrates that this is a valid mass function.

Proposition 7.2.4. 𝑝 (𝑠 | 𝑥,𝑦) in (7.13) is a valid mass function.

Proof. Given 𝑦 ∈ ∆k-1,∑︁
𝑠∈2Y

𝑝 (𝑠 | 𝑦) (𝑖)=
∑︁
𝑠∈2Y

1
2𝑘−1

∑︁
𝑗∈𝑠

𝑦 𝑗
(𝑖𝑖)
=

1
2𝑘−1

∑︁
𝑠∈2Y

∑︁
𝑗∈𝑠

𝑦 𝑗
(𝑖𝑖𝑖)
=

1
2𝑘−1

∑︁
𝑗∈Y

2𝑘−1𝑦 𝑗
(𝑖𝑣)
=

∑︁
𝑗∈Y

𝑦 𝑗
(𝑣)
= 1,

where (𝑖) inserts (7.13), (𝑖𝑖) moves the factor 1/2𝑘−1 to the front, (𝑖𝑖𝑖) holds as there are
2𝑘−1 subsets 𝑠 ∈ 2Y that contain the label 𝑗 ∈ Y, (𝑖𝑣) moves the factor 2𝑘−1 to the front,
and (𝑣) holds as 𝑦 ∈ ∆k-1. □

7.2.5. Proposed Algorithm

Algorithm 4 summarizes ViPll, which is grouped into three phases.

Phase 1 (Lines 1–3) sets up the classifier 𝑓𝜙 with weights 𝜙 and the CVAE with weights 𝜃
and 𝛾 (Line 1), computes the prior according to (7.12) in Line 2, and initializes the labeling
vectors 𝑦𝑖 ∈ ∆k-1, for 𝑖 ∈ [𝑛], by uniformly allocating mass on the class labels contained in
the candidate sets 𝑠𝑖 (Line 3). Later, 𝑦𝑖 is updated in the main training loop in Line 22 and
informs the training of the CVAE, whose latent representation is conditioned on 𝑦𝑖 .

Phase 2 (Lines 4–10) is the warm-up phase for the CVAE in which we minimize the
reconstruction and regularization losses in (7.10) and (7.8), respectively, using the labeling
vectors 𝑦𝑖 . We use mini-batches and train for 𝑇w = 500 epochs using the Adam optimizer
(Kingma and Ba, 2015).

Phase 3 (Lines 11–22) contains our main training loop which consists of (a) computing
the necessary quantities in (7.5) in Lines 14–18, (b) updating our models by backpropa-
gation (Lines 19–20), and (c) updating the labeling vectors 𝑦𝑖 in Lines 21–22. Recall from
Section 7.2.1 that, in step (a), we make use of Monte Carlo sampling (𝑏 = 𝑏′ = 10) and
sample averages to approximate the involved expectation terms. In step (b), we optimize
the NNs’ parameters using backpropagation and the Adam optimizer. Finally, in step (c),
we update the labeling vectors 𝑦𝑖 using the current predictions 𝛼𝑖 = 𝑓𝜙 (𝑥𝑖, 𝑠𝑖) + 1 of our
classification model 𝑓𝜙 . We train for 𝑇 = 1000 epochs using mini-batches.
Remark 7.2.5. Our method’s runtime scales linearly with the number of epochs 𝑇 and the
number of samples 𝑏, 𝑏′, and their product 𝑏𝑏′. The main runtime cost arises from the
computation of the gradients as 𝑏 and 𝑏′ are small constants.
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Algorithm 4 ViPll.

Input: PLL datasetD = {(𝑥𝑖, 𝑠𝑖) ∈ X × 2Y : 𝑖 ∈ [𝑛]}; number of epochs𝑇 ,𝑇w; mini-batch
size 𝑛m; number of MC samples 𝑏, 𝑏′; parameters 𝛽, 𝛿 ∈ [0, 1];

Output: Predictor 𝑔 : X → ∆k-1;
1: Init classifier 𝑓𝜙 and the CVAE parameterized by 𝛾 , 𝜃 ;
2: 𝜋 ← Compute prior by solving (7.12) numerically;
3: 𝑦𝑖 𝑗 ← 1

|𝑠𝑖 |1{ 𝑗∈𝑠𝑖 } for 𝑖 ∈ [𝑛], 𝑗 ∈ Y;
4: ⊲ Warm-up CVAE
5: for each epoch 𝑡 = 1, . . . ,𝑇w do

6: for each mini-batch Dmb = {(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)}𝑖∈[𝑛m] do
7: Draw one sample 𝑧𝑖 from encoder (7.7);
8: Compute reconstruction loss of 𝑥𝑖 as in (7.10);
9: Compute regularization term (7.8);

10: Update the encoder 𝛾 and decoder parameters 𝜃 using the Adam optimizer;
11: ⊲ Main training loop
12: for each epoch 𝑡 = 1, . . . ,𝑇 do

13: for each mini-batch Dmb = {(𝑥𝑖, 𝑦𝑖, 𝑠𝑖)}𝑖∈[𝑛m] do
14: Draw 𝑏 samples (𝑦𝑖,𝑜)𝑜∈[𝑏] from (7.1);
15: Compute (7.11) using 𝑏′ samples and the CVAE model, for each of the 𝑏 samples;
16: Compute candidate regularizer (7.13), ∀𝑏 samples;
17: Compute KL term (7.8) in closed-form using 𝜋 ;
18: Aggregate all quantities using a sample average;
19: Update 𝑓 ’s params. 𝜙 using the Adam optimizer;
20: Update CVAE params. 𝜃 , 𝛾 similar to lines 4–10;
21: ⊲ Update current labeling information 𝑦𝑖 𝑗
22: 𝑦𝑖 𝑗 ← 1{ 𝑗∈𝑠𝑖 }𝛼𝑖 𝑗∑

𝑗′ ∈𝑠𝑖 𝛼𝑖 𝑗′
for 𝑖 ∈ [𝑛m], 𝑗 ∈ Y;

23: return predictor 𝑔 𝑗 (𝑥) := 𝑓𝑗,𝜙 (𝑥,Y)+1∑
𝑗′ ∈Y 𝑓𝑗′,𝜙 (𝑥,Y)+1 ;

7.3. Experiments

Section 7.3.1 summarizes all PLL methods that we compare against, Section 7.3.2 describes
our experimental setup including the datasets and candidate generation strategies used,
and Section 7.3.3 shows our main findings.

7.3.1. Competitors

Besides our method ViPll and a variant of it containing ablations, we consider nine
established benchmarks from the literature. These are PlKnn (Hüllermeier and Beringer,
2005) and PlEcoc (Zhang et al., 2017), as well as the state-of-the-art deep learning methods
Proden (Lv et al., 2020), Valen (Xu et al., 2021), Cavl (Zhang et al., 2022a), PiCO (Wang
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Table 7.1.: Dataset characteristics of the five real-world PLL datasets (top) and the five supervised multi-class
classification datasets with added candidate labels (bottom). We show the number of instances 𝑛, features 𝑑 ,
and classes 𝑘 , as well as the average candidate set sizes.

Dataset Instances 𝑛 Features 𝑑 Classes 𝑘 Average candidates

bird-song 4 966 38 12 2.175
lost 1 122 108 14 2.217
mir-flickr 2 778 1 536 12 2.758
msrc-v2 1 755 48 22 3.156
yahoo-news 22 762 163 203 1.908

mnist 70 000 784 10 3.958
fmnist 70 000 784 10 3.242
kmnist 70 000 784 10 3.221
cifar10 60 000 3 072 10 4.593
cifar100 60 000 3 072 100 5.540
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(a) The real-world partially-labeled
dataset bird-song.
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(b) The mnist dataset with our can-
didate generation strategy.
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(c) The mnist dataset with the stan-
dard generation strategy.
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Figure 7.2.: The co-occurrences of candidate labels for different partially-labelled datasets and candidate
generation strategies. In Figure 7.2a, for example, the correct label 0 co-occurs most often in candidate sets
with the incorrect label 5. Our candidate generation strategy in Figure 7.2b combines the instance-dependent
noise in Figure 7.2c with the class imbalances that occur in real-world data (compare Figure 7.2a).

et al., 2022), Pop (Xu et al., 2023), CroSel (Tian et al., 2024), and Cel (Yang et al., 2025).
For a fair comparison, we use the same base models for all approaches, that is, an MLP
with ReLU activation and batch normalization. For the colored image datasets, we use the
pre-trained Blip2 model (Li et al., 2023) to extract 768-dimensional feature vectors.

7.3.2. Experimental Setup

Data. As is common in the PLL literature (Lv et al., 2020; Xu et al., 2023), we use real-
world PLL datasets as well as supervised multi-class classification datasets with added
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Table 7.2.: Average test-set accuracies (standard deviation) on the five real-world PLL datasets. The best
result per dataset is highlighted in bold. All methods that are not significantly worse than the best method,
using a t-test with level 0.05, are indicated by ∗. ViPll gives the best results in the majority of experiments.

Methods bird-song lost mir-flickr msrc-v2 yahoo-news

ViPll (ours) 76.15 (1.56) 78.52 (2.27) 68.49 (2.13) ∗ 60.24 (2.45) 63.99 (0.58)
ViPll (w/ abl.) 72.25 (1.55) 77.00 (2.20) ∗ 65.25 (2.84) ∗ 53.41 (2.82) 49.41 (0.52)

PlKnn (2005) 68.43 (1.38) 44.11 (2.62) 51.98 (2.44) 43.12 (1.96) 45.82 (0.16)
PlEcoc (2017) 61.04 (2.17) 64.17 (3.81) 50.68 (0.78) 28.78 (1.61) 47.64 (0.36)
Proden (2020) 71.17 (1.66) 73.44 (2.01) 68.67 (1.74) 55.23 (3.44) 62.65 (1.21)
Valen (2021) 71.99 (1.72) 67.02 (3.63) 64.96 (2.16) 50.11 (2.44) 59.91 (1.43)
Cavl (2022) 68.11 (1.21) 66.58 (3.33) 63.13 (4.63) ∗ 53.64 (3.16) 62.60 (1.24)
PiCO (2022) 72.81 (1.10) 66.93 (3.03) 49.32 (2.38) 56.82 (5.17) ∗ 61.09 (0.66)
Pop (2023) 71.71 (1.00) 72.73 (1.93) 67.27 (2.03) ∗ 55.23 (2.85) 63.09 (0.68)
CroSel (2024) 75.49 (1.25) ∗ 72.91 (3.01) 65.43 (1.86) 52.33 (4.11) 67.10 (0.77)

Cel (2025) 71.75 (1.76) 74.15 (2.11) 68.56 (2.87) ∗ 53.13 (2.89) 63.77 (1.52)

Table 7.3.: Average test-set accuracies (standard deviation) on the five supervised multi-class classification
datasets with added candidate labels. The best result per dataset is highlighted in bold. All methods that are
not significantly worse than the best method, using a t-test with level 0.05, are indicated by ∗. ViPll gives
the best results in the majority of experiments.

Methods mnist kmnist fmnist cifar10 cifar100

ViPll (ours) 80.81 (0.60) 58.78 (1.34) ∗ 74.87 (0.93) 96.64 (3.92) 77.76 (0.51)

ViPll (w/ abl.) 52.93 (1.76) 40.41 (0.70) 67.36 (0.66) 88.43 (0.14) 45.74 (2.49)

PlKnn (2005) 63.73 (0.17) 46.62 (0.04) 61.70 (0.18) 76.17 (0.23) 68.05 (0.01)
PlEcoc (2017) 55.59 (1.81) 37.94 (0.87) 66.15 (1.90) 77.13 (4.88) 52.61 (1.01)
Proden (2020) 71.10 (1.41) 58.86 (0.55) ∗ 69.04 (1.00) 87.17 (0.26) 77.16 (1.00) ∗
Valen (2021) 59.31 (2.30) 43.97 (0.80) 65.52 (1.74) 82.63 (0.55) 71.85 (0.26)
Cavl (2022) 72.12 (2.41) 57.88 (1.80) ∗ 71.54 (1.08) 89.73 (3.79) 72.73 (1.52)
PiCO (2022) 78.45 (0.58) 56.10 (1.52) 73.89 (0.49) ∗ 93.08 (4.85) ∗ 70.30 (0.83)
Pop (2023) 71.88 (0.87) 58.25 (0.58) 69.57 (0.63) 87.18 (0.24) 77.42 (0.76) ∗
CroSel (2024) 73.26 (0.83) 59.05 (0.25) 69.55 (0.69) 88.24 (0.09) 77.68 (0.99) ∗
Cel (2025) 68.57 (1.90) 56.26 (1.38) 68.26 (1.06) 85.91 (0.14) 73.50 (0.74)

candidates. Table 7.1 summarizes the dataset characteristics. The real-world PLL datasets
include the bird-song (Briggs et al., 2012), lost (Cour et al., 2011), mir-flickr (Huiskes and
Lew, 2008), msrc-v2 (Liu and Dietterich, 2012), and yahoo-news dataset (Guillaumin et al.,
2010). The supervised multi-class classification datasets include the mnist (LeCun et al.,
1999), fmnist (Xiao et al., 2018), kmnist (Clanuwat et al., 2018), cifar10 (Krizhevsky, 2009),
and cifar100 dataset (Krizhevsky, 2009).
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Candidate Generation. To obtain partial labels for the five supervised datasets, we add
candidate labels using the common instance-dependent generation strategy (Xu et al.,
2021; Yang et al., 2025) as follows. One first trains a supervised MLP classifier 𝑔 : X → ∆k-1.
Then, given an instance 𝑥 ∈ X with correct label 𝑦 ∈ Y, a binomial flipping probability
of 𝜉1(𝑥,𝑦) = 𝑔𝑦 (𝑥)/max𝑦′∈Y \{𝑦} 𝑔𝑦′ (𝑥) decides whether to add the incorrect label 𝑦 ≠ 𝑦 to
the candidate set 𝑠 , that is, one samples 𝑤𝑦 ∼ U(0, 1) for each 𝑦 ≠ 𝑦 and adds it to 𝑥 ’s
candidate set 𝑠 if 𝑤𝑦 ≤ 𝜉1(𝑥,𝑦).
This generation strategy, however, leads to a rather balanced distribution of incorrect
candidate labels (compare Figure 7.2c). Therefore, we combine the instance-dependent
flipping probability 𝜉1 with a random long-tail class imbalance 𝜉2(𝑥,𝑦) = 0.025

𝜋 (𝑦)+1
𝑘 ,

where 𝜋 : Y → Y is a random permutation of the class labels. The resulting probability is
𝜉 (𝑥,𝑦) = 0.3𝜉1(𝑥,𝑦)+0.7𝜉2(𝑥,𝑦) and we add𝑦 ≠ 𝑦 to𝑥 ’s candidate set 𝑠 if𝑤𝑦 ≤ 𝜉 (𝑥,𝑦), with
𝑤𝑦 ∼ U(0, 1). Figure 7.2 compares the co-occurrences of the candidate labels on the real-
world PLL dataset bird-song in Figure 7.2a, on themnist dataset with the instance-dependent
strategy in Figure 7.2c, and on the mnist dataset with our mixed generation strategy in
Figure 7.2b. The mnist dataset with the instance-dependent strategy entails a rather
balanced distribution of incorrect candidates (Figure 7.2c). Real-world PLL data, however,
often has a highly imbalanced distribution of incorrect candidate labels (Figure 7.2a). Class
0, for example, appears more often as an incorrect candidate label compared to class 1. We
mimic this with our generation strategy in Figure 7.2b.

7.3.3. Results

Predictive Performance. We repeat all experiments five times and show means and
standard deviations of the results. Table 7.2 shows all results on the real-world PLL datasets
and Table 7.3 on the supervised classification datasets with added candidate labels. On both,
the real-world PLL and the supervised datasets, our method ViPll has the best results in the
majority of experiments. We mark methods that are not significantly worse with ∗ using
a t-test with level 0.05. On the lost and mnist datasets, ViPll significantly outperforms
the competitors; on the bird-song, msrc-v2, fmnist, cifar10, and cifar100 datasets, ViPll
performs best with only few competitors that are not significantly worse; and on the mir-
flickr, yahoo-news, and kmnist datasets, ViPll performs comparable compared to the best
performing method. Overall, ViPll wins most direct comparisons with its competitors.

Ablation Study. ViPll relies on the causal factorization of the PLL problem in Figure 7.1b
(as discussed in Section 7.2 and 7.2.1). ViPll (with ablations), which omits the use of the
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Markov equivalence shown in Proposition 7.2.3 and uses the causal model in Figure 7.1a,
minimizes

Labl(𝜙) = E(𝑥,𝑠)∼P𝑋𝑆

[
E𝑦∼𝑞𝜙 (𝑦 |𝑥,𝑠) [log𝑞𝜙 (𝑦 | 𝑥, 𝑠) − log 𝑝 (𝑦 | 𝑥)︸                                ︷︷                                ︸

=𝐷KL (𝑞𝜙 (𝑦 |𝑥,𝑠) ∥ 𝑝 (𝑦 |𝑥))

− log𝑝 (𝑠 | 𝑥,𝑦)]

− log 𝑝 (𝑥) + log 𝑝 (𝑥, 𝑠)︸                     ︷︷                     ︸
constant w.r.t. 𝜙

]
, (7.14)

where 𝑞𝜙 (𝑦 | 𝑥, 𝑠) is modeled as discussed in Section 7.2.1 and 𝑝 (𝑠 | 𝑥,𝑦) as discussed in
Section 7.2.4. The term 𝑝 (𝑦 | 𝑥) is modeled by maintaining a labeling vector 𝑦𝑖 for each
(𝑥𝑖, 𝑠𝑖) ∈ D and updating it similarly to Line 22 in Algorithm 4. The remaining terms are
constant w.r.t. 𝜙 .

Recall from Section 7.2.1 that the causal model in (7.4) is beneficial in our setting as it
explicitly allows modeling a generative model of the observed features P(𝑋 | 𝑌 ) as well
as prior information P(𝑌 ). The results in Table 7.2 and 7.3 support this hypothesis: The
approach in (7.14) is inferior to our method in most cases. ViPll (with ablations) performs
comparable to ViPll only on the lost and mir-flickr datasets. On the remaining datasets, it
performs worse.

To summarize our findings, ViPll performs the best in almost all cases and across a
wide-range of artificial and real-world datasets. Additionally, our ablation experiments
demonstrate the benefit of leveraging the Markov equivalence shown Proposition 7.2.3.
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Partial-label learning (PLL) is a form of weakly supervised learning in which each instance
is annotated with a set of candidate labels, only one of which corresponds to the true
class. The lack of exact class labels poses substantial challenges for constructing reliable
classifiers, as ambiguity and noise are inherent in the data. In this work, we proposed
four novel methods for partial-label learning that address different aspects of this problem,
ranging from uncertainty handling and robustness to principled candidate refinement
and probabilistic modeling. In the following, we summarize these contributions, discuss
their implications, outline open research questions for future work, and elaborate on the
broader setting of weakly supervised learning.

PLL with a Reject Option. When misclassifications are costly or potentially harmful, reject
options provide a principled mechanism to mitigate the impact of incorrect predictions by
allowing the model to abstain from making predictions when uncertain. In Chapter 4, we
introduced a novel nearest-neighbor-based PLL algorithm that incorporates a reject option
grounded in Dempster-Shafer theory. This approach quantifies uncertainty through a
feasible region representing all plausible label distributions and decides to reject predictions
that fall below a certain confidence threshold. Our analysis demonstrates that the proposed
reject mechanism satisfies desirable theoretical properties, such as rejecting random
guesses and ensuring that the predicted label accumulates the highest belief mass across
all feasible probability measures. Experiments confirm that this approach effectively
reduces the number of harmful misclassifications, which is particularly valuable in domains
where human oversight remains crucial, such as crowdsourced labeling or medical image
analysis.

However, some research questions remain open. A key direction is to establish theoretical
principles for setting the reject threshold adaptively, based on a desired rejection rate or
application-specific cost structure. Furthermore, decoupling the reject option from the
nearest-neighbor framework could enhance flexibility, allowing its integration into deep
or probabilistic models. Extending the theoretical analysis to characterize the trade-off
between rejection rate and predictive accuracy would also provide a more comprehensive
understanding of rejection-based learning under weak supervision.

Robust PLL by Leveraging Class Activation Values. Chapter 5 focused on robustness, a
property essential for ensuring reliable predictions under uncertain and imperfect inputs.
We proposed a novel PLL method that leverages class activation values to assess prediction
confidence and explicitly model uncertainty. By parameterizing a Dirichlet distribution
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over class probabilities, our approach provides a principled way to quantify predictive
uncertainty and separate confident from ambiguous predictions. Empirical results demon-
strate that this model exhibits increased robustness to three major challenges in weak
supervision: high levels of candidate-label noise, out-of-distribution inputs, and adversarial
perturbations of instance features.

An open question, however, is to provide further theoretical guarantees for the robustness
of the proposed classifier, which is non-trivial given that partial-label noise and adversarial
noise are intertwined in the PLL setting. Also, it has been noted in the literature that
evidential deep learning, underlying our approach, fails to learn a well-calibrated epistemic
uncertainty measure with respect to a reference distribution. It excels at forming a relative
notion of uncertainty though, which is sufficient for most downstream tasks. Further
examining the implications of this finding would be beneficial. Another promising direction
involves extending this framework to incorporate distributional robustness, for instance,
by optimizing for worst-case risk across label uncertainties.

PLL with Conformal Candidate Cleaning. In Chapter 6, we addressed the challenge of
reducing candidate-label ambiguity in a principled rather than heuristic manner. We intro-
duced a novel conformal candidate cleaning framework that alternates between training a
PLL classifier and pruning unlikely candidate labels using conformal prediction. Conformal
prediction offers statistically grounded guarantees on confidence levels, ensuring that
the true label remains in the refined candidate set with a user-specified probability. This
iterative process substantially improves classifier training by reducing label noise and
providing a clearer supervision signal. Experimental results show that conformal candidate
cleaning enhances accuracy across multiple PLL methods and datasets, demonstrating its
general applicability as a plug-in extension.

Future work can further deepen the theoretical understanding of this approach. In par-
ticular, while our theoretical results establish conformal validity of the predictor used to
prune the candidate sets, it is yet to be shown that the predicted conformal sets achieve
minimal or near-minimal cardinality. This property is desirable, since predicting the entire
label space yields a trivially valid—but uninformative—conformal predictor. Although
our experiments show that the conformal sets are reasonably small in practice, theoreti-
cal bounds would give further evidence. Establishing such bounds in the PLL setting is
non-trivial, however, as one must account for errors in the pseudo-labels of the validation
set, which is used for calibration. Moreover, exploring adaptive calibration strategies or
online conformal updates could make this framework more practical for dynamic data
scenarios.

Amortized Variational Inference for PLL. Chapter 7 introduced a probabilistic approach
that formulates label disambiguation as a latent-variable inference problem. Using amor-
tized variational inference, we directly approximate the posterior distribution over true
labels through neural networks that predict variational parameters from input data. This
formulation combines the expressive power of deep learning with the interpretability
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and rigor of probabilistic modeling. Our experiments demonstrated that this approach
achieves state-of-the-art predictive accuracy across synthetic and real-world datasets,
including crowdsourcing and web mining. By viewing the problem from a generative
rather than discriminative perspective, the method provides a unified probabilistic view of
PLL and offers a foundation for uncertainty-aware learning in broader weakly supervised
contexts.

However, some challenges remain. For instance, there is an amortization gap as the neural
network may not perfectly predict the variational parameters for each data point, which
can affect both inference accuracy and generalization. Investigating how architectural
choices and optimization strategies influence this bias could lead to improved model
stability. Additionally, integrating more expressive posterior families, such as normalizing
flows or hierarchical priors, could capture richer uncertainty structures. Finally, future
work may explore combining variational inference with active learning or reinforcement
learning frameworks to guide label acquisition dynamically for more stable training.

Beyond these specific contributions, this thesis contributes to the broader understand-
ing of weakly supervised learning, a family of paradigms that includes semi-supervised
learning, noisy-label learning, complementary-label learning, and partial learning, among
many others. While each of these subfields has evolved independently, their underlying
challenges—limited supervision, label noise, and uncertainty quantification—are deeply
interconnected. Developing unified frameworks that bridge these problem formulations
would yield both theoretical coherence and practical benefits, allowing algorithms to
generalize across different supervision regimes. Another promising avenue is the in-
tegration of weak supervision with foundation models and large-scale pretraining. As
modern machine learning increasingly relies on massive, imperfectly labeled data, the
principles of PLL and related weakly supervised learning techniques can help manage
uncertainty and enhance trustworthiness. Furthermore, expanding the theoretical study
of robustness under weak supervision, including guarantees for confidence calibration,
rejection behavior, and adversarial resilience, remains an open direction.

Overall, this thesis advances the field of weakly supervised learning by proposing four
complementary approaches that together enhance the accuracy and robustness of partial-
label learning methods. Through both theoretical analysis and empirical evaluation, we
provide new insights into how machine learning systems can operate reliably when
supervision is ambiguous or incomplete. The methods developed establish a foundation
for more trustworthy weakly supervised algorithms and open several avenues for future
exploration.
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A. Appendix to PLL with a Reject Option

This section complements Chapter 4 and contains additional experiments and details
their hyperparameters. Section A.1 lists the values of all relevant hyperparameters, the
parameter sensitivity of our approach is discussed in Section A.2, and Section A.3 contains
reject trade-off plots for all experimental settings considered.

A.1. Hyperparameters

As mentioned in Section 4.4.1, we consider ten commonly used PLL approaches. We choose
their parameters as recommended by the respective authors.

• PlKnn (Hüllermeier and Beringer, 2005): For all non-mnist datasets, we use 𝑙 = 10
neighbors as recommended by the authors. For the mnist-like datasets, we use the
hidden representation of a variational auto-encoder as instance features and use
𝑙 = 20. The variational auto-encoder has a 768-dimensional input layer (flat mnist
input), a 512-dimensional second layer, and 48-dimensional bottleneck layers for
the mean and variance representations. The decoder uses a 48-dimensional first
layer, a 512-dimensional second layer, and a 768-dimensional output layer with
sigmoid activation. Otherwise, we use ReLU activations between all layers. Binary
cross-entropy is used as a reconstruction loss. We choose the AdamW optimizer for
training.

• PlSvm (Nguyen and Caruana, 2008): We use the Pegasos optimizer (Shalev-Shwartz
et al., 2007) and 𝜆 = 1.

• Ipal (Zhang and Yu, 2015): We use 𝑙 = 10 neighbors, 𝛼 = 0.95, and 100 iterations.

• PlEcoc (Zhang et al., 2017): We use 𝐿 = ⌈10 log2(𝑘)⌉ and 𝜏 = 0.1 as recommended.

• Proden (Lv et al., 2020): For a fair comparison, we use the same base models for all
neural-network-based approaches. We use a standard 𝑑-300-300-300-𝑘 MLP (Werbos,
1974) for the non-mnist datasets with ReLU activations, batch normalizations, and
softmax output. For the mnist-like datasets, we use the LeNet-5 architecture (LeCun
et al., 1998). We choose the AdamW optimizer for training.

• Cc (Feng et al., 2020): We use the same base models as mentioned above for Proden.

• Valen (Xu et al., 2021): We use the same base models as mentioned above for Proden.
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Figure A.1.: Sensitivity of the number of neighbors regarding the test-set MCC score, the fraction, and the
MCC score of confident / non-rejected predictions.

• Pop (Xu et al., 2023): We use the same base models as mentioned above for Proden.
Also, we set 𝑒0 = 0.001, 𝑒𝑒𝑛𝑑 = 0.04, and 𝑒𝑠 = 0.001. We abstain from using the data
augmentations discussed in the paper for a fair comparison.

• CroSel (Tian et al., 2024): We use the same base models as mentioned above for
Proden. We use 10 warm-up epochs using Cc and 𝜆𝑐𝑟 = 2. We abstain from using
the data augmentations discussed in the paper for a fair comparison.

• DstPll (our proposed approach): Similar to PlKnn and Ipal, we use 𝑙 = 10 neigh-
bors for the non-mnist datasets. For the mnist-like datasets, we use the hidden
representation of a variational auto-encoder as instance features and use 𝑙 = 20.
The architecture of the variational auto-encoder is the same as described above for
PlKnn.

We have implemented all approaches in Python using Pytorch. All experiments need
two to three days on a machine with 48 cores and one NVIDIA GeForce RTX 3090.

A.2. Parameter Sensitivity

Figure A.1 shows the sensitivity of the number of neighbors 𝑙 regarding the test-set
performance, the fraction of confident / non-rejected predictions, and the non-rejected
prediction performance. The shaded areas indicate the standard deviation regarding the
5-fold cross-validation. As for default 𝑙-nearest neighbor classification, changes of 𝑙 have a
relatively large impact. We show parameter sensitivity for each of the real-world datasets
separately. Naturally, different datasets have different optimal parameter settings. The
configuration 𝑙 = 10, which is also recommended within PlKnn (Hüllermeier and Beringer,
2005) and Ipal (Zhang and Yu, 2015), provides a good trade-off between the number of
confident predictions and how accurate confident predictions are. Indeed, this setting
produces a good number of confident predictions on most datasets (Figure A.1; center
plot). At the same time, it produces a good MCC performance of confident predictions on
most datasets (Figure A.1; right plot).
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A.3. Reject Trade-off Curves

When increasing 𝑙 , our method’s behavior on different datasets can be assembled into
two groups. On the bird-song, mir-flickr, and yahoo-news datasets, increasing 𝑙 past
ten neighbors also increases the amount of irrelevant labeling information from those
neighbors. Therefore, our approach produces less confident predictions. At the same time,
the MCC score of confident predictions remains at roughly the same level. This is because
irrelevant labeling information from neighbors increases at most at the same rate as 𝑙 . In
contrast, on the lost and msrc-v2 datasets, the MCC score of confident predictions drops
sharply at a certain point while the number of confident predictions decreases similarly.
This is because irrelevant labeling information increases more rapidly than 𝑙 : The decrease
of confidence in predictions is slower than the increase of irrelevant candidate labels.

A.3. Reject Trade-off Curves

Figure A.2 (i) – (xxxiv) shows the reject trade-off for varying confidence (0 to 1) and Δm̃ (-1
to 1) thresholds and augments Figure 4.1 by considering all datasets and noise generation
strategies. The x-axes show the fractions of predictions that are rejected. The y-axes show
the accuracies of predictions that are not rejected. The plots show (fraction of rejects,
non-rejected test-set accuracy)-pairs corresponding to different settings of the thresholds.
In most cases, our method provides a better trade-off between the number of rejected
predictions and the accuracy of the non-rejected predictions. Table 4.2 summarizes all plots
by showing the average empirical risks across all experimental settings and for different
trade-off parameters 𝜆. We recall that our method provides the significantly best trade-offs
for 𝜆 ∈ [0, 0.2].
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Figure A.2.: Trade-off between the fraction of rejected and the accuracy of non-rejected predictions.
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B. Appendix to Robust PLL by Leveraging
Class Activation Values

This section augments Section 5.4 by presenting more details of our experimental setup and
results. This includes the hyperparameter values of all methods (Section B.1), an overview
of the datasets used (Section B.2), as well as further results (Section B.3 and B.4).

B.1. Hyperparameters

This section lists all methods, which are benchmarked in the main text, together with
their respective hyperparameter choices. We set all hyperparameters as recommended
by the respective authors. There are 14 non-ensemble and four ensemble methods. The
non-ensemble methods and their hyperparameters are:

• PlKnn (Hüllermeier and Beringer, 2005): We use 𝑘 = 10 nearest neighbors.

• PlSvm (Nguyen and Caruana, 2008): We use the Pegasos optimizer (Shalev-Shwartz
et al., 2007) and 𝜆 = 1.

• Ipal (Zhang and Yu, 2015): We use 𝑘 = 10 neighbors, 𝛼 = 0.95, and 100 iterations.

• PlEcoc (Zhang et al., 2017): We use 𝐿 = ⌈10 log2(𝑙)⌉ and 𝜏 = 0.1.

• Proden (Lv et al., 2020): For a fair comparison, we use the same base model for all
neural-network-based approaches. We use a standard 𝑑-300-300-300-𝑙 MLP (Werbos,
1974) with ReLU activations, batch normalizations, and softmax output. We choose
the Adam optimizer for training and train for a total of 200 epochs.

• Proden+L2 (Hoerl and Kennard, 1970; Lv et al., 2020): We use the same base model
and settings as Proden with additional L2 weight regularization.

• Proden+Edl (Sensoy et al., 2018; Lv et al., 2020): We use the Proden model to
disambiguate the candidate labels with the same settings as above. Then, we use the
evidential-learning algorithm by Sensoy et al. (2018) in a supervised manner.

• Rc (Feng et al., 2020): We use the same base model and settings as Proden.

• Cc (Feng et al., 2020): We use the same base model and settings as Proden.

• Valen (Xu et al., 2021): We use the same base model and settings as Proden.
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Table B.1.: Overview of dataset characteristics grouped into real-world partially labeled datasets (top) and
supervised datasets with added candidate labels (bottom).

Dataset #Inst. 𝑛 #Features 𝑑 #Classes 𝑘 Avg. candidate
set sizes

Fraction with
ground truth

bird-song 4 998 38 13 2.167 0.33
lost 1 122 108 16 2.228 0.06
mir-flickr 2 780 1 536 14 2.764 0.00
msrc-v2 1 758 48 23 3.154 0.08
soccer 17 472 279 171 2.095 0.30
yahoo-news 22 991 163 219 1.907 0.29

mnist 70 000 784 10 6.304 0.00
fmnist 70 000 784 10 5.953 0.00
kmnist 70 000 784 10 6.342 0.00
not-mnist 70 000 784 10 6.342 0.00

• Cavl (Zhang et al., 2022a): We use the same base model and settings as Proden.

• Pop (Xu et al., 2023): We use the same base model and settings as Proden. Also, we
set 𝑒0 = 0.001, 𝑒𝑒𝑛𝑑 = 0.04, and 𝑒𝑠 = 0.001.

• CroSel (Tian et al., 2024): We use the same base model and settings as Proden.
We use 10 warm-up epochs using Cc and 𝜆𝑐𝑟 = 2. We abstain from using the data
augmentations discussed in the paper for a fair comparison of the base approach.

• DstPll (Fuchs et al., 2025): We use 𝑘 = 20 neighbors and a variational auto-encoder
to reduce the feature dimensionality as recommended by the authors.

• RobustPll (our method): We use the same base model and settings as Proden. The
parameter 𝜆𝑡 is set to min(2𝑡/𝑇, 1) with 𝑇 = 200 epochs.

The four ensemble methods and their hyperparameters are:

• Proden+Dropout (Srivastava et al., 2014; Lv et al., 2020): We use the Proden
model with additional Monte-Carlo dropout. The dropout layer is also active during
inference. We repeat the predictions 1000 times to estimate the uncertainty involved
across all dropout networks.

• Proden+Ens (Lakshminarayanan et al., 2017; Lv et al., 2020): We use an ensemble of
5 Proden models.

• Proden+AdvEns (Lv et al., 2020; Lakshminarayanan et al., 2017): We use an ensemble
of 5 Proden models that are trained on adversarially corrupted instance features.

• RobustPll+Ens (our method): We use an ensemble of 5 RobustPll models.
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B.2. Datasets

Table B.2.: Average test-set accuracies (± std.) on the real-world datasets.

All methods bird-song lost mir-flickr msrc-v2 soccer yahoo-
news

PlKnn (2005) 67.8 (± 1.2) 41.6 (± 2.2) 52.6 (± 2.0) 43.6 (± 1.9) 50.0 (± 0.4) 46.1 (± 0.5)
PlSvm (2008) 32.3 (± 1.2) 53.5 (± 1.7) 45.4 (± 7.2) 26.5 (± 0.9) 49.3 (± 0.5) 37.2 (± 2.7)
Ipal (2015) 72.1 (± 0.9) 59.4 (± 4.1) 54.3 (± 1.0) 51.8 (± 2.1) 54.1 (± 0.5) 55.3 (± 0.7)
PlEcoc (2017) 58.3 (± 2.5) 64.1 (± 2.3) 49.2 (± 2.7) 30.6 (± 6.0) 5.6 (± 0.4) 48.1 (± 0.7)
Proden (2020) 72.0 (± 0.8) 71.5 (± 2.9) 68.4 (± 1.8) 54.7 (± 1.2) 54.4 (± 0.5) 63.7 (± 1.0)
Proden+L2 72.2 (± 0.9) 71.5 (± 2.0) 67.8 (± 2.0) 54.4 (± 1.2) 54.4 (± 0.2) 64.1 (± 0.8)
Proden+Edl 69.1 (± 0.4) 66.6 (± 2.8) 66.4 (± 2.6) 53.4 (± 1.7) 25.7 (± 1.2) 16.6 (± 0.9)
Rc (2020) 73.7 (± 1.1) 69.8 (± 0.7) 67.3 (± 2.0) 52.9 (± 1.5) 49.9 (± 0.5) 59.1 (± 0.5)
Cc (2020) 71.8 (± 0.7) 71.1 (± 3.1) 65.1 (± 2.0) 53.8 (± 1.3) 0.6 (± 0.2) 0.5 (± 0.2)
Valen (2021) 66.5 (± 2.2) 45.9 (± 5.3) 60.0 (± 2.6) 41.9 (± 1.1) 49.6 (± 0.4) 59.0 (± 1.4)
Cavl (2022) 69.4 (± 1.5) 64.7 (± 2.4) 63.8 (± 3.6) 50.9 (± 0.7) 54.7 (± 0.7) 65.1 (± 0.6)
Pop (2023) 72.5 (± 0.8) 71.6 (± 2.0) 67.7 (± 1.6) 53.9 (± 1.8) 55.3 (± 0.7) 63.5 (± 0.7)
CroSel (2024) 69.5 (± 0.9) 67.8 (± 4.5) 64.0 (± 2.0) 49.4 (± 1.5) 0.6 (± 0.2) 0.3 (± 0.2)
DstPll (2024) 67.2 (± 0.9) 37.9 (± 3.2) 50.6 (± 1.4) 41.0 (± 1.8) 49.9 (± 0.5) 44.5 (± 0.4)
▶ RobustPll 67.9 (± 2.5) 65.4 (± 1.5) 63.9 (± 2.0) 52.0 (± 1.0) 50.6 (± 0.6) 57.2 (± 1.0)

Proden+Dropout 72.5 (± 0.8) 73.2 (± 2.1) 69.2 (± 2.0) 54.2 (± 1.4) 54.0 (± 0.5) 66.7 (± 1.0)
Proden+Ens 73.5 (± 0.8) 75.5 (± 1.9) 68.2 (± 2.0) 54.9 (± 2.2) 54.9 (± 0.7) 68.2 (± 0.5)
Proden+AdvEns 74.7 (± 0.6) 77.4 (± 3.4) 67.0 (± 1.4) 53.9 (± 2.1) 56.2 (± 0.5) 71.0 (± 0.5)
▶ RobustPll+Ens 71.8 (± 1.0) 71.9 (± 3.2) 66.8 (± 2.2) 53.6 (± 0.8) 53.7 (± 0.5) 63.7 (± 0.3)

B.2. Datasets

Table B.1 shows an overview of all used datasets, including the number of instances,
features, and classes. Also, we report the average candidate set sizes as well as the fraction
of candidate sets with only one candidate label, which is the ground truth label. We note
that five out of ten datasets do not contain a single instance with available ground truth.
We recall that this prohibits the application of algorithms from related fields, for example,
semi-supervised learning.

B.3. Predictive Performance

Table B.2 augments Table 5.1 and shows the detailed test-set accuracies across all real-
world datasets. All experiments are repeated five times with different seeds to report
mean and standard deviations. We emphasize the best algorithm per dataset, as well
as non-significant differences, using a student t-test with level 𝛼 = 0.05. We consider
non-ensemble and ensemble methods separately. Our proposed algorithms, which are
indicated by the triangles, perform comparably on all considered datasets.
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Figure B.1.: Empirical CDF of the normalized entropy (range 0 to 1) of predictions on MNIST (darker color)
and NotMNIST (lighter color) for models trained on MNIST. The left plot shows the four best non-ensemble
approaches according to Table 5.2 (highest metrics). We exclude methods that are too similar, for example,
Proden-L2 and Rc behave similarly to Proden, which is shown. All methods’ performances can be observed
in Table 5.2. The right plot shows the predictive entropy of all four ensemble approaches. Our ensemble
approach is most certain about predictions on the test set (top-left corner) while being one of the approaches
that is the most uncertain about out-of-distribution examples (bottom-right corner).

B.4. Adversarial Perturbations

To complement Table 5.2 in the main text, Figure B.1 provides the empirical cumulative
distribution functions on the test and OOD set of the four best non-ensemble methods
(regarding Table 5.2) on the left and of the four ensemble approaches on the right. The
empirical CDFs of the entropies are normalized to a range between zero and one. The dark-
colored lines represent the entropy CDFs of the predictions on the MNIST test set. The
light-colored lines represent the entropy CDFs of the predictions on the NotMNIST test set
(OOD). The left plot shows the four best non-ensemble approaches according to Table 5.2
(highest metrics). We exclude methods that are too similar, for example, Proden-L2 and Rc
behave similarly to Proden, which is shown. All methods’ performances can be observed
in Table 5.2. The right plot shows the predictive entropy of all four ensemble approaches.
Our ensemble approach is most certain about predictions on the test set (top-left corner)
while being one of the approaches that is the most uncertain about out-of-distribution
examples (bottom-right corner).
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C. Appendix to PLL with Conformal
Candidate Cleaning

Appendix C.1 and C.2 contain supplementary material for our proofs, Appendix C.3 lists
all hyperparameters used within our experiments in detail, and Appendix C.4 contains
additional experiments.

C.1. Auxiliary Results

This section collects our auxiliary results.

Lemma C.1.1. Let 𝜀 ∈ (0, 1) and 𝑓 : [𝜀, 1] → [0,− log 𝜀], 𝑧 ↦→ − log 𝑧. Then, 𝑓 is 1
𝜀 -bi-

Lipschitz, that is, for any 𝑥1, 𝑥2 ∈ [𝜀, 1], it holds that 𝜀 |𝑥1−𝑥2 | ≤ |𝑓 (𝑥1) − 𝑓 (𝑥2) | ≤ 1
𝜀 |𝑥1−𝑥2 |.

Proof. 𝑓 is continuous on [𝜀, 1] and differentiable on (𝜀, 1). Hence, by the mean value
theorem, for any 𝑥1, 𝑥2 ∈ [𝜀, 1], there exists 𝜉 ∈ (𝑥1, 𝑥2) such that

|𝑓 (𝑥1) − 𝑓 (𝑥2) | = |𝑥1 − 𝑥2 | |𝑓 ′(𝜉) | .
Using that |𝑓 ′(𝜉) | = 1

𝜉 satisfies 𝜀 ≤ 𝑓 ′(𝜉) ≤ 1
𝜀 as 𝜀 ≤ 𝜉 ≤ 1 yields the stated stated claim. □

C.2. External Results

This section briefly summarizes external results that are necessary to prove our theorems.
Theorem C.2.1 states the Dvoretzky-Kiefer-Wolfowitz inequality, Assumption C.2.2 de-
scribes the candidate generation model used in Theorem C.2.3, which relates the PLL
risk (2.4) to the risk in the supervised setting. Theorem C.2.4 provides the estimation-
error bound on which we build in our Lemma 6.3.3. We recall Markov’s inequality in
Lemma C.2.5.

TheoremC.2.1 (Dvoretzky et al. 1956; Naaman 2021, Dvoretzky-Kiefer-Wolfowitz Inequality).
Let (Ω, F , P) be a probability space and 𝑋,𝑋1, . . . , 𝑋𝑛

𝑖.𝑖 .𝑑 .∼ P real-valued random variables
on Ω. Then, for any 𝛿 ∈ (0, 1),

P𝑋

(
sup
𝑥∈R

��𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑥)�� ≤√︂
log(2/𝛿)

2𝑛

)
≥ 1 − 𝛿 ,
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with 𝐹𝑋 (𝑥) = 1
𝑛

∑𝑛
𝑖=1 1{𝑋𝑖≤𝑥} and 𝐹𝑋 (𝑥) = P(𝑋 ≤ 𝑥).

Assumption C.2.2 (Feng et al. 2020, Eq. (5)). In the PLL setting (Chapter 2), assume that
P𝑋𝑆 and P𝑋𝑌 have Lebesgue densities 𝑝𝑋𝑆 and 𝑝𝑋𝑌 , respectively, 𝑝𝑆 |𝑋,𝑌 (𝑆) = 𝑝𝑆 |𝑌 (𝑆), and
the candidate generation model is of the form

𝑝𝑋𝑆 (𝑋, 𝑆) =
𝑘∑︁

𝑦=1
𝑝𝑆 |𝑌=𝑦 (𝑆)𝑝𝑋𝑌 (𝑋,𝑌 = 𝑦), with 𝑝𝑆 |𝑌=𝑦 (𝑆) =

{
1

2𝑘−1−1 if 𝑦 ∈ 𝑆 ,
0 else.

The following theorem collects an identity by Feng et al. (2020).

Theorem C.2.3 (Feng et al. 2020, Eq. (6), (7), and (8)). Let Assumption C.2.2 hold, 𝑅(𝑓 ) as
in (2.4), and the true risk of the supervised classification setting 𝑅sup(𝑓 ) := E𝑋𝑌 [ℓ (𝑓 (𝑋 ), 𝑌 )].
Then, 𝑅sup(𝑓 ) = 1

2𝑅(𝑓 ).

Theorem C.2.4 (Feng et al. 2020, Theorem 4). Let ℓ : [0, 1]𝑘 × Y → [0, 𝑀] be a bounded
and 𝜆-Lipschitz loss function in the first argument (𝜆 > 0), that is, sup𝑦∈Y |ℓ (p, 𝑦) − ℓ (q, 𝑦) | ≤
𝜆∥p − q∥2 for p, q ∈ [0, 1]𝑘 . Further, let H = {𝑓 : X → [0, 1]𝑘 | 𝑓 measurable, ∀𝑥 ∈ X :∑𝑘

𝑗=1 𝑓 𝑗 (𝑥) = 1}, 𝑓 ∗ = arg min𝑓 ∈H 𝑅(𝑓 ) be the true risk minimizer and 𝑓 = arg min𝑓 ∈H 𝑅(𝑓 )
be the empirical risk minimizer of the risks in (2.4) and (2.5), respectively. Then, for any
𝛿 ∈ (0, 1), with P𝑛-probability of at least 1 − 𝛿 ,

𝑅(𝑓 ) − 𝑅(𝑓 ∗) ≤ 4
√

2𝜆
𝑘∑︁

𝑦=1
ℜ𝑛 (H𝑦) +𝐶

√︂
log(2/𝛿)

2𝑛 ,

where ℜ𝑛 (H𝑦) is the empirical Rademacher complexity of H𝑦 := {𝑓𝑦 | 𝑓 ∈ H} and some
constant 𝐶 > 0. Further, using that ℜ𝑛 (H𝑦) ≤ 𝐶H/

√
𝑛 for some constants 𝐶H , 𝑀 > 0, it

holds with the same probability that

𝑅(𝑓 ) − 𝑅(𝑓 ∗) ≤ 𝑀

√︂
log(1/𝛿)

𝑛
.

Lemma C.2.5 (Markov inequality). For a real-valued random variable 𝑋 with probability
distribution P and 𝑎 > 0, it holds that

P ( |𝑋 | ≥ 𝑎) ≤ E ( |𝑋 |)
𝑎

.

C.3. Additional Setup

In our experiments, we consider twelve datasets of which Table C.1 summarizes the char-
acteristics. As mentioned in Section 6.4.1, we consider six state-of-the-art PLL approaches
and our novel candidate cleaning technique. We choose their parameters as recommended
by the respective authors.
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Table C.1.: Overview of dataset characteristics grouped into real-world partially labeled datasets (top) and
supervised multi-class classification datasets with added candidate labels (bottom).

Dataset #Instances 𝑛 #Features 𝑑 #Classes 𝑘 Avg. candidates

bird-song 4 966 38 12 2.146
lost 1 122 108 14 2.216
mir-flickr 2 778 1 536 12 2.756
msrc-v2 1 755 48 22 3.149
soccer 17 271 279 158 2.095
yahoo-news 22 762 163 203 1.915

mnist 70 000 784 10 6.304
fmnist 70 000 784 10 5.953
kmnist 70 000 784 10 6.342
svhn 99 289 3 072 10 4.878
cifar10 60 000 3 072 10 1.900
cifar100 60 000 3 072 100 1.399

• Proden (Lv et al., 2020): For a fair comparison, we use the same base models for each
particular dataset. For the colored-image datasets, we use a ResNet-9 architecture
(He et al., 2016). For all other image and non-image datasets, we use a standard 𝑑-300-
300-300-𝑘 MLP (Werbos, 1974) with batch normalization (Ioffe and Szegedy, 2015)
and ReLU activations (Glorot et al., 2011). We choose the Adam optimizer for training
over a total of 200 epochs and use the one-cycle learning rate scheduler (Smith and
Topin, 2019). Also, we use mini-batched training with a batch size of 16 for the
small-scale datasets (less than 5000 samples) and of 256 for the large-scale datasets
(more than 5000 samples). This balances training duration and predictive quality.

• Cc (Feng et al., 2020): We use the same base models and training procedures as
mentioned above for Proden. Otherwise, there are no additional hyperparameters
for Cc.

• Valen (Xu et al., 2021): We use the same base models and training procedures as
mentioned above for Proden. Additionally, we use ten warm-up epochs and the
three nearest neighbors to calculate the adjacency matrix.

• Cavl (Zhang et al., 2022a): We use the same base models and training procedures as
mentioned above for Proden. Otherwise, there are no additional hyperparameters
for Cavl.

• Pop (Xu et al., 2023): We use the same base models and training procedures as
mentioned above for Proden. Also, we set 𝑒0 = 0.001, 𝑒𝑒𝑛𝑑 = 0.04, and 𝑒𝑠 = 0.001.
We abstain from using the data augmentations discussed in the paper for a fair
comparison.
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• CroSel (Tian et al., 2024): We use the same base models and training procedures
as mentioned above for Proden. We use 10 warm-up epochs using Cc and 𝜆𝑐𝑟 = 2.
We abstain from using the data augmentations discussed in the paper for a fair
comparison.

• Conf+Other method (our proposed approach): Our conformal candidate cleaning
technique uses the same base models and training procedures as mentioned above
for Proden. We use 𝑅warmup = 10 warm-up epochs, a validation set size of 20 %,
and 𝛼𝑟 =

1
𝑛′

∑𝑛′
𝑖=1

∑
𝑗∉𝑠𝑖 𝑓 𝑗 (𝑥𝑖). Otherwise, we use one of the given PLL classifiers for

prediction-making.

We have implemented all approaches in Python using the Pytorch library. Running
all experiments requires approximately three days on a machine with 48 cores and one
NVIDIA GeForce RTX 4090. All our source code and data are available at https://github.
com/mathefuchs/pll-with-conformal-candidate-cleaning.

C.4. Additional Experiments

In addition to our cleaning method (Conf), we also benchmark the existing cleaning
method Clsp (He et al., 2024) on all datasets in Table C.2, C.3, and C.4, similar to the
experiments in Section 6.4. Instead of training a ResNet-9 base model from scratch as done
in Section 6.4.1, we use the pre-trained Blip-2 model (Li et al., 2023) for the experiments
in Table C.3 below. We repeat all experiments five times and report means and standard
deviations.

We observe that the Clsp models perform well on the image datasets (e.g., cifar100) but
poorly on the real-world tabular PLL datasets shown in Table C.2. We attribute this to the
fact that Clsp relies on the latent representation of large-scale vision models. In contrast,
our method Conf gives strong results on, both, real-world and image data. This hypothesis
is supported by Table C.4: The approaches Conf+Proden, Conf+Pop, and Conf+CroSel
that combine the respective approaches with our candidate cleaning strategy win most
frequently.
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Table C.2.: Average test-set accuracies (std.) on the real-world datasets. We benchmark our strategy (Conf+)
as well as the cleaning method Clsp combined with all existing methods.

Method bird-song lost mir-flickr msrc-v2 soccer yahoo-news

Proden (2020) 75.55 (1.08) 78.94 (3.01) 67.05 (1.18) 54.33 (1.76) 54.18 (0.55) 65.25 (1.00)
Clsp+Proden 74.61 (0.84) 61.95 (2.80) 60.53 (2.95) 51.74 (1.77) 31.93 (29.15) 50.92 (0.66)
Conf+P. (no) 76.27 (0.94) 79.56 (1.96) 66.07 (1.63) 53.00 (2.24) 54.63 (0.81) 65.42 (0.36)
Conf+Proden 76.99 (0.90) 80.09 (4.40) 66.91 (1.57) 54.60 (3.42) 54.77 (0.84) 65.93 (0.42)

Cc (2020) 74.49 (1.57) 78.23 (2.11) 62.39 (1.87) 50.96 (2.03) 55.28 (0.96) 65.03 (0.51)
Clsp+Cc 74.37 (0.91) 60.88 (3.71) 59.79 (2.29) 49.64 (2.06) 53.71 (0.99) 49.89 (0.30)
Conf+Cc 75.01 (1.84) 79.38 (1.79) 63.37 (0.45) 52.45 (3.64) 55.52 (0.74) 64.35 (0.64)

Valen (2021) 72.30 (1.83) 70.18 (3.44) 67.05 (1.48) 49.20 (1.37) 53.20 (0.88) 62.25 (0.45)
Clsp+Valen 74.95 (0.27) 59.03 (2.67) 60.11 (1.95) 49.92 (1.80) 53.31 (0.84) 49.50 (0.76)
Conf+Valen 71.22 (1.03) 68.41 (2.95) 61.61 (2.79) 48.37 (2.24) 52.49 (1.00) 62.16 (0.74)

Cavl (2022) 69.78 (3.00) 72.12 (1.08) 65.02 (1.34) 52.67 (2.32) 55.06 (0.48) 61.91 (0.46)
Clsp+Cavl 73.13 (1.23) 58.76 (1.75) 59.86 (2.92) 48.65 (2.31) 53.48 (0.76) 49.48 (0.37)
Conf+Cavl 72.00 (1.22) 71.24 (3.81) 64.42 (0.89) 51.63 (5.03) 54.85 (0.92) 62.43 (0.43)

Pop (2023) 75.17 (1.04) 77.79 (2.11) 67.93 (1.44) 53.83 (0.69) 55.31 (0.71) 65.09 (0.64)
Clsp+Pop 74.25 (0.89) 60.18 (2.48) 59.61 (1.84) 50.58 (1.47) 32.08 (29.29) 50.77 (0.42)
Conf+Pop 77.58 (1.01) 78.41 (2.13) 66.21 (2.19) 54.82 (3.60) 56.49 (1.10) 65.25 (0.23)

CroSel (2024) 75.11 (1.79) 81.24 (3.68) 67.58 (1.16) 52.23 (2.83) 52.64 (1.21) 67.72 (0.32)
Clsp+CroSel 76.53 (1.34) 63.72 (2.23) 59.75 (2.79) 51.29 (1.69) 52.24 (0.84) 53.53 (0.93)
Conf+CroSel 77.76 (0.50) 81.15 (2.57) 65.93 (1.94) 54.10 (2.75) 54.97 (0.65) 67.55 (0.22)
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Table C.3.: Average test-set accuracies (std.) on the supervised datasets with added incorrect candidate labels.
We benchmark our strategy (Conf) as well as the cleaning method Clsp combined with all existing methods.
We use the pre-trained Blip-2 model for all results in this table.

Method mnist fmnist kmnist cifar10 cifar100

Proden 87.21 (0.83) 71.18 (2.95) 59.31 (1.22) 99.07 (0.05) 90.51 (0.18)
Clsp+Proden 85.91 (2.42) 72.11 (2.81) 62.61 (1.00) 99.03 (0.07) 90.31 (0.13)
Conf+P. (no corr.) 91.74 (0.34) 78.38 (0.50) 66.88 (0.76) 99.03 (0.04) 91.16 (0.10)
Conf+Proden 91.55 (0.23) 78.09 (0.33) 66.43 (0.38) 99.03 (0.04) 91.16 (0.10)

Cc 86.29 (2.18) 66.19 (2.77) 58.29 (0.32) 99.07 (0.05) 73.43 (1.40)
Clsp+Cc 85.46 (1.93) 71.37 (2.34) 61.37 (1.09) 99.03 (0.06) 89.00 (1.56)
Conf+Cc 85.20 (4.16) 59.75 (2.68) 57.07 (0.66) 99.04 (0.03) 71.45 (0.94)

Valen 78.91 (0.80) 66.53 (2.65) 58.48 (0.45) 92.17 (0.54) 67.24 (2.49)
Clsp+Valen 84.72 (3.10) 68.84 (1.49) 60.76 (0.76) 98.17 (0.17) 84.53 (1.23)
Conf+Valen 74.20 (21.99) 69.09 (2.71) 60.95 (2.59) 42.63 (19.92) 60.44 (1.91)

Cavl 71.11 (3.92) 59.85 (6.49) 48.15 (5.07) 41.78 (21.40) 31.95 (1.80)
Clsp+Cavl 83.72 (3.57) 67.38 (2.59) 62.06 (2.12) 87.34 (12.71) 68.02 (1.96)
Conf+Cavl 71.86 (4.57) 59.54 (6.62) 52.14 (3.89) 29.97 (15.73) 37.34 (2.59)

Pop 87.08 (0.58) 72.30 (2.63) 60.63 (1.15) 99.06 (0.04) 90.50 (0.21)
Clsp+Pop 85.43 (2.60) 72.05 (2.41) 62.49 (0.90) 99.04 (0.07) 90.37 (0.06)
Conf+Pop 91.19 (0.29) 79.15 (1.23) 67.37 (0.28) 99.05 (0.04) 91.12 (0.09)

CroSel 91.84 (0.44) 76.34 (1.21) 65.55 (0.81) 99.07 (0.02) 75.86 (2.26)
Clsp+CroSel 91.70 (0.62) 74.42 (1.02) 67.93 (1.07) 99.08 (0.02) 88.80 (0.85)
Conf+CroSel 91.85 (0.61) 77.31 (0.46) 64.73 (1.52) 99.07 (0.03) 77.26 (0.98)
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Table C.4.: Number of significant differences aggregated from Table C.2 and C.4 using a t-test (level 5 %).

Comparison vs. all others Wins Ties Losses

Proden 27 37 8
Clsp+Proden 18 27 27
Conf+Proden (no correction) 41 25 6
Conf+Proden 50 20 2

Cc 18 39 15
Clsp+Cc 18 22 32
Conf+Cc 22 30 20

Valen 5 30 37
Clsp+Valen 17 15 40
Conf+Valen 5 24 43

Cavl 5 26 41
Clsp+Cavl 9 19 44
Conf+Cavl 4 26 42

Pop 29 39 4
Clsp+Pop 17 23 32
Conf+Pop 49 22 1

CroSel 30 33 9
Clsp+CroSel 25 15 32
Conf+CroSel 44 22 6
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