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A B S T R A C T

We propose novel scale-invariant error estimators for the Monte Carlo and multilevel Monte Carlo estimation of 

mean and variance. For any linear transformation of the distribution of the quantity of interest, the computation 

cost across fidelity levels is optimized using a normalized error estimate, which is not only fully dimensionless 

but also remains robust to variations in the characteristics of the distribution. We demonstrate the effectiveness 

of the algorithms through application to a mechanical simulation of linear elastic bone tissue, where material 

uncertainty incorporating both heterogeneity and random anisotropy is considered in the constitutive law.

1 . Introduction

The estimation of statistical moments for characterizing a proba­

bilistic quantity of interest (QoI), such as the solution to a stochastic 

partial differential equation (SPDE) or an ordinary differential equation 

(SODE), is of fundamental importance in the field of uncertainty quan­

tification (UQ) [38,67]. Specifically, let 𝑋 be a random variable defined 

on a probability space (𝛺,F,P), where 𝛺 denotes the sample space, F

is a 𝜎-algebra of measurable events, and P is the associated probability 

measure. The 𝑝-th central moment of 𝑋, for 𝑝 ∈ N, is defined as

𝜇𝑝(𝑋) = E
[

(𝑋 − E(𝑋))𝑝
]

, (1)

where, E(𝑋) ∶= 𝜇(𝑋) is the mean or the first raw moment (not to be 

confused with the first central moment 𝜇1, which equals zero when 

𝑝 = 1). The second central moment, when 𝑝 = 2, 𝜇2(𝑋) = Var(𝑋) ∶=
E
(

(𝑋 − E(𝑋))2
)

, denotes the variance. In contrast, the third and fourth 

central moments are typically expressed in standardized form: the skew­

ness and kurtosis, which are defined as 𝛼3 = 𝜇3∕
√

Var3 and 𝛼4 =
𝜇4∕Var2, respectively. While skewness and kurtosis are dimensionless 

and invariant under linear transformation of 𝑋, the mean and variance 

are inherently scale-dependent. Consequently, their estimation accu­

racy, typically evaluated using absolute error metrics such as the mean 

squared error (MSE) or root mean squared error (RMSE), also depends 

on the scale of the QoI. This scale dependency presents an interpretabil­

ity challenge, especially in practical scenarios where comparisons across 

different estimators or between the same estimator applied to differently 

scaled QoI are required. Addressing this, normalized error estimates play 

a crucial role in statistics by providing a standardized measure of the 

accuracy of statistical estimates.

Normalization in statistics is a broad topic with multiple inter­

pretations [32]. One common usage refers to the standardization of 

observational data (or the QoI), often represented by the z-score or 

standard score, defined as 𝑧 = 𝑋 − 𝜇∕
√

Var. Another interpretation 

involves the normalization of statistical moments of the form, 𝛼𝑝 =
E(𝑧𝑝) = 𝜇𝑝∕

√

Var𝑝, whereby the first and second standardized moments, 

𝛼1 and 𝛼2— representing the mean and variance of the standardized 

variable 𝑧—are fixed at 0 and 1, respectively. This implies that these mo­

ments are invariant across different distributions, offering no distinctive 

information. In contrast, higher-order standardized moments, such as 

skewness 𝛼3 and kurtosis 𝛼4, retain distribution-specific characteristics 

and are thus useful for distinguishing among probability distributions. 

Therefore, in this work, the primary focus is on the estimation of the 

mean 𝜇 and variance 𝜇2, where normalization is applied not to the 

QoI or the moments, but rather to their scale-dependent absolute error 

estimates.

In this study, we focus on random sampling-based statistical esti­

mators, such as the Monte Carlo (MC) method; traditionally regarded 

as the gold standard for solving stochastic problems, due to its sim­

plicity and resilience against the curse of dimensionality [16,22,27,47]. 
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\begin {equation}\label {Eq:scalesampleM} \mathbb {V}\text {ar}(a\,u_h+b)=a^2\,\mathbb {V}\text {ar}(u_h)\end {equation}
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$l = L$


$c_{\alpha }, c_{\beta }, c_{\gamma }, \alpha , \beta , \gamma $


$\alpha \ge \frac {1}{2}\min (\beta ,\gamma )$


$c$


$0<\mathring {\epsilon }<e^{-1}$


${\textrm {NMSE}}(\widehat {\mu }^{{\textrm {ML}}})<\mathring {\epsilon }^2$


\begin {equation}\label {Eq:costcomplex} \mathcal {C}(\widehat {\mu }^{{\textrm {ML}}})\le \begin {cases} c\,\mathring {\epsilon }^{-2}, \quad &\beta >\gamma ,\\ c\,\mathring {\epsilon }^{-2}{(\log \mathring {\epsilon })}^2, \quad &\beta =\gamma ,\\ c\,\mathring {\epsilon }^{-2-(\gamma -\beta )/\alpha }, \quad &\beta <\gamma . \end {cases}\end {equation}


$\beta $


$\gamma $


$\beta >\gamma $


$\beta <\gamma $


$\beta = \gamma $


\begin {equation}\label {eq:errormean1} \begin {split} (i)& \ \text {The deterministic error decays as}\ \frac {|\mathbb {E}(u_{h_l})-\mathbb {E}(u)| }{\sqrt {\lambda _m}} \le c_{\alpha } h_l^{\alpha },\\ (ii)& \ \text {The decay of variance is bounded by}\ \frac {\widehat {{\textrm {h}}}_2^{{\textrm {MC}}}(Y_{l})}{\lambda _m} \le c_{\beta } h_l^{\beta }, \\ (iii)& \ \text {The computational cost to determine a single realization of}~Y_{l} \\ & \text { is given as }\mathcal {C}(Y_{l}) \le c_{\gamma } h_l^{-\gamma }. \end {split}\end {equation}


$l\rightarrow \infty $


\begin {equation*}\frac {|\mathbb {E}(u_{h_l})-\mathbb {E}(u)|}{\sqrt {\lambda _m}} \rightarrow 0.\end {equation*}


$\mathbb {E}(u)$


$u_{h_L}(\boldsymbol {x}, \omega )$


$\mathbb {V}\text {ar}(u_{h_L})$


\begin {eqnarray}\label {Eq:varMLMC} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}(u_{h_L,\left \lbrace N_l \right \rbrace }) &:=& \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0}) + \sum _{l=1}^{L}\left ( \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l}) - \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_{l-1},N_l}) \right ).\end {eqnarray}


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0})$


$\mathbb {V}\text {ar}(u_{h_0})$


$N_0$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l})$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_{l-1},N_l})$


$\mathbb {V}\text {ar}(u_{h_l})$


$\mathbb {V}\text {ar}(u_{h_{l-1}})$


$N_l$


\begin {equation}\label {Eq:Zl} {Z}_{l}= \begin {cases} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0,N_0}),\quad &l=0,\\ \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l,N_l}) - \widehat {{\textrm {h}}}_2^{{\textrm {MC}}}(u_{h_{l-1},N_l}),\quad &l>0. \end {cases}\end {equation}


$l>0$


$u_{h_l,N_l}$


$u_{h_{l-1},N_l}$


${Z}_{l}$


\begin {equation}\label {ieq6} \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} = \sum _{l=0}^{{L}} {Z}_{l}.\end {equation}


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}$


\begin {equation}\label {Eq:MLMCerrorvar} \textrm {MSE}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}) = \mathbb {V}\text {ar}\left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} \right ) + {({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2.\end {equation}


${Z}_{l}$


$l\ge 0$


\begin {equation}\label {Eq:sampleerror} \mathbb {V}\text {ar}\left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}} \right ) = \sum _{l=0}^{{L}} \mathbb {V}\text {ar}({Z}_{l}),\end {equation}


$\mathbb {V}\text {ar}({Z}_{l})$


${\mathbb {V}_{l,2}}/{N_l}$


\begin {equation}\label {Eq:MLMCerrorvar1} \textrm {MSE}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}}) = \sum _{l=0}^{{L}} \frac {\mathbb {V}_{l,2}}{N_l} + {({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2.\end {equation}


$\mathcal {O}(N_l^{-1})$


$\mathbb {V}_{l,2}$


$\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}$


$\widehat {{\textrm {h}}}{}^{{\textrm {ML}}}_2$


$\textrm {NMSE}(\widehat {{\textrm {h}}}_2\hspace {-3pt}{}^{{\textrm {ML}}})$


$\lambda _v = {\mathbb {V}}_2(u_{h_L})$


${\mathbb {V}}_2(u_{h_L})$


${\mathbb {V}}_2(u_{h_l})$


$l$


${\mathbb {V}}_2(u_{h_L})$


$L$


${\mathbb {V}}_2(u_{h_0})$


$l = 0$


$\widehat {\lambda }_v:=\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_0,N_0})$


$\mathring {\epsilon }^2$


$\mathring {\epsilon }^2/2$


$N_l$


\begin {equation}\label {} N_l = {{\frac {2}{\mathring {\epsilon }^2}}}\sum _{l=0}^{{L}}{\left ( \frac {{\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}\mathcal {C}_l}}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}}\right )}^{\frac {1}{2}}{\left ({\frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}} \mathcal {C}_l}}\right )}^{\frac {1}{2}}.\end {equation}


$\mathcal {C}_l$


$u_{h_l,N_l}$


$u_{h_{l-1},N_l}$


${Z}_{l}$


$Y_{l}$


$c_{\alpha }, c_{\beta }, c_{\gamma }, \alpha , \beta , \gamma $


$\alpha \ge \frac {1}{2}\min (\beta ,\gamma )$


\begin {align}(i)& \ \text {The deterministic error is bounded by}\ \frac {|\mathbb {V}\text {ar}({u}_{h_l})-\mathbb {V}\text {ar}(u)|}{\sqrt {\lambda _v}} \le c_{\alpha } h_l^{\alpha },\nonumber \\ (ii)& \ \text {The variance}~\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}~\text {decays as}\ \frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{\lambda _v} \le c_{\beta } h_l^{\beta }, \label {eq:errorvar1}\\ (iii)& \ \text {The computational cost to determine a single realization of}~{Z}_{l}~\text {is given as} \nonumber \\ &\mathcal {C}({Z}_{l}) \le c_{\gamma } h_l^{-\gamma }.\nonumber \end {align}


$0<\mathring {\epsilon }<e^{-1}$


${\textrm {NMSE}}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}})<\mathring {\epsilon }^2$


\begin {equation}\label {Eq:costcomplex2} \mathcal {C}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {ML}}})\le \begin {cases} c\,\mathring {\epsilon }^{-2}, \quad &\beta >\gamma ,\\ c\,\mathring {\epsilon }^{-2}{(\log \mathring {\epsilon })}^2, \quad &\beta =\gamma ,\\ c\,\mathring {\epsilon }^{-2-(\gamma -\beta )/\alpha }, \quad &\beta <\gamma . \end {cases}\end {equation}


$c>0$


$u(x, \omega )$


$\mathring {\epsilon }^2$


$l=0$


$L$


$l\rightarrow \infty $


${|\mathbb {V}\text {ar}(u_{h_l})-\mathbb {V}\text {ar}(u)|}/{\sqrt {\lambda _v}}.$


\begin {equation}\label {Eq:trianglemean} \begin {split} \frac {|\mathbb {E}(u_{h_l}) - \mathbb {E}(u_{h_{l-1}})|}{\sqrt {\lambda _m}}&\le c_{\alpha } h_l^{\alpha }. \end {split}\end {equation}


\begin {equation}\label {Eq:vardettri} \frac {|\mathbb {V}\text {ar}(u_{h_l})-\mathbb {V}\text {ar}(u_{h_{l-1}})|}{\sqrt {\lambda _v}} \le c_{\alpha } h_l^{\alpha },\end {equation}


$\mathcal {G}\subset \mathbb {R}^d$


$d$


$\Gamma $


$\boldsymbol {u} \in \mathbb {R}^d$


$\mathcal {U}$


$\boldsymbol {x}\in \mathcal {G}$


$\boldsymbol {\sigma }(\boldsymbol {x})$


${\textrm {Sym}}(d):=\left \lbrace \boldsymbol {\sigma }\in (\mathbb {R}^d\otimes \mathbb {R}^d) \ |\ \boldsymbol {\sigma } = \boldsymbol {\sigma }^T \right \rbrace $


$\boldsymbol {f}(\boldsymbol {x}) \in \mathbb {R}^d$


$\boldsymbol {t}(\boldsymbol {x}) \in \mathbb {R}^d$


$\Gamma _N \subset \Gamma $


$\boldsymbol {n}(\boldsymbol {x}) \in \mathbb {R}^d$


$\Gamma _N$


$\boldsymbol {u}_{0}=\boldsymbol {0} \in \mathbb {R}^d$


$\Gamma _D \subset \Gamma $


$\Gamma _D \cap \Gamma _N = 0$


\begin {equation}\label {Eq:kinematics} \boldsymbol {\varepsilon }(\boldsymbol {x}) = \frac {1}{2} \left ( \nabla \boldsymbol {u} + \nabla \boldsymbol {u}^T \right ), \quad \forall \boldsymbol {x} \in \mathcal {G},\end {equation}


$\boldsymbol {\varepsilon }(\boldsymbol {x})\in {\textrm {Sym}}(d)$


\begin {equation}\label {Eq:ConstLaw} \boldsymbol {\sigma }(\boldsymbol {x}) = \boldsymbol {C}(\boldsymbol {x}): \boldsymbol {\varepsilon }(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \mathcal {G},\end {equation}


$\boldsymbol {C}(\boldsymbol {x})$


$C_{{ijkl}} = C_{klij}$


$C_{ijkl} = C_{jikl} = C_{ijlk}$


$\boldsymbol {C}(\boldsymbol {x})$


$C(\boldsymbol {x})$


$C(\boldsymbol {x})$


$(n\times n)$


$n=d(d+1)/2$


\begin {equation}\label {ieq7} {\textrm {Sym}}^+(n)=\{C\in (\mathbb {R}^n\otimes \mathbb {R}^n) \mid C=C^T, \boldsymbol {z}^TC \boldsymbol {z}>\boldsymbol {0}, \forall \boldsymbol {z}\in \mathbb {R}^n\setminus \boldsymbol {0}\}.\end {equation}


$\sigma (\boldsymbol {x})=C(\boldsymbol {x})\cdot \varepsilon (\boldsymbol {x})$


$\sigma (\boldsymbol {x})\in \mathbb {R}^d$


$\varepsilon (\boldsymbol {x})\in \mathbb {R}^d$


$C(\boldsymbol {x})$


$C(\boldsymbol {x},\omega )$


$(\varOmega ,\mathcal {F},\mathbb {P})$


$C(\boldsymbol {x})$


$C$


$C(\boldsymbol {x})$


$C(\boldsymbol {x},\omega )$


$\mathbb {E}(C(\boldsymbol {x},\omega ))={U}^T{U}$


${U} \in \mathbb {R}^{n\times n}$


\begin {equation}\label {Eq:RandomCmatrix} C(\boldsymbol {x},\omega ) = {U}^T{T}(\boldsymbol {x}, \omega ){U},\end {equation}


\begin {equation}\label {Eq:IdentityT} \mathbb {E}({{T}(\boldsymbol {x}, \omega )}) = {I}\end {equation}


${T}(\boldsymbol {x}, \omega )$


${\textrm {Sym}}^+(n)$


${I}\in {\textrm {Sym}}^+(n)$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


\begin {equation}\label {Eq:choleskyT} {T}(\boldsymbol {x}, \omega ) = {V}{(\boldsymbol {x},\omega )}^T{V}(\boldsymbol {x},\omega ),\end {equation}


\begin {equation}\label {Eq:Randommatrix} C(\boldsymbol {x},\omega ) = {U}^T{V}{(\boldsymbol {x},\omega )}^T{V}(\boldsymbol {x},\omega ){U}.\end {equation}


${V}(\boldsymbol {x},\omega )\in \mathbb {R}^{n\times n}$


\begin {equation}\label {Eq:upperelements} {V}_{ij}= \begin {cases} \frac {\delta _{{T}}}{\sqrt {d+1}}\theta _{ij}(\boldsymbol {x},\omega ), \text {if} \ i<j\\[6pt] \frac {\delta _{{T}}}{\sqrt {d+1}}\sqrt {N_c\Gamma _{\alpha _j}(\boldsymbol {x},\omega )}, \text {if} \ i=j, \end {cases}\end {equation}


${V}_{ij}, i\le j$


$\theta _{ij}(\boldsymbol {x},\omega ), 1\leq i\leq j \leq n$


\begin {gather}\label {Eq:inverseCDF} \Gamma _{\alpha _j}(\boldsymbol {x},\omega ) = F_{\Gamma _\alpha }^{-1}~\circ ~\text {erf}(\theta _{ij}(\boldsymbol {x},\omega )).\end {gather}


\begin {equation}\label {ieq9} \alpha _j = (d+1)/(2\delta _{{T}}^2)+(1-j)/2\end {equation}


$\text {erf}$


$F_{\Gamma _\alpha }^{-1}$


${T}(\boldsymbol {x}, \omega )$


$N_c$


$\delta _{{T}}:=[0,1]\in \mathbb {R}$


\begin {equation}\label {Eq:delT} \delta _{{T}}=\left \lbrace \frac {1}{d}\mathbb {E}\left [ \parallel {T}(\boldsymbol {x}, \omega ) - {{I}}\parallel ^2 \right ] \right \rbrace ^{1/2}.\end {equation}


${T}(\boldsymbol {x}, \omega )$


$\delta _{{T}}$


\begin {equation}\label {Eq:deltaC} \scalebox {0.96}{$\displaystyle \delta _{C} = {\left [ \frac {\mathbb {E}\left \lbrace \lVert C(\boldsymbol {x},\omega ) - \mathbb {E}(C(\boldsymbol {x},\omega )) \rVert ^2 \right \rbrace }{\lVert \mathbb {E}(C(\boldsymbol {x},\omega )) \rVert ^2}\right ]}^{1/2} = \frac {\delta _{{T}}}{\sqrt {d+1}} {\left [ 1+\frac {{(\text {tr}(\mathbb {E}(C(\boldsymbol {x},\omega ))))}^2}{\text {tr}{(\mathbb {E}(C(\boldsymbol {x},\omega )))}^2} \right ]}^{1/2}$}\end {equation}


$\delta _{C}:=[0,1]\in \mathbb {R}$


$C(\boldsymbol {x},\omega )$


$C(\boldsymbol {x},\omega )$


$\boldsymbol {u}(\boldsymbol {x},\omega ):\mathcal {G}\times \varOmega \rightarrow \mathbb {R}^d$


\begin {align}-\textrm {div} \, \boldsymbol {\sigma }(\boldsymbol {x},\omega ) &= \boldsymbol {f}(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega , \nonumber \\ \boldsymbol {u}(\boldsymbol {x},\omega ) &= \boldsymbol {u}_{0}=\boldsymbol {0}, \quad \forall \boldsymbol {x} \in \Gamma _D, \omega \in \varOmega ,\label {Eq:stoEquilForm}\\ \boldsymbol {\sigma }(\boldsymbol {x},\omega )\cdot \boldsymbol {n}(\boldsymbol {x}) &= \boldsymbol {t}(\boldsymbol {x}), \quad \forall \boldsymbol {x} \in \Gamma _N, \omega \in \varOmega , \nonumber \end {align}


$\boldsymbol {f}(\boldsymbol {x})$


\begin {equation}\label {ieq10} \boldsymbol {\varepsilon }(\boldsymbol {x},\omega ) = \frac {1}{2} \left ( \nabla \boldsymbol {u}(\boldsymbol {x},\omega ) + \nabla \boldsymbol {u}{(\boldsymbol {x},\omega )}^T \right ), \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega ,\end {equation}


$\nabla (\cdot )$


\begin {equation}\label {Eq:stoConstLaw} \boldsymbol {\sigma }(\boldsymbol {x},\omega ) = \boldsymbol {C}(\boldsymbol {x},\omega ): \boldsymbol {\varepsilon }(\boldsymbol {x},\omega ), \forall \boldsymbol {x} \in \mathcal {G}, \omega \in \varOmega .\end {equation}


$\mathcal {G}$


$\boldsymbol {u}_h(\boldsymbol {x},\omega ):\mathcal {U}_h\times \varOmega \rightarrow \mathbb {R}^d$


$\mathcal {U}_h$


$\boldsymbol {u}_h(\boldsymbol {x},\omega )$


${u}_{h}^{(t)}(\boldsymbol {x}, \omega )=\|\boldsymbol {u}_h(\boldsymbol {x}, \omega )\|$


$u_{h,N}^{(t)}:={[{u}_{h}^{(t)}(\boldsymbol {x},\omega _i)]}_{i=1}^N$


$h_{l-1}=2h_l$


$l$


$C(\boldsymbol {x},\omega )$


$E_1=12$


$\nu _{21}=0.371$


$G_{12}=5.61$


$E_2=20$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


$C(\boldsymbol {x},\omega )$


$\delta _{C} = 0.1$


${T}(\boldsymbol {x}, \omega )$


${T}(\boldsymbol {x}, \omega )$


$n=3,\ d=2$


$M$


\begin {equation}\label {Eq:GRF} \theta _{ij}(\boldsymbol {x},\omega ) = \overline {\theta }_{ij}(\boldsymbol {x}) + \sum _{k=1}^{M} \sqrt {\eta _k}\psi _k(\boldsymbol {x}) \xi _k(\omega ).\end {equation}


$\overline {\theta }_{ij}(\boldsymbol {x})$


$\xi _k(\omega )$


$(\eta _k,\psi _k)$


$\left \lbrace R_{ij}(r): R_{ij}(0)=1,1\leq i \leq j \leq n\right \rbrace $


\begin {equation}\label {Eq:corlength} R_{ij}(r) = \varrho ^2 \exp (-l_c^{-2}r^2),\end {equation}


$r=\| \boldsymbol {x}_1-\boldsymbol {x}_2\|$


$(\boldsymbol {x}_1,\boldsymbol {x}_2)\in \mathcal {G}$


$r\geq 0$


$\varrho ^2$


$R_{ij}$


$l_c\in \mathbb {R}^d_+$


$R_{ij}$


$\xi _k(\omega )$


$\overline {\theta }_{ij}(\boldsymbol {x})$


$\varrho ^2=1$


$C(\boldsymbol {x},\omega )$


$\theta _{ij}(\boldsymbol {x},\omega )$


$l$


$Y_{l}$


${Z}_{l}$


$l-1$


$l$


$x$


$y$


$M = 100$


$\eta _k$


$L$


$\boldsymbol {x}$


$l=0$


$C(\cdot , \omega )$


$\mathbb {E}(C(\boldsymbol {x},\omega ))$


$C(\cdot , \omega _1)$


$C(\cdot , \omega _2)$


$C_{1,1}(\boldsymbol {x}, \cdot )$


$C(\cdot , \omega )$


$l=0$


$C_{1, 1}(\boldsymbol {x}, \cdot )$


$\widehat {\mu }^{{\textrm {ML}}}$


$\widehat {{\textrm {h}}}_2^{{\textrm {ML}}}$


${u}_{h_L}^{(t)}(\boldsymbol {x}, \omega )$


$L=3$


\begin {equation}\label {Eq:MLMCerrorvar3} \textrm {NMSE}(\widehat {{\textrm {h}}}_2\hspace {-3pt}{}^{{\textrm {ML}}}) = \frac {1}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}} \left ( \sum _{l=0}^{{L}} \frac {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}}{N_l} \right ) + \frac {{({\mathbb {V}\text {ar}}(u_{h_L})-{\mathbb {V}\text {ar}}(u))}^2}{\widehat {\mathbb {V}}_2^{{\textrm {MC}}}}.\end {equation}


$\mathring {\epsilon }^2/2$


$\mathring {\epsilon }^2/2$


$Y_{l}$


${Z}_{l}$


$L$


$\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)})$


$\widehat {\lambda }_m =\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)}))$


${L}_\infty $


\begin {equation}\label {Eq:convNT} \begin {split} \frac {\max |\widehat {\mu }^{{\textrm {MC}}}(Y_{l})|}{\sqrt {\widehat {\lambda }_m}} &\le c_{\alpha } h_l^{\alpha },\\ \frac {\max \left (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(Y_{l})\right )}{\widehat {\lambda }_m}&\le c_{\beta } h_l^{\beta }. \end {split}\end {equation}


$\widehat {\lambda }_v=\max (\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_0, N_0}^{(t)}))$


$\widehat {\lambda }_m$


$\widehat {\lambda }_v$


\begin {equation}\label {Eq:convNTvar} \begin {split} \frac {\max |{Z}_{l}|}{\sqrt {\widehat {\lambda }_v}} &\le c_{\alpha } h_l^{\alpha },\\ \frac {\max \left (\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}\right )}{\widehat {\lambda }_v} &\le c_{\beta } h_l^{\beta }. \end {split}\end {equation}


$\max |\widehat {\mu }^{{\textrm {MC}}}(Y_{l})|$


$\max ({Z}_{l})$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(Y_{l}))$


$\max ({\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}})$


$\max (\widehat {\mu }^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$l$


$\max (\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$\max (\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_{h_l, 50}^{(t)}))$


$l$


$\widehat {\lambda }_m$


$\widehat {\lambda }_v$


$l=0$


$\mathcal {C}_l$


$l$


$\alpha $


$\beta $


$\gamma $


$c_{\alpha }$


$c_{\beta }$


$c_{\gamma }$


$\alpha \ge \frac {1}{2}\text {min}(\beta ,\gamma )$


$\alpha $


$\beta $


$\gamma $


$c_{\beta }$


$c_{\gamma }$


$c_{\alpha }$


$\beta <\gamma $


$\beta $


$\beta $


$\mathring {\epsilon }^2/2$


$\text {max}(N_l)$


$l$


$\mathring {\epsilon }^2/2$


$N_l$


$l$


$l=3$


$l = 3$


$\mathring {\epsilon }^2/2$


$N$


$\times 10^{-4}$


$\times 10^{-4}$


$\times 10^{-4}$


$\mathring {\epsilon }^2/2$


$2\times 10^{-4}$


$L=3$


$l=0$


$u_{h_L,\left \lbrace N_l \right \rbrace }^{(t)}$


$C(\boldsymbol {x},\omega )$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mu _p(u_h)$


$\widehat {{\textrm {h}}}_p$


$s_1$


$s_2$


\begin {equation}\label {ieq11} s_a(u_h):= \sum _{k=1}^{N}u_h{(x, \omega _k)}^a,\end {equation}


$a\in \mathbb {Z}_{\geq 0}$


$p$


$\mathbb {E}(\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}) = \mu _p$


$\mu _p$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mu _p$


$\widehat {{\textrm {h}}}_p^{{\textrm {MC}}}$


$\mathbb {V}\text {ar}(\widehat {{\textrm {h}}}_p^{{\textrm {MC}}})$


$\mu _4$


$\mu _2^2$


$\mu _4(u_h)$


$\mu _2{(u_h)}^2$


$\text {h}_{\left \lbrace 2,2\right \rbrace }^{\text {MC}}$


$\mu _2^2$


${(\widehat {{\textrm {h}}}_2^{{\textrm {MC}}})}^2$


$\text {h}_{\left \lbrace 2,2\right \rbrace }^{\text {MC}}$


$\widehat {\lambda }_v:=\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


$\widehat {\lambda }_v:= \widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


\begin {align}&\mathbb {V}\text {ar}(\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)) = \frac {72 \mu _2^4 \left (N^2-6~N+12\right )}{(N-3) (N-2) (N-1) N}+\frac {16 \mu _3^2 \mu _2 \left (N^2-4~N+13\right )}{(N-2) (N-1) N}\nonumber \\ &\quad \quad \quad \quad \quad \quad \quad -\frac {24 \mu _4 \mu _2^2 (4~N-11)}{(N-2) (N-1) N}+\frac {16 \mu _6 \mu _2}{(N-1) N}+\frac {\mu _8}{N}\nonumber \\ &\quad \quad \quad \quad \quad \quad \quad -\frac {8 \mu _3 \mu _5}{N}-\frac {\mu _4^2 (N-17)}{(N-1) N}.\label {Eq:varV2}\end {align}


$p$


$\mu _p \equiv \mu _p(u_h)$


\begin {equation}\label {Eq:simplvarV2} \mathbb {V}\text {ar}(\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)) = \frac {\mathcal {V}_2}{N},\end {equation}


\begin {align}\mathcal {V}_2 &= \frac {72 \mu _2^4 \left (N^2 - 6~N + 12\right )}{(N-3)(N-2)(N-1)} + \frac {16 \mu _3^2 \mu _2 \left (N^2 - 4~N + 13\right )}{(N-2)(N-1)} \nonumber \\ &\quad - \frac {24 \mu _4 \mu _2^2 (4~N - 11)}{(N-2)(N-1)} + \frac {16 \mu _6 \mu _2}{N-1} + \mu _8 - 8 \mu _3 \mu _5 - \frac {\mu _4^2 (N - 17)}{N - 1}.\label {autoeq:7}\end {align}


$\widehat {\mathbb {V}}_2^{{\textrm {MC}}}(u_h)$


$\mathcal {O}(N^{-1})$


$\mathbb {V}_{l,2}$


$s_{a}$


\begin {equation}\label {ieq12} s_{a,b}:= \sum _{i=1}^{N} {X_{h_l}^+(\omega _i)}^a {X_{h_l}^-(\omega _i)}^b,\end {equation}


$X_{h_l}^+{(\omega _i)}_{i=1,\ldots ,N_l}:= X_{h_l,N_l}^+ = u_{h_l,N_l} + u_{h_{l-1},N_l}$


$X_{h_l}^-{(\omega _i)}_{i=1,\ldots ,N_l}:= X_{h_l,N_l}^- = u_{h_l,N_l} - u_{h_{l-1},N_l}$


$\mathbb {V}_{l,2}$


\begin {equation*}\begin {aligned} \textrm {MSE}(\widehat {\mu }^{{\textrm {MC}}}):=\mathbb {E}({e}^2) &= \mathbb {E}({(\widehat {\mu }^{{\textrm {MC}}} -\mathbb {E}(u_h) +\mathbb {E}(u_h) -\mathbb {E}(u))}^2) \\ &= \mathbb {E}({(\widehat {\mu }^{{\textrm {MC}}} -\mathbb {E}(u_h))}^2)+{(\mathbb {E}(u_h) -\mathbb {E}(u))}^2 \\ & \qquad + 2(\mathbb {E}(u_h) -\mathbb {E}(u))(\mathbb {E}(\widehat {\mu }^{{\textrm {MC}}}) -\mathbb {E}(u_h)), \end {aligned}\end {equation*}


\begin {equation*}\begin {split} (i)& \ \text {The deterministic error decays as}\ \frac {|\mathbb {E}(u_h)-\mathbb {E}(u)| }{\sqrt {\lambda _m}} \le c_{\alpha } h^{\alpha },\\ (ii)& \ \text {The computational cost to determine a single realization of~}u_h(x, \omega ) \\ & \text {is given by}~\mathcal {C}(u_h) \le c_{\gamma } h^{-\gamma }. \end {split}\end {equation*}


\begin {equation*}\begin {aligned} {\textrm {MSE}}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}):= \mathbb {E}({e}^2) &= \mathbb {E}({(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}-\mathbb {V}\text {ar}(u_h)+\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u))}^2) \\ &= \mathbb {E}({(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}-\mathbb {V}\text {ar}(u_h))}^2) + {(\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u))}^2 \\ & \qquad + 2 (\mathbb {V}\text {ar}(u_h)-\mathbb {V}\text {ar}(u)) (\mathbb {E}(\widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}})-\mathbb {V}\text {ar}(u_h)). \end {aligned}\end {equation*}


\begin {equation}\label {Eq:varvar} \mathbb {V}\text {ar}( \widehat {{\textrm {h}}}_2\hspace *{-3pt}{}^{{\textrm {MC}}}):= \frac {1}{N}\left ( \mu _4(u_h) - \frac {\mu _2{(u_h)}^2(N-3)}{N-1}\right ),\end {equation}


\begin {equation*}\begin {split} (i)& \ \text {The deterministic error is bounded by}\ \frac {|{\mathbb {V}\text {ar}}(u_h)-\mathbb {V}\text {ar}(u)| }{\sqrt {\lambda _v}} \le c_{\alpha } h^{\alpha },\\ (ii)& \ \text {The cost to compute each sample of} u_h(x, \omega )~\text {is given as}~\mathcal {C}(u_h) \le c_{\gamma } h^{-\gamma }.\\ \end {split}\end {equation*}


\begin {equation}\label {ieq8} C(\boldsymbol {x},\omega ):\mathcal {G}\times \varOmega \rightarrow {\textrm {Sym}}^+(n).\end {equation}


\begin {equation}\label {ieq13} \begin {split} {\widehat {\mathbb {V}}_{l,2}^{{\textrm {MC}}}} = \frac {1}{(N_l-3)(N_l-2){(N_l-1)}^2 N_l}\Big ( N_l\big ( ( -N_l^2+N_l+2){{(s_{1,1}})}^2 \\ + {(N_l-1)}^2 (N_l s_{2,2}-2s_{1,0}s_{1,2}) + (N_l-1)s_{0,2}({({s_{1,0}})}^2-s_{2,0})\big ) \\ + {({s_{0,1}})}^2\big ((6-4N_l){({s_{1,0}})}^2 + (N_l-1)N_l s_{2,0}\big ) \\ -2N_l s_{0,1}\big ({(N_l-1)}^2 s_{2,1}+(5-3N_l)s_{1,0}s_{1,1}\big ) \Big ). \end {split}\end {equation}
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However, despite its appeal, the practical implementation of MC often 

faces challenges due to slow convergence, thereby demanding substan­

tial computational effort. To overcome these limitations, recent research 

has increasingly turned to variance reduction techniques, notably the 

multilevel Monte Carlo (MLMC) method. A key objective of the MLMC 

method is to spread out the sampling strategy across a hierarchy of 

different fidelities (or levels) such that the number of stochastic sam­

ples drastically decreases with the increment in fidelity of the model. 

Under the right conditions, this results in an overall reduction of the 

computational cost as compared to the MC approach.

To the best of the authors’ knowledge, MLMC was first introduced 

by [26] in the context of estimating multi-dimensional parameter-

dependent integrals and was further employed by [20] for solving 

Itô’s stochastic ordinary differential equations in the computational fi­

nance applications. Following this, MLMC was extended to solve the 

linear elliptic PDEs describing the subsurface flow with inhomogeneous 

stochastic parameters [2,9]. A further analysis of modelling of rough 

random field coefficients of elliptic PDEs on MLMC convergence was 

studied in [7,65]. However, the previously mentioned works focused 

only on the approximation of the QoI’s sample mean; therefore, they 

lacked a full characterization of the probabilistic solution. Consequently, 

[48] studied the unbiased MLMC sample variance estimator, which was 

further analysed in [4] on a class of elliptic random obstacle problems—

nonetheless, the corresponding error estimates were defined only on 

worst case bounds. To address this limitation, an alternative MLMC vari­

ance estimator based on h-statistics [14,51] was introduced in [35], 

which emphasizes on unbiased construction of the MSE in closed form, 

an approach also adopted in this study. More recently, [46] devel­

oped MLMC estimators for the biased standard deviation and its linear 

combination with the unbiased mean, which are important for opti­

mization under uncertainty (OUU) workflows. Though the estimation 

of other higher-order moments such as skewness and kurtosis or covari­

ance structures of the QoI via MLMC is out of the scope of this paper, 

more literature on this can be found in [5,35,57].

In the context of assessing the convergence of the MLMC algorithm in 

a standardized manner, the authors in [4] theoretically prove, with spe­

cific assumptions on the deterministic solution, two error bounds for the 

multilevel sample mean and variance that may be directly compared. But 

no practical normalized error estimates are defined for interpretation of 

the complexities between the moments. On the other hand, relative error 

estimates of the MC and MLMC methods, where the total MSE of a given 

moment is normalized by the square of its own statistic, are considered 

in [35]. However, such relative errors are not fully scale-invariant. For 

example, in the MC estimation of the mean, any additive linear transfor­

mation of the QoI changes the ratio of absolute MSE to the squared mean 

in a dimension-dependent manner. Interestingly, in the MC variance esti­

mation, one does obtain a fully dimensionless relative error under linear 

scaling and translation, when normalized by the square of the variance. 

However, the resulting error estimate becomes highly sensitive to the 

tail behaviour (kurtosis) of the QoI distribution. To tackle this issue, in 

this article, we propose novel normalized mean square error (NMSE) es­

timates for both the MC mean and variance estimations, based on which 

the MLMC counterparts are derived. The newly introduced relative er­

rors are statistically defined using h-statistics, with chosen normalizing 

factors that are finite and unbiased. They ensure that the total MSEs of 

the MC and the MLMC algorithms are fully scale-invariant under any 

linear transformation (scaling and addition) of QoI, and remain robust 

to variations in distributional characteristics. Therefore, the proposed 

NMSEs enable easier interpretation of statistical accuracy and efficiency 

between the MC and MLMC algorithms for the estimation of both mean 

and variance, and across different scales.

The other objective of this paper is to investigate the applicability 

of the scale-invariant MC and MLMC method to linear elliptic prob­

lems described by stochastic material parameters representing both 

heterogeneity and uncertain symmetries. As an example, we consider 

the linear-elastic material model of the human femoral bone, whose 

constitutive law is assumed to be uncertain. In particular, bone tissue 

is not only a highly heterogeneous material but also anisotropic, where 

the material symmetry is described as uncertain due to the lack of con­

clusive verification of the class of elastic symmetry it belongs to [31,53]. 

Hence, the entire elasticity tensor is constructed as random with a pre­

defined elastic symmetry in the mean (orthotropy [18] in this case) 

and triclinic symmetries in each stochastic realization. Consequently, 

the positive-definite random elasticity matrices are modelled as matrix-

valued random fields, as proposed in [61,62]. In this work, we restrict 

ourselves to material uncertainties only, assuming that the remaining 

model parametrization is deterministic. However, the numerical ap­

proach is general enough to be employed for other types of uncertainties 

as well.

The paper is organised as follows: In Section 2, we describe the prob­

lem, whereas the theoretical procedures of scale-invariant MC mean 

and variance estimates are elaborated in Section 3. Following this, in 

Section 4, the normalized versions of the MLMC mean and variance es­

timators are detailed. A deterministic and stochastic setting of the linear 

elastic material model, along with the stochastic material modelling, is 

given in Section 5. In Section 6, we visualize the considered stochastic 

material model when implemented on a two-dimensional proximal fe­

mur, and detail the accuracy and efficiency of the normalized MC and 

MLMC. Finally, the conclusions are drawn in Section 7.

2 . Problem description

Let us consider a physical system occupying the spatial domain 

G ⊂ R𝑑  in a 𝑑-dimensional Euclidean space, modelled by an abstract 

equilibrium equation: 

A(𝑞(𝑥), 𝑢(𝑥)) = 𝑓 (𝑥). (2)

Here, 𝑢(𝑥) ∈   describes the state of the system at a spatial point 𝑥 ∈ G
lying in a Hilbert space   (for the sake of simplicity), A is a (possibly 

non-linear) operator modelling the physics of the system, and 𝑓 ∈  ∗, 

the dual space of  , is some external influence (action/excitation/load­

ing). Furthermore, we assume that the model depends on the parameter 

set 𝑞 ∈  and that it is accompanied by appropriate boundary and/or ini­

tial conditions. Note that, for brevity, the model in the previous equation 

describes the physical system only in a spatial domain 𝑥, whereas one 

may also generalise this to time-dependent processes.

The uncertainty in the previous equation may arise due to the 

randomness in external influence 𝑓 , initial or boundary conditions, ge­

ometry G, as well as the coefficient of operator A, i.e., parameter 𝑞. 
Although the theory presented further does not depend on this choice 

and is general enough to cover all of the mentioned (single or combina­

tion of) cases, this article focuses on incorporating stochasticity only in 

coefficient 𝑞. In the theory of continuum solid mechanics, the parameter 

𝑞 represents one of the very well-known physical phenomena, such as 

elasticity [49], which is detailed as an example in Section 5. Here, we 

assume that 𝑞 is modelled as a random field 𝑞(𝑥, 𝜔) with finite second-

order moments on a probability space (𝛺,F,P). Following this, Eq. (2) 

rewrites to a stochastic form: 

A(𝑞(𝑥, 𝜔), 𝑢(𝑥, 𝜔)) = 𝑓 (𝑥), (3)

which further is to be solved for 𝑢(𝑥, 𝜔) ∈  ⊗𝐿2(𝛺,F,P).
Often, when the response of a model is uncertain, one is interested 

in obtaining its relevant information via its corresponding statistics. 

Analytically, the statistical moments of the solution 𝑢 ≡ 𝑢(𝑥, 𝜔) can be 

represented, by rewriting Eq. (2), as 𝑝–th central moment: 

𝜇𝑝(𝑢) = E
(

(𝑢 − E(𝑢))𝑝
)

= ∫𝛺
(𝑢 − E(𝑢))𝑝P(d𝜔). (4)

The objective of this study is to determine the mean and variance only 

after an appropriate deterministic discretization of the problem in Eq. (3) 

is presented.
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Due to spatial and stochastic dependence, the solution 𝑢 ≡ 𝑢(𝑥, 𝜔)
in Eq. (3) is first discretized in a spatial domain, i.e., we search for the 

solution in a finite subspace ℎ ⊂  . After rewriting the problem in 

Eq. (3) in a variational form, the spatial discretization 𝑢ℎ(𝑥, 𝜔) ∈ ℎ—ℎ
being the discretization parameter—can take the finite element form on 

a sufficiently fine spatial mesh ℎ 1 [70]. The expectation functional in 

Eq. (4) then rewrites to: 

𝜇𝑝(𝑢ℎ) = E((𝑢ℎ − E(𝑢ℎ))𝑝) = ∫𝛺
(𝑢ℎ − E(𝑢ℎ))𝑝P(d𝜔), (5)

in which the exact solution 𝑢 is substituted by a semi-discretized solution 

𝑢ℎ ≡ 𝑢ℎ(𝑥, 𝜔).

3 . Monte Carlo method

Due to the complexity of integrating Eq. (5) analytically, in this pa­

per, the focus is on the traditional sampling-based Monte Carlo (MC) 

method [16,22,27,47].

3.1 . Monte Carlo estimation of mean

For an unbiased estimate of the statistic 𝑔(𝜔), one may take a 

symmetric function 

𝜇MC(𝑔) = 1
𝑁

(𝑔(𝜔1) + 𝑔(𝜔2) +⋯ + 𝑔(𝜔𝑁 )), (6)

meaning that the estimate does not depend on the order in which obser­

vations were taken. The existence and uniqueness of such a choice are 

given in [25]. Under the assumption that each sample 𝑢ℎ(𝑥, 𝜔𝑖) comes 

from the identical distribution as 𝑢ℎ(𝑥, 𝜔) and by use of Eq. (6), one may 

reformulate the MC estimate of the mean 𝜇(𝑢ℎ) as 

E(𝑢ℎ) ≈ 𝜇MC(𝑢ℎ) =
1
𝑁

𝑁
∑

𝑖=1
𝑢ℎ(𝑥, 𝜔𝑖), (7)

where 𝑁 > 1 is the sample size of the random field 𝑢ℎ(𝑥, 𝜔) at a spa­

tial location 𝑥. Following this, the approximation error of the MC-based 

mean estimate 𝜇MC ≡ 𝜇MC(𝑢ℎ) compared to the exact mean reads 

𝑒(𝜇MC) = 𝜇MC − E(𝑢), (8)

which further can be rewritten as

𝑒(𝜇MC) = 𝜇MC − E(𝑢ℎ) + E(𝑢ℎ) − E(𝑢).

Thus, the mean square error (MSE) reads

MSE(𝜇MC) ∶= E(𝑒2) = E((𝜇MC − E(𝑢ℎ) + E(𝑢ℎ) − E(𝑢))2)

= E((𝜇MC − E(𝑢ℎ))
2) + (E(𝑢ℎ) − E(𝑢))2

+ 2(E(𝑢 ) − E(𝑢))(E(𝜇MC) − E(𝑢 )),ℎ ℎ

in which 𝜇MC is assumed to be an unbiased estimator; meaning that 

E(𝜇MC) = E(𝑢ℎ), and also, E((𝜇MC − E(𝑢ℎ))
2) = Var(𝜇MC) = Var(𝑢ℎ)∕𝑁 , 

via the central limit theorem [15]. Therefore, the previous equation 

reduces to: 

MSE(𝜇MC) =
Var(𝑢ℎ)
𝑁

+ (E(𝑢ℎ) − E(𝑢))2. (9)

The first term in the previous equation is the sampling error, which 

varies inversely to the sample size 𝑁 . On the other hand, the second term 

describes the square of the spatial discretization error, whose change is 

proportional to the element size ℎ.

1 Other types of discretization techniques can be considered as well

Scale-invariant error estimator for MC mean estimation: The 

MSE in Eq. (9) is an absolute error estimate and, hence, scale-dependent. 

For example, if each observation 𝑢ℎ(𝑥, 𝜔𝑖) is linearly transformed in the 

form 𝑎 𝑢ℎ(𝑥, 𝜔𝑖)+𝑏, in which 𝑎, 𝑏 ∈ R are constants, then the Monte Carlo 

error in Eq. (9) will be affected in a square proportional manner—as 

Var(𝑎 𝑢ℎ + 𝑏) = 𝑎2 Var(𝑢ℎ) (10)

and 

(E(𝑎 𝑢ℎ + 𝑏) − E(𝑎 𝑢 + 𝑏))2 = 𝑎2(E(𝑢ℎ) − E(𝑢))2. (11)

This leads to an interpretability issue, which is not suitable in 

practical applications—for example, when transforming the units of 

temperature from Kelvin to Fahrenheit or displacement field from mil­

limetres to metres. Moreover, an additional complication arises when 

comparing the convergence behaviour of different MC moments under 

a fixed MSE. Specifically, under a linear transformation of the form de­

fined in the previous equations, the MSE of the MC mean estimator 

scales with 𝑎2, while the MSE of the MC variance estimator scales with 

𝑎4—more information on this to follow in Section 3.2. To address this 

limitation, it is necessary to define a scale-invariant version of MSE, de­

fined in Eq. (9), by incorporating a statistical normalization factor 𝜆𝑚, 

which must satisfy the following properties:

(a) It must be greater than zero and finite i.e., 0 < 𝜆𝑚 <∞;

(b) It should satisfy the scaling condition 𝜆𝑚(𝑎 𝑢ℎ + 𝑏) = 𝑎2 𝜆𝑚, thereby 

achieving a completely dimensionless MSE;

(c) It must be chosen such that the sampling error of the scale-

invariant error estimator remains robust and fully invariant with 

respect to variations in the properties of the distribution of solu­

tion 𝑢ℎ.

𝜇2 as a normalizer: It is important to highlight that the common 

practice of using the squared mean value 𝜇2 = E(𝑢ℎ)2 as the standard­

izing quantity 𝜆𝑚 satisfies the second criterion listed above—namely, 

achieving a dimensionless MSE—only in the case of multiplicative scale-

change of the form 𝜇(𝑎𝑢ℎ)
2 = 𝑎2𝜇(𝑢ℎ)

2. However, this choice fails under 

additive transformations, as 𝜇(𝑢ℎ + 𝑏)
2 = (𝜇(𝑢ℎ) + 𝑏)

2; thereby, violat­

ing the required invariance. Consequently, 𝜇2 cannot be considered a 

suitable normalizing factor for constructing a truly scale-invariant error 

metric.

We propose using the variance of the solution, 𝜆𝑚 = Var(𝑢ℎ), as a nor­

malizer. Provided that 0 < Var(𝑢ℎ) < ∞, the factor 𝜆𝑚 satisfies the second 

condition outlined above (see Eq. (10)). With this, the new standardized 

error estimate is defined as 

𝑒̊(𝜇MC) ∶=
𝑒(𝜇MC)

√

Var(𝑢ℎ)
. (12)

Finally, by normalizing Eq. (9), one obtains the squared error estimate 

NMSE(𝜇MC) ∶= E(𝑒̊2) = 1
𝑁

+
(E(𝑢ℎ) − E(𝑢))2

Var(𝑢ℎ)
, (13)

in which the first term is the scale-invariant sampling accuracy, and 

the second term represents the new normalized squared discretization 

error. In the previous equation, the resulting NMSE remains fully dimen­

sionless under both multiplicative and additive scale transformations. 

Furthermore, the normalized sampling error is only proportional to 

1∕𝑁—making it invariant to the variations in variance of solution 𝑢ℎ. In 

other words, for a given total NMSE and a fixed spatial resolution ℎ, the 

computational cost of the MC mean estimator 𝜇MC (see Proposition. 3.1) 

is solely dependent on the number of MC samples 𝑁 , thereby fulfilling 

the third listed requirement.

The computational complexity of the scale-invariant MC mean esti­

mate is similar to the conventional procedure, as shown in [9], but it 

must be redefined with respect to the total NMSE, which is given below.
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Proposition 3.1. Let us consider 𝑐𝛼 , 𝑐𝛾 , 𝛼 and 𝛾 as positive constants, and 

then one may define the error bounds as follows, where

(𝑖) The deterministic error decays as
|E(𝑢ℎ) − E(𝑢)|

√

𝜆𝑚
≤ 𝑐𝛼ℎ

𝛼 ,

(𝑖𝑖) The computational cost to determine a single realization of 𝑢ℎ(𝑥, 𝜔)
is given by C(𝑢 ) ≤ −𝑐 ℎ 𝛾

ℎ 𝛾 .

Then, for any 0 < 𝜖̊ < 𝑒−1, the Monte Carlo (MC) mean estimator 𝜇MC with 

𝑁 = O(𝜖̊−2) and ℎ = O(𝜖̊1∕𝛼) satisfies the normalized mean square error 

NMSE(𝜇MC) < 𝜖̊2. Therefore, the corresponding computational cost of MC 

mean estimation is

C(𝜇MC) ≤ 𝑐 𝜖̊−2−𝛾∕𝛼 ,

where 𝑐 > 0 is a positive constant.

Unbiased estimation of Var: In general, the true variance Var(𝑢ℎ)
is unknown, and must be estimated. For this purpose, one may use the 

estimator V̂arMC(𝑢ℎ), which is determined by the MC procedure with 𝑁
random draws. However, in such a case, the use of a symmetric func­

tion as in Eq. (6) does not lead to an unbiased estimator. To address this 

limitation, we make use of h-statistics for estimating the central mo­

ments 𝜇𝑝, which are not only unbiased but also symmetric, and possess 

minimal variance [14,51]. Further details on h-statistics for univariate 

central moments, particularly the second-order moment (variance), are 

provided in Appendix A. Based on this, we rewrite Eq. (12) by estimat­

ing 𝜆𝑚 = Var(𝑢ℎ) using the second h-statistic, denoted as 𝜆𝑚 = ĥ
MC

2  (see 

Eq. (72)), resulting: 

̂̊𝑒(𝜇MC) =
𝑒(𝜇MC)
√

ĥ
MC

2

. (14)

Finally, one obtains a new formulation of the estimated scale-invariant 

MSE (from Eq. (13)) in the form: 

NMSE(𝜇MC) = 1
𝑁

+
(E(𝑢ℎ) − E(𝑢))2

ĥ
MC

2

. (15)

3.2 . Monte Carlo estimation of variance

The previously derived estimate of variance by h-statistics in Eq. (72) 

is characterized by an approximation error given as

𝑒(ĥ2
MC) = ĥ2

MC − Var(𝑢ℎ) + Var(𝑢ℎ) − Var(𝑢),

in which Var(𝑢) denotes the exact variance of the solution 𝑢. Following 

this, the MSE of the variance estimator reads:

MSE(ĥ2
MC) ∶= E(𝑒2) = E((ĥ2

MC − Var(𝑢ℎ) + Var(𝑢ℎ) − Var(𝑢))
2
)

= E((ĥ2
MC − Var(𝑢ℎ))

2
) + (Var(𝑢ℎ) − Var(𝑢))2

+ 2(Var(𝑢ℎ) − Var(𝑢))(E(ĥ2
MC) − Var(𝑢ℎ)).

Having that ĥ2
MC is an unbiased estimator, meaning that E(ĥ

MC

2 ) =
Var(𝑢ℎ), one may further rewrite the previous equation to 

MSE(ĥ2
MC) = Var(ĥ2

MC) + (Var(𝑢ℎ) − Var(𝑢))2. (16)

In the previous equation, the variance of the second-order statistic ĥ
MC

2 , 

which also represents the normalizing constant 𝜆𝑚, is derived by [8] and 

reads

Var(ĥ2
MC) ∶= 1

𝑁

(

𝜇4(𝑢ℎ) −
𝜇2(𝑢ℎ)

2(𝑁 − 3)
𝑁 − 1

)

, (17)

where 𝜇2(𝑢ℎ) and 𝜇4(𝑢ℎ) represent the second and fourth central popu­

lation moments, respectively. For brevity, one may further rewrite the 

previous equation as 

Var(ĥ2
MC) ∶=

V2(𝑢ℎ)
𝑁

, (18)

where 

V2(𝑢ℎ) ∶= 𝜇4(𝑢ℎ) −
𝜇2(𝑢ℎ)

2(𝑁 − 3)
𝑁 − 1

. (19)

Consequently, by substituting Eq. (18) in Eq. (16), one obtains 

MSE(ĥ2
MC) =

V2(𝑢ℎ)
𝑁

+ (Var(𝑢ℎ) − Var(𝑢))2. (20)

Here, the first term defines the statistical error, which is inversely 

proportional to the number of samples 𝑁 , and the second part rep­

resents the square of the discretization error, directly proportional to

parameter ℎ.

Scale-invariant error estimator for MC variance estimation: 

Similar to MSE formulation for the MC mean estimator in Eq. (9), the 

error estimate for the MC variance estimator, as presented in Eq. (20), is 

inherently scale-dependent. That is, under a linear transformation of the 

form 𝑎𝑢ℎ+𝑏, as discussed in Section 3.1, the corresponding MSE exhibits 

a bi-quadratic scaling behaviour. This is due to the characteristics of the 

central moments involved in Eq. (19): 

𝜇4(𝑎 𝑢ℎ + 𝑏) = 𝑎4 𝜇4(𝑢ℎ) (21)

and 

𝜇2
2(𝑎 𝑢ℎ + 𝑏) = 𝑎4 𝜇2

2(𝑢ℎ). (22)

Therefore, it is clear that 

V2(𝑎 𝑢ℎ + 𝑏) = 𝑎4 V2(𝑢ℎ) (23)

and also that 

(Var(𝑎 𝑢ℎ + 𝑏) − Var(𝑎 𝑢 + 𝑏))2 = 𝑎4(Var(𝑢ℎ) − Var(𝑢))2. (24)

Therefore, similar to the standardizing entity 𝜆𝑚 in Section 3.1, the nor­

malization entity for the MC variance estimation, denoted by 𝜆𝑣, must 

satisfy the following criteria:

(a) It must be finite and greater than zero, i.e., 0 < 𝜆𝑣 <∞;

(b) It should satisfy the scaling condition 𝜆𝑣(𝑎 𝑢ℎ + 𝑏) = 𝑎4 𝜆𝑣—to 

achieve a completely dimensionless MSE;

(c) It must be chosen such that the sampling error of the scale-

invariant error estimator remains robust and fully invariant with 

respect to variations in the properties of the distribution of solu­

tion 𝑢ℎ.

Var2 ≡ 𝜇22 as a normalizer: If one considers 𝜆𝑣 = 𝜇22 as a 

standardizing factor, the MSE in Eq. (20) transforms to 

NMSE(ĥ2
MC) =

V2(𝑢ℎ)
𝜇22 𝑁

+
(Var(𝑢ℎ) − Var(𝑢))2

𝜇22
. (25)

Provided that 0 < 𝜆𝑣 < ∞, the normalization by 𝜇22  enables the 

NMSE to be invariant under any linear transformation (as established 

in Eq. (22)). This satisfies the second requirement in the above list. 

However, regarding the third criterion—robustness of the normalized 
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sampling error to changes in the distribution of 𝑢ℎ—further analysis is 

required. The normalized sampling error, denoted by 𝜀̊𝑠, derived from 

Eq. (19), is given as: 

𝜀̊𝑠 =
1
𝑁

(

𝜇4
𝜇22

− 𝑁 − 3
𝑁 − 1

)

, (26)

where we have suppressed the 𝑢ℎ notation for clarity. In the asymptotic 

regime where 𝑁 ≫ 1, the ratio (𝑁 − 3)∕(𝑁 − 1) → 1, and the expression 

simplifies to: 

𝜀̊𝑠 =
1
𝑁

(

𝜇4
𝜇22

− 1
)

, (27)

in which the term 𝜇4∕𝜇22  represents the standardized fourth central mo­

ment, kurtosis, denoted by Kurt = 𝜇4∕𝜇22 [13]. The normalized sampling 

error 𝜀̊𝑠 depends not only on the number of samples 𝑁  but also on 

the kurtosis of the solution distribution. This dependence becomes par­

ticularly significant for heavy-tailed distributions, which exhibit high 

kurtosis values. 

For example, in the case of a (symmetric) Gaussian distribution, the 

kurtosis is Kurt = 3 [13]. In contrast, for a log-normal distribution, the 

kurtosis is given by Kurt = 𝜌4+2𝜌3+3𝜌2−3 [12], where 𝜌 = exp(Var) and 

Var is the variance of the underlying Gaussian distribution. If Var = 1, 

then Kurt ≈ 114. This implies that, for a fixed total NMSE and spa­

tial resolution ℎ, the computational effort required to estimate the MC 

variance ĥ2
MC is twice that of the mean estimator 𝜇MC for a Gaussian-

distributed 𝑢ℎ (since 𝜀̊𝑠 = 2∕𝑁). However, for a log-normal distribution, 

the cost increases dramatically—by a factor of approximately 113 (i.e., 

𝜀̊𝑠 ≈ 113∕𝑁)—relative to the mean estimator. This violates the third cri­

teria in the list, and therefore, undermines the effectiveness of Var2 ≡ 𝜇22

as a normalizer in practical applications. 

Following this, we consider 𝜆𝑣 = V2(𝑢ℎ) as a normalizer for MC vari­

ance estimation. Given that 0 < V2(𝑢ℎ) < ∞, and based on the scaling 

relation in Eq. (23), it is evident that V2(𝑢ℎ) satisfies the second outlined 

requirement. By normalizing the MSE with V2(𝑢ℎ) in Eq. (20), we obtain 

the scale-invariant form of the MSE for the MC variance estimator: 

NMSE(ĥ2
MC) ∶= E(𝑒̊2) = 1

𝑁
+

(Var(𝑢ℎ) − Var(𝑢))2

V2(𝑢ℎ)
. (28)

Here, the first term represents the scale-invariant sampling error, which 

decays proportionally to 1∕𝑁  and is independent of the statistical char­

acteristics of the solution 𝑢ℎ, thereby fulfilling the third requirement. 

The second term denotes the normalized squared discretization error.

Furthermore, based on the computational complexity analysis for 

MC variance estimation discussed in [35], we henceforth recast the 

convergence analysis in terms of the normalized MSE formulation.

Proposition 3.2. Let us consider 𝑐𝛼 , 𝑐𝛾 , 𝛼 and 𝛾 as positive constants, and 

then one may define the error bounds, such that

(𝑖) The deterministic error is bounded by
|Var(𝑢ℎ) − Var(𝑢)|

√

𝜆𝑣
≤ 𝑐𝛼ℎ

𝛼 ,

(𝑖𝑖) The cost to compute each sample of𝑢ℎ( −𝑥, 𝜔) is given as C(𝑢ℎ) ≤ 𝑐𝛾ℎ
𝛾 .

Then, for any 0 < 𝜖̊ < 𝑒−1, the Monte Carlo (MC) variance estimator ĥ
MC

2
with 𝑁 = O(𝜖̊−2) and ℎ = O(𝜖̊1∕𝛼) satisfies the normalized mean square 

error NMSE(ĥ
MC

2 ) < 𝜖̊2. Therefore, the corresponding computational cost of 

MC variance estimation is given as

C(ĥ2MC) ≤ 𝑐 𝜖̊−2−𝛾∕𝛼 ,

where 𝑐 > 0 is a positive constant.

Unbiased estimation of V2: The quantity V2(𝑢ℎ) in Eq. (28) is an­

alytical and not known. To determine the unbiased estimate of V2(𝑢ℎ), 

one must obtain unbiased estimates of entities 𝜇4(𝑢ℎ) and 𝜇2(𝑢ℎ)
2, which 

are detailed in Appendix B. Therefore, by substituting 𝜇4 ≈ hMC
4  and 

𝜇22 ≈ hMC
{2,2} from Eqs. (74) and (75), respectively, in Eq. (19), one ob­

tains the unbiased estimate: 𝜆𝑣 ∶= V̂MC
2 (𝑢ℎ)—of V2(𝑢ℎ). A further analysis 

of the stochastic convergence of the estimator V̂MC
2 (𝑢ℎ) is provided in 

Appendix C. Finally, the MSE in Eq. (28) is re-described as, 

NMSE(ĥ
MC

2 ) ∶= E(𝑒̊2) = 1
𝑁

+
(Var(𝑢ℎ) − Var(𝑢))2

V̂MC
2 (𝑢ℎ)

. (29)

4 . Multilevel Monte Carlo method

The MSEs of MC mean and variance estimators in Eqs. (9) and (20), 

respectively, signify that to attain an overall higher level of total accu­

racy, one requires a very fine resolution of the finite element mesh and a 

very large number of MC samples. This demands a tremendous amount 

of computational effort, making the algorithm practically infeasible. 

Therefore, the desired moments are further estimated by a variance 

reduction technique in a multilevel fashion following [20,21,26].

4.1 . Multilevel Monte Carlo estimation of mean

Let {𝑙 = 0, 1, 2… , 𝐿} be a generalised increasing sequence—in the 

context of decreasing element size ℎ—of nested meshes 𝑙, a regular 

(non-degenerate) partition of the computational domain G of the prob­

lem described in Eq. (2). Here, 𝑙 denotes the mesh level, and 𝐿 represents 

the finest mesh. The goal of the MLMC method is to determine the 

statistics (such as the mean in this case) of the solution 𝑢ℎ𝐿 (𝒙, 𝜔) on 

the finest level 𝐿. To this end, by exploiting the linearity of the expec­

tation operator, one may express the MLMC (for brevity, denoted by 

ML) mean estimate of the mean 𝜇(𝑢ℎ𝐿 ) using a set of samples 
{

𝑁𝑙
}

∶=
{

𝑁0, 𝑁1,… , 𝑁𝐿
}

 as [21]

𝜇ML(𝑢ℎ𝐿 ,
{

𝑁𝑙
}) ∶= 𝜇MC(𝑢ℎ0 ,𝑁0

) +
𝐿
∑

𝑙=1
𝜇MC(𝑢ℎ𝑙 ,𝑁𝑙 − 𝑢ℎ𝑙−1 ,𝑁𝑙 )

=
𝐿
∑

𝑙=0
𝜇MC(𝑌𝑙). (30)

Here, 𝜇MC(𝑢ℎ0 ,𝑁0
) is the MC estimator of mean 𝜇(𝑢ℎ0 ) on level 𝑙 = 0 using 

𝑁0 samples, and 𝜇MC(𝑢ℎ𝑙 ,𝑁𝑙 − 𝑢ℎ𝑙−1 ,𝑁𝑙 ) represents the approximation of 

mean 𝜇(𝑢ℎ𝑙 − 𝑢ℎ𝑙−1 ) with 𝑙 > 0 and 𝑁𝑙 samples. Furthermore, for 𝑙 = 0, 

𝑌0 = 𝑢ℎ0 ,𝑁0
; else, 𝑌𝑙 ∶= 𝑢ℎ𝑙 ,𝑁𝑙 − 𝑢ℎ𝑙−1 ,𝑁𝑙 . Note that the individual term 

𝑌𝑙 , 𝑙 ≥ 0, is sampled independently, and when 𝑙 > 0, the quantities 𝑢ℎ𝑙 ,𝑁𝑙
and 𝑢ℎ𝑙−1 ,𝑁𝑙  in 𝑌𝑙 are considered to be strongly correlated—meaning that 

𝑢ℎ𝑙 ,𝑁𝑙  and 𝑢ℎ𝑙−1 ,𝑁𝑙  are sampled from the same random seed.

As the mean estimate on the finest level 𝜇ML ≡ 𝜇ML(𝑢ℎ𝐿 ,
{

𝑁𝑙
}) is ob­

tained as the telescopic sum of the differences of MC mean estimates on 

the coarser levels, the MSE of 𝜇ML, corresponding to Eq. (9), takes the 

form (see [9]): 

MSE(𝜇ML) =
𝐿
∑

𝑙=0

Var(𝑌𝑙)
𝑁𝑙

+ (E(𝑢ℎ𝐿 ) − E(𝑢))2. (31)

The above error consists of two terms: the variance of the estimator 𝜇ML

on the left and the square of the spatial discretization error on the right.

Scale-invariant error estimator for MLMC mean estimation: 

Similar to the MC error estimate for the mean in Eq. (9), the MSE of 

the MLMC mean estimator in Eq. (31) represents an absolute error esti­

mate. As a result, the convergence of the MLMC algorithm also strongly 

depends on the solution magnitude. To address this, based on the nor­

malizer 𝜆𝑚 defined in Section 3.1, and particularly the NMSE in Eq. (13), 

we consider 𝜆𝑚 = Var(𝑢ℎ𝐿 ) as a standardizing entity, suggesting a new 

scale-invariant MSE estimate: 

NMSE(𝜇ML) = 1
Var(𝑢ℎ𝐿 )

( 𝐿
∑

𝑙=0

Var(𝑌𝑙)
𝑁𝑙

)

+
(E(𝑢ℎ𝐿 ) − E(𝑢))2

Var(𝑢ℎ𝐿 )
. (32)
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However, the normalization term Var(𝑢ℎ𝐿 ), which is the variance of 

the solution 𝑢ℎ on finest mesh level 𝐿, is generally not known. Hence, 

under the assumption that for any value of 𝑙, Var(𝑢ℎ𝑙 ) will be approxi­

mately constant [9,21], one may substitute Var(𝑢ℎ𝐿 ) with Var(𝑢ℎ0 ), which 

is based on the coarsest mesh at 𝑙 = 0. Furthermore, under the con­

sideration that 𝜆𝑚 ∶= ĥ2
MC(𝑢ℎ0 ,𝑁0

) is the MC estimator of Var(𝑢ℎ0 ), and 

by defining the MC variance estimate of Var(𝑌𝑙) ∶= Var(𝑢ℎ𝑙 − 𝑢ℎ𝑙−1 ) via 

ĥ2
MC(𝑌𝑙), Eq. (32) therefore transforms to 

NMSE(𝜇ML) = 1

ĥ
MC

2 (𝑢ℎ0 ,𝑁0
)

⎛

⎜

⎜

⎝

𝐿
∑

𝑙=0

ĥ
MC

2 (𝑌𝑙)
𝑁𝑙

⎞

⎟

⎟

⎠

+
(E(𝑢ℎ𝐿 ) − E(𝑢))2

ĥ
MC

2 (𝑢ℎ0 ,𝑁0
)

. (33)

The first entity here represents the estimated scale-invariant multi-level 

sampling error, whereas the second term defines the dimensionless 

squared discretization error. Therefore, to attain an overall normalized 

mean square error 𝜖̊2, it is sufficient that both terms are less than 𝜖̊2∕2. 

Note that the equal splitting of error 𝜖̊2 is not a requirement and can also 

be set otherwise—for more information on this, see [10,24].

If C𝑙 ≡ C(𝑌𝑙) is the computational cost of determining a single MC 

sample of 𝑌𝑙, then the overall cost of the estimator 𝜇ML is given as 

C(𝜇ML) ∶=
∑𝐿
𝑙=0𝑁𝑙C𝑙. Here, the optimum number of samples 𝑁𝑙 on each 

level 𝑙 is evaluated by solving an optimisation problem such that the 

normalized sampling error is less than 𝜖̊2∕2. As a result, the cost function

𝑓 (𝑁𝑙) = argmin
𝑁𝑙

𝐿
∑

𝑙=0

(

𝑁𝑙C𝑙 + 𝜏
ĥ2

MC(𝑌𝑙)

𝜆𝑚𝑁𝑙

)

(34)

is minimised, due to which the optimal samples 𝑁𝑙 are calculated as 

𝑁𝑙 = 𝜏

(

ĥ2
MC(𝑌𝑙)

𝜆𝑚C𝑙

)
1
2

. (35)

Here, 𝜏 is the Lagrange multiplier, determined by 

𝜏 = 2
𝜖̊2

𝐿
∑

𝑙=0

(

ĥ2
MC(𝑌𝑙)C𝑙
𝜆𝑚

)
1
2

. (36)

On the other hand, the set of mesh levels {𝑙 = 0, 1, 2… , 𝐿} maybe op­

timally chosen (in a geometric or non-geometric sequence) for a given 

deterministic error. Typically, for PDE-based applications, the choice of 

coarse mesh 𝑙 = 0 depends on the regularity of the solution 𝑢(𝑥) [9]. 

Following this, the finer mesh selection is based on an apriori mesh con­

vergence study, where the finest mesh level 𝑙 = 𝐿 can be fixed or can 

be adaptively selected [21] during the MLMC mean computation. For a 

more detailed discussion on the optimal selection of mesh hierarchies, 

we refer the readers to [24].

The arguments for determining the total computational cost of the 

normalized MLMC mean estimator follow the classical MLMC procedure 

[20,26]. However, the difference is that the cost is described with respect 

to NMSE instead of MSE.

Proposition 4.1. Let us consider the positive constants 𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 , 𝛼, 𝛽, 𝛾, 
given that 𝛼 ≥ 1

2 min(𝛽, 𝛾). Then, we consider the following error bounds, 

where 

(𝑖) The deterministic error decays as
|E(𝑢ℎ𝑙 ) − E(𝑢)|

√

𝜆𝑚
≤ 𝑐𝛼ℎ

𝛼
𝑙 ,

(𝑖𝑖) The decay of variance is bounded by
ĥ

MC

2 (𝑌𝑙)
𝜆𝑚

≤ 𝑐𝛽ℎ
𝛽
𝑙 ,

(𝑖𝑖𝑖) The computational cost to determine a single realization of 𝑌𝑙
 is given as C(𝑌𝑙) ≤ −𝑐𝛾ℎ

𝛾
𝑙 .

(37)

Then, there exists another positive constant 𝑐, such that for any 0 < 𝜖̊ < 𝑒−1, 
the multilevel Monte Carlo (MLMC) mean estimator satisfies the normalized 

mean square error NMSE(𝜇ML) < 𝜖̊2. Finally, the total computational cost of 

MLMC mean estimation is bounded by 

C(𝜇ML) ≤
⎧

⎪

⎨

⎪

⎩

𝑐 𝜖̊−2, 𝛽 > 𝛾,
𝑐 𝜖̊−2(log 𝜖̊)2, 𝛽 = 𝛾,
𝑐 𝜖̊−2−(𝛾−𝛽)∕𝛼 , 𝛽 < 𝛾.

(38)

Based on the values of 𝛽 and 𝛾, one may also understand the major cost 

contributor amongst the sequence of mesh levels. If 𝛽 > 𝛾, the maximum 

cost is controlled by the coarsest level, and if 𝛽 < 𝛾, the finest level 

governs the dominant cost. Finally, when 𝛽 = 𝛾, the cost at each level is 

roughly evenly distributed.

Furthermore, it is clear from the first relation in Eq. (37) that as 

𝑙 → ∞,

|E(𝑢ℎ𝑙 ) − E(𝑢)|
√

𝜆𝑚
→ 0.

However, E(𝑢) is analytical and not known. Therefore, the deterministic 

error is defined via the triangle inequality as [9] 

|E(𝑢ℎ𝑙 ) − E(𝑢ℎ𝑙−1 )|
√

𝜆𝑚
≤ 𝑐𝛼ℎ

𝛼
𝑙 . (39)

4.2 . Multilevel Monte Carlo estimation of variance

To enhance the characterization of the probabilistic system response 

𝑢ℎ𝐿 (𝒙, 𝜔), this paper also focuses on defining the MLMC estimator of 

Var(𝑢ℎ𝐿 ) using h-statistics, expressed in the form [35]:

ĥ2
ML(𝑢ℎ𝐿 ,

{

𝑁𝑙
}) ∶= ĥ2

MC(𝑢ℎ0 ,𝑁0
) +

𝐿
∑

𝑙=1

(

ĥ2
MC(𝑢ℎ𝑙 ,𝑁𝑙 ) − ĥ2

MC(𝑢ℎ𝑙−1 ,𝑁𝑙 )
)

. (40)

Here, ĥ2
MC(𝑢ℎ0 ,𝑁0

) is the MC estimator of Var(𝑢ℎ0 ) with 𝑁0 samples; 

ĥ2
MC(𝑢ℎ𝑙 ,𝑁𝑙 ) and ĥ2

MC(𝑢ℎ𝑙−1 ,𝑁𝑙 ) represent the MC estimation of Var(𝑢ℎ𝑙 )
and Var(𝑢ℎ𝑙−1 ) using 𝑁𝑙 samples, respectively. For simplification, we 

introduce: 

𝑍𝑙 =

{

ĥ2
MC(𝑢ℎ0 ,𝑁0

), 𝑙 = 0,

ĥ2
MC(𝑢ℎ𝑙 ,𝑁𝑙 ) − ĥ

MC

2 (𝑢ℎ𝑙−1 ,𝑁𝑙 ), 𝑙 > 0.
(41)

Note that, for 𝑙 > 0, 𝑢ℎ𝑙 ,𝑁𝑙  and 𝑢ℎ𝑙−1 ,𝑁𝑙  in 𝑍𝑙 are determined using the 

same random seed. Thus, the expansion in Eq. (40) is rewritten as 

ĥ2
ML =

𝐿
∑

𝑙=0
𝑍𝑙 . (42)

Similar to MLMC mean estimation, MLMC variance estimator is also ob­

tained as the telescopic sum of the difference of MC variance estimates 

on the coarser levels. Therefore, in correspondence to Eq. (16), the MSE 

of the multilevel estimator ĥ2
ML takes the form: 

MSE(ĥ2
ML) = Var

(

ĥ2
ML

)

+ (Var(𝑢ℎ𝐿 ) − Var(𝑢))2. (43)

Under further consideration that the quantity 𝑍𝑙, for 𝑙 ≥ 0, is sampled 

independently, one may express the first term in the above equation as 

Var
(

ĥ2
ML

)

=
𝐿
∑

𝑙=0
Var(𝑍𝑙), (44)

in which the variance Var(𝑍𝑙) is further defined—similar to Eq. (18)—by 

V𝑙,2∕𝑁𝑙. Therefore, Eq. (43) is reformulated as 

MSE(ĥ2
ML) =

𝐿
∑

𝑙=0

V𝑙,2
𝑁𝑙

+ (Var(𝑢ℎ𝐿 ) − Var(𝑢))2. (45)

Analogous to the MSE of MC variance estimator in Eq. (20), here, 

the MSE is also split into statistical error—which is of the order 
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O(𝑁−1
𝑙 )—and square of deterministic bias. Furthermore, the quantity 

V𝑙,2 is analytical, and the corresponding unbiased MC estimation, de­

noted V̂MC
𝑙,2 , is detailed in Appendix D.

Scale-invariant error estimator for MLMC variance estimation: 

The MSE of estimator ĥML
2  in Eq. (45) is scale-dependent. Therefore, the 

MSE of multilevel variance estimator is transformed to a scale-invariant 

version NMSE(ĥ2
ML) by considering 𝜆𝑣 = V2(𝑢ℎ𝐿 ) as the normalization 

entity—as described in Section 3.2. Since, V2(𝑢ℎ𝐿 ) is unknown, we make 

the assumption that the entity V2(𝑢ℎ𝑙 ) remains approximately close for 

all values of 𝑙. That is, the value of V2(𝑢ℎ𝐿 ) on finest level 𝐿 is replaced 

by V2(𝑢ℎ0 ) of the coarsest mesh level 𝑙 = 0. Finally, with the unbiased MC 

estimation of the normalizer 𝜆𝑣 ∶= V̂MC
2 (𝑢ℎ0 ,𝑁0

), detailed in Section 3.2 

and Appendix B, the new normalized MSE is given in the form: 

NMSE(ĥ2
ML) = 1

V̂MC
2

⎛

⎜

⎜

⎝

𝐿
∑

𝑙=0

V̂MC
𝑙,2

𝑁𝑙

⎞

⎟

⎟

⎠

+
(Var(𝑢ℎ𝐿 ) − Var(𝑢))2

V̂MC
2

. (46)

Here, the first term defines the scale-invariant sampling error and the 

second term is the normalized squared deterministic error. The accom­

plishment of a total NMSE 𝜖̊2—as mentioned in Section 4.1—is justified 

by ensuring that both errors are less than 𝜖̊2∕2.

One may determine the samples 𝑁𝑙 analogously to Eqs. (34)-(36), 

such that Eq. (36) is substituted in Eq. (35): 

𝑁𝑙 =
2
𝜖̊2

𝐿
∑

𝑙=0

⎛

⎜

⎜

⎝

V̂MC
𝑙,2 C𝑙

V̂MC
2

⎞

⎟

⎟

⎠

1
2
⎛

⎜

⎜

⎝

V̂MC
𝑙,2

V̂MC
2 C𝑙

⎞

⎟

⎟

⎠

1
2

. (47)

Note that, here C𝑙 is the computational cost of evaluating one MC sample 

of 𝑢ℎ𝑙 ,𝑁𝑙  and 𝑢ℎ𝑙−1 ,𝑁𝑙  in the difference term 𝑍𝑙, which is equivalent to 

determining the cost of 𝑌𝑙 in Eq. (34).

Following the computational complexity of the scale-invariant 

MLMC mean in Proposition. 4.1, the computing cost of the normalized 

MLMC variance estimate, similar to the conventional MLMC variance 

(see [4,35]), is detailed below.

Proposition 4.2. Let us introduce the positive constants 𝑐𝛼 , 𝑐𝛽 , 𝑐𝛾 , 𝛼, 𝛽, 𝛾, 
such that 𝛼 ≥ 1

2 min(𝛽, 𝛾). Then, one may define the following error bounds, 

such that

(𝑖) The deterministic error is bounded by
|Var(𝑢ℎ𝑙 ) − Var(𝑢)|

√

𝜆𝑣
≤ 𝑐𝛼ℎ

𝛼
𝑙 ,

(𝑖𝑖) The variance V̂MC decays𝑙,2  as
V̂MC
𝑙,2

𝜆𝑣
≤ 𝑐𝛽ℎ

𝛽
𝑙 , (48)

(𝑖𝑖𝑖) The computational cost to determine a single realization of 𝑍𝑙 is given as

C(𝑍𝑙) ≤
−𝑐𝛾ℎ
𝛾

𝑙 .

Thus, one may state that, for any 0 < 𝜖̊ < 𝑒−1, the total normalized mean 

square error of multilevel Monte Carlo (MLMC) variance estimator is bound 

by NMSE(ĥ2ML) < 𝜖̊2. Finally, the computational cost of MLMC variance 

estimation reads 

C(ĥ2ML) ≤
⎧

⎪

⎨

⎪

⎩

𝑐 𝜖̊−2, 𝛽 > 𝛾,
𝑐 𝜖̊−2(log 𝜖̊)2, 𝛽 = 𝛾,
𝑐 𝜖̊−2−(𝛾−𝛽)∕𝛼 , 𝛽 < 𝛾.

(49)

Here, 𝑐 > 0 is a positive constant.

Notably, if the deterministic and stochastic convergences in Eqs. (37) 

and (48) are correspondingly equal, then the computational complexity 

of the MLMC variance estimator will be asymptotically equal to that of 

the mean estimate. However, this depends on the regularity of solution 

𝑢(𝑥, 𝜔), as proved by authors in [4]. Otherwise, generally, for a given 

total NMSE 𝜖̊2, the multilevel mean estimator runs faster as compared 

to the variance (elaborated with a numerical example in Section 6).

Furthermore, as noted in Section 4.1, mesh level 𝑙 = 0 contributes the 

most cost in the first scenario in the Eq. (49); the second case imposes an 

almost equal cost on all mesh levels, and the final relation demonstrates 

that the finest level 𝐿 is the most dominant.

Also, corresponding to Eq. (48), when 𝑙 → ∞, there is a monotonic 

decay in |Var(𝑢ℎ𝑙 ) − Var(𝑢)|∕
√

𝜆𝑣. Thereby, analogous to Eq. (39), the 

following condition 

|Var(𝑢ℎ𝑙 ) − Var(𝑢ℎ𝑙−1 )|
√

𝜆𝑣
≤ 𝑐𝛼ℎ

𝛼
𝑙 , (50)

holds.

5 . Application to linear elasticity: a model problem

To test the scale-invariant MC and MLMC methods, we consider a 

framework of linear elliptic PDEs with random coefficients. As a rep­

resentative example, we focus on linear elasticity as a model problem, 

where the elasticity tensor is modelled as a matrix-valued random field 

capturing both the heterogeneous and randomly anisotropic nature of 

the material.

5.1 . Deterministic setting

Let G ⊂ R𝑑  be a 𝑑-dimensional geometry with smooth Lipschitz 

boundary Γ. The aim is to determine the displacement vector 𝒖 ∈ R𝑑
(which belongs to the Hilbert space  ) at a spatial point 𝒙 ∈ G that 

completely satisfies the equilibrium equations [42]

−div𝝈(𝒙) = 𝒇 (𝒙), ∀𝒙 ∈ G,

𝒖(𝒙) = 𝒖0 = 𝟎, ∀𝒙 ∈ Γ𝐷, (51)

𝝈(𝒙) ⋅ 𝒏(𝒙) = 𝒕(𝒙), ∀𝒙 ∈ Γ𝑁 ,

describing the linear-elastic behaviour. Here, 𝝈(𝒙) is the Cauchy stress 

tensor, which belongs to the space of second-order symmetric tensors 

Sym(𝑑) ∶=
{

𝝈 ∈ (R𝑑 ⊗ R𝑑 ) | 𝝈 = 𝝈𝑇
}

; 𝒇 (𝒙) ∈ R𝑑  is the body force; 

𝒕(𝒙) ∈ R𝑑  represents the surface tension on the Neumann boundary 

Γ𝑁 ⊂ Γ, and 𝒏(𝒙) ∈ R𝑑  is the outward unit normal to Γ𝑁 . For simplicity, 

a homogeneous boundary condition 𝒖0 = 𝟎 ∈ R𝑑  is considered on the 

Dirichlet boundary Γ𝐷 ⊂ Γ. It is also possible to assume that Γ𝐷∩Γ𝑁 = 0.

One may further describe the strain–displacement relation as 

𝜺(𝒙) = 1
2
(

∇𝒖 + ∇𝒖𝑇
)

, ∀𝒙 ∈ G, (52)

where 𝜺(𝒙) ∈ Sym(𝑑) denotes an infinitesimal second-order symmetric 

strain tensor. Finally, the material constitutive equation is of the linear 

form 

𝝈(𝒙) = 𝑪(𝒙) ∶ 𝜺(𝒙), ∀𝒙 ∈ G, (53)

in which 𝑪(𝒙) represents a spatially varying fourth-order positive-

definite symmetric elasticity tensor. Here, the notion of symmetry 

signifies the major (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗) and minor symmetries (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 =
𝐶𝑖𝑗𝑙𝑘). As a result, one can map a 𝑪(𝒙) tensor to a second-order tensor 

𝐶(𝒙), more generally known as the elasticity matrix. The reduced 𝐶(𝒙)
matrix belongs to a family of (𝑛 × 𝑛), where 𝑛 = 𝑑(𝑑 + 1)∕2, real-valued 

positive-definite symmetric matrices: 

Sym+(𝑛) = {𝐶 ∈ (R𝑛 ⊗ R𝑛) ∣ 𝐶 = 𝐶𝑇 , 𝒛𝑇𝐶𝒛 > 𝟎,∀𝒛 ∈ R𝑛 ⧵ 𝟎}. (54)

Accordingly, conforming to Voigt notation, Eq. (53) transforms to 𝜎(𝒙) =
𝐶(𝒙) ⋅ 𝜀(𝒙), with 𝜎(𝒙) ∈ R𝑑  and 𝜀(𝒙) ∈ R𝑑  denoting the stress and strain 

vectors, respectively.

5.2 . Stochastic modelling of material uncertainty: a reduced parametric 

approach

Material law as described previously is complicated when highly 

heterogeneous and anisotropic materials—such as bone tissue, see 
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Section 6—are to be modelled. To include aleatoric uncertainty with 

heterogeneity in Eq. (53), the material properties have to be modelled 

as random and spatially dependent [49,60]. In this paper, a probabilis­

tic point of view is studied, in which the 𝐶(𝒙) matrix is modelled as a 

matrix-valued second-order random field 𝐶(𝒙, 𝜔) on a probability space 

(𝛺,F ,P). In other words, the random elasticity matrix can be modelled 

as a mapping: 

𝐶(𝒙, 𝜔) ∶ G ×𝛺 → Sym+(𝑛). (55)

Furthermore, in practise, the usual assumption is that the elasticity ma­

trix 𝐶(𝒙) globally follows a certain type of symmetry (e.g., isotropic, 

orthotropic, etc.; see [6,11] for invariance classification of elasticity 

matrix 𝐶), even though the experiments today cannot provide this infor­

mation with full certainty. Therefore, to include uncertainty in the type 

of material symmetry, in this paper, we model the elasticity matrix 𝐶(𝒙)
as per the reduced parametric approach (also commonly known as the 

non-parametric method) [23,61,62]. That is, the random matrix 𝐶(𝒙, 𝜔)
follows a specific type of symmetry only in the mean, whereas each of 

the realisations belongs to the triclinic system, which is the lowest or­

der of symmetry for elasticity-type tensors. This gives our model a full 

degree of freedom in a case where the predefined mean symmetry turns 

out to be incorrect; one would still be able to identify other types of in­

variances given experimental data. This is, however, not the case if we 

assume that each of the realisations is constrained. If the specific symme­

try class of the material—beyond the triclinic case—is known for both 

the ensemble (population) and its mean, one may employ the stochas­

tic modelling frameworks presented in [39], and [58,59], which also 

has the ability to separate the modelling of strength, eigen-strain dis­

tribution, and spatial orientation, allowing for independent control of 

each component; however, this remains beyond the scope of the present 

study.

Following this, we model the homogeneous mean matrix as 

E(𝐶(𝒙, 𝜔)) = 𝑈𝑇𝑈 , in which the term 𝑈 ∈ R𝑛×𝑛 represents an upper 

triangular matrix—this square-type (Cholesky) factorization ensures the 

positive-definiteness of the mean matrix. Then, to allow uncertainty into 

the model, the mean formulation is extended to 

𝐶(𝒙, 𝜔) = 𝑈𝑇 𝑇 (𝒙, 𝜔)𝑈, (56)

such that 

E(𝑇 (𝒙, 𝜔)) = 𝐼 (57)

holds. Here, 𝑇 (𝒙, 𝜔) is a matrix-valued random variable that also resides 

in Sym+(𝑛), the mean value of which is an identity matrix 𝐼 ∈ Sym+(𝑛). 
In this manner, the mean behaviour is controlled by E(𝐶(𝒙, 𝜔)), and the 

random fluctuations are governed by 𝑇 (𝒙, 𝜔). To construct a random 

ensemble 𝑇 (𝒙, 𝜔), one may use the maximum entropy optimisation prin­

ciple under the constraints mentioned in the previous list (but with a 

mean defined in Eq. (57)). Henceforth, 𝑇 (𝒙, 𝜔) can further be factorised 

as 

𝑇 (𝒙, 𝜔) = 𝑉 (𝒙, 𝜔)𝑇 𝑉 (𝒙, 𝜔), (58)

and by substitution in Eq. (56), one obtains 

𝐶(𝒙, 𝜔) = 𝑈𝑇 𝑉 (𝒙, 𝜔)𝑇 𝑉 (𝒙, 𝜔)𝑈. (59)

Here, 𝑉 (𝒙, 𝜔) ∈ R𝑛×𝑛 denotes the upper triangular random matrix with 

entries 

𝑉𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝛿𝑇
√

𝑑+1
𝜃𝑖𝑗 (𝒙, 𝜔), if 𝑖 < 𝑗

𝛿𝑇
√

𝑑+1

√

𝑁𝑐Γ𝛼𝑗 (𝒙, 𝜔), if 𝑖 = 𝑗,
(60)

given that the elements 𝑉𝑖𝑗 , 𝑖 ≤ 𝑗 are independent. Observe that the 

non-diagonal upper triangular elements are modelled as independent 

Gaussian random fields 𝜃𝑖𝑗 (𝒙, 𝜔), 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 with zero mean and unit 

variance. On the other hand, the diagonal entries are gamma-distributed 

positive-definite random fields:

Γ𝛼𝑗 (𝒙, 𝜔) = 𝐹−1
Γ𝛼

◦ erf(𝜃𝑖𝑗 (𝒙, 𝜔)). (61)

Here, 

𝛼𝑗 = (𝑑 + 1)∕(2𝛿2𝑇 ) + (1 − 𝑗)∕2 (62)

is a positive real number; erf is the standard Gaussian distribution func­

tion; and 𝐹−1
Γ𝛼

 is the inverse gamma cumulative distribution function. 

This assures that the diagonal elements are strictly positive, and there­

fore, the random matrix 𝑇 (𝒙, 𝜔) also remains positive-definite. Reverting 

to the above description in Eq. (60), where 𝑁𝑐  is a normalization con­

stant of the resultant function (given in Eq. (61)), the value of which 

equals 2. Furthermore, 𝛿𝑇 ∶= [0, 1] ∈ R defined as Eq. (63), is a scalar 

value that controls the dispersion of 𝑇 (𝒙, 𝜔): 

𝛿𝑇 =
{ 1
𝑑
E
[

∥ 𝑇 (𝒙, 𝜔) − 𝐼 ∥2
]

}1∕2
. (63)

The coefficient of dispersion parameter 𝛿𝑇  is chosen such that 

𝛿𝐶 =

[

E
{

‖𝐶(𝒙, 𝜔) − E(𝐶(𝒙, 𝜔))‖2
}

‖E(𝐶(𝒙, 𝜔))‖2

]1∕2

=
𝛿𝑇

√

𝑑 + 1

[

1 +
(tr(E(𝐶(𝒙, 𝜔))))2

tr(E(𝐶(𝒙, 𝜔)))2

]1∕2

(64)

holds. Here, 𝛿𝐶 ∶= [0, 1] ∈ R is the coefficient of dispersion of the 

random matrix 𝐶(𝒙, 𝜔).

5.3 . Stochastic setting

The description of the random elasticity matrix field 𝐶(𝒙, 𝜔) leads 

to the apparent transformation of a linear-elastic material model to a 

stochastic model. The aim is to determine the random displacement vec­

tor field 𝒖(𝒙, 𝜔) ∶ G ×𝛺 → R𝑑 . Therefore, the equilibrium equations are 

rewritten in the form:

−div𝝈(𝒙, 𝜔) = 𝒇 (𝒙), ∀𝒙 ∈ G, 𝜔 ∈ 𝛺,

𝒖(𝒙, 𝜔) = 𝒖0 = 𝟎, ∀𝒙 ∈ Γ𝐷, 𝜔 ∈ 𝛺, (65)

𝝈(𝒙, 𝜔) ⋅ 𝒏(𝒙) = 𝒕(𝒙), ∀𝒙 ∈ Γ𝑁 , 𝜔 ∈ 𝛺,

in which the boundary conditions and body forces 𝒇 (𝒙) remain deter­

ministic. Further, the linearized kinematics relationship is transformed 

to 

𝜺(𝒙, 𝜔) = 1
2
(

∇𝒖(𝒙, 𝜔) + ∇𝒖(𝒙, 𝜔)𝑇
)

,∀𝒙 ∈ G, 𝜔 ∈ 𝛺, (66)

where the ∇(⋅) operator is taken in a weak sense. Finally, the constitutive 

law is represented by 

𝝈(𝒙, 𝜔) = 𝑪(𝒙, 𝜔) ∶ 𝜺(𝒙, 𝜔),∀𝒙 ∈ G, 𝜔 ∈ 𝛺. (67)

By carrying out the variational formulation of the above stochastic par­

tial differential equations on G and further discretizing in a finite element 

setting [70], one searches for the solution 𝒖ℎ(𝒙, 𝜔) ∶ ℎ × 𝛺 → R𝑑  in a 

finite subspace, ℎ, as described in [30,38,52].

In computational stochastic mechanics, a vast body of literature ex­

ists on numerical methods for obtaining the stochastic solution 𝒖ℎ(𝒙, 𝜔)
after semi-discretization. Some well-known approaches that fall into the 

category of series–expansion methods include the spectral stochastic fi­

nite element method [19,43,44], the perturbation method [28,33,36], 

and the Neumann expansion method [55,68]. The present study, how­

ever, focuses on another class of techniques that directly integrate the 

statistics of the response, of which, Monte Carlo simulation [50,56] 
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has traditionally been used for assessing the validity of other meth­

ods. Further reviews and discussions of the procedures can be found 

in [19,43,54,64]. 

The goal of this study is to determine the total displacement scalar 

field in Euclidean norm, i.e., 𝑢(𝑡)ℎ (𝒙, 𝜔) = ‖𝒖ℎ(𝒙, 𝜔)‖, and estimate the 

second-order statistics such as the mean and variance of sampled re­

sponse 𝑢(𝑡)ℎ,𝑁 ∶= [𝑢(𝑡)ℎ (𝒙, 𝜔𝑖)]
𝑁
𝑖=1 using the scale-invariant MC and MLMC as 

detailed in Sections (3) and (4). Note that a comparison of the proposed 

MC and MLMC techniques with the previously listed series–expansion 

approaches lies outside the scope of this work.

6 . Numerical results: 2D human femur

In this section, we examine the performance of the scale-invariant 

MC and MLMC algorithms on a linear elastic material model of a 2D 

human femoral bone, which is a highly heterogeneous and anisotropic 

material.

6.1 . Specifications

A two-dimensional proximal femur bone geometry with a body width 

of approximately 7 cm and 21.7 cm in total height is considered. Fig. 1 

shows the boundary conditions where an in-plane uniform pressure load 

with a resultant load of 1500 N is applied on top of the bone and 

zero displacements are considered at the bottom [69]. The finite el­

ement method (FEM) based spatial discretization is performed using 

four-noded plane stress elements. By sampling the probabilistic space, 

each deterministic simulation is thus executed by the finite element 

MATLAB-based software Plaston [52], where preconditioned conjugate 

gradient (PCG) method is used as an iterative solver.

To implement the scale-invariant MLMC method, a sequence of four 

nested meshes with element size ℎ𝑙−1 = 2ℎ𝑙 is considered, as shown in 

Fig. 1. Geometry and boundary conditions.

Fig. 2. Nested mesh levels of 2D femur bone.

Fig. 2. One may notice the identical implementation of boundary condi­

tions across all the mesh levels. The corresponding mesh specifications 

are tabulated in Table 1.

Femoral bone tissue is not only a highly heterogeneous material but 

also anisotropic, with its precise type of elastic symmetry remaining un­

certain [31,53]. To account for this, we model the material stiffness 

using a matrix-valued random field 𝐶(𝒙, 𝜔), as defined in Section 5.2. 

We consider the average orthotropic elastic properties of human corti­

cal femoral bone, as reported in the experimental study conducted on 

60 specimens by [1]. The corresponding elastic coefficients, restricted 

to 2D, are listed in Table 2, and are used to define the homogeneous 

mean matrix E(𝐶(𝒙, 𝜔)) of the random elasticity tensor field 𝐶(𝒙, 𝜔). By 

setting the coefficient of dispersion of the random elasticity matrix field 

to 𝛿𝐶 = 0.1, the coefficient of dispersion of the matrix-valued random 

field 𝑇 (𝒙, 𝜔) is determined using Eq. (64).

Accordingly, the fluctuation matrix 𝑇 (𝒙, 𝜔) is modelled as a non-

linear transformation of 6 (as 𝑛 = 3, 𝑑 = 2) independent scalar Gaussian 

random fields. Each of these is approximated via a truncated (up to 𝑀
terms) Kosambi-Karhunen-Loève expansion [29,34,37], expressed as: 

𝜃𝑖𝑗 (𝒙, 𝜔) = 𝜃𝑖𝑗 (𝒙) +
𝑀
∑

𝑘=1

√

𝜂𝑘𝜓𝑘(𝒙)𝜉𝑘(𝜔). (68)

Here, 𝜃𝑖𝑗 (𝒙) denotes the spatially varying mean field, 𝜉𝑘(𝜔) are the 

mutually uncorrelated and independent standard Gaussian random vari­

ables, and (𝜂𝑘, 𝜓𝑘) are the eigenpairs of the covariance operator associ­

ated with the autocorrelation kernel 
{

𝑅𝑖𝑗 (𝑟) ∶ 𝑅𝑖𝑗 (0) = 1, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
}

. 

These eigenpairs are obtained via a finite element discretization of the 

Fredholm integral equation of the second kind [3,30,45,63]. In this 

work, we assume a Gaussian-type covariance structure: 

𝑅𝑖𝑗 (𝑟) = 𝜚2 exp(−𝑙−2𝑐 𝑟2), (69)

Table 1 

Mesh specifications of 2D meshes.

𝑙 Elements Nodes DOF

0 171 206 396

1 684 753 1476

2 2736 2873 5688

3 10,944 11,217 22,320

Table 2 

Orthotropic material parameters.

Young’s modulus (GPa) Poisson’s ratio Shear modulus (GPa)

𝐸1 = 12 𝜈21 = 0.371 𝐺12 = 5.61
𝐸2 = 20
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in which, 𝑟 = ‖𝒙1 − 𝒙2‖ is the Euclidean distance between spatial points 

(𝒙1,𝒙2) ∈ G with 𝑟 ≥ 0, and 𝜚2 is the marginal variance. Moreover, each 

of 𝑅𝑖𝑗  are individually parametrized by a vector of correlation lengths 

𝑙𝑐 ∈ R𝑑+. For simplicity, we adopt identical correlation lengths across 

all components of autocorrelation 𝑅𝑖𝑗 . Note that the standard Gaussian 

random variables 𝜉𝑘(𝜔) in Eq. (68) are generated using MATLAB’s built-

in randn function, which by default employs the ziggurat algorithm 

[40,41]. 

In this study, the mean 𝜃𝑖𝑗 (𝒙) is set to be spatially constant with a 

value of zero and the variance 𝜚2 = 1. Under the assumptions considered 

for constructing the MLMC estimator in Section 4.1, each matrix-valued 

random field 𝐶(𝒙, 𝜔) and the corresponding Gaussian fields 𝜃𝑖𝑗 (𝒙, 𝜔)
are modelled independently on each mesh level 𝑙. Whereas, for the 

definition of the difference terms 𝑌𝑙 and 𝑍𝑙 in Eqs. (30) and (41), the 

random field on the coarse mesh level 𝑙− 1 is obtained by directly map­

ping it from the fine level 𝑙 at the intersecting common spatial nodes. 

Furthermore, the Gaussian autocorrelation function in Eq. (69) is de­

fined with a correlation length of 3.5 cm in both 𝑥- and 𝑦-directions, 

across all four levels of meshes. The expansion, given in Eq. (68), is 

truncated to 𝑀 = 100 terms on all mesh levels, chosen based on the de­

cay of eigenvalues 𝜂𝑘 on fine mesh 𝐿, as illustrated in Fig. 3. For further 

optimality, one may also use level-dependent truncations, as discussed 

in [65].

The random anisotropy of the material at a fixed spatial location 𝒙 on 

the coarse mesh level 𝑙 = 0, modelled by the matrix-valued random field 

𝐶(⋅, 𝜔), is illustrated in Fig. 4. Here we demonstrate the characteristic 

Fig. 3. Decay of eigenvalues across all mesh levels.

Fig. 4. Visualization of random anisotropy 𝐶(⋅, 𝜔) on mesh 𝑙 = 0.

directional elastic parameters in the columns—namely, Young’s modu­

lus, shear modulus, and Poisson’s ratio—using the open-source software 

ELATE [17]. The first row of the figure presents the orthotropic elastic 

properties corresponding to the mean matrix E(𝐶(𝒙, 𝜔)), while the subse­

quent rows display triclinic characteristics of two individual realizations, 

𝐶(⋅, 𝜔1) and 𝐶(⋅, 𝜔2), where one may notice the variation in shape and 

size of all three parameters as compared to the mean. Additionally, we 

visualize the spatial variation of a single realization of the random field 

component 𝐶1,1(𝒙, ⋅) across all mesh levels in Fig. 5.

The objective of the study is to compute the MLMC mean 𝜇ML and 

variance ĥ
ML

2  estimates of the total displacement random field 𝑢(𝑡)ℎ𝐿 (𝒙, 𝜔). 
The procedure for implementation of the scale-invariant MLMC is sim­

ilar to that of the conventional MLMC method; the primary difference 

is in the usage of normalized error instead of absolute error; see [21] 

for the algorithm. In this study, we assume that the optimal finest level 

(here, 𝐿 = 3) is known i.e., the normalized squared discretization er­

rors, from Eqs. (33) and (46), are less than 𝜖̊2∕2. Therefore, the focus 

is only on satisfying the condition of normalized sampling errors; in 

other words, the objective is to ensure that the normalized sampling 

errors in Eqs. (33) and (46) are less than 𝜖̊2∕2. Furthermore, to avoid 

the interpolation error, the terms 𝑌𝑙 and 𝑍𝑙 in Eqs. (30) and (41) are cal­

culated only at finite element nodes that have the same common spatial 

coordinates between all four levels of meshes. This further means that 

the MLMC mean and variance estimates of the system response on the 

finest level 𝐿 are evaluated only at these common nodes.

6.2 . Screening test

An a priori performance analysis of MLMC mean and variance esti­

mators is conducted using the so-called screening test, in which a fixed 

number of 50 samples is considered over four levels of meshes. For the 

MLMC mean estimate, we assume—for simplicity—that the estimated 

normalizing function ĥ2
MC(𝑢(𝑡)ℎ0 ,𝑁0

) (from Eq. (33)) is spatially constant, 

i.e., 𝜆𝑚 = max(ĥ2
MC(𝑢(𝑡)ℎ0 ,𝑁0

)). With this, by considering a 𝐿∞ norm over 

the error bounds in Eq. (39) and the second relation in Eq. (37), one 

obtains: 

max |𝜇MC(𝑌𝑙)|
√

𝜆𝑚

≤ 𝑐𝛼ℎ
𝛼
𝑙 ,

max
(

ĥ2
MC(𝑌𝑙)

)

𝜆𝑚
≤ 𝑐𝛽ℎ

𝛽
𝑙 .

(70)

As to the MLMC variance estimate, similar to the assumptions made 

in the previous equations, one may consider 𝜆𝑣 = max(V̂MC
2 (𝑢(𝑡)ℎ0 ,𝑁0

)) as 

the normalization constant. Thereby, Eq. (50) and the second case in 

Eq. (48) are rewritten as 

max |𝑍𝑙|
√

𝜆𝑣

≤ 𝑐𝛼ℎ
𝛼
𝑙 ,

max
(

V̂MC
𝑙,2

)

𝜆𝑣
≤ 𝑐𝛽ℎ

𝛽
𝑙 .

(71)

Following this, Fig. 6 shows an overview of the corresponding re­

sults. Note that the normalization constants 𝜆𝑚 and 𝜆𝑣 for the screening 

test are also set by 50 initial samples; however, during the imple­

mentation of the MLMC method, the estimates of both constants are 

progressively updated as additional samples become available. The top 

left and right plots show the behaviour of the logarithm of ratios de­

fined in Eqs. (70) and (71). The deterministic decay of difference terms 

max |𝜇MC(𝑌𝑙)| and max(𝑍𝑙) can be seen. A stochastic convergence of the 

quantities max(ĥ2
MC(𝑌𝑙)) and max(V̂MC

𝑙,2 ) is also shown in the second plot. 

Interestingly, one may notice that both the convergences (deterministic 

and stochastic) pertaining to mean and variance estimates decay in a 
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Fig. 5. Visualization of spatial variation of a realization 𝐶1,1(𝒙, ⋅).

Fig. 6. Screening results of scale-invariant MLMC mean and variance estimators.

similar manner. On the other hand, in the top left plot, the quantities 

max(𝜇MC(𝑢(𝑡)ℎ𝑙 ,50)) and max(ĥ2
MC(𝑢(𝑡)ℎ𝑙 ,50)) stay approximately constant at all 

values of 𝑙. Similarly, on the right hand side, the entities max(ĥ2
MC(𝑢(𝑡)ℎ𝑙 ,50))

and max(V̂MC
2 (𝑢(𝑡)ℎ𝑙 ,50)) are also approximately constant for varying values 

of 𝑙—which meets the assumption for consideration of standardizing fac­

tors 𝜆𝑚 and 𝜆𝑣 on coarse mesh 𝑙 = 0 made in Sections (4.1) and (4.2). 

Furthermore, the logarithmic computational time of running one sample 

C𝑙 on each mesh level 𝑙 is shown at the bottom. The corresponding values 

are obtained by recording the timings for the 50 considered screening 

samples on a 2.3 GHz Intel Core i5 processor with 8GB of RAM and tak­

ing the average. As the results show, computing becomes more expensive 

as the mesh refinement increases.

Finally, the decay rates and constants corresponding to Eqs. (70) and 

(71), as well as the third equation in Eqs. (37) and (48) are evaluated by 

determining the slopes and y-intercepts of respective logarithmic quan­

tities in Fig. 6, which are further summarised in Table 3. Clearly, all 

the constants are positive, and the condition 𝛼 ≥ 1
2min(𝛽, 𝛾) is satisfied, 

verifying the assumption made in Propositions. 4.1 and 4.2. One may 

notice the decay rates 𝛼 and 𝛽 are closer, and equal values of order 𝛾, 
for both mean and variance estimators. The constant 𝑐𝛽  remains close, 

with equal 𝑐𝛾  and differing 𝑐𝛼 , for both estimates. As 𝛽 < 𝛾 for both 

mean and variance estimators, the computational complexity of MLMC 

estimates follows the third scenario in Eqs. (38) and (49), respectively. 

Moreover, in the considered example with a fixed number of mesh lev­

els, the total computing cost of both MLMC estimators is dependent on 
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Table 3 

Convergence results of MLMC mean and variance estimators.

Statistic 𝛼 𝛽 𝛾 𝑐𝛼 𝑐𝛽 𝑐𝛾

Mean 2.01 1.43
1.6

2.52 0.14
0.13

Variance 1.70 1.47 0.13 0.15

the stochastic convergence order 𝛽. As the order 𝛽 for variance estimate 

is slightly higher than that of the mean, for a given sampling accuracy 

𝜖̊2∕2, the estimation of MLMC variance is projected to be more expensive 

than the mean estimation.

6.3 . Performance analysis

Fig. 7 shows an overview of the performance of scale-invariant 

MLMC. The top plot shows the propagation of a maximum number of 

samples max(𝑁𝑙) on each level 𝑙 for both MLMC mean and variance 

estimators, corresponding to varying normalized sampling accuracies 

𝜖̊2∕2. One may observe that 𝑁𝑙 decreases monotonically with increasing 

𝑙 for both estimates. For all of the investigated accuracies, it is obvious 

that the variance estimate requires more samples than the mean esti­

mate. On the other hand, the maximum number of MC samples run on 

mesh level 𝑙 = 3, satisfying the given stochastic NMSEs, is tabulated in 

Table 4.

The bottom left plot compares the overall cost of MLMC and MC 

mean and variance estimation to given normalized sampling errors. 

Certainly, MLMC estimates have a faster convergence rate than the MC 

approach. Furthermore, the MC cost of mean and variance exhibits non-

asymptotic behaviour. However, the cost of MLMC estimates differs, 

with the variance estimate being relatively more expensive than the 

Table 4 

Number of MC samples on level 𝑙 = 3
with varying stochastic accuracies.

NMSE, 𝜖̊2∕2 Number of samples, 𝑁

6×10−4 1667

4×10−4 2500

2×10−4 5000

mean—as stated in Section 4.2. As scale-invariant error estimates are 

used in this investigation, it is possible to conclude that the cost of the 

MLMC mean and variance estimator is asymptotic.

The MLMC estimators for the mean and variance are observed to 

be approximately 6 and 4 times more efficient, respectively, than their 

standard MC counterparts across all levels of normalized sampling ac­

curacy. In other words, approximate cost savings of 83 % and 75 % are 

reported by the mean and variance of MLMC estimates, respectively, as 

compared to the MC costs. The bottom-right graphic also shows the scale 

invariance element of the MLMC convergence for an individual statistic 

in two distinct units (cm and m). Both the MLMC mean (in cm and m) 

and variance (in cm2 and m2) convergence remain unchanged.

Finally, the summary of the given and estimated maximum value 

of stochastic NMSEs of MLMC mean and variance estimators is listed 

in Table 5. It can be seen that the achieved maximum NMSEs of mean 

and variance are within the given limits of 𝜖̊2∕2. Furthermore, the max­

imum absolute sampling accuracies, a product of normalizing constant 

and maximum sampling NMSE, are also presented in the table. For a 

given NMSE value, the absolute MSE of variance is much smaller in 

magnitude as compared to the mean; however, both belong to different 

scales. This emphasizes the need for normalized error estimates to ensure 

easier interpretation of performance between the MLMC estimators.

Fig. 7. Performance of scale-invariant MLMC mean and variance estimators.
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Table 5 

Given and estimated sampling NMSEs and their corresponding 

absolute MSEs of MLMC mean and variance estimates.

Given NMSE, 𝜖̊2∕2 Estimated NMSE Estimated MSE (cm2)

(a) Mean

2×10−4 1.97×10−4 9.459×10−10

4×10−4 3.99×10−4 1.889×10−9

6×10−4 5.98×10−4 2.859×10−9

(b) Variance

Given NMSE, 𝜖̊2∕2 Estimated NMSE Estimated MSE (cm4)

2×10−4 1.98×10−4 9.387×10−15

4×10−4 3.89×10−4 1.856×10−14

6×10−4 5.83×10−4 2.789×10−14

Figs. 8 and 9 compare the mean and variance estimates of total dis­

placement (TD) of the femoral bone between MC and MLMC. For easier 

interpretation, MC and MLMC results are displayed on a single scale for 

both mean and variance estimates.

In general, the results are displayed for the normalized mean-squared 

accuracy of 2 × 10−4. Note that, as the displacement values are deter­

mined on the finest mesh 𝐿 = 3 at the common nodes corresponding 

to the coarse mesh 𝑙 = 0, the contour plots are mapped directly on 

this coarse mesh. In Fig. 8, a maximum mean value of approximately 

0.0462 cm can be seen in the region of the pressure load applied. Further, 

Fig. 9 shows the influence of material uncertainty on the displacement 

𝑢(𝑡)
ℎ𝐿 ,

{

𝑁𝑙
} due to the random material model 𝐶(𝒙, 𝜔). A maximum vari­

ance is also witnessed at the top region of the bone. Furthermore, the 

right-most plots in both figures clearly demonstrate that the absolute 

error between the MLMC and standard MC methods is minimal, thereby 

highlighting the high level of accuracy attained by the MLMC estimators.

7 . Conclusion

We present novel scale-invariant approaches for estimating the mean 

and variance of a quantity of interest (QoI) using the multilevel Monte 

Carlo (MLMC) method. These methods are based on the derivation of 

normalized mean square error (NMSE) estimates for the classical Monte 

Carlo (MC) mean and variance estimation. The proposed relative er­

rors are statistically defined using h-statistics, with chosen normalizing 

factors that are finite and unbiased. Unlike traditional normalization 

approaches that rely on the squared value of the estimator, which fail 

to achieve full scale-invariance, the proposed NMSEs are invariant un­

der any linear transformation (scaling and translation) of QoI, and 

remain robust to changes in its distributional characteristics. Such a stan­

dardized formulation reduces interpretational ambiguity and enables 

a dimensionless assessment of statistical accuracy and computational 

efficiency across different estimators and scales.

The proposed scale-invariant MC and MLMC methods are tested on a 

two-dimensional simulation of a human femur modelled as an uncertain 

linear elastic constitutive law. As bone tissue is a highly heterogeneous 

and anisotropic material, and that its precise elastic symmetry class 

is typically unknown or uncertain, the material’s elasticity tensor is 

modelled as a matrix-valued random field. This modelling framework 

captures both the spatial variability of material properties and random 

anisotropy by prescribing an elastic symmetry in the mean (e.g., or­

thotropic) and allowing for triclinic symmetry in individual realizations. 

The proposed methods then propagate these uncertainties to estimate 

statistics like the mean and variance of the stochastic total displacement 

field.

Through normalized error estimates, we compare the computational 

efficiencies of MLMC and MC estimators for both mean and variance. 

MLMC significantly outperforms MC in terms of computational cost for 

both estimates. However, the variance estimate in MLMC requires a 

Fig. 8. MLMC (left) and MC (middle) mean estimate of total displacement (with identical scale), along with absolute error on the right.

Fig. 9. MLMC (left) and MC (middle) variance estimate of total displacement (with identical scale), along with absolute error on the right.
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higher number of samples, making it more computationally expensive 

than the mean estimate. The complete normalization of sampling er­

ror reveals non-asymptotic behaviour in the MC cost between mean 

and variance, while MLMC costs exhibit an asymptotic relationship. 

Additionally, the difference in accuracy of mean and variance estimates 

between the MLMC and MC methods is found to be very small.
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Appendix A . h-statistics: unbiased estimation of central moments

The h-statistics, denoted by ĥ
MC

𝑝 , serves as an unbiased estimator of 

the central population moments 𝜇𝑝(𝑢ℎ) in Eq. (5) [14,51]. The ‘MC’ su­

perscript of ̂h𝑝 signifies that these statistics are obtained through random 

Monte Carlo-based sampling. For example, the first two h-statistics can 

be defined as 

𝜇1 ≈ ĥ1
MC = 0,

𝜇2 ≈ ĥ2
MC =

𝑁𝑠2 − 𝑠21
𝑁(𝑁 − 1)

,
(72)

in which 𝑠1 and 𝑠2 are the power sums, given as 

𝑠𝑎(𝑢ℎ) ∶=
𝑁
∑

𝑘=1
𝑢ℎ(𝑥, 𝜔𝑘)

𝑎, (73)

for 𝑎 ∈ Z≥0. Using the power series representation of h-statistics, the au­

thors in [51] developed a Mathematica-based package called mathStatica, 

which efficiently generates h-statistics for any value of 𝑝.
What distinguishes h-statistics from other unbiased estimators are its 

properties, such as [25]:

1. Unbiasedness: The expectation of the h-statistic equals the corre­

sponding population central moment, i.e., E(ĥ
MC

𝑝 ) = 𝜇𝑝.

2. Symmetry: Among all unbiased estimators of 𝜇𝑝, ĥ
MC

𝑝  is the only 

one that exhibits symmetry.2

3. Minimum variance: Out of all unbiased estimators of 𝜇𝑝, ĥ
MC

𝑝

stands out for its minimal variance, denoted as Var(ĥ
MC

𝑝 ).

2 A function or an estimate is considered symmetric when it is not influenced 

by the order in which observations are considered.

Appendix B . Unbiased estimation of 𝝁𝟒 and 𝝁𝟐
𝟐

The unbiased approximation of the fourth central moment 𝜇4(𝑢ℎ) is 
computed by the fourth h-statistic [14]:

𝜇4(𝑢ℎ) ≈ hMC
4 (𝑢ℎ) ∶=

1
𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

(

− 3𝑠41 + 6𝑁𝑠21𝑠2

+ (9 − 6 𝑁)𝑠22 + (−4 𝑁2 + 8 𝑁 − 12)𝑠1𝑠3

+ (𝑁3 − 2 𝑁2 + 3 𝑁)𝑠4

)

, (74)

whereas the unbiased estimator of 𝜇2(𝑢ℎ)
2 is the polyache hMC

{2,2} accord­

ing to [51,66], given as

𝜇2(𝑢ℎ)
2 ≈ hMC

{2,2}(𝑢ℎ) ∶=
1

𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)

(

𝑠41 − 2𝑁𝑠21𝑠2

+ (𝑁2 − 3 𝑁 + 3)𝑠22 + (4 𝑁 − 4)𝑠1𝑠3 + (−𝑁2 +𝑁)𝑠4

)

.

(75)

It is to be noted that the estimator of 𝜇22  by the square of the second 

h-statistic, i.e., (ĥ
MC

2 )
2
, leads to a biased estimate, whereas only the 

polyache hMC
{2,2}, which is unbiased, remains the preferred way.

Appendix C . Variance of normalizing factor 𝝀𝒗 ∶= V̂MC
𝟐 (𝒖𝒉)

One may define the variance of the normalizing factor 𝜆𝑣 ∶= V̂MC
2 (𝑢ℎ)

using the statistical package mathStatica [51] as

Var(V̂MC
2 (𝑢ℎ)) =

72𝜇42
(

𝑁2 − 6 𝑁 + 12
)

(𝑁 − 3)(𝑁 − 2)(𝑁 − 1)𝑁
+

16𝜇23𝜇2
(

𝑁2 − 4 𝑁 + 13
)

(𝑁 − 2)(𝑁 − 1)𝑁

−
24𝜇4𝜇22(4 𝑁 − 11)
(𝑁 − 2)(𝑁 − 1)𝑁

+
16𝜇6𝜇2

(𝑁 − 1)𝑁
+
𝜇8
𝑁

−
8𝜇3𝜇5
𝑁

−
𝜇24(𝑁 − 17)
(𝑁 − 1)𝑁

. (76)

Here, the 𝑝-th central moment is denoted by 𝜇𝑝 ≡ 𝜇𝑝(𝑢ℎ). For brevity, 

the previous expression is rewritten as 

Var(V̂MC
2 (𝑢ℎ)) =

2
𝑁
, (77)

where,

2 =
72𝜇42

(

𝑁2 − 6 𝑁 + 12
)

(𝑁 − 3)(𝑁 − 2)(𝑁 − 1)
+

16𝜇23𝜇2
(

𝑁2 − 4 𝑁 + 13
)

(𝑁 − 2)(𝑁 − 1)

−
24𝜇4𝜇22(4 𝑁 − 11)
(𝑁 − 2)(𝑁 − 1)

+
16𝜇6𝜇2
𝑁 − 1

+ 𝜇8 − 8𝜇3𝜇5 −
𝜇24(𝑁 − 17)
𝑁 − 1

. (78)

Eq. (77) indicates that the statistical error of the estimator V̂MC
2 (𝑢ℎ)

converges at a rate of O(𝑁−1).

Appendix D . Unbiased estimation of V𝒍,𝟐

Following the notion of power sum 𝑠𝑎 defined in Appendix A, here 

we introduce the bivariate power sum [35,51] 

𝑠𝑎,𝑏 ∶=
𝑁
∑

𝑖=1
𝑋+
ℎ𝑙
(𝜔𝑖)

𝑎𝑋−
ℎ𝑙
(𝜔𝑖)

𝑏, (79)

where 𝑋+
ℎ𝑙
(𝜔𝑖)𝑖=1,…,𝑁𝑙 ∶= 𝑋+

ℎ𝑙 ,𝑁𝑙
= 𝑢ℎ𝑙 ,𝑁𝑙 + 𝑢ℎ𝑙−1 ,𝑁𝑙  and 𝑋−

ℎ𝑙
(𝜔𝑖)𝑖=1,…,𝑁𝑙 ∶=

𝑋−
ℎ𝑙 ,𝑁𝑙

= 𝑢ℎ𝑙 ,𝑁𝑙 − 𝑢ℎ𝑙−1 ,𝑁𝑙 . Subsequently, the unbiased MC estimation of 
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the quantity V𝑙,2 reads: 

V̂MC
𝑙,2 = 1

(𝑁𝑙 − 3)(𝑁𝑙 − 2)(𝑁𝑙 − 1)2𝑁𝑙

(

𝑁𝑙
(

(−𝑁2
𝑙 +𝑁𝑙 + 2)(𝑠1,1)

2

+(𝑁𝑙 − 1)2(𝑁𝑙𝑠2,2 − 2𝑠1,0𝑠1,2) + (𝑁𝑙 − 1)𝑠0,2((𝑠1,0)
2 − 𝑠2,0)

)

+(𝑠0,1)
2((6 − 4𝑁𝑙)(𝑠1,0)

2 + (𝑁𝑙 − 1)𝑁𝑙𝑠2,0
)

−2𝑁𝑙𝑠0,1
(

(𝑁𝑙 − 1)2𝑠2,1 + (5 − 3𝑁𝑙)𝑠1,0𝑠1,1
)

)

.

(80)

Data availability

Data will be made available on request.
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