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We propose novel scale-invariant error estimators for the Monte Carlo and multilevel Monte Carlo estimation of
mean and variance. For any linear transformation of the distribution of the quantity of interest, the computation
cost across fidelity levels is optimized using a normalized error estimate, which is not only fully dimensionless
but also remains robust to variations in the characteristics of the distribution. We demonstrate the effectiveness
of the algorithms through application to a mechanical simulation of linear elastic bone tissue, where material
uncertainty incorporating both heterogeneity and random anisotropy is considered in the constitutive law.

1. Introduction

The estimation of statistical moments for characterizing a proba-
bilistic quantity of interest (Qol), such as the solution to a stochastic
partial differential equation (SPDE) or an ordinary differential equation
(SODE), is of fundamental importance in the field of uncertainty quan-
tification (UQ) [38,67]. Specifically, let X be a random variable defined
on a probability space (£, §,P), where Q denotes the sample space, §
is a o-algebra of measurable events, and P is the associated probability
measure. The p-th central moment of X, for p € N, is defined as

1p(X) = E [(X —EX)Y]. ey

where, E(X) := u(X) is the mean or the first raw moment (not to be
confused with the first central moment y,, which equals zero when
p = 1). The second central moment, when p = 2, y,(X) = Var(X) :=
E ((X - E(X )?), denotes the variance. In contrast, the third and fourth
central moments are typically expressed in standardized form: the skew-
ness and kurtosis, which are defined as a3 = p3/VVar® and a; =
uy/Var?, respectively. While skewness and kurtosis are dimensionless
and invariant under linear transformation of X, the mean and variance
are inherently scale-dependent. Consequently, their estimation accu-
racy, typically evaluated using absolute error metrics such as the mean
squared error (MSE) or root mean squared error (RMSE), also depends
on the scale of the Qol. This scale dependency presents an interpretabil-
ity challenge, especially in practical scenarios where comparisons across
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different estimators or between the same estimator applied to differently
scaled Qol are required. Addressing this, normalized error estimates play
a crucial role in statistics by providing a standardized measure of the
accuracy of statistical estimates.

Normalization in statistics is a broad topic with multiple inter-
pretations [32]. One common usage refers to the standardization of
observational data (or the Qol), often represented by the z-score or
standard score, defined as z = X — u/ \/V_ar Another interpretation
involves the normalization of statistical moments of the form, ¢, =

E(zP) = p,/V Var?, whereby the first and second standardized moments,
a; and a,— representing the mean and variance of the standardized
variable z—are fixed at 0 and 1, respectively. This implies that these mo-
ments are invariant across different distributions, offering no distinctive
information. In contrast, higher-order standardized moments, such as
skewness a; and kurtosis ay, retain distribution-specific characteristics
and are thus useful for distinguishing among probability distributions.
Therefore, in this work, the primary focus is on the estimation of the
mean p and variance yu,, where normalization is applied not to the
Qol or the moments, but rather to their scale-dependent absolute error
estimates.

In this study, we focus on random sampling-based statistical esti-
mators, such as the Monte Carlo (MC) method; traditionally regarded
as the gold standard for solving stochastic problems, due to its sim-
plicity and resilience against the curse of dimensionality [16,22,27,47].
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\begin {equation}\label {basic_eq} \mathcal {A}(q(x,\omega ),u(x,\omega ))=f(x),\end {equation}
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\begin {equation}\label {symmetric} \widehat {\mu }^{{\textrm {MC}}}(g)=\frac {1}{N}(g(\omega _1)+g(\omega _2)+\cdots +g(\omega _N)),\end {equation}
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\begin {equation}\label {ieq1} \mathbb {E}(u_h) \approx \widehat {\mu }^{{\textrm {MC}}}(u_h) = \frac {1}{N}\sum _{i=1}^{N}u_h(x, {\omega }_i),\end {equation}
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\begin {equation}\label {eq:errormean1} \begin {split} (i)& \ \text {The deterministic error decays as}\ \frac {|\mathbb {E}(u_{h_l})-\mathbb {E}(u)| }{\sqrt {\lambda _m}} \le c_{\alpha } h_l^{\alpha },\\ (ii)& \ \text {The decay of variance is bounded by}\ \frac {\widehat {{\textrm {h}}}_2^{{\textrm {MC}}}(Y_{l})}{\lambda _m} \le c_{\beta } h_l^{\beta }, \\ (iii)& \ \text {The computational cost to determine a single realization of}~Y_{l} \\ & \text { is given as }\mathcal {C}(Y_{l}) \le c_{\gamma } h_l^{-\gamma }. \end {split}\end {equation}


$l\rightarrow \infty $


\begin {equation*}\frac {|\mathbb {E}(u_{h_l})-\mathbb {E}(u)|}{\sqrt {\lambda _m}} \rightarrow 0.\end {equation*}


$\mathbb {E}(u)$


$u_{h_L}(\boldsymbol {x}, \omega )$


$\mathbb {V}\text {ar}(u_{h_L})$


\begin {eqnarray}\label {Eq:varMLMC} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}(u_{h_L,\left \lbrace N_l \right \rbrace }) &:=& \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0}) + \sum _{l=1}^{L}\left ( \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l}) - \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_{l-1},N_l}) \right ).\end {eqnarray}


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0})$


$\mathbb {V}\text {ar}(u_{h_0})$


$N_0$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l})$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_{l-1},N_l})$


$\mathbb {V}\text {ar}(u_{h_l})$


$\mathbb {V}\text {ar}(u_{h_{l-1}})$


$N_l$


\begin {equation}\label {Eq:Zl} {Z}_{l}= \begin {cases} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0}),\quad &l=0,\\ \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l}) - \widehat {{\textrm {h}}}_2^{{\textrm {MC}}}(u_{h_{l-1},N_l}),\quad &l>0. \end {cases}\end {equation}


$l>0$


$u_{h_l,N_l}$


$u_{h_{l-1},N_l}$


${Z}_{l}$


\begin {equation}\label {ieq6} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} = \sum _{l=0}^{{L}} {Z}_{l}.\end {equation}


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}$


\begin {equation}\label {Eq:MLMCerrorvar} \textrm {MSE}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}) = \mathbb {V}\text {ar}\left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} \right ) + {({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2.\end {equation}


${Z}_{l}$


$l\ge 0$


\begin {equation}\label {Eq:sampleerror} \mathbb {V}\text {ar}\left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} \right ) = \sum _{l=0}^{{L}} \mathbb {V}\text {ar}({Z}_{l}),\end {equation}


$\mathbb {V}\text {ar}({Z}_{l})$


${\mathbb {V}_{l,2}}/{N_l}$


\begin {equation}\label {Eq:MLMCerrorvar1} \textrm {MSE}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}) = \sum _{l=0}^{{L}} \frac {\mathbb {V}_{l,2}}{N_l} + {({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2.\end {equation}


$\mathcal {O}(N_l^{-1})$


$\mathbb {V}_{l,2}$


$\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}$


$\widehat {{\textrm {h}}}{}^{{\textrm {ML}}}_2$


$\textrm {NMSE}(\widehat {{\textrm {h}}}_2\hspace {-3pt}{}^{{\textrm {ML}}})$


$\lambda _v = {\mathbb {V}}_2(u_{h_L})$


${\mathbb {V}}_2(u_{h_L})$


${\mathbb {V}}_2(u_{h_l})$


$l$


${\mathbb {V}}_2(u_{h_L})$


$L$


${\mathbb {V}}_2(u_{h_0})$


$l = 0$


$\widehat {\lambda }_v:=\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_0,N_0})$


$\mathring {\epsilon }^2$


$\mathring {\epsilon }^2/2$


$N_l$


\begin {equation}\label {} N_l = {{\frac {2}{\mathring {\epsilon }^2}}}\sum _{l=0}^{{L}}{\left ( \frac {{\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}\mathcal {C}_l}}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}}\right )}^{\frac {1}{2}}{\left ({\frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}} \mathcal {C}_l}}\right )}^{\frac {1}{2}}.\end {equation}


$\mathcal {C}_l$


$u_{h_l,N_l}$


$u_{h_{l-1},N_l}$


${Z}_{l}$


$Y_{l}$


$c_{\alpha }, c_{\beta }, c_{\gamma }, \alpha , \beta , \gamma $


$\alpha \ge \frac {1}{2}\min (\beta ,\gamma )$


\begin {align}(i)& \ \text {The deterministic error is bounded by}\ \frac {|\mathbb {V}\text {ar}({u}_{h_l})-\mathbb {V}\text {ar}(u)|}{\sqrt {\lambda _v}} \le c_{\alpha } h_l^{\alpha },\nonumber \\ (ii)& \ \text {The variance}~\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}~\text {decays as}\ \frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{\lambda _v} \le c_{\beta } h_l^{\beta }, \label {eq:errorvar1}\\ (iii)& \ \text {The computational cost to determine a single realization of}~{Z}_{l}~\text {is given as} \nonumber \\ &\mathcal {C}({Z}_{l}) \le c_{\gamma } h_l^{-\gamma }.\nonumber \end {align}


$0<\mathring {\epsilon }<e^{-1}$


${\textrm {NMSE}}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}})<\mathring {\epsilon }^2$


\begin {equation}\label {Eq:costcomplex2} \mathcal {C}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}})\le \begin {cases} c\,\mathring {\epsilon }^{-2}, \quad &\beta >\gamma ,\\ c\,\mathring {\epsilon }^{-2}{(\log \mathring {\epsilon })}^2, \quad &\beta =\gamma ,\\ c\,\mathring {\epsilon }^{-2-(\gamma -\beta )/\alpha }, \quad &\beta <\gamma . \end {cases}\end {equation}


$c>0$


$u(x, \omega )$


$\mathring {\epsilon }^2$


$l=0$


$L$


$l\rightarrow \infty $


${|\mathbb {V}\text {ar}(u_{h_l})-\mathbb {V}\text {ar}(u)|}/{\sqrt {\lambda _v}}.$


\begin {equation}\label {Eq:trianglemean} \begin {split} \frac {|\mathbb {E}(u_{h_l}) - \mathbb {E}(u_{h_{l-1}})|}{\sqrt {\lambda _m}}&\le c_{\alpha } h_l^{\alpha }. \end {split}\end {equation}


\begin {equation}\label {Eq:vardettri} \frac {|\mathbb {V}\text {ar}(u_{h_l})-\mathbb {V}\text {ar}(u_{h_{l-1}})|}{\sqrt {\lambda _v}} \le c_{\alpha } h_l^{\alpha },\end {equation}


$\mathcal {G}\subset \mathbb {R}^d$


$d$


$\Gamma $


$\boldsymbol {u} \in \mathbb {R}^d$


$\mathcal {U}$


$\boldsymbol {x}\in \mathcal {G}$


$\boldsymbol {\sigma }(\boldsymbol {x})$


${\textrm {Sym}}(d):=\left \lbrace \boldsymbol {\sigma }\in (\mathbb {R}^d\otimes \mathbb {R}^d) \ |\ \boldsymbol {\sigma } = \boldsymbol {\sigma }^T \right \rbrace $


$\boldsymbol {f}(\boldsymbol {x}) \in \mathbb {R}^d$


$\boldsymbol {t}(\boldsymbol {x}) \in \mathbb {R}^d$


$\Gamma _N \subset \Gamma $


$\boldsymbol {n}(\boldsymbol {x}) \in \mathbb {R}^d$


$\Gamma _N$


$\boldsymbol {u}_{0}=\boldsymbol {0} \in \mathbb {R}^d$


$\Gamma _D \subset \Gamma $


$\Gamma _D \cap \Gamma _N = 0$


\begin {equation}\label {Eq:kinematics} \boldsymbol {\varepsilon }(\boldsymbol {x}) = \frac {1}{2} \left ( \nabla \boldsymbol {u} + \nabla \boldsymbol {u}^T \right ), \quad \forall \boldsymbol {x} \in \mathcal {G},\end {equation}


$\boldsymbol {\varepsilon }(\boldsymbol {x})\in {\textrm {Sym}}(d)$


\begin {equation}\label {Eq:ConstLaw} \boldsymbol {\sigma }(\boldsymbol {x}) = \boldsymbol {C}(\boldsymbol {x}): \boldsymbol {\varepsilon }(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \mathcal {G},\end {equation}


$\boldsymbol {C}(\boldsymbol {x})$


$C_{{ijkl}} = C_{klij}$


$C_{ijkl} = C_{jikl} = C_{ijlk}$


$\boldsymbol {C}(\boldsymbol {x})$


$C(\boldsymbol {x})$


$C(\boldsymbol {x})$


$(n\times n)$


$n=d(d+1)/2$


\begin {equation}\label {ieq7} {\textrm {Sym}}^+(n)=\{C\in (\mathbb {R}^n\otimes \mathbb {R}^n) \mid C=C^T, \boldsymbol {z}^TC \boldsymbol {z}>\boldsymbol {0}, \forall \boldsymbol {z}\in \mathbb {R}^n\setminus \boldsymbol {0}\}.\end {equation}


$\sigma (\boldsymbol {x})=C(\boldsymbol {x})\cdot \varepsilon (\boldsymbol {x})$


$\sigma (\boldsymbol {x})\in \mathbb {R}^d$


$\varepsilon (\boldsymbol {x})\in \mathbb {R}^d$


$C(\boldsymbol {x})$


$C(\boldsymbol {x},\omega )$


$(\varOmega ,\mathcal {F},\mathbb {P})$


$C(\boldsymbol {x})$


$C$


$C(\boldsymbol {x})$


$C(\boldsymbol {x},\omega )$


$\mathbb {E}(C(\boldsymbol {x},\omega ))={U}^T{U}$


${U} \in \mathbb {R}^{n\times n}$


\begin {equation}\label {Eq:RandomCmatrix} C(\boldsymbol {x},\omega ) = {U}^T{T}(\boldsymbol {x}, \omega ){U},\end {equation}


\begin {equation}\label {Eq:IdentityT} \mathbb {E}({{T}(\boldsymbol {x}, \omega )}) = {I}\end {equation}


${T}(\boldsymbol {x}, \omega )$


${\textrm {Sym}}^+(n)$


${I}\in {\textrm {Sym}}^+(n)$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


\begin {equation}\label {Eq:choleskyT} {T}(\boldsymbol {x}, \omega ) = {V}{(\boldsymbol {x},\omega )}^T{V}(\boldsymbol {x},\omega ),\end {equation}


\begin {equation}\label {Eq:Randommatrix} C(\boldsymbol {x},\omega ) = {U}^T{V}{(\boldsymbol {x},\omega )}^T{V}(\boldsymbol {x},\omega ){U}.\end {equation}


${V}(\boldsymbol {x},\omega )\in \mathbb {R}^{n\times n}$


\begin {equation}\label {Eq:upperelements} {V}_{ij}= \begin {cases} \frac {\delta _{{T}}}{\sqrt {d+1}}\theta _{ij}(\boldsymbol {x},\omega ), \text {if} \ i<j\\[6pt] \frac {\delta _{{T}}}{\sqrt {d+1}}\sqrt {N_c\Gamma _{\alpha _j}(\boldsymbol {x},\omega )}, \text {if} \ i=j, \end {cases}\end {equation}


${V}_{ij}, i\le j$


$\theta _{ij}(\boldsymbol {x},\omega ), 1\leq i\leq j \leq n$


\begin {gather}\label {Eq:inverseCDF} \Gamma _{\alpha _j}(\boldsymbol {x},\omega ) = F_{\Gamma _\alpha }^{-1}~\circ ~\text {erf}(\theta _{ij}(\boldsymbol {x},\omega )).\end {gather}


\begin {equation}\label {ieq9} \alpha _j = (d+1)/(2\delta _{{T}}^2)+(1-j)/2\end {equation}


$\text {erf}$


$F_{\Gamma _\alpha }^{-1}$


${T}(\boldsymbol {x}, \omega )$


$N_c$


$\delta _{{T}}:=[0,1]\in \mathbb {R}$


\begin {equation}\label {Eq:delT} \delta _{{T}}=\left \lbrace \frac {1}{d}\mathbb {E}\left [ \parallel {T}(\boldsymbol {x}, \omega ) - {{I}}\parallel ^2 \right ] \right \rbrace ^{1/2}.\end {equation}


${T}(\boldsymbol {x}, \omega )$


$\delta _{{T}}$


\begin {equation}\label {Eq:deltaC} \scalebox {0.96}{$\displaystyle \delta _{C} = {\left [ \frac {\mathbb {E}\left \lbrace \lVert C(\boldsymbol {x},\omega ) - \mathbb {E}(C(\boldsymbol {x},\omega )) \rVert ^2 \right \rbrace }{\lVert \mathbb {E}(C(\boldsymbol {x},\omega )) \rVert ^2}\right ]}^{1/2} = \frac {\delta _{{T}}}{\sqrt {d+1}} {\left [ 1+\frac {{(\text {tr}(\mathbb {E}(C(\boldsymbol {x},\omega ))))}^2}{\text {tr}{(\mathbb {E}(C(\boldsymbol {x},\omega )))}^2} \right ]}^{1/2}$}\end {equation}


$\delta _{C}:=[0,1]\in \mathbb {R}$


$C(\boldsymbol {x},\omega )$


$C(\boldsymbol {x},\omega )$


$\boldsymbol {u}(\boldsymbol {x},\omega ):\mathcal {G}\times \varOmega \rightarrow \mathbb {R}^d$


\begin {align}-\textrm {div} \, \boldsymbol {\sigma }(\boldsymbol {x},\omega ) &= \boldsymbol {f}(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega , \nonumber \\ \boldsymbol {u}(\boldsymbol {x},\omega ) &= \boldsymbol {u}_{0}=\boldsymbol {0}, \quad \forall \boldsymbol {x} \in \Gamma _D, \omega \in \varOmega ,\label {Eq:stoEquilForm}\\ \boldsymbol {\sigma }(\boldsymbol {x},\omega )\cdot \boldsymbol {n}(\boldsymbol {x}) &= \boldsymbol {t}(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \Gamma _N, \omega \in \varOmega , \nonumber \end {align}


$\boldsymbol {f}(\boldsymbol {x})$


\begin {equation}\label {ieq10} \boldsymbol {\varepsilon }(\boldsymbol {x},\omega ) = \frac {1}{2} \left ( \nabla \boldsymbol {u}(\boldsymbol {x},\omega ) + \nabla \boldsymbol {u}{(\boldsymbol {x},\omega )}^T \right ), \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega ,\end {equation}


$\nabla (\cdot )$


\begin {equation}\label {Eq:stoConstLaw} \boldsymbol {\sigma }(\boldsymbol {x},\omega ) = \boldsymbol {C}(\boldsymbol {x},\omega ): \boldsymbol {\varepsilon }(\boldsymbol {x},\omega ), \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega .\end {equation}


$\mathcal {G}$


$\boldsymbol {u}_h(\boldsymbol {x},\omega ):\mathcal {U}_h\times \varOmega \rightarrow \mathbb {R}^d$


$\mathcal {U}_h$


$\boldsymbol {u}_h(\boldsymbol {x},\omega )$


${u}_{h}^{(t)}(\boldsymbol {x}, \omega )=\|\boldsymbol {u}_h(\boldsymbol {x}, \omega )\|$


$u_{h,N}^{(t)}:={[{u}_{h}^{(t)}(\boldsymbol {x},\omega _i)]}_{i=1}^N$


$h_{l-1}=2h_l$


$l$


$C(\boldsymbol {x},\omega )$


$E_1=12$


$\nu _{21}=0.371$


$G_{12}=5.61$


$E_2=20$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


$C(\boldsymbol {x},\omega )$


$\delta _{C} = 0.1$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


$n=3,\ d=2$


$M$


\begin {equation}\label {Eq:GRF} \theta _{ij}(\boldsymbol {x},\omega ) = \overline {\theta }_{ij}(\boldsymbol {x}) + \sum _{k=1}^{M} \sqrt {\eta _k}\psi _k(\boldsymbol {x}) \xi _k(\omega ).\end {equation}


$\overline {\theta }_{ij}(\boldsymbol {x})$


$\xi _k(\omega )$


$(\eta _k,\psi _k)$


$\left \lbrace R_{ij}(r): R_{ij}(0)=1,1\leq i \leq j \leq n\right \rbrace $


\begin {equation}\label {Eq:corlength} R_{ij}(r) = \varrho ^2 \exp (-l_c^{-2}r^2),\end {equation}


$r=\| \boldsymbol {x}_1-\boldsymbol {x}_2\|$


$(\boldsymbol {x}_1,\boldsymbol {x}_2)\in \mathcal {G}$


$r\geq 0$


$\varrho ^2$


$R_{ij}$


$l_c\in \mathbb {R}^d_+$


$R_{ij}$


$\xi _k(\omega )$


$\overline {\theta }_{ij}(\boldsymbol {x})$


$\varrho ^2=1$


$C(\boldsymbol {x},\omega )$


$\theta _{ij}(\boldsymbol {x},\omega )$


$l$


$Y_{l}$


${Z}_{l}$


$l-1$


$l$


$x$


$y$


$M = 100$


$\eta _k$


$L$


$\boldsymbol {x}$


$l=0$


$C(\cdot , \omega )$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


$C(\cdot , \omega _1)$


$C(\cdot , \omega _2)$


$C_{1,1}(\boldsymbol {x}, \cdot )$


$C(\cdot , \omega )$


$l=0$


$C_{1, 1}(\boldsymbol {x}, \cdot )$


$\widehat {\mu }^{{\textrm {ML}}}$


$\widehat {{\textrm {h}}}_2^{{\textrm {ML}}}$


${u}_{h_L}^{(t)}(\boldsymbol {x}, \omega )$


$L=3$


\begin {equation}\label {Eq:MLMCerrorvar3} \textrm {NMSE}(\widehat {{\textrm {h}}}_2\hspace {-3pt}{}^{{\textrm {ML}}}) = \frac {1}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}} \left ( \sum _{l=0}^{{L}} \frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{N_l} \right ) + \frac {{({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}}.\end {equation}


$\mathring {\epsilon }^2/2$


$\mathring {\epsilon }^2/2$


$Y_{l}$


${Z}_{l}$


$L$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)})$


$\widehat {\lambda }_m =\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)}))$


${L}_\infty $


\begin {equation}\label {Eq:convNT} \begin {split} \frac {\max |\widehat {\mu }^{{\textrm {MC}}}(Y_{l})|}{\sqrt {\widehat {\lambda }_m}} &\le c_{\alpha } h_l^{\alpha },\\ \frac {\max \left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(Y_{l})\right )}{\widehat {\lambda }_m}&\le c_{\beta } h_l^{\beta }. \end {split}\end {equation}


$\widehat {\lambda }_v=\max (\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)}))$


$\widehat {\lambda }_m$


$\widehat {\lambda }_v$


\begin {equation}\label {Eq:convNTvar} \begin {split} \frac {\max |{Z}_{l}|}{\sqrt {\widehat {\lambda }_v}} &\le c_{\alpha } h_l^{\alpha },\\ \frac {\max \left (\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}\right )}{\widehat {\lambda }_v} &\le c_{\beta } h_l^{\beta }. \end {split}\end {equation}


$\max |\widehat {\mu }^{{\textrm {MC}}}(Y_{l})|$


$\max ({Z}_{l})$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(Y_{l}))$


$\max ({\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}})$


$\max (\widehat {\mu }^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$l$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$\max (\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$l$


$\widehat {\lambda }_m$


$\widehat {\lambda }_v$


$l=0$


$\mathcal {C}_l$


$l$


$\alpha $


$\beta $


$\gamma $


$c_{\alpha }$


$c_{\beta }$


$c_{\gamma }$


$\alpha \ge \frac {1}{2}\text {min}(\beta ,\gamma )$


$\alpha $


$\beta $


$\gamma $


$c_{\beta }$


$c_{\gamma }$


$c_{\alpha }$


$\beta <\gamma $


$\beta $


$\beta $


$\mathring {\epsilon }^2/2$


$\text {max}(N_l)$


$l$


$\mathring {\epsilon }^2/2$


$N_l$


$l$


$l=3$


$l = 3$


$\mathring {\epsilon }^2/2$


$N$


$\times 10^{-4}$


$\times 10^{-4}$


$\times 10^{-4}$


$\mathring {\epsilon }^2/2$


$2\times 10^{-4}$


$L=3$


$l=0$


$u_{h_L,\left \lbrace N_l \right \rbrace }^{(t)}$


$C(\boldsymbol {x},\omega )$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mu _p(u_h)$


$\widehat {{\textrm {h}}}_p$


$s_1$


$s_2$


\begin {equation}\label {ieq11} s_a(u_h):= \sum _{k=1}^{N}u_h{(x, \omega _k)}^a,\end {equation}


$a\in \mathbb {Z}_{\geq 0}$


$p$


$\mathbb {E}(\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}) = \mu _p$


$\mu _p$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mu _p$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mathbb {V}\text {ar}(\widehat {{\textrm {h}}}_p^{{\textrm {MC}}})$


$\mu _4$


$\mu _2^2$


$\mu _4(u_h)$


$\mu _2{(u_h)}^2$


$\text {h}_{\left \lbrace 2,2\right \rbrace }^{\text {MC}}$


$\mu _2^2$


${(\widehat {{\textrm {h}}}_2^{{\textrm {MC}}})}^2$


$\text {h}_{\left \lbrace 2,2\right \rbrace }^{\text {MC}}$


$\widehat {\lambda }_v:=\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


$\widehat {\lambda }_v:= \widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


\begin {align}&\mathbb {V}\text {ar}(\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)) = \frac {72 \mu _2^4 \left (N^2-6~N+12\right )}{(N-3) (N-2) (N-1) N}+\frac {16 \mu _3^2 \mu _2 \left (N^2-4~N+13\right )}{(N-2) (N-1) N}\nonumber \\ &\quad \quad \quad \quad \quad \quad \quad -\frac {24 \mu _4 \mu _2^2 (4~N-11)}{(N-2) (N-1) N}+\frac {16 \mu _6 \mu _2}{(N-1) N}+\frac {\mu _8}{N}\nonumber \\ &\quad \quad \quad \quad \quad \quad \quad -\frac {8 \mu _3 \mu _5}{N}-\frac {\mu _4^2 (N-17)}{(N-1) N}.\label {Eq:varV2}\end {align}


$p$


$\mu _p \equiv \mu _p(u_h)$


\begin {equation}\label {Eq:simplvarV2} \mathbb {V}\text {ar}(\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)) = \frac {\mathcal {V}_2}{N},\end {equation}


\begin {align}\mathcal {V}_2 &= \frac {72 \mu _2^4 \left (N^2 - 6~N + 12\right )}{(N-3)(N-2)(N-1)} + \frac {16 \mu _3^2 \mu _2 \left (N^2 - 4~N + 13\right )}{(N-2)(N-1)} \nonumber \\ &\quad - \frac {24 \mu _4 \mu _2^2 (4~N - 11)}{(N-2)(N-1)} + \frac {16 \mu _6 \mu _2}{N-1} + \mu _8 - 8 \mu _3 \mu _5 - \frac {\mu _4^2 (N - 17)}{N - 1}.\label {autoeq:7}\end {align}


$\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


$\mathcal {O}(N^{-1})$


$\mathbb {V}_{l,2}$


$s_{a}$


\begin {equation}\label {ieq12} s_{a,b}:= \sum _{i=1}^{N} {X_{h_l}^+(\omega _i)}^a {X_{h_l}^-(\omega _i)}^b,\end {equation}


$X_{h_l}^+{(\omega _i)}_{i=1,\ldots ,N_l}:= X_{h_l,N_l}^+ = u_{h_l,N_l} + u_{h_{l-1},N_l}$


$X_{h_l}^-{(\omega _i)}_{i=1,\ldots ,N_l}:= X_{h_l,N_l}^- = u_{h_l,N_l} - u_{h_{l-1},N_l}$


$\mathbb {V}_{l,2}$


\begin {equation*}\begin {aligned} \textrm {MSE}(\widehat {\mu }^{{\textrm {MC}}}):=\mathbb {E}({e}^2) &= \mathbb {E}({(\widehat {\mu }^{{\textrm {MC}}} -\mathbb {E}(u_h) +\mathbb {E}(u_h) -\mathbb {E}(u))}^2) \\ &= \mathbb {E}({(\widehat {\mu }^{{\textrm {MC}}} -\mathbb {E}(u_h))}^2)+{(\mathbb {E}(u_h) -\mathbb {E}(u))}^2 \\ & \qquad + 2(\mathbb {E}(u_h) -\mathbb {E}(u))(\mathbb {E}(\widehat {\mu }^{{\textrm {MC}}}) -\mathbb {E}(u_h)), \end {aligned}\end {equation*}


\begin {equation*}\begin {split} (i)& \ \text {The deterministic error decays as}\ \frac {|\mathbb {E}(u_h)-\mathbb {E}(u)| }{\sqrt {\lambda _m}} \le c_{\alpha } h^{\alpha },\\ (ii)& \ \text {The computational cost to determine a single realization of~}u_h(x, \omega ) \\ & \text {is given by}~\mathcal {C}(u_h) \le c_{\gamma } h^{-\gamma }. \end {split}\end {equation*}


\begin {equation*}\begin {aligned} {\textrm {MSE}}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}):= \mathbb {E}({e}^2) &= \mathbb {E}({(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}-\mathbb {V}\text {ar}(u_h)+\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u))}^2) \\ &= \mathbb {E}({(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}-\mathbb {V}\text {ar}(u_h))}^2) + {(\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u))}^2 \\ & \qquad + 2 (\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u)) (\mathbb {E}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}})-\mathbb {V}\text {ar}(u_h)). \end {aligned}\end {equation*}


\begin {equation}\label {Eq:varvar} \mathbb {V}\text {ar}( \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}):= \frac {1}{N}\left ( \mu _4(u_h) - \frac {\mu _2{(u_h)}^2(N-3)}{N-1}\right ),\end {equation}


\begin {equation*}\begin {split} (i)& \ \text {The deterministic error is bounded by}\ \frac {|{\mathbb {V}\text {ar}}(u_h)-\mathbb {V}\text {ar}(u)| }{\sqrt {\lambda _v}} \le c_{\alpha } h^{\alpha },\\ (ii)& \ \text {The cost to compute each sample of} u_h(x, \omega )~\text {is given as}~\mathcal {C}(u_h) \le c_{\gamma } h^{-\gamma }.\\ \end {split}\end {equation*}


\begin {equation}\label {ieq8} C(\boldsymbol {x},\omega ):\mathcal {G}\times \varOmega \rightarrow {\textrm {Sym}}^+(n).\end {equation}


\begin {equation}\label {ieq13} \begin {split} {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}} = \frac {1}{(N_l-3)(N_l-2){(N_l-1)}^2 N_l}\Big ( N_l\big ( ( -N_l^2+N_l+2){{(s_{1,1}})}^2 \\ + {(N_l-1)}^2 (N_l s_{2,2}-2s_{1,0}s_{1,2}) + (N_l-1)s_{0,2}({({s_{1,0}})}^2-s_{2,0})\big ) \\ + {({s_{0,1}})}^2\big ((6-4N_l){({s_{1,0}})}^2 + (N_l-1)N_l s_{2,0}\big ) \\ -2N_l s_{0,1}\big ({(N_l-1)}^2 s_{2,1}+(5-3N_l)s_{1,0}s_{1,1}\big ) \Big ). \end {split}\end {equation}
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However, despite its appeal, the practical implementation of MC often
faces challenges due to slow convergence, thereby demanding substan-
tial computational effort. To overcome these limitations, recent research
has increasingly turned to variance reduction techniques, notably the
multilevel Monte Carlo (MLMC) method. A key objective of the MLMC
method is to spread out the sampling strategy across a hierarchy of
different fidelities (or levels) such that the number of stochastic sam-
ples drastically decreases with the increment in fidelity of the model.
Under the right conditions, this results in an overall reduction of the
computational cost as compared to the MC approach.

To the best of the authors’ knowledge, MLMC was first introduced
by [26] in the context of estimating multi-dimensional parameter-
dependent integrals and was further employed by [20] for solving
It6’s stochastic ordinary differential equations in the computational fi-
nance applications. Following this, MLMC was extended to solve the
linear elliptic PDEs describing the subsurface flow with inhomogeneous
stochastic parameters [2,9]. A further analysis of modelling of rough
random field coefficients of elliptic PDEs on MLMC convergence was
studied in [7,65]. However, the previously mentioned works focused
only on the approximation of the Qol’s sample mean; therefore, they
lacked a full characterization of the probabilistic solution. Consequently,
[48] studied the unbiased MLMC sample variance estimator, which was
further analysed in [4] on a class of elliptic random obstacle problems—
nonetheless, the corresponding error estimates were defined only on
worst case bounds. To address this limitation, an alternative MLMC vari-
ance estimator based on h-statistics [14,51] was introduced in [35],
which emphasizes on unbiased construction of the MSE in closed form,
an approach also adopted in this study. More recently, [46] devel-
oped MLMC estimators for the biased standard deviation and its linear
combination with the unbiased mean, which are important for opti-
mization under uncertainty (OUU) workflows. Though the estimation
of other higher-order moments such as skewness and kurtosis or covari-
ance structures of the QoI via MLMC is out of the scope of this paper,
more literature on this can be found in [5,35,57].

In the context of assessing the convergence of the MLMC algorithm in
a standardized manner, the authors in [4] theoretically prove, with spe-
cific assumptions on the deterministic solution, two error bounds for the
multilevel sample mean and variance that may be directly compared. But
no practical normalized error estimates are defined for interpretation of
the complexities between the moments. On the other hand, relative error
estimates of the MC and MLMC methods, where the total MSE of a given
moment is normalized by the square of its own statistic, are considered
in [35]. However, such relative errors are not fully scale-invariant. For
example, in the MC estimation of the mean, any additive linear transfor-
mation of the Qol changes the ratio of absolute MSE to the squared mean
in a dimension-dependent manner. Interestingly, in the MC variance esti-
mation, one does obtain a fully dimensionless relative error under linear
scaling and translation, when normalized by the square of the variance.
However, the resulting error estimate becomes highly sensitive to the
tail behaviour (kurtosis) of the Qol distribution. To tackle this issue, in
this article, we propose novel normalized mean square error (NMSE) es-
timates for both the MC mean and variance estimations, based on which
the MLMC counterparts are derived. The newly introduced relative er-
rors are statistically defined using h-statistics, with chosen normalizing
factors that are finite and unbiased. They ensure that the total MSEs of
the MC and the MLMC algorithms are fully scale-invariant under any
linear transformation (scaling and addition) of Qol, and remain robust
to variations in distributional characteristics. Therefore, the proposed
NMSEs enable easier interpretation of statistical accuracy and efficiency
between the MC and MLMC algorithms for the estimation of both mean
and variance, and across different scales.

The other objective of this paper is to investigate the applicability
of the scale-invariant MC and MLMC method to linear elliptic prob-
lems described by stochastic material parameters representing both
heterogeneity and uncertain symmetries. As an example, we consider
the linear-elastic material model of the human femoral bone, whose
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constitutive law is assumed to be uncertain. In particular, bone tissue
is not only a highly heterogeneous material but also anisotropic, where
the material symmetry is described as uncertain due to the lack of con-
clusive verification of the class of elastic symmetry it belongs to [31,53].
Hence, the entire elasticity tensor is constructed as random with a pre-
defined elastic symmetry in the mean (orthotropy [18] in this case)
and triclinic symmetries in each stochastic realization. Consequently,
the positive-definite random elasticity matrices are modelled as matrix-
valued random fields, as proposed in [61,62]. In this work, we restrict
ourselves to material uncertainties only, assuming that the remaining
model parametrization is deterministic. However, the numerical ap-
proach is general enough to be employed for other types of uncertainties
as well.

The paper is organised as follows: In Section 2, we describe the prob-
lem, whereas the theoretical procedures of scale-invariant MC mean
and variance estimates are elaborated in Section 3. Following this, in
Section 4, the normalized versions of the MLMC mean and variance es-
timators are detailed. A deterministic and stochastic setting of the linear
elastic material model, along with the stochastic material modelling, is
given in Section 5. In Section 6, we visualize the considered stochastic
material model when implemented on a two-dimensional proximal fe-
mur, and detail the accuracy and efficiency of the normalized MC and
MLMC. Finally, the conclusions are drawn in Section 7.

2. Problem description

Let us consider a physical system occupying the spatial domain
G € R? in a d-dimensional Euclidean space, modelled by an abstract
equilibrium equation:

A(g(x), u(x)) = f(x). (2

Here, u(x) € U describes the state of the system at a spatial point x € §
lying in a Hilbert space U" (for the sake of simplicity), A is a (possibly
non-linear) operator modelling the physics of the system, and f € U™,
the dual space of U, is some external influence (action/excitation/load-
ing). Furthermore, we assume that the model depends on the parameter
set ¢ € Q and that it is accompanied by appropriate boundary and/or ini-
tial conditions. Note that, for brevity, the model in the previous equation
describes the physical system only in a spatial domain x, whereas one
may also generalise this to time-dependent processes.

The uncertainty in the previous equation may arise due to the
randomness in external influence f, initial or boundary conditions, ge-
ometry G, as well as the coefficient of operator A, i.e., parameter gq.
Although the theory presented further does not depend on this choice
and is general enough to cover all of the mentioned (single or combina-
tion of) cases, this article focuses on incorporating stochasticity only in
coefficient 4. In the theory of continuum solid mechanics, the parameter
q represents one of the very well-known physical phenomena, such as
elasticity [49], which is detailed as an example in Section 5. Here, we
assume that g is modelled as a random field g(x, w) with finite second-
order moments on a probability space (£, §, P). Following this, Eq. (2)
rewrites to a stochastic form:

Ag(x, ), u(x, w)) = f(x), ©)]

which further is to be solved for u(x,w) € U ® L,(L2,F,P).

Often, when the response of a model is uncertain, one is interested
in obtaining its relevant information via its corresponding statistics.
Analytically, the statistical moments of the solution u = u(x,w) can be
represented, by rewriting Eq. (2), as p-th central moment:

Hp@) =E (- E@)’) = / (u = Ew)"P(dw). 4
Q
The objective of this study is to determine the mean and variance only

after an appropriate deterministic discretization of the problem in Eq. (3)
is presented.
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Due to spatial and stochastic dependence, the solution u = u(x,®)
in Eq. (3) is first discretized in a spatial domain, i.e., we search for the
solution in a finite subspace U} C U'. After rewriting the problem in
Eq. (3) in a variational form, the spatial discretization u,(x, ) € U),—h
being the discretization parameter—can take the finite element form on
a sufficiently fine spatial mesh 7, ! [70]. The expectation functional in
Eq. (4) then rewrites to:

Hp(up) = E(@, — E,))) = /Q (), — E@p))’Pdo), )

in which the exact solution u is substituted by a semi-discretized solution
uy, = up(x, ).

3. Monte Carlo method

Due to the complexity of integrating Eq. (5) analytically, in this pa-
per, the focus is on the traditional sampling-based Monte Carlo (MC)
method [16,22,27,47].

3.1. Monte Carlo estimation of mean

For an unbiased estimate of the statistic g(w), one may take a
symmetric function

M) = %(g(wn + g(@) + -+ + g(wy)), (6)

meaning that the estimate does not depend on the order in which obser-
vations were taken. The existence and uniqueness of such a choice are
given in [25]. Under the assumption that each sample u,(x,®;) comes
from the identical distribution as u,(x, w) and by use of Eq. (6), one may
reformulate the MC estimate of the mean u(u,) as

N

E(uy) ~ iMCuy,) = % Y uy(x, @), )
i=1

where N > 1 is the sample size of the random field u,(x,w) at a spa-
tial location x. Following this, the approximation error of the MC-based

mean estimate M€ = iMC(u;,) compared to the exact mean reads

e(@M€) = V¢ - E(), ®
which further can be rewritten as

(M) = AMC — E(uy) + E(uy) — Ew).

Thus, the mean square error (MSE) reads

MSE(RV©) : = E(e?) = E((A™ - E(uy) + E(uy) — EW)’)

= B((@C - E(y))) + () — E@w)?
+ 2(E(up) — E@)EGEMC) — E(up)),

in which #MC is assumed to be an unbiased estimator; meaning that
E(#MC) = E(u,), and also, E(AMC — E(u,))*) = Var(iMC) = Var(u,)/N,
via the central limit theorem [15]. Therefore, the previous equation
reduces to:

MSE(aM°) = % + (B(uy) — Ew)’. ©)

The first term in the previous equation is the sampling error, which
varies inversely to the sample size N. On the other hand, the second term
describes the square of the spatial discretization error, whose change is
proportional to the element size h.

1 Other types of discretization techniques can be considered as well
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Scale-invariant error estimator for MC mean estimation: The
MSE in Eq. (9) is an absolute error estimate and, hence, scale-dependent.
For example, if each observation u;,(x, w;) is linearly transformed in the
form auy(x, ;)+b, in which a, b € R are constants, then the Monte Carlo
error in Eq. (9) will be affected in a square proportional manner—as

Var(auy, + b) = a® Var(uy,) 10)
and
(E(auy, + b) — E(au + b))* = a*([E(u,) — Ew))*. 1)

This leads to an interpretability issue, which is not suitable in
practical applications—for example, when transforming the units of
temperature from Kelvin to Fahrenheit or displacement field from mil-
limetres to metres. Moreover, an additional complication arises when
comparing the convergence behaviour of different MC moments under
a fixed MSE. Specifically, under a linear transformation of the form de-
fined in the previous equations, the MSE of the MC mean estimator
scales with 2, while the MSE of the MC variance estimator scales with
a*—more information on this to follow in Section 3.2. To address this
limitation, it is necessary to define a scale-invariant version of MSE, de-
fined in Eq. (9), by incorporating a statistical normalization factor 4,,,
which must satisfy the following properties:

(a) It must be greater than zero and finite i.e., 0 < 4,, < oo;

(b) It should satisfy the scaling condition 4,,(au, +b) = a* 4,,, thereby
achieving a completely dimensionless MSE;

(c) It must be chosen such that the sampling error of the scale-
invariant error estimator remains robust and fully invariant with
respect to variations in the properties of the distribution of solu-
tion uy,.

u?> as a normalizer: It is important to highlight that the common
practice of using the squared mean value y? = E(u;,)* as the standard-
izing quantity 4,, satisfies the second criterion listed above—namely,
achieving a dimensionless MSE—only in the case of multiplicative scale-
change of the form ;4(au,,)2 =q? u(u,,)z. However, this choice fails under
additive transformations, as u(u;, + by = (u(up) + by’ thereby, violat-
ing the required invariance. Consequently, 4> cannot be considered a
suitable normalizing factor for constructing a truly scale-invariant error
metric.

We propose using the variance of the solution, 4,, = Var(u,,), as a nor-
malizer. Provided that 0 < Var(u;,) < o, the factor 4,, satisfies the second
condition outlined above (see Eq. (10)). With this, the new standardized
error estimate is defined as

e(il
\/ Var(uy,)

Finally, by normalizing Eq. (9), one obtains the squared error estimate

MC)

&EMC) 1= 12)

(Euy) — E@))*

Var(uy,) as

NMSE(ZMC) 1= E(&) = % +
in which the first term is the scale-invariant sampling accuracy, and
the second term represents the new normalized squared discretization
error. In the previous equation, the resulting NMSE remains fully dimen-
sionless under both multiplicative and additive scale transformations.
Furthermore, the normalized sampling error is only proportional to
1/N—making it invariant to the variations in variance of solution uj,. In
other words, for a given total NMSE and a fixed spatial resolution 4, the
computational cost of the MC mean estimator iMC (see Proposition. 3.1)
is solely dependent on the number of MC samples N, thereby fulfilling
the third listed requirement.

The computational complexity of the scale-invariant MC mean esti-
mate is similar to the conventional procedure, as shown in [9], but it
must be redefined with respect to the total NMSE, which is given below.
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Proposition 3.1. Let us consider Cus Cys @ and y as positive constants, and
then one may define the error bounds as follows, where

[Euy) — E)| <o bt

(i) The deterministic error decays as <c,

m
(if) The computational cost to determine a single realization of u,(x, @)

is given by C(up) < c,h™".

Then, for any 0 < é < ¢!, the Monte Carlo (MC) mean estimator i€ with
N = O@é72) and h = O(&'/?) satisfies the normalized mean square error
NMSE(ii™MC) < 2. Therefore, the corresponding computational cost of MC
mean estimation is

C(EMCy < c&/e,

where ¢ > 0 is a positive constant.

Unbiased estimation of Var: In general, the true variance Var(u,)
is unknown, and must be estimated. For this purpose, one may use the
estimator ¥arMC(u,,), which is determined by the MC procedure with N
random draws. However, in such a case, the use of a symmetric func-
tion as in Eq. (6) does not lead to an unbiased estimator. To address this
limitation, we make use of h-statistics for estimating the central mo-
ments 4,, which are not only unbiased but also symmetric, and possess
minimal variance [14,51]. Further details on h-statistics for univariate
central moments, particularly the second-order moment (variance), are
provided in Appendix A. Based on this, we rewrite Eq. (12) by estimat-

~ aMC
ing 4,, = Var(uj,) using the second h-statistic, denoted as 4,, = h, (see
Eq. (72)), resulting:

e(iMC)
MC
h2

pMe) = (14

Finally, one obtains a new formulation of the estimated scale-invariant
MSE (from Eq. (13)) in the form:

(Euy) — E@))*
~MC :
2

NMSE(MC) = % + (15)

3.2. Monte Carlo estimation of variance

The previously derived estimate of variance by h-statistics in Eq. (72)
is characterized by an approximation error given as

e(h)€) = hMC — Var(u,) + Var(uy,) — Var(u),

in which Var(u) denotes the exact variance of the solution u. Following
this, the MSE of the variance estimator reads:

MSERYC) : = E(e?) = E(RMC - Var(u,) + Var(uy) — Var(w) )
~ 2
= E((h)C - Var(uy)) ) + (Var(u,) — Var(u))?
+ 2(Var(uy,) — Var(u))(EHYC) - Var(uy,)).

~ ~MC
Having that h)C is an unbiased estimator, meaning that Eth, ) =
Var(uy,), one may further rewrite the previous equation to

MSEHYC) = Var(h€) + (Var(u,) — Var(u))?. 16)

AMC
In the previous equation, the variance of the second-order statistic h, ,
which also represents the normalizing constant Em, is derived by [8] and
reads
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a7

2 [
Var®) = - (umh) - M)

N -1

where y,(u;,) and p4(u;,) represent the second and fourth central popu-
lation moments, respectively. For brevity, one may further rewrite the
previous equation as

Var(hMC) := W, (18)

where

o (P (N = 3)

Vo(up) 1= py(up) — N1 (19)
Consequently, by substituting Eq. (18) in Eq. (16), one obtains

~ %
MSE(h}C) = % + (Var(uy,) — Varw))?. (20)

Here, the first term defines the statistical error, which is inversely
proportional to the number of samples N, and the second part rep-
resents the square of the discretization error, directly proportional to
parameter h.

Scale-invariant error estimator for MC variance estimation:
Similar to MSE formulation for the MC mean estimator in Eq. (9), the
error estimate for the MC variance estimator, as presented in Eq. (20), is
inherently scale-dependent. That is, under a linear transformation of the
form au, +b, as discussed in Section 3.1, the corresponding MSE exhibits
a bi-quadratic scaling behaviour. This is due to the characteristics of the
central moments involved in Eq. (19):

uglau, +b) = a* pa(uy) (21)
and
ty2(auy +b) = a* iy (uy,). (22)

Therefore, it is clear that

Vy(auy, +b) = a* Vy(up) 23
and also that

(Var(au, + b) — Var(au + b)* = a*(Var(uy,) — Var(w))?. (24)

Therefore, similar to the standardizing entity 4,, in Section 3.1, the nor-
malization entity for the MC variance estimation, denoted by 4,, must
satisfy the following criteria:

(a) It must be finite and greater than zero, i.e., 0 < 1, < oo;

(b) It should satisfy the scaling condition i,(au, + b) = a* A,—to
achieve a completely dimensionless MSE;

(c) It must be chosen such that the sampling error of the scale-
invariant error estimator remains robust and fully invariant with
respect to variations in the properties of the distribution of solu-
tion uy,.

Var? = u,> as a normalizer: If one considers 4, = u,” as a
standardizing factor, the MSE in Eq. (20) transforms to

Vy(uy) N (Var(uy,) — Var(u))?

NMSE(hMC) =
: H* N Ho?

(25)

Provided that 0 < 4, < oo, the normalization by ,u% enables the
NMSE to be invariant under any linear transformation (as established
in Eq. (22)). This satisfies the second requirement in the above list.
However, regarding the third criterion—robustness of the normalized
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sampling error to changes in the distribution of u,—further analysis is
required. The normalized sampling error, denoted by £, derived from
Eq. (19), is given as:

. _1(m N-3
=— (=212, 26
o N<;422 N—1> 26)

where we have suppressed the u;, notation for clarity. In the asymptotic
regime where N > 1, the ratio (N —3)/(N — 1) — 1, and the expression
simplifies to:

o 1 Hy
=—(=-1), 27
. N <ﬂ22 > @7)

in which the term p,/ y% represents the standardized fourth central mo-
ment, kurtosis, denoted by Kurt = j,/u,? [13]. The normalized sampling
error ¢, depends not only on the number of samples N but also on
the kurtosis of the solution distribution. This dependence becomes par-
ticularly significant for heavy-tailed distributions, which exhibit high
kurtosis values.

For example, in the case of a (symmetric) Gaussian distribution, the
kurtosis is Kurt = 3 [13]. In contrast, for a log-normal distribution, the
kurtosis is given by Kurt = p*+2p> +3p? -3 [12], where p = exp(Var) and
Var is the variance of the underlying Gaussian distribution. If Var = 1,
then Kurt ~ 114. This implies that, for a fixed total NMSE and spa-
tial resolution A, the computational effort required to estimate the MC
variance ﬁ%’lc is twice that of the mean estimator M€ for a Gaussian-
distributed u,, (since £; = 2/N). However, for a log-normal distribution,
the cost increases dramatically—by a factor of approximately 113 (i.e.,
£, ~ 113/ N)—relative to the mean estimator. This violates the third cri-
teria in the list, and therefore, undermines the effectiveness of Var? = u,2
as a normalizer in practical applications.

Following this, we consider A, = V,(u,) as a normalizer for MC vari-
ance estimation. Given that 0 < V,(u;,) < o, and based on the scaling
relation in Eq. (23), it is evident that V,(u,,) satisfies the second outlined
requirement. By normalizing the MSE with V,(u,) in Eq. (20), we obtain
the scale-invariant form of the MSE for the MC variance estimator:

(Var(uy,) — Var(u))?

N . 1
NMSEhMC®) := E@?) = ~* AT
2\h

(28)
Here, the first term represents the scale-invariant sampling error, which
decays proportionally to 1/N and is independent of the statistical char-
acteristics of the solution u,, thereby fulfilling the third requirement.
The second term denotes the normalized squared discretization error.
Furthermore, based on the computational complexity analysis for
MC variance estimation discussed in [35], we henceforth recast the
convergence analysis in terms of the normalized MSE formulation.

Proposition 3.2. Let us consider c,,c,,« and y as positive constants, and
then one may define the error bounds, such that

|Var(uy,) — Var(u)| <en,
% A’U

(ii) The cost to compute each sample ofuy(x, w) is given as C(u,) < c, h™7.

(i) The deterministic error is bounded by

AMC
Then, for any 0 < é < ¢~!, the Monte Carlo (MC) variance estimator h,
with N = O(@2) and h = ©O(&'/%) satisfies the normalized mean square

~MC
error NMSE(h, ') < &. Therefore, the corresponding computational cost of
MC variance estimation is given as

CY) < ce /e,

where ¢ > 0 is a positive constant.

Unbiased estimation of V,: The quantity V,(u,) in Eq. (28) is an-
alytical and not known. To determine the unbiased estimate of V,(uy,),
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one must obtain unbiased estimates of entities y,(u,) and u,(uy,)?, which
are detailed in Appendix B. Therefore, by substituting u, ~ hg/lc and
;4% ~ hl(\’;%) from Egs. (74) and (75), respectively, in Eq. (19), one ob-
tains the unbiased estimate: 1, := @g/lc (up)—of V,(uy). A further analysis

of the stochastic convergence of the estimator @2Mc(uh) is provided in
Appendix C. Finally, the MSE in Eq. (28) is re-described as,

(Var(uy,) — Var(u))>
+ .

~MC 02 1
NMSE(h, ) :=E(@E) = - EETo. (29)
2 h

4. Multilevel Monte Carlo method

The MSEs of MC mean and variance estimators in Egs. (9) and (20),
respectively, signify that to attain an overall higher level of total accu-
racy, one requires a very fine resolution of the finite element mesh and a
very large number of MC samples. This demands a tremendous amount
of computational effort, making the algorithm practically infeasible.
Therefore, the desired moments are further estimated by a variance
reduction technique in a multilevel fashion following [20,21,26].

4.1. Multilevel Monte Carlo estimation of mean

Let {{=0,1,2..., L} be a generalised increasing sequence—in the
context of decreasing element size h—of nested meshes P;, a regular
(non-degenerate) partition of the computational domain G of the prob-
lem described in Eq. (2). Here, / denotes the mesh level, and L represents
the finest mesh. The goal of the MLMC method is to determine the
statistics (such as the mean in this case) of the solution up, (x, ) on
the finest level L. To this end, by exploiting the linearity of the expec-
tation operator, one may express the MLMC (for brevity, denoted by
ML) mean estimate of the mean u(u,, ) using a set of samples {N,} =
{Ng,Ny,...,N } as [21]

L
ﬁML(”hL,{N,}) = ﬁMC(“hO,NU) + IZ, ﬁMC(Mh,,N, —Up_.N,)
L
=y M. (30)
=0

Here, ﬁMC(uho, n,) is the MC estimator of mean y(uy, ) on level / = 0 using
N, samples, and ﬁMC(uhh N, — Un,_,.N,) Tepresents the approximation of
mean u(up, — uy,_,) with / > 0 and N, samples. Furthermore, for / = 0,
Yy = up N, €lse, Yy 1= uy n, —up, | N, Note that the individual term
Y, | 2 0, is sampled independently, and when / > 0, the quantities uy, y,
and uy,_ y, inY; are considered to be strongly correlated—meaning that
up, N, and up, | are sampled from the same random seed.

As the mean estimate on the finest level pML = ﬁML(uhb (n,}) is ob-
tained as the telescopic sum of the differences of MC mean estimates on
the coarser levels, the MSE of ML, corresponding to Eq. (9), takes the
form (see [9]):

L
MSEE™) = )} V%(/Y’) + (Ey,) ~ E@)”. (€3b)
1=0
The above error consists of two terms: the variance of the estimator ML
on the left and the square of the spatial discretization error on the right.

Scale-invariant error estimator for MLMC mean estimation:
Similar to the MC error estimate for the mean in Eq. (9), the MSE of
the MLMC mean estimator in Eq. (31) represents an absolute error esti-
mate. As a result, the convergence of the MLMC algorithm also strongly
depends on the solution magnitude. To address this, based on the nor-
malizer 4,, defined in Section 3.1, and particularly the NMSE in Eq. (13),
we consider 4, = Var(uy, ) as a standardizing entity, suggesting a new
scale-invariant MSE estimate:

1 Lovary)\  (Ey,) - Ew)?
Var(uhL) ; N, + Var(uhL)

NMSE(MY) = (32)
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However, the normalization term Var(up,, ), which is the variance of
the solution u;, on finest mesh level L, is generally not known. Hence,
under the assumption that for any value of /, Var(u,) will be approxi-
mately constant [9,21], one may substitute Var(uy, ) with Var(u, o) which
is based on the coarsest mesh at / = 0. Furthermore, under the con-
sideration that 1, := ﬁ%vlc(“ho, N,) is the MC estimator of Var(u,), and
by defining the MC variance estimate of Var(Y)) := Var(u;, —uy, ) via
H%"C(Yl), Eq. (32) therefore transforms to

Lo Ew,)-Ew?
NMSE(EM!) = — 1 2N "+ — .
hy (upg,n,) =0 ! hy ()

(33)

The first entity here represents the estimated scale-invariant multi-level
sampling error, whereas the second term defines the dimensionless
squared discretization error. Therefore, to attain an overall normalized
mean square error é2, it is sufficient that both terms are less than é2/2.
Note that the equal splitting of error é? is not a requirement and can also
be set otherwise—for more information on this, see [10,24].

If ¢, = C()) is the computational cost of determining a single MC
sample of Y}, then the overall cost of the estimator M is given as
c(EpMy = Z,L=0 N,C,. Here, the optimum number of samples N, on each
level / is evaluated by solving an optimisation problem such that the
normalized sampling error is less than é2 /2. As a result, the cost function

L KMC
F(Np) = argmin > (N,C, + rhi (Yl)> (34)
I =0

mNI

is minimised, due to which the optimal samples N, are calculated as

1
AMC(y ) \ 2
Ny = o P20 35)
Amcl
Here, 7 is the Lagrange multiplier, determined by
L /e 1
hWMCy)Hc, \ 2
p= 2y (P0G ) (36)
é 1=0 Am

On the other hand, the set of mesh levels {/ =0,1,2..., L} maybe op-
timally chosen (in a geometric or non-geometric sequence) for a given
deterministic error. Typically, for PDE-based applications, the choice of
coarse mesh / = 0 depends on the regularity of the solution u(x) [9].
Following this, the finer mesh selection is based on an apriori mesh con-
vergence study, where the finest mesh level / = L can be fixed or can
be adaptively selected [21] during the MLMC mean computation. For a
more detailed discussion on the optimal selection of mesh hierarchies,
we refer the readers to [24].

The arguments for determining the total computational cost of the
normalized MLMC mean estimator follow the classical MLMC procedure
[20,26]. However, the difference is that the cost is described with respect
to NMSE instead of MSE.

Proposition 4.1. Let us consider the positive constants CasCpsCys @5 B, 7,

given that a > %min(ﬂ, y). Then, we consider the following error bounds,
where
L [E(up,) — E(w)l
(i) The deterministic error decays as ——————— < ¢,

=S

m

a
1

0]
(ii) The decay of variance is bounded by 21—1 <¢p hf , (37)

(iii) The computational cost to determine a single realization of Y,

is given as C(Y}) < cyh;y.

Then, there exists another positive constant c, such that for any 0 < é < e”!,
the multilevel Monte Carlo (MLMC) mean estimator satisfies the normalized
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mean square error NMSE(fiML) < 2. Finally, the total computational cost of
MLMC mean estimation is bounded by

cé2, B>y,
CEMY) < qce2(loge?,  p=7, (38)
c & =P/ p<y.

Mo Mo

Based on the values of § and y, one may also understand the major cost
contributor amongst the sequence of mesh levels. If § > y, the maximum
cost is controlled by the coarsest level, and if f < y, the finest level
governs the dominant cost. Finally, when # = y, the cost at each level is
roughly evenly distributed.

Furthermore, it is clear from the first relation in Eq. (37) that as

| > o,
|Eu,) — Ew)|
B SN )

V Am
However, E(u) is analytical and not known. Therefore, the deterministic
error is defined via the triangle inequality as [9]
|E(”h,) - E(”hH )|

N7

< ht. (39)

4.2. Multilevel Monte Carlo estimation of variance

To enhance the characterization of the probabilistic system response
uy, (x, ), this paper also focuses on defining the MLMC estimator of
Var(up, ) using h-statistics, expressed in the form [35]:

L
hgﬂL(uhu{NI}) = h%vlc(uho,NO) + ; <héwc(“"l’Nt) - hgﬂc(“h/-lﬂl)) - (40

Here, ﬁ%’lc(uho, n,) is the MC estimator of Var(u,,) with N, samples;
ﬁ%’lc(uh,’ ;) and ﬁ%m(“h,,l, w,) represent the MC estimation of Var(uy,)
and Var(uhH) using N, samples, respectively. For simplification, we
introduce:

=9~ ~MC (41)
B, N~ By Gy N 1>0.

Note that, for / > 0, u;, y, and u, _, y, in Z; are determined using the
same random seed. Thus, the expansion in Eq. (40) is rewritten as

L

ht =% 7, (42)
=0

Similar to MLMC mean estimation, MLMC variance estimator is also ob-

tained as the telescopic sum of the difference of MC variance estimates

on the coarser levels. Therefore, in correspondence to Eq. (16), the MSE

of the multilevel estimator h}!" takes the form:

MSEBML) = Var (H;"‘L) + (Var(uy, ) — Var(@)*. (43)

Under further consideration that the quantity Z,, for / > 0, is sampled
independently, one may express the first term in the above equation as

L
Var (H%L) =Y Var(z)). (44)
=0
in which the variance Var(Z)) is further defined—similar to Eq. (18)—by

V,,/N,. Therefore, Eq. (43) is reformulated as

L
~ Vo
MSEhM = Z A + (Var(u;, ) — Var(u))*. (45)
=0
Analogous to the MSE of MC variance estimator in Eq. (20), here,
the MSE is also split into statistical error—which is of the order
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O(N; 1»—and square of deterministic bias. Furthermore, the quantity
V,, is analytical, and the corresponding unbiased MC estimation, de-
noted ch’ is detailed in Appendix D.

Scale-invariant error estimator for MLMC variance estimation:
The MSE of estimator ﬁg/{L in Eq. (45) is scale-dependent. Therefore, the
MSE of multilevel variance estimator is transformed to a scale-invariant
version NMSE(hML) by considering 4, = V,(up, ) as the normalization
entity—as described in Section 3.2. Since, V,(u;, ) is unknown, we make
the assumption that the entity V,(u,, ) remains approximately close for
all values of /. That is, the value of Vy(up, ) on finest level L is replaced
by V,(u, 0) of the coarsest mesh level / = 0. Finally, with the unbiased MC

estimation of the normalizer 1, := \A/IZVIC(uhUA’ w,)» detailed in Section 3.2
and Appendix B, the new normalized MSE is given in the form:

. L YMCY  (yar(u, ) — Var(u))?
NMSERMY) = L P 7 (46)
wel= N yme

Here, the first term defines the scale-invariant sampling error and the
second term is the normalized squared deterministic error. The accom-
plishment of a total NMSE é2—as mentioned in Section 4.1—is justified
by ensuring that both errors are less than é2/2.

One may determine the samples N, analogously to Egs. (34)-(36),
such that Eq. (36) is substituted in Eq. (35):

1 1
OMC,~ Y2 OMC )2
Vl,2 G V1,2

L
2
Ny =— = = (47)
é ,;, e || ¥,

Note that, here C, is the computational cost of evaluating one MC sample
of up, y, and uy,_ y, in the difference term Z;, which is equivalent to
determining the cost of ¥; in Eq. (34).

Following the computational complexity of the scale-invariant
MLMC mean in Proposition. 4.1, the computing cost of the normalized
MLMC variance estimate, similar to the conventional MLMC variance
(see [4,35]), is detailed below.

Proposition 4.2. Let us introduce the positive constants Ca>CpsCys O P,
such that a > % min(f, y). Then, one may define the following error bounds,
such that

|Var(u h,) — Var(u)|
(i) The deterministic error is bounded by ———— — < ¢, h

Vi S
yMc

12
<cphl, (48)

(ii) The variance V?’IZC decays as

(iii) The computational cost to determine a single realization of Z, is given as

C(Z) <ce,h”.

Thus, one may state that, for any 0 < é < e”!, the total normalized mean
square error of multilevel Monte Carlo (MLMC) variance estimator is bound
by NMSE(hML) < é2. Finally, the computational cost of MLMC variance
estimation reads

cé?, p>y,
CM™) <{cé2(logey,  B=v. (49
c & =P/a, B<7.

Here, ¢ > 0 is a positive constant.

Notably, if the deterministic and stochastic convergences in Egs. (37)
and (48) are correspondingly equal, then the computational complexity
of the MLMC variance estimator will be asymptotically equal to that of
the mean estimate. However, this depends on the regularity of solution
u(x,w), as proved by authors in [4]. Otherwise, generally, for a given
total NMSE é2, the multilevel mean estimator runs faster as compared
to the variance (elaborated with a numerical example in Section 6).
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Furthermore, as noted in Section 4.1, mesh level / = 0 contributes the
most cost in the first scenario in the Eq. (49); the second case imposes an
almost equal cost on all mesh levels, and the final relation demonstrates
that the finest level L is the most dominant.

Also, corresponding to Eq. (48), when / — o, there is a monotonic
decay in |Var(u, - Var(u)|/ \//l_u . Thereby, analogous to Eq. (39), the
following condition

|Var(uy,) - Var(uy, )|
ul Bl < e (50)
Vi,

holds.

5. Application to linear elasticity: a model problem

To test the scale-invariant MC and MLMC methods, we consider a
framework of linear elliptic PDEs with random coefficients. As a rep-
resentative example, we focus on linear elasticity as a model problem,
where the elasticity tensor is modelled as a matrix-valued random field
capturing both the heterogeneous and randomly anisotropic nature of
the material.

5.1. Deterministic setting

Let G C R? be a d-dimensional geometry with smooth Lipschitz
boundary T. The aim is to determine the displacement vector u € R¢
(which belongs to the Hilbert space V) at a spatial point x € ¢ that
completely satisfies the equilibrium equations [42]

—dive(x) = f(x), Vx €,
u(x)=uy=0, Vxel,, (G20)]
o(x)-n(x)=1tx), Vxelly,

describing the linear-elastic behaviour. Here, o(x) is the Cauchy stress
tensor, which belongs to the space of second-order symmetric tensors
Sym(d) := {c€R!®RY) |o=06"}; f(x) € R? is the body force;
t(x) € R? represents the surface tension on the Neumann boundary
I'y cT, and n(x) € RY is the outward unit normal to Ty . For simplicity,
a homogeneous boundary condition u, = 0 € R? is considered on the
Dirichlet boundary I';, C T'. It is also possible to assume that ', NIy, = 0.
One may further describe the strain-displacement relation as

£(x) = % (Vu+vu'), V¥xeg, (52)

where £(x) € Sym(d) denotes an infinitesimal second-order symmetric
strain tensor. Finally, the material constitutive equation is of the linear
form

o(x)=C(x) : e(x), Vx€QG, (53)

in which C(x) represents a spatially varying fourth-order positive-
definite symmetric elasticity tensor. Here, the notion of symmetry
signifies the major (C;;, = Cy;;) and minor symmetries (C;;; = Cjy =
Cijix)- As a result, one can map a C(x) tensor to a second-order tensor
C(x), more generally known as the elasticity matrix. The reduced C(x)
matrix belongs to a family of (n X n), where n = d(d + 1)/2, real-valued
positive-definite symmetric matrices:

Sym*(m)={Ce R"QR" | C=CT,z'Cz>0,Vvz e R"\ 0}. (54)

Accordingly, conforming to Voigt notation, Eq. (53) transforms to o(x) =
C(x) - £(x), with o(x) € R? and £(x) € RY denoting the stress and strain
vectors, respectively.

5.2. Stochastic modelling of material uncertainty: a reduced parametric
approach

Material law as described previously is complicated when highly
heterogeneous and anisotropic materials—such as bone tissue, see
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Section 6—are to be modelled. To include aleatoric uncertainty with
heterogeneity in Eq. (53), the material properties have to be modelled
as random and spatially dependent [49,60]. In this paper, a probabilis-
tic point of view is studied, in which the C(x) matrix is modelled as a
matrix-valued second-order random field C(x,w) on a probability space
(2, F,P). In other words, the random elasticity matrix can be modelled
as a mapping:

C(x,w) : Gx 2 — Sym™(n). (55)

Furthermore, in practise, the usual assumption is that the elasticity ma-
trix C(x) globally follows a certain type of symmetry (e.g., isotropic,
orthotropic, etc.; see [6,11] for invariance classification of elasticity
matrix C), even though the experiments today cannot provide this infor-
mation with full certainty. Therefore, to include uncertainty in the type
of material symmetry, in this paper, we model the elasticity matrix C(x)
as per the reduced parametric approach (also commonly known as the
non-parametric method) [23,61,62]. That is, the random matrix C(x, ®)
follows a specific type of symmetry only in the mean, whereas each of
the realisations belongs to the triclinic system, which is the lowest or-
der of symmetry for elasticity-type tensors. This gives our model a full
degree of freedom in a case where the predefined mean symmetry turns
out to be incorrect; one would still be able to identify other types of in-
variances given experimental data. This is, however, not the case if we
assume that each of the realisations is constrained. If the specific symme-
try class of the material—beyond the triclinic case—is known for both
the ensemble (population) and its mean, one may employ the stochas-
tic modelling frameworks presented in [39], and [58,59], which also
has the ability to separate the modelling of strength, eigen-strain dis-
tribution, and spatial orientation, allowing for independent control of
each component; however, this remains beyond the scope of the present
study.

Following this, we model the homogeneous mean matrix as
E(C(x,w)) = UTU, in which the term U € R"™" represents an upper
triangular matrix—this square-type (Cholesky) factorization ensures the
positive-definiteness of the mean matrix. Then, to allow uncertainty into
the model, the mean formulation is extended to

Clx,0) =UTT(x,w)U, (56)
such that
E(T(x,w)) =1 (57)

holds. Here, T'(x, ) is a matrix-valued random variable that also resides
in Sym™(n), the mean value of which is an identity matrix I € Sym*(n).
In this manner, the mean behaviour is controlled by E(C(x, w)), and the
random fluctuations are governed by T'(x,w). To construct a random
ensemble T'(x, w), one may use the maximum entropy optimisation prin-
ciple under the constraints mentioned in the previous list (but with a
mean defined in Eq. (57)). Henceforth, T'(x, ) can further be factorised
as

T(x,0) = V(x,0)" V(x,0), (58)
and by substitution in Eq. (56), one obtains
Cx,0) =UTV(x,0)TV(x,0)U. (59

Here, V(x,w) € R™" denotes the upper triangular random matrix with
entries

g (x,0),if i < j
ij(X, ), J
Vd+1 Y
Vi = 5y o (60)
\/d_? Ncl"a/_(x,a)),lft =7,

given that the elements V;;,i < j are independent. Observe that the

non-diagonal upper triangular elements are modelled as independent
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Gaussian random fields 0, jx®),1<i<j<n with zero mean and unit
variance. On the other hand, the diagonal entries are gamma-distributed
positive-definite random fields:

Ty, (x.0) = F' o erf(6;(x, ). (61)
Here,
@ =(d+1)/267)+ (1 - j)/2 (62)

is a positive real number; erf is the standard Gaussian distribution func-
tion; and Fl:a ! is the inverse gamma cumulative distribution function.
This assures that the diagonal elements are strictly positive, and there-
fore, the random matrix 7'(x, w) also remains positive-definite. Reverting
to the above description in Eq. (60), where N, is a normalization con-
stant of the resultant function (given in Eq. (61)), the value of which
equals 2. Furthermore, §; := [0, 1] € R defined as Eq. (63), is a scalar
value that controls the dispersion of T'(x, w):

12
or={ZEI T - TP} 63)

The coefficient of dispersion parameter 6, is chosen such that

12
] _ o [h,(w(]E(coc,w))))2 2
N (E(C(x, )
(64)

5 _ |Edlceo) — BCw oI}
¢ IE(C(x, ))|I2

holds. Here, §- := [0,1] € R is the coefficient of dispersion of the
random matrix C(x, w).

5.3. Stochastic setting

The description of the random elasticity matrix field C(x,w) leads
to the apparent transformation of a linear-elastic material model to a
stochastic model. The aim is to determine the random displacement vec-
tor field u(x, ) : ¢ x 2 — RY. Therefore, the equilibrium equations are
rewritten in the form:

—dive(x,w) = f(x), Yx€G,w€ 2,

ux,w)=uy=0, VxelpweQ, (65)

o(x,w) -n(x)=tx), Vxely weL,

in which the boundary conditions and body forces f(x) remain deter-
ministic. Further, the linearized kinematics relationship is transformed
to

£(x, w) = % (Vu(x, ) + Vu(x,0)") ,Vx € Gw € 2, (66)

where the V(-) operator is taken in a weak sense. Finally, the constitutive
law is represented by

o(x,w) = C(x,w) : e(x,w),Vx € G,w € Q. 67)

By carrying out the variational formulation of the above stochastic par-
tial differential equations on G and further discretizing in a finite element
setting [70], one searches for the solution u,(x,®) : U} X 2 — R? in a
finite subspace, U}, as described in [30,38,52].

In computational stochastic mechanics, a vast body of literature ex-
ists on numerical methods for obtaining the stochastic solution u,(x, ®)
after semi-discretization. Some well-known approaches that fall into the
category of series—expansion methods include the spectral stochastic fi-
nite element method [19,43,44], the perturbation method [28,33,36],
and the Neumann expansion method [55,68]. The present study, how-
ever, focuses on another class of techniques that directly integrate the
statistics of the response, of which, Monte Carlo simulation [50,56]
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has traditionally been used for assessing the validity of other meth-
ods. Further reviews and discussions of the procedures can be found
in [19,43,54,64].

The goal of this study is to determine the total displacement scalar
field in Euclidean norm, i.e., ug)(x, ®) = |lu,(x,w)||, and estimate the
second-order statistics such as the mean and variance of sampled re-
sponse “;:,)N = [u;’)(x, w,-)]fi ) using the scale-invariant MC and MLMC as
detailed in Sections (3) and (4). Note that a comparison of the proposed
MC and MLMC techniques with the previously listed series—expansion
approaches lies outside the scope of this work.

6. Numerical results: 2D human femur

In this section, we examine the performance of the scale-invariant
MC and MLMC algorithms on a linear elastic material model of a 2D
human femoral bone, which is a highly heterogeneous and anisotropic
material.

6.1. Specifications

A two-dimensional proximal femur bone geometry with a body width
of approximately 7 cm and 21.7 cm in total height is considered. Fig. 1
shows the boundary conditions where an in-plane uniform pressure load
with a resultant load of 1500 N is applied on top of the bone and
zero displacements are considered at the bottom [69]. The finite el-
ement method (FEM) based spatial discretization is performed using
four-noded plane stress elements. By sampling the probabilistic space,
each deterministic simulation is thus executed by the finite element
MATLAB-based software Plaston [52], where preconditioned conjugate
gradient (PCG) method is used as an iterative solver.

To implement the scale-invariant MLMC method, a sequence of four
nested meshes with element size h,_;, = 2h, is considered, as shown in
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Fig. 2. One may notice the identical implementation of boundary condi-
tions across all the mesh levels. The corresponding mesh specifications
are tabulated in Table 1.

Femoral bone tissue is not only a highly heterogeneous material but
also anisotropic, with its precise type of elastic symmetry remaining un-
certain [31,53]. To account for this, we model the material stiffness
using a matrix-valued random field C(x,w), as defined in Section 5.2.
We consider the average orthotropic elastic properties of human corti-
cal femoral bone, as reported in the experimental study conducted on
60 specimens by [1]. The corresponding elastic coefficients, restricted
to 2D, are listed in Table 2, and are used to define the homogeneous
mean matrix E(C(x,w)) of the random elasticity tensor field C(x, w). By
setting the coefficient of dispersion of the random elasticity matrix field
to 8¢ = 0.1, the coefficient of dispersion of the matrix-valued random
field T'(x, ) is determined using Eq. (64).

Accordingly, the fluctuation matrix T'(x,w) is modelled as a non-
linear transformation of 6 (as n = 3, d = 2) independent scalar Gaussian
random fields. Each of these is approximated via a truncated (up to M
terms) Kosambi-Karhunen-Loéve expansion [29,34,37], expressed as:

M
0,,(x, @) = 0,,() + Y \/mw ()& (@), (68)
k=1

Here, 5,- (%) denotes the spatially varying mean field, & (w) are the
mutually uncorrelated and independent standard Gaussian random vari-
ables, and (1, y,) are the eigenpairs of the covariance operator associ-
ated with the autocorrelation kernel {R,. M R;0)=11<i<j< n}.
These eigenpairs are obtained via a finite element discretization of the
Fredholm integral equation of the second kind [3,30,45,63]. In this
work, we assume a Gaussian-type covariance structure:

Ry;(r) = 0% exp(=I*r), (69)

Table 1

Mesh specifications of 2D meshes.
I Elements Nodes DOF
0 171 206 396
1 684 753 1476
2 2736 2873 5688
3 10,944 11,217 22,320

Table 2
Orthotropic material parameters.

Young’s modulus (GPa) Poisson’s ratio Shear modulus (GPa)
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Fig. 2. Nested mesh levels of 2D femur bone.
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in which, r = ||x; — x,|| is the Euclidean distance between spatial points
(x;,%,) € G with r > 0, and ¢? is the marginal variance. Moreover, each
of R;; are individually parametrized by a vector of correlation lengths
I, € ]R‘i. For simplicity, we adopt identical correlation lengths across
all components of autocorrelation R;;. Note that the standard Gaussian
random variables &, (w) in Eq. (68) are generated using MATLAB’s built-
in randn function, which by default employs the ziggurat algorithm
[40,41].

In this study, the mean 8, ;(x) is set to be spatially constant with a
value of zero and the variance ¢?> = 1. Under the assumptions considered
for constructing the MLMC estimator in Section 4.1, each matrix-valued
random field C(x,») and the corresponding Gaussian fields 6,;(x, )
are modelled independently on each mesh level /. Whereas, for the
definition of the difference terms Y, and Z, in Egs. (30) and (41), the
random field on the coarse mesh level / — 1 is obtained by directly map-
ping it from the fine level / at the intersecting common spatial nodes.
Furthermore, the Gaussian autocorrelation function in Eq. (69) is de-
fined with a correlation length of 3.5 cm in both x- and y-directions,
across all four levels of meshes. The expansion, given in Eq. (68), is
truncated to M = 100 terms on all mesh levels, chosen based on the de-
cay of eigenvalues 7, on fine mesh L, as illustrated in Fig. 3. For further
optimality, one may also use level-dependent truncations, as discussed
in [65].

The random anisotropy of the material at a fixed spatial location x on
the coarse mesh level / = 0, modelled by the matrix-valued random field
C(-,w), is illustrated in Fig. 4. Here we demonstrate the characteristic
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Fig. 3. Decay of eigenvalues across all mesh levels.
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directional elastic parameters in the columns—namely, Young’s modu-
lus, shear modulus, and Poisson’s ratio—using the open-source software
ELATE [17]. The first row of the figure presents the orthotropic elastic
properties corresponding to the mean matrix E(C(x, w)), while the subse-
quent rows display triclinic characteristics of two individual realizations,
C(-,w;) and C(-, w,), where one may notice the variation in shape and
size of all three parameters as compared to the mean. Additionally, we
visualize the spatial variation of a single realization of the random field
component C ;(x, -) across all mesh levels in Fig. 5.

The objective of the study is to compute the MLMC mean M- and
variance E2ML estimates of the total displacement random field uZ)L (x, ).
The procedure for implementation of the scale-invariant MLMC is sim-
ilar to that of the conventional MLMC method; the primary difference
is in the usage of normalized error instead of absolute error; see [21]
for the algorithm. In this study, we assume that the optimal finest level
(here, L = 3) is known i.e., the normalized squared discretization er-
rors, from Eqgs. (33) and (46), are less than é2/2. Therefore, the focus
is only on satisfying the condition of normalized sampling errors; in
other words, the objective is to ensure that the normalized sampling
errors in Egs. (33) and (46) are less than é2/2. Furthermore, to avoid
the interpolation error, the terms Y, and Z, in Egs. (30) and (41) are cal-
culated only at finite element nodes that have the same common spatial
coordinates between all four levels of meshes. This further means that
the MLMC mean and variance estimates of the system response on the
finest level L are evaluated only at these common nodes.

6.2. Screening test

An a priori performance analysis of MLMC mean and variance esti-
mators is conducted using the so-called screening test, in which a fixed
number of 50 samples is considered over four levels of meshes. For the
MLMC mean estimate, we assume—for simplicity—that the estimated

normalizing function ﬁ%ﬁc(uzg No) (from Eq. (33)) is spatially constant,

ie, A, = max(ﬁ%’lc(ui;))’ Ny With this, by considering a L., norm over
the error bounds in Eq. (39) and the second relation in Eq. (37), one
obtains:

max | M)

— < c,hf,
)’m
~ (70)
max (h%’lc(Y,)>
— < cﬂhf.
A

As to the MLMC variance estimate, similar to the assumptions made
in the previous equations, one may consider 4, = max(Vg/IC(u(ht; NO)) as
the normalization constant. Thereby, Eq. (50) and the second case in

Eq. (48) are rewritten as

max | Z,
D2 e,
2,
L 71)
max (V}V;C)
> B
—F— < Cﬁhl .
y

2

Following this, Fig. 6 shows an overview of the corresponding re-
sults. Note that the normalization constants 1, and 1, for the screening
test are also set by 50 initial samples; however, during the imple-
mentation of the MLMC method, the estimates of both constants are
progressively updated as additional samples become available. The top
left and right plots show the behaviour of the logarithm of ratios de-
fined in Egs. (70) and (71). The deterministic decay of difference terms
max | #MC(Y;)| and max(Z,) can be seen. A stochastic convergence of the
quantities max(ﬁ%"c(Y,)) and max(@?"zc) is also shown in the second plot.
Interestingly, one may notice that both the convergences (deterministic
and stochastic) pertaining to mean and variance estimates decay in a
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Fig. 5. Visualization of spatial variation of a realization C; (x, ).
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Fig. 6. Screening results of scale-invariant MLMC mean and variance estimators.

similar manner. On the other hand, in the top left plot, the quantities

max( ﬁMC(“(h’,),SO)) and max(ﬁ%’lc(u:[)’so)) stay approximately constant at all
(1)

values of /. Similarly, on the right hand side, the entities max(ﬁ%"[C (u % s0)

and mﬂ(@zMC(“ﬁf,so>) are also approximately constant for varying values
of I—which meets the assumption for consideration of standardizing fac-
tors ;1\,,, and IU on coarse mesh / = 0 made in Sections (4.1) and (4.2).
Furthermore, the logarithmic computational time of running one sample
C, on each mesh level / is shown at the bottom. The corresponding values
are obtained by recording the timings for the 50 considered screening
samples on a 2.3 GHz Intel Core i5 processor with 8GB of RAM and tak-
ing the average. As the results show, computing becomes more expensive

as the mesh refinement increases.
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Finally, the decay rates and constants corresponding to Egs. (70) and
(71), as well as the third equation in Egs. (37) and (48) are evaluated by
determining the slopes and y-intercepts of respective logarithmic quan-
tities in Fig. 6, which are further summarised in Table 3. Clearly, all
the constants are positive, and the condition a > %min(ﬁ, y) is satisfied,
verifying the assumption made in Propositions. 4.1 and 4.2. One may
notice the decay rates « and § are closer, and equal values of order y,
for both mean and variance estimators. The constant c; remains close,
with equal ¢, and differing c,, for both estimates. As f < y for both
mean and variance estimators, the computational complexity of MLMC
estimates follows the third scenario in Egs. (38) and (49), respectively.
Moreover, in the considered example with a fixed number of mesh lev-
els, the total computing cost of both MLMC estimators is dependent on
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Table 3

Convergence results of MLMC mean and variance estimators.
Statistic a i v [ [ ¢,
Mean 2.01 1.43 2.52 0.14
Variance 1.70 1.47 16 0.13 0.15 0.13

the stochastic convergence order f. As the order g for variance estimate
is slightly higher than that of the mean, for a given sampling accuracy
é2/2, the estimation of MLMC variance is projected to be more expensive
than the mean estimation.

6.3. Performance analysis

Fig. 7 shows an overview of the performance of scale-invariant
MLMC. The top plot shows the propagation of a maximum number of
samples max(N,) on each level / for both MLMC mean and variance
estimators, corresponding to varying normalized sampling accuracies
&2 /2. One may observe that N, decreases monotonically with increasing
I for both estimates. For all of the investigated accuracies, it is obvious
that the variance estimate requires more samples than the mean esti-
mate. On the other hand, the maximum number of MC samples run on
mesh level / = 3, satisfying the given stochastic NMSEs, is tabulated in
Table 4.

The bottom left plot compares the overall cost of MLMC and MC
mean and variance estimation to given normalized sampling errors.
Certainly, MLMC estimates have a faster convergence rate than the MC
approach. Furthermore, the MC cost of mean and variance exhibits non-
asymptotic behaviour. However, the cost of MLMC estimates differs,
with the variance estimate being relatively more expensive than the
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Table 4
Number of MC samples on level / = 3
with varying stochastic accuracies.

NMSE, é2/2  Number of samples, N
6x10~* 1667
4x10~* 2500
2x1074 5000

mean—as stated in Section 4.2. As scale-invariant error estimates are
used in this investigation, it is possible to conclude that the cost of the
MLMC mean and variance estimator is asymptotic.

The MLMC estimators for the mean and variance are observed to
be approximately 6 and 4 times more efficient, respectively, than their
standard MC counterparts across all levels of normalized sampling ac-
curacy. In other words, approximate cost savings of 83 % and 75 % are
reported by the mean and variance of MLMC estimates, respectively, as
compared to the MC costs. The bottom-right graphic also shows the scale
invariance element of the MLMC convergence for an individual statistic
in two distinct units (cm and m). Both the MLMC mean (in cm and m)
and variance (in cm? and m?) convergence remain unchanged.

Finally, the summary of the given and estimated maximum value
of stochastic NMSEs of MLMC mean and variance estimators is listed
in Table 5. It can be seen that the achieved maximum NMSEs of mean
and variance are within the given limits of é2/2. Furthermore, the max-
imum absolute sampling accuracies, a product of normalizing constant
and maximum sampling NMSE, are also presented in the table. For a
given NMSE value, the absolute MSE of variance is much smaller in
magnitude as compared to the mean; however, both belong to different
scales. This emphasizes the need for normalized error estimates to ensure
easier interpretation of performance between the MLMC estimators.

—8— Mean: €2/2=6x 1074

—6— Mean: €2/2=4x 1074

—%— Mean: ¢2/2 =2 x 1074
Var: €2/2=6x 1074
Var: €2/2=4x 1074
Var: €2/2=2x 1074

Max. samples per level, max(N;)

Mesh level, [

—6— MLMC mean in cm
—8— MC mean in cm

MLMC variance in cm?
MC variance in cm?
T
\
6 P B
N,
N,
N,
—~ ‘s
= \,
= 4 — \~ —
+ N\,
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< . -
O ~——
2 | 3
<’\s\
| v

2 4 6
Sampling NMSEqg—4

—— MLMC mean in cm
MLMC variance in cm
—8— MLMC mean in m

MLMC variance in m
T
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2
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2 4 6
Sampling NMSEqg—4

Fig. 7. Performance of scale-invariant MLMC mean and variance estimators.
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Table 5
Given and estimated sampling NMSEs and their corresponding
absolute MSEs of MLMC mean and variance estimates.

Given NMSE, é>/2  Estimated NMSE  Estimated MSE (cm?)

(a) Mean

2x10~* 1.97x10~* 9.459x10~10
4x10~* 3.99x107* 1.889x10~°
6x10~* 5.98x10~* 2.859%x107°

(b) Variance

Given NMSE, é>/2  Estimated NMSE  Estimated MSE (cm*)

2x1074 1.98x107* 9.387x1071
4x1074 3.89x10~* 1.856x1071
6x1074 5.83x107 2.789x10714

Figs. 8 and 9 compare the mean and variance estimates of total dis-
placement (TD) of the femoral bone between MC and MLMC. For easier
interpretation, MC and MLMC results are displayed on a single scale for
both mean and variance estimates.

In general, the results are displayed for the normalized mean-squared
accuracy of 2 x 10~*. Note that, as the displacement values are deter-
mined on the finest mesh L = 3 at the common nodes corresponding
to the coarse mesh / = 0, the contour plots are mapped directly on
this coarse mesh. In Fig. 8, a maximum mean value of approximately
0.0462 cm can be seen in the region of the pressure load applied. Further,
Fig. 9 shows the influence of material uncertainty on the displacement

ut” due to the random material model C(x,®). A maximum vari-

hp{Ni}
ance is also witnessed at the top region of the bone. Furthermore, the

right-most plots in both figures clearly demonstrate that the absolute
error between the MLMC and standard MC methods is minimal, thereby
highlighting the high level of accuracy attained by the MLMC estimators.
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7. Conclusion

We present novel scale-invariant approaches for estimating the mean
and variance of a quantity of interest (QolI) using the multilevel Monte
Carlo (MLMC) method. These methods are based on the derivation of
normalized mean square error (NMSE) estimates for the classical Monte
Carlo (MC) mean and variance estimation. The proposed relative er-
rors are statistically defined using h-statistics, with chosen normalizing
factors that are finite and unbiased. Unlike traditional normalization
approaches that rely on the squared value of the estimator, which fail
to achieve full scale-invariance, the proposed NMSEs are invariant un-
der any linear transformation (scaling and translation) of Qol, and
remain robust to changes in its distributional characteristics. Such a stan-
dardized formulation reduces interpretational ambiguity and enables
a dimensionless assessment of statistical accuracy and computational
efficiency across different estimators and scales.

The proposed scale-invariant MC and MLMC methods are tested on a
two-dimensional simulation of a human femur modelled as an uncertain
linear elastic constitutive law. As bone tissue is a highly heterogeneous
and anisotropic material, and that its precise elastic symmetry class
is typically unknown or uncertain, the material’s elasticity tensor is
modelled as a matrix-valued random field. This modelling framework
captures both the spatial variability of material properties and random
anisotropy by prescribing an elastic symmetry in the mean (e.g., or-
thotropic) and allowing for triclinic symmetry in individual realizations.
The proposed methods then propagate these uncertainties to estimate
statistics like the mean and variance of the stochastic total displacement
field.

Through normalized error estimates, we compare the computational
efficiencies of MLMC and MC estimators for both mean and variance.
MLMC significantly outperforms MC in terms of computational cost for
both estimates. However, the variance estimate in MLMC requires a

Error (cm?)

Mean TD (cm)
0.0462 : 5.5e-05
I | 4e5
- 0.03 — 3e-5
0.02 2e-5
l 0.01 & le-5
0.00 z 0.0

Fig. 8. MLMC (left) and MC (middle) mean estimate of total displacement (with identical scale), along with absolute error on the right.

Error (cm?)

Var TD (cm?) 6.76-08

5.08e-06
| A - 5e-8
. 3e-6 — 4e-8
& 3e-8
:fe 2 268
e o le-8
0.00 L 00

Fig. 9. MLMC (left) and MC (middle) variance estimate of total displacement (with identical scale), along with absolute error on the right.
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higher number of samples, making it more computationally expensive
than the mean estimate. The complete normalization of sampling er-
ror reveals non-asymptotic behaviour in the MC cost between mean
and variance, while MLMC costs exhibit an asymptotic relationship.
Additionally, the difference in accuracy of mean and variance estimates
between the MLMC and MC methods is found to be very small.
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Appendix A. h-statistics: unbiased estimation of central moments

The h-statistics, denoted by ﬁyc, serves as an unbiased estimator of
the central population moments Hy(up) in Eq. (5) [14,51]. The ‘MC’ su-
perscript of ﬁp signifies that these statistics are obtained through random
Monte Carlo-based sampling. For example, the first two h-statistics can
be defined as

= hllvIC =0,
Ns, — $2 (72)
uy ~ hy™ = !
2T N(N -1)’
in which s; and s, are the power sums, given as
N
s,(up) 1= Zuh(x, ), (73)
k=1

for a € Z,,. Using the power series representation of h-statistics, the au-
thors in [51] developed a Mathematica-based package called mathStatica,
which efficiently generates h-statistics for any value of p.

What distinguishes h-statistics from other unbiased estimators are its
properties, such as [25]:

1. Unbiasedness: The expectation of the h-statistic equals the corre-
~MC
sponding population central moment, i.e., E(hp )= Hp-
~MC
2. Symmetry: Among all unbiased estimators of u,, hp
one that exhibits symmetry.>

is the only

~MC
3. Minimum variance: Out of all unbiased estimators of u,, hp

~MC
stands out for its minimal variance, denoted as Var(hp ).

2 A function or an estimate is considered symmetric when it is not influenced
by the order in which observations are considered.
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Appendix B. Unbiased estimation of u, and yg

The unbiased approximation of the fourth central moment s, (u;) is
computed by the fourth h-statistic [14]:

. LMC o 1
Ha(up) = 0y (uy) 1= NN DN - DN =3)

+(9—6N)s3+(—4 N2+8 N — 12)s53

< - 3s‘1‘ + 6Ns%s2

+(N*-2N2+3 N)s4>, 74)

whereas the unbiased estimator of y,(u,)* is the polyache hl{\g) accord-

ing to [51,66], given as

1 4 _ 2
N(N — 1)(N —2)(N —3) (sl INsis

ﬂz(“h)z ~ hl(\gi)(uh) =
+(N* =3 N+3)s5+ (4 N —4)s;s3+(-N* + N)s4>.

(75)

It is to be noted that the estimator of ;4% by the square of the second

~MC 2
h-statistic, i.e., (h, ), leads to a biased estimate, whereas only the

polyache hll\gcm, which is unbiased, remains the preferred way.

Appendix C. Variance of normalizing factor 1, := i\’g’m(uh)

One may define the variance of the normalizing factor 1, := @g/lc (up)
using the statistical package mathStatica [51] as

721y (N? —6 N +12)
(N - 3)N —2)(N - DN

16431, (N? =4 N +13)
(N —=2)(N — N

Var(P¥C(uy)) =

244 N —11) 166y g
(N-2(N-D)N " (N-1N ' N
_ Spzps (N —17) 76)
N (N-DN ~

Here, the p-th central moment is denoted by u, = u,(u,). For brevity,
the previous expression is rewritten as

N V.
Var(Vy'Cuy) = - 77)
where,
po 72y (N> =6 N +12)  16u2p, (N? =4 N +13)
ZT(IN-H(N-2(N-1) (N -2)(N -1)
234 N =11 16peu, (N = 17)
- — 8uy s — — 78
N-2D(N=1) N1 + pg — Buzpis N_1 (78)

Eq. (77) indicates that the statistical error of the estimator @g/lc(uh)
converges at a rate of O(N -,

Appendix D. Unbiased estimation of V,,

Following the notion of power sum s, defined in Appendix A, here
we introduce the bivariate power sum [35,51]

N

Sap 1= 2 Xp @)X, (@), 79)
i=1

where X;T[(wi)i=l,4...N, = X;,r,,N, = tp, N, +up,_,.N, and Xﬁ?,(wi)iﬂvwl\’/ =

Xi Ny = W Ny = Uy Ny Subsequently, the unbiased MC estimation of
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the quantity V,, reads:

{MC
V/,Z

1 2 2

= N;((-N?+ N, +2
(Nl—3)(N1—2)(N1—1)2N1< N+ N+ D610
+(N; = DX (Nysp0 = 251951.2) + (N; = Disga((s10)* = 520))

+(50,)* (6 = 4N))(s1 0)* + (N; = DN;550)

(80)

—2N;s,1 ((NI - 1)232,1 + (5 =3Nps o8, ))

Data availability

Data will be made available on request.
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