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Abstract—This paper investigates flexibility aggregation ap-
proaches based on linear models. We begin by examining the
theoretical foundations of linear AC power flow, two variants
of so-called DC power flow, and the LinDistFlow model, along
with their underlying assumptions. The discussion covers key
system details, including network topology, voltage constraints,
and line losses. Simulations are conducted on the KIT Campus
Nord network with real demand and solar data. Results show
that, in the absence of negative losses, line losses are generally
underestimated by linear models. Furthermore, line losses errors
tend to accumulate both at the point of common coupling (PCC)
and over extended time horizons.

Index Terms—lexibilitylexibilityf aggregation, distributed en-
ergy resource, linearization, TSO-DSO coordination

I. INTRODUCTION

In recent decades, the integration of distributed energy re-
sources (DERs) into power systems has grown rapidly, with
most of these resources being decentralized and connected
to distribution networks. This shift requires closer TSO-DSO
collaboration to ensure efficient and secure DERs’ mange-
ment [1], [2]. While a centralized management approach could,
in theory, optimize the entire power system, it is impractical
due to computational limits, privacy concerns, and high com-
munication demands [3], [4], [5].

As an alternative, flexibility aggregation provides a non-
iterative distributed coordination framework: each DSO inde-
pendently determines its implicit feasible set of net power
exchange with the TSO, within which safe operation of the
distribution system can be ensured [6]. However, accurately
characterizing this feasible set is challenging because of the
nonlinearity in AC power systems, making the dispatch prob-
lem NP-hard even for radial networks [7].

Several linear models have been developed to simplify
the power flow problem. Among them, the DC power flow
model [8] is one of the most widely used. However, this model
is lossless and primarily designed for transmission systems,
where voltage and angle differences are minor, and branch
reactances dominate over resistances; these assumptions are
typically not valid in distribution networks. Another lossless
approach is the LinDistFlow model, a simplification of the Dis-
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tFlow model that neglects power losses [9]. LinDistFlow is for-
mulated explicitly for radial distribution networks, reflecting
their typical topological characteristics. To incorporate power
losses into linear models, two main approaches are typically
used: either the power losses themselves are linearized, or the
full AC power flow equations are linearized directly. For the
former, the enhanced DC model is proposed [10]." This model
adopts the common assumptions of small voltage magnitude
and angle differences to eliminate trigonometric functions,
and power losses are explicitly linearized. By contrast, the
linearized AC power flow model is derived without relying on
such assumptions. Instead, once a power flow solution is ob-
tained, the system Jacobian is used to capture the relationship
between system variables and demand [11].

Leveraging the convexity of the linear models, different
flexibility aggregation methods have been introduced to ag-
gregate flexibility. These include outer approximations [12],
inner approximations [13], [14], [15], boundary detection tech-
niques [6], [16], data-driven approaches [17], and projection-
based methods such as Fourier-Motzkin elimination [18].
Building on this, [19] employs a temporal decomposition
strategy, allowing the feasible region at each time step to be
computed independently and in parallel.

However, both the omission of line losses and the use of lin-
earized models can lead to significant inaccuracies in flexibil-
ity aggregation. As shown in [9], [20], flexibility derived from
the LinDistFlow model often deviates from results based on
the exact AC model. Additionally, linearization of losses may
even result in physically unrealistic outcomes, such as negative
losses. To mitigate this, [10] proposes adding a penalty term to
the objective function. However, such techniques are difficult
to incorporate into flexibility aggregation frameworks.

The approach in [20] aggregates flexibility at a specific time
point. We build on these results to reveal the impact of system
losses on the multiperiod scheduling problem. To this end, we
first provide a comprehensive review of linear models used for
flexibility aggregation. A real distribution network is then used
to evaluate different models for flexibility aggregation and

'The model introduced in [10] is referred to as the linearized optimal power
flow model. To distinguish it from other linear models discussed in this paper,
we refer to it as the enhanced DC power flow model.
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solve the corresponding scheduling problem. Our results show
that, in open-loop scheduling scenarios, underestimated power
losses accumulate over time. This leads to over-discharging of
the energy storage systems (ESS), highlighting the importance
of incorporating real-time feedback or correction mechanisms
into the scheduling process.

II. AC POWER FLOW MODELS

This section presents two variants of AC power flow equa-
tions for power systems, both derived from the complex power
flow formulation.

A. Preliminaries

A power system can be represented as a graph S = (N, £),
where A denotes the set of buses and £ the set of branches.
The subsets £/ and £ correspond to the from-side and to-side
branches, respectively.

The AC power flow equations describe the fundamental re-
lationships among key quantities in the power system, namely
current I, voltage V, admittance Y, and power S. Three
fundamental electrical principles underpin these equations.
First, Kirchhoff’s Current Law (KCL) states that the sum of
currents flowing into and out of a bus must be balanced.
Mathematically, this is expressed as

I; = Z L,

(1,7)€L

Vie N (1)

where I; denotes the current injection from devices, including
load and generator, at bus 7, and I;; is the current along branch
(i,7). Second, Ohm’s Law relates the current along a branch
to the voltage difference between its terminals:

Li; =Y (Vi = Vj), V(i,j)e L (2

with Y;; being the admittance of the branch between buses 4
and j. For more on the admittance matrix Y, see [21, Sec. 4].
Third, the definition of AC power specifies the complex power
flow

Sij = Vil

177

V(i,j) e L 3)
where V; is the voltage at bus ¢ and I is the complex
conjugate of the branch current.

By combining these properties, we obtain the standard AC
power flow model. The power balance at each bus ¢ is

S; = Z Sij, Vie N (4a)
(i,5)€L
and the power flow along branch (4, j) is
Siy = YViVii = Yi5Vivy, V(i,j) € L, (4b)

Collectively, these nonlinear equations (4) form the foundation
for many power system applications, governing nodal power
balance and power flows across the network.

B. AC Power Flow Equations in Polar Coordinates
When voltages are represented in polar coordinates,
VieN, (5)

0
‘/;l = UieJ ‘

the AC power flow equations (4) can be reformulated in terms
of these polar coordinates:

Pi = ; Z Vj (gij CcOs Gij + bij sin eij) , Vie N, (6a)
JEN

q; = V; Z vy (gij sin 0ij — bij (o)) 01]) y Vi € N, (6b)
JEN

where v; and 6; are the magnitude and angle of the complex
voltage V;, g;; and b;; are the real and imaginary parts of the
admittance matrix Yj;, and 6;; = 0; — 0; is the phase angle
difference between buses ¢ and j. Note that the power flow
balance

(7a)
(7b)

Pij = 07 gij — vivj (gij cos bij + bij sin ;) ,
Qij = —U?bij — Uﬂ)j (gij sin Qij — bij COS 92]) 5

for all branches V(i,j) € L are implicitlty included in the
nodal balance equations (6).

C. DistFlow Model

For radial distribution systems, the DistFlow model [22],
[23] is frequently used. Let z;; = 7;; + jx;; be the complex
impedance on the line. Then Ohm’s law (2) and complex
power flow (3) can be rewritten as

*

Vi=V;+ zjv—ﬂ V(i,j) € L7 (8a)
and the complex nodal balance (4a) becomes
Si = ZS” — Z (S” — Zij ‘Iij|2)> Vie N (8b)

(i.4)eLs  (ig)eLlt

By the magnitude squared of (8a), and the decomposition of
the complex nodal balance (8b) into real and imaginary parts,
we can obtain the DistFlow equations:

pi = ZP"J'* Z(Pij*””ijgij), Vi €N (9a)
(i,5)eLs (i,j)€Lt

G= Y Qu— > (Qi—wily), VjieN (9b)
(i.g)ect (i.j)ELt

w; = uj +2(rij Py 4 2i;Qi5)
= (rfj + a3y, V(i.5) € L5 (9¢)
P%+ Q3
lij = Lit @y V(i j) € L7 (9d)
u;
with squared magnitudes of the current £;; = |I;;|* and the
voltage u; = |V;|°.

The DistFlow model (9) is derived by eliminating explicit
angle information, and thus serves as an angle-relaxed version
of the optimal sizing of capacitors power flow model (4). This
angle relaxation is exact when the network is radial.

Corollary 1 (Theorem 4 [24]). When G is a tree, the DistFlow



model (9) is equivalent to the complex power flow model (4).

This result confirms that, under radial topology, both mod-
els (6) (9) describe the same set of feasible operating points
for the power system.

III. AGGREGATION USING LINEAR MODELS

This section provides a brief overview of four linear
models used for flexibility aggregation, all derived from the
nonlinear AC power flow models discussed above. We also
briefly describe the methodology for flexibility aggregation. A
summary of these linear models is presented in Table I.

A. LinDistFlow

For radial distribution systems, one may start from the
DistFlow (9) and drop the quadratic losses terms r;;¢;; and
x45¢;;, obtaining

pi=>Y Pj— Y Py VieN  (10a)
(i,5)eLs (i,7)€Lt

=Y Qu— Y Qi VieN  (10b)
(i,4)eLs (1,7)€Lt

U; = Uj + 2(7"1‘]‘]37;]‘ =+ IIJQ,J) V(Z,]) S [:f (10c¢)

Because (10) ignores those quadratic loss terms, it is most
accurate when system losses are modest, but it can under-
estimate voltages when DER output is high. In flexibility
aggregation, ignoring losses means that errors may accumulate
at the PCC [20].

B. Classic DC power flow

The classic DC power flow model arises from the AC power
flow equations (6) under certain simplifying assumptions: line
resistances 7;; are negligible, voltage magnitudes are close to
unity, and angle differences are small. That is,

V(i,5) e L
Vie N

Sinéij ~ 0157 COs Qij ~ ]., (lla)

(11b)

U,L"r?".»l,

Under these approximations, the AC power flow equations (6)
can be reduced to:

D = Z Py Vie N (12a)
(i,5)€L
Pij = b;;0;5 Y(i,5) € L (12b)

Reactive injections and voltage magnitudes are ignored,
yielding a lossless, active-power-only model. This approach is
accurate in high-voltage transmission systems, but less suitable
for low-voltage distribution systems with significant R/X
ratios.

C. Enhanced DC Power Flow

To increase the fidelity of the DC power flow model,
[10] proposed enhancements that consider line losses, voltage
differences, and reactive power. They improve the standard

approximations (11) as follows:

62
sinf;; ~ 0,5, cosb;; ~1— %, Y(i,7) € L (13a)
v;bi5 ~ 05,0005, ~ 0, Vie N (13b)
This yields an enhanced version of the DC power flow:
pi= > Py a= >, 6 Q Vie N (14a)
(i,j)eL (1,5)€L
- (u12 _uf) b0 losses . g
Pij = +9ij———— ~ bijij + P, V(i j) € £ (14b)
_ b (UZQ B ?) 9 losses .. E 4
Gij =~ bij—— = 9ij0i; + Q5. V(i,j) € L (14c)
with the squared voltage magnitudes u; = |Vi|2 and w;; =
(|Vi] = |V;1)?, where the nonlinear losses term
osses Uij + bij  losses Uij + Oi
P = gi =55, Qi = —by———+  (150)

2

are approximated linearly based on an operation point; see [10,
Appendix A] for details about linear approxiamtion. However,
these linear models may yield negative losses under certain
conditions [25].

D. Linear Approximation of AC Power Flow

Let z = {v;,0;,pi,q; bien collect voltage magnitude and
angle, and active and reactive power injections at all buses.
Let F'(x) denote the nonlinear AC power flow equations (6).
The linearized AC power flow model is given by the first-order
Taylor expansion of F'(-) at a nominal operating point xg:

OF
— Az =0.
9 rx=0
oF

with Az = 2 — xo. The inverse Jacobian [$-]~! is readily
available from the Newton—Raphson power-flow solver and
yields high-fidelity voltage sensitivities as long as operating
conditions remain within the linear neighbourhood of zg.
Far from that point, however, the approximation may violate

voltage limits or lead to the negative losses [25].

(16)

E. Flexibility Aggregation with Linearized Models

The dispatch problem for a distribution system can be
expressed as the following optimization:

min - f(z) +g(y) (17a)
st. Az+By—c=0 (17b)
(z, y) € X x Y (17¢)

With close sets
X={z|z<2x<T}, and Y ={z | y <y <7}

where x represents the coupling variables, such as the net
power exchange at the PCC, while y contains all other
variables local to the distribution system. Constraint (17b)
enforces the power flow constraints, and (17c) captures the
operational limits. Together, they define a polyhedral feasible
set.



Table I: Linear Models for Flexibility Aggregation

Model Detail

Simulation Results

Topology  Voltage Magnitude  Voltage Angle  Reactive Power  Line Loss ‘ Negative Loss ~ Optimality
LinDistFlow radial squared standard - - +
Classic DC PF meshed standard - - - - +
Enhanced DC PF meshed squared standard standard linearized NaN ++
Linearized AC PF meshed standard standard standard linearized NaN +++

Flexibility aggregation focuses on characterizing the im-
plicit set of coupling variables = for which there exists a
feasible y that satisfies all constraints (17b) (17c). This defines
the implicit feasible region,

X =y cX | Ar+By—c=0, yc )}
Then, the optimization problem can be reformulated as
min - f(z) + g(9)
st x € X

(18a)
(18b)

This approach allows flexibility to be aggregated and described
as an implicit feasible set with respect to the coupling vari-
ables, greatly simplifying coordination with the transmission
system.

IV. SIMULATION

This section compares scheduling results obtained using ag-
gregated flexibility models based on linear power flow ap-
proximations. In the simulation, the active power at the PCC
and the total SOC of all ESSs serve as the coupling variables
z, and y indicate the rest state variables. The linear models
used for aggregation include LinDistFlow (10), classic DC
power flow (12), enhanced DC power flow (14), and linearized
AC power flow (16), all of which are reformulated into the
compact structure shown in (17). We apply the flexibility
aggregation method introduced in [20] to obtain a set of
simplified linear constraints that represent the coupling at the
PCC. Scheduling results solved under these coupling con-
straints are compared to the full AC power flow model ((6)),
which serves as the benchmark. The simulation follows a day-
ahead scheduling framework, where DSOs plan multiperiod
dispatches based on forecast data for the upcoming day.

A. Setting

We use a real distribution network from the North Campus
of the Karlsruhe Institute of Technology (KIT) as the test
case. The network operates in a radial topology and includes
40 buses. A PV system is installed at bus 33. To evaluate
the impact of flexibility on scheduling, we add three ESSs
at buses 13, 26, and 39. Each battery is sized to charge
or discharge fully in two hours at maximum power. For
simplicity in scheduling, the initial and final state of charge
(SOC) is set to 50%, and the (dis-) /charging efficiency is
assumed to be 100%, maintaining the linearity of the model.
The scheduling tests use historical load data with hourly
resolution, covering both demand and PV generation. For Day-
Ahead scheduling, we use representative medium prosumption
profiles on workdays as the forecast, shown in Figure 1.

Specifically, both the enhanced DC model and the lineariza-
tion of the AC power flow model require a predefined base
point. To obtain this, the average prosumption over the entire
year is used as input to the AC power flow problem, whose
solution is then used for linearization.
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Figure 1: Temporal Profiles of prosumption for a Typical Day

B. Day-Ahead Scheduling

In the Day-Ahead stage, scheduling is carried out based on
the given predicted prosumption. The objective function is to
minimize the quadratic total system cost. As a benchmark, we
first solve the scheduling problem using the full AC power
flow model. Next, we apply the flexibility aggregation method
to different linear models, based on the provided prosumption
at each time step, the feasible flexibility is aggregated as a
power-energy envelope at the PCC and used as constraints in
the scheduling process.

Once the scheduling problem leveraging aggregated flexibil-
ity is solved, the practical coordination between transmission
and distribution networks is considered. This coordination
requires the transmission system to deliver the power requested
by the DSO, assuming a fixed injection at the PCC. As a
result, a post-verification step is necessary to ensure that the
scheduled power injection B is feasible for the distribution
network. To perform this check, we substitute the scheduled
P, into the exact AC power flow model and analyze the
resulting SOC over time.

Figure 2a shows the scheduled power exchanged at the PCC,
based on aggregated flexibility models, which represents the
power requested by the DSO and delivered by the TSO. The
Figure 2b illustrates the resulting SOC after substituting the
scheduled P, values into the exact AC power flow model for
verification.

Compared to the reference trajectory obtained from the ex-
act AC power flow model, the linear models demonstrate sim-
ilar scheduling behaviors. However, the DC and LinDistFlow
models, which neglect power losses, consistently schedule
lower B, values than the reference. As a result, the total en-
ergy consumption (including system losses) is underestimated.
This leads to an over-discharge of the ESS after 12:00 a.m.,
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Figure 2: Day-Ahead Scheduling with Post-AC-Verification

causing its SOC to drop below zero and fail to reach the target
final value of 50%. This discrepancy is confirmed through
the models’ inherent problem, which neglects system losses,
resulting in cumulative errors within the ESS. Linear models
that include linearized losses perform slightly better, but still
encounter similar challenges. These arise from the fact that
linearized losses cannot accurately capture variations across
periods. Moreover, their accuracy is sensitive to the choice of
the linearization base point. Note that negative losses did not
occur in our simulation. Overall, the performance of different
linear models is listed in the right part of Table I.

V. CONCLUSION & OUTLOOK

The present paper evaluates the use of various linear power
flow models for flexibility aggregation and scheduling of
ESSs in distribution networks. Simulation results show that
inaccurate modeling of losses can lead to infeasible schedul-
ing outcomes, particularly for energy storage systems, where
underestimation of consumption may result in over-discharge.
Using linear line-loss accounting models, such as the enhanced
DC and linearized AC power flow, their performance still
results in over-discharging, which is attributed to the differ-
ences between varying demand and the fixed demand for
linearization. Future work will explore real-time correction
strategies, such as receding horizon control, to compensate
for the accumulated losses within the ESSs.
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