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ABSTRACT  
As Artificial Intelligence (AI) technologies increasingly shape the field of 
engineering, ethical considerations are becoming essential for fostering 
responsible innovation. However, a validated instrument to assess 
attitudes toward Responsible AI, specifically in the engineering domain, 
is still missing to date. This study presents the development and 
validation of the Responsible AI Attitudes Specific to Engineering 
(RAISE) scale. After refining the item pool of a validated test instrument 
with expert input from the engineering domain, we conducted 
confirmatory factor analysis on data from 235 engineering students and 
professionals in Germany. The resulting 15-item scale measures 
engineers’ self-reported attitudes along three core Responsible AI 
dimensions: do-no-harm, transparency, and privacy. It demonstrates 
acceptable model fit, internal consistency, and measurement invariance 
across demographic groups. The RAISE scale can serve as a diagnostic 
and evaluative tool in engineering education and training programmes, 
helping to inform and assess efforts to foster Responsible AI engagement.
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Nomenclature
Abbreviation Full Term
ABET Accreditation Board for Engineering and Technology
AI Artificial Intelligence
ANOVA Analysis of Variance
AT-EAI Attitudes Toward the Ethics of Artificial Intelligence
CDIO Conceive–Design–Implement–Operate
CFA Confirmatory Factor Analysis
CFI Comparative Fit Index
EU European Union
EVR Expert Validation Round
F F-value (Levene’s Test)
FVI Face Validity Index
I-CVI Item-Level Content Validity Index
M Mean
MLR Maximum Likelihood Estimator with Robust Standard Errors
n/N Sample Size (N = Full Sample, n = Sub Sample)
OECD Organisation for Economic Co-operation and Development
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p p-value
RAISE Responsible AI Attitudes Specific to Engineering
RMSEA Root Mean Square Error of Approximation
RWTH Rheinisch-Westfälische Technische Hochschule (Rhenish-Westphalian Technical 

University)
SD Standard Deviation
SRMR Standardised Root Mean Squared Residual
t t-value (t-test)
W Test Statistic (Wilcoxon Test)
ρ Correlation Coefficient

1. Introduction

The increasing integration of Artificial Intelligence (AI)-based systems1 is accelerating the digital 
transformation of the engineering domain. The capacity to model complex and nonlinear processes, 
perform data-driven predictions without prior assumptions, and analyze vast datasets has garnered 
significant attention from engineering researchers and practitioners (Baghbani et al. 2022). Not least, 
the widespread use of generative AI has led to the integration of AI into our everyday lives and, con
sequently, into the engineering workplace. For instance, in Civil Engineering, AI supports structural 
design, construction management, and infrastructure maintenance (Bao and Li 2019; Demertzis, 
Demertzis, and Iliadis 2023; Liu et al. 2024), eventually leading to more cost-effective project 
execution (Nithyakarpagam and Mathiraj 2025). In the energy sector, AI enables smart grids and sus
tainable real-time energy management (Sureshraj et al. 2023). Across domains, AI supports complex 
decision-making and system optimisation (Yüksel et al. 2023) and enhances collaborative workflows 
(Gyory et al. 2022). Accessible toolkits and generative AI technologies have lowered the threshold for 
creating customised software solutions, even for those with limited programming skills (Schmidt 
2023). Consequently, engineers are likely to be or become users and, increasingly, also designers 
of AI systems.

Alongside these numerous benefits, the deployment of AI systems in engineering is not without 
risks for companies (i.e. in terms of public reputation and trust), society (i.e. in terms of harms), and 
practitioners (i.e. in terms of deskilling). The opacity of many predictive AI systems makes it 
difficult to understand, explain, or contest AI-driven decisions (Burrell 2016), and uncertainty in 
risk assessment challenges their responsible use (Metcalf et al. 2021). As a consequence, unreprodu
cible errors raise questions of accountability (Santoni de Sio and Mecacci 2021), which are particu
larly pressing due to a certain degree of autonomy and scalability. Moreover, an increasing over- 
reliance on AI systems can diminish human oversight in critical contexts (Holzinger, Zatloukal, and 
Müller 2025), and particularly overreliance on generative AI systems may impact cognitive abilities, 
with individuals favouring fast AI-generated solutions over more deliberate reasoning (Zhai, 
Wibowo, and Li 2024).

To tackle these challenges, the field of Responsible AI discusses legal and technical, but primarily 
ethical considerations2 throughout the AI lifecycle (Dignum 2020). These ethical considerations have 
given rise to a new interdisciplinary research field centred on developing technical means to 
implement principles such as fairness, transparency, and privacy in AI systems. The critique of 
these techno-solutionist approaches (Barocas and Selbst 2016; Sloane and Moss 2019) for being 
too narrow and ‘oversimplif[ying] the philosophical field of ethics’ while ‘glorif[ying it] as a desig
nated source of truth about what is right’ (McFadden and Alvarez 2024, 786) recently led to an emer
ging third wave of AI ethics (Bolte and van Wynsberghe 2025; Häußermann and Lütge 2022; Huang 
et al. 2022; Kind 2020; Wegner, Decker, and Leicht-Scholten 2024). The research in this emerging 
third wave highlights structural, organisational, and systemic factors, suggesting that ethical AI prac
tice must encompass more than technical solutions. In this sense, the conversation shifts from creat
ing ethical AI to using AI ethically. While this shift was initially driven primarily by experiences with 
predictive and decision-making systems, it has gained renewed urgency with the rapid diffusion 
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of generative AI, which introduces distinct yet related ethical challenges concerning data privacy and 
consent, stereotyping, and deskilling (Johri, Lindsay, and Qadir 2023). This shift underscores the need 
for a workforce equipped not only with technical expertise but also with the capacity for moral 
reflection and responsible decision-making in the development and deployment of AI systems.

Regulatory frameworks like the EU AI Act (Article 4) explicitly mandate AI literacy in companies. In 
parallel, educational standards like the CDIO Syllabus 3.0 (Malmqvist et al. 2022) and ABET curricula 
(ABET 2024), as well as professional guidelines such as those issued by the Association of German 
Engineers (VDI Verein Deutscher Ingenieure e.V. 2021) emphasise the importance of ethical AI. 
While ethics education is already well-established within engineering curricula (Martin, Conlon, 
and Bowe 2021), dedicated training in AI-specific ethics remains in its infancy (Decker et al. 2024; 
Moreno, Decker, and Leicht-Scholten 2024). However, the demand for such competencies extends 
beyond formal university education. As AI technologies increasingly reshape engineering practice, 
continuous professional development (i.e. lifelong learning and vocational training) becomes essen
tial to ensure that not only students, but also practicing professionals, remain equipped to design 
and use AI responsibly. Current efforts to update curricula must therefore address both academic 
education and professional training, ensuring continuous skill development across career stages.

One’s attitudes correlate with a predisposition for moral behaviour and are integral to moral 
decision-making. Attitudes encompass traits such as an individual’s mindset, motivation, and adap
tability (Allport 1935). Positive attitudes guide the motivation to engage with challenges (White 
1959) and influence one’s self-efficacy (Bandura 1997). Therefore, they can significantly affect 
one’s capacity to apply knowledge and skills responsibly through expectations and interpretative 
frameworks as well as their effectiveness (Katz 1960; Schwarz 2007; Weinert 2001). As Knoth et al. 
(2024, 5) note, ‘competent behaviours may not be performed if the necessary skills are present, 
but personal attitudes counteract performance.’ In the context of Responsible AI, attitudes 
emerge as a necessary prerequisite for moral deliberation and moral behaviour (Walker 2012). 
They can take on many facets, for example, judging the relative importance of ethical principles 
such as fairness, transparency, privacy (Ghotbi, Ho, and Mantello 2022; Kieslich, Keller, and Starke 
2022). They particularly influence one’s adaptability and problem-solving skills, which are prerequi
sites for engaging with ethical questions and moral dilemmas (Ajzen 1985, 1991). Therefore, foster
ing ethical attitudes alongside technical expertise is fundamental to ensuring that engineers are not 
only aware of ethical principles but also committed to applying them in practice.

To facilitate targeted training and education, a better understanding of learners’ attitudes is 
required – both in higher education and in professional contexts. Without reliable tools, it is 
difficult to assess the impact of interventions or monitor progress over time. Therefore, robust assess
ment frameworks are not only necessary for quality assurance in education but also play a key role in 
promoting Responsible AI practices in engineering disciplines. Yet, while some tools measure 
general attitudes toward AI (Grassini 2023; Schepman and Rodway 2020; Sindermann et al. 2021), 
these are not tailored to ethical dimensions. Similarly, existing instruments for moral reasoning in 
engineering (Howland et al. 2024; Zhu et al. 2014) lack specificity for AI ethics. Also, measures for 
assessing attitudes toward AI ethics (Jang, Choi, and Kim 2022) remain too generic for engineer
ing-specific applications.

Knoth et al. (2024) highlight the importance of developing domain-specific AI literacy assessments 
to complement existing generic instruments. While generic AI literacy captures basic knowledge and 
skills relevant across contexts, it does not sufficiently address the specific applications, data types, 
and ethical challenges encountered in professional domains such as engineering. The authors 
argue that domain-specific AI literacy is essential for understanding how AI can be effectively and 
responsibly applied within a given field, taking into account domain-related expertise, practices, 
and regulatory requirements. In engineering, for example, the use cases, data characteristics, and 
potential societal impacts of AI differ significantly from other sectors, therefore necessitating tailored 
assessment approaches. The framework proposed by Knoth et al. (2024) distinguishes between 
generic AI literacy, domain-specific AI literacy, and AI ethics literacy, each measured along cognitive, 
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behavioural, and attitudinal dimensions. This structure enables the development of instruments that 
more accurately reflect the competencies engineers require when working with AI in their specific 
professional environments.

Thus, while Responsible AI is a growing field in engineering, there is currently no domain-specific, 
validated instrument designed to assess engineers’ attitudes toward Responsible AI. This study aims 
to address this gap by developing and validating the RAISE scale to assess Responsible AI Attitudes 
Specific to the Engineering domain, while ensuring applicability across demographic groups (e.g. 
gender, engineering field, employment status). Additionally, we explore whether knowledge 
serves as a predictor for these attitudes, offering insights into how educational and vocational train
ing programmes might be effectively structured to promote Responsible AI attitudes and use across 
both academic and professional settings.

2. Methods and materials

Our item and scale development process followed a three-phase framework, including (1) item 
development, (2) content and face validation, and (3) construct validation through confirmatory 
factor analysis. An overview of the method steps is given in Figure 1. The number of items in 
each phase is depicted in Table 1 below. The following subsections describe this process, the demo
graphics of our sample, and the descriptive and inferential analyses conducted.

2.1. Item development

To develop the items, we used a mixed deductive-inductive approach, as proposed by Boateng et al. 
(2018). Deductively, we started with Jang, Choi, and Kim’s (2022) validated scale for assessing stu
dents’ attitudes toward ethical AI. In their study, they derive five core ethical AI dimensions, 
namely fairness, transparency, non-maleficence, privacy, and responsibility, based on AI ethics guide
lines and literature reviews. Although recent advances in generative AI have intensified public and 

Figure 1. Development and validation steps in the RAISE scale development.
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academic debates about ethical AI since late 2022, the underlying normative dimensions of common 
principles have remained remarkably stable. What has evolved are the manifestations, risk constella
tions, and application contexts of these ethical principles, rather than the principles themselves. For 
instance, issues of stereotyping are discussed in the context of fairness (Xiang 2024), and deepfakes 
and data ownership in the context of privacy (Lee et al. 2024; Lovato et al. 2024). Transparency will be 
critical in addressing issues of hallucinations (Adel and Alani 2025), and non-maleficence and respon
sibility pertain across all systems (e.g. Golda et al. 2024). Furthermore, recent post-genAI scale devel
opment studies with a similar aim, such as Wang et al. (2025), which assess AI ethical reflection, also 
rely on the initial five core ethical dimensions. To capture greater nuance than the initial scale and to 
adapt it to the engineering domain, we inductively refined and expanded Jang, Choi, and Kim’s 
(2022) initial item pool by drawing on literature relevant to each dimension and incorporating 
domain-specific expert input. For fairness, we expanded the item pool by considering the fairness 
dimensions of procedural and distributive fairness by Colquitt and Rodell (2015). This step was 
taken to measure the distributive nature that engineered systems can have on their environment 
and the procedural effects that require consideration during the engineering of those systems. In 
practice, fairness becomes relevant throughout the whole AI lifecycle from design, data collection, 
model selection, and training to deployment and end-of-life procedures. This includes dimensions 
of accessibility, representativeness, correctability, accuracy, decision control, as well as equity and 
equality. Erasmus, Brunet, and Fisher (2021) define transparency through three interconnected con
cepts: explainability, understandability, and interpretability. They co-construct each other: interpret
ability depends on both understandability and explainability. Transparency in practice means 
making design and development decisions, as well as specific outputs of AI systems, visible and 
understandable for the intended users. This openness aims to foster trust, even if providing such 
transparency may sometimes come at the cost of reduced system accuracy. Items for the constructs 
of non-maleficence and privacy are aligned with Jobin, Ienca, and Vayena’s (2019) analysis on AI 
ethics guidelines. Non-maleficence describes that ‘AI should never cause foreseeable or unintentional 
harm’ (Jobin, Ienca, and Vayena 2019, 394). Thus, they argue, non-maleficence includes fostering 
positive outcomes of AI usage; avoiding privacy infringements; prohibiting discrimination; prevent
ing physical, psychological, or sexual harm; as well as maintaining trust in the system. Additionally, 
users should not become victims of skill degradation due to excessive use of AI (e.g. creative skills). 
The adherence to non-maleficence also includes the consideration of dual-use (e.g. for military oper
ations) or misuse cases, as well as security measures against malicious hacking. Privacy, as considered 
by Jobin, Ienca, and Vayena (2019), is a value that many consider a right to be protected. Practically, it 
is discussed in relation to data protection and data security, but it is also bound to concepts of 
freedom and trust. Measures cover a range of categories, including modes of achievement, technical 
measures, further research, transparency, and regulatory approaches. For practitioners, this implies a 
responsibility to consider privacy and undergo training to implement it. Finally, responsibility 
addresses the allocation and assumption of accountability across the AI lifecycle and is particularly 
salient in complex socio-technical systems. Drawing on Santoni de Sio and Mecacci (2021), respon
sibility in the context of AI extends beyond backward-looking liability to encompass forward-looking 
obligations to ensure meaningful human control. This includes clearly defined roles and responsibil
ities among designers, engineers, organisations, and users; the capacity to anticipate and mitigate 
harmful outcomes; and the establishment of organisational structures that enable accountability, 
contestability, and corrective action. In engineering contexts, responsibility thus implies active 
engagement with the societal consequences of AI systems throughout design, deployment, and 
operation.

The process of expanding, refining, and adapting resulted in an initial item pool of 54 items 
(v1): 18 items for fairness, 8 items for transparency, 12 items for non-maleficence, 8 items for 
privacy, and 8 items for responsibility. Reverse-worded items were included to reduce acquies
cence bias.
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2.2. Content and face validation

Content validity was assessed in two expert validation rounds (EVR) with interdisciplinary expert 
panels, and face validity in a group of engineering students.

2.2.1. Content validation
In the first expert validation round (EVR 1), 12 experts assessed the initial 54 items (v1) for relevance 
and clarity using 4-point Likert scales (1 = not relevant/clear, 4 = highly relevant/clear), following 
Yusoff’s (2019) guidelines. The panel was composed of experts in AI, engineering, ethics, and psy
chology/behavioural sciences to ensure comprehensive coverage of all relevant topic areas. To 
reflect this disciplinary diversity, we indicate each expert’s domain in Table A1 (Appendix). Each 
item was accompanied by a domain definition adopted from Jang, Choi, and Kim (2022) and a 
brief explanation of content validity (Guion 1977). Based on qualitative feedback from EVR1, we 
retained positively evaluated items and revised items with comments for improvement. The 
revised version (v2) consisted of 52 items: 18 items for fairness, 8 items for transparency, 10 items 
for non-maleficence, 7 items for privacy, and 9 items for responsibility. We then conducted a 
second expert validation round (EVR 2) with nine additional experts (see Table A1 (Appendix) for 
domain details). Following EVR2, we retained items with an item-level content validity index (I- 
CVI) of ≥ 0.78 for both clarity and relevance. Items with an I-CVI ≥ 0.70 for relevance but < 0.78 for 
clarity were modified, while items with a relevance score below 0.70 were excluded. Based on 
expert input, one item was reclassified from non-maleficence to privacy. This iterative process 
resulted in a 37-item scale (v3), comprising 10 items for fairness, 5 items for transparency, 8 items 
for non-maleficence, 7 items for privacy, and 7 items for responsibility.

2.2.2. Face validation
Following the content validation, the items were analyzed for face validity (FVI) by the target popu
lation on an item- and scale-level, as proposed by Yusoff (2019).

The target population consisted of engineering students enrolled in the Innovation & Diversity 
seminar at RWTH Aachen University. Prior to the seminar, 22 students completed a pre-test of the 
scale and provided open-ended feedback. Subsequently, 21 students participated in a structured 
group discussion on November 7, 2024. The session proceeded in several steps: first, students 
reviewed the item content and scale structure. Next, they examined data distributions to identify 
any problematic response patterns, such as floor or ceiling effects, that might indicate issues with 
item formulation. They then discussed their interpretation of each item, focusing on aspects of inter
pretability, relevance, and clarity to identify any potentially suggestive or biased wording. Finally, 
they made recommendations on whether each item should be retained, revised, or removed. 
Based on this comprehensive feedback, we revised the wording of several items for improved 
clarity and excluded others, resulting in a refined 31-item scale (v4). This version included a balanced 
number of reverse-coded items to reduce response bias and was subsequently used for construct 
validation, as described in the following sections.

2.3. Participants

We collected data on v4 via an online survey administered through SoSci Survey. Participants were 
recruited from 21 German comprehensive universities and universities of applied sciences, as well as 
through professional engineering networks. All participants were informed about the study’s objec
tives, data confidentiality, and the voluntary nature of participation. Data cleaning involved exclud
ing incomplete responses, response time outliers, and cases of patterned responding. Furthermore, 
data cleaning involved identifying and limiting socially desirable responses (Durmaz, Dursun, and 
Kabadayi 2020; Randall and Fernandes 1991). To do so, our survey included the brief social desirability 
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scale containing four yes-no items (Haghighat 2007). As recommended by the authors, we excluded 
responses that were answered positively three or four times (n = 38).

This process yielded 235 complete responses, exceeding the recommended minimum sample 
size of 5–10 participants per item (Hair et al. 2013) and aligning with Jang, Choi, and Kim (2022) 
as an adequate sample size for a confirmatory factor analysis (CFA).

Out of the N = 235 participants, 56 participants identified as female (23.8%), 162 as male (68.9%), 
one as diverse (0.4%), and 16 opted not to disclose their gender (6.8%). The participants’ mean age 
was 26.4 years, ranging from 18 to 64 years, with the largest cohorts being 20–24 years (n = 82, 
34.9%) and 25–29 years (n = 73, 31.1%). Smaller proportions were aged 30–34 (n = 28, 11.9%) and 
35–39 (n = 18, 7.7%). Each of the 5-year age groups between 40 and 64 contained three or four par
ticipants, while six individuals (2.6%) did not report their age. Participants’ disciplinary backgrounds 
reflected diverse engineering fields, with multiple selections permitted. The most common disci
plines were mechanical engineering (n = 69), civil engineering (n = 65), and information technol
ogy-related fields such as computer science and software engineering (n = 61). Further disciplines 
included electrical engineering (n = 35), science and mathematics (n = 24), architecture (n = 10), 
and georesources and materials engineering (n = 9). Additionally, 39 participants selected ‘Other’ 
and provided free-text responses, including environmental engineering, aerospace/aeronautical 
engineering, and data science. Concerning professional status, the majority of participants (n =  
140, 59.6%) were university students, interns, or apprentices. Another 88 participants (37.4%) 
were employed or self-employed, while 7 individuals (3.0%) selected ‘Other.’

2.4. Construct validation through confirmatory factor analysis

The items generated through the iterative process (v4) were psychometrically validated with the 
data from the online survey. To do so, a CFA was initiated using the lavaan R package (Rosseel 
2012). This analysis assessed the extent to which our collected data aligned with our proposed 
five-factor model, comprising sub-factors of fairness, transparency, non-maleficence, privacy, and 
responsibility, as outlined by Jang, Choi, and Kim (2022). We used multiple indices to evaluate the 
model: the comparative fit index (CFI), the root mean square error of approximation (RMSEA), and 
the standardised root mean residual (SRMR) (Kline 2005). These indices were used to judge how 
well the model matched the data. The CFI weighs the proposed model against an independent 
(null) model, adjusting for sample size and complexity. Values above .90 usually indicate an accep
table fit (Hu and Bentler 1999). The RMSEA shows how closely the model’s covariance structure 
approximates that of the population. Scores below .08 are generally viewed as an acceptable fit, 

Table 1. Item counts throughout the three development phases.

Phase
Development 

Step Fairness
Trans- 

parency Non-Maleficence Privacy Responsi-bility ∑
Phase I Item 

Development
18 items 8 items 12 items 8 items 8 items 54 items 

v1
Phase II Content 

Validation 
with EVR 1

18 items 8 items 10 items 7 items 9 items 52 items 
v2

Content 
Validation 
with EVR 2

10 items 5 items 8 items 7 items 7 items 37 items 
v3

Face Validation 8 items 5 items 7 items 6 items 5 items 31 items 
v4

Phase III Construct 
Validation 
using CFA

Summarized in 
the do-no- 
harm scale with 
7 items

3 items Summarized in 
the do-no- 
harm scale with 
7 items

5 items Summarized in 
the do-no- 
harm scale with 
7 items

15 items 
Final 
RAISE 
Scale

Note. EVR stands for Expert Validation Round, CFA for Confirmatory Factor Analysis.
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and scores below .05 are viewed as an excellent fit (Marsh, Hau, and Wen 2004). The SRMR captures 
the average gap between observed and predicted correlations, with figures under .08 indicating a 
good fit (Marsh, Hau, and Wen 2004). To examine internal consistency, we calculated McDonald’s 
omega, which is a more robust alternative to Cronbach’s alpha that is less prone to bias because 
it accounts for cases in which the assumption of tau-equivalence (equal factor loadings for all 
items) is violated (Graham 2006). McDonald’s omega is therefore better suited to congeneric 
scales, where item loadings contribute differently to the total score (e.g. within a CFA) (Lucke 
2005). As with Cronbach’s alpha, McDonald’s omega values of .70 or higher are typically considered 
adequate, while values down to .60 may still be deemed acceptable (Azmi et al. 2024; Shrout 1998).

The item development and validation process is depicted in Table 1.

2.5. Descriptive and inferential analyses

In addition to assessing the instrument’s psychometric properties through CFA, we conducted group 
comparisons and correlational analyses to evaluate the scale’s validity and practical applicability 
further.

First, group comparisons across gender, engineering domain, and professional status allowed us 
to examine whether the scale performs consistently across diverse subpopulations. Such analyses 
contribute to assessing structural stability and provide indications of measurement invariance, 
which is critical for the generalizability of psychometric instruments (Putnick and Bornstein 2016). 
Notable group differences may also reveal whether specific subscales or items are interpreted differ
ently depending on demographic or contextual factors. To select appropriate statistical procedures 
for group comparisons, we first assessed the normality of the data using the Shapiro–Wilk test (Yazici 
and Yolacan 2007). A statistically significant result (p < .05) indicates a deviation from normality. In 
cases where the Shapiro–Wilk test suggested deviations from normality, we additionally considered 
skewness and kurtosis indices as recommended by Kline (2016). These indices were calculated by 
dividing the respective skewness and kurtosis statistics by their standard errors. According to 
them, absolute values exceeding |3| for the skewness index or |10| for the kurtosis index indicate sub
stantial deviations from normality and may call for non-parametric analyses. To examine the assump
tion of homogeneity of variances, we employed Levene’s test (Gastwirth, Gel, and Miao 2009). A non- 
significant result (p > .05) suggests that the variances between groups are sufficiently similar to 
satisfy the assumption of homogeneity of variances. For two-group comparisons (e.g. gender and 
professional status), we then applied independent samples t-tests under the assumption of equal 
variances, provided that both normality and homogeneity of variances could be assumed (Field 
2024). The independent samples t-test evaluates whether the means of two independent groups 
differ significantly. In cases where normality was met but the assumption of homogeneity of var
iances was violated (as indicated by a significant Levene’s test), we employed Welch’s t-test as a 
robust alternative. Unlike the standard t-test, Welch’s t-test adjusts the degrees of freedom to 
account for heterogeneity of variances and yields more accurate Type I error rates under such con
ditions (Ruxton 2006). When normality was violated – regardless of whether homogeneity of var
iances could be assumed – we opted for the Mann–Whitney U test (Nachar 2008). Instead of 
comparing means, the Mann–Whitney U test assesses whether the distributions of ranks differ sys
tematically between two groups. It is particularly appropriate when the scale of measurement is 
ordinal or when the distribution of scores is skewed or contains outliers. A significant result in 
this test indicates that the central tendency of one group is systematically higher or lower than 
the other. Still, it does not allow for direct interpretation in terms of mean differences. For compari
sons involving more than two groups (e.g. across multiple engineering domains), a one-way analysis 
of variance (ANOVA) was conducted, provided that both normality and homogeneity of variances 
were satisfied (Field 2024). A one-way ANOVA tests whether there is a statistically significant differ
ence in means among three or more independent groups by comparing the ratio of between-group 
to within-group variance. A significant F-statistic indicates that at least one group mean differs from 
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the others; however, it does not specify which groups differ. To mitigate the risk of inflated Type I 
error rates due to multiple testing, we applied the Holm correction to all p-values resulting from mul
tiple pairwise comparisons (Holm 1979). The Holm procedure is a sequentially rejective method that 
controls the family-wise error rate more efficiently than the traditional Bonferroni correction by 
adjusting p-values in a stepwise manner. This enables greater statistical power while maintaining 
strict control over false positives.

Second, we explored correlations between participants’ prior AI knowledge, specific Responsible 
AI knowledge, as well as engineering ethics knowledge and their attitudes toward Responsible AI. 
Specifically, we aimed to examine whether familiarity with AI is associated with more reflective or 
ethically aware attitudes. Previous research has shown mixed results in this regard. For example, 
Jang, Choi, and Kim (2022) found that prior AI education had a significant effect on fairness- 
related attitudes, but not on other ethical dimensions. Other studies have suggested that knowledge 
alone does not necessarily influence ethical attitudes (Fabrigar et al. 2006). Our analyses seek to con
tribute further empirical evidence to this debate and to assess the scale’s sensitivity to differences in 
prior AI knowledge. We assessed AI knowledge using three overarching items derived from Pinski 
and Benlian (2023) AI literacy scale, capturing participants’ general self-assessed competence in 
understanding and interacting with AI technologies. Each item was rated on a five-point Likert 
scale ranging from 1 (‘I strongly disagree’) to 5 (‘I strongly agree’), and scores were averaged to 
form a composite AI knowledge score. In addition to that, to measure participants’ self-perceived 
knowledge of Responsible AI principles, five single-item indicators were employed, each correspond
ing to one of the Responsible AI principles of the original scale by Jang, Choi, and Kim (2022) (fair
ness, transparency, privacy, responsibility, and non-maleficence). Participants rated their familiarity 
with each principle on a five-point Likert scale (1 = ‘not knowledgeable at all’, 5 = ‘very knowledge
able’). To account for the merged do-no-harm scale in our final scale, the respective principles (fair
ness, non-maleficence, and responsibility) were averaged to form a composite score (see 3.1.2 for an 
explanation of why these principles were combined). A further single item asked participants to rate 
their overall knowledge of engineering ethics on the same five-point Likert scale. To decide on the 
mode of evaluation correlation, we first examined the distributional characteristics of the involved 
variables. Normality was assessed using the Shapiro–Wilk test (Yazici and Yolacan 2007) as well as 
standardised skewness and kurtosis indices, following the guidelines by Kline (2016). In all of our 
cases, one or both variables showed significant deviations from normality; thus, the Spearman 
rank correlation coefficient was used as a robust non-parametric measure (Field 2024). Visual inspec
tion of scatterplots further supported the decision.

All statistical analyses were conducted using R. Subscale scores were calculated by averaging the 
items within each ethical dimension to enable comparisons and correlation analyses.

3. Results

This section presents the results from the three-stage validation of the instrument, beginning with 
expert-based content validation, followed by confirmatory factor analysis. The second part of this 
chapter contains our descriptive and inferential statistics results related to the final scale.

3.1. Validity of the instrument

The psychometric quality of the developed instrument was assessed by content, face, and construct 
validity.

3.1.1. Content and face validity
Content validity was established through two rounds of expert validation (EVR 1 and EVR 2) involving 
interdisciplinary experts in AI, engineering, ethics, and behavioural sciences. The first round (EVR 1, n  
= 12) qualitatively improved the items (leading to v2), and the second round (EVR 2; n = 9) 
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determined the item pool for face validity (leading to v3). To complement the expert-based assess
ment, face validity was examined with 21 participants from the target population. Through qualitat
ive feedback, group discussions, and suggestions for improvement, items were evaluated regarding 
their comprehensibility, interpretability, and potential for response bias (leading to v4). As a result of 
this iterative validation process, scale v4 comprises a total of 31 items, distributed across the five 
dimensions: fairness (8 items), transparency (5 items), non-maleficence (7 items), privacy (6 items), 
and responsibility (5 items). This version served as the basis for the subsequent CFA.

3.1.2. Construct validity through confirmatory factor analysis
We conducted an initial CFA with the proposed model of fairness, transparency, non-maleficence, 
privacy, and responsibility using the maximum likelihood estimator with robust corrections (MLR). 
However, the model demonstrated poor to mediocre fit to the data: χ²(424) = 857.25, p < .001, CFI  
= .661, RMSEA = .068 (90% CI [.061, .074]), and SRMR = .082. Although the RMSEA is within an accep
table range, the CFI is below the conventional threshold of .90 for good fit.

Therefore, we extracted the standardised factor loadings of all items on their respective factors to 
determine the source of this misfit. Indeed, many items had loadings below .40. CFA factor loadings 
of .40 or higher are typically considered acceptable, particularly in the social sciences. These loadings 
indicate a strong enough association between an observed variable and its underlying latent factor 
to meaningfully contribute to measuring the construct (Stevens 2001). Consequently, we eliminated 
all items with loadings below .40 and reran the CFA. The factors now consisted of the following 
number of items: fairness (2 items), transparency (4 items), non-maleficence (5 items), privacy (5 
items), and responsibility (4 items). Rerunning the CFA with this model specification produced a 

Table 2. Item wordings, means (M), standard deviations (SD), and factor loadings (λ), organised by their respective final subscales 
along with reliabilities (ω) of the subscales.

Items Wordings M SD λ ω

‘Do-No-Harm’ .685
I think that AI systems that I use should consider all stakeholders’ perspectives (e.g. urban 

planning considering residents’ and officials’ perspectives), even if this increases costs and 
time.

3.91 0.99 .528

When using AI systems, I will strive to put it only to good use. 4.29 0.89 .411
I find it important to evaluate whether the AI systems that I use in my engineering work are 

simultaneously used in harmful applications by others.
3.46 1.18 .373

I would only use AI systems in my engineering work if responsibility for the outcomes 
(including potentially harmful ones) is clearly defined.

3.97 0.96 .445

I feel that it is my responsibility to thoroughly assess the possible consequences of using AI 
systems in any of my engineering work, even if this increases required time and costs.

4.19 0.79 .466

When using AI systems in engineering tasks that affect the public, I care about considering 
public concerns even if this increases required time and costs.

4.19 0.86 .632

When using AI systems in engineering tasks that affect the public, I would order external 
audits.

3.64 0.98 .596

‘Transparency’ .771
AI systems that I use in engineering do not have to explain the reasoning behind their 

outcomes. (reversed)
4.24 0.91 .739

In my engineering work, I trust AI systems that cannot explain why they made certain 
decisions. (reversed)

4.05 1.03 .695

AI systems do not have to allow me as an engineer to trace the reasoning behind every 
outcome. (reversed)

4.01 1.04 .749

‘Privacy’ .710
I would use AI systems that lack comprehensive data protection measures that safeguard 

sensitive information. (reversed)
3.82 1.10 .579

It is okay for me to use someone else’s personal data to run AI systems. (reversed) 3.94 1.10 .412
I would only use AI systems in my engineering work if they consider privacy. 3.78 1.06 .648
Privacy training before working with AI systems is essential to me. 3.81 1.00 .527
I am committed to making the extra effort to follow AI security guidelines (such as access 

control and data security) to protect sensitive information and maintain system integrity.
4.14 0.94 .533

Note. All Likert-scaled items (with values 1–5) follow the question ‘What is your opinion on the following statements?’; λ: factor 
loadings of the items on their respective subscales; ω = McDonald’s Omega.
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covariance matrix of latent variables that was not positive definite, indicating that there could be 
very high correlations between variables. Upon closer inspection, we observed that the fairness 
factor strongly correlated with non-maleficence (r = .954) and responsibility (r = .985). Considering 
these findings, we changed our a priori chosen factorial structure, merging the fairness, non-malefi
cence, and responsibility factors into a factor called ‘do-no-harm.’ This new factor consists of the 
items from its previous factors (11 items).

This new model demonstrated an improved, though still suboptimal, fit: χ²(167) = 394.44, p < .001, 
CFI = .760, RMSEA = .08, 90% CI [.069,.090], and SRMR = .082. While the RMSEA and SRMR fall within 
or near acceptable limits, the CFI remains below the commonly recommended threshold of .90, indi
cating room for improvement to the model. Therefore, the next step was to inspect the modification 
indices (Kaplan 1990; Sörbom 1989). Inspection of the modification indices led to the elimination of 
items that were redundant with other items in their scale, had high shared error variance with other 
items, or exhibited cross-loadings on factors to which they were not intended to load. Conversely, 
items that showed higher loadings on other factors to which they were not originally assigned, 
but that were theoretically meaningful, were retained. The final assignment of items to factors, 
their loadings, means, standard deviations, and wording can be found in Table 2.

The final model yielded an acceptable fit: χ²(87) = 134.88, p = .001, CFI = .917, RMSEA = .052 (90% 
CI [.034,.068]), and SRMR = .061. The CFI value meets the commonly recommended threshold 
of ≥ .90, and both the RMSEA and the SRMR fall within the acceptable range. These results 
suggest that the model adequately represents the data. While not optimal, the reliability of each 
resulting subscale was also within an acceptable range: do-no-harm (ω = .69), transparency (ω  
= .77), and privacy (ω = .67). Following the described procedure, we obtained a sound, practical, 
and theoretically meaningful scale that values domain-specificity in the area of AI when measuring 
engineers’ attitudes toward Responsible AI.

3.2. Descriptive and inferential statistics

This section presents the results of conducting descriptive and inferential analyses on 235 responses 
from engineering students and professionals in Germany.

3.2.1. Descriptive statistics
Participant demographics are disclosed in section 2.3. Means, standard deviations, and scale 
reliabilities (McDonald’s ω) for each subscale are reported in Table 2 (see Section 3.1.2). In 
summary, participants generally expressed high agreement with attitudes toward Responsible AI 
across all dimensions. The highest mean was observed for the transparency subscale (M = 4.10), indi
cating that participants strongly valued comprehensibility and explainability in AI systems. The do- 
no-harm subscale followed closely (M = 3.95), indicating a strong concern for mitigating potential 
harm and a straightforward assignment of accountability when using AI. The privacy subscale had 
the lowest mean among the three (M = 3.90), though still reflecting high agreement with data pro
tection and ethical information handling. With all subscale means well above the scale midpoint of 3, 
these results suggest that the participants essentially value Responsible AI, with some variation in 
emphasis across the principles.

3.2.2. Group disparities in attitudes toward responsible AI
To investigate whether attitudes toward Responsible AI differed by gender, professional status, or 
disciplinary domain, we compared both descriptive and inferential statistics.

3.2.2.1. Gender differences. First, we compared responses along the gender dimension. We com
pared responses between women (n = 56) and men (n = 162), excluding participants who selected 
‘diverse’ (n = 1) or preferred not to disclose (n = 16). We acknowledge the limitation that the 
female sample only represents one-third of the male sample – a limitation that is common in 
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engineering (Kahn and Ginther 2017). Descriptively, we find that females scored higher on average 
than males in all dimensions (see Table 3). Standard deviations indicate relatively stable estimates 
across groups. While means suggest gender-based trends in attitudes, this finding could not be 
confirmed statistically.

We first checked for normal distribution of the subscales per group using the Shapiro–Wilk test. For 
do-no-harm, scores indicated deviation from normality both for males (W = .978, p = .010) and females 
(W = .958, p = .047); for privacy, scores indicated deviation from normality for males (W = .965, p  
= .000), but not for females (W = .965, p = .107); and for transparency, both male (W = .916, p < .001) 
and female (W = .858, p < .001) scores indicated deviations from normality. We then computed stan
dardised skewness and kurtosis indices. For the do-no-harm subscale, skewness indices ranged from 
−2.38 (male) to −0.46 (female), and kurtosis indices from 8.49 (male) to 4.57 (female). For transpar
ency, skewness indices were −3.53 (male) and −2.61 (female), with kurtosis indices of 7.05 (male) 
and 3.86 (female). The privacy subscale yielded skewness indices of −2.52 (male) and −1.36 
(female), and kurtosis indices of 7.43 (male) and 4.07 (female). Although some indices exceeded 
the recommended thresholds, the deviations were mild to moderate. Given the sufficiently large 
sample size (N = 235), which supports the robustness of parametric tests against moderate violations 
of normality (Ghasemi and Zahediasl 2012), we conducted tests that assumed normal distributions in 
the subsequent tests. Homogeneity of variances was assessed using Levene’s test. The assumption 
was met for do-no-harm (F(1, 216) = 0.019, p = .892) and transparency (F(1, 216) = 0.510, p = .476), 
but was violated for privacy (F(1, 216) = 4.286, p = .040). Consequently, standard independent 
samples t-tests assuming equal variances were applied for do-no-harm and transparency, while 
Welch’s t-test, which does not assume equal variances (Ruxton 2006), was used for privacy.

Independent samples t-tests revealed no statistically significant gender differences in do-no- 
harm, t(216) = 1.50, p = .134, nor transparency, t(216) = 0.45, p = .656. For privacy, there was a statisti
cally significant difference in the uncorrected test, t(123) = 2.23, p = .028, with female participants 
rating privacy considerations more highly than males. However, after the Holm correction (Holm 
1979), none of the comparisons reached statistical significance (adjusted p-values: .269, .656, and 
.083, respectively). Taken together, the results suggest that there were no statistically significant 
differences between female and male participants in their responses across the three subscales 
after controlling for multiple testing. The data indicate a slight trend toward higher ratings 
among women, particularly on the privacy subscale; however, this difference did not withstand cor
rection for multiple comparisons.

3.2.2.2. Engineering domain differences. Second, we compared potential differences across the 
three most highly represented engineering domains among our respondents, namely civil engineer
ing (n = 62), mechanical engineering (n = 51), and IT-related fields (hereafter referred to as technol
ogy; n = 43). Mean scores for each subscale across the three engineering domains were compared 
(see Table 4). Mechanical engineering scores are higher throughout all subscales, but this could 
not be confirmed statistically.

Table 3. Descriptive statistics by gender.

Subscale Female (n = 56) Male (n = 162)

Do-No-Harm M = 4.05, SD = 0.565 M = 3.92, SD = 0.553
Transparency M = 4.11, SD = 0.904 M = 4.06, SD = 0.805
Privacy M = 4.04, SD = 0.551 M = 3.83, SD = 0.712

Table 4. Descriptive statistics by engineering domain.

Subscale Civil Engineering (n = 62) Mechanical Engineering (n = 51) Technology (n = 43)

Do-No-Harm M = 3.96, SD = 0.567 M = 4.06, SD = 0.551 M = 3.87, SD = 0.647
Transparency M = 4.12, SD = 0.771 M = 4.30, SD = 0.746 M = 4.02, SD = 0.740
Privacy M = 3.80, SD = 0.779 M = 4.07, SD = 0.644 M = 3.87, SD = 0.634
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We first applied the Shapiro-Wilk test within each domain and subscale to examine the assump
tion of normality. The results indicated deviations from normality, particularly for the transparency 
subscale across all domains (p < .01), as well as for privacy in the civil (p = .013) and mechanical 
(p = .043) domains. For the do-no-harm subscale, the Shapiro-Wilk test was not significant in any 
domain (all p > .05), suggesting no statistical evidence against normality. Across all subscales and 
domains, skewness and kurtosis indices remained well within the thresholds, indicating that 
although some deviations from normality were statistically significant, the distributions did not 
exhibit severe skewness or kurtosis. Thus, despite some formal violations detected by the Shapiro- 
Wilk test, the overall distributional characteristics can be considered approximately normal, and 
parametric analyses were deemed appropriate. Homogeneity of variances was tested using 
Levene’s test for each dependent variable. The assumption was met for all subscales: do-no-harm, 
F(2, 153) = 0.56, p = .574; transparency, F(2, 153) = 0.17, p = .842; privacy, F(2, 153) = 1.29, p = .278.

One-way ANOVAs revealed no statistically significant differences between domains on any of the 
three subscales, with results as follows: do-no-harm: F(2, 153) = 1.30, p = .275; transparency: F(2, 153)  
= 1.68, p = .190; privacy: F(2, 153) = 2.13, p = .122. In summary, there were no significant differences in 
participants’ attitudes toward Responsible AI across the three largest engineering domains. 
Although descriptive statistics indicated minor differences in mean scores (with mechanical engin
eering having the highest scores in all three subscales), these did not reach statistical significance in 
any of the subscales.

3.2.2.3. Employment status differences. Lastly, we compared attitudes between engineering stu
dents and practitioners. To do so, we grouped students and interns, henceforth referred to as students 
(n = 140), and employees and self-employed individuals, henceforth referred to as practitioners (n =  
88). Mean scores for each subscale across the two groups were comparable (see Table 5).

The Shapiro-Wilk-test indicated deviations from normality for transparency in both groups (stu
dents: W = 0.896, p < .001; practitioners: W = 0.922, p = .006), as well as for privacy (students: W =  
0.950, p = .013; practitioners: W = 0.953, p = .043). For do-no-harm, the tests showed no significant 
deviation from normality (students: W = 0.964, p = .063; practitioners: W = 0.967, p = .165). To 
further evaluate the extent of non-normality, we examined skewness and kurtosis indices. All sub
scales fell within recommended thresholds, except transparency among students, which showed 
a notable skewness index of −5.09, suggesting substantial non-normality.

Consequently, we used a Mann–Whitney U test to compare groups on the transparency subscale. 
The test revealed a statistically significant difference between students and practitioners (W =  
5113.5, p = .029), with students reporting higher transparency scores. However, this effect did not 
remain significant after Holm correction (p = .112). For the other two subscales (do-no-harm and 
privacy), Levene’s tests confirmed homogeneity of variances across groups (all p > .21), justifying 
the use of independent samples t-tests assuming equal variances. Results showed no significant 
group differences for do-no-harm, t(226) = −0.41, p = .680, nor for privacy, t(226) = −0.21, p = .834.

3.2.3. Disparities in attitudes toward responsible AI based on prior knowledge
To explore whether AI education is associated with more reflective attitudes, we examined corre
lations between participants’ attitudes toward Responsible AI and their AI knowledge, Responsible 
AI knowledge, and engineering ethics knowledge.

Table 5. Descriptive statistics by students and practitioners.

Subscale Students (n = 140) Practitioners (n = 88)

Do-No-Harm M = 3.97, SD = 0.547 M = 3.94, SD = 0.583
Transparency M = 4.22, SD = 0.787 M = 3.99, SD = 0.820
Privacy M = 3.91, SD = 0.685 M = 3.89, SD = 0.695
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3.2.3.1. Correlations with AI knowledge. To assess the relationship between participants’ AI knowl
edge (assessed in terms of AI literacy, see section 2.4) and their attitudes toward Responsible AI, we 
first examined the distribution of the respective variables. Shapiro-Wilk tests indicated significant 
deviations from normality for all variables (do-no-harm: W = 0.979, p = .002; transparency: W =  
0.898, p < .001; privacy: W = 0.962, p < .001). While the AI Literacy scale fell within acceptable 
thresholds (Skewness Index = –0.82; Kurtosis Index = 7.99), the subscales do-no-harm, privacy, and 
particularly transparency (Skewness Index = –4.80) indicated significant non-normal distributions. 
Consequently, non-parametric Spearman rank-order correlations were used to examine associations 
between AI literacy and attitudes toward Responsible AI.

The correlations between AI literacy and the three attitude subscales were weak and not statisti
cally significant: do-no-harm (ρ = −0.040, p = .547), transparency (ρ = −0.059, p = .366), and privacy 
(ρ = −0.034, p = .604). These results suggest that AI literacy is not meaningfully associated with atti
tudes toward Responsible AI in this sample and may not serve as a reliable predictor of alignment 
with Responsible AI principles.

3.2.3.2. Correlations with responsible AI knowledge. To assess the relationship between partici
pants’ Responsible AI knowledge and their attitudes toward Responsible AI, we first examined the dis
tribution of the respective variables. The Shapiro-Wilk test indicated deviations from normality for all 
Responsible AI knowledge indicators (do-no-harm: W = 0.969, p < .001; transparency: W = 0.902, p  
< .001; privacy: W = 0.915, p < .001), as well as for all attitude subscales (see previous section). 
However, skewness and kurtosis indices for the Responsible AI knowledge indicators fell within accep
table thresholds (|Skewness Index| < 3; |Kurtosis Index| < 10), indicating no substantial univariate non- 
normality. Given the ordinal nature of the knowledge indicators and the significant results from the 
Shapiro-Wilk tests, we still opted for non-parametric Spearman rank-order correlations.

The analysis revealed a small but statistically significant positive correlation between Responsible 
AI knowledge related to privacy and attitudes toward privacy (ρ = .169, p = .009), indicating that 
greater self-reported knowledge of privacy-related principles was associated with more favourable 
attitudes toward privacy in AI contexts. In contrast, correlations between knowledge and attitudes 
in the domains of do-no-harm (ρ = .071, p = .278) and transparency (ρ = .045, p = .497) were weak 
and not statistically significant. These results suggest that Responsible AI knowledge may be selec
tively associated with positive attitudes, particularly in domains where public discourse and individ
ual awareness (e.g. privacy) are more pronounced.

3.2.3.3. Correlations with engineering ethics knowledge
The Shapiro–Wilk tests indicated significant deviations from normality for all variables (p < .001 for 
most), which was further supported by the calculated skewness and kurtosis indices. Notably, the 
transparency and do-no-harm subscales showed pronounced departures from normality, while 
the engineering ethics knowledge scale exhibited a slight negative skew (Skewness Index =  
−0.53). Due to these violations of normality assumptions, Spearman rank-order correlations were 
conducted to examine the relationships between engineering ethics knowledge and the three 
ethical attitude subscales.

The results revealed no statistically significant correlations between engineering ethics knowl
edge and the attitude subscales: do-no-harm (ρ = 0.10, p = .11), transparency (ρ = 0.04, p = .59), 
and privacy (ρ = 0.09, p = .16).

4. Discussion

We developed and validated the RAISE scale to assess attitudes toward Responsible AI within the 
engineering domain. Building on the five-factor model proposed by Jang, Choi, and Kim (2022), 
we expanded the item pool based on expert input and conducted a confirmatory factor analysis 
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using data from 235 complete responses from engineering students and practitioners. The confirma
tory factor analysis resulted in a three-factor structure, comprising the subscales do-no-harm, trans
parency, and privacy, resulting in a final scale with 15 items. The model demonstrated acceptable fit 
indices and satisfactory internal consistency for each subscale, providing initial evidence for the 
reliability and construct validity of the instrument. Moreover, the scale performed consistently 
across demographic groups (i.e. gender, engineering domain, and professional status).

4.1. Discussion of the RAISE scale validity

Interestingly, our confirmatory factor analysis suggested a consolidation of the dimensions fairness, 
non-maleficence, and responsibility into a single construct. Observing that all items pointed toward 
the prevention of harm caused by the system or the attribution of responsibility when such harm 
occurs, we consequently labelled this factor the do-no-harm subscale. It captures attitudes toward 
preventing harm by considering diverse stakeholder perspectives, designing AI systems for ben
eficial use, evaluating them for potentially harmful applications, and acknowledging responsibility 
for their outcomes. The transparency subscale addresses the importance of understanding how AI 
systems operate and produce their outputs – an aspect that is not necessarily distinct from harm, 
but rather a legal and moral prerequisite (Decker, Wegner, and Leicht-Scholten 2025). Finally, the 
privacy subscale addresses the protection of sensitive data, both one’s own and that of others.

It is important to be clear about what the scale can and cannot do. Specifically, it aims to measure 
self-reported attitudes toward acting responsibly in contexts where engineers engage with AI 
systems in their academic or professional lives. That is, it reflects the degree to which individuals 
believe that the ethical principles of do-no-harm, transparency, and privacy should be considered. 
Lind (2019) refers to this affective dimension as moral orientation. However, moral orientation is 
not a predictor of moral competence, defined as ‘the ability to solve problems and conflicts 
through deliberation and discussion based on moral principles’ (Lind 2019, 7), and thus reflects a 
more deliberative and skill-based approach. This distinction is crucial: while moral orientation 
reflects what individuals believe should be done, moral competence concerns their ability to apply 
those principles in concrete (real or hypothetical) situations. In this sense, moral orientation may 
be more vulnerable to social desirability bias, capturing what individuals think they should 
believe (e.g. one should not harm) rather than how they would reason through morally complex situ
ations. Moral competence, by contrast, involves the practical application of one’s moral principles 
and requires the cognitive and dialogical skills to engage in ethical reasoning. Moreover, possessing 
moral competence does not necessarily guarantee moral behaviour. Even individuals who know 
what is morally appropriate in general (moral orientation) and in specific cases (moral competence) 
may fail to act accordingly due to other mediating factors, for example, an inability to recognise 
morally salient features of a situation, or fear of negative personal consequences. The scale does 
not capture these behavioural dimensions. This limitation reflects the well-documented intention– 
behaviour gap (Ajzen 1991; Blake 1999), which is particularly salient in moral psychology, where 
context and situational constraints strongly influence action, as illustrated by classic studies such 
as the Good Samaritan experiment (Darley and Batson 1973).

Apart from that, while our initial validation results are promising, several limitations must be 
acknowledged. While we had a satisfactory number of respondents from 21 comprehensive univer
sities and universities of applied sciences in Germany, the distribution among these universities is 
not uniform. Furthermore, the focus on Germany is a limitation in itself. Although the model 
showed configural stability across gender, engineering domain, and employment status, further 
testing could incorporate different cultural contexts, career stages, and other engineering disciplines 
to further establish the scale’s robustness. Second, like all self-report instruments, the scale is poten
tially subject to social desirability bias, which may obscure respondents’ true attitudes (Durmaz, 
Dursun, and Kabadayi 2020; Randall and Fernandes 1991). In particular, attitudes toward Responsible 
AI may be influenced by normative expectations, especially in educational or professional settings 
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where ‘correct’ responses are implicitly known or assumed. We tried to minimise this influence by 
erasing respondents who were shown to be prone to socially desirable answers using the brief 
social desirability scale (Haghighat 2007). Finally, while our factor structure was derived based on 
a theoretically informed item pool that extended the scale by Jang, Choi, and Kim (2022), the CFA 
made major changes, adding an exploratory aspect to our scale development process. Further vali
dation on an independent sample would be worthwhile to confirm the scale’s construct validity and 
practical utility more firmly.

The key distinctions between our scale and other instruments reviewed earlier are as follows: con
trary to established tools for assessing general attitudes toward AI – such as those presented by Grass
ini (2023), Schepman and Rodway (2023), Sindermann et al. (2021), or Stein et al. (2024) – our scale 
explicitly focuses on attitudes toward Responsible AI. While other tools focus on general ethical 
reasoning within engineering – such as those by Zhu et al. (2014) and Howland et al. (2024) – our 
scale explicitly focuses on ethical challenges of AI systems. Lastly, our scale is developed for and vali
dated within the engineering domain, specifying the focus of scales like the Attitudes Toward the 
Ethics of Artificial Intelligence (AT-EAI) scale by Jang, Choi, and Kim (2022). Thus, our scale addresses 
the attitudes toward Responsible AI within engineering, offering a theoretically grounded, domain- 
specific instrument for use in both research and educational practice and evaluation.

4.2. Discussion of the descriptive and inferential statistics

While this study aimed to develop and validate the RAISE scale, the descriptive findings also offer an 
initial insight into how engineering students and professionals in Germany perceive the importance 
of Responsible AI. Overall, the attitudes toward the do-no-harm, transparency, and privacy principles 
were rated positively, suggesting a generally positive attitude toward ethical considerations in AI 
development and use. However, variability in responses, especially in the do-no-harm subscale, indi
cates differences in how respondents prioritise specific concerns. Weak or non-significant corre
lations between attitudes and knowledge suggest that simply knowing about Responsible AI 
principles does not strongly predict the degree to which individuals endorse them as necessary. 
This dissociation supports theoretical models distinguishing between knowing what is ethically 
appropriate and valuing it (Ajzen 1991; Blake 1999). Interestingly, only the relationship between 
privacy knowledge and privacy attitudes showed a statistically significant (albeit small) positive cor
relation, possibly reflecting heightened public awareness of data protection concerns (Hallinan, Frie
dewald, and McCarthy 2012; Trepte et al. 2015). This highlights the importance of fostering targeted 
knowledge in AI ethics, particularly in domains where ethical concerns are more salient to the 
general public, such as data privacy. Furthermore, our findings suggest that general knowledge 
about engineering ethics is not strongly related to ethical attitudes toward the highlighted prin
ciples, emphasising the potential disconnect between ethical awareness in engineering and 
specific ethical stance. This suggests that engineering ethics training may not necessarily lead to 
more favourable ethical stances toward AI technologies.

4.3. Implications for teaching and practice

The scale can be applied in various contexts. First, it can serve as one of the first diagnostic tools in 
educational settings to assess the baseline attitudes of engineering students toward Responsible AI. 
Educators and curriculum designers can use the results to identify blind spots and tailor teaching 
interventions accordingly. This can help identify overly negative (or, in the less prominent case, 
overly positive) attitudes toward Responsible and ethical AI (Martin, Conlon, and Bowe 2021) and 
to intervene to foster recognition of the topic’s complexity. Empirical pre-, inter-, and post-training 
assessments can then inform the design and evaluation of responsibility initiatives in AI training pro
grammes for engineers (Hess and Fore 2017). Second, the scale can be employed in applied research 
to examine how various factors such as disciplinary engineering background, professional 

16 M. MIRSCH ET AL.



experience, or exposure to moral dilemmas influence attitudes toward Responsible AI. Third, the 
scale may be helpful in industry settings for workforce development and training. It provides a struc
tured way for organisations to assess how practitioners perceive key ethical responsibilities related 
to AI, thereby informing the design of corporate training programmes, internal guidelines, work pro
cedures, or industry standards (Prem 2023). However, as sketched above, it is essential to note that 
the scale is not intended to assess actual ethical decision-making competence or behaviour in 
complex AI-related dilemmas. Nor should it be used in isolation to evaluate ethical maturity or pro
fessional integrity. Instead, it should be understood as a complementary tool, providing insights into 
what individuals believe should matter when working with AI.

5. Conclusion

This study introduces and validates the RAISE scale as a new instrument to assess attitudes toward 
Responsible AI among engineering students and professionals. Drawing from theoretical foundations 
in Responsible AI (focused on ethics) and adapting an existing scale to measure attitudes toward 
Responsible AI, we developed a concise, three-factor scale encompassing do-no-harm, transparency, 
and privacy subscales. The RAISE scale exhibits acceptable psychometric properties, demonstrating 
reliability across subgroups and providing initial evidence of construct validity. Beyond its methodo
logical contribution, the scale offers practical utility, allowing educators, researchers, and organisations 
to gauge how engineers value ethical principles in AI contexts. This is particularly relevant in an era 
when AI technologies are rapidly transforming engineering practices and raising new ethical chal
lenges. Understanding and supporting engineers’ moral orientation is a foundational step toward fos
tering a culture of Responsible AI development and use. Future research should investigate how the 
RAISE scale performs across cultural contexts and over time, as well as its predictive value in relation to 
ethical decision-making or behaviour in real-world scenarios. Longitudinal studies could investigate 
how ethical attitudes evolve throughout academic training or professional experience. Additionally, 
integrating the scale into intervention studies may help identify which pedagogical strategies most 
effectively foster Responsible AI engagement among future engineers.

Notes
1. In this paper, we refer to the AI in the broadest scope following the OECD updated working definition: ‘An AI 

system is a machine-based system that, for explicit or implicit objectives, infers, from the input it receives, 
how to generate outputs such as predictions, content, recommendations, or decisions that can influence phys
ical or virtual environments. Different AI systems vary in their levels of autonomy and adaptiveness after deploy
ment.’ OECD (2024).

2. While the term Responsible AI originated from addressing ethical implications, it has since been watered down. 
In the context of this paper, we will use the term primarily to address ethical aspects.
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Appendix

Table A1.  Panel of experts in EVR 1 and EVR 2, with respective area of expertise.

Round Profession Area of Expertise

AI Engineering Ethics Psychology / Behavioural Sciences
EVR 1 Researcher x x

Researcher x
Graduate Student x x
Researcher x
Researcher x
Practitioner x
Researcher x
not given x x x
Researcher x x
Researcher x x
Practitioner x
not given x x

EVR 2 Researcher x
Consultant x x
Researcher x x
Researcher x
Practitioner x
Practitioner x
Practitioner x
not given x x x
not given x x x x
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