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ABSTRACT ARTICLE HISTORY

As Artificial Intelligence (Al) technologies increasingly shape the field of Received 28 August 2025
engineering, ethical considerations are becoming essential for fostering Accepted 17 January 2026
responsible innovation. However, a validated instrument to assess
gttitgdes t_ovyard Responsible.AI, specifically in the engineering domain, Responsible Al; Al ethics;

is still missing to date. This study presents the development and engineering ethics; attitudes;
validation of the Responsible Al Attitudes Specific to Engineering scale development

(RAISE) scale. After refining the item pool of a validated test instrument

with expert input from the engineering domain, we conducted

confirmatory factor analysis on data from 235 engineering students and

professionals in Germany. The resulting 15-item scale measures

engineers’ self-reported attitudes along three core Responsible Al

dimensions: do-no-harm, transparency, and privacy. It demonstrates

acceptable model fit, internal consistency, and measurement invariance

across demographic groups. The RAISE scale can serve as a diagnostic

and evaluative tool in engineering education and training programmes,

helping to inform and assess efforts to foster Responsible Al engagement.
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p p-value

RAISE Responsible Al Attitudes Specific to Engineering

RMSEA Root Mean Square Error of Approximation

RWTH Rheinisch-Westfalische = Technische Hochschule (Rhenish-Westphalian  Technical
University)

SD Standard Deviation

SRMR Standardised Root Mean Squared Residual

t t-value (t-test)

W Test Statistic (Wilcoxon Test)

P Correlation Coefficient

1. Introduction

The increasing integration of Artificial Intelligence (Al)-based systems' is accelerating the digital
transformation of the engineering domain. The capacity to model complex and nonlinear processes,
perform data-driven predictions without prior assumptions, and analyze vast datasets has garnered
significant attention from engineering researchers and practitioners (Baghbani et al. 2022). Not least,
the widespread use of generative Al has led to the integration of Al into our everyday lives and, con-
sequently, into the engineering workplace. For instance, in Civil Engineering, Al supports structural
design, construction management, and infrastructure maintenance (Bao and Li 2019; Demertzis,
Demertzis, and lliadis 2023; Liu et al. 2024), eventually leading to more cost-effective project
execution (Nithyakarpagam and Mathiraj 2025). In the energy sector, Al enables smart grids and sus-
tainable real-time energy management (Sureshraj et al. 2023). Across domains, Al supports complex
decision-making and system optimisation (YUksel et al. 2023) and enhances collaborative workflows
(Gyory et al. 2022). Accessible toolkits and generative Al technologies have lowered the threshold for
creating customised software solutions, even for those with limited programming skills (Schmidt
2023). Consequently, engineers are likely to be or become users and, increasingly, also designers
of Al systems.

Alongside these numerous benefits, the deployment of Al systems in engineering is not without
risks for companies (i.e. in terms of public reputation and trust), society (i.e. in terms of harms), and
practitioners (i.e. in terms of deskilling). The opacity of many predictive Al systems makes it
difficult to understand, explain, or contest Al-driven decisions (Burrell 2016), and uncertainty in
risk assessment challenges their responsible use (Metcalf et al. 2021). As a consequence, unreprodu-
cible errors raise questions of accountability (Santoni de Sio and Mecacci 2021), which are particu-
larly pressing due to a certain degree of autonomy and scalability. Moreover, an increasing over-
reliance on Al systems can diminish human oversight in critical contexts (Holzinger, Zatloukal, and
Maller 2025), and particularly overreliance on generative Al systems may impact cognitive abilities,
with individuals favouring fast Al-generated solutions over more deliberate reasoning (Zhai,
Wibowo, and Li 2024).

To tackle these challenges, the field of Responsible Al discusses legal and technical, but primarily
ethical considerations? throughout the Al lifecycle (Dignum 2020). These ethical considerations have
given rise to a new interdisciplinary research field centred on developing technical means to
implement principles such as fairness, transparency, and privacy in Al systems. The critique of
these techno-solutionist approaches (Barocas and Selbst 2016; Sloane and Moss 2019) for being
too narrow and ‘oversimpliflying] the philosophical field of ethics’ while ‘gloriflying it] as a desig-
nated source of truth about what is right’ (McFadden and Alvarez 2024, 786) recently led to an emer-
ging third wave of Al ethics (Bolte and van Wynsberghe 2025; HduBermann and Liitge 2022; Huang
et al. 2022; Kind 2020; Wegner, Decker, and Leicht-Scholten 2024). The research in this emerging
third wave highlights structural, organisational, and systemic factors, suggesting that ethical Al prac-
tice must encompass more than technical solutions. In this sense, the conversation shifts from creat-
ing ethical Al to using Al ethically. While this shift was initially driven primarily by experiences with
predictive and decision-making systems, it has gained renewed urgency with the rapid diffusion



EUROPEAN JOURNAL OF ENGINEERING EDUCATION e 3

of generative Al, which introduces distinct yet related ethical challenges concerning data privacy and
consent, stereotyping, and deskilling (Johri, Lindsay, and Qadir 2023). This shift underscores the need
for a workforce equipped not only with technical expertise but also with the capacity for moral
reflection and responsible decision-making in the development and deployment of Al systems.

Regulatory frameworks like the EU Al Act (Article 4) explicitly mandate Al literacy in companies. In
parallel, educational standards like the CDIO Syllabus 3.0 (Malmquvist et al. 2022) and ABET curricula
(ABET 2024), as well as professional guidelines such as those issued by the Association of German
Engineers (VDI Verein Deutscher Ingenieure e.V. 2021) emphasise the importance of ethical Al.
While ethics education is already well-established within engineering curricula (Martin, Conlon,
and Bowe 2021), dedicated training in Al-specific ethics remains in its infancy (Decker et al. 2024;
Moreno, Decker, and Leicht-Scholten 2024). However, the demand for such competencies extends
beyond formal university education. As Al technologies increasingly reshape engineering practice,
continuous professional development (i.e. lifelong learning and vocational training) becomes essen-
tial to ensure that not only students, but also practicing professionals, remain equipped to design
and use Al responsibly. Current efforts to update curricula must therefore address both academic
education and professional training, ensuring continuous skill development across career stages.

One’s attitudes correlate with a predisposition for moral behaviour and are integral to moral
decision-making. Attitudes encompass traits such as an individual’'s mindset, motivation, and adap-
tability (Allport 1935). Positive attitudes guide the motivation to engage with challenges (White
1959) and influence one’s self-efficacy (Bandura 1997). Therefore, they can significantly affect
one’s capacity to apply knowledge and skills responsibly through expectations and interpretative
frameworks as well as their effectiveness (Katz 1960; Schwarz 2007; Weinert 2001). As Knoth et al.
(2024, 5) note, ‘competent behaviours may not be performed if the necessary skills are present,
but personal attitudes counteract performance.’ In the context of Responsible Al, attitudes
emerge as a necessary prerequisite for moral deliberation and moral behaviour (Walker 2012).
They can take on many facets, for example, judging the relative importance of ethical principles
such as fairness, transparency, privacy (Ghotbi, Ho, and Mantello 2022; Kieslich, Keller, and Starke
2022). They particularly influence one’s adaptability and problem-solving skills, which are prerequi-
sites for engaging with ethical questions and moral dilemmas (Ajzen 1985, 1991). Therefore, foster-
ing ethical attitudes alongside technical expertise is fundamental to ensuring that engineers are not
only aware of ethical principles but also committed to applying them in practice.

To facilitate targeted training and education, a better understanding of learners’ attitudes is
required — both in higher education and in professional contexts. Without reliable tools, it is
difficult to assess the impact of interventions or monitor progress over time. Therefore, robust assess-
ment frameworks are not only necessary for quality assurance in education but also play a key role in
promoting Responsible Al practices in engineering disciplines. Yet, while some tools measure
general attitudes toward Al (Grassini 2023; Schepman and Rodway 2020; Sindermann et al. 2021),
these are not tailored to ethical dimensions. Similarly, existing instruments for moral reasoning in
engineering (Howland et al. 2024; Zhu et al. 2014) lack specificity for Al ethics. Also, measures for
assessing attitudes toward Al ethics (Jang, Choi, and Kim 2022) remain too generic for engineer-
ing-specific applications.

Knoth et al. (2024) highlight the importance of developing domain-specific Al literacy assessments
to complement existing generic instruments. While generic Al literacy captures basic knowledge and
skills relevant across contexts, it does not sufficiently address the specific applications, data types,
and ethical challenges encountered in professional domains such as engineering. The authors
argue that domain-specific Al literacy is essential for understanding how Al can be effectively and
responsibly applied within a given field, taking into account domain-related expertise, practices,
and regulatory requirements. In engineering, for example, the use cases, data characteristics, and
potential societal impacts of Al differ significantly from other sectors, therefore necessitating tailored
assessment approaches. The framework proposed by Knoth et al. (2024) distinguishes between
generic Al literacy, domain-specific Al literacy, and Al ethics literacy, each measured along cognitive,
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behavioural, and attitudinal dimensions. This structure enables the development of instruments that
more accurately reflect the competencies engineers require when working with Al in their specific
professional environments.

Thus, while Responsible Al is a growing field in engineering, there is currently no domain-specific,
validated instrument designed to assess engineers’ attitudes toward Responsible Al. This study aims
to address this gap by developing and validating the RAISE scale to assess Responsible Al Attitudes
Specific to the Engineering domain, while ensuring applicability across demographic groups (e.g.
gender, engineering field, employment status). Additionally, we explore whether knowledge
serves as a predictor for these attitudes, offering insights into how educational and vocational train-
ing programmes might be effectively structured to promote Responsible Al attitudes and use across
both academic and professional settings.

2. Methods and materials

Our item and scale development process followed a three-phase framework, including (1) item
development, (2) content and face validation, and (3) construct validation through confirmatory
factor analysis. An overview of the method steps is given in Figure 1. The number of items in
each phase is depicted in Table 1 below. The following subsections describe this process, the demo-
graphics of our sample, and the descriptive and inferential analyses conducted.

Phase 1

Iltem Development

Ph 2 — :
ase Content Validation using Expert

Validation Round (EVR) 1
v
Content Validation using Expert

Validation Round (EVR) 2
v
Face Validation with target

population

Phase 3 ; : ;
Construct Validation using

Confirmatory Factor Analysis

Figure 1. Development and validation steps in the RAISE scale development.

2.1. Item development

To develop the items, we used a mixed deductive-inductive approach, as proposed by Boateng et al.
(2018). Deductively, we started with Jang, Choi, and Kim’s (2022) validated scale for assessing stu-
dents’ attitudes toward ethical Al. In their study, they derive five core ethical Al dimensions,
namely fairness, transparency, non-maleficence, privacy, and responsibility, based on Al ethics guide-
lines and literature reviews. Although recent advances in generative Al have intensified public and
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academic debates about ethical Al since late 2022, the underlying normative dimensions of common
principles have remained remarkably stable. What has evolved are the manifestations, risk constella-
tions, and application contexts of these ethical principles, rather than the principles themselves. For
instance, issues of stereotyping are discussed in the context of fairness (Xiang 2024), and deepfakes
and data ownership in the context of privacy (Lee et al. 2024; Lovato et al. 2024). Transparency will be
critical in addressing issues of hallucinations (Adel and Alani 2025), and non-maleficence and respon-
sibility pertain across all systems (e.g. Golda et al. 2024). Furthermore, recent post-genAl scale devel-
opment studies with a similar aim, such as Wang et al. (2025), which assess Al ethical reflection, also
rely on the initial five core ethical dimensions. To capture greater nuance than the initial scale and to
adapt it to the engineering domain, we inductively refined and expanded Jang, Choi, and Kim's
(2022) initial item pool by drawing on literature relevant to each dimension and incorporating
domain-specific expert input. For fairness, we expanded the item pool by considering the fairness
dimensions of procedural and distributive fairness by Colquitt and Rodell (2015). This step was
taken to measure the distributive nature that engineered systems can have on their environment
and the procedural effects that require consideration during the engineering of those systems. In
practice, fairness becomes relevant throughout the whole Al lifecycle from design, data collection,
model selection, and training to deployment and end-of-life procedures. This includes dimensions
of accessibility, representativeness, correctability, accuracy, decision control, as well as equity and
equality. Erasmus, Brunet, and Fisher (2021) define transparency through three interconnected con-
cepts: explainability, understandability, and interpretability. They co-construct each other: interpret-
ability depends on both understandability and explainability. Transparency in practice means
making design and development decisions, as well as specific outputs of Al systems, visible and
understandable for the intended users. This openness aims to foster trust, even if providing such
transparency may sometimes come at the cost of reduced system accuracy. Items for the constructs
of non-maleficence and privacy are aligned with Jobin, lenca, and Vayena's (2019) analysis on Al
ethics guidelines. Non-maleficence describes that ‘Al should never cause foreseeable or unintentional
harm’ (Jobin, lenca, and Vayena 2019, 394). Thus, they argue, non-maleficence includes fostering
positive outcomes of Al usage; avoiding privacy infringements; prohibiting discrimination; prevent-
ing physical, psychological, or sexual harm; as well as maintaining trust in the system. Additionally,
users should not become victims of skill degradation due to excessive use of Al (e.g. creative skills).
The adherence to non-maleficence also includes the consideration of dual-use (e.g. for military oper-
ations) or misuse cases, as well as security measures against malicious hacking. Privacy, as considered
by Jobin, lenca, and Vayena (2019), is a value that many consider a right to be protected. Practically, it
is discussed in relation to data protection and data security, but it is also bound to concepts of
freedom and trust. Measures cover a range of categories, including modes of achievement, technical
measures, further research, transparency, and regulatory approaches. For practitioners, this implies a
responsibility to consider privacy and undergo training to implement it. Finally, responsibility
addresses the allocation and assumption of accountability across the Al lifecycle and is particularly
salient in complex socio-technical systems. Drawing on Santoni de Sio and Mecacci (2021), respon-
sibility in the context of Al extends beyond backward-looking liability to encompass forward-looking
obligations to ensure meaningful human control. This includes clearly defined roles and responsibil-
ities among designers, engineers, organisations, and users; the capacity to anticipate and mitigate
harmful outcomes; and the establishment of organisational structures that enable accountability,
contestability, and corrective action. In engineering contexts, responsibility thus implies active
engagement with the societal consequences of Al systems throughout design, deployment, and
operation.

The process of expanding, refining, and adapting resulted in an initial item pool of 54 items
(v1): 18 items for fairness, 8 items for transparency, 12 items for non-maleficence, 8 items for
privacy, and 8 items for responsibility. Reverse-worded items were included to reduce acquies-
cence bias.
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2.2. Content and face validation

Content validity was assessed in two expert validation rounds (EVR) with interdisciplinary expert
panels, and face validity in a group of engineering students.

2.2.1. Content validation

In the first expert validation round (EVR 1), 12 experts assessed the initial 54 items (v7) for relevance
and clarity using 4-point Likert scales (1 =not relevant/clear, 4 = highly relevant/clear), following
Yusoff's (2019) guidelines. The panel was composed of experts in Al, engineering, ethics, and psy-
chology/behavioural sciences to ensure comprehensive coverage of all relevant topic areas. To
reflect this disciplinary diversity, we indicate each expert’'s domain in Table A1 (Appendix). Each
item was accompanied by a domain definition adopted from Jang, Choi, and Kim (2022) and a
brief explanation of content validity (Guion 1977). Based on qualitative feedback from EVR1, we
retained positively evaluated items and revised items with comments for improvement. The
revised version (v2) consisted of 52 items: 18 items for fairness, 8 items for transparency, 10 items
for non-maleficence, 7 items for privacy, and 9 items for responsibility. We then conducted a
second expert validation round (EVR 2) with nine additional experts (see Table A1 (Appendix) for
domain details). Following EVR2, we retained items with an item-level content validity index (I-
CVI) of > 0.78 for both clarity and relevance. Items with an |-CVI > 0.70 for relevance but < 0.78 for
clarity were modified, while items with a relevance score below 0.70 were excluded. Based on
expert input, one item was reclassified from non-maleficence to privacy. This iterative process
resulted in a 37-item scale (v3), comprising 10 items for fairness, 5 items for transparency, 8 items
for non-maleficence, 7 items for privacy, and 7 items for responsibility.

2.2.2. Face validation
Following the content validation, the items were analyzed for face validity (FVI) by the target popu-
lation on an item- and scale-level, as proposed by Yusoff (2019).

The target population consisted of engineering students enrolled in the Innovation & Diversity
seminar at RWTH Aachen University. Prior to the seminar, 22 students completed a pre-test of the
scale and provided open-ended feedback. Subsequently, 21 students participated in a structured
group discussion on November 7, 2024. The session proceeded in several steps: first, students
reviewed the item content and scale structure. Next, they examined data distributions to identify
any problematic response patterns, such as floor or ceiling effects, that might indicate issues with
item formulation. They then discussed their interpretation of each item, focusing on aspects of inter-
pretability, relevance, and clarity to identify any potentially suggestive or biased wording. Finally,
they made recommendations on whether each item should be retained, revised, or removed.
Based on this comprehensive feedback, we revised the wording of several items for improved
clarity and excluded others, resulting in a refined 31-item scale (v4). This version included a balanced
number of reverse-coded items to reduce response bias and was subsequently used for construct
validation, as described in the following sections.

2.3. Participants

We collected data on v4 via an online survey administered through SoSci Survey. Participants were
recruited from 21 German comprehensive universities and universities of applied sciences, as well as
through professional engineering networks. All participants were informed about the study’s objec-
tives, data confidentiality, and the voluntary nature of participation. Data cleaning involved exclud-
ing incomplete responses, response time outliers, and cases of patterned responding. Furthermore,
data cleaning involved identifying and limiting socially desirable responses (Durmaz, Dursun, and
Kabadayi 2020; Randall and Fernandes 1991). To do so, our survey included the brief social desirability
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scale containing four yes-no items (Haghighat 2007). As recommended by the authors, we excluded
responses that were answered positively three or four times (n = 38).

This process yielded 235 complete responses, exceeding the recommended minimum sample
size of 5-10 participants per item (Hair et al. 2013) and aligning with Jang, Choi, and Kim (2022)
as an adequate sample size for a confirmatory factor analysis (CFA).

Out of the N =235 participants, 56 participants identified as female (23.8%), 162 as male (68.9%),
one as diverse (0.4%), and 16 opted not to disclose their gender (6.8%). The participants’ mean age
was 26.4 years, ranging from 18 to 64 years, with the largest cohorts being 20-24 years (n =82,
34.9%) and 25-29 years (n =73, 31.1%). Smaller proportions were aged 30-34 (n =28, 11.9%) and
35-39 (n =18, 7.7%). Each of the 5-year age groups between 40 and 64 contained three or four par-
ticipants, while six individuals (2.6%) did not report their age. Participants’ disciplinary backgrounds
reflected diverse engineering fields, with multiple selections permitted. The most common disci-
plines were mechanical engineering (n=69), civil engineering (n=65), and information technol-
ogy-related fields such as computer science and software engineering (n = 61). Further disciplines
included electrical engineering (n=35), science and mathematics (n=24), architecture (n=10),
and georesources and materials engineering (n=9). Additionally, 39 participants selected ‘Other’
and provided free-text responses, including environmental engineering, aerospace/aeronautical
engineering, and data science. Concerning professional status, the majority of participants (n=
140, 59.6%) were university students, interns, or apprentices. Another 88 participants (37.4%)
were employed or self-employed, while 7 individuals (3.0%) selected ‘Other.’

2.4. Construct validation through confirmatory factor analysis

The items generated through the iterative process (v4) were psychometrically validated with the
data from the online survey. To do so, a CFA was initiated using the lavaan R package (Rosseel
2012). This analysis assessed the extent to which our collected data aligned with our proposed
five-factor model, comprising sub-factors of fairness, transparency, non-maleficence, privacy, and
responsibility, as outlined by Jang, Choi, and Kim (2022). We used multiple indices to evaluate the
model: the comparative fit index (CFl), the root mean square error of approximation (RMSEA), and
the standardised root mean residual (SRMR) (Kline 2005). These indices were used to judge how
well the model matched the data. The CFl weighs the proposed model against an independent
(null) model, adjusting for sample size and complexity. Values above .90 usually indicate an accep-
table fit (Hu and Bentler 1999). The RMSEA shows how closely the model’s covariance structure
approximates that of the population. Scores below .08 are generally viewed as an acceptable fit,

Table 1. Iltem counts throughout the three development phases.

Development Trans-
Phase Step Fairness parency  Non-Maleficence Privacy Responsi-bility ¥
Phase | Item 18 items 8 items 12 items 8 items 8 items 54 items
Development vl
Phase Il Content 18 items 8 items 10 items 7 items 9 items 52 items
Validation v2
with EVR 1
Content 10 items 5items 8 items 7 items 7 items 37 items
Validation v3
with EVR 2
Face Validation 8 items 5items 7 items 6 items 5 items 31 items
v4
Phase Il Construct Summarized in 3items  Summarized in 5 items Summarized in 15 items
Validation the do-no- the do-no- the do-no- Final
using CFA harm scale with harm scale with harm scale with RAISE
7 items 7 items 7 items Scale

Note. EVR stands for Expert Validation Round, CFA for Confirmatory Factor Analysis.
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and scores below .05 are viewed as an excellent fit (Marsh, Hau, and Wen 2004). The SRMR captures
the average gap between observed and predicted correlations, with figures under .08 indicating a
good fit (Marsh, Hau, and Wen 2004). To examine internal consistency, we calculated McDonald's
omega, which is a more robust alternative to Cronbach’s alpha that is less prone to bias because
it accounts for cases in which the assumption of tau-equivalence (equal factor loadings for all
items) is violated (Graham 2006). McDonald's omega is therefore better suited to congeneric
scales, where item loadings contribute differently to the total score (e.g. within a CFA) (Lucke
2005). As with Cronbach’s alpha, McDonald’s omega values of .70 or higher are typically considered
adequate, while values down to .60 may still be deemed acceptable (Azmi et al. 2024; Shrout 1998).
The item development and validation process is depicted in Table 1.

2.5. Descriptive and inferential analyses

In addition to assessing the instrument’s psychometric properties through CFA, we conducted group
comparisons and correlational analyses to evaluate the scale’s validity and practical applicability
further.

First, group comparisons across gender, engineering domain, and professional status allowed us
to examine whether the scale performs consistently across diverse subpopulations. Such analyses
contribute to assessing structural stability and provide indications of measurement invariance,
which is critical for the generalizability of psychometric instruments (Putnick and Bornstein 2016).
Notable group differences may also reveal whether specific subscales or items are interpreted differ-
ently depending on demographic or contextual factors. To select appropriate statistical procedures
for group comparisons, we first assessed the normality of the data using the Shapiro-Wilk test (Yazici
and Yolacan 2007). A statistically significant result (p <.05) indicates a deviation from normality. In
cases where the Shapiro-Wilk test suggested deviations from normality, we additionally considered
skewness and kurtosis indices as recommended by Kline (2016). These indices were calculated by
dividing the respective skewness and kurtosis statistics by their standard errors. According to
them, absolute values exceeding |3| for the skewness index or | 10| for the kurtosis index indicate sub-
stantial deviations from normality and may call for non-parametric analyses. To examine the assump-
tion of homogeneity of variances, we employed Levene’s test (Gastwirth, Gel, and Miao 2009). A non-
significant result (p >.05) suggests that the variances between groups are sufficiently similar to
satisfy the assumption of homogeneity of variances. For two-group comparisons (e.g. gender and
professional status), we then applied independent samples t-tests under the assumption of equal
variances, provided that both normality and homogeneity of variances could be assumed (Field
2024). The independent samples t-test evaluates whether the means of two independent groups
differ significantly. In cases where normality was met but the assumption of homogeneity of var-
iances was violated (as indicated by a significant Levene’s test), we employed Welch’s t-test as a
robust alternative. Unlike the standard t-test, Welch’'s t-test adjusts the degrees of freedom to
account for heterogeneity of variances and yields more accurate Type | error rates under such con-
ditions (Ruxton 2006). When normality was violated - regardless of whether homogeneity of var-
iances could be assumed - we opted for the Mann-Whitney U test (Nachar 2008). Instead of
comparing means, the Mann-Whitney U test assesses whether the distributions of ranks differ sys-
tematically between two groups. It is particularly appropriate when the scale of measurement is
ordinal or when the distribution of scores is skewed or contains outliers. A significant result in
this test indicates that the central tendency of one group is systematically higher or lower than
the other. Still, it does not allow for direct interpretation in terms of mean differences. For compari-
sons involving more than two groups (e.g. across multiple engineering domains), a one-way analysis
of variance (ANOVA) was conducted, provided that both normality and homogeneity of variances
were satisfied (Field 2024). A one-way ANOVA tests whether there is a statistically significant differ-
ence in means among three or more independent groups by comparing the ratio of between-group
to within-group variance. A significant F-statistic indicates that at least one group mean differs from
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the others; however, it does not specify which groups differ. To mitigate the risk of inflated Type |
error rates due to multiple testing, we applied the Holm correction to all p-values resulting from mul-
tiple pairwise comparisons (Holm 1979). The Holm procedure is a sequentially rejective method that
controls the family-wise error rate more efficiently than the traditional Bonferroni correction by
adjusting p-values in a stepwise manner. This enables greater statistical power while maintaining
strict control over false positives.

Second, we explored correlations between participants’ prior Al knowledge, specific Responsible
Al knowledge, as well as engineering ethics knowledge and their attitudes toward Responsible Al.
Specifically, we aimed to examine whether familiarity with Al is associated with more reflective or
ethically aware attitudes. Previous research has shown mixed results in this regard. For example,
Jang, Choi, and Kim (2022) found that prior Al education had a significant effect on fairness-
related attitudes, but not on other ethical dimensions. Other studies have suggested that knowledge
alone does not necessarily influence ethical attitudes (Fabrigar et al. 2006). Our analyses seek to con-
tribute further empirical evidence to this debate and to assess the scale’s sensitivity to differences in
prior Al knowledge. We assessed Al knowledge using three overarching items derived from Pinski
and Benlian (2023) Al literacy scale, capturing participants’ general self-assessed competence in
understanding and interacting with Al technologies. Each item was rated on a five-point Likert
scale ranging from 1 (I strongly disagree’) to 5 ('l strongly agree’), and scores were averaged to
form a composite Al knowledge score. In addition to that, to measure participants’ self-perceived
knowledge of Responsible Al principles, five single-item indicators were employed, each correspond-
ing to one of the Responsible Al principles of the original scale by Jang, Choi, and Kim (2022) (fair-
ness, transparency, privacy, responsibility, and non-maleficence). Participants rated their familiarity
with each principle on a five-point Likert scale (1 ='not knowledgeable at all’, 5 =‘very knowledge-
able’). To account for the merged do-no-harm scale in our final scale, the respective principles (fair-
ness, non-maleficence, and responsibility) were averaged to form a composite score (see 3.1.2 for an
explanation of why these principles were combined). A further single item asked participants to rate
their overall knowledge of engineering ethics on the same five-point Likert scale. To decide on the
mode of evaluation correlation, we first examined the distributional characteristics of the involved
variables. Normality was assessed using the Shapiro-Wilk test (Yazici and Yolacan 2007) as well as
standardised skewness and kurtosis indices, following the guidelines by Kline (2016). In all of our
cases, one or both variables showed significant deviations from normality; thus, the Spearman
rank correlation coefficient was used as a robust non-parametric measure (Field 2024). Visual inspec-
tion of scatterplots further supported the decision.

All statistical analyses were conducted using R. Subscale scores were calculated by averaging the
items within each ethical dimension to enable comparisons and correlation analyses.

3. Results

This section presents the results from the three-stage validation of the instrument, beginning with
expert-based content validation, followed by confirmatory factor analysis. The second part of this
chapter contains our descriptive and inferential statistics results related to the final scale.

3.1. Validity of the instrument

The psychometric quality of the developed instrument was assessed by content, face, and construct
validity.

3.1.1. Content and face validity

Content validity was established through two rounds of expert validation (EVR 1 and EVR 2) involving
interdisciplinary experts in Al, engineering, ethics, and behavioural sciences. The first round (EVR 1, n
=12) qualitatively improved the items (leading to v2), and the second round (EVR 2; n=9)
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determined the item pool for face validity (leading to v3). To complement the expert-based assess-
ment, face validity was examined with 21 participants from the target population. Through qualitat-
ive feedback, group discussions, and suggestions for improvement, items were evaluated regarding
their comprehensibility, interpretability, and potential for response bias (leading to v4). As a result of
this iterative validation process, scale v4 comprises a total of 31 items, distributed across the five
dimensions: fairness (8 items), transparency (5 items), non-maleficence (7 items), privacy (6 items),
and responsibility (5 items). This version served as the basis for the subsequent CFA.

3.1.2. Construct validity through confirmatory factor analysis

We conducted an initial CFA with the proposed model of fairness, transparency, non-maleficence,
privacy, and responsibility using the maximum likelihood estimator with robust corrections (MLR).
However, the model demonstrated poor to mediocre fit to the data: x*(424) = 857.25, p < .001, CFI
=.661, RMSEA =.068 (90% CI [.061, .074]), and SRMR =.082. Although the RMSEA is within an accep-
table range, the CFl is below the conventional threshold of .90 for good fit.

Therefore, we extracted the standardised factor loadings of all items on their respective factors to
determine the source of this misfit. Indeed, many items had loadings below .40. CFA factor loadings
of .40 or higher are typically considered acceptable, particularly in the social sciences. These loadings
indicate a strong enough association between an observed variable and its underlying latent factor
to meaningfully contribute to measuring the construct (Stevens 2001). Consequently, we eliminated
all items with loadings below .40 and reran the CFA. The factors now consisted of the following
number of items: fairness (2 items), transparency (4 items), non-maleficence (5 items), privacy (5
items), and responsibility (4 items). Rerunning the CFA with this model specification produced a

Table 2. Item wordings, means (M), standard deviations (SD), and factor loadings (A), organised by their respective final subscales
along with reliabilities (w) of the subscales.

Items Wordings M SD A w

‘Do-No-Harm’ 685
| think that Al systems that | use should consider all stakeholders’ perspectives (e.g. urban 391 099 .528
planning considering residents’ and officials’ perspectives), even if this increases costs and
time.
When using Al systems, | will strive to put it only to good use. 429 089 .41
| find it important to evaluate whether the Al systems that | use in my engineering work are  3.46 1.18 .373
simultaneously used in harmful applications by others.
| would only use Al systems in my engineering work if responsibility for the outcomes 397 096 .445
(including potentially harmful ones) is clearly defined.
| feel that it is my responsibility to thoroughly assess the possible consequences of using Al 419 079 .466
systems in any of my engineering work, even if this increases required time and costs.
When using Al systems in engineering tasks that affect the public, | care about considering 4.19 0.86 .632
public concerns even if this increases required time and costs.
When using Al systems in engineering tasks that affect the public, | would order external 3.64 0.98 .596
audits.
‘Transparency’ 771
Al systems that | use in engineering do not have to explain the reasoning behind their 424 091 739
outcomes. (reversed)
In my engineering work, | trust Al systems that cannot explain why they made certain 4.05 1.03 .695
decisions. (reversed)
Al systems do not have to allow me as an engineer to trace the reasoning behind every ~ 4.01 1.04 .749
outcome. (reversed)
‘Privacy’ 710
| would use Al systems that lack comprehensive data protection measures that safeguard 3.82 1.10 .579
sensitive information. (reversed)

It is okay for me to use someone else’s personal data to run Al systems. (reversed) 394 110 412
| would only use Al systems in my engineering work if they consider privacy. 3.78 1.06 .648
Privacy training before working with Al systems is essential to me. 3.81 1.00 .527

| am committed to making the extra effort to follow Al security guidelines (such as access 4.14 0.94 .533
control and data security) to protect sensitive information and maintain system integrity.

Note. All Likert-scaled items (with values 1-5) follow the question ‘What is your opinion on the following statements?’; \: factor
loadings of the items on their respective subscales; w = McDonald’s Omega.
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covariance matrix of latent variables that was not positive definite, indicating that there could be
very high correlations between variables. Upon closer inspection, we observed that the fairness
factor strongly correlated with non-maleficence (r=.954) and responsibility (r=.985). Considering
these findings, we changed our a priori chosen factorial structure, merging the fairness, non-malefi-
cence, and responsibility factors into a factor called ‘do-no-harm.’ This new factor consists of the
items from its previous factors (11 items).

This new model demonstrated an improved, though still suboptimal, fit: x(167) = 394.44, p < .001,
CFl=.760, RMSEA = .08, 90% Cl [.069,.090], and SRMR =.082. While the RMSEA and SRMR fall within
or near acceptable limits, the CFl remains below the commonly recommended threshold of .90, indi-
cating room for improvement to the model. Therefore, the next step was to inspect the modification
indices (Kaplan 1990; S6rbom 1989). Inspection of the modification indices led to the elimination of
items that were redundant with other items in their scale, had high shared error variance with other
items, or exhibited cross-loadings on factors to which they were not intended to load. Conversely,
items that showed higher loadings on other factors to which they were not originally assigned,
but that were theoretically meaningful, were retained. The final assignment of items to factors,
their loadings, means, standard deviations, and wording can be found in Table 2.

The final model yielded an acceptable fit: X*(87) = 134.88, p =.001, CFl =.917, RMSEA = .052 (90%
Cl [.034,.068]), and SRMR =.061. The CFI value meets the commonly recommended threshold
of >.90, and both the RMSEA and the SRMR fall within the acceptable range. These results
suggest that the model adequately represents the data. While not optimal, the reliability of each
resulting subscale was also within an acceptable range: do-no-harm (w=.69), transparency (w
=.77), and privacy (w=.67). Following the described procedure, we obtained a sound, practical,
and theoretically meaningful scale that values domain-specificity in the area of Al when measuring
engineers’ attitudes toward Responsible Al.

3.2. Descriptive and inferential statistics

This section presents the results of conducting descriptive and inferential analyses on 235 responses
from engineering students and professionals in Germany.

3.2.1. Descriptive statistics

Participant demographics are disclosed in section 2.3. Means, standard deviations, and scale
reliabilities (McDonald’s w) for each subscale are reported in Table 2 (see Section 3.1.2). In
summary, participants generally expressed high agreement with attitudes toward Responsible Al
across all dimensions. The highest mean was observed for the transparency subscale (M = 4.10), indi-
cating that participants strongly valued comprehensibility and explainability in Al systems. The do-
no-harm subscale followed closely (M =3.95), indicating a strong concern for mitigating potential
harm and a straightforward assignment of accountability when using Al. The privacy subscale had
the lowest mean among the three (M =3.90), though still reflecting high agreement with data pro-
tection and ethical information handling. With all subscale means well above the scale midpoint of 3,
these results suggest that the participants essentially value Responsible Al, with some variation in
emphasis across the principles.

3.2.2. Group dispatrities in attitudes toward responsible Al
To investigate whether attitudes toward Responsible Al differed by gender, professional status, or
disciplinary domain, we compared both descriptive and inferential statistics.

3.2.2.1. Gender differences. First, we compared responses along the gender dimension. We com-
pared responses between women (n =56) and men (n=162), excluding participants who selected
‘diverse’ (n=1) or preferred not to disclose (n=16). We acknowledge the limitation that the
female sample only represents one-third of the male sample - a limitation that is common in
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Table 3. Descriptive statistics by gender.

Subscale Female (n =56) Male (n=162)

Do-No-Harm M =4.05, SD = 0.565 M =3.92, SD=0.553
Transparency M=4.11, SD =0.904 M=4.06, SD = 0.805
Privacy M =4.04, SD =0.551 M=3.83,SD=0.712

engineering (Kahn and Ginther 2017). Descriptively, we find that females scored higher on average
than males in all dimensions (see Table 3). Standard deviations indicate relatively stable estimates
across groups. While means suggest gender-based trends in attitudes, this finding could not be
confirmed statistically.

We first checked for normal distribution of the subscales per group using the Shapiro-Wilk test. For
do-no-harm, scores indicated deviation from normality both for males (W = .978, p =.010) and females
(W=.958, p=.047); for privacy, scores indicated deviation from normality for males (W =.965, p
=.000), but not for females (W =.965, p =.107); and for transparency, both male (W =.916, p <.001)
and female (W =.858, p <.001) scores indicated deviations from normality. We then computed stan-
dardised skewness and kurtosis indices. For the do-no-harm subscale, skewness indices ranged from
—2.38 (male) to —0.46 (female), and kurtosis indices from 8.49 (male) to 4.57 (female). For transpar-
ency, skewness indices were —3.53 (male) and —2.61 (female), with kurtosis indices of 7.05 (male)
and 3.86 (female). The privacy subscale yielded skewness indices of —2.52 (male) and —1.36
(female), and kurtosis indices of 7.43 (male) and 4.07 (female). Although some indices exceeded
the recommended thresholds, the deviations were mild to moderate. Given the sufficiently large
sample size (N = 235), which supports the robustness of parametric tests against moderate violations
of normality (Ghasemi and Zahediasl 2012), we conducted tests that assumed normal distributions in
the subsequent tests. Homogeneity of variances was assessed using Levene’s test. The assumption
was met for do-no-harm (F(1, 216) =0.019, p=.892) and transparency (F(1, 216) =0.510, p = .476),
but was violated for privacy (F(1, 216)=4.286, p =.040). Consequently, standard independent
samples t-tests assuming equal variances were applied for do-no-harm and transparency, while
Welch's t-test, which does not assume equal variances (Ruxton 2006), was used for privacy.

Independent samples t-tests revealed no statistically significant gender differences in do-no-
harm, t(216) = 1.50, p =.134, nor transparency, t(216) = 0.45, p = .656. For privacy, there was a statisti-
cally significant difference in the uncorrected test, t(123) =2.23, p =.028, with female participants
rating privacy considerations more highly than males. However, after the Holm correction (Holm
1979), none of the comparisons reached statistical significance (adjusted p-values: .269, .656, and
.083, respectively). Taken together, the results suggest that there were no statistically significant
differences between female and male participants in their responses across the three subscales
after controlling for multiple testing. The data indicate a slight trend toward higher ratings
among women, particularly on the privacy subscale; however, this difference did not withstand cor-
rection for multiple comparisons.

3.2.2.2. Engineering domain differences. Second, we compared potential differences across the
three most highly represented engineering domains among our respondents, namely civil engineer-
ing (n=62), mechanical engineering (n=51), and IT-related fields (hereafter referred to as technol-
ogy; n=43). Mean scores for each subscale across the three engineering domains were compared
(see Table 4). Mechanical engineering scores are higher throughout all subscales, but this could
not be confirmed statistically.

Table 4. Descriptive statistics by engineering domain.

Subscale Civil Engineering (n = 62) Mechanical Engineering (n=51) Technology (n=43)
Do-No-Harm M=3.96, SD =0.567 M=4.06, SD=0.551 M=3.87, SD =0.647
Transparency M=4.12,SD=0.771 M =430, SD=0.746 M=4.02, SD=0.740

Privacy M =3.80, SD=0.779 M=4.07, SD = 0.644 M=3.87, SD =0.634
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We first applied the Shapiro-Wilk test within each domain and subscale to examine the assump-
tion of normality. The results indicated deviations from normality, particularly for the transparency
subscale across all domains (p <.01), as well as for privacy in the civil (p=.013) and mechanical
(p=.043) domains. For the do-no-harm subscale, the Shapiro-Wilk test was not significant in any
domain (all p >.05), suggesting no statistical evidence against normality. Across all subscales and
domains, skewness and kurtosis indices remained well within the thresholds, indicating that
although some deviations from normality were statistically significant, the distributions did not
exhibit severe skewness or kurtosis. Thus, despite some formal violations detected by the Shapiro-
Wilk test, the overall distributional characteristics can be considered approximately normal, and
parametric analyses were deemed appropriate. Homogeneity of variances was tested using
Levene's test for each dependent variable. The assumption was met for all subscales: do-no-harm,
F(2, 153) =0.56, p =.574; transparency, F(2, 153) =0.17, p =.842; privacy, F(2, 153)=1.29, p=.278.

One-way ANOVAs revealed no statistically significant differences between domains on any of the
three subscales, with results as follows: do-no-harm: F(2, 153) = 1.30, p =.275; transparency: F(2, 153)
=1.68, p =.190; privacy: F(2, 153) = 2.13, p =.122. In summary, there were no significant differences in
participants’ attitudes toward Responsible Al across the three largest engineering domains.
Although descriptive statistics indicated minor differences in mean scores (with mechanical engin-
eering having the highest scores in all three subscales), these did not reach statistical significance in
any of the subscales.

3.2.2.3. Employment status differences. Lastly, we compared attitudes between engineering stu-
dents and practitioners. To do so, we grouped students and interns, henceforth referred to as students
(n =140), and employees and self-employed individuals, henceforth referred to as practitioners (n =
88). Mean scores for each subscale across the two groups were comparable (see Table 5).

The Shapiro-Wilk-test indicated deviations from normality for transparency in both groups (stu-
dents: W=10.896, p <.001; practitioners: W =0.922, p=.006), as well as for privacy (students: W=
0.950, p =.013; practitioners: W =0.953, p =.043). For do-no-harm, the tests showed no significant
deviation from normality (students: W=0.964, p=.063; practitioners: W=0.967, p=.165). To
further evaluate the extent of non-normality, we examined skewness and kurtosis indices. All sub-
scales fell within recommended thresholds, except transparency among students, which showed
a notable skewness index of —5.09, suggesting substantial non-normality.

Consequently, we used a Mann-Whitney U test to compare groups on the transparency subscale.
The test revealed a statistically significant difference between students and practitioners (W=
5113.5, p=.029), with students reporting higher transparency scores. However, this effect did not
remain significant after Holm correction (p=.112). For the other two subscales (do-no-harm and
privacy), Levene’s tests confirmed homogeneity of variances across groups (all p >.21), justifying
the use of independent samples t-tests assuming equal variances. Results showed no significant
group differences for do-no-harm, t(226) = —0.41, p = .680, nor for privacy, t(226) = —0.21, p = .834.

Table 5. Descriptive statistics by students and practitioners.

Subscale Students (n = 140) Practitioners (n = 88)
Do-No-Harm M =3.97, SD =0.547 M =3.94, SD=10.583
Transparency M=4.22,SD=0.787 M=3.99, SD=0.820
Privacy M =3.91, SD=0.685 M =3.89, SD =0.695

3.2.3. Disparities in attitudes toward responsible Al based on prior knowledge

To explore whether Al education is associated with more reflective attitudes, we examined corre-
lations between participants’ attitudes toward Responsible Al and their Al knowledge, Responsible
Al knowledge, and engineering ethics knowledge.
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3.2.3.1. Correlations with Al knowledge. To assess the relationship between participants’ Al knowl-
edge (assessed in terms of Al literacy, see section 2.4) and their attitudes toward Responsible Al, we
first examined the distribution of the respective variables. Shapiro-Wilk tests indicated significant
deviations from normality for all variables (do-no-harm: W =0.979, p=.002; transparency: W =
0.898, p<.001; privacy: W=0.962, p <.001). While the Al Literacy scale fell within acceptable
thresholds (Skewness Index = -0.82; Kurtosis Index =7.99), the subscales do-no-harm, privacy, and
particularly transparency (Skewness Index =-4.80) indicated significant non-normal distributions.
Consequently, non-parametric Spearman rank-order correlations were used to examine associations
between Al literacy and attitudes toward Responsible Al.

The correlations between Al literacy and the three attitude subscales were weak and not statisti-
cally significant: do-no-harm (p = —0.040, p =.547), transparency (o = —0.059, p =.366), and privacy
(p =—0.034, p =.604). These results suggest that Al literacy is not meaningfully associated with atti-
tudes toward Responsible Al in this sample and may not serve as a reliable predictor of alignment
with Responsible Al principles.

3.2.3.2. Correlations with responsible Al knowledge. To assess the relationship between partici-
pants’ Responsible Al knowledge and their attitudes toward Responsible Al, we first examined the dis-
tribution of the respective variables. The Shapiro-Wilk test indicated deviations from normality for all
Responsible Al knowledge indicators (do-no-harm: W =0.969, p <.001; transparency: W =0.902, p
<.001; privacy: W=0.915, p<.001), as well as for all attitude subscales (see previous section).
However, skewness and kurtosis indices for the Responsible Al knowledge indicators fell within accep-
table thresholds (|Skewness Index| < 3; |[Kurtosis Index| < 10), indicating no substantial univariate non-
normality. Given the ordinal nature of the knowledge indicators and the significant results from the
Shapiro-Wilk tests, we still opted for non-parametric Spearman rank-order correlations.

The analysis revealed a small but statistically significant positive correlation between Responsible
Al knowledge related to privacy and attitudes toward privacy (p =.169, p =.009), indicating that
greater self-reported knowledge of privacy-related principles was associated with more favourable
attitudes toward privacy in Al contexts. In contrast, correlations between knowledge and attitudes
in the domains of do-no-harm (p=.071, p=.278) and transparency (p =.045, p =.497) were weak
and not statistically significant. These results suggest that Responsible Al knowledge may be selec-
tively associated with positive attitudes, particularly in domains where public discourse and individ-
ual awareness (e.g. privacy) are more pronounced.

3.2.3.3. Correlations with engineering ethics knowledge
The Shapiro-Wilk tests indicated significant deviations from normality for all variables (p <.001 for
most), which was further supported by the calculated skewness and kurtosis indices. Notably, the
transparency and do-no-harm subscales showed pronounced departures from normality, while
the engineering ethics knowledge scale exhibited a slight negative skew (Skewness Index =
—0.53). Due to these violations of normality assumptions, Spearman rank-order correlations were
conducted to examine the relationships between engineering ethics knowledge and the three
ethical attitude subscales.

The results revealed no statistically significant correlations between engineering ethics knowl-
edge and the attitude subscales: do-no-harm (p=0.10, p=.11), transparency (p=0.04, p=.59),
and privacy (o =0.09, p=.16).

4. Discussion

We developed and validated the RAISE scale to assess attitudes toward Responsible Al within the
engineering domain. Building on the five-factor model proposed by Jang, Choi, and Kim (2022),
we expanded the item pool based on expert input and conducted a confirmatory factor analysis
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using data from 235 complete responses from engineering students and practitioners. The confirma-
tory factor analysis resulted in a three-factor structure, comprising the subscales do-no-harm, trans-
parency, and privacy, resulting in a final scale with 15 items. The model demonstrated acceptable fit
indices and satisfactory internal consistency for each subscale, providing initial evidence for the
reliability and construct validity of the instrument. Moreover, the scale performed consistently
across demographic groups (i.e. gender, engineering domain, and professional status).

4.1. Discussion of the RAISE scale validity

Interestingly, our confirmatory factor analysis suggested a consolidation of the dimensions fairness,
non-maleficence, and responsibility into a single construct. Observing that all items pointed toward
the prevention of harm caused by the system or the attribution of responsibility when such harm
occurs, we consequently labelled this factor the do-no-harm subscale. It captures attitudes toward
preventing harm by considering diverse stakeholder perspectives, designing Al systems for ben-
eficial use, evaluating them for potentially harmful applications, and acknowledging responsibility
for their outcomes. The transparency subscale addresses the importance of understanding how Al
systems operate and produce their outputs — an aspect that is not necessarily distinct from harm,
but rather a legal and moral prerequisite (Decker, Wegner, and Leicht-Scholten 2025). Finally, the
privacy subscale addresses the protection of sensitive data, both one’s own and that of others.

It is important to be clear about what the scale can and cannot do. Specifically, it aims to measure
self-reported attitudes toward acting responsibly in contexts where engineers engage with Al
systems in their academic or professional lives. That is, it reflects the degree to which individuals
believe that the ethical principles of do-no-harm, transparency, and privacy should be considered.
Lind (2019) refers to this affective dimension as moral orientation. However, moral orientation is
not a predictor of moral competence, defined as ‘the ability to solve problems and conflicts
through deliberation and discussion based on moral principles’ (Lind 2019, 7), and thus reflects a
more deliberative and skill-based approach. This distinction is crucial: while moral orientation
reflects what individuals believe should be done, moral competence concerns their ability to apply
those principles in concrete (real or hypothetical) situations. In this sense, moral orientation may
be more vulnerable to social desirability bias, capturing what individuals think they should
believe (e.g. one should not harm) rather than how they would reason through morally complex situ-
ations. Moral competence, by contrast, involves the practical application of one’s moral principles
and requires the cognitive and dialogical skills to engage in ethical reasoning. Moreover, possessing
moral competence does not necessarily guarantee moral behaviour. Even individuals who know
what is morally appropriate in general (moral orientation) and in specific cases (moral competence)
may fail to act accordingly due to other mediating factors, for example, an inability to recognise
morally salient features of a situation, or fear of negative personal consequences. The scale does
not capture these behavioural dimensions. This limitation reflects the well-documented intention-
behaviour gap (Ajzen 1991; Blake 1999), which is particularly salient in moral psychology, where
context and situational constraints strongly influence action, as illustrated by classic studies such
as the Good Samaritan experiment (Darley and Batson 1973).

Apart from that, while our initial validation results are promising, several limitations must be
acknowledged. While we had a satisfactory number of respondents from 21 comprehensive univer-
sities and universities of applied sciences in Germany, the distribution among these universities is
not uniform. Furthermore, the focus on Germany is a limitation in itself. Although the model
showed configural stability across gender, engineering domain, and employment status, further
testing could incorporate different cultural contexts, career stages, and other engineering disciplines
to further establish the scale’s robustness. Second, like all self-report instruments, the scale is poten-
tially subject to social desirability bias, which may obscure respondents’ true attitudes (Durmaz,
Dursun, and Kabadayi 2020; Randall and Fernandes 1991). In particular, attitudes toward Responsible
Al may be influenced by normative expectations, especially in educational or professional settings
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where ‘correct’ responses are implicitly known or assumed. We tried to minimise this influence by
erasing respondents who were shown to be prone to socially desirable answers using the brief
social desirability scale (Haghighat 2007). Finally, while our factor structure was derived based on
a theoretically informed item pool that extended the scale by Jang, Choi, and Kim (2022), the CFA
made major changes, adding an exploratory aspect to our scale development process. Further vali-
dation on an independent sample would be worthwhile to confirm the scale’s construct validity and
practical utility more firmly.

The key distinctions between our scale and other instruments reviewed earlier are as follows: con-
trary to established tools for assessing general attitudes toward Al — such as those presented by Grass-
ini (2023), Schepman and Rodway (2023), Sindermann et al. (2021), or Stein et al. (2024) - our scale
explicitly focuses on attitudes toward Responsible Al. While other tools focus on general ethical
reasoning within engineering — such as those by Zhu et al. (2014) and Howland et al. (2024) - our
scale explicitly focuses on ethical challenges of Al systems. Lastly, our scale is developed for and vali-
dated within the engineering domain, specifying the focus of scales like the Attitudes Toward the
Ethics of Artificial Intelligence (AT-EAI) scale by Jang, Choi, and Kim (2022). Thus, our scale addresses
the attitudes toward Responsible Al within engineering, offering a theoretically grounded, domain-
specific instrument for use in both research and educational practice and evaluation.

4.2. Discussion of the descriptive and inferential statistics

While this study aimed to develop and validate the RAISE scale, the descriptive findings also offer an
initial insight into how engineering students and professionals in Germany perceive the importance
of Responsible Al. Overall, the attitudes toward the do-no-harm, transparency, and privacy principles
were rated positively, suggesting a generally positive attitude toward ethical considerations in Al
development and use. However, variability in responses, especially in the do-no-harm subscale, indi-
cates differences in how respondents prioritise specific concerns. Weak or non-significant corre-
lations between attitudes and knowledge suggest that simply knowing about Responsible Al
principles does not strongly predict the degree to which individuals endorse them as necessary.
This dissociation supports theoretical models distinguishing between knowing what is ethically
appropriate and valuing it (Ajzen 1991; Blake 1999). Interestingly, only the relationship between
privacy knowledge and privacy attitudes showed a statistically significant (albeit small) positive cor-
relation, possibly reflecting heightened public awareness of data protection concerns (Hallinan, Frie-
dewald, and McCarthy 2012; Trepte et al. 2015). This highlights the importance of fostering targeted
knowledge in Al ethics, particularly in domains where ethical concerns are more salient to the
general public, such as data privacy. Furthermore, our findings suggest that general knowledge
about engineering ethics is not strongly related to ethical attitudes toward the highlighted prin-
ciples, emphasising the potential disconnect between ethical awareness in engineering and
specific ethical stance. This suggests that engineering ethics training may not necessarily lead to
more favourable ethical stances toward Al technologies.

4.3. Implications for teaching and practice

The scale can be applied in various contexts. First, it can serve as one of the first diagnostic tools in
educational settings to assess the baseline attitudes of engineering students toward Responsible Al.
Educators and curriculum designers can use the results to identify blind spots and tailor teaching
interventions accordingly. This can help identify overly negative (or, in the less prominent case,
overly positive) attitudes toward Responsible and ethical Al (Martin, Conlon, and Bowe 2021) and
to intervene to foster recognition of the topic’'s complexity. Empirical pre-, inter-, and post-training
assessments can then inform the design and evaluation of responsibility initiatives in Al training pro-
grammes for engineers (Hess and Fore 2017). Second, the scale can be employed in applied research
to examine how various factors such as disciplinary engineering background, professional
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experience, or exposure to moral dilemmas influence attitudes toward Responsible Al. Third, the
scale may be helpful in industry settings for workforce development and training. It provides a struc-
tured way for organisations to assess how practitioners perceive key ethical responsibilities related
to Al, thereby informing the design of corporate training programmes, internal guidelines, work pro-
cedures, or industry standards (Prem 2023). However, as sketched above, it is essential to note that
the scale is not intended to assess actual ethical decision-making competence or behaviour in
complex Al-related dilemmas. Nor should it be used in isolation to evaluate ethical maturity or pro-
fessional integrity. Instead, it should be understood as a complementary tool, providing insights into
what individuals believe should matter when working with Al.

5. Conclusion

This study introduces and validates the RAISE scale as a new instrument to assess attitudes toward
Responsible Al among engineering students and professionals. Drawing from theoretical foundations
in Responsible Al (focused on ethics) and adapting an existing scale to measure attitudes toward
Responsible Al, we developed a concise, three-factor scale encompassing do-no-harm, transparency,
and privacy subscales. The RAISE scale exhibits acceptable psychometric properties, demonstrating
reliability across subgroups and providing initial evidence of construct validity. Beyond its methodo-
logical contribution, the scale offers practical utility, allowing educators, researchers, and organisations
to gauge how engineers value ethical principles in Al contexts. This is particularly relevant in an era
when Al technologies are rapidly transforming engineering practices and raising new ethical chal-
lenges. Understanding and supporting engineers’ moral orientation is a foundational step toward fos-
tering a culture of Responsible Al development and use. Future research should investigate how the
RAISE scale performs across cultural contexts and over time, as well as its predictive value in relation to
ethical decision-making or behaviour in real-world scenarios. Longitudinal studies could investigate
how ethical attitudes evolve throughout academic training or professional experience. Additionally,
integrating the scale into intervention studies may help identify which pedagogical strategies most
effectively foster Responsible Al engagement among future engineers.

Notes

1. In this paper, we refer to the Al in the broadest scope following the OECD updated working definition: ‘An Al
system is a machine-based system that, for explicit or implicit objectives, infers, from the input it receives,
how to generate outputs such as predictions, content, recommendations, or decisions that can influence phys-
ical or virtual environments. Different Al systems vary in their levels of autonomy and adaptiveness after deploy-
ment.” OECD (2024).

2. While the term Responsible Al originated from addressing ethical implications, it has since been watered down.
In the context of this paper, we will use the term primarily to address ethical aspects.
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Appendix
Table A1. Panel of experts in EVR 1 and EVR 2, with respective area of expertise.
Round Profession Area of Expertise
Al Engineering Ethics Psychology / Behavioural Sciences
EVR 1 Researcher X X
Researcher X
Graduate Student X X
Researcher X
Researcher X
Practitioner X
Researcher X
not given X X X
Researcher X X
Researcher X X
Practitioner X
not given X X
EVR 2 Researcher X
Consultant X X
Researcher X X
Researcher X
Practitioner X
Practitioner X
Practitioner X
not given X X X

not given X X X X
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