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Vorwort des Herausgebers

Die Entwicklung und Erforschung hypoplastischer Stoffmodelle, die vor nahezu fünfzig

Jahren am Institut für Bodenmechanik und Felsmechanik begonnen wurden, stellen einen

entscheidenden Beitrag zur ganzheitlichen Modellierung des Bodenverhaltens in der Geo-

technik dar. Diese ersten Arbeiten haben in den vergangenen Jahrzehnten die boden-

mechanische Stoffmodellierung nachhaltig geprägt und international Maßstäbe gesetzt.

Die vorliegende Dissertation schließt in überragender Weise an diese Entwicklungen an

und führt sie inhaltlich wie methodisch konsequent fort. Trotz der zahlreichen Vorteile

hypoplastischer Stoffmodelle sind sich viele Anwender ihrer Grenzen bislang nur unzurei-

chend bewusst. Vor diesem Hintergrund beginnt die Arbeit mit einer systematischen Anal-

yse teils bekannter, teils bislang wenig beachteter Defizite der Hypoplastizität nach von

Wolffersdorff sowie deren Erweiterung zur Beschreibung des Bodenverhaltens bei kleinen

Dehnungen im Rahmen des Konzepts der intergranularen Dehnung nach Niemunis und

Herle (1997).

Aufbauend darauf wird das Konzept der generalisierten intergranularen Dehnung entwick-

elt, das sich zwar an das klassische Konzept anlehnt, dieses jedoch durch eine konsistente

Umformulierung entscheidend weiterentwickelt.

Mit der Entwicklung der modifizierten Hypoplastizität in Kombination mit der gene-

ralisierten intergranularen Dehnung gelingt es dem Autor, die mathematische Struk-

tur hypoplastischer Modelle gezielt zu erweitern und insbesondere asymptotische Span-

nungszustände explizit zu definieren. Das Modell MHP+GIS zeichnet sich durch eine hohe

mathematische Reife aus und stellt einen wichtigen Meilenstein für zukünftige Modell-

entwicklungen dar.

Die Erweiterung des hypoplastischen Grundmodells durch die Kombination aus generali-

sierter intergranularer Dehnung und der anisotropen Critical State Theory stellt einen

weiteren bedeutenden Beitrag dieser Arbeit dar. Mit HP+GIS+ACST gelingt es, die

Rolle anisotroper Mikrostrukturentwicklungen konsistent in den hypoplastischen Modell-

rahmen zu integrieren. Besonders überzeugend ist die Fähigkeit des Modells, zyklische

Belastungsvorgänge unter undrainierten Bedingungen differenziert zu erfassen.

Mit der Neohypoplastizität in Kombination mit der generalisierten intergranularen Deh-

nung wird schließlich ein eigenständiges, neuartiges Stoffmodell vorgestellt, das einen

wesentlichen Fortschritt gegenüber klassischen hypoplastischen Ansätzen markiert. Die

Integration hyperelastischer Steifigkeit, zustandsabhängiger Materialfunktionen sowie an-

isotroper Effekte führt zu einer deutlich realistischeren Abbildung sowohl monotoner als

auch zyklischer Prozesse. Was diese Arbeit in besonderer Weise auszeichnet, ist die



Verbindung großer theoretischer Tiefe mit einer außergewöhnlich klaren und struktu-

rierten Darstellung. Hochkomplexe mathematische Zusammenhänge werden systematisch

hergeleitet und konsequent im Kontext ihrer physikalischen Bedeutung erläutert. Die

mathematische Beschreibung des komplexen mechanischen Verhaltens granularer Ma-

terialien unter variierenden Spannungs- und Verformungszuständen erfordert eine sel-

tene Kombination aus physikalischem Verständnis, mathematischer Präzision und experi-

menteller Intuition. Mit der vorliegenden Dissertation hat Herr Dr. Luis Mugele einen

herausragenden Beitrag zu diesem anspruchsvollen Forschungsfeld geleistet. Es ist mir

eine große Freude, diese wissenschaftliche Arbeit der Fachöffentlichkeit vorzustellen. Ich

bin überzeugt, dass sie sowohl für die theoretische Weiterentwicklung konstitutiver Mo-

delle als auch für deren praktische Anwendung in der Geotechnik von nachhaltigem Wert

sein wird.

Prof. Dr.-Ing. Hans Henning Stutz



Vorwort des Verfassers
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beiters am IBF. Diese führte letztlich zur Ehre, mit dem vorliegenden Schriftstück zur
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Motivation.

Mein größter Dank gilt Herrn Prof. Dr.-Ing. Hans Henning Stutz für die vertrauensvolle
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erenden Gespräche und das kollegiale Miteinander bleiben mir in bester Erinnerung.

Zuletzt danke ich meiner geliebten Partnerin Kathrin. Deine Liebe, deine Geduld und

dein Vertrauen relativieren so vieles, auch diese Arbeit.

Luis Mugele



Kurzfassung

Die ganzheitliche konstitutive Beschreibung des mechanischen Verhaltens granularer Bö-
den mittels entsprechender Stoffmodelle stellt seit Jahrzehnten eines der zentralen For-
schungsthemen der Bodenmechanik dar. Insbesondere fortgeschrittene elasto-plastische
und hypoplastische Modelle werden heutzutage weltweit für die Simulation monotoner und
zyklischer Verformungen von Boden eingesetzt. Wenngleich die Qualität des Stoffmodells
entscheidend für die Aussagekraft geotechnischer Simulationen ist, stellen diese Modelle je-
doch stets nur eine begründete Näherung des realen Bodenverhaltens dar und können letz-
teres nie exakt abbilden. Im Zuge des Strebens nach verbesserten Tragfähigkeitsabschät-
zungen, vor allem aber nach optimierten Gebrauchstauglichkeitsbetrachtungen, werden
daher kontinuierlich fortgeschrittenere Stoffmodelle entwickelt. Gegenwärtig liegt der Fo-
kus dabei oft auf der Simulation zyklischer Verformungen und der Berücksichtigung der
sich entwickelnden anisotropen Mikrostruktur.

Die vorliegende Arbeit zielt darauf ab, bestehende hypoplastische Stoffmodelle primär
im Hinblick auf die oben genannten Effekte zu untersuchen und weiterzuentwickeln. Als
Referenzmodell dient das etablierte hypoplastische Modell nach von Wolffersdorff (HP)
mit der Erweiterung der intergranularen Dehnung (IS) nach Niemunis und Herle. Das
gekoppelte Modell der HP+IS kann dabei grundsätzlich monotone, aber auch zyklische
Verformungen von Boden abbilden. Zunächst wird dieses Modell eingehend analysiert,
wobei sowohl theoretische als auch praktische Schwachstellen des Basismodells (HP) und
seiner Erweiterung (IS) systematisch diskutiert werden.

Zur Überwindung nach wie vor bestehender Defizite dieses Referenzmodells der HP+IS
konnten im Rahmen der vorliegenden Dissertation drei neue hypoplastische Stoffmodelle
entwickelt werden. Die Modelle basieren auf dem neu eingeführten Konzept der generali-
sierten intergranularen Dehnung (GIS), welches letztlich eine mathematische Neuinterpre-
tation des originalen IS-Konzepts darstellt. Dieses Erweiterungsmodell kann die Simulati-
on zyklischer Verformungen im Vergleich zum originalen IS-Konzept erheblich verbessern.
Unter anderem verhindert das GIS-Konzept das sog. Overshooting und ermöglicht eine
realistischere Simulation von Akkumulationseffekten.

Das erste Modell, die HP+GIS+ACST, kombiniert die HP als Basismodell mit der Theorie
des anisotropen kritischen Zustands (ACST) zur konstitutiven Berücksichtigung einer sich
entwickelnden anisotropen Mikrostruktur und verhindert, aufgrund einer Kopplung mit
dem GIS-Konzept, das Overshooting der gesamten asymptotischen Zustandsoberfläche.
Das zweite Modell, die modifizierte Hypoplastizität (MHP) in Kombination mit dem
GIS-Konzept (MHP+GIS), ist ein hypoplastisches Stoffmodell für Sand, welches erstmals
mit dem explizit definierten Tensor A ausgedrückt werden kann. Das dritte Modell, die
NHP+GIS, verwendet mit der Neohypoplastizität (NHP) ein grundlegend neues hypo-
plastisches Basismodell für die Kopplung mit dem GIS-Konzept. Die NHP wurde zu einer
nutzbaren Version weiterentwickelt. Sie verbessert unter anderem die Modellierung von
Dilatanzeffekten in dichten Böden und verhindert das für Sand unzulässige Auftreten von
Zugspannungszuständen. Der Vergleich von Elementsimulationen der entwickelten Stoff-
modelle unter anderem mit realen Labordaten von verschiedenen Sanden demonstriert die
Vorteile, aber auch die Anwendungsgrenzen der neuen hypoplastischen Formulierungen.





Abstract

The comprehensive constitutive modeling of the mechanical behavior of granular soils
using appropriate constitutive models has been one of the major research topics in soil
mechanics for decades. In particular, advanced elasto-plastic and hypoplastic models are
widely used nowadays to simulate both monotonic and cyclic deformations of soils. These
models always represent a well-founded approximation of real soil behavior and can never
reproduce it exactly. However, the quality of the constitutive model is crucial for the relia-
bility of geotechnical simulations. In pursuit of improved predictions of bearing capacity
and, more importantly, serviceability, more sophisticated constitutive models are being
developed. Current research focuses particularly on the simulation of cyclic deformations
and the consideration of an evolving anisotropic microstructure.

This work aims to investigate and further develop existing hypoplastic constitutive models,
specifically with regard to the two effects mentioned above. The widely used hypoplastic
model after von Wolffersdorff (HP), extended by the intergranular strain concept (IS)
introduced by Niemunis and Herle, is used as reference model. The coupled HP+IS model
can basically represent monotonic as well as cyclic deformations of soil. First, this model
is carefully analyzed, whereby both theoretical and practical shortcomings of the basic
model (HP) and its extension (IS) are systematically discussed.

To overcome the remaining shortcomings of this reference model HP+IS, three novel hy-
poplastic constitutive models for sand were developed in this thesis. The models are based
on the proposed concept of the generalized intergranular strain (GIS), which represents
a mathematical reinterpretation of the original IS concept. This extension model can
significantly improve the simulation of cyclic deformations compared to the original IS
approach. Among other advantages, the GIS concept prevents overshooting and enables
a more realistic simulation of accumulation effects.

The first model, the HP+GIS+ACST, combines the HP as the basic model with the ani-
sotropic critical state theory (ACST) to consider an evolving anisotropic microstructure
and, due to a coupling with the GIS concept, prevents overshooting of the entire asympto-
tic state surface. The second model, the modified hypoplasticity (MHP) in combination
with the GIS concept (MHP+GIS), is a hypoplastic constitutive model for sand that can
be written for the first time using the explicitly defined tensor A. The third model, the
NHP+GIS, uses the neohypoplasticity (NHP) as a novel hypoplastic basic model for the
coupling with the GIS concept. The NHP has been further developed into a practically
applicable version and improves the modeling of dilatancy in dense soils and also prevents
the inadmissible occurrence of tensile stress states. A comparison of a large number of
element simulations using the developed constitutive models including experimental data
from various sands demonstrates both the advantages and the application limitations of
the novel hypoplastic formulations introduced within this thesis.
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Notation

Zu Beginn sind einige Hinweise bezüglich der in der vorliegenden Arbeit verwendeten
Notation erforderlich. Sofern nicht besonders gekennzeichnet, wird in dieser Arbeit die
mechanische Vorzeichenkonvention verwendet. Demzufolge sind Druckspannungen und
Kompressionsverformungen negativ. Im Rahmen dieser Arbeit sind skalare Größen in Nor-
malschrift (z.B. e) dargestellt, während Tensoren erster und zweiter Stufe in der symboli-
schen Schreibweise fett (z.B. v bzw. σ) und Tensoren vierter Stufe in Sans-Serif (z.B. L)
Schrift geschrieben sind. In Indexnotation werden die skalaren Komponenten eines Tensors
beliebiger Stufe in Normalschrift mit entsprechenden Indizes dargestellt (z.B. ε12). Inner-
halb eines Summanden wird über doppelt auftretende sog. stumme Indizes von 1 bis 3
summiert (Einsteinsche Summenkonvention [34]).

Eine tensorielle Gleichung mit einem oder zwei freien Indizes kann als ein System von
drei bzw. neun skalaren Gleichungen betrachtet werden. Das Kronecker-Symbol δij und
das Permutationssymbol eijk werden verwendet. Das Symbol · steht für die Multiplikation
mit einem stummen Index (einfache Kontraktion =̂ Verjüngung). Zum Beispiel kann das
Skalarprodukt zweier Vektoren als c = a · b bzw. als c = akbk geschrieben werden. Die
Multiplikation mit zwei stummen Indizes (doppelte Kontraktion) wird mit einem Dop-
pelpunkt : dargestellt, zum Beispiel entspricht c = A : B der Schreibweise c = AijBij,
wobei tr(X) bzw. Xkk die Spur eines Tensors (skalare Größe) kennzeichnet. C = AB bzw.
Cijkl = AijBkl bezeichnet das dyadische Produkt, welches ohne ⊗ geschrieben wird. ⊔−1

kennzeichnet einen invertierten und ⊔T einen transponierten Tensor. Der Ausdruck (⊔)ij
ist ein Operator, der die Komponente (i, j) aus dem Tensor ⊔ extrahiert, zum Beispiel
(σ · σ)ij = TikTkj. Der Tensor vierter Stufe Jijkl = δikδjl und sein symmetrisierender Teil
Iijkl = 1/2 (δikδjl + δilδjk) werden verwendet. Der Tensor I ist singulär, stellt jedoch für
symmetrische Argumente X den Identitätsoperator dar, sodass X = I : X gilt. σn wird
als eine Sequenz von n− 1 Multiplikationen σ · σ . . .σ verstanden.

Die euklidische Norm eines Tensors ⊔ wird mit ∥ ⊔ ∥ geschrieben und normalisierte
Größen sind durch ⊔⃗ = ⊔/∥ ⊔ ∥ gekennzeichnet. Für die Macaulay-Klammern gilt ⟨⊔⟩ =
1/2(⊔+ ∥ ⊔ ∥). Der deviatorische (spurlose) Teil eines Tensors ⊔ wird durch einen Stern
⊔∗ gekennzeichnet, z.B. σ∗ = σ − 1/31 tr(σ), wobei (1)ij = δij gilt.

Die Proportionalität von Tensoren wird durch eine Tilde dargestellt, z.B. σ ∝ ε. Das
Symbol ⊔̂ = ⊔/ tr(⊔) bezeichnet den Tensor geteilt durch seine Spur, zum Beispiel
σ̂ = σ/ tr(σ). Materielle Zeitableitungen werden mit ⊔̇ gekennzeichnet und räumliche
Ableitungen werden mittels einer Komma-Notation kurz dargestellt, z.B. a1,2 = ∂a1/∂x2.

In der Darstellung der verschiedenen Stoffmodelle werden Stoffmodellparameter in blau
hervorgehoben.





Kapitel 1

Einleitung

1.1 Relevanz von Stoffmodellen in der Geotechnik

Obwohl die praktische Bedeutung der Steifigkeit und der Festigkeit von Boden bereits von
antiken Baumeistern berücksichtigt werden musste (natürlich in stark vereinfachter An-
wendung), gilt die Bodenmechanik heutzutage als eine der jüngeren technischen Wissen-
schaften. Seit der Geburtsstunde der modernen Bodenmechanik, die auf Arbeit von Karl
von Terzaghi im Jahr 1925 [170] datiert werden kann, beschäftigen sich Generationen von
Wissenschaftler/innen mit der konstitutiven Modellierung des experimentell beobachteten
mechanischen Verhaltens von Boden, meist unter Zuhilfenahme mathematischer Metho-
den. Die daraus resultierenden mathematischen Formulierungen werden als Stoffmodelle
bezeichnet. Im Kern versuchen alle Stoffmodelle für Boden jene Steifigkeit und Festig-
keit zu beschreiben, die bereits die genannten antiken Baumeister berücksichtigt haben.
Dies kann vollumfänglich jedoch nur auf Grundlage eines ganzheitlichen physikalischen
Verständnisses des komplexen mechanischen Bodenverhaltens gelingen. Das Ziel der an-
dauernden Stoffmodellentwicklung besteht daher zum einen in dem vertieften Verständnis
des mechanischen Verhaltens von Boden und zum anderen darin, geotechnische Konstruk-
tionen (z.B. Tunnel, Stützbauwerke, Flach- und Tiefgründungen, Baugruben, Böschungen,
Dammbauwerke usw.) im Hinblick auf die Tragfähigkeit und die Gebrauchstauglichkeit
möglichst effizient zu dimensionieren. Die Anwendung fortgeschrittener Stoffmodelle kann
daher entscheidend sowohl zur Beantwortung wissenschaftlicher Fragestellungen als auch
praktischer Herausforderungen beitragen.

Interessanterweise können die für Boden entwickelten Stoffmodelle auch für Aufgaben
verwendet werden, die nicht unbedingt dem klassischen Bauingenieurwesen zugeordnet
werden können. Fortgeschrittene Stoffmodelle für Sand können beispielsweise auch auf
viele andere granulare Medien (Zucker, Salz usw.) übertragen werden, vorausgesetzt, der
jeweilige Maßstab erlaubt weiterhin eine kontinuumsmechanische Betrachtung. Bei letz-
terer werden nicht einzelne diskrete Körner, sondern ein Korngefüge aus einer Vielzahl
einzelner Körner betrachtet. Die moderne Stoffmodellentwicklung bedient sich dabei der
Werkzeuge der Mathematik und der Kontinuumsmechanik.

1
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Ungeachtet des skizzierten Fortschritts in den verfügbaren Methoden bestehen nach wie
vor große Schwierigkeiten in der zutreffenden konstitutiven Beschreibung des mechani-
schen Bodenverhaltens. Ursächlich hierfür ist schlicht die Komplexität des Materials Bo-
den. Dessen mechanisches Verhalten zeichnet sich selbst bei einer vermeintlich trivialen
monotonen Belastung und gegebenenfalls wenigen Belastungsumkehrungen durch ausge-
prägte nichtlineare Effekte wie beispielsweise Dichte- und Druckabhängigkeiten (Pykno-
tropie und Barotropie) aus. Hinzu kommen Abhängigkeiten von der Verformungsgeschich-
te unter Berücksichtigung der zyklischen Vorbelastung sowie eine erhöhte Steifigkeit infol-
ge einer Belastungsumkehr bzw. zu Beginn einer Belastung (engl. small strain stiffness).
Zudem zeigt sich im Boden infolge zyklischer Belastung ein hysteretisches und kumula-
tives Verhalten. Ebenso können zeitabhängige (viskose) Effekte, welche sich in Kriech-
und Relaxationsprozessen sowie Alterungseffekten manifestieren, relevant sein. Bei al-
len Bemühungen zur Verbesserung bestehender und zur Entwicklung neuer Modelle, also
auch beim Lesen der vorliegenden Arbeit, sei der Leser daher an die Worte von Prof. Box
erinnert:

Essentially, all models are wrong, but some are useful.

G. E. P. Box

Abbildung 1.1 zeigt exemplarisch einige Anwendungsfälle, in denen eine zyklische und
im Allgemeinen komplexe Beanspruchung des Bodens vorliegt. Infolge einer induzier-
ten zyklischen Verformung des Bodens kann ein Verdichtungseffekt erzielt werden. Dies
wird beispielsweise bei der Rütteldruckverdichtung, wie in Abbildung 1.1a dargestellt,
genutzt, um die bautechnischen Eigenschaften des Baugrunds zu verbessern [62]. Auf ei-
nem so bautechnisch ertüchtigten Baugrund kann beispielsweise eine Flachgründung von
Windenergieanlagen erfolgen, welche im Laufe ihrer Lebensdauer infolge der millionen-
fach wechselnden Windbeanspruchung (Richtung, Frequenz und Amplitude) hochzyklisch
beansprucht wird. Dies kann zu sich im Laufe der Zeit akkumulierenden Setzungen führen
[188]. Im Fall von Offshore-Windenergieanlagen, siehe Abbildung 1.1b, überlagern in Rich-
tung, Frequenz und Amplitude variable Wellenbeanspruchungen die Windeinwirkungen.
Gegenwärtig sind die meisten Offshore-Windenergieanlagen auf Monopiles (Einzelpfähle)
gegründet [58, 147, 157]. Deren Installation erfolgt meist schlagend, wodurch bereits in
der Bauphase erhebliche zyklische Verformungen auftreten. Die in Zukunft unter ande-
rem aus Windenergie oder Photovoltaikanlagen in großem Maßstab gewonnene erneuer-
bare elektrische Energie muss teilweise zwischengespeichert werden, um Variabilität in
der Stromproduktion ausgleichen zu können. Das neuartige Konzept der geotechnischen
gravitativen Energiespeicherung (GGES), siehe Abbildung 1.1c, stellt dabei eine innovati-
ve Möglichkeit der Energiespeicherung dar, bei der große Energiekapazitäten bei geringen
Energieverlusten erreicht werden können. Der überlagernde Boden erfährt bei der GGES
zyklische Verformungen, weshalb das mechanische Verhalten des gesamten GGES-Systems
nur mittels fortgeschrittener Stoffmodelle betrachtet werden kann [103]. Zuletzt können
zyklische Verformungen des Bodens beispielsweise während eines Erdbebens zum Verlust
der effektiven Spannungen, der sogenannten Bodenverflüssigung, führen. Der resultierende
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1.7 Vielfalt in der Geotechnik 15

Abb. 1.39 Sandvulkan Abb. 1.40 Schlammvulkan14

Abb. 1.41 Krater eines Sandvulkans. Sandvulkane erscheinen auf der Oberfläche von ver-
flüssigten Bodenschichten und zeugen von vergangener Verflüssigung.

1.7 Vielfalt in der Geotechnik

Besonders auffällig ist die Vielfalt der Geotechnik, da sie die gesamte Spanne zwi-
schen Theorie und Praxis überbrücken muss. Die Geotechnik befasst sich nicht nur
mit Strukturen im Untergrund wie Gründungen, Böschungssicherung, Herstellung
von Dämmen, Straßen, Eisenbahnen, Kanälen, Tunneln usw., sondern auch mit der
physikalischen und mathematischen Untersuchung der Geomaterialien und ihrer re-
levanten Eigenschaften. Geotechnik umfasst also eine Reihe von Spezialisierungen
wie:

• Entwicklung und Untersuchung von mathematischen Stoffgesetzen für Geoma-
terialien

• Entwurf von Konstruktionen im Boden
• Bodendynamik
• Messtechnik, Feld- und Laborversuche

e)

Abbildung 1.1: Ausgewählte Beispiele des komplexen mechanischen Verhaltens granu-

larer Böden, primär infolge zyklischer Belastung: a) Baugrundverbesserung mittels des

Rütteldruckverfahrens [43], b) Offshore-Windenergieanlage [143], c) geotechnische gravitative

Energiespeicherung (GGES) [103, 161], d) Bauwerksversagen aufgrund einer Bodenverflüssigung

infolge eines Erdbebens 1964 in Niigata (Japan) [131] und e) Sandvulkan, welcher durch Poren-

wasserüberdrücke im Boden entstehen kann [71]

Verlust der Schubsteifigkeit des Bodens kann in Tragfähigkeitsverlusten von Gründungen
resultieren, wie in Abbildung 1.1d am Beispiel des Erdbebens 1964 im japanischen Nii-
gata gezeigt ist. Der Abbau der effektiven Spannungen infolge der zyklischen und nahezu
volumenkonstanten Verformungen ist dabei ursächlich, der Porenwasserdruckaufbau die
Folge. Letzterer kann jedoch zu interessanten Effekten führen, wie beispielsweise einem
in Abbildung 1.1e gezeigten Sandvulkan. Zur Modellierung bzw. zum Verständnis dieser
und weiterer komplexer bodenmechanischer Effekte bzw. geotechnischen Aufgaben sind
fortgeschrittene Stoffmodelle unumgänglich.

1.2 Das mechanische Verhalten von Boden

Die vorliegende Arbeit legt ihren Fokus auf die mathematische Beschreibung des me-
chanischen Bodenverhaltens. Zunächst lässt sich das Verhalten von Boden jedoch auch
qualitativ beschreiben. Im Fokus steht dabei grobkörniger Boden (Sand und Kies), welcher
auch als granulares Medium oder Psammoid [48] bezeichnet werden kann und in guter
Näherung ein ratenunabhängiges mechanisches Verhalten aufweist. Feinkörnige, plasti-
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Abbildung 1.2: Schematisches mechanisches Verhalten von Boden infolge eines monotonen

Triaxialversuchs für eine lockere und eine dichte Probe: pq-, εaq-, εae- und pe-Diagramm: a)

drainierter Fall (modifiziert aus [109]) und b) undrainierter Fall

sche Böden, auch Peloide [48], können hingegen ein teils ausgeprägtes ratenabhängiges
Verhalten zeigen und finden in dieser Arbeit nur untergeordnete Berücksichtigung.

Die im Folgenden betrachteten Versuche werden als Elementversuche interpretiert. Bei
einem Elementversuch liegen theoretisch nur homogene Felder und keine räumlichen Gra-
dienten der Zustandsvariablen vor. Experimentell existiert jedoch kein absolut homoge-
ner Elementversuch. Beispielweise führt Reibung an den Probenrändern zu Gradienten
im Spannungsfeld. Außerdem bilden sich bereits relativ früh im Experiment Scherfugen
oder Scherfugenmuster, also Bereiche mit lokalisierter Dehnung und erhöhter Porosität
[27, 130].

Das grundlegende mechanische Verhalten eines granularen Mediums infolge eines monoto-
nen drainierten triaxialen Kompressionsversuchs (axialsymmetrisch) ist in Abbildung 1.2a
dargestellt. Der Versuch stellt eine homogene Scherung des betrachteten Bodenelements
dar, bei der sich der Dehnungspfad infolge eines vorgegebenen effektiven Spannungspfades
einstellt. Bei der üblicherweise gewählten Versuchsdurchführung an gesättigten Proben
werden dabei keine Änderungen des Porenwasserdrucks pf gemessen. Infolge der monoto-
nen Belastung entlang eines vorgegebenen effektiven Spannungspfades (im pq-Diagramm1

mit einer Neigung von 1/3) zeigt sich zunächst die deutliche Dichteabhängigkeit. Dichte
Proben erreichen eine Peak-Festigkeit (maximale Deviatorspannung q, Peak-Reibungswin-
kel φPeak), während lockere Proben ohne Peak-Festigkeit direkt die residuale (asympto-
tische) Festigkeit anstreben. Im pq-Diagramm wird asymptotisch ein Zustand auf der
kritischen Zustandslinie (engl. critical state line (CSL)) erreicht, welche von dichten Pro-
ben zuvor übertroffen wurde. Bei Betrachtung der Deviatorspannung q in Abhängigkeit
von der axialen Dehnung εa zeigt sich, dass dichte Proben zu Beginn der Scherung ei-
ne höhere Steifigkeit aufweisen. Die im Allgemeinen als Dilatanz bezeichnete irreversible

1Die Spannungsinvarianten p (mittlerer effektiver Druck) und q (Deviatorspannung) werden in Kapi-

tel 2 eingeführt.
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Volumenänderung infolge einer Scherung umfasst kontraktantes (Volumenreduktion) und
dilatantes (Volumenvergrößerung) Verhalten. Zu Beginn einer jeden Scherung, ausgehend
von einem isotropen Spannungszustand, zeigt sich zunächst ein kontraktantes Verhalten
(Verdichtung), wie im Verlauf der Porenzahl e in Abhängigkeit von der axialen Deh-
nung zu erkennen ist. Lockere Proben zeigen während der gesamten Belastung ein rein
kontraktantes Verhalten, wenngleich die Kontraktanzrate abnimmt und asymptotisch die
kritische Porenzahl ec erreicht wird. Dichte Proben hingegen zeigen nach der anfänglichen
Kontraktanz eine erneute Volumenvergrößerung (Dilatanz). Auch hier wird asymptotisch
die kritische Porenzahl ec angestrebt. Eine Probe kann sich bei gleicher Porenzahl e in
Abhängigkeit des mittleren effektiven Drucks p entweder wie ein lockerer oder wie eine
dichter Boden verhalten. Die Grenze zwischen diesen beiden Bereichen wird durch die
CSL im ep-Kompressionsdiagramm beschrieben. Zusätzlich sind Nichttrivialitäten, wie
beispielsweise der Kornbruch, also das Versagen einzelner Körner bei großen effektiven
Drücken, bei der Diskussion von Kompressionsbeziehungen zu erwähnen. Die asympto-
tisch erreichten Werte sind bei einem monotonen drainierten Triaxialversuch unabhängig
von der initialen Dichte.

Abbildung 1.2b zeigt einen monotonen Triaxialversuch unter undrainierten Bedingungen.
Bei undrainierten Versuchen ist der Dehnungspfad vorgegeben, sodass sich ein effekti-
ver Spannungspfad einstellt. Dieser ist infolge von Kontraktanz- und Dilatanzeffekten im
pq-Diagramm gekrümmt. Porenzahländerungen (volumetrische Verformungen) sind bei
isochoren Bedingungen theoretisch ausgeschlossen, wenngleich in realen Experimenten
solche isochore Bedingungen nur schwer zu erreichen sind (beispielsweise aufgrund einer
nicht vollständigen Sättigung oder der Membranpenetration). Ein lockerer Boden zeigt
durch die verhinderte Kontraktanz einen starken Abbau des mittleren effektiven Drucks p
(Spannungsrelaxation), während sich in einem dichten Boden durch verhinderte Dilatanz
ein starker Aufbau des mittleren effektiven Drucks (Verspannung) einstellt. Die Deviator-
spannung q im kritischen Zustand ist für einen initial lockeren Boden signifikant geringer
als für einen initial dichten Boden. Diese Spannung wird als undrainierte Scherfestigkeit
bezeichnet und hängt folglich entscheidend von der Porenzahl des Bodens ab. Bei einem
klassischen undrainierten Triaxialversuch ist neben dem Dehnungspfad auch der Pfad der
totalen Spannungen (effektive und totale Spannungen im Sinne von Terzaghi) vorgegeben.
In einem solchen klassischen undrainierten Triaxialversuch lassen sich daher Änderungen
des Porenfluiddrucks pf beobachten. Letztere ergeben sich infolge der durch Kontraktanz
bzw. Dilatanz induzierten Änderungen des effektiven Drucks. Diese Kausalität wird in
der modernen Bodenmechanik oft nicht zutreffend behandelt. Volumenkonstante Versu-
che sind theoretisch auch mit einem luftgefüllten Porenraum möglich und die Existenz
von Wasser im Porenraum ist nicht notwendig.

Wie anhand der Beispiele in Abbildung 1.1 demonstriert, ist das Verhalten von Boden
unter zyklischer Belastung in vielen Fällen von großer Bedeutung. Abbildung 1.3a zeigt
daher das Bodenverhalten infolge einer zyklischen Verformung schematisch anhand ei-
nes drainierten zyklischen Triaxialversuchs mit vorgegebener Deviatorspannungsamplitu-
de qampl. Ausgehend von einem anisotropen Anfangszustand führen zyklisch aufgebrachte
Änderungen der Deviatorspannung zu einer akkumulativen (mit der Zyklenzahl anwach-
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Abbildung 1.3: Schematisches mechanisches Verhalten von Boden infolge eines zyklischen Triaxi-

alversuchs mit vorgegebener Spannungsamplitude im pq-, εaq-, εae- und pe-Diagramm: a) drai-

nierter Fall (modifiziert aus [140]) und b) undrainierter Fall

senden) Verformung der Probe. Die Akkumulationsgeschwindigkeit nimmt dabei mit zu-
nehmender Zyklenzahl ab. Infolge jedes Belastungsrichtungswechsels zeigt sich aufgrund
der erhöhten Steifigkeit nach einer Belastungsumkehr (engl. small strain stiffness) ein
hysteretisches Verhalten. Nach einer Belastungsrichtungsumkehr zeigt der Boden ein kon-
traktantes Verhalten und es stellt sich bei dem in Abbildung 1.3a betrachteten mittleren
Spannungsverhältnis eine akkumulative Verdichtung ein.

Abbildung 1.3b illustriert exemplarisch das Bodenverhalten infolge eines zyklischen un-
drainierten Triaxialversuchs. Dabei stellen sich keine Änderungen der Porenzahl ein. Die
verhinderte Kontraktanz infolge jeder Belastungsrichtungsumkehr zeigt sich in einer Re-
laxation der mittleren effektiven Spannungen, unabhängig von der Dichte der Probe. Die
Dichte beeinflusst jedoch die Akkumulationsgeschwindigkeit. Asymptotisch wird sich der
Spannungspfad an die CSL annähern. Für einen isotropen Anfangsspannungszustand wird
in der Phase der sogenannten zyklischen Mobilität (engl. cyclic mobility) eine temporäre
zyklische Bodenverflüssigung (p = q = 0) erreicht, welche aufgrund der vorgegebenen De-
viatorspannungsamplitude von einem schmetterlingsförmigen effektiven Spannungspfad
(engl. butterfly effect) begleitet wird.

Für drainierte Triaxialversuche gilt ein vorgegebener effektiver Spannungspfad. Undrai-
nierte Triaxialversuche weisen einen vorgegebenen und proportionalen Dehnungspfad auf.
In beiden Fällen liegt ein axialsymmetrischer Zustand vor. Im Allgemeinen sind jedoch
sowohl die Spannungs- als auch die Dehnungspfade nicht proportional und bodenmecha-
nische bzw. geotechnische Probleme stellen immer ein dreidimensionales Problem dar.
Moderne Stoffmodelle sind daher in voller tensorieller Schreibweise formuliert, wenngleich
letztere meist nur anhand von klassischen Triaxialversuchen unter axialsymmetrischen
Bedingungen kalibriert und entwickelt werden können.
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1.3 Ziele der Arbeit

Ziel dieser Arbeit ist es, einen entscheidenden Beitrag zur Untersuchung bestehender und
zur Entwicklung neuer hypoplastischer Stoffmodelle für Sand zu leisten und entsprechend
bodenmechanische Stoffmodelle der neusten Generation zu entwickeln. Im Mittelpunkt
stehen dabei sowohl die gezielte Analyse gegenwärtig weit verbreiteter Modelle als auch
die Entwicklung neuer konstitutiver Konzepte.

Bestehende hypoplastische Modelle werden sowohl unter praktischen als auch theoreti-
schen Gesichtspunkten systematisch und in erster Linie auf Elementebene untersucht, um
Grenzen der Anwendbarkeit gezielt zu diskutieren. Ein besonderes Augenmerk wird dabei
neben der quantitativen Reproduktion experimenteller Ergebnisse primär auf das Auftre-
ten von qualitativ unzulässigen Spannungszuständen, welche infolge bestimmter Verfor-
mungen auftreten können, gelegt. Die daraus gewonnenen Erkenntnisse dienen nicht nur
der wissenschaftlichen Einordnung und der Motivation neuer Stoffmodellentwicklungen,
sondern sollen auch potenzielle Fehlinterpretationen in der Anwendung vermeiden und
den Nutzer für kritische Aspekte der Stoffmodellauswahl sensibilisieren.

Darauf aufbauend sollen neue konstitutive Konzepte entwickelt werden, die insbesondere
auf die realitätsnahe Modellierung zyklischer Verformungen sowie den Einfluss einer ani-
sotropen Mikrostruktur auf das mechanische Verhalten von Boden in hypoplastischen Mo-
dellen abzielen. Die zutreffende Modellierung dieser Effekte ist gegenwärtig Gegenstand
bodenmechanischer Stoffmodellentwicklungen weltweit, da sie durch bestehende Modelle
nur bedingt und/oder fehlerhaft abgebildet werden. Die Fülle der existierenden Ansätze
aus der Literatur ist entsprechend im Hinblick auf die Entwicklung der neuen Konzepte
einzuordnen.

Die infolgedessen entwickelten neuen hypoplastischen Stoffmodelle werden experimentel-
len Daten gegenübergestellt und sowohl aus theoretischen Gesichtspunkten als auch aus
der praktischen Perspektive, beispielsweise bezüglich der erforderlichen Parameterkalibra-
tion, kritisch diskutiert. Die Arbeit verfolgt damit das Ziel, sowohl ein vertieftes mecha-
nisches Verständnis granularer Böden zu fördern und bestehende hypoplastische Modelle
kritisch zu diskutieren als auch neue konstitutive Konzepte einzuführen und zu etablieren.

1.4 Struktur der Arbeit

Die Einleitung führte den Leser bereits in das komplexe mechanische Verhalten von Boden
ein und zeigte die Notwendigkeit der stetigen Weiterentwicklung konstitutiver Modelle für
Boden auf.

Eine vertiefte Einführung in die bodenmechanische Stoffmodellierung ist Gegenstand des
Kapitels 2. Neben allgemeinen Grundlagen wird vorrangig die Klasse der hypoplasti-
schen Stoffmodelle beleuchtet. Zwei im weiteren Verlauf der Arbeit verwendete Formu-
lierungen, namentlich die Hypoplastizität nach von Wolffersdorff [179] (HP) und dieselbe
mit der Erweiterung der intergranularen Dehnung nach Niemunis und Herle [121] (engl.
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intergranular strain (IS)) bzw. das gekoppelte Modell (HP+IS), werden dabei im Detail
diskutiert.

Darauf aufbauend zeigt Kapitel 3 einige Defizite dieser beiden Formulierungen (HP
bzw. HP+IS). Dies ist gerade vor dem Hintergrund der weiten Verbreitung von großem
praktischen Interesse und motiviert die Entwicklung besserer Modelle. Kapitel 3 kann
dem Anwender der HP bzw. der HP+IS zudem zu einem vertieften Verständnis genannter
Stoffmodelle dienen.

Kapitel 4 betrachtet sog. asymptotische Zustände und diskutiert die dazugehörige asymp-
totische Zustandsoberfläche (engl. asymptotic state boundary surface (ASBS)) in hypo-
plastischen Stoffmodellen. Eine mathematisch äquivalente Formulierung der HP mit ex-
trahierter ASBS, also mit Berücksichtigung der Lage des aktuellen Zustands bezüglich der
ASBS, wird vorgeschlagen. Zudem werden Ansätze zur expliziten Definition der ASBS für
Sand im Rahmen einer modifizierten Version der HP (engl. modified HP (MHP)) vorge-
stellt.

Die Theorie des anisotropen kritischen Zustands (engl. anisotropic critical state theory
(ACST)), welche den Einfluss einer anisotropen Mikrostruktur auf das mechanische Ver-
halten von Boden beschreibt, wird in Kapitel 5 mit der HP zur HP+ACST gekoppelt.
Hierzu wird ein sog. Fabric-Tensor mitsamt Entwicklungsgleichung als weitere Zustands-
variable eingeführt.

Um den Defiziten der IS-Formulierung für die Simulation zyklischer Verformungen zu be-
gegnen, wird in Kapitel 6 mit dem Konzept der generalisierten intergranularen Dehnung
(engl. generalized intergranular strain (GIS)) ein neuer Ansatz zur Berücksichtigung der
erhöhten Steifigkeit bei kleinen Dehnungen, also der Modellierung von zyklischer Verfor-
mungen, vorgestellt. Das GIS-Konzept ist als Erweiterungsmodell zu verstehen und wird
in Kapitel 6 sowohl mit der HP als auch mit der HP+ACST zur HP+GIS+ACST gekop-
pelt. Die HP+GIS+ACST wird darauf aufbauend mit realen Versuchsdaten verglichen.
Außerdem wird die MHP um die GIS zur MHP+GIS erweitert.

Mit der Neohypoplastizität (engl. neohypoplasticity (NHP)) wird in Kapitel 7 ein neu-
es hypoplastisches Stoffmodell für monotone Verformungen vorgestellt. Die NHP wurde
im Rahmen der vorliegenden Arbeit entscheidend weiterentwickelt. Sie behebt einige der
Defizite der HP. Neben theoretischen Grundlagen werden auch Hinweise zur Parameter-
kalibrierung gegeben.

In Kapitel 8 wird auch die NHP mit der GIS zur Simulation von zyklischen Verformun-
gen gekoppelt. Das resultierende Stoffmodell der NHP+GIS wird mittels numerischer
Elementsimulationen experimentellen Daten von drei unterschiedlichen Versuchssanden
gegenübergestellt und abschließend kritisch diskutiert.

Eine vergleichende Betrachtung der entwickelten Stoffmodelle mittels eines Anfangsrand-
wertproblems, eine Zusammenfassung der Arbeit und ein Ausblick auf zukünftige For-
schungsfragen sind Bestandteil des Kapitels 9. Der Anhang A fasst alle konstitutiven
Gleichungen der HP+GIS+ACST, der MHP+GIS sowie der NHP+GIS zusammen. Hin-
weise zu den entsprechenden numerischen Implementierungen sind dem Anhang B zu
entnehmen.



Kapitel 2

Konstitutive Modelle für Boden

Das vorliegende Kapitel führt zunächst in die, auf den Prinzipien der Kontinuumsme-
chanik beruhende, konstitutive Modellierung von Boden ein. Hierzu werden Begriffe wie
Spannung und Dehnung definiert. Darauf aufbauend wird die im Rahmen dieser Arbeit
betrachtete Stoffmodellklasse der Hypoplastizität eingeführt. Die Darstellung von zwei im
weiteren Verlauf der Arbeit verwendeten Referenzmodellen, die Hypoplastizität nach von
Wolffersdorff [179] (HP) und die HP mit der Erweiterung der intergranularen Dehnung
(engl. intergranular strain (IS)) nach Niemunis und Herle [121] (HP+IS), runden dieses
Kapitel ab.

2.1 Kontinuumsmechanik in der Bodenmechanik

Bei der konstitutiven Beschreibung von Boden bedient sich die Bodenmechanik in der
Regel der Konzepten der Kontinuumsmechanik. Dabei ist zunächst festzustellen, dass es
sich bei einem granularen Medium um keinen kontinuierlichen Feststoff, sondern um ein
diskretes (granulares) Medium handelt. Über Kontakte übertragen einzelne Sandkörner
Kontaktkräfte auf benachbarte Körner und es können sich Kraftketten ausbilden. Jedes
einzelne Korn unterliegt dabei den Newtonschen Gesetzen1.

Um die Methoden der Kontinuumsmechanik auf die Bodenmechanik übertragen zu können,
muss der Boden zunächst gedanklich homogenisiert werden, sodass tensorielle, vektorielle
und skalare Felder beispielsweise der Spannung σ, der Dehnung ε, der Verschiebung u
und auch der Porenzahl e beschrieben werden können.

1Die sog. Diskrete-Elemente-Methode (engl. discrete element methodd (DEM)) betrachtet den Bo-

den tatsächlich als Diskontinuum, in dem jedes einzelne Korn und die Kontakte zwischen den Körnern

simuliert werden [23].

9
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2.1.1 Boden als dreiphasiges Medium

Boden kann vereinfachend als ein dreiphasiges Medium, bestehend aus einer festen Pha-
se (Mineralbestandteile) mit dem Volumen Vs, einer flüssigen Phase (Fluid) mit dem
Volumen Vf und einer gasförmigen Phase mit dem Volumen Va betrachtet werden. Das
Volumen der flüssigen Phase Vf bildet zusammen mit dem Volumen der gasförmigen Pha-
se Va den Porenraum mit dem Porenvolumen Vp. Der Porenanteil n sowie die Porenzahl
e sind als Verhältnisse der jeweiligen Volumina definiert

n =
Vp
V

bzw. e =
Vp
Vs

(2.1)

und lassen sich mittels e = n/(1 − n) ineinander umrechnen. Teilgesättigte Böden, bei
welchen der Porenraum sowohl mit Wasser als auch mit Luft gefüllt ist, werden weiter
nicht betrachtet.

Die aktuelle Dichte (Porenzahl) eines trockenen Bodens kann neben der effektiven Span-
nung als eine der wichtigsten physikalisch begründeten Bodenzustandsgrößen definiert
werden. Die Grenzen der unter idealisierten Bedingungen erreichbaren Porenzahlen ent-
sprechen der lockersten (emax) bzw. der dichtesten Lagerung (emin). Für ein granulares
Medium bestehend aus perfekten, gleichgroßen Kugeln gilt für die lockerste Lagerung für
die einfachste Packung emax = 0, 908 und für die dichteste Lagerung für die pyramidale
Packung emin = 0, 35 [151]. Mithilfe der relativen (bezogenen) Lagerungsdichte

ID =
emax − e

emax − emin

(2.2)

lässt sich die Lagerung (locker bzw. dicht) grobkörniger Böden beurteilen. Je größer ID,
desto dichter ist der Boden. Bei unregelmäßiger Kornform muss die lockerste und dichtes-
te Lagerung experimentell ermittelt werden. Die entsprechenden Verfahren (vorsichtiges
Einrieseln, Rütteltischversuch, Schlaggabelversuch) sind in der DIN 18126 [28] norma-
tiv geregelt. Es zeigt sich darüber hinaus, dass die Grenzporenzahlen eines natürlichen
Bodens druckabhängig sind. Sowohl die kleinste als auch die größtmögliche Porenzahl
nehmen infolge einer Druckerhöhung ab. Die druckbezogene relative Lagerungsdichte Id
wird mit Gl. (2.42) eingeführt.

2.1.2 Materielle Beschreibung in der Kontinuumsmechanik

Die klassische Bodenmechanik und die vorliegende Arbeit verwendet die sog. Lagrange-
sche (materielle) Beschreibung. Dabei werden alle Felder im Raum mit einem ortsfesten
kartesischen Koordinatensystem x bezüglich eines Materialpunktes X (Koordinate in
der sog. Referenzkonfiguration) betrachtet. Die Bewegung eines Körpers wird durch die
Bahnkurve

x = x(X, t) (2.3)
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beschrieben. Mit der Zeit t kann sich die aktuelle Lage x(X, t) eines Materialpunktes
X ändern, wobei die aktuelle Koordinate x des Teilchens X als Momentankonfiguration
bezeichnet wird. Für die Verschiebung gilt dementsprechend

u = u(X, t) = x(X, t)−X . (2.4)

Materielle Zeitableitungen eines Tensors werden mit ⊔̇ gekennzeichnet. Somit können der
Deformationsgeschwindigkeitstensor D und der Drehgeschwindigkeitstensor W definiert
werden:

D =
1

2

[
(∇ẋ) + (∇ẋ)T

]
bzw. Dij =

1

2
(ẋi,j + ẋj,i) , (2.5)

W =
1

2

[
(∇ẋ)− (∇ẋ)T

]
bzw. Wij =

1

2
(ẋi,j − ẋj,i) . (2.6)

Nach dem Objektivitätsprinzip der rationalen Kontinuumsmechanik müssen Stoffmodelle
und die dazugehörigen Zustandsgrößen unabhängig von der Bewegung des Beobachters
sein. Es müssen dafür objektive Größen, also Größen, die sich bei einer Rotation des
Koordinatensystems nicht ändern, verwendet werden. Der Deformationsgeschwindigkeits-
tensor D erfüllt das Objektivitätsprinzip, wohingegen der Drehgeschwindigkeitstensor W
nicht objektiv ist. Stoffmodelle in Ratenform werden daher mit D formuliert, siehe Ab-
schnitt 2.2.

2.1.3 Spannung

Die effektive Cauchy-Spannung ist die bedeutendste Zustandsvariable der Bodenmecha-
nik. Sie wird durch den Spannungstensor σ ausgedrückt:

[σij] =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (2.7)

Dabei stellen die Hauptdiagonalelemente Normalspannungen und die Außerdiagonalele-
mente Schubspannungen dar.

Nach dem Prinzip von Terzaghi wird zwischen der effektiven Spannung (Korn-zu-Korn-
Spannung) σ und der totalen Spannung σtot unterschieden. Mit dem Porenfluiddruck
(Porenwasserdruck) pf = pabsf − pa, welcher als Differenz zwischen dem absoluten Poren-

fluiddruck pabsf und dem atmosphärischen Druck pa = 100 kPa definiert ist, lässt sich das
Prinzip der effektiven Spannung für vollständig gesättigte Böden formulieren:

σtot = σ − pf1 bzw. σtot
ij = σij − pfδij . (2.8)

Infolge der Drehimpulsbilanz zeigt sich die Symmetrie des Cauchy-Spannungstensors. Es
gilt also σij = σji bzw. σ = σT . Der Spannungsvektor ti (Tensor 1. Stufe) auf einer
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beliebig geneigten Schnittfläche mit dem Flächennormalenvektor ni lässt sich aus dem
Spannungstensor σij unter Anwendung des Cauchy-Theorems

ti = σijnj (2.9)

bestimmen. Für jeden Spannungszustand existieren drei wechselseitig senkrechte Ebenen,
auf welchen nur Normalspannungen auftreten. In diesem Fall verschwinden die Schub-
spannungen und die Normalspannungen werden Hauptspannungen genannt. Das Koordi-
natensystem, in welchem ein Tensor zweiter Stufe in Diagonalform auftritt, wird Haupt-
achsensystem genannt. Die Diagonaleinträge (Hauptspannungen) stellen in diesem Fall die
Eigenwerte des Spannungstensors dar. Für den Spannungstensor im Hauptachsensystem
mit den Hauptspannungen als Diagonaleinträge gilt:

[σij] =

σ11 0 0
0 σ22 0
0 0 σ33

 =

σ1 0 0
0 σ2 0
0 0 σ3

 =

λ1 0 0
0 λ2 0
0 0 λ3

 . (2.10)

Die drei Eigenwerte λ ergeben ergeben sich aus der Lösung des Eigenwertproblems und
stellen Invarianten dar. Invarianten sind im Allgemeinen skalare Funktionen eines Tensors,
deren Wert unabhängig vom gewählten Koordinatensystem ist. Diese Eigenschaft der
Funktion muss darüber hinaus für jeden möglichen Tensor gelten.

In der Bodenmechanik findet eine Reihe von Spannungsinvarianten Anwendung. Zu den
Wichtigsten zählen die Roscoe-Invarianten (mittlerer effektiver Druck p, Deviatorspan-
nung q) und der Lode-Winkel θ, für welche in der allgemeinen Formulierung und unter
axialsymmetrischen Bedingungen (σ1 = σa und σ2 = σ3 = σr) gilt:

p = −1

3
tr(σ) = −1

3
(σ11 + σ22 + σ33)

ax. symm.
=

1

3
(−σa − 2σr) (2.11)

q =

√
3

2
σ∗ : σ∗ =

√
3

2
∥σ∗∥ ax. symm.

= −σa + σr , (2.12)

cos(3θ) = −
√
6σ⃗∗

ijσ⃗∗
jkσ⃗∗

ki
ax. symm.

= ±1 . (2.13)

Im axialsymmetrischen Fall gilt für einen Extensiosspannungszustand q < 0 und im Falle
eines Kompressionsspannungszustands q > 0. Darüber hinaus werden auch oft die isome-
trischen Invarianten verwendet:

P =
√
3p = − 1√

3
tr(σ)

ax. symm.
=

1√
3
(−σa − 2σr) , (2.14)

Q =

√
2

3
q = ∥σ∗∥ ax. symm.

=

√
2

3
(−σa + σr) . (2.15)
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Die isometrischen (längenerhaltenden) Invarianten verzerren Abstände zwischen zwei Span-
nungszuständen in PQ-Diagramm und im Hauptspannungsraum nicht.

Die materielle Zeitableitung der effektiven Spannung σ̇ ist nicht objektiv. Daher wird als
objektive Rate der effektiven Spannung oft die Zaremba-Jaumann-Rate

σ̊ = σ̇ + σ ·W −W · σ (2.16)

verwendet, welche den Drehgeschwindigkeitstensor nach Gl. (2.6) berücksichtigt.

2.1.4 Dehnung

Die Dehnung bzw. Verzerrung ε stellt in der Regel keine Bodenzustandsgröße dar. Al-
lerdings spielt sie bei der Beschreibung des Stoffverhaltens eine entscheidende Rolle. Der
Dehnungs- bzw. Verzerrungstensor

[εij] =

ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

 =

 ε11 1
2
γ12

1
2
γ13

1
2
γ21 ε22

1
2
γ23

1
2
γ31

1
2
γ32 ε33

 (2.17)

ergibt sich im Rahmen der linearen Theorie aus dem symmetrischen Teil des Verschie-
bungsgradienten

ε =
1

2

[
(∇u) + (∇u)T

]
bzw. εij =

1

2
(ui,j + uj,i) . (2.18)

Hierbei stellen die Diagonalkomponenten Normaldehnungen und die Außerdiagonalele-
mente Schubverzerrungen dar. Analog zu den Hauptspannungen lassen sich Hauptdeh-
nungen ε1, ε2 und ε3 definieren. Für die Roscoe-Invarianten der Dehnung gilt

εvol = εv = tr(ε) = εii bzw. εq =

√
2

3
∥ε∗∥ (2.19)

und für die isometrischen Invarianten

εP
def
= εvol/

√
3 =

1√
3
tr(ε) bzw. εQ

def
=

√
3

2
εq = ∥ε∗∥ . (2.20)

Gl. (2.18) kann als klassischer Verzerrungstensor oder Biot-Dehnung bezeichnet werden.
Diese stellt die sog. Green-Lagrange-Dehnung unter Vernachlässigung der nichtlinearen
Terme dar. Die logarithmische Dehnung (Hencky-Dehnung) stellt ein weiteres Dehnungs-
maß dar, welches in der Bodenmechanik oft Anwendung findet [114]. Für kleine Dehnun-
gen (lineare Theorie) stimmen alle genannten Dehnungsmaße überein und es gilt außerdem
ε̇ ≈ D, wenngleich D keine Zeitableitung eines bestimmten Dehnungsmaßes darstellt.
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2.2 Stoffmodelle für Boden

In der Vergangenheit wurde bereits eine Fülle unterschiedlichster Stoffmodelle und Stoff-
modellklassen für Boden entwickelt. Eine umfassende Einführung in die Stoffmodellierung
von Boden ist in der Literatur zu finden, z.B. in [52, 72, 91, 114, 165]. Boden wird zunächst
als sog. einfaches (engl. simples) Material angenommen, bei dem die Spannungsrate mit
der Dehnungsrate an einem Ort verbunden ist und keine räumlichen Gradienten der Deh-
nung berücksichtigt werden2. In allgemeiner Form kann ein Stoffmodell für Boden in der
Ratenform

σ̊ = F (D,σ,α) und α̇ = f(D,σ,α) (2.21)

geschrieben werden [91, 114, 165]. Der Zustand des Bodens wird dabei mittels der ef-
fektiven Cauchy-Spannung σ und allen weiteren Zustandsvariablen α beschrieben. Im
Rahmen der linearen Theorie (Vernachlässigung großer Dehnungen und Rotationen) gilt
σ̊ ≈ σ̇ und D ≈ ε̇ und es kann

σ̇ = F (ε̇,σ,α) und α̇ = f(ε̇,σ,α) (2.22)

formuliert werden. Daher wird im Folgenden σ̇ und ε̇ verwendet. Das Materialverhal-
ten von Sand kann näherungsweise als ratenunabhängig beschrieben werden, weshalb ein
entsprechendes Stoffmodell einen Homogenitätsgrad von eins bezüglich der Dehnungsrate
aufweisen muss:

F (λε̇,σ,α) = λF (ε̇,σ,α) und f(λε̇,σ,α) = λf(ε̇,σ,α) ∀λ > 0 . (2.23)

Ratenunabhängige Stoffmodelle, welche den Schwerpunkt der vorliegenden Arbeit bilden,
können unter Verwendung der Tangentensteifigkeit M geschrieben werden:

σ̇ = M(⃗ε̇,σ,α) : ε̇ . (2.24)

Die Tangentensteifigkeit M (Tensor vierter Stufe) ist im Allgemeinen eine Funktion des
aktuellen Zustands (σ,α) und kann darüber hinaus auch von der Richtung der Dehnungs-

rate ⃗̇ε abhängen. Aus letzterer Abhängigkeit lässt sich eine einfache Klassifizierung von
Stoffmodellen ableiten [91, 165].

Bei elastischen Stoffmodellen ist die Tangentensteifigkeit M nicht von der Richtung der
Dehnungsrate ⃗̇ε abhängig. Diese Modelle werden daher als inkrementell linear bezeichnet.
Allerdings sind sie zur Beschreibung des mechanischen Bodenverhaltens nicht geeignet,
da irreversible Verformungen nicht abgebildet werden können.

Irreversible (plastische) Verformungen können nur mittels Plastizitätsmodellen abgebil-
det werden. In den letzten Jahrzehnten haben sich verschiedene Klassen von Plasti-
zitätsmodellen entwickelt. Die Elasto-Plastizität und die Hypoplastizität unterscheiden

2Dies wird in der Cosserat-Theorie getan.
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Abbildung 2.1: Schematische Darstellung der Tangentensteifigkeit M mittels Antwor-

tumhüllenden im axialsymmetrischen Fall im σ̇a
√
2σ̇r-Rendulic-Diagramm für ein elastisches,

ein elasto-plastisches und ein einfaches hypoplastisches Stoffmodell

sich dabei grundsätzlich. Elasto-plastische Formulierungen basieren auf dem Konzept der
inkrementellen Bilinearität. In diesen Formulierungen existieren für einen Zustand auf
der Fließfläche zwei tensorielle Zonen mit jeweils unterschiedlicher Tangentensteifigkeit.
Hypoplastischen Modellen liegt hingegen das Konzept der inkrementellen Nichtlinearität
zugrunde, wobei die Tangentensteifigkeit M kontinuierlich von der Richtung der Deh-
nungsrate ⃗̇ε abhängt.

Die verschiedenen Stoffmodellklassen lassen sich mittels Antwortumhüllenden (engl. re-
sponse envelopes) visualisieren. Das Konzept der Antwortumhüllende ist beispielsweise in
[46, 50, 91] beschrieben. Für einen gegebenen Zustand wird in alle möglichen Richtun-
gen eine Dehnungsrate der Einheitslänge aufgebracht. Die Tangentensteifigkeit M lässt
sich dann mittels der Umhüllende um alle resultierenden Spannungsraten darstellen3.
Für den axialsymmetrischen Fall sind Antwortumhüllende exemplarisch in Abbildung 2.1
dargestellt. Ein elastisches Stoffmodell resultiert in einer zentrierten Ellipse, während die
Antwortumhüllende in einem einfachen hypoplastischen Stoffmodell (mit einem linearen
Teil L und einem nichtlinearen Teil N ) eine verschobene Ellipse darstellt. Im Allgemeinen
liefern fortgeschrittene hypoplastische Stoffmodelle jedoch nicht zwangsläufig elliptische
Antwortumhüllende. Elasto-plastische Stoffmodelle resultieren in einer stetigen Antwor-
tumhüllende, wenngleich letztere für einen Zustand auf der Fließfläche aus zwei Halbel-
lipsen (elastische Steifigkeit und elasto-plastische Steifigkeit) zusammengesetzt ist.

2.3 Die Stoffmodellklasse der Hypoplastizität

Die Hypoplastizität im Allgemeinen beschreibt kein spezifisches Stoffmodell, sondern eine
Stoffmodellklasse. Eine Zerlegung der Dehnungsrate in einen elastischen ε̇el und einen

3Das vorgestellte Konzept lässt sich genauer als ratenbezogene Antwortumhüllende bezeichnen. Pfa-

debezogene Antwortumhüllende werden kurz in Abschnitt 7.2.2 verwendet.
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plastischen Teil ε̇pl, wie sie aus der Elasto-Plastizität bekannt ist, existiert in hypoplasti-
schen Modellen nicht. Als ein wesentliches Merkmal hypoplastischer konstitutiver Formu-
lierungen kann im Allgemeinen die oben diskutierte inkrementelle Nichtlinearität genannt
werden. Im Vergleich zu elasto-plastischen Formulierungen zeichnen sich hypoplastische
Stoffmodelle durch das Fehlen eines vollständig elastischen Bereichs aus. Irreversible (plas-
tische) Verformungen und damit auch Kontraktanz- und Dilatanzeffekte können im ge-
samten Spannungsraum abgebildet werden. In hypoplastischen Formulierungen werden
irreversible Verformungen durch die mathematische Berücksichtigung der Norm der Deh-
nungsrate ∥ε̇∥ anstelle der plastischen Dehnungsrate ε̇pl modelliert. In hypoplastischen
Modellen müssen keine Fließfläche, kein plastisches Potenzial, keine Fließregel und kein
plastischer Multiplikator definiert werden. Zudem ist keine Verfestigungsregel und kein
elasto-plastisches Belastungskriterium erforderlich.

Hypoplastische Beziehungen zwischen der Rate der effektiven Cauchy-Spannung σ̇ und
der Dehnungsrate ε̇ können durch eine einzige tensorielle Gleichung ausgedrückt werden
und zeichnen sich durch eine einfache numerische Implementierung sowie eine realisti-
sche Bifurkation (Bildung von Scherfugen) aus. Letzteres wird mittels numerischer Bei-
spiele in Abschnitt 9.1 diskutiert. Diese Eigenschaften machen hypoplastische Modelle
grundsätzlich sehr gut für die Simulation des mechanischen Verhaltens von Böden ge-
eignet. Es gilt zu erwähnen, dass die oben formulierte Definition der Hypoplastizität als
Spezialfall der weiter gefassten Definition des Begriffs der Hypoplastizität von Dafalias [24]
verstanden werden kann. Ein ausführlicher Überblick über die historische Entwicklung hy-
poplastischer Stoffmodelle ist der Literatur zu entnehmen [70, 91, 112, 203] und wird im
Folgenden gekürzt wiedergegeben. Auf die Entwicklung von ratenabhängigen hypoplas-
tischen Stoffmodellen, z.B. [57, 119], wird im Folgenden nicht weiter eingegangen.

Die ersten hypoplastischen Stoffmodelle wurden von Kolymbas am IBF in Karlsruhe ent-
wickelt und berücksichtigten als einzige Zustandsvariable die effektive Spannung [66, 67,
68]. Auf die damals parallel im französischen Grenoble stattgefundene Entwicklung inkre-
mentell nichtlinearer Stoffmodelle [18, 166] wird hier nicht näher eingegangen. Kolymbas
schlug eine inkrementell nichtlineare konstitutive Formulierung für Böden vor [69, 70]:

σ̇ =C1σ tr(ε̇) + C2 tr(σ) tr(ε̇)1+ C3σ
ε̇2

∥ε̇∥
+

C4(σ · ε̇+ ε̇ · σ) + C5σ∥ε̇∥+ . . . .

(2.25)

Gl. (2.25) enthält eine unendliche Anzahl an Summanden, welche Generatoren genannt
wurden. Trotz der komplexen tensoriellen Funktionen und zahlreicher Koeffizienten ent-
hielt das Modell bereits die Hauptkomponente der Hypoplastizität, die inkrementelle
Nichtlinearität. Letztere ergibt sich durch Berücksichtigung der Norm der Dehnungsrate
∥ε̇∥ in der konstitutiven Formulierung.

Mittels eines computergestützten hierarchischen (systematischen) Erratens schlug Kolym-
bas [69] eine Reihe von möglichen hypoplastischen Stoffmodellen für Boden vor. Beispiel-
haft für einen dieser Vorschläge kann die konstitutive Gleichung mit vier Termen

σ̇ = C1(σ · ε̇+ ε̇ · σ) + C2tr (σ · ε̇)1+ C3σ∥ε̇∥+ C4
σ · σ
tr (σ)

∥ε̇∥ (2.26)
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und den Materialparametern C1, C2, C3 und C4 genannt werden. Darauf aufbauend wurde
ein leicht modifiziertes Modell von Wu [199, 201], welches ebenfalls vier Stoffmodellpa-
rameter aufweist, erstmals mit dem in ε̇ sog. linearen Term Lijkl und dem in ε̇ sog.
nichtlinearen Term Nij formuliert:

σ̇ = L : ε̇+N∥ε̇∥ . (2.27)

Dabei sind sowohl Lijkl als auch Nij Funktionen der Zustandsvariable der effektiven Span-
nung. Um die Dichteabhängigkeit des Materialverhaltens zu berücksichtigen, mussten die
Stoffmodellparameter dichteabhängig kalibriert werden.

Darauf aufbauend wurden hypoplastische Formulierungen entwickelt, welche die Poren-
zahl e (bzw. die aktuelle Dichte) als weitere Zustandsvariable berücksichtigen [8, 47, 73,
202] und somit die Hypoplastizität im Sinne der critical state soil mechanics (CSSM)
[150, 153] erweiterten. Dazu erweiterte Gudehus [47] die Gl. (2.27) um den Barotropie-
faktor fs und den Pyknotropiefaktor fd zu

σ̇ = fsL : ε̇+ fsfdN∥ε̇∥ , (2.28)

wodurch das allgemein druck- und dichteabhängige mechanische Verhalten von Boden
abgebildet werden kann (Barotropie und Pyknotropie). Die mathematische Form der
Gl. (2.28) wird auch heutzutage noch von vielen, wenngleich nicht von allen, hypoplasti-
schen Stoffmodellen zugrunde gelegt.

In der Version der Hypoplastizität nach von Wolffersdorff (HP) [179] wurde darauf auf-
bauend die Abhängigkeit des Materialverhaltens vom Lode-Winkel modifiziert und das
Versagenskriterium nach Matsuoka-Nakai [83] berücksichtigt. Die HP wurde ursprünglich
in Form der Gl. (2.28) formuliert und stellt heutzutage ein weit verbreitetes hypoplasti-
sches Stoffmodell zur Simulation monotoner Verformungen von Sand dar.

2.4 Hypoplastizität nach von Wolffersdorff (HP)

Das 1996 veröffentlichte hypoplastische Stoffmodell nach von Wolffersdorff (HP) [179],
stellt eine Erweiterung der Formulierungen von Gudehus [47] und Bauer [8] dar. Die
Spannungsrate in der HP wird durch

σ̇ = fsL : ε̇+ fsfdN∥ε̇∥ = fs

(
L+ fdN

ε̇

∥ε̇∥

)
︸ ︷︷ ︸

M

: ε̇ (2.29)

beschrieben. Für den linearen Steifigkeitstensor vierter Stufe gilt

L =
1

σ̂ : σ̂

[
(F hyp

0 )2I+ a2σ̂σ̂
]

mit I = Iijkl =
1

2
(δikδjl + δilδjk) . (2.30)
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Für den Tensor zweiter Stufe gilt

N =
F hyp
0 a

σ̂ : σ̂
(σ̂ + σ̂∗) (2.31)

mit den dimensionslosen Spannungstensoren

σ̂ =
σ

tr(σ)
bzw. σ̂∗ = σ̂ − 1

3
1 . (2.32)

Mittels des kritischen Reibungswinkels φc, welcher experimentell beispielsweise durch
einen Schüttkegelversuch bestimmt werden kann [53], ergibt sich der skalare Parameter a:

a =

√
3

8

(3− sinφc)

sinφc
. (2.33)

Die Berücksichtigung des Matsuoka-Nakai-Kriteriums [83], welches in Abschnitt 7.6 und
Abbildung 7.10 in Detail diskutiert wird, erfolgt über den Parameter

F hyp
0 =

√
1

8
tan2 ψ +

2− tan2 ψ

2 +
√
2 tanψ cos (3θ)

− 1

2
√
2
tanψ , (2.34)

wobei

tanψ =
√
3∥σ̂∗∥ und cos (3θ) = −

√
6
tr(σ̂∗ · σ̂∗ · σ̂∗)

[σ̂∗ : σ̂∗]3/2
(2.35)

gilt. Die HP berücksichtigt die Abhängigkeit des Stoffverhaltens vom mittleren effektiven
Druck p (Barotropie) und von der Porenzahl e (Pyknotropie). In der mathematischen
Formulierung sind hierfür unter Berücksichtigung der Materialparameter n, hs (Granu-
lathärte), ei0, ec0, ed0, α und β die skalaren Faktoren fb, fe, fd eingeführt:

fb =
hs
n

(
ei0
ec0

)β (
1 + ei
ei

)(
3p

hs

)1−n [
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]−1

, (2.36)

fe =
(ec
e

)β
, (2.37)

fd =

(
e− ed
ec − ed

)α
= rαe , (2.38)

wobei re als relative Porenzahl bezeichnet wird. Für den Barotropiefaktor der HP, welcher
aus der Konsistenz des Stoffmodells selbst und der Kompressionsbeziehung abgeleitet
werden kann [122], gilt fs = fbfe oder direkt:
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fs = fbfe =
hs
n

(ei
e

)β 1 + ei
ei

(
3p

hs

)1−n [
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]−1

. (2.39)

Die Porenzahl bei dichtester Lagerung ed, bei lockerster Lagerung ei und im kritischen
Zustand ec ist im Allgemeinen druckabhängig. Im Falle eines mittleren effektiven Drucks
von p = 0 kann die Annahme ed0 ≈ emin, ec0 ≈ emax und ei0 ≈ 1, 2emax für natürlichen
Sand getroffen werden [51, 53, 91]. Für die Druckabhängigkeit dieser Grenzporenzahlen
wird die Kompressionsbeziehung nach Bauer [8] angenommen:

ei
ei0

=
ed
ed0

=
ec
ec0

= exp

[
−
(
3p

hs

)n]
. (2.40)

Eine Diskussion der Kompressionsbeziehung ist Abschnitt 4.5 zu entnehmen. Es ist zu
erwähnen, dass ei(p) tatsächlich eine obere Grenze der Porenzahl in der HP darstellt,
während ed(p) in der HP bei bestimmten Deformationen unterschritten werden kann.
ed(p) nach Gl. (2.40) stellt also tatsächlich keine untere Grenze der Porenzahl in der HP
dar [122]. Für die relative (bezogene) Lagerungsdichte ID (vgl. Gl. (2.2)) gilt

ID =
emax − e

emax − emin

=
ec0 − e

ec0 − ed0
(2.41)

und es kann eine druckabhängige relative Lagerungsdichte

Id =
ec − e

ec − ed
(2.42)

definiert werden. Die Entwicklungsgleichung der Porenzahl ergibt sich aus der volumetri-
schen Dehnungsrate zu

ė = (1 + e) tr(ε̇) = (1 + e)ε̇vol . (2.43)

Die HP berücksichtigt neben der effektiven Spannung σ die Porenzahl e als Zustandsva-
riable. Hinweise bezüglich der Kalibrierung der acht Stoffmodellparameter (φc, ed0, ec0,
ei0, hs, n, α, β) sind der Literatur zu entnehmen [51, 53]. Die HP dient in der vorlie-
genden Arbeit als Referenzmodell für monotone Verformungen. Nachdem in Kapitel 3
einige Probleme des Modells aufgezeigt werden, wird es in den Kapiteln 4 und 5 ver-
bessert/erweitert bzw. wird in Kapitel 7 mit der Neohypoplastizität (NHP) ein neues
Stoffmodell für monotone Verformungen von Sand eingeführt.

2.5 Intergranulare Dehnung (IS) nach Niemunis und

Herle

Die zuvor diskutierte HP zeigt infolge einer Belastungsrichtungsumkehr, also auch bei
der Simulation von zyklischen Verformungen, das Problem des sog. Ratchetings [121]. Die
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Abbildung 2.2: Ratcheting zeigt sich als übermäßige Akkumulation a) der Verformung in einem

drainierten Triaxialversuch mit vorgegebenen Spannungszyklen und b) des Abbaus der effek-

tiven Spannungen in einem undrainierten Triaxialversuch mit vorgegebenen Spannungszyklen

(modifiziert aus [112])
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Abbildung 2.3: Reduziertes Ratcheting in dem erweiterten HP+IS Modell bei dem drainierten

Triaxialversuch und b) dem undrainierten Triaxialversuch aus Abbildung 2.2 (modifiziert aus

[112])

experimentell beobachtete erhöhte Steifigkeit mitsamt reduzierten irreversiblen Verfor-
mungen nach einer Belastungsumkehr kann in der HP nicht adäquat abgebildet werden.
Infolgedessen liefert die HP bei einer zyklischen spannungsgesteuerten Scherung unter
drainierten Bedingungen eine zu starke Verformungsakkumulation und unter undrainier-
ten Bedingungen einen zu schnellen Abbau der effektiven Spannungen. Schematisch ist
das Ratcheting für die beiden beschriebenen Fälle für einen axialsymmetrischen Zustand
in Abbildung 2.2 dargestellt. In der HP entspricht die Steifigkeit der Erstbelastung nahezu
der Steifigkeit der Wiederbelastung, was bei der Betrachtung der Punkte (1) und (2) in
Abbildung 2.2a deutlich wird (Änderungen der Porenzahl sind dabei vernachlässigbar).
Zudem können in der HP die sog. Hystereseschleifen im Spannungs-Dehnungs-Diagramm
infolge einer zyklischen Verformung mit kleiner Amplitude nicht zutreffend reproduziert
werden.
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Abbildung 2.4: Unterschiedliche intergranulare Dehnungen h in Verbindung mit unterschied-

lichen Verformungsgeschichten: Nur der jüngste Teil des vorangegangenen Dehnungspfads hat

einen Einfluss auf h, weshalb sich trotz der gleichen Spannung, Porenzahl und Dehnungsrate

eine andere Stoffmodellantwort ergeben kann (modifiziert aus [112])

Um dieses grundlegende Defizit der HP zu reduzieren, führten Niemunis und Herle [121]
im Jahre 1997 im Rahmen des Konzepts der intergranularen Dehnung (engl. intergra-
nular strain (IS)) die gleichnamige Zustandsvariable h (Tensor zweiter Stufe) ein. Das
IS-Konzept kann im Allgemeinen auf jedes hypoplastische Modell der mathematischen
Form der Gl. (2.27) angewandt werden. Entsprechend gekoppelte Stoffmodelle begrenzen
das beschriebene Ratcheting und können daher zur Simulation zyklischer Verformungen
herangezogen werden.

Die so entstandene Hypoplastizität nach von Wolffersdorff [179] (HP) gekoppelt mit der
intergranularen Dehnung von Niemunis und Herle [121] (IS) wird im Folgenden als HP+IS
abgekürzt. Die dehnungsähnliche Zustandsvariable der intergranularen Dehnung h spei-
chert die jüngste Verformungsgeschichte ab, wie in Abbildung 2.4 visualisiert. Durch eine
Erhöhung der Steifigkeit und eine Reduktion des nichtlinearen Terms in Abhängigkeit
vom Winkel zwischen der intergranularen Dehnung h und der aktuellen Dehnungsrate ε̇
wird eine Unterscheidung zwischen einer Erst- und einer Wiederbelastung möglich. Die
resultierende Reduktion des Ratchetings in der HP+IS ist in Abbildung 2.3 dargestellt,
wobei die nun unterschiedliche Steifigkeiten in den Punkten (1) und (2) in Abbildung 2.3a
deutlich wird.

Der Mobilisierungsgrad

ρ =
∥h∥
R

(2.44)

gibt den aktuellen Grad der Mobilisierung von h an, wobei der Materialparameter R
(R ≈ 10−4) den Maximalwert der Norm der intergranularen Dehnung ∥h∥ und somit
ein Maß für die Größe des durch die intergranulare Dehnung eingeführten

”
elastischen

Bereichs“ darstellt. Unter Verwendung der Materialkonstanten mT , mR, und χ gilt für
die Tangentensteifigkeit im IS-Konzept

M = [ρχmT + (1− ρχ)mR]L+

{
ρχ(1−mT )L : h⃗h⃗+ ρχNh⃗ falls h⃗ : ε̇ > 0

ρχ(mR −mT )L : h⃗h⃗ falls h⃗ : ε̇ ≤ 0
. (2.45)



22 Kapitel 2. Konstitutive Modelle für Boden

A B

response env.

 original 
response env.

modified for

 response envelope
modified for

11

22

L

R

mT

mT

mR

m R

L

L

ρ��

ρ��

h

h

L

L+ N h

Antwortumhüllende
mod. für ρ=0

originale
Antwortumhüllende

Antwortumhüllende
mod. für ρ=1

h22 bzw. σ22

h11 bzw. σ11
σ22

σ11

σ22
σ11

σ22

Abbildung 2.5: Zweidimensionale Visualisierung der modifizierten Steifigkeit M durch die IS:

Die Spannungsantwort infolge eines vorgegebenen Dehnungsinkrements hängt von der Richtung

des Dehnungsinkrements gegenüber der Richtung der intergranularen Dehnung und deren Mo-

bilisierungsgrad ab (modifiziert aus [112])

Es ist zu beachten, dass in Gl. (2.45) der Barotropiefaktor4 fs und der Pyknotropiefak-
tor fd in den Tensoren L undN enthalten sind. Für die Beziehung zwischen Spannungsrate
und Dehnungsrate gilt in der HP+IS

σ̇ = M : ε̇ (2.46)

und die Richtung der intergranularen Dehnung h⃗ ist durch

h⃗ =


h

∥h∥
falls h ̸= 0

0 falls h = 0
(2.47)

definiert. Für die Entwicklung von h gilt unter Berücksichtigung des Parameters βr:

ḣ =

{
(I− h⃗h⃗ρβr) : ε̇ falls h⃗ : ε̇ > 0

ε̇ falls h⃗ : ε̇ ≤ 0
. (2.48)

Die resultierende Stoffmodellantwort des gekoppelten Modells HP+IS ist in Form von
Antwortumhüllenden in Abhängigkeit von der aktuellen intergranularen Dehnung im

4In der Originalveröffentlichung [121] wurde eine von der HP abweichende Gleichung für fs angegeben.

Die Gründe hierfür sind nicht ersichtlich und es wird üblicherweise der Barotropiefaktor der HP verwendet.
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zweidimensionalen Raum in Abbildung 2.5 gezeigt. Zur Veranschaulichung des Konzepts
können vier Spezialfälle betrachtet werden [121]. Die ersten drei Fälle beziehen sich auf
den Fall einer vollständig mobilisierten intergranularen Dehnung (ρ = 1) (Punkt B in
Abbildung 2.5):

• Für die monotone Fortsetzung der Verformung mit ε̇ ∼ h⃗ gilt

M = L+Nh⃗ . (2.49)

In diesem Fall ergibt sich die hypoplastische Gleichung des Grundmodells nach
Gl. (2.29).

• Für eine 180◦ Umkehr der Verformungsrichtung, d.h. ε̇ ∼ −h⃗, ergibt sich mit dem
Materialparameter mR ein (hypo)elastisches Materialverhalten

M = mRL . (2.50)

• Für eine bezüglich der intergranularen Dehnung neutrale Dehnungsrate, definiert
durch ε̇ ⊥ h⃗ (ε̇ : h⃗ = 0), gilt mit dem Stoffmodellparameter mT

M = mTL . (2.51)

Der vierte zu betrachtende Spezialfall gilt für den Punkt A in Abbildung 2.5. In diesem
Fall gilt ρ = 0 und es folgt

• unabhängig von der Richtung der Dehnungsrate

M = mRL . (2.52)

In der Regel gilt für die Materialparameter mR > mT > 1. Es ist anzumerken, dass
die HP+IS für mR = mT = 1 nicht in die HP übergeht. Theoretisch wären außerdem
Parameter mT < 1 bzw. mR < 1 möglich. Ein theoretisches Detail ist, dass in der HP+IS
die Tangentensteifigkeit inkrementell bilinear (Schaltbedingung h⃗ : ε̇ = 0) ist und nicht
der ursprünglichen Idee der inkrementellen Nichtlinearität hypoplastischer Stoffmodelle
folgt [165]. Einige existierende Modifikationen des ursprünglichen IS-Konzeptes werden in
Kapitel 6 diskutiert.

Die beschriebene HP bzw. die HP+IS hat sich in den letzten 25 Jahren weit verbreitet
und wurde zur Lösung zahlreicher Randwertprobleme auch unter zyklischer Belastung
herangezogen. Beispielsweise wurden komplexe Randwertprobleme zur Vibrationsram-
mung [19, 20, 138, 156], zur Rütteldruckverdichtung [3, 197], zur Rüttelstopfverdichtung
[99], zu Suction-Bucket-Gründungen [127], zur Wellenausbreitung [133, 134, 139], zur
Boden-Bauwerks-Interaktion [158, 159] oder zur sog. geotechnischen gravitativen Ener-
giespeicherung (GGES) [103, 125, 160] mittels der beschriebenen Stoffmodelle numerisch
untersucht.

Die HP+IS dient daher in der vorliegenden Arbeit als Referenzmodell zur Simulation von
zyklischen Verformungen in Sand. Nachdem in Kapitel 3 einige Probleme dieser Formulie-
rung aufgezeigt werden, werden in den darauffolgenden Kapiteln unter anderem mit dem
Konzept der generalisierte intergranularen Dehnung (GIS) die meisten dieser Probleme
konstitutiv behoben.
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2.6 Generalisierte Hypoplastizität

Hypoplastische Stoffmodelle für Boden und deren Entwicklung wurden im Abschnitt 2.3
bereits kurz beschrieben. Die mathematische Form

σ̇ = fsL : ε̇+ fsfdN∥ε̇∥ , (2.53)

siehe Gl. (2.28), dient dabei bis heute oft als Grundlage der Formulierung hypoplastischer
Stoffmodelle. Diese Schreibweise erscheint jedoch nicht intuitiv verständlich und ist daher
zur Weiterentwicklung hypoplastischer Stoffmodelle nur bedingt geeignet. Daher führt
Niemunis [112] eine als generalisierte Hypoplastizität bezeichnete alternative Schreibweise
hypoplastischer Modelle ein:

σ̇ = E : (ε̇−mY ∥ε̇∥) . (2.54)

Gl. (2.54) berücksichtigt eine elastische Steifigkeit E, den sog. Grad der Nichtlinearität Y
und die hypoplastische äquivalente Fließregel m. Der Grad der Nichtlinearität lässt sich
dabei als Intensität der irreversiblen Verformungen und die hypoplastische Fließregel
als Richtung der irreversiblen Verformungen interpretieren. Alle drei Komponenten von
Gl. (2.54) ergeben sich für Modelle in der Form der Gl. (2.53), also beispielsweise auch
für die HP, aus den bekannten Tensoren L und N zu:

E = Lfs , (2.55)

Y = fd ∥L−1 : N∥ = fd ∥B∥ , (2.56)

m = − ⃗[L−1 : N ] = −B⃗ . (2.57)

Es gilt, zwei Spezialfälle der oben genannten Gleichungen zu diskutieren [91, 105, 112, 146]:

• Für den Fall Y = 0 ergibt sich das elastische Stoffmodell σ̇ = E : ε̇. In Abhängigkeit
von der Steifigkeit E kann letzteres entweder hyperelastisch, elastisch oder hypoelas-
tisch [55, 114] sein, siehe Abschnitt 7.2.

• Für perfektes plastisches Fließen gilt σ̇ = 0 für eine gegebene und konstante Deh-
nungsrate ε̇ ̸= 0, was Y = 1 und m = ⃗̇ε entspricht. Im kritischen Zustand gilt
σ̇ = 0 für eine fortgesetzte Dehnungsrate ε̇∗ ̸= 0 mit tr (ε̇) = ε̇vol = 0 und es folgt
Y = 1 und tr (m) = 0. Sogenannte asymptotischen Zustände werden detailliert in
Kapitel 4 diskutiert.

Nach der Einführung in die hypoplastische Stoffmodellierung im vorliegenden Kapitel
beschäftigt sich das folgende Kapitel mit Nachteilen bestehender hypoplastischer Formu-
lierungen, welche die neu entwickelten Stoffmodelle in dieser Arbeit motivieren.



Kapitel 3

Untersuchung weit verbreiteter

hypoplastischer Formulierungen

Wie im vorherigen Kapitel diskutiert, weisen hypoplastische Modelle im Vergleich zu
beispielsweise elasto-plastischen Formulierungen unter anderem folgende Vorteile auf:

• Es existiert kein rein elastischer Bereich, sodass irreversible Verformungen sowie
Dilatanzeffekte im gesamten Spannungsraum beschrieben werden können.

• Zur Formulierung eines hypoplastischen Stoffmodells muss keine Fließfläche und kein
plastisches Potenzial definiert werden. Eine Aufteilung der Dehnungsrate in einen
elastischen und einen plastischen Anteil erfolgt nicht. Stattdessen sind hypoplasti-
sche Modelle durch ausgeprägte Nichtlinearitäten geprägt, wodurch das nichtlineare
Materialverhalten von Boden prinzipiell gut abgebildet werden kann.

• Die Bifurkation (Scherfugenbildung) wird realistisch beschrieben. Dies wird anhand
numerischer Beispiele in Abschnitt 9.1 gezeigt.

• Hypoplastische Stoffmodelle lassen sich in der Regel vergleichbar einfach und nu-
merisch effizient implementieren.

Trotz der genannten Vorteile weisen auch weit verbreitete hypoplastische Modelle, wie bei-
spielsweise die in Kapitel 2 eingeführte HP bzw. die HP+IS, nach wie vor einige Schwach-
stellen auf. Einige dieser Defekte werden im Folgenden diskutiert. Das Ziel ist dabei sowohl
die vertiefte Untersuchung der bestehenden Formulierungen als auch die Motivation der
in den folgenden Kapiteln vorgestellten neuen hypoplastischen Stoffmodelle.

3.1 Betrachtete Sande

Zunächst werden die in dieser Arbeit numerisch betrachteten Versuchsmaterialien, Karls-
ruher Feinsand (KFS), Karlsruher Sand (KS), Zbraslav Sand (ZS) und Fraser River Sand

25
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a) b) c)

Abbildung 3.1: Schüttkegel betrachteter Sande: a) Karlsruher Feinsand (KFS), b) Karlsruher

Sand (KS) und c) Zbraslav Sand (ZS)

(FRS) kurz eingeführt und Parametersätze für die HP bzw. die HP+IS aus der Litera-
tur vorgestellt. Die im weiteren Verlauf der Arbeit verwendeten Versuchsdaten entstam-
men größtenteils der Literatur. Es wurden lediglich einige Versuche am KFS zusätzlich
durchgeführt1. Schüttkegel der drei Sande KFS, KS und ZS sind in Abbildung 3.1 dar-
gestellt. Von FRS liegt dem IBF keine Bodenprobe vor, weshalb von diesem Material
kein Schüttkegel abgebildet ist. Für alle Sande sind die Korngrößenverteilungen in Abbil-
dung 3.2 sowie die granulometrischen Eigenschaften in Tabelle 3.1 gezeigt. KFS, KS und
ZS weisen Quarz als primären Mineralbestandteil auf, weshalb von einer Korndichte von
ρ = 2, 65 g/cm3 ausgegangen wird. FRS besteht hingegen nur aus ca. 40% Quarz, worin
die von den anderen Materialien abweichende Korndichte begründet liegt.

Beim Karlsruher Feinsand (KFS) handelt es sich um einen Feinsand, welcher in der Ver-
gangenheit am IBF ausführlich experimentell untersucht wurde. Besonders hervorzuheben
sind dabei die Arbeiten von Wichtmann [184, 193, 194], welcher in seiner Zeit am IBF
eine große Datenbank an Versuchsergebnissen an KFS erstellte. Darüber hinaus sind Ver-
suchsergebnisse an KFS weiterer Literatur zu entnehmen [64, 65, 108, 213, 215, 216, 217].

Beim Karlsruher Sand (KS) handelt es sich um einen Mittelsand, welcher bereits seit
Jahrzehnten am IBF als Versuchssand dient. Zuletzt beschäftigte sich Vogelsang inten-
siv mit KS und führte großmaßstäbliche Laborversuche zur Pfahlpenetration durch [175,
176, 177]. Früherer Untersuchungen an KS sind beispielsweise in [7, 51, 54, 173, 183, 196]
zu finden. Es sei darauf hingewiesen, dass über die Jahre unterschiedliche Chargen von
KS verwendet wurden, welche sich entsprechend auch in den mechanischen Eigenschaften
unterscheiden. Der entscheidende Unterschied zwischen KFS und KS liegt im unterschied-
lichen Korndurchmesser bei 50 % Siebdurchgang (d50). Beide Sande weisen eine nahezu
identische Ungleichförmigkeitszahl Cu = d60/d10 auf, weshalb die Korngrößenverteilungen
nahezu parallel sind. Die Porenzahl bei lockerster Lagerung emax bzw. bei dichtester La-
gerung emin sind für den KS deutlich geringer als für den KFS.

Der Zbraslav Sand (ZS) stammt aus einem Vorort der tschechischen Hauptstadt Prag und
wurde in der Vergangenheit von Feda [35, 36, 37] und gegenwärtig intensiv von Duque
[30, 31] bzw. Opršal [132] untersucht. Sein Korndurchmesser bei 50 % Siebdurchgang
(d50) entspricht in erster Näherung dem von KS, allerdings weist der ZS im Vergleich zum

1Die Versuchsdurchführung erfolgte durch Techniker/innen des IBF.
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Abbildung 3.2: Korngrößenverteilungen der betrachteten Sande

Material d50 Cu emin emax ρs Quelle

[-] [-] [-] [-] [g/cm3]

Karlsruher Feinsand (KFS) 0,15 1,5 0,677 1,054 2,65 [184, 193, 194]

Karlsruher Sand (KS) 0,55 1,5 0,549 0,851 2,65 [175, 176, 178]

Zbraslav Sand (ZS) 0,531 3,2 0,520 0,893 2,65 [30, 31]

Fraser River Sand (FRS) 0,3 1,6 0,68 1,0 2,72 [171]

Tabelle 3.1: Granulometrische Eigenschaften der betrachteten Sande

KS bzw. KFS eine deutlich größere Ungleichförmigkeit auf. Die Korngrößenverteilung ist
daher flacher als die von KS oder KFS.

Die Korngrößenverteilung des Fraser River Sands (FRS) liegt zwischen der des KFS und
des KS mit vergleichbarer Ungleichförmigkeit. Der Sand stammt vom namensgebenden
Fluss aus der kanadischen Provinz British Columbia und wurde unter anderem von Utha-
yakumar und Vaid [171] experimentell untersucht.

Für die drei Materialien KFS, KS und ZS existieren in der Literatur numerische Untersu-
chungen sowie Parametersätze für die HP und die HP+IS. Tabelle 3.2 fasst entsprechende
Parametersätze zusammen. Die in der Literatur für dieselbe Materialbezeichnung ange-
gebenen Parametersätze variieren teilweise stark. Auch wenn hinter den Parametersätzen
mit der gleichen Bezeichnung aus der Literatur nicht immer derselbe physikalische Sand
steht (z.B. verschiedene Chargen), sind die teils großen Abweichungen bemerkenswert.
Diese Feststellung ist jedoch nicht Gegenstand der vorliegenden Forschung.

Ergänzend wurde die Tabelle um die Parametersätze für den Hochstetten Sand (HS)
erweitert. Letzterer wurde im Rahmen weniger Vergleichssimulationen in dieser Arbeit
berücksichtigt und besitzt, nicht zuletzt aufgrund des in der Originalveröffentlichung der
IS [121] angegebenen Parametersatzes, einen gewissen Referenzcharakter für die Bestim-
mung der IS-Parameter.
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Bez. φc ei0 ec0 ed0 hs n α β

[-] [-] [-] [-] [MPa] [-] [-] [-]

KFS-Wicht-1 33,1 1,212 1,054 0,677 4000 0,27 0,14 2,5

KFS-Wicht-2 33,1 1,212 1,054 0,677 4000 0,27 0,14 2,5

KS-Vogelsang 33,1 1,0 0,84 0,53 19000 0,285 0,1 1,25

KS-Osinov 30 1,0 0,84 0,53 5800 0,28 0,13 1,0

KS-Herle 30 1,0 0,84 0,53 5800 0,28 0,13 1,0

HS-Niemunis 33 1,05 0,95 0,55 1000 0,25 0,25 1,0

HS-Osinov 33 1,05 0,95 0,55 1000 0,25 0,25 1,5

ZS-Duque 34 1,027 0,893 0,520 111,746 0,346 0,15 2,2

ZS-Herle 31 0,95 0,82 0,52 5700 0,25 0,13 1

Bez. R mR mT βR χ Quelle

[-] [-] [-] [-] [-]

KFS-Wicht-1 10−4 5,0 2,0 0,5 6 [184]

KFS-Wicht-2 10−4 2,2 1,1 0,1 5,5 [184, 185, 194]

KS-Vogelsang 5 · 10−5 2,5 1,25 0,1 4 [175]†

KS-Osinov 4 · 10−5 5,0 5,0 0,05 1,5 [19, 136, 138, 139]

KS-Herle nicht kalibriert [51, 53]

HS-Niemunis 10−4 5 2 0,5 6,0 [121]

HS-Osinov 5 · 10−5 5 5 0,05 1,5 [134]

ZS-Duque 10−4 5 2,5 0,1 4,0 [32]

ZS-Herle nicht kalibriert [51, 53]
† mR und mT vertauscht

Tabelle 3.2: Parametersätze für die HP bzw. die HP+IS für KFS, KS, HS und ZS aus der

Literatur: (oben) acht Parameter der HP und (unten) fünf Parameter der IS

Im Folgenden werden viele Elementsimulationen betrachtet. Letztere erfolgen in der vor-
liegenden Arbeit mit dem Programmcode IncrementalDriver [113] von Niemunis, wel-
cher frei verfügbar ist [49]2. Die Simulationen der HP und der HP+IS wurden mit einer
Abaqus/Standard Subroutine umat.for von Niemunis durchgeführt. Für Vergleichsberech-
nungen wurde zusätzlich die frei verfügbare umat.for von Maš́ın [49] herangezogen. Für die
in den späteren Kapiteln eingeführten neuen Stoffmodelle wurden entsprechende umat.for
Implementierungen erstellt, siehe Anhang B.

2https://soilmodels.com/



3.2. Unterschätzte Dilatanz dichter Böden in der HP 29

3.2 Unterschätzte Dilatanz dichter Böden in der HP

Ein dichter Sand zeigt infolge einer drainierten monotonen Scherung nach einer initialen
geringen Verdichtung eine signifikante Volumenvergrößerung (Auflockerung), was im All-
gemeinen als Dilatanz bekannt ist. Es zeigt sich jedoch, dass die HP und somit auch die
HP+IS die im Versuch gemessene Dilatanz bei dichten Böden stark unterschätzt.

Die nicht adäquate Abbildung der Dilatanz wird mittels Elementsimulationen und de-
ren Vergleich mit Triaxialversuchsdaten für Karlsruher Feinsand (KFS) demonstriert. Es
werden die monotonen Kompressionsversuche TMD21 bis TMD25 aus [194] mit einer
relativen Anfangslagerungsdichte vor Beginn der Scherung von 0, 85 ≤ ID0 ≤ 0, 95 (dich-
ter Sand) betrachtet. Die Versuche unterscheiden sich im initialen mittleren effektivem
Druck (50 kPa ≤ p0 ≤ 400 kPa). Abbildung 3.3a stellt die in den Versuchen gemessenen
Deviatorspannungen q und Abbildung 3.3b die gemessenen volumetrischen Dehnungen
εvol in Abhängigkeit von der axialen Dehnung εa dar. Die ausgeprägte Dilatanz zeigt sich
deutlich. Die dichten Proben erreichen nach einer axialen Dehnung von −εa = 20% eine
volumetrische Dehnung von circa εvol ≈ 10%. Außerdem zeigt sich vor dem Erreichen
des asymptotischen Zustands eine Peak-Deviatorspannung, welche in den Experimenten
bei einer axialen Dehnung von circa −εa = 6% erreicht wird. Die angestrebten asym-
ptotischen Zustände werden aufgrund des sich einstellenden nahezu volumenkonstanten
Dehnungspfads als kritische Zustände bezeichnet.

Die numerische Nachrechnung der Versuche mit der HP+IS erfolgt anhand des Parameter-
satzes KFS-Wicht-2, siehe Tabelle 3.2. Dieser Parametersatz wird, sofern nicht abweichend
gekennzeichnet, auch für alle weiteren Simulationen im Rahmen des vorliegenden Kapitels
herangezogen. Vergleichbare Ergebnisse zu denen aus Abbildung 3.3 finden sich auch in
[184, 185, 194]. Die Porenzahl und der Anfangsspannungszustand sind entsprechend den
Versuchen initialisiert. Außerdem wurden zwei Möglichkeiten der Initialisierung der inter-
granularen Dehnung betrachtet. Die Simulationsergebnisse für eine isotrope Initialisierung
mit ρ0 = 1 (INI 1) zeigen die Abbildungen 3.3c und 3.3d und mit einer Initialisierung von
ρ0 = 0 (INI 3) die Abbildungen 3.3e und 3.3f. Direkt ersichtlich wird, dass sowohl die Stei-
figkeit als auch der Dehnungspfad zu Beginn der Simulation stark durch die Initialisierung
von h beeinflusst wird.

Die HP+IS kann den Verlauf der Deviatorspannung qualitativ wiedergeben. Die maxi-
male Peak-Festigkeit tritt allerdings verglichen mit den Versuchen bei einer geringeren
axialen Dehnung auf. Für den Fall der IS-Initialisierung mit ρ0 = 0 zeigt sich zu Beginn
der Berechnung eine deutlich zu große Steifigkeit, was auf die in diesem Fall wirkende in-
tergranulare Dehnung zurückzuführen ist. Dies führt dazu, dass für den Versuch TMD21
mit dem geringsten mittleren effektiven Druck die Peak-Festigkeit in der Simulation nach
weniger als 1% axialer Dehnung auftritt. Im Versuch TMD25 dagegen ist letztere erst bei
etwa 6% axialer Dehnung erreicht (vgl. schwarze Punkte in Abbildung 3.3). Für den Fall
der isotropen IS-Initialisierung mit ρ0 = 1 ergeben sich realistischere Simulationsergebnis-
se, wenngleich auch für diesen Fall die Peak-Festigkeit bei geringerer axialer Dehnung als
im Versuch auftritt. Im Bereich vor dem Peak sind die Simulationsergebnisse demzufolge
zu steif. In den Simulationen ist die erforderliche axiale Dehnung bis zum Erreichen der
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Abbildung 3.3: Experimentelle Ergebnisse [184] vs. Elementsimulationen mit der HP+IS (un-

terschiedlich initialisierte IS) für monotone drainierte Triaxialversuche an dichten Proben an

KFS (0, 85 ≤ ID0 ≤ 0, 95) bei unterschiedlichem Druckniveau: a), c) und e) Deviatorspannung

q und b), d) und f) volumetrische Dehnung εvol in Abhängigkeit von der axialen Dehnung εa
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NHP+GIS:
trockener Sand

20 m

2 m

10 m

x1

x2

Symmetrieachse (ebene Verformung)

t1 = t2 = 0
u1 = t2 = 0

u1 = t2 = 0

u2 = t1 = 0

u2 = f(t)
t1 = 0 HP+IS:

a)

e [-] Streifenfundament

Symmetrie(ebene Verformung)

keine Aufwölbung infolge zu geringer Dilatanz
unrealistische Porenzahlverteilung

uv (t)u2 = f(t)

b)

Abbildung 3.4: Simulation eines Streifenfundaments (steif und vollrau) auf dichtem Sand

(e0 = 0, 677 (ID0 = 1)): a) untersuchtes Anfangsrandwertproblem (ARWP) und b) Vertei-

lung der Porenzahl e nach einer vorgegebenen vertikalen Fundamentverschiebung von u2 = 5

cm (überhöhte Darstellung) (modifiziert aus [101])

Peak-Festigkeit zudem vom Druckniveau abhängig. Je größer der Druck, desto größer ist
die Dehnung bis zur maximalen Deviatorspannung. Dieser ausgeprägte Trend ist in den
Versuchen nicht zu beobachten.

Die Auflockerung infolge der Dilatanz bei fortgesetzter monotoner Verformung kann mit-
tels der HP+IS bzw. der HP nicht adäquat reproduziert werden. Zwar führt die Initia-
lisierung der IS mit ρ0 = 1 im Vergleich zu den Berechnungen mit ρ0 = 0 zu einer
realistischen Abbildung der anfänglichen Kontraktanz (Verdichtung), die mit zunehmen-
der axialer Dehnung auftretende Dilatanz (Auflockerung) der dichten Proben wird jedoch
systematisch unterschätzt. Dies ist auf das Basismodell der HP zurückzuführen, da der
Einfluss der IS bei einer monotonen Verformung verschwindet. Der Fehler beträgt nach
einer groben Schätzung circa 40 %. Die zutreffende Reproduktion von Kontraktanz- und
Dilatanzeffekten kann bei Tragfähigkeitsproblemen entscheidend sein, da Ver- oder Ent-
spannungseffekte die Festigkeit gerade unter undrainierten Bedingungen entscheidend be-
einflussen. Für die betrachteten Versuche erscheint eine isotrope Initialisierung der inter-
granularen Dehnung mit ρ0 = 1 zutreffend. Im Allgemeinen sei bezüglich dieser initialen
Werte auf die Diskussion in Abschnitt 3.6.1 verwiesen.

Das gezeigte Defizit der unterschätzten Dilatanz in dichtem Sand der HP bzw. der HP+IS
kann relevante Auswirkungen auf die Berechnungsergebnisse von Randwertproblemen ha-
ben. Als Beispiel hierfür wird ein monoton und vertikal belastetes Streifenfundament mit
einer Breite von B = 4 m auf einer 10 m dicken Sandschicht ohne Einbindetiefe betrachtet.
Das zweidimensionale, quasi-statische Anfangsrandwertproblem3 (ARWP) unter Ausnut-
zung von Systemsymmetrien ist in Abbildung 3.4a dargestellt. Das als perfekt starr und

3Das ARWP wurde numerisch mit Abaqus/Standard und 28 CPE3 und 2542 CPE4 Finiten-Elementen

(gemischtes Netz) gelöst.
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rau angenommene Fundament wird dabei vereinfacht mittels einer vorgegebenen vertika-
len Verschiebung von maximal u2(tend) = 5 cm bei verhinderter horizontaler Verschiebung
der entsprechenden Knoten am oberen linken Rand des untersuchten Gebiets simuliert.
Die Anfangsdichte des KFS wurde zu e0 = ed0 = 0, 677 (ID0 = 1, 0) gewählt. Die inter-
granulare Dehnung wurde mit h0 = 0 initialisiert und die Berechnung beginnt mit einem
geostatischen Anfangsspannungszustand mit einem Seitendruckbeiwert von K0 = 1 (iso-
trope Anfangsspannung).

Bei der Belastung eines Flachfundaments ohne Einbindetiefe auf sehr dichtem Sand ist ein
sog. generelles Scherversagen (engl. general shear) mit einer Aufwölbung der Geländeober-
kante außerhalb des Fundaments zu erwarten [174]. Die Simulation mit der HP+IS ergibt
dieses Versagensmuster jedoch nicht und es zeigt sich kein Aufwölben der Geländeoberkante
neben dem Fundament. Die resultierende Verteilung der Porenzahl ist ebenfalls unrealis-
tisch und es zeigt sich ein durchstanzender Versagensmechanismus, siehe Abbildung 3.4b.
Die genannten Defizite des simulierten qualitativen Verhaltens des Flachfundaments auf
dichtem Sand sind auf die unterschätzte Dilatanz im dichten Boden zurückzuführen [101].

3.3 Zugzustand in der HP

Wie bereits in Abschnitt 2.6 diskutiert, kann die Bedingung für ideal plastisches Fließen
σ̇ = 0 in der HP mittels dem Grad der Nichtlinearität zu

Y = fd ∥L−1 : N∥ = fd ∥B∥ = 1 (3.1)

formuliert werden [112]. Der Tensor vierter Stufe L und der Tensor zweiter Stufe N sind
dabei Funktionen der effektiven Spannung, siehe Abschnitt 2.4.

Für den Pyknotropiefaktor gilt nach Gl. (2.38)

fd(e, p) =

(
e− ed(p)

ec(p)− ed(p)

)α
= rαe (3.2)

mit der Porenzahl im kritischen bzw. im dichtesten Zustand ec(p) bzw. ed(p) und dem
Materialparameter α > 0. Die Grenzporenzahlen sind druckabhängig und es gilt ec(p) >
ed(p) > 0. Unabhängig vom mittleren effektiven Druck p gilt fd(e = ed(p)) = 0 und
fd(e = ec(p)) = 1.

Es zeigt sich, dass für einen dichten Boden in der HP die Bedingung Y = 1 bei ei-
nem Zugspannungszustand, also ein Spannungszustand mit mindestens einer positiven
Hauptspannungskomponente, erreicht werden kann. Somit ist in der HP und der HP+IS
das Auftreten von Zugspannungen infolge einer monotonen Scherung theoretisch möglich.
Ein solcher Spannungszustand ist für einen granularen Boden physikalisch nicht zulässig.

Zur Veranschaulichung des beschriebenen Problems wird ein isobares (p = const) Sche-
ren unter axialsymmetrischen Bedingungen betrachtet. Zur Verdeutlichung der auftreten-
den Zugspannungen wird der Parameter der granularen Härte hs zu 8 · 108 kPa gesetzt
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Abbildung 3.5: Isobares Scheren unter axialsymmetrischen Bedingungen eines dichten Sands

kann bei der Simulation mit der HP zu einem unzulässigen Zugspannungszustand führen: a)

Überschreiten der 1:3 Linie im pq-Diagramm und b) Erreichen unzulässig hoher Spannungs-

verhältnisse q/p (modifiziert aus [101])

(sonst Parametersatz KFS-Wicht-2). Es wird ein anisotroper Anfangsspannungszustand
von p0 = q0 = 100 kPa und eine initiale Porenzahl von e0 = 0, 677 (ID0 = 1), was bei
einem mittleren effektiven Druck von p = 100 kPa einer druckbezogenen relativen La-
gerungsdichte von Id0 = 0, 967 und einem initialen Pyknotropiefaktor von fd0 = 0, 612
entspricht, betrachtet. Die Simulation erfolgt mit der HP (ohne IS). In Abbildung 3.5a
ist der resultierende Spannungspfad im pq-Diagramm und in Abbildung 3.5b das Span-
nungsverhältnis q/p in Abhängigkeit von der axialen Dehnung abgebildet.

Das beschriebene Problem des Erreichens eines Zugspannungszustands ist ersichtlich. Der
Spannungspfad überschreitet die 1 : 3 Linie durch den Ursprung des pq-Diagramms, siehe
Abbildung 3.5a. Für Zustände außerhalb dieser Linie entspricht mindestens eine Haupt-
spannung einer Zugspannung. Letztere werden dabei bereits nach einer geringen axialen
Dehnungen von circa εa = −0, 25% erreicht, siehe Abbildung 3.5b. Mit zunehmender
axialer Dehnung kehrt der Spannungszustand in den zulässigen Druckbereich zurück, was
auf eine Vergrößerung der Porenzahl infolge der Dilatanz und einer damit einhergehenden
Vergrößerung von fd zurückzuführen ist. Die Porenzahl strebt zu e = ec(p). Infolge einer
monotonen Scherung gilt asymptotisch fd = 1 und das perfekt plastische Fließen im kri-
tischen Zustands tritt asymptotisch in einem Druckspannungszustand auf. Die Dilatanz
verhindert dabei in vielen Fällen Zugspannungszustände, wenngleich letztere theoretisch
nicht ausgeschlossen sind.

Es sei darauf hingewiesen, dass in manchen Implementierungen von Stoffmodellen für Sand
Zugzustände per Definition ausgeschlossen sind4. Eine solche Implementierung würde die
in Abbildung 3.5 dargestellten Berechnungsergebnisse nicht reproduzieren. Dabei handelt
es sich um eine Einschränkung der Implementierung, welche im Sinne einer praxisnahen
Stoffmodellverwendung berechtigt erscheinen mag, jedoch nicht das ursprüngliche Stoff-
modell abbildet.

4Beispielsweise in der umat.for der HP bzw. der HP+IS von Maš́ın [49].
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Abbildung 3.6: Künstliche Akkumulation durch den hypoelastischen linearen Teil der HP: Ge-

schlossene Dehnungszyklen können in einem hypoelastischen Stoffmodell zu einer künstlichen

Spannungsakkumulation führen (modifiziert aus [106])

3.4 Folgen einer hypoelastischen Steifigkeit

Der lineare Teil der HP lässt sich mit dem spannungsabhängigen Tensor L, siehe Gl. (2.30)
ausdrücken und

σ̇ = L : ε̇ (3.3)

stellt für sich allein genommen ein hypoelastisches Stoffmodell dar. Eine theoretische
Einführung in die Formen der Elastizität ist in Abschnitt 7.2 gegeben. Bei hypoelasti-
schen Formulierungen kann eine zyklische Verformung mit geschlossenen Dehnungszyklen
im Allgemeinen zu einer Energie- und Spannungsakkumulation führen [56, 106, 144]. Im
Rahmen von Stoffmodellen für Boden ist die Akkumulation aus dem linearen Teil auch
als künstliche Akkumulation (engl. artificial accumulation) bekannt. Bei der Simulation
von zyklischen Verformungen mit der HP bzw. mit der HP+IS kommt es daher zu ei-
ner Überlagerung von künstlichen Akkumulationseffekten mit Akkumulationseffekten aus
dem nichtlinearen Term N . Letzterer stellt dabei den konstitutiv zu kalibrierenden Teil
des Stoffmodells dar und wurde im IS-Konzept zur Simulation zyklischer Verformungen
reduziert, siehe Gl. (2.45).

Die künstliche Akkumulation des hypoelastischen Stoffmodells aus Gl. (3.3) wird an-
hand der Simulation geschlossener Dehnungszyklen in einem axialsymmetrischen Zustand
betrachtet, welche aufgrund der Vernachlässigung des Barotropiefaktors fs relativ groß
gewählt wurden (∆εvol = 0, 5 und ∆εq = 0, 5). Die effektive Spannung stellt im Stoff-
modell nach Gl. (3.3) die einzige Zustandsvariable dar. Es wird ein Spannungszustand
von σa = 2σr = −400 kPa initialisiert. Die resultierende Spannungskomponente σr in
Abhängigkeit von der Zyklenzahl N ist in Abbildung 3.6 dargestellt. Die bereits disku-
tierte künstliche Akkumulation ist deutlich sichtbar.
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Es lässt sich schlussfolgern, dass der elastische Teil hypoplastischer Stoffmodelle mittels
einer hyperelastischen Steifigkeit formuliert werden sollte. Eine solche elastische Steifig-
keit liefert, wie in Abschnitt 7.2 gezeigt wird, keine künstlichen Akkumulationseffekte.
Nur so kann sichergestellt werden, dass, unter Vernachlässigung theoretisch möglicher
numerischer Einflüsse, Akkumulationseffekte tatsächlich eindeutig mittels Stoffmodellpa-
rameter kalibriert werden können und nicht ein Nebenprodukt der elastischen Steifigkeit
darstellen.

3.5 Fehlender Einfluss einer anisotropen Bodenstruk-

tur (Fabric) in der HP

Experimentelle Untersuchungen zeigen, dass die zwei Zustandsvariablen der HP (σ und
e) nicht ausreichen, um das konstitutive Verhalten granularer Böden unter monotoner
Verformung vollständig zu beschreiben. Wie in Kapitel 5 diskutiert wird, stellt die Po-
renzahl lediglich ein isotropes Maß der Mikrostruktur des Bodens dar. Zur konstitutiven
Erfassung der anisotropen Mikrostruktur (engl. fabric) ist daher, wie beispielsweise in
[25, 40, 80, 209] beschrieben, die Einführung einer weiteren (tensoriellen) Zustandsva-
riable als Maß der anisotropen Mikrostruktur erforderlich. Der Begriff

”
Fabric“ steht im

Folgenden für eine anisotrope Mikrostruktur im Allgemeinen. Im weiteren Verlauf der
Arbeit werden zudem zur konstitutiven Beschreibung der anisotropen Mikrostruktur in
zwei unabhängigen und neu entwickelten Stoffmodellen sowohl ein Fabric-Tensor F als
auch ein Strukturtensor z eingeführt.

Der Einfluss der Fabric auf das makroskopisch beobachtete Bodenverhalten zeigt sich bei-
spielsweise in Hohlzylindertriaxialversuchen, bei denen der Winkel α zwischen der Rich-
tung der größten Hauptspannung und der Sedimentationsrichtung variiert wird [171, 212].
Exemplarisch zeigt Abbildung 3.7 undrainierte Versuche an lockerem Fraser River Sand
(FRS) (ID = 0, 3) aus [171] für ein konstantes Verhältnis b = (σ3 − σ2)/(σ3 − σ1) = 0.
Dieses entspricht einem Lode-Winkel von θ = 0◦ und damit einem undrainierten triaxia-
len Kompressionsversuch. Dabei stellen σ1, σ3, ε1 und ε3 die Hauptspannungen bzw. die
Hauptdehnungen dar.

Wie im effektiven Spannungspfad im pq-Diagramm in Abbildung 3.7a erkennbar, führt
ein größerer Winkel α zu einem stärkeren Abbau der effektiven Spannungen zu Beginn der
Scherung infolge der verhinderten Kontraktanz. Entsprechend zeigen sich auch deutliche
Unterschiede im Spannungs-Dehnungs-Diagramm in Abbildung 3.7b: Je größer α, desto
weicher verhält sich der Boden. Eine Berücksichtigung dieser Beobachtung nur mittels der
Zustandsvariablen der effektiven Spannung σ und der Porenzahl e ist ausgeschlossen.

Darüber hinaus zeigen undrainierte monotone Triaxialversuche in Abhängigkeit von der
gewählten Einbaumethode trotz gleichem effektiven Anfangsspannungszustand und glei-
cher Dichte Unterschiede im mechanischen Verhalten, was auf eine andere Fabric des Bo-
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Abbildung 3.7: Der Winkel α, hier definiert als Winkel zwischen der Richtung der maximalen

Hauptspannung σ1 und der Vertikalen (entspricht der Sedimentationsachse), hat in undrainierten

Hohlzylindertriaxialversuchen mit b = 0 ( =̂ triaxiale Kompressionsversuche) an lockerem Fraser

River Sand (ID = 0, 3) einen starken Einfluss auf den a) effektiven Spannungspfad im pq-

Diagramm und b) auf den Spannungs-Dehnungspfad (modifiziert aus [171])

Test ID0 [-] e0[-] p0 [kPa] N [-] /qampl [kPa] Präparation

TMU2 [194] 0,64 0,814 200 - AP

TMU2-DCP1 0,30
DCP−−−→ 0,66 0,805 200 Hammerschläge AP

TMU-MT10 0,56 0,843 200 - MT

TMU-MT10DCP1 0,30
DCP−−−→ 0,52 0,860 200 Hammerschläge MT

TMU-AP2 [194] 0,30 0,941 300 - AP

TMU-AP2UCP1 0,33
UCP−−−→ 0,33 0,929 300 40/20 AP

TMU-AP2UCP2 0,35
UCP−−−→ 0,35 0,922 300 100/20 AP

TMU-AP2UCP3 0,25
UCP−−−→ 0,26 0,958 300 100/40 AP

TMU-AP2UCP4 0,35
UCP−−−→ 0,38 0,912 300 75/60 AP

TMU-MT5 [194] 0,27 0,951 300 - MT

TMU-MT5UCP1 0,31
UCP−−−→ 0,31 0,937 300 40/20 MT

TMU-MT5UCP2 0,32
UCP−−−→ 0,32 0,933 300 100/20 MT

TMU-MT5UCP3 0,30
UCP−−−→ 0,30 0,941 300 100/40 MT

Tabelle 3.3: Versuchsprogramm an KFS bestehend aus undrainierten monotonen triaxialen

Kompressionsversuchen an Proben unterschiedlicher Einbaumethoden mit und ohne zyklische

Vorbelastung
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a) b) c) d)

Abbildung 3.8: Symbolbilder der Probenpräparation mittels a) trockenen Einrieselns (AP) und

b) feuchten Einstampfens (MT) sowie der c) drainierten zyklischen Vorbelastung mittels Ham-

merschlägen (DCP) und d) der undrainierten zyklischen Vorbelastung (UCP)

dens, induziert durch verschiedene Präparationsmethoden, zurückzuführen ist. Für Karls-
ruher Feinsand (KFS) wurden entsprechende Versuche beispielsweise in [184, 192, 194]
gezeigt. Ergänzend wurden im Rahmen der vorliegenden Arbeit Versuche zum Einfluss
der Probenpräparationsmethode und einer zyklischen Vorbelastung auf eine folgende un-
drainierte monotone triaxiale Kompression durchgeführt5 [108]. Das Versuchsprogramm
mit Referenzversuchen aus [194] ist in Tabelle 3.3 dargestellt.

Es wurden zwei Probenpräparationsmethoden betrachtet. Beim trockenen Einrieseln (engl.
air pluviation (AP)) wird der Sand, wie in Abbildung 3.8a dargestellt, mithilfe einer Düse
im trockenen Zustand in den Probenformer eingebracht. Die sich einstellende Dichte der
Probe kann durch den Düsendurchmesser und die Fallhöhe der einzelnen Körner beein-
flusst werden [98, 172]. Beim feuchten Einstampfen (engl. moist tamping (MT)) wird
der Boden hingegen im feuchten Zustand (mit definiertem Wassergehalt) lagenweise in
den Probenformer eingestampft [75], siehe Abbildung 3.8b. Beide Methoden ermöglichen
identische Einbaudichten. Es wurde der Einfluss einer drainierten zyklischen Vorbelastung
(engl. drained cyclic preloading (DCP)) sowie einer undrainierten zyklischen Vorbelastung
(engl. undrained cyclic preloading (UCP)) auf eine monotone undrainierte Scherung un-
tersucht. Während die UCP durch die vorgegebene Spannungsamplitude und die Anzahl
der Zyklen gut quantifizierbar ist, wurde die DCP mithilfe von Hammerschlägen auf den
Probenformer eingeprägt und ist daher schwer zu quantifizieren6. Exemplarisch sind die
zyklischen Vorbelastungsmethoden in Abbildung 3.8c und 3.8d dargestellt.

Die Einbaudichten wurden so gewählt, dass nach der zyklischen Vorbelastung (engl. cy-
clic preloading (CP)) und einer ggf. erforderlichen Rekonsolidierung vergleichbare Aus-

5Es wurden Proben mit h = d = 100 mm, geschmierten Endflächen und eine Verformungsrate von

ε̇a = 0, 1 %/min für die monotone Kompression bzw. ε̇a = 0, 05 %/min für die zyklische Verformung

verwendet.
6Durch die Hammerschläge auf den Probenformer konnte eine DCP mit vergleichsweise großen Volu-

menverformungen unter Beibehaltung der zylindrischen Probenform erreicht werden.
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Abbildung 3.9: Einfluss der Probenpräparationsmethode und einer drainierten zyklischen Vor-

belastung (DCP) auf a) die Spannungs-Dehnungs-Kurve und b) den effektiven Spannungspfad

in monotonen undrainierten Triaxialversuchen mitteldichten Proben aus KFS (modifiziert aus

[108])

gangszustände (e0, σ0) für die monotone undrainierte Scherung vorliegen. Diese initialen
Zustände sind Tabelle 3.3 zu entnehmen. Die Versuchsreihe umfasst Proben mit unter-
schiedlichen Dichten sowie Versuche mit und ohne zyklische Vorbelastung.

Die Versuche an mitteldichten Proben (mit und ohne DCP) sind in Abbildung 3.9 und an
lockeren Proben (mit und ohne UCP) in Abbildung 3.10 dargestellt. In der monotonen un-
drainierten Abscherphase ergeben sich je nach Präparationsmethode bzw. zyklischer Vor-
belastung unterschiedliche effektive Spannungspfade und Spannungs-Dehnungspfade. Die
initiale Kontraktanz, welche sich durch einen Abbau des mittleren effektiven Drucks zu Be-
ginn der Scherung zeigt, ist bei AP-Proben deutlich stärker ausgeprägt als bei MT-Proben.
Die untersuchte DCP eliminiert diesen Unterschied jedoch weitgehend, sodass die Versuch-
sergebnisse der AP-Proben mit drainierter zyklischer Vorbelastung sehr nahe an denen der
MT-Proben ohne zyklische Vorbelastung liegen, siehe Abbildung 3.9. Bei den Versuchen
zur UCP zeigt sich ein differenzierteres Bild: Je ausgeprägter die zyklische Vorbelastung,
desto stärker gleichen sich die Spannungs-Dehnungspfade der AP-Proben in der nachfol-
genden monotonen Abscherphase denen der MT-Proben an, siehe Abbildung 3.10. Bei
MT-Proben ist der Einfluss einer zyklischen Vorbelastung hingegen gering. Interessanter-
weise erfordert das vollständige Auslöschen der durch die beiden Präparationsmethoden
unterschiedlich initiierten Fabric eine relativ ausgeprägte zyklische Vorbelastung. Klei-
ne Zyklen verändern die initiale Fabric hingegen nur geringfügig. Weitere experimentelle
Untersuchungen zum Einfluss der anisotropen Bodenstruktur auf das mechanische Bo-
denverhalten sind in der Literatur zu finden [4, 30, 77, 95, 96, 110, 111, 128, 129, 167,
192, 194, 208].

Aus den Experimenten und der Literatur lassen sich qualitative Anforderungen an die
einzuführende Zustandsvariable der Fabric ableiten:
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Abbildung 3.10: Einfluss der Probenpräparationsmethode und einer undrainierten zyklischen

Vorbelastung (UCP) auf a) die Spannungs-Dehnungs-Kurve und b) den effektiven Spannungs-

pfad in monotonen undrainierten Triaxialversuchen an lockeren Proben aus KFS (modifiziert

aus [108])

• Die Fabric sollte sich primär durch Scherung ändern und daher eine tensorielle Größe
sein.

• Die Fabric sollte bei unterschiedlicher Probenpräparation unterschiedlich initialisiert
werden.

• Die Fabric sollte eine Änderung des kontraktanten Bodenverhaltens bewirken.

• Die Fabric sollte sich bei monotoner Scherung einem asymptotischen Wert annähern,
um dem Konzept der CSSM zu entsprechen.

• Die Fabric sollte sich bei zyklischer Belastung verändern, auch wenn die Entwicklung
bei zyklischer Belastung mit geringer Intensität, wie im Fall der hier untersuchten
UCP, nur langsam erfolgt.

Die dargestellten Überlegungen werden in Kapitel 5 bzw. Abschnitt 7.8 konstitutiv be-
schrieben und mittels des Fabric-Tensors F bzw. der Strukturvariablen z in den, im Rah-
men dieser Arbeit entwickelten, neuen hypoplastischen Stoffmodellen HP+GIS+ACST
und NHP+GIS berücksichtigt.

3.6 Untersuchungen zur intergranularen Dehnung (IS)

Das Konzept der intergranularen Dehnung (engl. intergranular strain (IS)) wurde zur
Reduzierung des Problems des sog. Ratchetings eingeführt, siehe Abschnitt 2.5. Stoff-
modelle, welche mit der IS gekoppelt sind, können daher auch zur Simulation zyklischer
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Verformungen herangezogen werden. Im Folgenden werden einige (teils problematische)
Aspekte der ursprünglichen IS-Version nach Niemunis und Herle [121] analysiert, welche
nicht zuletzt zur Entwicklung des in Kapitel 6 eingeführten Konzepts der generalisierten
intergranularen Dehnung (engl. generalized intergranular strain (GIS)) motivierten.

3.6.1 Zur Initialisierung der intergranularen Dehnung

Eine nicht triviale Fragestellung betrifft die Initialisierung des Tensors der intergranularen
Dehnung h, da diese Zustandsvariable im Vergleich zum Spannungszustand bzw. der
Porenzahl keiner in einem Versuch oder in situ messbaren physikalischen Größe entspricht.
Der initiale Wert von h kann jedoch erhebliche Auswirkungen auf Berechnungsergebnisse
haben [163], wie beispielsweise bereits in Abbildung 3.3 demonstriert wurde.

Drei Möglichkeiten der Initialisierung erscheinen zunächst theoretisch begründbar:

• INI 1: Isotrop vollständig mobilisiert zu h11 = h22 = h33 = −R/
√
3 bzw. h =

−R/
√
3δ, also ρ = 1, 0:

Eine isotrope Initialisierung kann physikalisch beispielsweise durch die zuvor in ei-
nem Triaxialversuch erfolgte isotrope Kompression begründet werden.

• INI 2: In vertikaler Richtung vollständig mobilisiert zu hv = −R, also ρ = 1, 0:

Dieser Ansatz kann durch einen vertikalen Probeneinbau im Labor oder durch Se-
dimentation bzw. eine vertikale Vorbelastung in situ begründet werden. Die daraus
resultierende eindimensionale Kompression führt zu einer entsprechenden Mobilisie-
rung der IS in vertikaler Richtung.

• INI 3: Nicht mobilisiert mit h = 0, also ρ = 0:

Eine zyklische Verformung mit kleinen Amplituden führt gemäß Gl. (2.48) zu einem
Abbau der IS auf ρ = 0 (sog. shakedown) [121]. Im Labor kann eine solche zykli-
sche Belastung beispielsweise durch geringe Erschütterungen beim Einbau der Pro-
be in den Versuchsstand entstehen. Zudem können kleine zyklische Verformungen
auch durch die Druckregelung induziert werden. Infolgedessen wäre zu Beginn der
Scherung h = 0 zu initialisieren. In situ können geringfügige zyklische Verformun-
gen beispielsweise durch kleine Erdbeben, Verkehrslasten oder einen schwankenden
Grundwasserstand denselben Effekt hervorrufen.

Dabei gilt jeweils entweder ρ = 0 oder ρ = 1. Daraus folgt, dass auch Fälle mit 0 ≤ ρ ≤ 1
begründbar sind, wodurch die Initialisierung der IS letztendlich willkürlich ist. Es sei
darauf hingewiesen, dass durch eine entsprechende Wahl der initialen Werte Defizite des
zugrunde gelegten Stoffmodells, beispielsweise die in Abschnitt 3.5 beschriebene fehlende
Berücksichtigung einer anisotropen Strukturvariablen (Fabric), bei entsprechendem An-
wenderwissen,

”
ausgeglichen“ werden können. Dieses Vorgehen ist jedoch nicht im Sinne

einer ganzheitlichen konstitutiven Modellierung für Boden.
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Abbildung 3.11: Einfluss der Initialisierung der intergranularen Dehnung h auf einen monotonen

undrainierten Triaxialversuchs (p0 = 100 kPa, e0 = 0, 8): a) Spannungspfad im pq-Diagramm

und b) Spannungs-Dehnungs-Pfad im qεa-Diagramm

Der Einfluss der verschiedenen Initialisierungsmöglichkeiten in der HP+IS wird anhand
von Elementsimulationen eines monotonen, undrainierten Triaxialversuchs mit einem iso-
tropen effektiven Anfangsspannungszustand von p0 = 100 kPa und einer Anfangspo-
renzahl von e0 = 0, 8 (ID0 = 0, 67) gezeigt. Der resultierende Spannungspfad im pq-
Diagramm ist in Abbildung 3.11a und die resultierende Spannungs-Dehnungs-Kurve im
qεa-Diagramm in Abbildung 3.11b dargestellt.

Es wird der große Einfluss der initialen IS auf die Simulationsergebnisse deutlich. Die
Fälle INI 1 und INI 2 mit ρ = 1 führen, auch aufgrund des gewählten Parametersatzes
(mT ), zu einem sehr ähnlichen Simulationsergebnis. Für den betrachteten Fall entspricht
dies nahezu den Simulationsergebnissen der HP ohne die IS Erweiterung (nicht gezeigt)
und führt daher im simulierten monotonen Versuche praktisch zu einer Deaktivierung der
IS. Für INI 3 (ρ = 0) zeigen sich signifikant abweichende Berechnungsergebnisse. Das
Stoffmodell verhält sich steifer und es zeigt sich keine Spannungsrelaxation zu Beginn der
Berechnung.

Eine Initialisierung entsprechend INI 2 mit ρ = 0, 9 liefert Ergebnisse zwischen den zu-
vor genannten. Zudem wurde der Einfluss einer kleinen (zyklischen und volumetrischen)
Störung simuliert, indem für die Initialisierung INI 1 mit ρ = 1 vor der monotonen Sche-
rung 25 Zyklen mit pampl = 0, 5 kPa und qampl = 0 simuliert wurden. Diese Belastung
könnte beispielsweise aus der Regelung des Zelldrucks in einem Triaxialversuch resultie-
ren. Nach der zyklischen Belastungsphase ergibt sich für den gewählten Parametersatz
ρ ≈ 0, 68 bei nahezu unveränderter Porenzahl e = 0, 7999 ≈ 0, 8. Der starke Einfluss der
sehr kleinen zyklischen Verformung auf die darauffolgende undrainierte Abscherphase ist
jedoch deutlich zu erkennen. Die Streuung der möglichen Ergebnisse durch unterschiedli-
che Initialisierungen von h ist bemerkenswert groß (grauer Bereich in Abbildung 3.11).
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Abbildung 3.12: In einem zyklischen undrainierten Triaxialversuch mit vorgegebener Dehnungs-

amplitude an einer dichten KFS-Probe zeigt sich im a) Versuch TCUE17 aus [193] (εampl
a = 1%,

p0 = 200 kPa, ID0 = 0, 94) eine Bodenverflüssigung (p = q = 0), während b) die Nachrechnung

mit der HP+IS in keiner Bodenverflüssigung resultiert

3.6.2 Simulation einer zyklischen Bodenverflüssigung

Zyklische Verformungen von Sand führen unter volumenkonstanten Bedingungen zu einem
vollständigen Verlust der effektiven Spannungen, der sog. Bodenverflüssigung (p = q = 0).
Eine Bodenverflüssigung kann sowohl in lockerem als auch in dichtem Boden auftreten.
Es zeigt sich, dass die HP+IS die Bodenverflüssigung infolge zyklischer Verformungen
bei großen Dehnungsamplituden (z.B. εampl = 1%) nicht wiedergeben kann. Dies ist je-
doch beispielsweise zur Simulation von Erdbebenereignissen essentiell. Während bei locker
gelagerten Böden zumindest ein Zustand mit relativ geringen mittleren effektiven Span-
nungen erreicht wird, treten bei dicht gelagerten Böden trotz der zyklischen Verformungen
sehr große mittlere effektive Spannungen auf und entsprechend zeigt sich kein Verlust der
Schubsteifigkeit.

Dieses Defizit der HP+IS ist in Abbildung 3.12 demonstriert. Abbildung 3.12a zeigt den ef-
fektiven Spannungspfad im pq-Diagramm eines zyklischen undrainierten Triaxialversuchs
mit einer vorgegebenen axialen Dehnungsamplitude von εampl

a = 1% an einer dichten Pro-
be aus KFS (TCUE17 aus [193] mit p0 = 200 kPa und ID0 = 0, 94). Die sich einstellende
Bodenverflüssigung (p = 0) ist nach einigen Zyklen trotz der großen Dehnungsamplitu-
de und der großen Dichte deutlich zu erkennen. Die Nachrechnung des Versuchs mittels
der HP+IS und einer isotrop vollständig mobilisierten initialen intergranularen Dehnung
(h0 = −R/

√
3δ) ist in Abbildung 3.12b dargestellt. Der effektive Spannungspfad erreicht

keineswegs eine Bodenverflüssigung, vielmehr stellen sich weit größere mittlere effekti-
ve Drücke als im initialen Zustand ein. Die Simulationsergebnisse entsprechen nicht den
experimentellen Beobachtungen.
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3.6.3 Overshooting

Das sog. Overshooting bezeichnet ein unrealistisches Überschreiten der Spannungs-Deh-
nungs-Kurve des entsprechenden monotonen Verlaufs infolge einer Ent- und Wiederbe-
lastung. Im Falle einer Scherung kann dies zu einer starken Überschätzung der Scherfes-
tigkeit führen, was bei praktischen Problemen in einer Überschätzung der Tragfähigkeit
geotechnischer Konstruktionen resultieren kann. Overshooting stellt ein in der Literatur
für verschiedene Stoffmodelle dokumentiertes Problem dar [22, 26, 60, 116], welches für die
HP+IS beispielsweise in [13, 33, 163] betrachtet wird. Das Overshooting ist, wie in Kapi-
tel 4 gezeigt, nicht nur auf den Grenzzustand (Festigkeit) begrenzt und kann beispielsweise
auch bei einer ödometrischen Kompression auftreten. Dennoch wird das Overshooting im
Folgenden anhand einer überschätzten rechnerischen Festigkeit des Bodens diskutiert.

Zur Veranschaulichung des Problems in der HP+IS werden drainierte und undrainierte
triaxiale Kompressionsversuche simuliert. Die Simulation des drainierten Triaxialversuchs
geht von einem isotropen Anfangsspannungszustand mit p0 = 100 kPa, einer lockeren
Probe mit einer Porenzahl e0 = 0, 95 (ID0 = 0, 28) und einer intergranularen Dehnung
von h0 = 0 aus. Nach einer axialen Dehnung von εa = −0, 5% erfolgt eine Entlastung
um ∆εa = ∆εEnt, gefolgt von einer erneuten Belastung. Drei verschiedene Größen der
Entlastung (∆εEnt = 0, 1%, ∆εEnt = 0, 05% und ∆εEnt = 0, 025%) werden betrachtet. Als
Referenzsimulation dient ein monotoner Versuch ohne Entlastung.

Abbildung 3.13a stellt die Deviatorspannung q und Abbildung 3.13b die Porenzahl e
in Abhängigkeit von der axialen Dehnung εa dar. Die Deviatorspannung bzw. das Span-
nungsverhältnis aus dem monotonen Versuch wird infolge der Wiederbelastungen deutlich
überschritten. Der Effekt des Overshootings zeigt sich am deutlichsten für die geringste
Entlastung von ∆εEnt = 0, 025%. Für die betrachteten Fälle gilt: Je größer die Entlastung,
desto geringer das Overshooting. Letztere Aussage lässt sich jedoch, wie in Abschnitt 3.6.5
gezeigt, nicht verallgemeinern. Asymptotisch baut sich die überschätzte Deviatorspannung
ab und der kritische Zustand entsprechend der monotonen Simulation wird angestrebt. Die
Konvergenz zum eindeutig definierten kritischen Zustand (ec, pc und qc) erfolgt allerdings
sehr langsam. Auch wenn eine annähernd gleiche Deviatorspannung bzw. ein ähnliches
Spannungsverhältnis in den betrachteten Simulationen bereits relativ schnell erreicht wird,
stellt sich eine annähernd gleiche Porenzahl nach den betrachteten 6% axialer Dehnung
noch nicht ein, siehe Abbildung 3.13b.

Das Overshooting führt auch beim Dehnungspfad zu einem qualitativ veränderten Boden-
verhalten. Während die monotone Simulation ohne Entlastung ein rein kontraktantes Ver-
halten zeigt (aufgrund der lockeren Lagerung), ergibt sich im Falle der betrachteten Wie-
derbelastungen ein dilatantes Verhalten (Auflockerung). Auch wenn die Größenordnung
der Volumenänderungen gering ist, ist diese Beobachtung bei der lockeren Probe physi-
kalisch nicht begründbar. Erklären lässt sich dieser Effekt mit den großen und für lockere
Proben eigentlich nicht erreichbaren Spannungsverhältnissen infolge des Overshootings,
bei denen das Stoffmodell eine Dilatanz liefert. Die Porenzahlen in den Simulationen
nähern sich erst nach einer axialen Dehnung von circa 100 % an (nicht gezeigt). Die
langsame Konvergenz ist auf das nahezu kritische Spannungsverhältnis in dieser Berech-
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Abbildung 3.13: Overshooting bei einem drainierten triaxialen Kompressionsversuch einer lo-

ckeren Probe unter Anwendung der HP+IS: a) Deviatorspannung q, b) Porenzahl e und c) Mo-

bilisierungsgrad der IS ρ als Funktion der axialen Dehnung εa sowie d) einzelne Komponenten

der intergranularen Dehnung im Verlauf der Simulation für eine Entlastung von ∆εEnt = 0, 05%

nungsphase zurückzuführen, bei dem die Dilatanz- bzw. Kontraktanzrate des Stoffmodells
sehr gering ist. Im Detail wird die Beobachtung in Abschnitt 3.6.4 diskutiert.

Abbildung 3.13c zeigt die Entwicklung des Mobilisierungsgrads der IS ρ für alle Simu-
lationen und Abbildung 3.13d die Entwicklung einzelner Komponenten der IS während
der Simulation mit einer Entlastung von ∆εEnt = 0, 05%. Ausgehend vom initialisierten
Wert ρ = 0 wird vor der Entlastung ρ ≈ 1 erreicht. Infolge beider Belastungsrichtungs-
umkehrungen (Entlastung und Wiederbelastung = zwei Umkehrungen) kommt es jeweils
zunächst zu einem starken Abbau von ρ, bevor sich ρ erneut aufbaut. Keine der Entlas-
tungsstufen ist groß genug, um in der Entlastung ρ ≈ 1 zu erreichen. Dieser asymptotische
Wert wird erst infolge der Wiederbelastung erreicht. Aufgrund der drainierten Bedingun-
gen wird ρ = 0 nicht erreicht, da die einzelnen Komponenten der IS keinen gemeinsamen
Nulldurchgang aufweisen.
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Abbildung 3.14: Overshooting bei einem undrainierten triaxialen Kompressionsversuch einer lo-

ckeren Probe unter Anwendung der HP+IS: a) Spannungsverhältnis q/p als Funktion der axialen

Dehnung εa und b) Spannungspfad im pq-Diagramm für verschiedene Ent- und Wiederbelas-

tungen

Das Overshooting tritt auch in undrainierten Versuchen auf, wie in Abbildung 3.14 mittels
Simulationen von undrainierten triaxialen Kompressionsversuchen gezeigt. Der Anfangs-
zustand entspricht dem der drainierten Versuche. Erneut werden bei ε1 = 0, 5% Ent- und
Wiederbelastungen verschiedener Größen simuliert. Das resultierende Overshooting ist in
Abbildung 3.14a anhand des auftretenden Spannungsverhältnisses q/p als Funktion der
axialen Dehnung εa und in Abbildung 3.14b im pq-Diagramm deutlich zu erkennen. Auch
wenn in den Simulationen infolge der Wiederbelastung nach dem Overshooting bereits
nach wenigen Prozent axialer Dehnung ein ähnliches Spannungsverhältnis erreicht wird,
zeigt Abbildung 3.14b, dass die Konvergenz zum eindeutig definierten kritischen Zustand,
wie bereits oben diskutiert, sehr langsam erfolgt.

3.6.4 Unzulässige Auflockerung

Wie bereits in Abbildung 3.13 gezeigt, kann es infolge des Overshootings zu einer Auflo-
ckerung eines bereits lockeren Boden kommen. In Abbildung 3.15 wird nun die Simulation
des drainierten Triaxialversuchs mit einer Entlastung von ∆εa = ∆εEnt = 0, 025% aus Ab-
bildung 3.13 wiederholt, allerdings mit einer Vielzahl von Entlastungen nach jeweils einer
Wiederbelastung von ∆εa = ∆εWieder = 2%. Abbildung 3.15a zeigt die Deviatorspan-
nung q und Abbildung 3.15b die Porenzahl e in Abhängigkeit von der axialen Dehnung εa.
Zusätzlich ist ein monotoner Versuch ohne Entlastung simuliert.

Zunächst zeigt sich in Abbildung 3.15a erneut das erwartete Overshooting der Devia-
torspannung infolge der Ent- und Wiederbelastung. Die Wiederbelastungsstufe ∆εWieder

wurde so gewählt, dass sich die Deviatorspannung vor jeder Entlastung bereits stark abge-
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Abbildung 3.15: Wiederholtes Overshooting bei einem drainierten triaxialen Kompressionsver-

such einer lockeren Probe unter Anwendung der HP+IS: a) Deviatorspannung q und b) Poren-

zahl e in Abhängigkeit von der axialen Dehnung εa

baut hat und sich dadurch die maximalen Deviatorspannungen bei wiederholter Ent- und
Wiederbelastung unwesentlich akkumulieren. Tatsächlich nimmt das Overshooting mit
der Anzahl der Zyklen leicht ab, was mit einer akkumulierten signifikanten Vergrößerung
der Porenzahl, siehe Abbildung 3.15b, begründet werden kann. Trotz des lockeren Bodens
führt jede Wiederbelastung zu einer für einen lockeren Boden physikalisch unbegründeten
Porenzahlvergrößerung (Dilatanz) durch die Scherung bei großen Spannungsverhältnissen.
Diese Auflockerung resultiert in einer Steifigkeitsabnahme, wodurch das Overshooting der
Deviatorspannung etwas geringer wird.

Entscheidend für diesen Abschnitt ist jedoch, dass die Auflockerung infolge des Overshoo-
tings ungeachtet der aktuellen Porenzahl stattfindet und sich somit auch in lockeren und
sehr lockeren Böden zeigt. Die Auflockerung wird zudem nicht durch die Grenzporenzahl
der lockersten Lagerung ei(p) begrenzt. Letztere ist gemäß Gl. (2.40) druckabhängig und
in Abbildung 3.15b sowohl für den minimalen als auch den maximalen mittleren effekti-
ven Druck während der Simulation eingezeichnet. Es ist zu erkennen, dass die Porenzahl
in der Simulation nach einigen Ent- und Wiederbelastungen größer als die lockerste La-
gerung ei(p) wird. Dies ist physikalisch nicht zulässig und entspricht mikromechanisch
einem Verlust der Kornkontakte. Es ist darauf hingewiesen, dass während der gesamten
Berechnung des drainierten Triaxialversuchs ein mittlerer effektiver Druck von p > 100
kPa und ein Spannungsverhältnis q/p < 3 (Druckspannungszustand) vorliegt.

3.6.5 Einfluss einer minimalen Störung

Die im Abschnitt 3.6.3 dargestellten Ergebnisse könnten zu dem Trugschluss verleiten,
dass das Overshooting mit abnehmender Entlastungsamplitude stärker wird bzw. weiter-
hin existiert, wie beispielsweise in [163] formuliert. Im Folgenden wird dargelegt, warum
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Abbildung 3.16: Simulation eines drainierten Triaxialversuchs einer lockeren Probe mit der

HP+IS mit einer kleinen Störung in Form einer Ent-und Wiederbelastung: a) Spannungs-

verhältnis q/p als Funktion der axialen Dehnung εa und b) Mobilisierungsgrad der intergra-

nularen Dehnung ρ für verschiedene Ent- und Wiederbelastungen

dies nicht zutreffend ist. Die in Abschnitt 3.6.3 untersuchten Entlastungen sind relativ
groß. So beträgt die minimale Entlastung immer noch ∆εEnt = 2, 5 · 10−4 = 2, 5R, siehe
Abbildung 3.13, und entspricht daher dem 2,5-fachen des Materialparameters R. Letzterer
kontrolliert die Größe des

”
elastischen Bereichs“ der IS.

Nun werden für den in Abschnitt 3.6.3 betrachteten drainierten Triaxialversuch noch
kleinere Entlastungen betrachtet (∆εEnt = 10−4 = R, ∆εEnt = 10−5 = R/10 und ∆εEnt =
10−6 = R/100). Solch kleine Entlastungen lassen sich zutreffend als kleine Störungen des
monotonen Pfads interpretieren.

Eine kleiner werdende Störung reduziert das beobachtete Overshooting, wie in Abbil-
dung 3.16a anhand des Spannungsverhältnisses q/p als Funktion der axialen Dehnung εa
dargestellt. Bei der Betrachtung des Mobilisierungsgrads der intergranularen Dehnung ρ
in Abhängigkeit von der axialen Dehnung εa in Abbildung 3.16b zeigt sich zudem, dass
die betrachteten kleinen Entlastungen nur zu einer Reduktion von ρ und zu keinem erneu-
ten Aufbau von ρ innerhalb der Entlastungsstufe führt. Je geringer die Entlastung, desto
kleiner sind die Änderungen von ρ. Sofern für die Störung ∆εEnt → 0 gilt, verschwindet
auch die Abweichung vom monotonen (ungestörten) Pfad. Das mathematische Problem
ist entsprechend korrekt gestellt7.

Maximale Overshootingeffekte sind für Störungen von ∆ε ≈ R zu erwarten. Bei kleineren
Störungen führt eine Reduktion und bei größeren Störungen eine Vergrößerung letzterer
zu einem reduzierten Overshooting.

7Im Sinne der Korrektgestelltheit nach Hadamard: Das Problem hat eine Lösung (Existenz), welche

eindeutig bestimmt ist (Eindeutigkeit) und stetig von den Eingangsdaten abhängt (Stetigkeit).
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3.6.6 Zugzustände infolge der intergranularen Dehnung

In Abschnitt 3.3 wurde bereits gezeigt, dass in der HP unzulässige Zugspannungszustände
beispielsweise in dichtem Sand erreicht werden können. Zugzustände lassen sich jedoch
auch in dem gekoppelten Modell der HP+IS infolge des Einflusses der intergranularen
Dehnung und ganz unabhängig von der Dichte des Bodens und des gewählten Basismodells
erreichen. Dies wird nachfolgend gezeigt.

3.6.6.1 Zugzustand bei ρ ≈ 0

Die HP+IS kann infolge einer monotonen Verformung, die von einer geringfügigen zy-
klischen Komponente überlagert wird, zu unzulässigen Zugspannungszuständen führen
[137]. In einem solchen Belastungsfall kann sich über die gesamte Berechnung hinweg
ein Zustand mit ρ ≈ 0 einstellen. Für den Grenzfall ρ = 0 verhält sich das Stoffmodell
hypoelastisch, siehe Gl. (2.45), und reduziert sich zu

σ̇ = mRfsL : ε̇ . (3.4)

Zur Veranschaulichung wird ein vorgegebener Dehnungspfad unter axialsymmetrischen
Bedingungen betrachtet. Eine monotone, volumenvergrößernde Verformung (ε̇vol > 0)
wird dabei mit oszillierenden Dehnungskomponenten der Amplitude εampl

a = 2εampl
r =

10−5 = R/10 überlagert. Die vorgegebenen Dehnungskomponenten für die ersten 50 Zy-
klen sind in Abbildung 3.17a dargestellt. Die Berechnungen basieren auf einer hydrostati-
schen Anfangsspannung von p0 = 70 kPa, einer Porenzahl von e0 = 0, 8 (ID0 = 0, 67) sowie
einer intergranularen Dehnung von h0 = 0. Die mit der HP+IS berechneten Spannungs-
komponenten in den ersten 500 Zyklen sind in Abbildung 3.17b dargestellt. Es zeigt sich,
dass nach etwa 350 Zyklen die Spannungskomponente σa in einen für Sand unzulässigen
Zugspannungsbereich übergeht. Offensichtlich steigt das Spannungsverhältnis σa/σr in
der Simulation kontinuierlich an. Abbildung 3.17c bestätigt, dass während der gesamten
Verformung ρ ≈ 0, also auch h ≈ 0, gilt. Aufgrund des vorgegebenen Dehnungspfads
stellt sich ein periodisch wiederkehrender Verlauf von ρ ein.

3.6.6.2 Zugzustand für 1 > ρ > 0

Zugspannungszustände können in der HP+IS auch für 1 > ρ > 0 auftreten. Dieses
Problem wird anhand einer monotonen und undrainierten (εvol = 0) axialsymmetri-
schen Verformung demonstriert, die durch zahlreiche kleine Entlastungen (Zyklen) gestört
wird. Die Berechnungen starten von einem isotropen Spannungszustand von p0 = 100
kPa, einer Porenzahl von e0 = 0, 8 (ID0 = 0, 67) und einer intergranularen Dehnung
von h0 = 0. Die vorgegebenen Dehnungskomponenten sind in Abbildung 3.18a für die
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Abbildung 3.17: Erreichen eines Zugzustands infolge eines mit einer zyklischen Verformung

überlagerten monotonen axialsymmetrischen Dehnungspfads in der HP+IS für den Fall ρ ≈ 0:

a) vorgegebene Dehnungskomponenten εi, b) berechnete Spannungskomponenten σi und c) die

dabei mobilisierte intergranulare Dehnung ρ als Funktion der Zyklenzahl N

ersten fünf Zyklen dargestellt. Ein Zyklus umfasst dabei jeweils eine Be- und Entlas-
tung. Nach einer Belastung von ∆εa = −2, 1 · 10−5 ≈ R/5 erfolgt eine Entlastung von
∆εa = ∆εEnt = 10−6 = R/100.

Die durch den vorgegebenen Dehnungspfad resultierenden Spannungskomponenten in
Abhängigkeit von der Zyklenzahl sind in Abbildung 3.18a dargestellt. Die Spannungs-
komponente σr wechselt nach circa 350 Zyklen das Vorzeichen und geht in eine Zugspan-
nung über. Gleichzeitig stellt sich eine Mobilisierung der intergranularen Dehnung mit
ρ ≈ 0, 6 ein, siehe Abbildung 3.18d. Dabei werden innerhalb eines Zyklus weder ρ = 0, 0
noch ρ = 1, 0 erreicht. Abbildung 3.18d zeigt zudem für verschiedene Entlastungsgrößen
das resultierende Spannungsverhältnis in Abhängigkeit von der Zyklenzahl. Werte von
q/p > 3 kennzeichnen dabei einen Zugspannungszustand, der in allen Simulationen nach
einer unterschiedlichen Anzahl von Zyklen erreicht wird. Bei den betrachteten Beispielen
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Abbildung 3.18: Erreichen eines Zugzustands infolge eines mit einer zyklischen Verformung

überlagerten monotonen axialsymmetrischen Dehnungspfads in der HP+IS für den Fall 1 > ρ >

0: a) vorgegebener Dehnungspfad, b) Spannungskomponenten, c) mobilisierte intergranulare

Dehnung ρ und d) Spannungsverhältnis q/p für eine Variation der betrachteten Entlastung bzw.

eine Variation des vorgegeben Dehnungspfads in Abhängigkeit von der Zyklenzahl N

führt eine Vergrößerung der Entlastungsstufen zu einem früheren Erreichen eines Zug-
spannungszustands, wobei für alle Beispiele ∆εEnt < R gilt.

3.6.7 Unrealistisches Dämpfungsverhalten

Der Sekantenschubmodul G von Boden ist stark von der entsprechenden Scherdehnungs-
amplitude γampl abhängig. Die Sekantensteifigkeit ist bei kleinen Amplituden deutlich
größer als bei großen. Für sehr geringe Scherdehnungsamplituden von γampl ≲ 10−5 er-
reicht die Steifigkeit ihr Maximum und bleibt in diesem

”
elastischen Bereich“ näherungs-
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Abbildung 3.19: Simulationen von zyklischen Einfachscherversuchen mit der HP+IS: a) Nor-

malisierter Sekantenschubmodul G/Gmax und b) Materialdämpfung D als Funktion der Scher-

dehnungsamplitude γampl

weise konstant. Experimentell können entsprechende Daten beispielsweise durch Reso-
nanzsäulenversuche (engl. resonant column tests) oder Bender-Element-Versuche (engl.
bender element tests) bestimmt werden [21, 187].

Mit zunehmender Scherdehnungsamplitude steigt zudem die Materialdämpfung D, die für
kleine Scherdehnungen mit hoher Steifigkeit vernachlässigt werden kann. Die Effekte im
Bereich kleiner Dehnungen sind für die Lösung geotechnischer Probleme von erheblicher
Bedeutung [12, 22, 155] und müssen daher von fortgeschrittenen Stoffmodellen erfasst
werden. Die HP+IS kann diese Effekte infolge kleiner Dehnungen prinzipiell reprodu-
zieren, da sie den ursprünglichen Anlass zur Einführung der intergranularen Dehnung
darstellten. Es zeigt sich jedoch, dass sich in Abhängigkeit vom gewählten Parametersatz
unphysikalische Dämpfungskurven ergeben können [145].

Zur Berechnung der Sekantensteifigkeit und der Dämpfung in Abhängigkeit von der auf-
gebrachten Scherdehnungsamplitude werden zyklische Einfachscherversuche (engl. simple
shear test) mit den Randbedingungen σ̇11 = 0 = ε̇22 = ε̇33 = ε̇13 = ε̇23 für verschiedene
Scherdehnungsamplituden εampl

12 = 0, 5 γampl
12 simuliert. In allen Simulationen wurden ein

isotroper Anfangsspannungszustand von p0 = 100 kPa sowie eine intergranulare Dehnung
von h0 = 0 initialisiert.

Neben dem Parametersatz KFS-Wicht-2 wurden auch Simulationen mit dem Parame-
tersatz KS-Osinov für den Karlsruher Sand und HS-Niemunis für den Hochstetten Sand
durchgeführt, siehe Tabelle 3.2. Letzterer entspricht dem in der Originalveröffentlichung
zur intergranularen Dehnung [121] vorgeschlagenen Parametersatz. Die initialisierten Po-
renzahlen sind in Abbildung 3.19 dargestellt.

Für jeden Parametersatz wurden jeweils 31 Simulationen mit variierender Scherdehnungs-
amplitude durchgeführt. Die Sekantenschubsteifigkeit G und die Materialdämpfung D
wurden im Post-Processing aus den resultierenden hysteretischen σ12-γ12-Kurven bestimmt,
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wobei jeweils der fünfte Zyklus ausgewertet wurde. Abbildung 3.19a zeigt die resultierende
Degradationskurve der normalisierten Sekantensteifigkeit G/Gmax(γ

ampl), während Abbil-
dung 3.19b die entsprechende Dämpfungskurve D(γampl) darstellt. In beiden Abbildungen
ist zudem die grafische Bestimmung von G und D illustriert.

Alle drei betrachteten Parametersätze zeigen eine grundsätzlich realistische Abnahme
der Sekantensteifigkeit mit zunehmender Scherdehnungsamplitude. Allerdings weist die
Dämpfungskurve des Parametersatzes HS-Niemunis ein lokales Maximum bei einer Scher-
dehnungsamplitude von circa γampl

12 = 10−3 auf. Eine solche Dämpfungskurve entspricht
nicht den experimentellen Ergebnissen und stellt daher ein Defizit des Stoffmodells dar
[145].

3.6.8 Druck- und Dichteabhängigkeit akkumulativer Effekte

Mithilfe der HP+IS lassen sich akkumulative Effekte infolge zyklischer Verformung, wie
die Verdichtung unter drainierten oder der Abbau des effektiven Drucks unter undrainier-
ten Bedingungen, qualitativ abbilden [137, 184, 185]. Die tatsächliche Akkumulationsrate
im Boden hängt nicht nur von der Dehnungsamplitude ab, sondern wird auch maßgeblich
von der aktuellen Dichte und dem mittleren effektiven Spannungsniveau beeinflusst.

Akkumulationseffekte lassen sich konstitutiv zutreffend mit sog. Akkumulationsmodellen,
wie beispielsweise dem hochzyklischen Akkumulationsmodell (engl. high-cycle accumu-
lation (HCA) model) von Niemunis et al. [124], beschreiben. Das HCA-Modell ist ein
Stoffmodell zur expliziten Simulation von Akkumulationseffekten im Boden infolge ei-
ner großen Zyklenzahl (N > 100) mit einer kleinen Dehnungsamplitude (εampl < 10−3).
Der Begriff

”
explizit“ bezieht sich in diesem Zusammenhang nicht auf eine explizite nu-

merische Integration, sondern vielmehr auf die konstitutive Formulierung in expliziter
Abhängigkeit von der Zyklenzahl N anstelle der Zeit t. Das HCA-Modell beschreibt so-
mit nur den Trend der Akkumulation und wurde anhand umfangreicher experimenteller
Untersuchungen kalibriert [64, 184]. Numerische Simulationen mit dem HCA-Modell sind
beispielsweise in [100, 103, 157, 184] zu finden.

Mit der Rate pro Zyklus d ⊔ /dN = ⊔̂ wird die Akkumulation im HCA-Modell durch

σ̂ = E :
(
ε̂− ε̂acc − ε̂pl

)
(3.5)

mit der Spannungsrate σ̂, der Dehnungsrate ε̂, der plastischen Dehnungsrate ε̂pl, der
akkumulierten Dehnungsrate ε̂acc und der barotropen elastischen Steifigkeit E beschrie-
ben [124]. Neben der effektiven Cauchy-Spannung σ und der Porenzahl e enthält das
HCA-Modell mit der zyklischen Vorbelastung gA eine weitere skalare Zustandsvariable,
welche in Abschnitt 3.6.9 diskutiert wird. Die Akkumulationsrate ε̂acc (Tensor zweiter
Stufe)

ε̂acc = m ε̂acc = m fHCA
ampl f̂

HCA
N fHCA

p fHCA
Y fHCA

e fHCA
π (3.6)
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Abbildung 3.20: Funktionen zur Beschreibung der Abhängigkeit von Akkumulationseffekten von

a) der Porenzahl fHCA
e (e) und b) dem mittleren effektiven Druck fHCA

p (p) im HCA-Modell [124]:

je größer die Porenzahl und je geringer der mittlere effektive Druck, desto stärker ausgeprägt

zeigen sich die Akkumulationseffekte

kann unter Verwendung der Fließregelm des modifizierten Cam-Clay-Modells [149], einem
Tensor zweiter Stufe, welcher im HCA-Modell die Akkumulationsrichtung angibt, berech-
net werden. Sechs empirische Funktionen (fHCA

ampl , f̂
HCA
N , fHCA

p , fHCA
Y ,fHCA

e , fHCA
π ) beeinflus-

sen die Intensität der Dehnungsakkumulation ε̂acc (skalare Größe). Diese berücksichtigen
verschiedene Einflüsse wie die Dehnungsamplitude (fHCA

ampl ), die zyklische Vorbelastung

(f̂HCA
N ), den mittleren effektiven Druck (fHCA

p ), das Spannungsverhältnis (fHCA
Y ), die

Porenzahl (fHCA
e ) sowie die Polarisationsänderungen (fHCA

π ) auf die Akkumulationsra-
te [124, 184].

Die Dichteabhängigkeit der Intensität der Akkumulation infolge einer zyklischen Verfor-
mung wird durch die Funktion

fHCA
e (e) =

(Ce − e)2

1 + e

1 + eref

(Ce − eref)
2 (3.7)

mit den Materialparametern Ce und eref berücksichtigt, während die Druckabhängigkeit
durch die Funktion

fHCA
p (p) = exp

[
−Cp

(
p

patm
− 1

)]
(3.8)

mit den Materialparametern Cp und patm modelliert wird. Die Akkumulationsrate im
HCA-Modell ist also proportional zu fHCA

e (e) und fHCA
p (p). Die beiden Funktionen sind für

die HCA-Stoffmodellparameter des KFS aus [184] (Ce = 0, 6, Cp = 0, 23, eref = 1, 054 und
patm = 100 kPa) in Abbildung 3.20 dargestellt. Es zeigt sich, dass die Akkumulationsrate
mit abnehmender Porenzahl und zunehmendem mittleren effektiven Druck signifikant
abnimmt. Entsprechende experimentelle Evidenz findet sich in [184, 186, 189, 190, 191].

Bei der Simulation zyklischer Verformungen mit der HP+IS wird jeder Zyklus mittels vie-
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ler Inkremente simuliert8. Die Akkumulationseffekte treten dabei als eine Folge der Simu-
lation auf. Zur Untersuchung der Dichte- und Druckabhängigkeit der Akkumulationseffek-
te in der HP+IS wird die Verdichtung in zyklischen Einfachscherversuchen mit konstanter
Dehnungsamplitude simuliert. Ausgehend von einer lockeren Lagerung e0 = ec0 = 1, 054
(ID0 = 0) bzw. einer dichten Lagerung e0 = 0, 7 (ID0 = 0, 94), einer intergranularen
Dehnung von h0 = 0 und einem hydrostatischen Spannungszustand von p0 = 100 kPa
bzw. p0 = 200 kPa wird eine zyklische Scherverformung von εampl

12 = 0, 5 γampl
12 = 10−3

simuliert. Es gilt außerdem ε22 = ε33 = ε23 = ε13 = σ̇11 = 0. Da die Simulationen eine ver-
nachlässigbare Amplitude εampl

11 < 3 · 10−5 ≪ εampl
12 zeigen, gilt im Sinne des HCA-Modells

für die Dehnungsamplitude εampl ≈
√
2εampl

12 =
√
2 · 10−3. Für die akkumulierte Dehnung

gilt in diesen Simulationen εacc = εvol. Die Entwicklung der Porenzahl e, des mittleren
effektiven Drucks p und des Spannungsverhältnisses q/p für den nicht axialsymmetrischen
Zustand in Abhängigkeit von der Zyklenzahl N ist in Abbildung 3.21 dargestellt.

Zunächst zeigt sich, dass die erwartbare Verdichtung und die Porenzahlabhängigkeit der
Akkumulationsrate in Abbildung 3.21a qualitativ wiedergegeben wird. Mit steigender
Zyklenzahl nimmt die Porenzahl ab, was wiederum zu einer reduzierten Akkumulations-
geschwindigkeit führt. Außerdem wird eine untere Grenze der Porenzahl, welche aufgrund
der zyklischen Verformung und des anisotropen Spannungszustands leicht oberhalb der
Grenzporenzahl im dichtesten Zustand ed(p) liegt, angestrebt. Die physikalisch begründete
Grenze der dichtesten Lagerung ed(p) wird also nicht überschritten.

Allerdings lässt sich auch schlussfolgern, dass die Dichteabhängigkeit von Akkumulations-
effekten in der HP+IS im Vergleich zu Gl. (3.7) und Abbildung 3.20a unterschätzt wird.
Zu Beginn der Simulation liefert die HP+IS bei einer Anfangsporenzahl von e0 = 0, 7
(Punkt (B)) eine circa vierfach kleinere Verdichtungsrate9 als bei einer Anfangsporenzahl
von e0 = 1, 054 (Punkt (A)). Gemäß Gl. (3.7) ist jedoch ein Unterschied mit dem Faktor
fHCA
e (e = 1, 054)/fHCA

e (e = 0, 7) ≈ 17 zu erwarten. Gerade bei geringen Porenzahlen pro-
gnostiziert die HP+IS noch eine relevante Verdichtungsrate, was zu einer Überschätzung
von Verdichtungseffekten führen kann. Die Erkenntnisse decken sich mit Untersuchungen
von Osinov [137], welcher bei Simulationen zur Bodenverflüssigung mit der HP+IS eine
unzureichende Dichteabhängigkeit der Akkumulationseffekte unter undrainierten Bedin-
gungen dokumentierte.

Der Vergleich der Simulationen mit unterschiedlichem mittleren effektiven Anfangsdruck
in Abbildung 3.21 zeigt, dass die HP+IS die Druckabhängigkeit der Akkumulation quali-
tativ nicht zutreffend abbildet. Nach Gl. (3.8) und Abbildung 3.20b nimmt die Akkumu-
lationsrate mit zunehmendem mittlerem effektiven Druck bei sonst konstanten Einfluss-
faktoren (z.B. der Dehnungsamplitude) ab. Die numerischen Berechnungen mittels der
HP+IS liefern hingegen für die Simulationen mit größerem mittlerem effektiven Druck
eine schnellere Verdichtung, siehe Abbildung 3.21a. Es ist zu beachten, dass der mittlere
effektive Druck p bei den betrachteten Simulationen in Abhängigkeit von der Zyklenzahl

8Im Kontext des HCA-Modells wird dies als
”
implizites“ Stoffmodell bezeichnet, wenngleich die HP+IS

nicht zwangsläufig implizit numerisch integriert werden muss.
9Für die Beziehung zwischen der Rate der Porenzahländerung ė und der Rate der volumetrischen

Dehnung ε̇vol ist auf Gl. (2.43) verweisen.
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Abbildung 3.21: Simulation zyklischer Einfachscherversuche mit verschiedenen Anfangsporen-

zahlen und mittleren effektiven Drücken: Entwicklung a) der Porenzahl e, b) des mittleren ef-

fektiven Drucks p und c) des Spannungsverhältnisses q/p in Abhängigkeit von der Zyklenzahl N

nicht konstant bleibt. Die Entwicklung des mittleren effektiven Drucks ist daher für die
Simulationen der initial lockeren Proben in Abbildung 3.21b gezeigt. Zu Beginn ist eine
ausgeprägte Spannungsrelaxation zu beobachten, bevor sich ein relativ konstantes Druck-
niveau einstellt. Der Druck ist bei der Simulation mit größerem Anfangsdruck deutlich
größer als bei der Simulation mit geringerem effektiven Anfangsdruck. Die Amplitude
des mittleren effektiven Drucks nimmt mit steigender Zyklenzahl zu, was auf die größere
Dichte und die daraus resultierende erhöhte Steifigkeit bei unveränderter vorgegebener
Dehnungsamplitude zurückzuführen ist. Zudem stellt sich in den Simulationen ein aniso-
troper mittlerer Spannungszustand ein, siehe Abbildung 3.21c.
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Abbildung 3.22: Einfluss der zyklischen Vorbelastung auf das Akkumulationsverhalten von Sand

anhand a) zyklischer drainierter Triaxialversuche, welche trotz gleichem Spannungszustand und

gleicher Porenzahl eine von der zyklischen Vorbelastung abhängige Verdichtungsrate zeigen (mo-

difiziert aus [124]) und b) zyklische undrainierte Triaxialversuche aus [194], welche eine mit der

Anzahl der Zyklen nichtlineare Akkumulation des Porenwasserdrucks zeigen und deren Simula-

tionen mittels der HP+IS

3.6.9 Fehlender Einfluss einer zyklischen Vorbelastung

Die Akkumulationsrate infolge zyklischer Verformungen im Boden ist stark nichtlinear
und hängt von der Anzahl und der Intensität vorangegangener Belastungszyklen ab, was
als zyklische Vorbelastung (engl. cyclic preloading (CP)) bezeichnet wird.

Abbildung 3.22a verdeutlicht den Einfluss der zyklischen Vorbelastung auf die Akkumula-
tionseffekte anhand der Verdichtung in drei drainierten hochzyklischen Triaxialversuchen
mit unterschiedlicher initialer Porenzahl an einem gleichförmigen Mittelsand mit identi-
schen Spannungszuständen [124]. Es stellt sich jeweils nach einer unterschiedlichen Anzahl
von Belastungszyklen ein gleiche Porenzahl (z.B. e = 0, 625) ein. Die weitere Akkumula-
tionsrate bei dieser Porenzahl (ê = de/dN) hängt signifikant von der Anzahl vorangegan-
gener Zyklen N ab: Je größer die zyklische Vorbelastung, desto geringer ist die Akkumu-
lationsgeschwindigkeit. Um die Abhängigkeit der Akkumulationsrate von der zyklischen
Vorbelastung in einem konstitutiven Modell zu berücksichtigen, wurde im HCA-Modell
die phänomenologische skalare Zustandsvariable gA eingeführt. Eine entsprechende Zu-
standsvariable fehlt in der HP+IS, wodurch die nichtlineare Akkumulation nur bedingt
reproduziert werden kann. Zu erkennen ist dies auch in den, im vorherigen Abschnitt 3.6.8
gezeigten, zyklischen Einfachscherversuchen. Der Vergleich von Punkt (B) und Punkt (C)
in Abbildung 3.21a zeigt, dass die Verdichtungsrate in der HP+IS bei gleicher Porenzahl
und ähnlichem Spannungszustand nahezu nicht von der zyklischen Vorbelastung abhängt.

Die nichtlineare Akkumulation von Boden infolge zyklischer Verformungen zeigt sich auch
in der Akkumulation des Abbaus der effektiven Spannungen (Porenwasserdruckaufbau)
in undrainierten zyklischen Triaxialversuchen mit vorgegebener Spannungsamplitude. Zur
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Verdeutlichung ist in Abbildung 3.22b der normalisierte Porenwasserdruckaufbau aus zwei
Versuchen mit unterschiedlicher Spannungsamplitude an KFS aus [194] sowie deren Nach-
rechnung mit der HP+IS (h0 = −0, 8R/

√
3δ, 0, 56 < ID0 < 0, 58 und p0 = 200 kPa)

dargestellt. Die HP+IS zeigt aufgrund der fehlenden Zustandsvariable der zyklischen
Vorbelastung eine näherungsweise lineare Akkumulation des Porenwasserdrucks, was bei
kleineren Spannungsamplituden zu großen Unterschieden zwischen den experimentellen
Beobachtungen und den Simulationen führt.

3.7 Überblick über identifizierte Defizite der HP+IS

Im vorliegenden Kapitel wurde die gegenwärtig weit verbreitete HP+IS, welche als Re-
ferenzmodell im Rahmen der weiteren Arbeit dient, systematisch bezüglich existierender
Defizite der konstitutiven Formulierung untersucht. Für das Basismodell der HP zeigte
sich dabei, dass

• die Dilatanz in dichten Böden stark unterschätzt wird,

• das Auftreten von Zugspannungszuständen infolge einer monotonen Verformung
nicht ausgeschlossen werden kann,

• die hypoelastische Steifigkeit durch eine hyperelastische Steifigkeit ersetzt werden
sollte und

• eine weitere Zustandsvariable zur Berücksichtigung des Einflusses der anisotropen
Mikrostruktur (Fabric) auf das mechanische Verhalten von Boden in der HP fehlt
und daher eingeführt werden sollte.

Neben dem Basismodell wurde auch die IS-Erweiterung kritisch diskutiert. Es lässt sich
festhalten, dass

• die Initialisierung der Zustandsvariable h nicht trivial ist,

• die Simulation einer zyklischen Bodenverflüssigung gerade in dichtem Boden nicht
gelingen kann,

• durch das sog. Overshooting die rechnerische Festigkeit entscheidend überschätzt
werden kann und

• sich dabei sogar unzulässig lockere Zustände (Überschreiten der Grenze des lockers-
ten Zustands) ergeben können,

• sich unzulässige Zugspannungszustände simulieren lassen,

• das Dämpfungsverhalten physikalisch unrealistisch sein kann und
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• die Abhängigkeit der Akkumulationseffekte infolge zyklischer Verformung von der
Dichte, dem Druck und der zyklischen Vorbelastung unzureichend modelliert wird.

Dem Anwender sollten die genannten Nachteile der HP+IS bewusst sein, um eine Fehl-
interpretation der Berechnungsergebnisse zu vermeiden. Die Defizite motivieren jedoch
auch die Entwicklung neuer und verbesserter hypoplastischer Modelle in dieser Arbeit.

Zunächst wird daher in den Kapiteln 4 bis 6 mit der HP+GIS+ACST ein hypoplastisches
Stoffmodell aufbauend auf dem Basismodell der HP entwickelt. Aufgrund des in Kapitel 6
eingeführten Konzepts der generalisierten intergranularen Dehnung (GIS) werden dabei
die meisten Nachteile des ursprünglichen IS-Konzepts behoben, während durch die in Ka-
pitel 5 diskutierte Theorie des anisotropen kritischen Zustands (ACST) auch der Einfluss
der Fabric berücksichtigt wird.

Parallel dazu wird in Kapitel 7 und 8 die NHP+GIS eingeführt, in welcher die Neohypo-
plastizität (NHP) als Basismodell der GIS dient. Die NHP behebt dabei weitere Defizite
der HP.



Kapitel 4

Asymptotische Zustände in

hypoplastischen Stoffmodellen

Die Modellierung asymptotischer Zustände, also Zustände, welche infolge eines vorgege-
benen proportionalen Dehnungspfads angestrengt werden, ist ein zentraler Bestandteil
fortgeschrittener Stoffmodelle für Boden. Die Menge aller asymptotischen Zustände wird
durch die asymptotische Zustandsoberfläche (engl. asymptotic state boundary surface
(ASBS)) beschrieben. In hypoplastischen Stoffmodellen können asymptotische Zustände
zwar abgebildet werden [86, 93], müssen im Allgemeinen jedoch nicht explizit definiert
sein. Für Ton wurden bereits Modelle mit einer explizit definierten ASBS entwickelt
[87, 88, 91], während eine solche Formulierung für Sand bislang nicht existiert.

In diesem Kapitel wird daher zunächst die ASBS der HP für Sand extrahiert. Aufbauend
darauf wird die HP unter Berücksichtigung der ASBS mathematisch äquivalent reformu-
liert. Diese neue Schreibweise bietet zahlreiche Vorteile, auch wenn die ASBS nach wie
vor nicht explizit definiert, sondern lediglich aus den bestehenden Gleichungen extrahiert
wurde. Darüber hinaus wird erstmals ein Stoffmodell für Sand formuliert, welches auf
einer expliziten Definition des Tensors A und somit mathematisch wie Stoffmodelle mit
einer explizit definierten ASBS ausgedrückt werden kann: die modifizierte HP (MHP).

Die in diesem Kapitel vorgestellten Stoffmodelle zeigen insbesondere in Kombination mit
dem Konzept der generalisierten intergranularen Dehnung (engl. generalized intergranular
strain (GIS), siehe Kapitel 6) Vorteile bei der Simulation zyklischer Verformungen. Die
folgenden Erkenntnisse wurden teilweise in [105] veröffentlicht.

4.1 Die asymptotische Zustandsoberfläche (ASBS)

Das asymptotische Verhalten von Sand wurde bereits 1976 von Goldscheider [44] auf
Grundlage experimenteller Ergebnisse in zwei Regeln zusammengefasst. Diese beschreiben

59



60 Kapitel 4. Asymptotische Zustände in hypoplastischen Stoffmodellen

die Entwicklung des Zustands einer Bodenprobe (ausgedrückt als effektiver Spannungs-
pfad σ(t)) infolge eines monotonen, proportionalen Dehnungspfads ε(t):

(1) Die Reaktion auf einen proportionalen Dehnungspfad mit einem spannungsfreien
Ausgangszustand σ0 = 0 (und nur auf einen solchen Dehnungspfad) ist ein propor-
tionaler Spannungspfad.

(2) Bei einem proportionalen Dehnungspfad mit einer Anfangsspannung σ0 ̸= 0 ten-
diert die Spannung im Spannungsraum auf einer Kurve asymptotisch zu derjenigen
Geraden durch den Spannungsnullpunkt, die bei demselben proportionalen Deh-
nungspfad mit einem spannungsfreien Ausgangszustand als Spannungspfad auftre-
ten würde.

Dabei wird der aktuelle Zustand des Bodens und dessen Entwicklung im R9-dimensionalen
effektiven Spannungsraum beschrieben, welcher aufgrund der Symmetrie des Spannungs-
tensors ohne Informationsverlust auch in den R6-dimensionalen Raum überführt werden
kann. Ein Dehnungspfad ε(t) bzw. ein Spannungspfad σ(t) ist proportional, wenn er im
Dehnungsraum bzw. im Spannungsraum eine Gerade durch den Nullpunkt darstellt.

Die Aussagen von Goldscheider [44] lassen sich bei Berücksichtigung weiterer Zustandsva-
riablen α (Porenzahl, intergranulare Dehnung, Fabric usw.) verallgemeinern: Als asymp-
totische Zustände werden alle Zustände des Bodens bezeichnet, die infolge eines monoto-
nen, proportionalen Dehnungspfads angestrebt werden. Die Menge aller asymptotischen
Zustände wird als asymptotische Zustandsoberfläche (engl. asymptotic state boundary
surface (ASBS)) [44, 48, 50, 72, 86] bezeichnet. Der Begriff des asymptotischen Zustands
bedarf einer Diskussion und muss vom Begriff des kritischen Zustands abgegrenzt werden.

Infolge einer gegebenen monotonen Deformation ohne Volumenkonstanz mit

tr (ε̇) = ε̇vol ̸= 0 (4.1)

wird der resultierende Pfad im n-dimensionalen Vektorraum Rn der Zustandsvariablen
asymptotisch, unabhängig vom Anfangszustand, nicht einem wohl definierten Zustand,
sondern vielmehr auf einem asymptotischen Pfad eine Menge asymptotischer Zustände
anstreben. Der Boden strebt unter diesen Bedingungen einen proportionalen Spannungs-
pfad mit einer nicht verschwindenden Spannungsrate1

σ̇ ̸= 0 aber ⃗̇σ = 0 (4.2)

an [92, 93]. Diese asymptotischen Zustände werden in Abschnitt 4.2 eindeutig definiert
und lassen sich ermitteln.

Der weithin bekannte kritische Zustand (engl. critical state (CS)) stellt einen speziellen
asymptotischen Zustand dar, welcher durch einen gegebenen proportionalen volumener-
haltenden Dehnungspfad mit

tr (ε̇) = ε̇vol = 0 (4.3)

1Im Sonderfall eines spannungsfreien Zustands und eines volumenvergrößernden Dehnungspfads gilt

σ̇ = 0.
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angestrebt wird. Sofern die Porenzahl als Zustandsvariable definiert ist, folgt mittels
Gl. (2.43) ė = 0 direkt aus Gl. (4.3). Im kritischen Zustand muss weiter

σ̇ = 0 und α̇ = 0 (4.4)

gelten [78, 153]. Aus Gl. (4.4) ist offensichtlich, dass im Fall eines monotonen volumen-
konstanten Dehnungspfades in Abhängigkeit vom Anfangszustand ein wohl definierter Zu-
stand, welcher bei fortgesetzter Dehnung unverändert bleibt, angestrebt wird. Letzterer
kann daher als stationärer Zustand (engl. stationary state bzw. steady state) bezeichnet
werden [10, 135], wenngleich die Begriffe kritischer Zustand und stationärer Zustand expe-
rimentell motiviert für drainierte bzw. undrainierten Bedingungen bevorzugt werden [10].

Jedoch sollte auch der kritische Zustand vielmehr als Menge von Zuständen verstan-
den werden, da im tensoriellen Raum unendlich viele proportionale volumenkonstante
Dehnungspfade existieren und sich für jeden dieser Pfade ein anderer kritischer Zustand
einstellt. Li und Dafalias [78] begründeten mittels thermodynamischer Betrachtungen die
Eindeutigkeit dieser kritischen Zustände. Es sei darauf hingewiesen, dass, wie von Osi-
nov [135] gezeigt, Gl. (4.4) tatsächlich mittels der materiellen Zeitableitung der Spannung
geschrieben werden muss. In der Literatur wird bei der Diskussion des kritischen Zustands
bzw. des ideal plastischen Fließens (Versagen) hingegen oft eine objektive Spannungsra-
te verwendet [8, 47, 201, 202, 204, 205]. Für einen Drehgeschwindigkeitstensor W = 0
sind beide Ansätze identisch, während sich für ∥W ∥ ≤ ∥D∥ geringfügig unterschiedliche
kritische Zustände ergeben.

Die ASBS kann im n-dimensionalen Vektorraum Rn der Zustandsvariablen visualisiert
werden. Die kritischen Zustände sind eine Teilmenge der ASBS. Es ist erwähnenswert, dass
asymptotische Zustände auch als swept-out-memory-Zustände oder Attraktoren [48, 50]
bekannt sind.

Vereinfachend werden im Folgenden nur Stoffmodelle betrachtet, bei denen der Zustand
eindeutig durch die effektive Cauchy-Spannung σ und die Porenzahl e beschrieben wird,
wie beispielsweise in der HP. Die ASBS kann für solche Modelle als ein geometrisches
Objekt und der aktuelle Zustand als ein Punkt im 4D-Hauptspannungs-Porenzahl-Raum
(R4) dargestellt werden, welcher ein Unterraum des 10D-Spannungs-Porenzahl-Raums
(R10) darstellt. Obwohl bereits dieser 4D-Raum schwer vorstellbar ist, muss er als Erweite-
rung des 3D-Hauptspannungsraums (R3) um die Porenzahl existieren. Es ist zu beachten,
dass der 4D-Hauptspannungs-Porenzahl-Raum (σ1σ2σ3e) und der 4D-mittlerer effektiver
Druck-Deviatorspannung-Lode Winkel-Porenzahl-Raum (pqθe) äquivalente Räume dar-
stellen. Bekannte 2D-Räume (R2), wie beispielsweise das pq-Diagramm, das ep-Diagramm
oder das σa

√
2σr-Rendulic-Diagramm lassen sich direkt aus dem oben genannten ver-

allgemeinerten 4D-Raum ableiten. Die dabei durchgeführte Dimensionsreduktion führt
allerdings im Allgemeinen zu einem Informationsverlust.

Das bisher beschriebene asymptotische Verhalten von Boden ist schematisch für einen
axialsymmetrischen Zustand für volumenerhaltende und volumenreduzierende monotone
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760 D. Mašín

value of the critical state friction angle depends on the parti-
cle shape. The influence of the particle shape on the asymp-
totic behaviour was also emphasized in [17,30,33,38,58].
Luding and Alonso-Marroquín [36] observed that the criti-
cal state friction angle was constant for non-adhesive contact
behaviour, but showed a pressure dependence for adhesive
inter-particle contacts. For further details of the theoretical
investigation of the micromechanics of granular assemblies,
the reader is referred to [1,32,51] and the references therein.

A number of authors argued that the existence of
asymptotic states is directly linked to particle crushing
[2,7,8,43–45,65]. Using DEM simulations, the existence of
normal compression lines was explained by particle crushing
in references [2,7,8,44,65]. Cheng et al. [7,8] predicted both
critical states and normal compression lines, using the same
parameter sets, creating a more complete picture of the gran-
ular material behaviour. They argued that particle crushing
is a cause of the asymptotic behaviour.

The aim of this paper is to provide a detailed characteri-
sation of the asymptotic behaviour of particulate materials.
After introducing the asymptotic state framework, a compre-
hensive DEM model was set up. Using this model, numer-
ical experiments were performed to reveal the asymptotic
states. This included characteristics that have not been inves-
tigated before, such as the asymptotic behaviour in extension.
It is also discussed whether particle crushing is a cause, or a
consequence, of the asymptotic properties of granular
assemblies.

2 Asymptotic state framework

Asymptotic state is defined as that state reached after a suf-
ficiently long proportional stretching, i.e. stretching with a
constant direction of the strain rate. Conceptual represen-
tation of asymptotic states has been proposed by Gudehus
[23] and Gudehus and Mašín [24]. In this work, we focus on
axisymmetric stress and deformation states, where the strain
rate tensor is fully characterised by axial ε̇a and radial ε̇r

components. Similarly, the stress tensor is given by σa (axial
stress) and σr (radial stress). It is assumed that the granular
material behaviour is governed only by its stress state and
void ratio e (defined as the void volume over the solid vol-
ume). The strain rate direction may be characterised by an
angle ψε̇ (see Fig. 1a), and the stress obliquity is quantified
by the angle ψσ (Fig. 1b).

2.1 Compression and constant volume asymptotic states

According to the current understanding of the asymptotic
behaviour of a granular assembly, proportional deformation
(constantψε̇) will ultimately lead to an asymptotic state char-
acterised by a constantψσ . Not all stretching directions will,

(a) (b)

Fig. 1 Definition of anglesψε̇ andψσ [24]. i isotropic direction, c iso-
choric (constant volume) direction, and d theoretical limit for asymp-
totic state behaviour

(a) (b)

(c) (d)

Fig. 2 Graphical representation of compression asymptotic states.
Zones relevant to asymptotic states in compression are highlighted in
grey

however, lead to a unique asymptotic state. First, we focus
on compression and constant volume stretching paths, char-
acterised by a volume decrease (constant volume in the lim-
iting case) and −90◦ ≤ ψε̇ ≤ 90◦. These directions of ψε̇
are represented in Fig. 2a. Isotropic compression1 ψε̇ = 0◦
is indicated with the index ‘i’; limiting values ψε̇ = ±90◦

1 Note that the isotropic asymptotic state is defined here by ψε̇ = 0◦;
the corresponding asymptotic ψσ may then differ from 0◦ in the case
of anisotropic structure.
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Abbildung 4.1: Bodenverhalten infolge volumenerhaltender und volumenreduzierender propor-
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Abbildung 4.2: 3D-Spannungs-Porenzahl Diagramm der ASBS für axialsymmetrische Zustände

mit angenommener porenzahlinvarianter Form der ASBS (modifiziert aus [91])

Dehnungspfade in zweidimensionalen Diagrammen in Abbildung 4.1 dargestellt. Verschie-
dene proportionale Dehnungspfade können durch einen Winkel ψε̇ definiert werden, siehe
Abbildung 4.1a. Asymptotisch führen unterschiedliche proportionale Dehnungspfade zu
unterschiedlichen proportionalen Spannungspfaden mit konstantem Spannungsverhältnis,
welches durch den Winkel ψσ beschrieben wird, siehe Abbildung 4.1b. Abbildung 4.1c zeigt
außerdem, dass jeder proportionale Dehnungspfad im ep-Diagramm asymptotisch zu ei-
ner bestimmten normalen Kompressionslinie (engl. normal compression line (NCL)) führt.
Sowohl die bekannte kritische Zustandslinie (engl. critical state line (CSL)) als auch jede
weitere NCL stellen eine Teilmenge der ASBS dar. Letztere ist in Abbildung 4.2 im dreidi-
mensionalen, um die Porenzahl erweiterten, Rendulic-Diagramm dargestellt. Das Konzept
der asymptotischen Zustände lässt sich auch auf volumenvergrößernde Dehnungspfade an-
wenden [86].
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Abbildung 4.3: 3D Darstellungen der ASBS im Hauptspannungsraum für eine konstante Poren-

zahl für das hypoplastische Stoffmodell für Ton mit explizit definierter ASBS [88] für verschiedene

Ansichten (modifiziert aus [88])

4.2 Asymptotische Zustände in Stoffmodellen

In elasto-plastischen Stoffmodellen fällt die ASBS mit der Zustandsgrenzfläche (engl. state
boundary surface (SBS)) zusammen, welche durch die Fließfläche und die Verfestigungs-
regel explizit definiert wird [87]. In hypoplastischen Stoffmodellen können asymptotische
Zustände zwar abgebildet werden, müssen allerdings im Allgemeinen nicht explizit defi-
niert sein [86, 88, 92, 93]. Insbesondere durch die Arbeiten von Maš́ın [87, 88, 91] wurden
bereits einige hypoplastische Modelle für Ton entwickelt, die eine explizit definierte ASBS
beinhalten. Dabei ist der Beweis der Existenz einer ASBS in einem spezifischen Stoffmo-
dell nicht gleichbedeutend mit einer entsprechenden mathematischen Formulierung eines
Modells unter expliziter Berücksichtigung der ASBS.

Abbildung 4.3 zeigt exemplarisch die ASBS für das ratenunabhängige hypoplastische Mo-
dell für Ton mit explizit definierter ASBS von Maš́ın [88] im 3D-Hauptspannungsraum für
eine konstante Porenzahl. Querschnitte durch die ASBS mit konstantem mittleren effekti-
ven Druck sind dabei farblich hervorgehoben. Für axialsymmetrische Spannungszustände
ist das entsprechende 3D-Spannungs-Porenzahl-Diagramm in Abbildung 4.2 dargestellt.
Dabei wird für Ton angenommen, dass die Form der ASBS für Querschnitte mit kon-
stanter Porenzahl e invariant ist und sich in Abhängigkeit von der Porenzahl lediglich die
Größe ändert. Je dichter der Boden, desto größer ist der Bereich innerhalb der ASBS. Eine
irreversible Verdichtung oder Auflockerung (Porenzahländerung) führt zu einer Skalierung
der Größe, aber nicht zu einer Änderung der Form der ASBS. Die Form von Querschnit-
ten mit konstantem mittleren effektiven Druck, konstantem Lode-Winkel oder konstanter
Deviatorspannung ist aufgrund des zugrundelegten Matsuoka-Nakai-Kriteriums [83] und
der im pq-Diagramm elliptischen Form der ASBS nicht invariant.
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q
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S = fd / fdA < 1.0
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Projektion desaktuellen Zustandsauf die ASBS
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asymptotischeZustandsoberfläche(ASBS)kritischerZustand

kritischerZustand

Abbildung 4.4: Vereinfachte schematische Darstellung der Projektion eines aktuellen Zustands

auf die ASBS von hypoplastischen konstitutiven Formulierungen mit explizit definierter ASBS

im axialsymmetrischen Fall im pq-Diagramm (modifiziert aus [91])

Wie in [87, 88, 91] beschrieben, kann ein hypoplastisches Stoffmodell auch unter Verwen-
dung einer explizit definierten ASBS formuliert werden:

σ̇ = fsL : ε̇− fd
fAd

A : d ∥ε̇∥ . (4.5)

In Gl. (4.5) wird der Tensor vierter Stufe L als Maß für die lineare Steifigkeit verwendet.
Der Tensor vierter Stufe A kann mittels einer explizit definierten ASBS bestimmt und
als Steifigkeit bei einer Erstbelastung interpretiert werden. Folglich berücksichtigt A die
Neigung der NCL im Kompressionsdiagramm. Der hochgestellte Index ⊔A bezeichnet im
Folgenden eine Größe für einen asymptotischen Zustand. Der asymptotische Pyknotro-
piefaktor fAd stellt den Wert des Pyknotropiefaktors fd für die Projektion des aktuellen
Zustands auf die ASBS dar und kann ebenfalls explizit definiert werden. Symbolisch ist
diese Projektion für einen axialsymmetrischen Zustand in Abbildung 4.4 dargestellt.

Der Quotient fd / f
A
d , welcher im Rahmen der vorliegenden Arbeit als Zustandsmobili-

sierung S = fd / f
A
d eingeführt wird, quantifiziert den Abstand des aktuellen Zustandes

von der ASBS. Das Bodenverhalten wird für Zustände mit größerem Abstand zur ASBS
(fd < fAd ) zunehmend elastischer, wie aus Gl. (4.5) ersichtlich wird. Für jeden Punkt auf
der ASBS gilt fd / f

A
d = 1.

Der Tensor zweiter Stufe d beschreibt die asymptotische Dehnungsrate ε̇A, die dem auf
die ASBS projizierten Zustand entspricht. Es gilt:

d =
ε̇A

∥ε̇A∥
= ⃗̇εA . (4.6)

Wenn eine ASBS explizit definiert ist, sind der Tensor vierter Stufe A, der asymptotische
Pyknotropiefaktor fAd und die asymptotische Dehnungsrate d bekannt bzw. definiert.
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Gegenwärtig existieren nur hypoplastische Modelle für Ton mit explizit definierten ASBS
[87, 88, 91]. Ein Stoffmodell für Sand, welches gemäß Gl. (4.5) ausgedrückt werden kann,
wurde vor dieser Arbeit noch nicht entwickelt. Mit der MHP, siehe Abschnitt 4.5, wird
daher in dieser Arbeit erstmals ein hypoplastisches Stoffmodell für Sand mit explizit
definiertem Tensor A eingeführt, welches mittels Gl. (4.5) geschrieben werden kann.

In vielen hypoplastischen Stoffmodellen ist die ASBS nicht explizit definiert. Die ASBS
kann jedoch auch ohne explizite Definition aus bestehenden Stoffmodellen extrahiert wer-
den [87, 92, 93]. Mittels der Beziehung [87]

N = −A : d

fsfAd
(4.7)

kann Gl. (4.5) unter Verwendung des bekannten Tensors zweiter Stufe N als

σ̇ = fsL : ε̇+ fs
fd
fAd
fAd N∥ε̇∥ (4.8)

formuliert werden. Im Vergleich zu Gl. (4.5) kann jedes hypoplastische Modell in Form
von Gl. (2.53) mittels Gl. (4.8) umformuliert werden, sofern der Pyknotropiefaktor im
asymptotischen Zustand fAd bekannt ist. Gl. (4.8) ist aufgrund der Zustandsmobilisierung
S = fd/f

A
d im Vergleich zu Gl. (2.53) informationsreicher.

Sofern der asymptotische Pyknotropiefaktor fAd nicht bekannt ist, da er beispielsweise
nicht explizit definiert oder nur als Funktion des Zustands selbst hergeleitet werden kann
[93], besteht grundsätzlich auch die Möglichkeit, eine zu fAd ähnliche Größe zu definieren.
Letztere wird als fA∗d eingeführt. Für eine solche Größe muss auf der ASBS fA∗d = fAd = fd,
innerhalb der ASBS fA∗d > fd und außerhalb der ASBS fA∗d < fd gelten.

4.3 Erweiterte generalisierte Hypoplastizität

Aufbauend auf der generalisierten Hypoplastizität, siehe Gl. (2.54), wurde im Rahmen
der vorliegenden Arbeit die sog. erweiterte generalisierte Hypoplastizität

σ̇ = E : (ε̇−m C S ∥ε̇∥+ f(ε̇,α)) (4.9)

vorgeschlagen [105]. In Gl. (4.9) steht E für eine elastische Steifigkeit (Hypo-, Cauchy-
oder Hyperelastizität) und m für die äquivalente hypoplastische Fließregel. Die neu ein-
geführte skalare Größe S wird Zustandsmobilisierung genannt. Die Zustandsmobilisierung
stellt dabei ein Verhältnis zwischen dem aktuellen Zustand und einem definierten Refe-
renzzustand dar. Der skalare Faktor C sowie die Funktion f(ε̇,α) wurden zur Generalisie-
rung eingeführt. Für ratenunabhängige Stoffmodelle muss auch f(ε̇,α) homogen ersten
Grades bezüglich der Dehnungsrate sein.



66 Kapitel 4. Asymptotische Zustände in hypoplastischen Stoffmodellen

Die generalisierten Hypoplastizität nach Gl. (2.54) lässt sich direkt in Gl. (4.9) überführen.
In diesem Fall gilt

E = Lfs , (4.10)

m = ⃗−[L−1 : N ] = −B⃗ , (4.11)

S = Y = fd∥L−1 : N∥ = fd ∥B∥ , (4.12)

f(ε̇,α) = 0 , (4.13)

C = 1 . (4.14)

Wenn ein Stoffmodell gemäß Gl. (4.5) oder Gl. (4.8) vorliegt, kann es auch in Form
der erweiterten generalisierten Hypoplastizität, siehe Gl. (4.9), umformuliert werden. In
diesem Fall gilt

E = fsL , (4.15)

m = − ⃗[L−1 : N ] = −B⃗ , (4.16)

S =
fd
fA∗d

, (4.17)

C = ∥L−1 : N∥ fA∗d = ∥B∥ fA∗d , (4.18)

f(ε̇,α) = 0 . (4.19)

Sofern fAd explizit definiert oder berechnet werden kann, gilt fA∗d = fAd . Für jeden asym-
ptotischen Zustand auf der ASBS gilt S = fd/f

A∗
d = 1.

Die neu eingeführte Zustandsmobilisierung S kann als allgemeinere Definition des für Ton
bekannten Überkonsolidierungsgrads OCR (engl. over consolidation ratio), welcher unter
Berücksichtigung einer Vorbelastungsspannung pe definiert werden kann [14, 93], verstan-
den werden. Für einen sog. normalkonsolidierten Boden gilt OCR = 1 (auf der isotropen
Achse) und S = 1, während sog. überkonsolidierte Böden mitOCR > 1 einer Zustandsmo-
bilisierung von S < 1 entsprechen. Für überkonsolidierte Böden befindet sich der aktuelle
Zustand des Bodens innerhalb der ASBS, weshalb die Vorbelastungsspannung pe größer
ist als die aktuelle Spannung bzw. der Boden als vorverdichtet bzw. dicht charakterisiert
werden kann. Sowohl die Zustandsmobilisierung S als auch der Überkonsolidierungsgrad
OCR sind letztlich ein Maß für die Distanz des aktuellen Zustand zur ASBS.

4.4 HP mit extrahierter ASBS

Zunächst wird die originale Version der HP, siehe Abschnitt 2.4, betrachtet. Anhand der
Extraktion der dazugehörigen ASBS kann die HP in die erweiterte generalisierte Hypoplas-
tizität nach Gl. (4.9) unter Berücksichtigung der Zustandsmobilisierung S umformuliert
werden.
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Für die Extraktion der ASBS sei ein beliebiger, im Sinne des Stoffmodells zulässiger,
Spannungszustand gegeben. Es wird angenommen, dass dieser Zustand ein asymptotischer
Zustand zu einer bestimmten monotonen asymptotischen Dehnungsrate ⃗̇εA sei. Daraus
folgt, dass die asymptotische Spannungsrate σ̇A die gleiche Richtung wie die asymptoti-
sche Spannung selbst σA hat (vgl. Gl. (4.2)). Der herzuleitende asymptotische Pyknotro-

piefaktor fAd muss darüber hinaus während der weiteren Verformung mit ⃗̇εA konstant sein
(ḟAd = 0).

Nach Niemunis [112] ist zur Beschreibung des asymptotischen Verhaltens die direktionale
Homogenität bezüglich der Spannung, ausgedrückt durch

⃗̇σA
(
σA, ε̇A

)
= ⃗̇σA

(
λ2σA, ε̇A

)
, (4.20)

für einen positiven Faktor λ2, erforderlich. Die direktionale Homogenität nach Gl. (4.20)
erfordert, dass sich die Porenzahl und der mittlere effektive Druck entsprechend der Kom-
pressionsbeziehung nach Gl. (2.40) ändern und somit in einem asymptotischen Zustand
tatsächlich fd ≈ const bzw. re ≈ const gilt. Diese Forderung entspricht der Konsistenzbe-
dingung der isotropen Kompression [122]. Niemunis [112] zeigt weiter, dass konvergentes
asymptotisches Verhalten aus der negativen Definitheit des Tensors vierter Stufe (∂σ̇/∂σ)
während einer proportionalen Kompression folgt2 und die HP die genannten Bedingungen
erfüllt.

Im Folgenden wird zur Herleitung des asymptotischen Pyknotropiefaktors fAd der Ansatz
nach Maš́ın und Herle [93] verfolgt. In einem asymptotischen Zustand gilt zusätzlich zu
ḟd = 0 die Richtungsgleichheit σ̇A||σA und es kann ein skalarer Multiplikator γ eingeführt
werden:

σ̇A = γσ⃗A . (4.21)

Aufgrund der Ratenunabhängigkeit der HP kann im asymptotischen Zustand ∥ε̇A∥ = 1
verwendet werden. Infolgedessen kann ein allgemeines hypoplastisches Stoffmodell in Form
der Gl. (2.53) im asymptotischen Zustand als

γσ⃗A = fAs L : ⃗̇εA + fAs fAd N (4.22)

geschrieben werden. Es sei darauf hingewiesen, dass diese allgemeine Beziehung sowohl
für ε̇vol > 0 (γ < 0) als auch für ε̇vol < 0 (γ > 0) gilt. Im kritischen Zustand gilt σ̇A = 0
und somit γ = 0. In der HP ist der Pyknotropiefaktor fd definiert als

fd =

(
e− ed
ec − ed

)α
(4.23)

mit den druckabhängigen Grenzporenzahlen im kritischen Zustand ec(p) und im dichtesten
Zustand ed(p). Die Druckabhängigkeit der Grenzporenzahlen wird mit der Kompressions-
beziehung von Bauer [8]

ec
ec0

=
ed
ed0

= exp

[
−
(
3p

hs

)n]
(4.24)

2Genauer muss die Bedingung x : (∂σ̇/∂σ) : x < 0 für jedes x, für welches x : σ = 0 gilt, erfüllt sein.
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beschrieben, siehe Abschnitt 2.4. Für einen Zustand auf der ASBS folgt, dass der asym-
ptotische Pyknotropiefaktor fAd entlang jeder durch

eA(pA) = (const.) exp

[
−
(
3pA

hs

)n]
(4.25)

definierten NCL konstant ist. Für die Entwicklung der Porenzahl im asymptotischen Zu-
stand eA folgt aus der Differenzierung von Gl. (4.25)

ėA

eA
=

n

hs
tr(σ̇A)

(
3pA

hs

)(n−1)

. (4.26)

Außerdem kann die volumetrische Dehnungsrate im asymptotischen Zustand

ε̇Avol = tr
(
⃗̇εA
)

(4.27)

mittels der Änderung der Porenzahl im asymptotischen Zustand

ėA = (1 + eA) tr
(
⃗̇εA
)

(4.28)

ausgedrückt werden, wodurch sich aus der Kombination von Gl. (4.21), Gl. (4.28) und
Gl. (4.26)

tr
(
⃗̇εA
)(1 + eA

eA

)
= γ

n

hs
tr
(
σ⃗A
)(3pA

hs

)(n−1)

(4.29)

ergibt. Gesucht ist die Lösung des Systems der Gl. (4.22) und Gl. (4.29) für γ und fAd .
Zunächst kann Gl. (4.22) umgeformt werden:

⃗̇εA = γ/fAs
(
L−1 : σ⃗A

)
− fAd

(
L−1 : N

)
. (4.30)

Durch Einsetzen der Gl. (4.30) in Gl. (4.29) lässt sich ⃗̇εA eliminieren und eine Beziehung
zwischen γ und fAd ableiten:

γ = −

(
1 + eA

eA

)
trB

G−
(
1 + eA

eA

)
trC

fAd (4.31)

mit
B = L−1 : N , (4.32)

C = 1/fAs (L
−1 : σ⃗A) , (4.33)
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G =
n

hs
tr
(
σ⃗A
)(3pA

hs

)(n−1)

. (4.34)

Weiter gilt ∥⃗̇εA∥ = 1. Angewandt auf Gl. (4.30) ergibt sich

1 =
√
(γC − fAd B)2 (4.35)

bzw.

1 = ∥B∥2(fAd )2 + ∥C∥2γ2 − 2(B : C)fAd γ . (4.36)

Durch Einsetzen von Gl. (4.31) in Gl. (4.36) kann der skalare Multiplikator γ eliminiert
werden und es ergibt sich für den asymptotischen Pyknotropiefaktor [93]:

fAd =

√√√√√√√√
∥B∥2 +

∥C∥
(
1 + eA

eA

)
trB

G−
(
1 + eA

eA

)
trC


2

+

2(B : C) trB

(
1 + eA

eA

)
G−

(
1 + eA

eA

)
trC


−1

. (4.37)

Dementsprechend gilt für die asymptotische relative Porenzahl

rAe =

(
eA − ed
ec − ed

)
= (fAd )

(1/α) . (4.38)

Es ist offensichtlich, dass fAd nach Gl. (4.37) sowohl vom Spannungszustand σ als auch
von der Porenzahl e beeinflusst wird. Gl. (4.37) stellt also einen impliziten Ausdruck für
fAd dar. Es sei darauf hingewiesen, dass neben dem offensichtlichen Porenzahl- und Span-
nungseinfluss auch der asymptotische Barotropiefaktor fAs in Abhängigkeit vom Span-
nungszustand und der Porenzahl steht und den asymptotischen Pyknotropiefaktor fAd
beeinflusst, siehe Gl. (4.33).

4.4.1 Extraktion der ASBS aus der HP

Für einen Zustand auf der ASBS gilt per Definition für die Zustandsmobilisierung

S
ASBS
= SA = fd/f

A
d = 1 , (4.39)

wodurch die ASBS im Allgemeinen iterativ gefunden werden kann.

Die resultierende ASBS der HP wurde für den Parametersatz ZS-Duque von Zbraslav
Sand (ZS), siehe Tabelle 3.2, für einen axialsymmetrischen Zustand exemplarisch iterativ
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e [-]

p [kPa]

q [kPa]
HP - ASBS(S=1)

a)

e [-]

q/p [-]

p [kPa]

offene ASBS

b)

re [-]

q/p [-]

p [kPa]

open ASBSoffene ASBS

c)

Abbildung 4.5: Iterativ ermittelte extrahierte ASBS der HP für Zbraslav Sand im a) 3D-epq-

Raum, im b) 3D-eq/pp-Raum und im c) normierten 3D-req/pp-Raum für axialsymmetrische

Bedingungen

bestimmt. Abbildung 4.5a zeigt die resultierende ASBS im 3D-epq-Raum (R3), Abbil-
dung 4.5b im 3D-eq/pp-Raum und Abbildung 4.5c im entsprechenden 3D-req/pp-Raum.
2D-Querschnitte durch die ASBS sind in Abbildung 4.6a für eine konstante Porenzahl und
in Abbildung 4.6b für einen konstanten mittleren effektiven Druck dargestellt. Die Abbil-
dungen stellen jeweils nur Teile der gesamten ASBS dar, was auf die numerische Imple-
mentierung der iterativen Ermittlung der ASBS zurückzuführen ist. Die nicht-invariante
Form des ASBS ist offensichtlich. Die Form der ASBS variiert sowohl für Querschnitte
mit konstanter Porenzahl als auch (geringfügig) für Querschnitte mit konstantem mitt-
leren effektiven Druck. Eine zu Abbildung 4.6b ähnliche Darstellung ist in [50, 85, 93]
gezeigt. Maš́ın und Herle [93] zeigen außerdem die ausgeprägte Abhängigkeit der Form
der ASBS in der HP vom zugrundelegten Parametersatz. Zur Verdeutlichung der unter-
schiedlichen Formen der ASBS für unterschiedliche Parametersätze enthält Abbildung 4.6
auch Schnitte für den Parametersatz KFS-Wicht-2, siehe Tabelle 3.2.

Es ist zu erwähnen, dass die nicht invariante und vom Parametersatz abhängige Form
der ASBS physikalisch durchaus möglich ist und somit grundsätzlich keinen Nachteil des
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Abbildung 4.6: Normalisierte ASBS der HP für Zbraslav Sand (ZS) und Karlsruher Feinsand

(KFS) unter axialsymmetrischen Bedingungen in einem 2D-Querschnitt a) mit konstanter Po-

renzahl und b) mit konstantem mittleren effektiven Druck

Modells darstellt. Eine experimentelle Bestimmung der ASBS für Sand ist jedoch im
Allgemeinen sehr herausfordernd, nicht zuletzt aufgrund der teils erforderlichen großen
Drücken und Verformungen.

Ungeachtet des gewählten Parametersatzes und der im Allgemeinen nicht invarianten
Form der ASBS in der HP sind die asymptotischen Zustände infolge einer isotroper Kom-
pression (iso) bzw. infolge einer volumenkonstanten Verformung (crit) in der HP explizit
definiert. Für eine isotrope Kompression (iso) stellt sich asymptotisch ein isotroper Span-
nungszustand mit einer relativen Porenzahl von

rA,iso
e =

(
ei0 − ed0
ec0 − ed0

)
= f(ed0, ec0, ei0)

allg.
> 1 (4.40)

ein, während eine volumenkonstante Verformung (crit) zu

rA,crit
e =

(
ec0 − ed0
ec0 − ed0

)
= 1 (4.41)

mit einem vom kritischen Reibungswinkel φc abhängigen anisotropen Spannungszustand
tendiert. Diese Teilmenge der ASBS somit auch in der HP explizit definiert. Die entspre-
chenden Zustände sind in Abbildung 4.6b gekennzeichnet.

Infolge extensiver axialsymmetrischer proportionaler Dehnungspfade mit ε̇a = 0 oder
ε̇r = 0 ist außerdem asymptotisch unabhängig vom Druck re = 0 für einen mobilisierten
Reibungswinkel von φmob = 90◦ bzw. q/p = 3 (Kompression) und q/p = −1, 5 (Extension)
zu erwarten [50, 86]. Diese Zustände wurden durch die iterative numerische Bestimmung
der ASBS aufgrund des angewandten Algorithmus nicht erreicht. Darüber hinaus sollte
eine besondere Beobachtung der ASBS der HP hervorgehoben werden: Die ASBS ist für
p→ 0 offen, siehe Abbildung 4.5b und 4.6a.
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a) b)

Abbildung 4.7: Zustandsmobilisierung S = fd/f
A∗
d der HP für Zbraslav Sands (ZS) und eine

konstante Porenzahl von a) e = 0, 7 und b) e = 0, 8 in Abhängigkeit vom axialsymmetrischen

Spannungszustand im pq-Diagramm

4.4.2 Zustandsmobilisierung S

Um die HP in die erweiterte generalisierte Hypoplastizität nach Gl. (4.9) umzuformen,
ist der asymptotische Pyknotropiefaktor fAd oder eine ähnliche Größe fA∗d erforderlich.
fAd ist in der HP jedoch nicht explizit definiert und im Allgemeinen unbekannt. Eine zu
fAd ähnliche Größe fA∗d kann durch die Annahme definiert werden, dass ein beliebiger
Zustand ein asymptotischer Zustand sei. Der aktuelle Zustand (σ = σA, e = eA) kann in
Gl. (4.37) eingesetzt und so fA∗d bestimmt werden. Sofern der aktuelle Zustand tatsächlich
ein asymptotischer Zustand ist, gilt fA∗d = fAd und entsprechend für die Zustandsmobili-
sierung S = fd/f

A∗
d = 1.

Abbildung 4.7 zeigt die so definierte Zustandsmobilisierung S = fd/f
A∗
d der HP für die Pa-

rameter des Zbraslav Sands (ZS) unter axialsymmetrischen Bedingungen im pq-Diagramm
für eine konstante Porenzahl von e = 0, 7 und e = 0, 8. Die resultierende Funktion S(p, q)
ist mittels Isolinen mit einem Abstand von ∆S = 0, 1 dargestellt. Zustände innerhalb der
ASBS (S ≤ 1) sind farblich hervorgehoben.

Zunächst zeigt sich, dass für alle Zustände innerhalb der ASBS tatsächlich S < 1, 0 gilt
und sich die Form der ASBS (S = 1) aus Abbildung 4.6 wiedererkennen lässt. Für alle
Zustände außerhalb der ASBS im für Boden relevanten Druckspannungsbereich (p ≥ 0
und σi ≤ 0) gilt tatsächlich S > 1. In diesem Bereich sind keine lokalen Maxima oder
Minima der Funktion S(p, q) zu erkennen. Interessanterweise zeigt sich im Zugbereich
(q/p < −1, 5) eine Singularität mit limS(p, q) → ∞. Für noch größere Spannungs-
verhältnisse reduziert sich S(p, q) wieder. Es ist also nicht auszuschließen, dass im Zug-
spannungsbereich weitere Bereiche mit S(p, q) < 1 existieren. Dies ist jedoch für die
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Abbildung 4.8: Zustandsmobilisierung S = fd/f
A∗
d der HP auf deviatorischen Ebenen für Zbras-

lav Sand (ZS) und eine konstante Porenzahl von e = 0, 7 für einen mittleren effektiven Druck

von a) und b) p = 100 kPa, c) und d) p = 628 kPa ≈ pc(e = 0, 7) und e) und f) p = 2000 kPa
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Anwendung des Stoffmodells praktisch nicht relevant. Es ist darauf hinzuweisen, dass das
Matsuoka-Nakai-Kriterium [83], welches der HP zugrunde liegt, theoretisch auch im Zug-
bereich einen zulässigen Spannungsbereich liefert [114]. Diese Eigenschaft des Festigkeits-
kriteriums könnte für die gefundene Singularität der Funktion S(p, q) in Abbildung 4.7
im Zugbereich verantwortlich sein.

Die Zustandsmobilisierung S = fd/f
A∗
d der HP ist in Abbildung 4.8 auf deviatorischen

Ebenen (Ebenen im Hauptspannungsraum mit p = const) für eine Porenzahl von e = 0, 7
und einen mittleren effektiven Druck von p = 100 kPa, p = 628 kPa ≈ pc(e = 0, 7)
und p = 2000 kPa geplottet. Es wird nur der Druckspannungsbereich mit drei positiven
Hauptspannungen (−σi > 0) betrachtet. Für jeden analysierten mittleren effektiven Druck
ist jeweils eine Abbildung mit S < 1 und mit S > 1 dargestellt. Die Grenze S = 1
entspricht der ASBS.

Erneut zeigt sich, dass für die vorgeschlagene Funktion S = fd/f
A∗
d für alle betrachteten

Zustände innerhalb der ASBS S < 1 und außerhalb der ASBS S > 1 gilt. Die Form
der ASBS entspricht dem Matsuoka-Nakai-Kriterium [83], sofern der betrachtete mittlere
effektive Druck dem zur Porenzahl gemäß der Kompressionsbeziehung nach Bauer [8]
gehörendem kritischen Druck pc(e) entspricht, siehe Abbildung 4.8c und 4.8d. In diesem
Fall entspricht die ASBS den kritischen Zuständen. Für p < pc(e) oder p > pc(e) weicht
die Form der ASBS auf der deviatorischen Ebene von der Form des Matsuoka-Nakai-
Kriteriums [83] ab.

Die HP mit extrahierter ASBS lässt sich somit gemäß Gl. (4.8) und gemäß der erweiterten
generalisierten Hypoplastizität nach Gl. (4.9) umformulieren. Mathematisch sind die HP
in der ursprünglichen Form und mit der extrahierten ASBS äquivalent. Allerdings wird
die Schreibweise mit extrahierter ASBS nach Gl. (4.9) bei der in Kapitel 6 diskutierten
Kopplung mit dem Konzept der generalisierten intergranularen Dehnung (GIS) Vorteile
gegenüber der originalen mathematischen Form der HP bei der Simulation zyklischer
Verformungen aufweisen.

4.5 Modifizierte Hypoplastizität (MHP) mit explizit

definiertem Tensor A

Im Folgenden wird eine leicht modifizierte Version der HP vorgestellt, in welcher der
Tensor vierter Stufe A explizit definiert ist. Das resultierende Stoffmodell für Sand kann
somit erstmals in der mathematischen Form der Gl. (4.5) geschrieben werden und wird
als modifizierte HP (MHP) bezeichnet. Ähnlich wie im vorangegangenen Abschnitt findet
eine Größe fA∗d Anwendung, weshalb die ASBS in der MHP tatsächlich nicht explizit
definiert ist. Alternativ könnte die Größe fAd zukünftig auch explizit definiert werden, auf
was jedoch aufgrund der vermeintlich geringen praktischen Relevanz verzichtet wurde.

Die vorgeschlagene Formulierung der MHP basiert auf einer modifizierten Kompressions-
beziehung, wodurch das ursprünglich für Tonmodelle vorgeschlagene Konzept der Herlei-
tung des Tensors vierter Stufe A [87, 88, 93] in abgewandelter Form erstmalig in dieser
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Arbeit auf ein Stoffmodell für Sand übertragen wird. Die HP basiert auf der Kompressi-
onsbeziehung nach Bauer [8]

e = e0 exp

[
−
(
3p

hs

)n]
, (4.42)

welche auch in Ratenform

ė = e0 exp

[
−
(
3p

hs

)n]
(−n)

(
3p

hs

)n−1
3

hs
ṗ (4.43)

bzw.

ė/e = −
(
3p

hs

)(n−1)
3n

hs
ṗ (4.44)

geschrieben werden kann. Es zeigt sich, dass diese Kompressionsbeziehung einer expliziten
Definition des Tensors A entgegensteht. Daher wird eine modifizierte Kompressionsbezie-
hung vorgeschlagen, welche in Ratenform

ė/(e+ 1) = −
(
3p

h∗s

)(n∗−1)
3n∗

h∗s
ṗ (4.45)

oder als Funktion

e = (e0 + 1) exp

[
−
(
3p

h∗s

)n∗]
− 1 (4.46)

formuliert werden kann. Die Materialparameter h∗s und n∗ für die vorgeschlagene Kom-
pressionsbeziehung stimmen nicht mit den Materialparametern hs und n der Kompres-
sionsbeziehung nach Bauer [8] überein und müssen entsprechend kalibriert werden. Eine
Kalibration von h∗s und n∗ kann, wie in [51, 53, 91] detailliert beschrieben, analog zu
der Kalibration von hs und n beispielsweise anhand eines Ödometerversuchs oder eines
isotropen Kompressionsversuchs einer initial locker gelagerten Probe erfolgen. Als erste
Abschätzung kann h∗s = 10hs und n

∗ = n angenommen werden.

Die vorgeschlagene neue Kompressionsbeziehung nach Gl. (4.46), die Kompressionsbezie-
hung nach Bauer [8] und die bekannte Kompressionsbeziehung nach Butterfield [17]

ln(1 + e) = N0 − λ ln

(
p

pref

)
(4.47)

bzw.

e = exp

[
N0 − λ ln

(
p

pref

)]
− 1 (4.48)

werden kurz diskutiert. Letztere benötigt einen Referenzwert N0, einen Referenzdruck
pref und den Materialparameter λ. Die Kompressionsbeziehung nach Butterfield [17] ist
in vielen konstitutiven Modellen (insbesondere in konstitutiven Formulierungen für Ton)
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Abbildung 4.9: Kompressionsbeziehungen a) im ep-Raum und b) im e ln p-Raum: nach Bauer

[8] für Parameter des ZS (ZS-Duque) aus Tabelle 3.2 (e0 = ei0 = 1, 027, hs = 111, 746 MPa

und n = 0, 346), der vorgeschlagenen Kompressionsbeziehung der MHP mit Parametern des ZS

aus Tabelle 4.1 (e0 = ei0 = 1, 027, h∗s = 10hs = 1117, 46 MPa und n∗ = n = 0, 346) und der

Kompressionsbeziehung nach Butterfield [17] (N0 = 0, 7, λ = 0, 02, pref = 1 kPa)

berücksichtigt [88, 89, 149]. Alle drei Kompressionsbeziehungen sind in Abbildung 4.9
im ep- bzw. e ln p-Diagramm für ZS dargestellt. Es zeigt sich, dass die vorgeschlage-
ne Kompressionsbeziehung im relevanten Druckbereich einen sehr ähnlichen Verlauf zur
Kompressionsbeziehung nach Bauer aufweist (mit angepassten Parametern), während die
Beziehung nach Butterfield sich davon sichtbar unterscheidet.

Für den theoretischen Grenzfall p→ 0 gilt

lim
p→0

e(p)Bauer = e0 , lim
p→0

e(p)Butterfield = ∞ und lim
p→0

e(p)neu = e0 . (4.49)

Dieser Grenzfall ist in der Beziehung von Bauer [8] und der vorgeschlagenen Kompressi-
onsbeziehung realistischer als für die Butterfield-Beziehung [17]. Für p→ ∞ gilt:

lim
p→∞

e(p)Bauer = 0 , lim
p→∞

e(p)Butterfield = −1 und lim
p→∞

e(p)neu = −1 . (4.50)

Dabei ist die Beziehung von Bauer [8] realistischer als die Kompressionsbeziehung von
Butterfield [17] und die vorgeschlagene Kompressionsbeziehung.

Unter Verwendung der vorgeschlagenen Kompressionsbeziehung nach Gl. (4.46) anstelle
der Kompressionsbeziehung nach Bauer [8] sowie aller sonstigem konstitutiven Beziehun-
gen der HP, siehe Abschnitt 2.4, kann der Ansatz nach Maš́ın und Herle [93] zur Herleitung
der MHP verfolgt werden. Es ist zu beachten, dass der Barotropiefaktor fMHP

s in der MHP,
wie in Gl. (4.72) gezeigt, von dem der HP leicht abweicht.

Die MHP inkludiert zwei Zustandsvariablen: die effektive Cauchy-Spannung σ und die
Porenzahl e. Die Herleitung der MHP folgt in Teilen der Extraktion der ASBS der HP
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in Abschnitt 4.4. Wiederholungen sind im Sinne der Nachvollziehbarkeit nicht ausge-
schlossen. Für asymptotische Zustände gilt σ̇A∥σA mit ḟAd = 0. Für ratenunabhängige
Stoffmodelle gilt

σ̇A = γσ⃗A (4.51)

und mit einem Multiplikator γ kann ein hypoplastisches Stoffmodell auf der ASBS mittels

γσ⃗A = fAs L : ⃗̇εA + fAs fAd N (4.52)

geschrieben werden. Unter Verwendung von

ėA = (1 + eA) tr
(
⃗̇εA
)

(4.53)

kann die vorgeschlagene Kompressionsbeziehung nach Gl. (4.45) umformuliert werden:

tr
(
⃗̇εA
)
= −

(
3pA

h∗s

)(n∗−1)
3n∗

h∗s
ṗA . (4.54)

Für Gl. (4.54) gilt mit Gl. (4.51)

tr
(
⃗̇εA
)
= −

(
− trσA

h∗s

)(n∗−1)
3n∗

h∗s
(− tr(γσ⃗A)/3) (4.55)

oder

tr
(
⃗̇εA
)
= −(− tr(σA))(n

∗−1) h∗s
(−n∗) n∗ (− tr(γσ⃗A)) (4.56)

oder

tr
(
⃗̇εA
)
= −(− tr(σA))n

∗
(− tr(γσ⃗A))

− tr(σA)
h∗s

(−n∗) n∗ . (4.57)

Durch Einführung der skalaren Größe

λ∗ = (− tr(σA))n
∗
hs

(−n∗) n∗ = n∗
(
3pA

hs

)n∗

(4.58)

kann

tr
(
⃗̇εA
)
= −(− trσA)n

∗
h∗s

(−n∗) n∗

∥σA∥
γ = − λ∗

∥σA∥
γ (4.59)

hergeleitet werden3. Die eingeführte skalare Größe λ∗ hängt vom mittleren effektiven
Druck pA = − tr(σA)/3 ab. Der wichtige Unterschied zu hypoplastischen Modellen mit

3Es gilt tr(⊔⃗)/ tr(⊔) = 1/∥ ⊔ ∥.
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explizit definierter ASBS für Ton [87, 88] wird deutlich: Für Ton ist λ∗ ein konstanter
Stoffmodellparameter (Kompressionsbeiwert) und hängt nicht von der aktuellen Spannung
ab [84, 85, 87, 88, 92].

Für den skalaren Multiplikator γ ergibt sich

γ = −∥σA∥
tr
(
⃗̇εA
)

λ∗
(4.60)

und die Kombination mit Gl. (4.52) führt zu

−σA

λ∗
tr
(
⃗̇εA
)
= fAs L : ⃗̇εA + fAs fAd N . (4.61)

Im nächsten Schritt kann der Tensor A vierter Stufe

A = fAs L+
1

λ∗
σA1 (4.62)

definiert werden, so dass

A : ⃗̇εA = fAs L : ⃗̇εA +
σA

λ∗
tr
(
⃗̇εA
)

(4.63)

gilt. Gl. (4.61) kann zu

A : ⃗̇εA + fAs fAd N = 0 (4.64)

umgeschrieben werden. Mit ∥⃗̇εA∥ = 1 ergibt sich

fAd =
∥∥A−1 : (fAs N )

∥∥−1
=

∥∥∥∥∥
(
L+

1

fAs λ∗
σA1

)−1

: N

∥∥∥∥∥
−1

(4.65)

und

d = ⃗̇εA = − A−1 : N

∥A−1 : N∥
. (4.66)

Alternativ lässt sich der asymptotische Pyknotropiefaktor fAd auch gemäß Gl. (4.37) aus
Abschnitt 4.4 herleiten:

fAd =

√√√√[∥B∥2 +
(
∥C∥ trB

G− trC

)2

+
2 (B : C) trB

G− trC

]−1

(4.67)

mit
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B = L−1 : N , (4.68)

C = 1/fAs (L−1 : σ⃗A) , (4.69)

G =
n∗

h∗s
tr
(
σ⃗A
)(3pA

h∗s

)(n∗−1)

= − λ∗

∥σA∥
. (4.70)

Gl. (4.65) und Gl. (4.67) sind äquivalent.

Der Barotropiefaktor fs wird im Allgemeinen aufgrund der erforderlichen Konsistenz der
Rate des mittleren effektiven Drucks ṗA und der entsprechenden Änderung der Porenzahl
ėA infolge einer monotonen isotropen Kompression (also auf der ASBS) zwischen der
gewählten Kompressionsbeziehung und dem Stoffmodell selbst hergeleitet [8, 47, 85]. Da
in der MHP die Kompressionsbeziehung modifiziert wurde, muss entsprechend auch der
Barotropiefaktor fMHP

s im Vergleich zur HP angepasst werden. Aus der Kombination der
isotropen Kompression der HP [85, 122]

ṗ =
−fbfe
3(1 + e)

[
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]
ė (4.71)

mit Gl. (4.45) für e = ei ergibt sich der Pyknotropiefaktor der MHP zu

fMHP
s = fMHP

b fe =
h∗s
n∗

(ei
e

)β (− trσ

h∗s

)1−n∗ [
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]−1

. (4.72)

Die asymptotische Größe fA,MHP
s ergibt sich aus Gl. (4.72) mit eA und σA. Die Einhaltung

der Konsistenzbedingung der isotropen Kompression in der MHP und der HP wird später
mittels der Abbildung 4.13 gezeigt.

Der asymptotische Pyknotropiefaktor fAd der MHP nach Gl. (4.65) oder Gl. (4.67) weist
eine Abhängigkeit von der Porenzahl selbst auf, welche sich im Barotropiefaktor fMHP

s ver-
birgt. Die ASBS der MHP kann daher, wie auch bei der HP, nur iterativ ermittelt werden.
Hierzu werden alle Zustände mit einer Zustandsmobilisierung S = fd/f

A
d = 1 gesucht. Die

resultierende ASBS wurde für Zbraslav Sand (ZS) mit den Parametern aus Tabelle 4.1
iterativ ermittelt und ist in Abbildung 4.10a im 3D-epq-Raum und Abbildung 4.10b im
normierten 3D-req/pp-Raum visualisiert.

Die MHP benötigt acht Materialparameter, wobei sich aufgrund der modifizierten Kom-
pressionsbeziehung lediglich h∗s und n

∗ von der HP unterscheiden. Die MHP-Parameter für
ZS aus Tabelle 4.1 wurden vereinfacht aus den HP-Parametern (ZS-Duque) aus Tabelle
3.2 mit h∗s = 10hs und n

∗ = n ermittelt. Für diese Parameterwahl liefert die vorgeschlage-
ne Kompressionsbeziehung der MHP und die Kompressionsbeziehung nach Bauer [8], wie
bereits in Abbildung 4.9 gezeigt, im relevanten Spannungsbereich sehr ähnliche Kurven.
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Bez. φc ei0 ec0 ed0 h∗s n∗ α β

[-] [-] [-] [-] [MPa] [-] [-] [-]

ZS 34 1,027 0,893 0,520 1117,46 0,346 0,15 2,2

Tabelle 4.1: Parametersatz für die MHP für Zbraslav Sand (ZS)

p [kPa]

q [kPa]

e [-]

MHP - ASBS(S = 1)

a)

re [-]

p [kPa]

q/p [-]
open ASBSoffene ASBS

b)

Abbildung 4.10: ASBS der MHP für Zbraslav Sand (ZS) unter axialsymmetrischen Bedingungen

im a) 3D-epq-Raum und im b) normierten 3D-req/pp-Raum, welche der ASBS der HP, siehe

Abbildung 4.5, sehr ähnlich ist und ebenfalls nur iterativ ermittelt werden kann

Wie aufgrund der sehr ähnlichen Kompressionsbeziehungen der HP und der MHP zu
erwarten ist, zeigt bereits der augenscheinliche Vergleich von Abbildung 4.5 und Abbil-
dung 4.10, dass die Form und Größe der ASBS für den physikalisch gleichen Sand in der
MHP und der HP sehr ähnlich sind.

Unter der Annahme, dass sich ein gegebener aktueller Zustand auf der ASBS befindet,
lassen sich die Richtung der Dehnungsrate ⃗̇εA = d, die zum asymptotischen Pykno-
tropiefaktor fAd ähnliche Größe fA∗d (für den Unterschied zwischen fAd und fA∗d sei auf
Abschnitt 4.4.2 verwiesen) und der Tensor vierter Stufe A durch Einsetzen von σA = σ
und eA = e in Gl. (4.66), Gl. (4.65) und Gl. (4.62) bestimmen. Mit diesen Größen kann
die im Rahmen der vorliegenden Arbeit entwickelte MHP schließlich als Stoffmodell für
Sand erstmalig gemäß Gl. (4.5) formuliert werden:

σ̇ = fsL : ε̇− fd
fA∗d︸︷︷︸
=S

A : d ∥ε̇∥ . (4.73)

Die Zustandsmobilisierung S = fd/f
A∗
d der MHP wurde für einen axialsymmetrischen

Spannungszustand (p, q) bei konstanter Porenzahl e = 0, 7 und e = 0, 8 berechnet. Die
Funktion S(p, q) ist in Abbildung 4.11 dargestellt. Die Isolinie mit S = 1 stellt dabei einen



4.5. Modifizierte Hypoplastizität (MHP) mit explizit definiertem Tensor A 81

a) b)

Abbildung 4.11: Zustandsmobilisierung S = fd/f
A∗
d der MHP für ZS und eine konstante Poren-

zahl von a) e = 0, 7 und b) e = 0, 8 in Abhängigkeit vom axialsymmetrischen Spannungszustand

sowie die entsprechende ASBS der MHP und der HP im pq-Diagramm
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Abbildung 4.12: Mit der MHP simulierte monotone Ödometerversuche für ZS mit einer initialen

Porenzahl von e0 = ec0 und einem isotropen Anfangsspannungszustand p0 = 1 kPa für verschie-

dene Parameterkombinationen h∗s und n∗

Schnitt bei konstanter Porenzahl durch die ASBS der MHP dar. Um einen Vergleich mit
den Ergebnissen der HP zu ermöglichen, wurde in Abbildung 4.11 zusätzlich die Isolinie
S = 1 der Zustandsmobilisierung der HP aus Abbildung 4.7, welche denselben Schnitt
durch die ASBS der HP zeigt, eingezeichnet. Grundsätzlich gelten für die Zustandsmobili-
sierung der MHP die gleichen Zusammenhänge wie bereits für die Zustandsmobilisierung
der HP diskutiert, wenngleich beide Funktionen aufgrund der geänderten Kompressions-
beziehungen nicht identisch sind. Die Werte der beiden Funktionen S(p, q) sind jedoch
vergleichbar und somit sind auch die ASBS der MHP und der HP sind sehr ähnlich.
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Abbildung 4.13: Vergleich der MHP mit der HP und den jeweils zugrundelegten Kompressions-

beziehungen ei(p) anhand der monotonen isotropen Kompression einer initial lockeren Probe

(e0 = 1 und p0 = 1 kPa) an ZS: Porenzahl in Abhängigkeit vom mittleren effektiven Druck

Der Einfluss der Materialparameter der MHP h∗s und n
∗ auf eine ödometrische Kompressi-

onskurve, die asymptotisch der ödometrischen NCL entspricht, wird durch Elementsimu-
lationen untersucht. Dazu wird eine anfängliche Porenzahl von e0 = ec0 sowie ein isotroper
Anfangsspannungszustand mit p0 = 1kPa initialisiert. Die resultierenden ödometrischen
Kompressionskurven für verschiedene Werte von h∗s und n

∗ für die Parameter des Zbras-
lav Sands sind in Abbildung 4.12 dargestellt. Es gelten die gleichen qualitativen Zusam-
menhänge wie bei der HP: Eine Erhöhung von h∗s führt zu einer höheren Steifigkeit,
während eine Erhöhung von n∗ eine stärkere Krümmung der Kompressionskurve bewirkt.

4.6 Vergleich von MHP und HP sowie Diskussion

In den vorherigen Abschnitten wurde mit der Zustandsmobilisierung S eine skalare Größe
eingeführt, welche bei der Kopplung eines Stoffmodells mit dem Konzept der generali-
sierten Dehnung (GIS) in Kapitel 6 viele Vorteile mit sich bringen wird. Für die HP
lässt sich die neu eingeführte Zustandsmobilisierung S herleiten, wodurch die HP ma-
thematisch äquivalent mittels der ebenfalls neu eingeführten erweiterten generalisierten
Hypoplastizität reformuliert werden kann. Eine Schreibweise mittels des Tensors A ist in
der HP jedoch nicht möglich. Um diese Schreibweise für ein Stoffmodell für Sand erstma-
lig zu ermöglichen, wurde mit der MHP im letzten Abschnitt ein neues hypoplastisches
Stoffmodell mit explizit definiertem Tensor A vorgestellt.

Die MHP basiert auf der HP und wurde nur an wenigen Stellen (Kompressionsbeziehung
und Barotropiefaktor) angepasst. Die Unterschiede zwischen der MHP und der HP sind
theoretisch motiviert. Es ist also zu erwarten, dass beide Modelle bei einer entsprechenden
Parameterwahl sehr ähnliche Simulationsergebnisse liefern. Dies wird im Folgenden durch
vergleichende Elementsimulationen belegt, für welche die MHP in einer Abaqus/Standard
umat.for Subroutine implementiert wurde, siehe Anhang B.
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Abbildung 4.14: Vergleich der MHP mit der HP anhand eines monotonen Ödometerversuchs

einer initial lockeren Probe (e0 = 0, 85) an ZS: Porenzahl in Abhängigkeit von der axialen

Spannung

Für die HP wird der Parametersatz ZS-Duque gemäß Tabelle 3.2 und für die MHP der
Parametersatz ZS gemäß Tabelle 4.1 verwendet. Zunächst zeigt Abbildung 4.13 eine mo-
notone isotrope Kompression, ausgehend von einem isotropen Anfangsspannungszustand
von p0 = 1kPa und einer initialen Porenzahl von e0 = 1. Zusätzlich zu den Simulationen
wurden die jeweils zugrunde gelegten Kompressionsbeziehungen der lockersten Lagerung
ei(p) dargestellt. Der Anfangszustand wurde so gewählt, dass er bereits sehr nahe an ei(p)
liegt. Es zeigt sich, dass die Simulationen der Stoffmodelle jeweils zu ei(p) konvergieren
und dann exakt den entsprechenden Kompressionsbeziehungen, welche sehr ähnliche Kur-
ven liefern, folgen. Diese Konsistenz der isotropen Kompression ist auf die Herleitung des
Barotropiefaktors fMHP

s , siehe Abschnitt 4.5, zurückzuführen [122] und unterstreicht die
Wichtigkeit des Unterschieds von fMHP

s der MHP und fs der HP.

Abbildung 4.14 betrachtet die ödometrische Kompression einer initial lockeren Probe
(e0 = 0, 85) mit einem initialen isotropen Anfangsspannungszustand von p0 = 1 kPa.
Die Kompressionskurven der HP und der MHP sind, wie zu erwarten, sehr ähnlich. Eine
Anpassung des Materialparameters α von ursprünglich α = 0, 15 auf α = 0, 18 erhöht
die Übereinstimmung der MHP mit der HP in dichten Böden, wenngleich dies bei dem in
Abbildung 4.14 gezeigten Ödometerversuch an einer lockere Probe nicht ersichtlich wird.

Abbildung 4.15 zeigt monotone drainierte Triaxialversuche mit einer isotropen Anfangs-
spannung von p0 = 100 kPa und einer Anfangsporenzahl von e0 = 0, 85 (locker) bzw.
e0 = 0, 55 (dicht). Die MHP erzielt dabei vergleichbare Ergebnisse wie die HP, wenn-
gleich die Peak-Festigkeit und die Dilatanz im dichten Boden in der MHP im Vergleich
zur HP leicht unterschätzt wird. Durch die Parameteranpassung von α kann dieser Un-
terschied deutlich reduziert werden. Monotone undrainierte Triaxialversuche der gleichen
Anfangszustände werden in Abbildung 4.16 gezeigt. Erneut zeigen sich nahezu identische
Simulationsergebnisse.
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Abbildung 4.16: Vergleich der MHP mit der HP anhand monotoner undrainierter Triaxialver-

suche unterschiedlicher Anfangsporenzahlen (locker und dicht) an ZS: a) qεa-Diagramm und b)

effektiver Spannungspfad im pq-Diagramm

Aufgrund der Ähnlichkeit der MHP und der HP ist zudem erwähnenswert, dass die in
Kapitel 3 diskutierten Nachteile der HP grundsätzlich auch für die MHP gelten. Der einzig
gegenwärtig ersichtliche (theoretische) Vorteil der MHP gegenüber der HP ist die explizite
Definition des Tensors A. Die MHP wird zwar in Abschnitt 6.6 noch mit dem Konzept
der generalisierten Intergranularen Dehnung (GIS) zur Berücksichtigung zyklischer Ver-
formungen zur MHP+GIS gekoppelt, aufgrund der tatsächlich vernachlässigbaren Vorteile
der MHP gegenüber der HP liegt der Fokus der dieser Arbeit jedoch weiter auf der HP
bzw. ab Kapitel 7 auf der Neohypoplastizität (NHP).



Kapitel 5

Anisotrope Mikrostruktur (Fabric)

in hypoplastischen Stoffmodellen

Im vorherigen Kapitel wurde mit der Extraktion der ASBS und der mathematisch äquiva-
lenten Umformulierung der HP in die Form der erweiterten generalisierten Hypoplasti-
zität ein entscheidender Fortschritt erzielt. Die HP vernachlässigt jedoch, wie bereits im
Abschnitt 3.5 diskutiert, den Einfluss der anisotropen Mikrostruktur (Fabric) auf das me-
chanische Verhalten von Boden. Diesem Defizit wird im vorliegenden Kapitel anhand der
Kopplung der HP mit der sog. Theorie des anisotropen kritischen Zustands (engl. anisotro-
pic critical state theory (ACST)) von Li und Dafalias [78] begegnet, indem unter anderem
ein Fabric-Tensor F zweiter Stufe als zusätzliche Zustandsvariable eingeführt wird. Die
im Folgenden dargestellten Betrachtungen wurden in Teilen in [107] veröffentlicht.

5.1 Theorie des anisotropen kritischen Zustands

(ACST)

Die Mikrostruktur eines Bodens kann anhand der statistischen räumlichen Verteilung
einzelner Bodenpartikel bzw. der Hohlräume zwischen letzteren beschrieben werden [76,
195]. Die skalare Größe der Porenzahl e, die eine weithin akzeptierte Zustandsvariable in
fortgeschrittenen konstitutiven Modellen für Böden ist, entspricht dem isotropen Teil der
Mikrostruktur. Sie gibt lediglich das Verhältnis des Porenvolumens zum Feststoffvolumen
an (e = Vp/Vs) und berücksichtigt dabei die Form der Poren bzw. die Ausrichtung der
Körner nicht. So kann dieselbe Porenzahl sowohl durch nahezu runde als auch durch sehr
längliche Poren erreicht werden.

Zur Charakterisierung des anisotropen Teils der Mikrostruktur kann ein deviatorischer
Tensor zweiter Stufe F definiert1 werden [76, 152, 195, 210]. Auf der Grundlage eines

1Beispielsweise basierend auf den Kontaktnormalen oder den Porenformen.

85
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solchen Fabric-Tensors F formulierten Li und Dafalias [78] die Theorie des anisotropen
kritischen Zustands (ACST). Diese Theorie erweitert die bekannte Theorie des kritischen
Zustands (CS) [150, 153], welche durch die Porenzahl lediglich den isotropen Teil der
Mikrostruktur berücksichtigt. Für den Fabric-Tensor F gilt:

F = FnF , mit F =
√
F : F = ∥F ∥ (5.1)

und
nF : nF = 1, tr(F ) = 0, tr(nF ) = 0 , (5.2)

wobei F = ∥F ∥ die Norm und nF = F⃗ die Richtung des Fabric-Tensors F ist. Infol-
ge einer proportionalen monotonen Verformung mit ε̇ ̸= 0 tendiert die Fabric zu einem
asymptotischen Wert F asy. Diese asymptotische Fabric hängt vom aufgebrachten pro-
portionalen Dehnungspfad ab [211]. Im kritischen Zustand, welcher infolge eines volu-
menkonstanten proportionalen Dehnungspfads erreicht wird, tendiert der Fabric-Tensor
zu seinem kritischen Wert F asy,crit. Es ist sinnvoll, den Fabric-Tensor mit diesem kriti-
schen Wert zu normalisieren, sodass im kritischen Zustand unabhängig vom Lode-Winkel
∥F asy,crit∥ = F asy,crit = 1 gilt [209]. Die Richtung des Fabric-Tensors stimmt in jedem
asymptotischen Zustand für ε̇ ̸= 0 mit der Belastungsrichtung n, einem deviatorischen
Tensor zweiter Stufe mit ∥n∥ = 1, überein.

Li und Dafalias [78] führten zudem eine Anisotropievariable (engl. fabric anisotropy va-
riable (FAV)) A ein, um die Beziehung zwischen der aktuellen Fabric F und der Belas-
tungsrichtung n zu beschreiben:

A = F : n = F nF : n︸ ︷︷ ︸
N

= FN . (5.3)

Wobei N = nF : n die relative Orientierung zwischen F und n quantifiziert. Im kritischen
Zustand gilt Aasy,crit = 1 und Nasy,crit = 1.

Der von Been und Jefferies [11] vorgeschlagene Parameter

ψ = e− ec(p) (5.4)

quantifiziert den Abstand zwischen der aktuellen Porenzahl e und der vom Druck abhän-
gigen kritischen Porenzahl ec(p) bei gleichem effektiven Druck p. Der Zustandsparameter ψ
kann zur Beschreibung des aktuellen Bodenzustands verwendet werden. Für Zustände
unterhalb der CSL ec(p) in der ep-Ebene (dichte Probe) ist der Zustandsparameter ne-
gativ (ψ < 0). Lockere Böden sind durch einen positiven Zustandsparameter (ψ > 0)
gekennzeichnet und im kritischen Zustand gilt ψ = 0. Um den Effekt der anisotropen
Mikrostruktur zu berücksichtigen, wird im Rahmen der ACST eine Dilatanzzustandslinie
(engl. dilatancy state line (DSL)) edil(p,A) in der ep-Ebene mit

edil(p,A) = ec(p) + eA(A− 1)︸ ︷︷ ︸
ψA

(5.5)
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Abbildung 5.1: Darstellung des Konzepts der ACST: a) CSL und DSL für einen Zustand A < 1

und b) Auswirkungen einer 180-Grad Umkehr der Belastungsrichtung von n nach −n auf die

DSL (modifiziert aus [78])

eingeführt, wobei ψA = eA(A − 1) den Abstand zwischen der fixierten CSL und der va-
riablen, von der von A abhängigen, DSL bei gleichem mittleren effektiven Druck p misst.
Eine grafische Interpretation des Konzepts der ACST ist Abbildung 5.1a zu entnehmen.
Zusätzlich zum bzw. anstelle des Zustandsparameters ψ wird ein Dilatanzzustandspara-
meter (engl. dilatancy state parameter (DSP)) ζ vorgeschlagen:

ζ = e− edil(p,A) = ψ − ψA . (5.6)

Im Gegensatz zu ψ berücksichtigt ζ den kombinierten Einfluss der isotropen Mikrostruktur
(Dichte) und der anisotropen Mikrostruktur (Fabric). Der Boden tendiert infolge einer
monotonen Verformung zur DSL, welche im kritischen Zustand (A = 1) der CSL (ζ = ψ)
entspricht. Die Eindeutigkeit der CSL bleibt dabei erhalten [78].

Die ACST berücksichtigt implizit die Auswirkungen von Lastrichtungsumkehrungen auf
die Dilatanz, wie in Abbildung 5.1b dargestellt. Für einen gegebenen Zustand (e, p, F )
mit einer Belastungsrichtung n und einer Fabric F gilt: A1 = F : n. Wenn sich die
Belastungsrichtung aufgrund einer 180-Grad-Umkehr von n mit A1 > 0 zu −n ändert,
wird die Anisotropievariable zu A2 = −F : n = −A1. Die neue DSL2 verschiebt sich unter
die alte DSL1, was eine reduzierte Porenzahl edil bewirkt. Dadurch wird das kontraktante
Bodenverhalten verstärkt [78].

Die ACST stellt eine eigenständige Theorie und kein Stoffmodell dar, wurde jedoch bereits
in einigen fortgeschrittenen Stoffmodellen verwendet [41, 80, 141, 142, 209, 211].

5.2 ACST kombiniert mit der HP (HP+ACST)

Boden weist bezüglich der Sedimentationsachse oft eine transversale Isotropie (also eine
Anisotropie) auf. Um diese Anisotropie in der HP zu berücksichtigen, wird letztere im
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Folgenden mit der zuvor beschriebenen ACST gekoppelt. Diese Kopplung ist durch das
Modell von Liao et al. [80] bzw. der Arbeit von Yang et al. [209] motiviert, enthält jedoch
einige Spezifikationen. Das neue Modell der HP+ACST, welches sich aus den Gleichungen
aus Abschnitt 2.4 und Abschnitt 4.4 in Kombination mit den Gleichungen dieses Kapitels
ergibt, wird in Kapitel 6 weiter mit dem Konzept der generalisierten intergranularen
Dehnung (GIS) zur HP+GIS+ACST gekoppelt.

Für einen transversal-isotropen Boden mit der Sedimentationsrichtung entlang der x1-
Achse kann infolge der Sedimentation für den initialen anisotropen Fabric-Tensor

F0 = F0nF = F0

 −2/
√
6 0 0

0 1/
√
6 0

0 0 1/
√
6


︸ ︷︷ ︸

nF

(5.7)

geschrieben werden, wobei ∥F0∥ = F0 die initiale Norm des Fabric-Tensors darstellt [209].
Es ist zu beachten, dass im Rahmen der vorliegenden Arbeit die mechanische Vorzeichen-
konvention (Kompression negativ) gilt und daher das Vorzeichen in Gl. (5.7) teils nicht
dem Vorzeichen der initialen Fabric aus der Literatur entspricht [42, 142, 209]. In hypo-
plastischen Modellen kann in Übereinstimmung mit [80] die Belastungsrichtung n als die
Richtung der deviatorischen Dehnungsrate definiert werden:

n =
ε̇∗

∥ε̇∗∥
. (5.8)

Es ist zweckmäßig, für eine isotrope Kompression oder Extension (ε̇∗ = 0) n = 0 zu defi-
nieren. Mit dieser zusätzlichen Definition ist sichergestellt, dass die Anisotropievariable A
nach Gl. (5.3) auch für ε̇∗ = 0 definiert ist und infolge einer isotropen Kompression immer
Aiso = Aasy,iso = 0 gilt.

Unter der Annahme, dass sich die anisotrope Mikrostruktur nur aufgrund einer devia-
torischen Dehnungsrate entwickelt und basierend auf in der Literatur veröffentlichten
Entwicklungsgleichungen [80, 142, 209, 211] wird eine leicht verbesserte Entwicklungsglei-
chung für den Fabric-Tensor vorgeschlagen:

Ḟ = [n− (1 +D)αDF ] m ∥ε̇∗∥ . (5.9)

Eine Entwicklung von F findet nur für Dehnungsraten mit einem deviatorischen Anteil
ε̇∗ ̸= 0 statt. Für diesen Fall berücksichtigt Gl. (5.9) die Dilatanz

D =


−tr (ε̇)

∥ε̇∗∥
falls tr (ε̇) < ∥ε̇∗∥

−1 sonst

nicht benötigt falls ∥ε̇∗∥ = 0

. (5.10)
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Nimmt das Volumen infolge einer Scherung ab, ist D positiv. Wenn das Volumen des
Bodens infolge einer Scherung zunimmt, ist D negativ. Die Beschränkung der Dilatanz
auf einen geringsten Wert von D = −1, siehe Gl. (5.10), stellt sicher, dass Gl. (5.9) eine
reelle Lösung hat.

Der Materialparameter m regelt die allgemeine Geschwindigkeit und der Exponent αD
bestimmt den Einfluss von D auf die Entwicklung von F . Gl. (5.9) erfasst qualitativ zwei
Hauptcharakteristiken der Fabric-Entwicklung:

• Die Fabric tendiert unter einer monotonen proportionalen Verformung zu einem
asymptotischen Wert [211]. Der asymptotische Wert der Fabric ∥F asy∥ lässt sich
direkt aus Gl. (5.9) herleiten. In einem asymptotischen Zustand soll

Ḟ asy = 0 = [n− (1 +D)αDF asy] (5.11)

gelten. Mit ∥n∥ = 1 folgt daraus direkt

∥F asy∥ =
1

(1 +D)αD
. (5.12)

Bei einer kompressiven proportionalen Verformung (wie z. B. einer ödometrischen
oder isotropen Kompression) mit D > 0 tendiert die Fabric zu asymptotischen
Werten von ∥F asy∥ < 1, während sie bei extensiven proportionalen Verformungen
mit D < 0 zu ∥F asy∥ > 1 tendiert. Lediglich im Grenzfall D = −1 existiert kein
asymptotischer Wert der Fabric und Gl. (5.10) liefert einen kontinuierlichen Aufbau
von F . Da es sich in diesem Fall um extensive Dehnungspfade handelt, infolge deren
der Boden zu einem spannungsfreien Zustand tendiert, kann davon ausgegangen
werden, dass der fehlende asymptotische Wert der Fabric in bodenmechanischen
Problemen kein Nachteil darstellt.

Im Fall einer volumenkonstanten proportionalen Verformung mit tr(ε̇) = 0 für ε̇ ̸= 0
verschwindet die Dilatanz (D = 0). Im kritischen Zustand folgt daraus ∥F asy∥ = 1,
was durch zahlreiche DEM Simulationen bestätigt wird [1, 207, 210]. Darüber hinaus
wird im kritischen Zustand Aasy,crit = 1 erreicht, wodurch die Eindeutigkeit des
kritischen Zustands gemäß Gl. (5.15) sichergestellt wird.

• Bei dichten und monoton gescherten Proben ohne konstanten Wert von D weist die
Fabric zunächst einen Peak mit ∥F ∥ > 1 auf, bevor asymptotisch ∥F asy,crit∥ = 1
angestrebt wird. Im Gegensatz dazu zeigen lockere Proben keinen Peakwert der
Fabric [1, 61, 207, 210].

Die Merkmale der vorgeschlagenen Gl. (5.9) werden in Abbildung 5.2 veranschaulicht,
welche die Entwicklung von ∥F ∥ = F unter ausgewählten proportionalen Dehnungspfaden
für verschiedene Parameter m = 15 bzw. m = 20 und αD = 0, 3 bzw. αD = 0, 5 unter
axialsymmetrischen Bedingungen zeigt. Es wird F0 = 0, 5 und eine transversale Isotropie
bezüglich einer Sedimentation in axialer Richtung angenommen. Für trocken eingerieselte
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Abbildung 5.2: Entwicklung der Norm der Fabric ∥F ∥ = F infolge ausgewählter proportiona-

ler Dehnungspfade für verschiedene Parameter der Fabric-Entwicklungsgleichung (Gl. 5.9): a)

m = 15 und αD = 0, 3 und b) m = 20 und αD = 0, 5

Proben (AP) wird in der Literatur häufig eine Initialisierung von 0, 4 < F0 < 0, 5 gewählt
[41, 42, 80, 209, 211].

Die verschiedenen asymptotischen Werte sowie deren Abhängigkeit von den Parametern
sind deutlich zu erkennen. Für volumenreduzierende Dehnungspfade (D > 1) führt ein
größerer Wert von αD zu geringeren asymptotischen Werten F asy < 1, während für volu-
menvergrößernde Dehnungspfade (D < 1) ein größerer Wert von αD zu größeren asym-
ptotischen Werten F asy > 1 führt. Der Nulldurchgang von ∥F ∥ bei den extensiven Pfaden
liegt in der Initialisierung begründet. Für volumenvergrößernde Pfade mit D = −1 zeigt
sich die oben diskutierte unbegrenzte Entwicklung der Fabric. Bei volumenkonstanten
Pfaden gilt D = 0, sodass der Parameter αD keinen Einfluss auf die Entwicklung von F
hat. Je größer der Parameter m, desto schneller wird der asymptotische Wert erreicht.
Zudem ist ersichtlich, dass sich bei einer rein isotropen Kompression aufgrund von ε̇∗ = 0
keine Änderung der Fabric (Ḟ = 0) einstellt. Für eine quasi-isotrope Kompression (qiso),
bei welcher der volumetrische Teil der Dehnungsrate deutlich größer als der deviatorische
Teil ist, wird in Abhängigkeit des Parameters αD ein sehr kleiner asymptotischer Wert
von ∥F ∥ angestrebt.

Abbildung 5.3 zeigt die Entwicklung der Fabric während monotoner drainierter Triaxial-
versuche mit unterschiedlichen Anfangsdichten unter der Variation der Parameter m und
αD. Während für einen dichten Boden in der dilatanten Phase D < 0 gilt, was zu einem
Peakwert von ∥F ∥ führt, gilt für einen lockeren Boden während der gesamten Simulation
D > 0 und die Fabric erreicht keinen Peakwert. Der Peakwert ist umso stärker ausge-
prägt, je größer der Parameter αD ist. Eine allgemein schnellere Entwicklung der Fabric
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Abbildung 5.3: Entwicklung der Norm der Fabric ∥F ∥ = F für verschiedene Parameter m

und αD in Simulationen mit der HP+GIS+ACST von drainierten Triaxialversuchen variabler

initialer Dichten für KFS (p0 = 200 kPa, h0 = −0, 77 R/
√
3δ, Ω0 = 0, F0 = 0, 5, H0 = 0): a)

m = 15 und αD = 0, 3 und b) m = 20 und αD = 0, 5

kann mittels eines größeren Werts des Parameters m erreicht werden. Asymptotisch ten-
diert der Boden bei diesen Simulationen zum kritischen Zustand, wodurch ∥F asy,crit∥ = 1
angestrebt wird. Die simulierte Entwicklung der Fabric entspricht dabei den Ergebnis-
sen von DEM Simulationen aus der Literatur [1, 61, 207, 210]. Es ist zu beachten, dass
die Dilatanz D in den Simulationen der drainierten Triaxialversuche in Abbildung 5.3
aus dem gesamten Stoffmodell abgeleitet wird und Gl. (5.9) daher nicht direkt integriert
werden kann. Die vorgestellten Simulationen basieren auf den Parametern des Karlsruher
Feinsands (KFS) aus Tabelle 6.2 und dem Stoffmodell der HP+GIS+ACST, welches in
Abschnitt 6.5 im Zuge der Kopplung der HP+ACST mit dem Konzept der generalisierten
intergranularen Dehnung (GIS) detailliert diskutiert wird.

Nach dem Ansatz von [78, 80, 209] kann der Einfluss der anisotropen Bodenstruktur
mittels der Anisotropievariablen A in der HP berücksichtigt werden, indem die Grenzpo-
renzahlen ei(p) und ed(p) sowie die CSL ec(p) in der ep-Ebene verschoben werden:

ei = ei0 exp

[
−
(
3p

hs

)n]
+ eA(A− 1) , (5.13)

ed = ed0 exp

[
−
(
3p

hs

)n]
+ eA(A− 1) , (5.14)

ec = ec0 exp

[
−
(
3p

hs

)n]
+ eA(A− 1) (5.15)

mit

eA = eA0 exp

[
−
(
3p

hs

)n]
. (5.16)

Gl. (5.15) entspricht der DSL in der ACST. Die Größe der Verschiebung der DSL zur
ursprünglichen CSL wird durch den Wert eA gemäß Gl. (5.16) gesteuert. Gl. (5.16) stellt
sicher, dass die Verschiebung der Grenzporenzahlen infolge der Fabric bei großen mittleren
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effektiven Drücken, ähnlich wie die Grenzporenzahlen selbst, gegen Null geht. Für die
Grenzporenzahlen gilt zusammenfassend

e(p) = [e0 + eA0(A− 1)] exp

[
−
(
3p

hs

)n]
(5.17)

und Gl. (5.17) kann in Ratenform mittels

ė =[e0 + eA0(A− 1)] exp

[
−
(
3p

hs

)n](
3p

hs

)n−1
3(−n)
hs

ṗ

+ [ėA0(A− 1) + eA0Ȧ] exp

[
−
(
3p

hs

)n]
(5.18)

bzw.

ė = −e
(
3p

hs

)n−1
3n

hs
ṗ+ [ėA0(A− 1) + eA0Ȧ] exp

[
−
(
3p

hs

)n]
. (5.19)

geschrieben werden.

Der Wert von eA0 könnte als Konstante (Stoffmodellparameter) festgelegt werden [209].
Liao et al. [80] zeigten jedoch, dass eine Entwicklung von eA0 für die Simulation zyklischer
Verformungen vorteilhaft ist. Wie in Abbildung 5.4b anhand der Simulation eines zykli-
schen undrainierten Triaxialversuchs mit vorgegebener Dehnungsamplitude an dichtem
KFS (TCUE17 aus [194]) mit der HP+GIS+ACST ersichtlich ist, kann die resultierende
Bodenverflüssigung mit einem konstanten Wert von eA0 nicht reproduziert werden.

Durch einen nicht konstanten Wert von eA0 kann die Bodenverflüssigung hingegen rea-
listisch modelliert werden, sofern dilatante Verformungen, also Verformungen mit Span-
nungszuständen außerhalb der Phasentransformationslinie (engl. phase transformation
line (PTL)], zu einer Zunahme von eA0 führen. Dies bewirkt, dass das Bodenverhalten
einer dichten Probe nach jeder Belastungsrichtungsumkehr kontraktanter ist als bei der
vorherigen Umkehr. Durch diesen Effekt kann, wie in Abbildung 5.4c dargestellt, auch in
dichtem Sand eine Bodenverflüssigung simuliert werden.

Ob ein Spannungszustand innerhalb oder außerhalb der PTL, welche im 3D Hauptspan-
nungsraum eine Fläche darstellt, liegt, kann nach Fuentes et al. [40] mit Hilfe von

Fd =
q/p

McF hypfd
− 1 (5.20)

abgeschätzt werden. Sofern Fd > 0 gilt, liegt der betrachtete Zustand außerhalb der PTL
und der Boden verhält sich dilatant. Innerhalb der PTL gilt hingegen Fd ≤ 0 und das
Bodenverhalten ist kontraktant. F hyp berücksichtigt die Form des Versagenskriteriums
nach Matsuoka-Nakai [83] einschließlich des Effekts der anisotropen Mikrostruktur gemäß
Gl. (5.23). Mc = (6 sinφc)/(3− sinφc) bezeichnet das Spannungsverhältnis im kritischen
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Abbildung 5.4: Effektiver Spannungspfad eines zyklischen undrainierten Triaxialversuchs mit

vorgegebener Dehnungsamplitude von εampl
a = 10−2 in dichtem Sand im pq-Diagramm a) im

Versuch TCUE17 aus [194] und in Simulationen mit der HP+GIS+ACST mit einem b) konstan-

ten Wert von eA und c) nicht konstanten Wert von eA (p0 = 200 kPa, e0 = 0, 698 (ID0 = 0, 94),

h0 = −0, 77 R/
√
3δ, Ω0 = 0, F0 = 0, 5, H0 = 0)

Zustand für eine triaxiale Kompression. Es ist zu beachten, dass der Pyknotropiefak-
tor fd in Gl. (5.20) ebenfalls unter Berücksichtigung der um die Anisotropievariable A
modifizierten Grenzporenzahlen ermittelt wird. Für eA0 schlägt Liao et al. [80]

eA0 = k1 + k2
H

1 +H
(5.21)

unter Verwendung einer zusätzlichen skalaren Zustandsvariable H vor. Sie wird im Fol-
genden als Dilatanzgeschichte bezeichnet.

Die Dilatanzgeschichte H ist eine empirische Größe, die die Intensität vorhergehender di-
latanter Verformungen speichert. Ein größerer Wert von H führt zu einem größeren Wert
von eA0. Die Parameter k1 und k2 legen die maximalen und minimalen Werte von eA0 fest.
Ein größerer Wert von eA0 verstärkt den Einfluss der Fabric. Mittels der Dilatanzgeschichte
H kann das Stoffmodell berücksichtigen, dass dilatantes Verhalten eine signifikante Um-
strukturierung der einzelner Körner bewirkt, was bei einer Belastungsrichtungsumkehr
zu einem verstärkten kontraktanten Verhalten führt [25, 111]. Dieses Phänomen wur-
de in verschiedenen konstitutiven Modellen mit unterschiedlichen Modellierungsansätzen
berücksichtigt [2, 16, 25, 40, 120, 162]. Die vorgeschlagene Entwicklungsgleichung für die
Dilatanzgeschichte H lautet:

Ḣ = µ0 ⟨Fd⟩ ∥ε̇∥ −Hcr ⟨−Fd/|Fd|⟩ | tr ε̇| . (5.22)

Der Parameter µ0 steuert den Aufbau von H, welcher nur für positive Werte von Fd
auftritt und somit ausschließlich in der dilatanten Verformungsphase stattfindet. Bei kon-
tinuierlicher Dilatanz steigt die Dilatanzgeschichte vom initialen Wert H0 auf H = ∞.
Für H0 = 0 nimmt gemäß Gl. (5.21) mit steigendem H die Größe eA0 von eA0 = k1 auf
den Maximalwert eA0 = (k1 + k2) zu.

Basierend auf der Arbeit von Barrero et al. [6] und der Theorie des sog. semifluidisierten
Zustands (engl. semifluidized state) berücksichtigt Gl. (5.22) mit −Hcr ⟨−Fd/|Fd|⟩ | tr ε̇|
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zusätzlich einen abbauenden Term. Dieser bewirkt eine Abnahme der Dilatanzgeschich-
te H infolge einer volumenreduzierenden Verformung innerhalb der PTL (negativer Wert
von Fd und | tr ε̇| > 0). Die Abnahme kann durch den Parameter cr gesteuert werden und
stellt sicher, dass die Dilatanzgeschichte H beispielsweise durch eine Rekonsolidierung
nach einer Phase der zyklischen Mobilität ausgelöscht wird.

Zusätzlich zur Dilatanz kann die Festigkeit des Bodens durch eine anisotrope Mikrostruk-
tur erheblich beeinflusst werden [63]. Der Faktor F hyp

0 gemäß Gl. (2.34) in der HP be-
rücksichtigt das isotrope Matsuoka-Nakai-Kriterium [83]. Um den Einfluss der Fabric auf
die Festigkeit zu modellieren, wird der Faktor F hyp

0 modifiziert. Liao et al. [80] schlagen,
basierend auf Yang et al. [209],

F hyp = F hyp
0 exp[λ(A− 1)] (5.23)

vor, wobei λ ein Stoffmodellparameter ist. Die Anisotropievariable A ist geringer, wenn der
Winkel zwischen der Belastungsrichtung n und dem Fabric-Tensor F zunimmt. Folglich
nimmt auch F hyp ab, was zu einer Reduktion der vom hypoplastischen Modell simulierten
Festigkeit führt. Gl. (5.23) modelliert letztlich eine anisotrope Festigkeit. Für λ = 0 ist
die Anisotropie der Festigkeit deaktiviert.

5.3 Sieben ACST-Parameter (λ, k1, k2, µ0, m, αD, cr)

Im Zuge der in diesem Kapitel vorgestellten Kopplung der HP mit der ACST wurden
sieben ACST-Materialparameter (λ, k1, k2, µ0, m, αD, cr) eingeführt. Im Folgenden wer-
den Hinweise zur ACST-Parameterkalibration zusammengefasst. Im Allgemeinen ist die
Kalibration dieser empirischen Parameter nicht trivial, da die anisotrope Mikrostruktur
(Fabric) eines Bodens mit der konventionellen Messtechnik in der Bodenmechanik nur
bedingt erfasst werden kann. Hinweise zur ACST-Parameterkalibration sind auch der Li-
teratur zu entnehmen [6, 80, 209].

Der Parameter k1 stellt den Grundwert der Anisotropie bezüglich der Steifigkeit dar, da
er die Größe von eA0 bei einer verschwindenden Dilatanzgeschichte H = 0 beschreibt
und somit das kontraktante Bodenverhalten beispielsweise zu Beginn einer Scherung ent-
scheidend beeinflusst. Der Parameter λ dient hingegen der Modellierung einer anisotropen
Festigkeit. Die beiden Parameter k1 und λ lassen sich beispielsweise anhand jeweils eines
monotonen undrainierten triaxialen Kompressions- und Extensionsversuchs kalibrieren.
Dabei sind Proben mit derselben Dichte und derselben Präparationsmethode zu verwen-
den. Zudem muss die initiale Fabric F0, welche aufgrund der gleichen Probenpräparation
sowohl bei dem Kompressions- als auch bei dem Extensionsversuch identisch ist und bei-
spielsweise mittels Gl. (5.7) ausgedrückt werden kann, bekannt sein. Der Einfluss der
Parameter k1 und λ auf die simulierten effektiven Spannungspfade dieser Versuche ist
schematisch in Abbildung 5.5a für eine Sedimentation in axialer Richtung (beeinflusst die
initiale Fabric) gezeigt. In diesem Beispiel verhält sich der Boden infolge der triaxialen
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Abbildung 5.5: Hinweise zur Kalibration der ACST-Parameter: a) Einfluss von k1 und λ auf

den effektiven Spannungspfad monotoner undrainierter Triaxialversuche im pq-Diagramm und b)

Einfluss von k2 und µ0 auf die Spannungs-Dehnungs-Kurve in der Phase der zyklischen Mobilität

in zyklischen undrainierten Versuchen

Extension kontraktanter und weicher (k1) und zeigt zunächst eine geringere Festigkeit (λ)
als infolge der triaxialen Kompression.

Der Parameter µ0 beschreibt den Aufbau der Zustandsvariablen H infolge dilatanter Ver-
formungen und k2 modelliert die Abhängigkeit des kontraktanten Bodenverhaltens infolge
der Fabric von der Dilatanzgeschichte H. Die Dilatanzgeschichte H ist jedoch eine em-
pirische Zustandsvariable und kann im Labor nicht direkt gemessen werden. Es muss im
Allgemeinen k2 ≥ k1 gelten. Für k2 = k1 wird der Effekt der Dilatanzgeschichte H auf den
Einfluss der Fabric auf das mechanische Verhalten von Boden deaktiviert. Die beiden Pa-
rameter µ0 und k2 können entweder mittels eines zyklischen undrainierten Triaxialversuchs
mit vorgegebener großer Dehnungsamplitude an der Tendenz des effektiven Spannungs-
pfades zum verflüssigten Zustand (p = q = 0) oder an einem zyklischen undrainierten
Triaxialversuch mit vorgegebener Spannungsamplitude in der Phase der zyklischen Mo-
bilität kalibriert werden. Letzterer Ansatz ist in Abbildung 5.5b dargestellt. Sowohl eine
Reduktion von µ0 als auch von k2 führt zu einer geringeren Dehnungsamplitude während
der ersten Zyklen in der Phase der zyklischen Mobilität. Die Zunahme Letzterer mit der
Anzahl der Zyklen ist jedoch für einen kleineren Wert von µ0 ausgeprägter. Die Dehnungs-
amplitude in der Phase der zyklischen Mobilität kann somit gut modelliert werden, die
gleichzeitig auftretende Dehnungsakkumulation ergibt sich jedoch aus dem Stoffmodell
und ist nicht direkt mittels entsprechender Parameter kalibrierbar.

Die Parameter m und αD kontrollieren die allgemeine Entwicklung, die Peakwerte in
dichten Böden und die asymptotischen Werte infolge proportionaler Dehnungspfade des
Fabric-Tensors F . Beide Parameter wurden bereits in Abbildung 5.2 und Abbildung 5.3
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diskutiert. Da weder die Fabric selbst noch deren Entwicklung mittels konventioneller bo-
denmechanischer Messtechnik erfasst werden kann, ist auch die Kalibration vonm und αD
nicht trivial. Qualitativ können die Parameter beispielsweise mit entsprechend ausgewer-
teten Röntgentomographieuntersuchungen, wie in [152, 195], oder anhand entsprechend
ausgewerteter DEM-Simulationen, siehe [97, 180, 210, 214], erfolgen.

Der Materialparameter cr wurde in Gl. (5.22) eingeführt, um auch einen Abbau der Di-
latanzgeschichte H infolge einer volumenreduzierenden Verformung innerhalb der PTL
zu ermöglichen. Das Konzept ist an den gleichnamigen Parameter in [6] angelehnt. Zur
Kalibrierung könnte der Unterschied in der Anisotropie einer dichten Probe, welche nach
einer durchlaufenden zyklischen Mobilität (Aufbau von H) rekonsolidiert und abgeschert
wird, mit einer Probe ohne diese Vorgeschichte herangezogen werden. Solche Versuche
sind jedoch aufwendig und aufgrund der dabei entstehenden großen und ggf. lokalisierten
Verformungen nur bedingt interpretierbar.

5.4 Diskussion zur Kopplung hypoplastischer Stoff-

modelle mit der ACST

Die HP+ACST ist durch die Gleichungen aus Abschnitt 2.4 in Kombination mit den
Gleichungen aus Abschnitt 5.1 und Abschnitt 5.2 vollständig definiert. Einige theoretische
Aspekte der HP+ACST gilt es jedoch zu diskutieren. Es ist zu erwarten, dass diese Punkte
im Allgemeinen für alle mit der ACST gekoppelten konstitutiven Modelle gelten.

(1) Die Entwicklungsgleichung der Fabric, siehe Gl. (5.9), führt für verschiedene pro-
portionale Dehnungspfade zu unterschiedlichen asymptotischen Werten der Aniso-
tropievariablen Aasy, was mit Erkenntnissen aus der Literatur übereinstimmt [211].
Daraus folgt, dass sich die Form der ASBS der ursprünglichen HP durch die Kopp-
lung mit der ACST verändert. Nur die kritischen Zustände bleiben unverändert.
Außerdem hängen Form und Größe der ASBS von eA0 ab.

(2) Infolge einer isotropen Kompression (theoretisch auch einer Extension) gilt ∥ε̇∗∥ = 0
mit ε̇ ̸= 0 und es folgt nach Gl. (5.9) Ḟ = 0. Die sich asymptotisch einstellende ani-
sotrope Mikrostruktur des Bodens entspricht also der initialen Fabric (F asy,iso = F0).

Im Gegensatz dazu tendiert F aufgrund eines proportionalen quasi-isotropen Deh-
nungspfads mit ∥ε̇∗∥ > 0, aber ∥ε̇∗∥ ≪ | tr ε̇|, gegen Null, was zu ∥F asy,qiso∥ =
F asy,qiso = 0 und Aasy,qiso = 0 führt. Es sei darauf hinwiesen, dass aufgrund der Defi-
nition der Belastungsrichtung n = 0 für eine isotrope Kompression und Extension
A = Aasy,iso = 0 gilt.

Für ausgeprägt extensive Dehnungspfade mit tr (ε̇) < ∥ε̇∗∥ ist die Dilatanz D zur
Beschreibung der Fabric-Entwicklung begrenzt. Außerdem existiert für solche Pfade
kein asymptotischer Wert der Fabric.
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Abbildung 5.6: Künstliche Verfestigung infolge der ACST in Simulationen mit der

HP+GIS+ACST eines drainierten monotonen Triaxialversuchs an einer dichten Probe: a) De-

viatorspannung q und b) Anisotropievariable (FAV) A als Funktion der axialen Dehnung εa für

einen geeigneten Parametersatz (KFS von Tabelle 6.2) und einen ungeeigneten Parametersatz

(m = 10 und αD = 0, 8) (p0 = 200 kPa, e0 = 0, 7, h0 = −0, 77 R/
√
3δ, Ω0 = 0, F0 = 0, 5 und

H0 = 0)

(3) Für einen asymptotischen Zustand infolge einer monotonen proportionalen Kom-
pression sowie für eine isotrope Kompression gilt ėA0 = 0 und Ȧ = 0. Für die Ra-
tenform der modifizierten Kompressionsbeziehung der HP+ACST, siehe Gl. (5.19),
gilt dann

ė = −e
(
3p

hs

)n−1
3n

hs
ṗ . (5.24)

Gl. (5.24) entspricht der Ratenform der ursprünglichen Kompressionsbeziehung nach
Bauer [8]. Der Barotropiefaktor fs der HP, siehe Gl. (2.39), erfüllt daher auch mit
der modifizierten Kompressionsbeziehung der HP+ACST weiterhin die Konsistenz-
bedingung der isotropen Kompression [122]. Darüber hinaus bleibt die Herleitung
des asymptotischen Pyknotropiefaktors für fAd gemäß Gl. (4.37) unverändert.

(4) In dichten Proben kann es nach dem Erreichen des ersten Peakwertes der Deviator-
spannung zu einer künstlichen Verfestigung und dem Erreichen eines zweiten Peak-
werts kommen, wenn ein ungeeigneter Parametersatz verwendet wird. Das Problem
wird für einen monotonen drainierten Triaxialversuch in Abbildung 5.6 veranschau-
licht. Das in Abbildung 5.6a gezeigte lokale Minima der Deviatorspannung q liegt
zwar nur leicht unter den Maxima, ein größerer Unterschied lässt sich jedoch mittels
eines anderen Parametersatzes erreichen. Für das Auftreten der künstlichen Verfes-
tigung sind im gezeigten Beispiel die Materialparameter der Entwicklungsgleichung
der Fabric und deren Einfluss auf das Materialverhalten verantwortlich. Die Entwick-
lung der Anisotropievariable A in den gezeigten Simulationen ist Abbildung 5.6b zu
entnehmen. Während der Parameterkalibration sollten daher drainierte monotone
Triaxialversuche simuliert und die Parameter so gewählt werden, dass eine künstliche
Verfestigung nicht auftritt.

(5) Die Grundidee der ACST ist eigentlich recht einfach: Die anisotrope Mikrostruktur
führt dazu, dass sich ein anisotroper Boden wie ein lockerer isotroper Boden verhält.
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Wenn allerdings Stoffmodelle verwendet werden, welche die Dilatanz dichter Böden
grundsätzlich nicht ausreichend abbilden können, verstärkt die Kombination mit
der ACST das Problem entsprechend. Letzteres trifft, wie in Abschnitt 3.2 gezeigt,
auf die HP zu.

(6) In der Literatur ist häufig dokumentiert, dass feucht eingestampfte Proben (MT)
eine isotropere Mikrostruktur aufweisen als trocken eingerieselte Proben (AP) [184,
208]. Dies kann auf wirkende Kapillarkräfte im feuchten Boden zurückgeführt wer-
den, welche zu einer zufälligeren Orientierung der Partikel führen [184]. Innerhalb
der ACST würde dies eine Initialisierung der Fabric von |FMT

0 | < |FAP
0 | erfordern.

Für einen vollständig isotropen Boden sollte F = 0 gelten. Gemäß Gl. (5.3) und
Gl. (5.7) würde eine solche Initialisierung mit axialer Sedimentationsrichtung für
einen triaxialen Kompressionsversuch zu AMT

0 < AAP
0 führen, wodurch MT-Proben

ein ausgeprägteres kontraktantes Verhalten als AP-Proben zeigen würden. Dies wi-
derspricht jedoch experimentellen Ergebnissen, wie beispielsweise in Abschnitt 3.5
gezeigt. Um letztere qualitativ zu reproduzieren müsste in der ACST |FMT

0 | > |FAP
0 |

initialisiert werden. Diese Initialisierung könnte möglicherweise darauf zurückgeführt
werden, dass durch die Probenpräparation mittels MT eine Schichtung der Probe
auf einer größeren Skala (Mesoskala) eingeführt wird, während die Kornkontaktver-
teilung in der Mikrostruktur der MT-Proben vergleichsweise isotrop ist.

Interessanterweise folgt aus der ACST mit |FMT
0 | > |FAP

0 | jedoch, dass sich MT-
Proben in einem triaxialen Extensionsversuch im Vergleich zu AP-Proben kon-
traktanter verhalten müssten. Entsprechende experimentelle Untersuchungen stehen
noch aus. Es kann die Hypothese formuliert werden, dass dies nicht den experimen-
tellen Ergebnissen entsprechen wird [95]. Diese experimentell noch offene Frage wird
in Zukunft wissenschaftlich untersucht werden müssen.

Die oben genannten Punkte sind zumeist theoretisch motiviert. Für die Lösung bodenme-
chanischer bzw. geotechnischer Probleme können sie eventuell als nicht kritisch bewertet
werden, vor allem bei entsprechender problembezogener Parameterkalibration, siehe Ab-
schnitt 5.3.

Zusammenfassend lässt sich feststellen, dass die in diesem Kapitel vorgestellte HP+ACST
eine um die Fabric erweiterte Version der HP darstellt. Zur zutreffenden Simulation von
zyklischen Verformungen könnte die HP+ACST nun mit dem originalen IS-Konzept ge-
koppelt werden. Wie jedoch im nachfolgenden Kapitel 6 gezeigt wird, ist für die Simulation
zyklischer Verformungen die Kopplung mit dem neuen Konzept der generalisierten inter-
granularen Dehnung (GIS) zur HP+GIS+ACST vorteilhafter. Im Folgenden Kapitel 6
werden entsprechend auch Elementsimulationen mit der HP+GIS+ACST dem Referenz-
modell der HP+IS und experimentellen Daten gegenübergestellt. Zunächst wird jedoch
das neue GIS-Konzept eingeführt.



Kapitel 6

Generalisierte intergranulare

Dehnung für zyklische Verformungen

In den vorherigen Kapiteln wurde die hypoplastische Modellierung des mechanischen Ver-
haltens von Sand infolge monotoner Verformungen ausführlich diskutiert. Das vorliegende
Kapitel betrachtet die Simulation zyklischer Verformungen. Aufbauend auf dem bekann-
ten Konzept der intergranularen Dehnung (engl. intergranular strain (IS)) nach Niemunis
und Herle [121] sowie des von Duque et al. [29], basierend auf der Arbeit von Poblete
et al. [144], eingeführten verbesserten Konzepts der intergranularen Dehnung (engl. in-
tergranular strain improvement (ISI)) wird ein weiterentwickelter und im Folgenden als
generalisierte intergranulare Dehnung (engl. generalized intergranular strain (GIS)) ge-
nannter Ansatz1 vorgestellt. Die Erkenntnisse diese Kapitels wurden teilweise in [105, 107]
veröffentlicht.

6.1 Existierende Modifikationen des IS-Konzepts

Das Konzept der intergranularen Dehnung (IS) wurde 1997 von Niemunis und Herle [121]
zur Berücksichtigung der erhöhten Steifigkeit und einer reversibleren Stoffmodellantwort
infolge einer Belastungsrichtungsumkehr eingeführt. Die zugehörigen Gleichungen und das
Prinzip der IS wurden bereits ausführlich in Abschnitt 2.5 dargestellt.

Aus der aus L und N in Abhängigkeit von der aktuellen intergranularen Dehnung h und
der Dehnungsrate ε̇ explizit berechneten Tangentensteifigkeit

M = [ρχmT + (1− ρχ)mR]L+

{
ρχ(1−mT )L : h⃗h⃗+ ρχNh⃗ falls h⃗ : ε̇ > 0

ρχ(mR −mT )L : h⃗h⃗ falls h⃗ : ε̇ ≤ 0
, (6.1)

1Das hier vorgestellte GIS-Konzept steht in keinem Zusammenhang mit einem geographischen Infor-

mationssystem (engl. geographic information system).

99



100 Kapitel 6. Generalisierte intergranulare Dehnung für zyklische Verformungen

siehe auch Gl. (2.45), wird ersichtlich, dass das IS-Konzept das Basismodell in der Form
von Gl. (2.28) nach einer Belastungsrichtungsänderung in zweierlei Hinsicht modifiziert:

(A) Erhöhung der linearen Steifigkeit L

(B) Verringerung (bzw. vollständige Deaktivierung) des nichtlinearen Terms N

Somit führt das IS-Konzept im Einflussbereich der intergranularen Dehnung zu einem
steiferen und elastischeren Stoffmodell. Wie in Kapitel 3 gezeigt, weist das ursprüngliche
IS-Konzept jedoch einige Defizite auf und wurde daher bereits von mehreren Autoren
modifiziert.

Wegener und Herle [182] erweiterten den Term ρχNh⃗ in Gl. (6.1), indem sie den Expo-
nenten χ durch einen neuen Parameter γ (γ > χ) ersetzten. Diese Änderung führt zu einer
Reduktion der Akkumulationseffekte infolge zyklischer Verformungen und bildet letztere
dadurch zutreffender ab. Der feste Wert von γ verhindert allerdings die Berücksichtigung
des Einflusses einer zyklischen Vorbelastung auf die Akkumulationsrate.

Fuentes und Triantafyllidis [38] führten das sog. ISA-Modell (engl. intergranular strain
anisotropy (ISA)) ein, welches das ursprüngliche Konzept der IS grundlegend neu formu-
liert. Der ISA-Ansatz verwendet eine elasto-plastische Entwicklung der intergranularen
Dehnung und beinhaltet eine Fließfläche, welche eine (hyper-)Sphäre im Raum der in-
tergranularen Dehnung darstellt. Innerhalb dieser Fließfläche verhält sich das Stoffmodell
elastisch. Für Zustände auf der Fließfläche treten im Falle einer Belastung irreversible Ver-
formungen auf und die Fließfläche verfestigt sich bis zum Erreichen einer sog. bounding
surface kinematisch. Durch diese Modifikation konnte unter anderem dem Overshooting
der Festigkeit begegnet werden [33, 38]. Für ausreichend lange monotone Verformungen
stellt sich auch im ISA-Modell asymptotisch das Basismodel ein. Bei letzterem kann es
sich um eine hypoplastische Formulierung (z.B. die HP) handeln.

Poblete et al. [144] erweiterten den ISA-Ansatz durch eine Modifizierung des Parame-
ters χ (ähnlich zu χ in der HP+IS) zu einer Funktion χ(εa), welche die Akkumulation in-
folge zyklischer Verformungen kontrolliert und den Einfluss einer zyklischen Vorbelastung
berücksichtigt. Dafür wurde eine neue Zustandsvariable2 εa mit 0 ≤ εa ≤ 1 eingeführt,
welche sich bei zyklischen Verformungen mit kleinen Dehnungsamplituden aufbaut und
sich bei großen Dehnungsamplituden oder gar einer monotonen Verformung abbaut.

Der Ansatz von Poblete et al. [144] wurde von Duque et al. [29] im ISI-Ansatz (engl.
intergranular strain improvement (ISI)) auf das ursprüngliche IS-Konzept angewendet.
Die Zustandsvariable εa wurde dabei in Ω mit 0 ≤ Ω ≤ 1 umbenannt. Der Exponent γ
nach Wegener und Herle [182] wird im ISI-Ansatz in Abhängigkeit von der zyklischen Vor-
belastung Ω ausgedrückt, wodurch nichtlineare Akkumulationseffekte modelliert werden
können.

Die genannten Arbeiten basieren auf dem Basismodell der HP. Ein Ansatz zur Anwendung
des IS-Konzepts auf verschiedene Basismodelle findet sich in Bode et al. [13]. Dabei wird

2Bei εa handelt es sich hier nicht um die axiale Dehnung, sondern um eine Zustandsvariable mit

unglücklich gewähltem Namen.
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ein sog. internes und ein sog. externes elastisches Modell eingeführt. Der Ansatz erscheint
vielversprechend, wenngleich komplex. Zuletzt sei erwähnt, dass Shi und Huang [154] die
intergranulare Dehnung als Erweiterung von elasto-plastischen Modellen zur Modellierung
der Steifigkeit bei kleinen Dehnungen nutzen.

Das originale IS-Konzept sowie die darauf aufbauenden Erweiterungen für hypoplasti-
sche Modelle basieren im Grunde auf Gl. (6.1), also auf den Tensoren L und N . Sofern
das Basismodell nun jedoch in Form der erweiterten generalisierten Hypoplastizität nach
Gl. (4.9) vorliegt, kann eine Kopplung mit dem IS-Konzept nicht direkt erfolgen. Aus die-
ser zunächst mathematischen Feststellung ergibt sich die Erfordernis nach einem neuen
mathematischen Konzept zur Berücksichtigung zyklischer Verformungen in hypoplasti-
schen Modellen, welches im Folgenden eingeführt wird.

6.2 Das Konzept der generalisierten intergranularen

Dehnung (GIS)

Der in dieser Arbeit entwickelte neue Ansatz der generalisierten intergranularen Dehnung
(engl. generalized intergranular strain (GIS)) basiert auf der tensoriellen Zustandsvaria-
blen der intergranularen Dehnung h, siehe Abschnitt 2.5, und kombiniert einige der oben
genannten Arbeiten in einem neuartigen mathematischen Konzept. Die bekannte Ent-
wicklungsgleichung

ḣ =

{
(I− h⃗h⃗ρβr) : ε̇ falls h⃗ : ε̇ > 0

ε̇ falls h⃗ : ε̇ ≤ 0
(6.2)

und die entsprechenden mathematischen Beziehungen

ρ =
∥h∥
R

und h⃗ =


h

∥h∥
falls h ̸= 0

0 falls h = 0
(6.3)

werden vom originalen IS-Ansatz in den GIS-Ansatz mit den Materialparametern βR
und R übernommen. Im GIS-Ansatz wird ein skalarer Faktor k definiert:

k = k(h, ε̇) = [ρχRmT +(1−ρχR)mR]+

{
ρχR(1−mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ > 0

−ρχR(mR −mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ ≤ 0
. (6.4)

Die Ähnlichkeit zwischen Gl. (6.4) für den skalaren Faktor k und der Gl. (6.1) für die In-
terpolation der Tangentensteifigkeit M im ursprünglichen IS-Konzept ist bemerkenswert,
wenngleich offensichtlich. Gl. (6.4) stellt eine Interpolation für den skalaren Faktor k in
Abhängigkeit von der Richtung der intergranularen Dehnung h, der Dehnungsrate ε̇ und
der Mobilisierung der intergranularen Dehnung ρ = ∥h∥/R dar. Die Steuerung dieser
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h22, ε22

h11, ε11

A B
k = mR

k = mR k = 1
k = mT
k = mT
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k für ρ = 0
k für ρ = 1

k für ρ = 1
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Abbildung 6.1: Skalarer Faktor k mit den Materialparametern mR und mT für ρ = 0 und

ρ = 1 im zweidimensionalen Fall in Abhängigkeit von der Dehnungsrate ε̇11 bzw. ε̇22 und der

intergranularen Dehnung h11 bzw. h22 (modifiziert aus [105])

Interpolation erfolgt über die Materialparameter R, mR, mT und χR
3 und erlaubt eine

Variation von k zwischen dem Maximalwert k = mR und dem Minimalwert k = 1. Vier
Sonderfälle sind hervorzuheben:

• k = 1 und ρ = 1 wird asymptotisch infolge eines monotonen Dehnungspfads erreicht

• k = mR gilt für eine 180◦-Belastungsrichtungsumkehr bei voll mobilisierter inter-
granularer Dehnung (ρ = 1)

• k = mT gilt für eine 90◦-Belastungsrichtungsumkehr bei voll mobilisierter intergra-
nularer Dehnung (ρ = 1)

• k = mR gilt für ρ = 0, unabhängig von der aufgebrachten Dehnungsrate

In Analogie zur Darstellung der Tangentensteifigkeit M aus [121] wird Gl. (6.4) zusammen
mit den diskutierten Sonderfällen in Abbildung 6.1 für den zweidimensionalen Fall dar-
gestellt. Der Faktor k hängt von der aktuellen intergranularen Dehnung (h11, h22), ihrer
Mobilisierung ρ und der aktuellen Dehnungsrate (ε̇11, ε̇22) ab.

Unter Berücksichtigung der beiden oben genannten Aspekte des ursprünglichen IS-Kon-
zepts kann der Faktor k verwendet werden, um die Anforderungen an die (A) Skalierung
der Steifigkeit und die (B) Reduzierung der irreversiblen Verformungen des Basismodells
infolge einer zyklischen Verformung zu erfüllen.

3Der Parameter χ im ursprünglichen IS-Konzept wurde im GIS-Konzept zu χR umbenannt.
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6.3 Kopplung der GIS mit einem Stoffmodell

Die meisten hypoplastischen Stoffmodelle können gemäß der erweiterten generalisierten
Hypoplastizität

σ̇ = E : (ε̇−m C S ∥ε̇∥+ f(ε̇,α)) , (6.5)

siehe auch Gl. (4.9), formuliert werden. In Gl. (6.5) steht E für die elastische4 Steifigkeit,
m für die äquivalente hypoplastische Fließregel und S für die sog. Zustandsmobilisierung.
Die Zustandsmobilisierung S stellt ein Verhältnis zwischen dem aktuellen Zustand und
einem definierten Referenzzustand dar. Die Formulierung von S kann je nach konstitu-
tiven Modell variieren. Bei Modellen mit einer definierten Grenzbedingung kann S = Y
verwendet werden. In diesem Fall wird der Grad der Nichtlinearität Y mit der Zustands-
mobilisierung S gleichgesetzt. In Modellen mit einer extrahierten oder definierten ASBS
kann S = fd/f

A∗
d gesetzt werden, vgl. Abschnitt 4.3.

Im Rahmen der GIS-Erweiterung modifiziert der skalare Faktor k nach Gl. (6.4) die
Gl. (6.5) zu

σ̇ = k E :
(
ε̇−m C S(kγ) ∥ε̇∥+ f(ε̇,α, k)

)
, (6.6)

wobei (A) die Steifigkeit erhöht und (B) die irreversiblen Verformungen reduziert werden.

Die Funktion k(h, ε̇) ist homogen nullten Grades bezüglich der Dehnungsrate ε̇, siehe
Gl. (6.4), wodurch Gl. (6.6) auch nach der Kopplung mit dem GIS-Konzept homogen
ersten Grades bezüglich der Dehnungsrate ε̇ ist und somit ratenunabhängiges Material-
verhalten beschreibt5.

In Anlehnung an das ISI-Konzept [29] kann der Exponent γ mittels der Funktion χ(Ω)
in Abhängigkeit von einer zusätzlich eingeführten skalaren Zustandsvariable Ω zur Be-
rücksichtigung der zyklischen Vorbelastung ausgedrückt werden. Unter Verwendung des
Materialparameters γχ gilt

γ(Ω) = γχχ(Ω) . (6.7)

Mit den Parametern χ0 und χmax wird die Funktion

χ(Ω) = χ0 + Ω(χmax − χ0) (6.8)

definiert. Die Entwicklungsgleichung der zyklischen Vorbelastung Ω lautet

Ω̇ = CΩ (1− ργΩ − Ω) ∥ε̇∥. (6.9)

4Für die Simulation zyklischer Verformungen sollte es sich nicht um eine hypoelastische Steifigkeit

handeln, siehe Abschnitt 3.4 und Abschnitt 7.2.
5Sofern natürlich auch f(ε̇,α, k) homogen ersten Grades bezüglich der Dehnungsrate ist.
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Der Exponent γΩ wurde zur Verallgemeinerung eingeführt, um die Entwicklung von Ω un-
abhängiger vom Basismodell zu steuern. Der Materialparameter CΩ steuert die allgemeine
Geschwindigkeit der Entwicklung der zyklischen Vorbelastung Ω. Letztere entwickelt sich
gegen Eins (Ω → 1), solange bei einer Verformung die IS nicht mobilisiert ist (ρ ≈ 0).
Dieser Fall liegt beispielsweise bei einer zyklischen Verformung mit kleinen Dehnungsam-
plituden vor. Bei hinreichend langen monotonen Verformungen oder zyklischer Belastung
mit großen Dehnungsamplituden entwickelt sich Ω gegen Null (Ω → 0), wobei ρ ≈ 1
gilt [29]. Diese Grenzen zeigen, dass für die zyklische Vorbelastung 0 ≤ Ω ≤ 1, 0 gilt.
Details zur Simulation der zyklischen Vorbelastung mittels Ω finden sich in [29, 32]. Vier
Sonderfälle der Gl. (6.9) gilt es hervorzuheben:

• Ω = 0 und ρ = 0 führt zu einem Aufbau von Ω mit Ω̇ > 0

• Ω = 0 und ρ = 1 deaktiviert die Entwicklung von Ω mit Ω̇ = 0

• Ω = 1 und ρ = 0 deaktiviert die Entwicklung von Ω mit Ω̇ = 0

• Ω = 1 und ρ = 1 führt zu einem Abbau von Ω mit Ω̇ < 0

6.3.1 Bemerkung zur zyklischen Vorbelastung

Die zyklische Vorbelastung Ω wird primär zur Simulation des nichtlinearen Akkumulati-
onsverhaltens in Abhängigkeit der Anzahl der Zyklen N verwendet. Die Akkumulation
infolge zyklischer Belastung selbst wird durch das zugrunde gelegte konstitutive Modell
bestimmt und ergibt sich aus den irreversiblen Dehnungen/Spannungen nach jedem ein-
zelnen Zyklus. Ein Vergleich von Ω mit zyklischen Vorbelastungsvariablen in Akkumulati-
onsmodellen wie dem HCA-Modell [124], welche nur Akkumulationstrends erfassen, sollte
daher nur bedingt erfolgen.

Zur Verdeutlichung kann eine zyklische Verformung mit konstanter Dehnungsamplitude
und einer Initialisierung von Ω0 = 0 betrachtet werden. Ω nimmt, wie oben durch Gl. (6.9)
beschrieben, mit der Anzahl der Zyklen akkumulativ monoton zu und nähert sich einem
asymptotischen Wert. Je kleiner die Dehnungsamplitude, desto näher liegt dieser asymp-
totische Wert an 1.

Für die Entwicklung der Zustandsvariable der zyklischen Vorbelastung gA im HCA-Modell
[124], welches bereits in Abschnitt 3.6.8 diskutiert wurde, gilt hingegen

∂gA/∂N = fHCA
amplCN1CN2 exp

(
− gA(N)

CN1fHCA
ampl

)
(6.10)

mit den Materialparametern CN1 > 0 und CN2 > 0. Die allgemeine Lösung6 von Gl. (6.10)
mit der Annahme einer konstanten Dehnungsamplitude (fHCA

ampl = const > 0) ergibt sich
zu

6Die Lösung der Gl. (6.10) kann mithilfe einer Trennung der Variablen analytisch gefunden werden.
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gA(N) = CN1f
HCA
ampl ln(CN2N + C ′) . (6.11)

Mittels der Anfangsbedingung kann die Integrationskonstante C ′ ermittelt werden:

gA(N = 0) = 0 ⇒ C ′ = 1 . (6.12)

Für die zyklische Vorbelastungsvariable gA(N) im HCA-Modell ergibt sich im betrachte-
ten Fall

gA(N) = CN1f
HCA
ampl ln(1 + CN2N) . (6.13)

Je größer die Dehnungsamplitude, desto größer ist fHCA
ampl . Aus Gl. (6.10) und Gl. (6.13) wird

ersichtlich, dass die zyklische Vorbelastung gA im HCA-Modell mit der Anzahl der Zyklen
monoton zunimmt. Dies entspricht zwar grundsätzlich der diskutierten Entwicklung von
Ω, allerdings existiert für gA kein asymptotisch angestrebter Grenzwert.

Ein weiterer Unterschied von Ω gegenüber gA wird aus dem Vergleich von Gl. (6.9) mit
Gl. (6.10) ersichtlich: Die experimentell beobachtete mögliche Auslöschung der zyklischen
Vorbelastung, beispielsweise durch eine monotone Verformung [181, 184], ergibt sich direkt
aus der Entwicklungsgleichung von Ω, welche auch einen Abbau der zyklischen Vorbelas-
tung Ω ermöglicht. Hingegen ist für gA nach Gl. (6.10) kein Abbau möglich, wodurch
in praktischen Simulationen mit dem HCA-Modell zur Auslöschung der zyklischen Vor-
belastung beispielsweise infolge einer monotonen Verformung gA manuell und empirisch
reduziert werden muss [181].

6.3.2 Bemerkung zum Overshooting

Ein Vergleich von Gl. (6.5) mit Gl. (6.6) zeigt, dass im GIS-Konzept ein Überschreiten
eines definierten Grenzzustandes infolge einer Belastungsrichtungsumkehr ausgeschlos-
sen ist. Die Bedingung S = 1 des Basismodells wird durch die Erweiterung des GIS-
Konzepts nicht beeinflusst. Im Falle eines im Basismodell explizit definierten Grenzzu-
standes (Y = 1) wird ein Overshooting der Scherfestigkeit des Bodens verhindert. Im Falle
eines Basismodells mit explizit definierter bzw. einer extrahierten ASBS, siehe Kapitel 4,
wird das Overshooting der gesamten ASBS (S = 1) verhindert. Dieser Vorteil gegenüber
dem ursprünglichen IS-Konzept verhindert das Auftreten unzulässiger Zustände, wie bei-
spielsweise von Zugspannungszuständen, bei der Simulation zyklischer Verformungen und
wird im weiteren Verlauf dieses Kapitels anhand numerischer Beispiele demonstriert.

6.3.3 Die fünf IS-Parameter (R, mR, mT , βR, χR)

Durch die Kopplung eines Stoffmodells mit dem GIS-Konzept sind insgesamt zehn7 zu-
sätzliche Parameter erforderlich. Deren Kalibrierung wird im Folgenden diskutiert. Grund-
sätzlich können die GIS-Parameter nur anhand zyklischer Versuche bestimmt werden.

7Wenn die Effekte der zyklischen Vorbelastung deaktiviert werden, reduziert sich die Anzahl der

Parameter entsprechend.
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M
M=dσ/dε
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M0

mR

mT
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βR und χR180° Umkehr
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Abbildung 6.2: Steifigkeit M = dσ/dε nach einer Belastungsrichtungsumkehr von 180◦, 90◦

bzw. 0◦ und Kalibrierung der entsprechenden IS bzw. GIS-Parameter (modifiziert aus [121])

Dabei kann zwischen den fünf klassischen IS-Parametern und den fünf zusätzlichen GIS-
Parametern zur Beschreibung der zyklischen Vorbelastung Ω unterschieden werden.

Das ursprüngliche Konzept der intergranularen Dehnung [121], siehe Abschnitt 2.5, ist
weit verbreitet und Hinweise zur Kalibrierung der entsprechenden Materialparameter (R,
mR, mT , βR, χR) können der Literatur entnommen werden [91, 121]. In erster Näherung
können die fünf IS-Parameter direkt in das GIS-Konzept übertragen werden.

Der Parameter R gibt die Größe (gemessen in Dehnung) des
”
elastischen Bereichs“ an,

in welcher die Tangentensteifigkeit8 M = dσ/dε nach einer Belastungsrichtungsumkehr
näherungsweise konstant ist. In der Praxis lässt sich dieser Bereich beispielsweise mit-
tels Resonant-Column Versuchen, Bender-Element Tests oder Versuchen mit lokaler Deh-
nungsmessung bestimmen. In erster Näherung gilt R ≈ 10−4. Die Multiplikatoren mR und
mT stellen den Faktor der Erhöhung der Tangentensteifigkeit infolge einer Belastungsrich-
tungsumkehr von 180◦ (mR) bzw. 90

◦ (mT ) dar. Während der Parameter mR in den oben
genannten Versuchen experimentell relativ einfach ermittelt werden kann, kann mT ver-
suchstechnisch nur schwer bestimmt werden. Allgemein gilt grundsätzlich mR > mT > 1.
Nach einer ausreichend großen Dehnung erreicht die Steifigkeit, unabhängig vom Winkel
der Belastungsrichtungsumkehr, einen nahezu identischen Wert. Das Konzept ist schema-
tisch in Abbildung 6.2 dargestellt. Das GIS-Konzept kann einfach mittels mR = mT = 1
deaktiviert werden.

Der Parameter βR beeinflusst die Entwicklung von h und χR steuert die Interpolation
zwischen der durch h modifizierten und der Materialantwort des Basismodells. Beide Pa-
rameter können anhand der Steifigkeitsabnahme mit zunehmender Dehnung nach einer
Belastungsrichtungsumkehr (Steifigkeitsdegradation), siehe Abbildung 6.2, kalibriert wer-
den.
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Abbildung 6.3: Schematische Darstellung der Kalibrierung der GIS-Parameter χ0, χmax und CΩ

anhand der Akkumulation des Porenwasserdrucks pf in einem zyklischen undrainierten Triaxi-

alversuchs mit vorgegebener Amplitude der Deviatorspannung (modifiziert aus [29])

6.3.4 Die fünf GIS-Parameter (γχ, χ0, χmax, CΩ, γΩ)

Hinweise zur Kalibrierung der fünf GIS-Parameter sind [29] zu entnehmen. Zur Kalibrie-
rung wird die Akkumulation des Porenwasserüberdrucks in einem zyklischen undrainierten
Triaxialversuch mit konstanter Deviatorspannungsamplitude qampl und einem isotropen ef-
fektiven Anfangsspannungszustand empfohlen. Bei einem solchen Versuch darf keine zykli-
sche Vorbelastung vorliegen und die zyklische Verformung sollte direkt nach der isotropen
Kompression erfolgen. Demzufolge ist eine Initialisierung von Ω0 = 0 gerechtfertigt. Die
Initialisierung und entsprechende Materialparameter der Entwicklungsgleichungen aller
anderen Zustandsvariablen des betrachteten Stoffmodells (σ, e, ...) sollten bereits kali-
briert worden sein.

Zunächst gilt es, den Parameter γχ so zu wählen, dass die Simulation ohne Berücksichti-
gung von Ω (χ0 = χmax = 1) eine ausgeprägtere Akkumulation des Porenwasserdrucks als
der betrachtete Versuch zeigt. Darauf aufbauend lassen sich die restlichen vier Parameter
kalibrieren.

Der Einfluss von χ0, χmax und CΩ auf die Porenwasserdruckakkumulation in Abhängigkeit
von der Zyklenzahl in einem undrainierten zyklischen Triaxialversuchs mit gegebenen
Spannungszyklen ist in Abbildung 6.3 dargestellt. Der Parameter χ0 steuert die Akku-
mulationsrate innerhalb der ersten Zyklen. Je größer χ0, desto schwächer ist der Aufbau
des Porenwasserdrucks innerhalb der ersten Zyklen. Es ist anzumerken, dass in Basis-
modellen, welche den Einfluss einer anisotropen Mikrostruktur (Fabric) berücksichtigen,
ein verstärkter Porenwasserüberdruckaufbau innerhalb der ersten Zyklen auch infolge der
entsprechend initialisierten Zustandsvariablen der Fabric auftreten kann. Diese Tatsache
ist bei der Kalibrierung der GIS-Parameter und primär bei der Kalibrierung von χ0 zu be-
achten. Der Parameter χmax steuert die Akkumulationsrate nach einer großen Anzahl von
Zyklen mit kleinen Dehnungsamplituden. Je größer χmax, desto geringer sind entsprechen-
de Akkumulationseffekte. Der Übergang zwischen der schnellen Akkumulation zu Beginn

8M = dσ/dε entspricht einer eindimensionalen Definition. Dreidimensional lässt sich die Tangenten-

steifigkeit zu M = dσ/dε definieren.
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des Versuchs und der langsameren Akkumulation nach einer größeren Zyklenzahl wird
durch CΩ gesteuert. Je größer CΩ, desto schneller reduziert sich die Akkumulationsrate.
Einen ähnlichen Effekt hat auch der Parameter γΩ. Die schnelle Porenwasserdruckakku-
mulation gegen Ende des Versuchs mit vorgegebener Spannungsamplitude resultiert aus
dem Basismodell, sofern die mit abnehmendem mittleren effektiven Druck infolge der Ba-
rotropie resultierende größere Dehnungsamplitude durch letzteres zutreffend abgebildet
wird.

Es sei darauf hingewiesen, dass bei nicht sorgfältiger Kalibrierung der GIS-Parameter in
Abhängigkeit vom Basismodell eine unphysikalische Umkehr der Akkumulationsrichtung
auftreten kann. Beispielhaft wird dies in Abbildung 8.26 im Rahmen der in Kapitel 8
eingeführten NHP+GIS diskutiert. Es ist zu beachten, dass die Größenordnung der GIS-
Parameter maßgeblich vom gewählten Basismodell abhängt und eine allgemeingültige
Aussage nicht getroffen werden kann. Außerdem beeinflussen sich verschiedene Parameter
im Allgemeinen gegenseitig, weshalb die Parameterkalibrierung als iteratives Verfahren
verstanden werden sollte.

6.4 Kopplung mit der HP (HP+GIS)

Eine gekoppelte HP+GIS Formulierung könnte sich direkt durch die Kombination von
Gl. (6.6) mit Gl. (4.10) bis Gl. (4.14) unter Verwendung des Grads der Nichtlinearität Y
ergeben. Das resultierende Stoffmodell würde gegenüber der HP+IS bereits einige Vorteile
aufweisen. Zu diesen zählen ein verhindertes Overshooting der Scherfestigkeit (Y = 1) und
eine mittels Stoffmodellparametern steuerbare und nichtlineare Akkumulation.

Allerdings kann es bei dieser einfachen Kopplung der HP mit dem GIS-Konzept zu einem
Overshooting der ASBS kommen, wenn auf letzterer Y < 1 gilt. Dieser Fall tritt beispiels-
weise infolge einer isotropen bzw. einer ödometrischen Verformung auf. Unter Verwendung
der Zustandsmobilisierung S, siehe in Abschnitt 4.3 und Abschnitt 4.4.2, ist die Verhin-
derung des Overshootings der gesamten ASBS auch für Y ̸= 1 problemlos möglich. Für
alle asymptotischen Zustände gilt S = fd/f

A∗
d = S(kγ) = 1. Im Folgenden wird letztere

Art der Kopplung der HP mit der GIS betrachtet und das gekoppelte Modell als HP+GIS
bezeichnet. Die HP+GIS ergibt sich schließlich aus der Kombination von Gl. (6.6) mit
Gl. (4.15) bis Gl. (4.19) und Gl. (4.37).

Die HP+GIS wird im Folgenden anhand von Elementsimulationen diskutiert. Die Simula-
tionen werden mit den in Tabelle 6.1 gegebenen Parametersätzen für Karlsruher Feinsand
(KFS), Zbraslav Sand (ZS) und Hochstetten Sand (HS) durchgeführt. Details zu den Ma-
terialien sind Abschnitt 3.1 zu entnehmen. Die in Tabelle 6.1 gegebenen Parametersätze
wurden durch Erweiterung der in Tabelle 3.2 gelisteten Parameter der HP+IS aus der
Literatur gewonnen. Für Vergleichsberechnungen mit der HP bzw. der HP+IS wurde der
Parametersatz KFS-Wicht-2, siehe Tabelle 3.2, herangezogen.
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HP

φc ei0 ec0 ed0 hs n α β

.[◦] [-] [-] [-] [MPa] [-] [-] [-]

KFS 33,1 1,212 1,054 0,677 4000 0,27 0,14 2,5

ZS 34 1,027 0,893 0,520 111,746 0,346 0,15 2,2

HS 33 1,05 0,95 0,55 1000 0,25 0,25 1,0

IS/GIS GIS

R mR mT βR χR γχ χ0 χmax CΩ γΩ

.[-] [-] [-] [-] [-] [-] [-] [-] [-] [-]

KFS 10−4 2,2 1,1 0,1 5,5 2 1,27 1,92 48 1,0

ZS 10−4 5 2,5 0,1 4,0 1,7 0,8 1,5 45 1,0

HS 10−4 5 2 0,5 6 2 1,27 1,92 48 1,0

Tabelle 6.1: Stoffmodellparameter des Karlsruher Feinsands (KFS), des Zbraslav Sands (ZS)

und des Hochstetten Sands (HS) für die gekoppelte HP+GIS: (oben) Parameter der HP, (unten

links) geteilte Parameter der IS sowie der GIS und (unten rechts) zusätzliche Parameter der GIS

zur Berücksichtigung der zyklischen Vorbelastung

6.4.1 Verhindertes Overshooting asymptotischer Zustände

Wie bereits theoretisch beschrieben, tritt das Overshooting asymptotischer Zustände in
der HP+GIS nicht auf. Dies ist einer der wesentlichen Vorteile des GIS-Konzepts ge-
genüber der ursprünglichen IS-Formulierung und wird im Folgenden anhand von Ele-
mentsimulationen demonstriert.

6.4.1.1 Triaxialversuch mit Ent- und Wiederbelastung

Zunächst zeigt Abbildung 6.4 Simulationen drainierter Triaxialversuche an einer initial
mitteldichten Probe aus KFS mittels der HP, der HP+IS und der HP+GIS. Die Simula-
tionen starten von einem isotropen Anfangsspannungszustand mit p0 = 100 kPa und einer
initialen Porenzahl von e0 = 0, 819 (ID0 = 0, 62). Die intergranulare Dehnung wird isotrop
mit ha0 = hr0 = −R/

√
3 initialisiert (für HP+IS und HP+GIS) und es gilt Ω0 = 0 (für

HP+GIS). Neben einer monotonen Verformung werden zwei Ent- und Wiederbelastungen
von jeweils ∆σa = 50 kPa nach einer axialen Dehnung von −εa = 1% bzw. −εa = 10%
simuliert. Die resultierende Deviatorspannung q als Funktion der axialen Dehnung εa ist
in Abbildung 6.4a und der Dehnungspfad in Abbildung 6.4b dargestellt.

Die HP ohne ein Erweiterungsmodell zur Berücksichtigung der Effekte infolge zyklischer
Verformung (IS oder GIS) zeigt das bekannte Problem des Ratchetings. Die Steifigkeit
infolge der Wiederbelastung ist dabei sehr ähnlich (aufgrund der minimal veränderten
Porenzahl nicht exakt identisch) mit der Steifigkeit der Erstbelastung bei gleicher Devia-
torspannung, was gemäß Abbildung 6.4a zu einer deutlich zu weichen Materialantwort
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Abbildung 6.4: Simulationen von drainierten Triaxialversuchen mit zwei Ent- und Wiederbe-

lastungen mittels der HP, der HP+IS und der HP+GIS eines mitteldichten KFS (p0 = 100,

e0 = 0, 819, h0 = −R/
√
3δ und Ω0 = 0): a) Deviatorspannung q, b) volumetrische Dehnung

εvol, c) Komponente ha der intergranularen Dehnung und d) zyklische Vorbelastung Ω als Funk-

tion der axialen Dehnung εa

und zu großen irreversiblen Verformungen führt. In der HP+IS tritt kein Ratcheting auf.
Es zeigt sich hingegen bei den simulierten Entlastungen (∆εa ≈ R) das in Abschnitt 3.6.3
ausführlich diskutierte Overshooting, also eine signifikante Überschätzung der Deviator-
spannung, welche sich für eine fortgesetzte monotone Verformung ergeben würde. Zudem
ist in Abbildung 6.4b in der Simulation mit der HP+IS die Tendenz zur Auflockerung zu
erkennen. Diese Auflockerung kann, wie in Abschnitt 3.6.4 beschrieben, zu physikalisch
unzulässig lockeren Zuständen führen.

In der HP+GIS werden die unerwünschten Effekte Ratcheting und Overshooting deutlich
reduziert. Die Steifigkeit infolge der Wiederbelastung ist signifikant erhöht, wenngleich
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Abbildung 6.5: Simulation drainierter Triaxialversuche mit zwei Ent- und Wiederbelastungen

unterschiedlicher Größe mittels der HP+GIS eines mitteldichten KFS (p0 = 100 kPa, e0 = 0, 819,

h0 = −R/
√
3δ und Ω0 = 0): a) Deviatorspannung q und b) volumetrische Dehnung εvol als

Funktion der axialen Dehnung εa

die maximale Deviatorspannung den erwarteten Wert entlang des fortgesetzten monoto-
nen Pfads der Erstbelastung auf der ASBS (S = 1) nicht überschreitet. Für Zustände
innerhalb der ASBS (S < 1) wird der monotone Pfad zwar überschritten, allerdings nur
bis zur ASBS (S = 1), sodass keine Überschätzung der Scherfestigkeit erfolgt. Wie Ab-
bildung 6.4b zu entnehmen ist, tritt in der Simulation mit der HP+GIS keine Tendenz
zur Auflockerung auf, wodurch das GIS-Konzept auch das Auftreten unzulässig lockerer
Zustände gemäß Abschnitt 3.6.4 verhindert.

Abbildung 6.4c zeigt die entsprechende axiale Komponente der intergranularen Deh-
nung ha als Funktion der axialen Dehnung für die Simulationen mit der HP+IS und der
HP+GIS. Infolge der Ent- und Wiederbelastungen treten signifikante Änderungen der in-
tergranularen Dehnung auf und asymptotisch wird bei einer monotonen Verformung ρ = 1
erreicht. Aufgrund des vorgegebenen Spannungspfads ergeben beide Modelle leicht unter-
schiedliche Dehnungspfade, siehe Abbildung 6.4b, was die geringfügigen Unterschiede der
intergranularen Dehnung erklärt.

Die HP+GIS enthält als zusätzliche Zustandsvariable die zyklische Vorbelastungsvariable
Ω, deren Entwicklung in Abhängigkeit von der axialen Dehnung in Abbildung 6.4d dar-
gestellt ist. Infolge der Ent- und Wiederbelastungen zeigt sich jeweils ein geringfügiger
Aufbau von Ω. Die anschließende monotone Deformation baut die zyklische Vorbelastung
rasch ab, sodass asymptotisch Ω = 0 erreicht wird.

Das in der HP+GIS verhinderte Overshooting ist in Abbildung 6.5 detaillierter darge-
stellt, in der die Simulationen aus Abbildung 6.4 für verschiedene Größen der Entlastung
∆σa wiederholt wurden. Bei großen Entlastungen zeigt sich bei der Wiederbelastung nach
einer anfänglich erhöhten Steifigkeit dennoch ein geringes Ratcheting. Durch Anpassung
des Materialparameters R könnte dieser Effekt weiter reduziert werden. Es ist anzumer-
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Abbildung 6.6: Porenzahl e als Funktion des mittleren effektiven Drucks p in Simulationen

von Ödometerversuchen an KFS für einen Anfangszustand auf der ASBS (S = 1) und einen

Anfangszustand innerhalb der ASBS (S < 1) unter Berücksichtigung kleiner Ent- und Wieder-

belastungen für die HP und die a) HP+IS bzw. b) HP+GIS

ken, dass dieses Defizit bei großen Ent- und Wiederbelastungen auch in der HP+IS auf-
tritt. Ein Overshooting der ASBS tritt hingegen in der HP+GIS nie auf. Bei sehr kleinen
Störungen (∆σa = 1 kPa) verschwindet auch in der HP+GIS der Einfluss der GIS. Eine
verschwindend kleine Störung hat also keinen maßgebenden Einfluss auf die Simulations-
ergebnisse.

6.4.1.2 Ödometerversuch mit Ent- und Wiederbelastung

Neben dem verhinderten Overshooting der Scherfestigkeit ist in der HP+GIS auch das
Overshooting jedes weiteren asymptotischen Zustands verhindert. Letzteres wird in Ab-
bildung 6.6 anhand von Simulationen von Ödometerversuchen ausgehend von zwei ver-
schiedenen Anfangszuständen an KFS-Proben mit der HP, der HP+IS und der HP+GIS
dargestellt.

Der erste Anfangszustand befindet sich auf der ödometrischen NCL, also auf der ASBS
(S = 1, fd = fAd und σ⃗ = σ⃗A sowie σa = −1 kPa für ε̇a < 0 und ε̇r = 0). Dieser
Zustand wurde iterativ bestimmt. Für den zweiten Anfangszustand wird bei gleichem
anisotropen Spannungszustand eine initiale Porenzahl von e0 = 1, 0 gewählt, wodurch
S < 1 gilt und der Zustand innerhalb der ASBS liegt. Die intergranulare Dehnung wird
jeweils in axialer Richtung vollständig mobilisiert initialisiert (ha0 = −R) und es gilt
Ω0 = 0. Zusätzlich zur monotonen ödometrischen Kompression wurden Simulationen mit
drei Entlastungsstufen von ∆εa = R (HP+IS und HP+GIS) bzw. ∆εa = R mR (HP)
durchgeführt. Die resultierende Porenzahl e ist in Abhängigkeit vom mittleren effektiven
Druck p in Abbildung 6.6a für die Simulationen mit der HP+IS und in Abbildung 6.6b
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für die Simulationen mit der HP+GIS dargestellt. Die Simulationen mit der HP sind in
beiden Abbildungen als Referenz enthalten.

Zunächst ist zu erkennen, dass alle simulierten ödometrischen Kompressionskurven infolge
einer monotonen Verformung asymptotisch zur ödometrischen NCL tendieren, also kon-
vergieren. Letztere liegt zwischen den Grenzporenzahlen ei(p) und ec(p), siehe Kapitel 4.
In den Simulationen der HP ohne IS- bzw. GIS-Erweiterung zeigt sich infolge der Wieder-
belastungen nach den simulierten kleinen Entlastungen eine unrealistisch weiche Stoffmo-
dellantwort. Diesem Ratcheting wird mittels der IS- und der GIS-Erweiterung begegnet.
Es ist jedoch zu erkennen, dass Simulationen mit der HP+IS zu einem starken Over-
shooting des entsprechenden monotonen Pfades führen, wobei die logarithmische Achse
in Abbildung 6.6 zu beachten ist. Für Zustände innerhalb der ASBS (S < 1) tritt auch
in der HP+GIS ein gewisses Überschreiten des monotonen Pfades auf. Allerdings wird
die ödometrische NCL (ASBS) nur geringfügig überschritten und das Overshooting ist
im Vergleich zur HP+IS signifikant reduziert. Das gezeigte verhinderte Overshooting der
ödometrischen NCL ist auf die Berücksichtigung der Zustandsmobilisierung S = fd/f

A∗
d

in der HP+GIS zurückzuführen und wäre bei der Kopplung der HP mit der GIS unter
Verwendung des Grads der Nichtlinearität Y nicht möglich.

6.4.2 Steifigkeitsdegradations- und Dämpfungskurven

Der Sekantenschubmodul G und die dazugehörige Materialdämpfung D in Abhängigkeit
der Scherdehnungsamplitude γampl wurde im Rahmen der Darstellung des unrealistischen
Dämpfungsverhaltens in der HP+IS bereits in Abschnitt 3.6.7 diskutiert. Um den Sekan-
tenschubmodul G(γampl) und die DämpfungskurveD(γampl) in der HP+GIS zu berechnen,
wurden, analog zu den Simulationen aus Abschnitt 3.6.7, zyklische Einfachscherversuche
betrachtet.

Abbildung 6.7 zeigt die Simulationsergebnisse mittels der HP+IS und der HP+GIS für
KFS. Ergänzend wurde für die HP+GIS der Parametersatz des Zbraslav Sands (ZS) und
des Hochstetten Sands (HS) herangezogen. In allen Simulationen wurde ein isotroper
Anfangsspannungszustand von p0 = 100 kPa, eine Porenzahl von e0 = 0, 8655 (ID0 =
0, 5) für KFS, e0 = 0, 6915 (ID0 = 0, 5) für ZS bzw. e0 = 0, 6 (ID0 = 0, 875) für HS,
eine intergranulare Dehnung h0 = 0 und Ω0 = 0 initialisiert. Abbildung 6.7a zeigt den
resultierenden normalisierten Schubmodul G/Gmax und Abbildung 6.7b die entsprechende
MaterialdämpfungD als Funktion der Scherdehnungsamplitude γampl. Die Größen wurden
aus der hysteretischen Spannungs-Dehnungs-Kurve im fünften Zyklus ermittelt.

Bei den Simulationen mit der HP+GIS ergeben sich im Vergleich zur HP+IS sehr ähnliche
Kurven, was dem allgemein erwarteten Verhalten des Bodens entspricht. Basierend auf
einer hohen Steifigkeit und vernachlässigbarer Dämpfung bei kleinen Dehnungen nimmt
mit zunehmender Scherdehnungsamplitude die Steifigkeit ab und die Dämpfung zu. So-
wohl für die Parameter des KFS als auch für den ZS ergeben sich physikalisch sinnvolle
Verläufe.
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Abbildung 6.7: Simulationen von zyklischen Einfachscherversuchen mit der HP+IS und der

HP+GIS: a) Sekantenschubmodul G(γampl) und b) Dämpfung D(γampl) in Abhängigkeit von

der Scherdehnungsamplitude γampl
12

Allerdings konnte in der HP+GIS für den synthetisch generierten Parametersatz des Hoch-
stetten Sands (HS) ein lokales Maximum der Dämpfung gefunden werden. Dieses Defizit
wurde in Abschnitt 3.6.7 bereits für die HP+IS dokumentiert. Die HP+GIS kann ent-
sprechend nicht alle Defizite der HP+IS vollständig beheben bzw. bedingt eine sorgfältige
Parameterkalibrierung.

6.4.3 Akkumulation infolge zyklischer undrainierter Scherung

Akkumulative Effekte infolge zyklischer Verformungen im Boden stellen eine große Her-
ausforderung für die konstitutive Modellierung dar. In der HP+IS treten Akkumulati-
onseffekte hauptsächlich als Nebenprodukte der Berechnung auf und können nur indirekt
beeinflusst werden. Es sei darauf hingewiesen, dass, wie in Abschnitt 3.4 beschrieben,
aufgrund der hypoelastischen linearen Steifigkeit L sowohl in der HP+IS als auch in der
HP+GIS künstliche Akkumulationseffekte zu erwarten sind.

Unter der Annahme, dass die künstlichen Akkumulationseffekte vernachlässigt werden
können, kann die Akkumulationsrate in der HP+GIS durch Anpassung der Funktion
γ(Ω) gesteuert werden. γ(Ω) ist in Gl. (6.7) definiert und wird entscheidend durch den
Materialparameter γχ beeinflusst.

Zur Veranschaulichung der steuerbaren Akkumulation in der HP+GIS wird ein zyklischer
undrainierter Triaxialversuch mit einer vorgegebenen Dehnungsamplitude von εampl

a =
5 · 10−4 betrachtet. Die Simulationen starten von einem isotropen Spannungszustand mit
p0 = 200 kPa, einer Porenzahl von e0 = 0, 8655 (ID0 = 0, 5). Weiter gilt h0 = 0 und
Ω0 = 0. Es werden fünf Zyklen simuliert. Abbildung 6.8a zeigt den resultierenden effek-
tiven Spannungspfad im pq-Diagramm für Simulationen mit der HP, der HP+IS und der
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Abbildung 6.8: Undrainierte zyklische Triaxialversuche mit einer vorgegebenen Dehnungsam-

plitude von εampl
a = 5 · 10−4 an KFS simuliert mit der HP, der HP+IS und der HP+GIS: a)

effektiver Spannungspfad im pq-Diagramm und b) Deviatorspannung q als Funktion der axialen

Dehnung εa

HP+GIS. In letzterem Fall werden zwei verschiedene Werte des Parameters γχ verwen-
det (γχ = 1, 5 und γχ = 2, 0). Die resultierenden Spannungs-Dehnungs-Kurven sind in
Abbildung 6.8b dargestellt.

Erneut ist die übermäßige Akkumulation (Ratcheting) der HP zu erkennen. Die HP+IS
führt hingegen zu einer realistischeren Akkumulation und zu hysteretischen Spannungs-
Dehnungs-Kurven mit erhöhter Steifigkeit unmittelbar nach einer Belastungsrichtungs-
umkehr. Die Akkumulationsrate in der HP+IS kann jedoch nicht kontrolliert werden.
Die HP+GIS zeigt sehr ähnliche Simulationsergebnisse wie die HP+IS, allerdings können
die Akkumulationseffekte durch Anpassung des Materialparameters γχ direkt beeinflusst
werden, siehe Abbildung 6.8a. Größere Werte von γχ führen zu geringeren Akkumulati-
onseffekten.

6.4.4 Einfluss einer zyklischen Vorbelastung

Akkumulative Effekte im Boden aufgrund zyklischer Belastung sind bezüglich der Anzahl
der Belastungszyklen N stark nichtlinear. Dieser Effekt der zyklischen Vorbelastung ist
beispielsweise in den bekannten S-förmigen Kurven der Porenwasserdruckakkumulation
in undrainierten Triaxialversuchen mit Spannungszyklen zu beobachten [30, 31, 194] und
wird im GIS-Konzept durch die zusätzliche skalare Zustandsvariable Ω berücksichtigt,
siehe Gl. (6.7) bis Gl. (6.9).

Um den Effekt von Ω zu demonstrieren, werden zwei zyklische undrainierte Triaxial-
versuche an mitteldichten KFS-Proben (TCUI11 und TCUI13 aus [194]) mit jeweils
p0 = 200 kPa, q0 = 0 und 0, 842 ≤ e0 ≤ 0, 832 (0, 56 ≤ ID0 ≤ 0, 59) betrachtet. Die
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Abbildung 6.9: Experimentelle Daten (TCUI11 und TCUI13 [194]) und Simulationen mit der

HP+IS und der HP+GIS undrainierter zyklischer Triaxialversuche an mitteldichten KFS-Proben

mit vorgegebener Spannungsamplitude (40 kPa ≤ qampl ≤ 60 kPa): a) Akkumulation des nor-

mierten Porenwasserdrucks pf/p0 und b) Entwicklung der Zustandsvariable Ω mit der Anzahl

der Zyklen N

beiden Versuche unterscheiden sich in der aufgebrachten Deviatorspannungsamplitude
von qampl = 40 kPa (TCUI11) bzw. qampl = 60 kPa (TCUI13), wodurch die Anzahl der
aufgebrachten Zyklen bis zum erstmaligen Erreichen der Bodenverflüssigung (p = 0) stark
abweicht. Während sich letztere beim Versuch TCUI13 bereits nach 15 Zyklen einstellt,
verflüssigt der Versuch TCUI11 erst nach 146 Zyklen.

Beide Versuche wurden sowohl mit der HP+IS als auch mit der HP+GIS modelliert, wobei
eine intergranulare Dehnung von h0 = −0, 8 R/

√
3δ und Ω0 = 0 initialisiert wurde. Die

entsprechende Entwicklung des normalisierten Porenwasserdrucks in Abhängigkeit von
der Anzahl der aufgebrachten Zyklen in den Experimenten sowie den Simulationen ist in
Abbildung 6.9a dargestellt. Sowohl die HP+IS als auch die HP+GIS zeigen bei geringerer
Spannungsamplitude bis zum Erreichen der Bodenverflüssigung eine höhere Zyklenzahl.
Allerdings ist die Akkumulationsrate als Funktion der Zyklenzahl in den Simulationen mit
der HP+IS nahezu konstant, sodass die ausgeprägt nichtlineare Akkumulation im Ver-
such mit der kleinen Spannungsamplitude weder qualitativ noch quantitativ reproduziert
werden kann.

Im Gegensatz dazu zeigt die Berechnung mit der HP+GIS einschließlich der zyklischen
Vorbelastung Ω die erwartete und experimentell beobachtete S-förmige Kurve der Po-
renwasserdruckakkumulation. Die Variation der Akkumulationsrate in der HP+GIS ist
primär auf die Zustandsvariable Ω zurückzuführen. Ihre Entwicklung ist in Abbildung 6.9b
dargestellt. Je geringer Ω ist, desto schneller verläuft die Akkumulation. Ω ist aufgrund
der entsprechenden Initialisierung zu Beginn der Simulation und aufgrund der großen
Dehnungsamplituden am Ende der Simulation klein, was unter anderem zu einer schnel-
leren Akkumulation führt. Dazwischen kommt es aufgrund kleiner Dehnungsamplituden
zu einem Aufbau von Ω, wodurch sich die Akkumulationsrate reduziert.
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Abbildung 6.10: Einfluss der Initialisierung der intergranularen Dehnung h0 und der zyklischen

Vorbelastungsvariable Ω0 in der HP+GIS auf einen monotonen undrainierten Triaxialversuch: a)

effektiver Spannungspfad im pq-Diagramm und b) Spannungs-Dehnungs-Pfad im qεa-Diagramm

6.4.5 Initialisierung der Zustandsvariablen im GIS-Konzept

Der Einfluss der Initialisierung der intergranularen Dehnung in der HP+IS wurde in Ab-
schnitt 3.6.1 diskutiert. In Analogie wird nun der ganz ähnliche Einfluss der Initialisierung
von h und Ω in der HP+GIS betrachtet. Es wird der gleiche undrainierte monotone Triaxi-
alversuch (p0 = 100 kPa und e0 = 0, 8 (ID0 = 0, 67)) an KFS aus Abschnitt 3.6.1 mit
den Initialisierungen INI1 (h = −R/

√
3δ), INI2 (hv = −R) und INI3 (h = 0) simuliert.

Für jeden dieser Fälle wird sowohl Ω0 = 0 als auch Ω0 = 1 betrachtet. Der resultierende
effektive Spannungspfad im pq-Diagramm ist in Abbildung 6.10a und die resultierende
Spannungs-Dehnungs-Kurve im qεa-Diagramm ist in Abbildung 6.10b dargestellt.

Im Falle von INI1 und INI2 ist die intergranulare Dehnung jeweils vollständig mobilisiert
(ρ = 1). Die folgende undrainierte Scherung entspricht einer Belastungsrichtungsumkehr
von 90 bzw. 35 Grad. Infolgedessen gilt zu Beginn der Simulation unter anderem auf-
grund des Parameters mT = 1, 1 des KFS aus Tabelle 6.1 k ≈ 1, und die HP+GIS verhält
sich nahezu identisch wie das Basismodell der HP. Es zeigt sich eine starke Relaxation
des mittleren effektiven Drucks zu Beginn der Simulation. Aufgrund von k ≈ 1 hat die
Initialisierung der zyklischen Vorbelastung Ω0 praktisch keinen Einfluss auf diese Simula-
tionsergebnisse.

Für den Fall von INI3 mit h0 = 0 gilt hingegen zu Beginn der Simulation k = mR,
wodurch das Modell eine erhöhte Steifigkeit und reduzierte irreversible Verformungen lie-
fert. Dieser Effekt kann zusätzlich durch die Initialisierung der zyklischen Vorbelastung
verstärkt werden. Wie auch in der HP+IS ergibt sich ein großer Bereich möglicher Simu-
lationsergebnisse nur durch die Initialisierung von h bzw. Ω. Es sei auf die Diskussion in
Abschnitt 3.6.1 verwiesen.
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6.5 Kopplung mit der ACST (HP+GIS+ACST)

Wie im vorherigen Abschnitt erläutert, stellt die HP+GIS bereits eine signifikante Wei-
terentwicklung gegenüber der ursprünglichen HP+IS dar. Allerdings berücksichtigt auch
die HP+GIS den Einfluss der anisotropen Mikrostruktur (Fabric) auf das mechanische
Verhalten des Bodens nicht. Daher wird die HP+GIS im folgenden Abschnitt mit der
anisotropen kritischen Zustandstheorie (engl. anisotropic critical state theory (ACST))
gekoppelt. Das daraus resultierende Modell, die HP+GIS+ACST, wurde bereits in [107]
veröffentlicht. Die vollständigen konstitutiven Gleichungen der HP+GIS+ACST ergeben
sich aus den vorangegangenen Kapiteln und sind in Anhang A.1 zusammengefasst.

Es zeigt sich, dass eine geringfügige Modifikation von Gl. (5.16) zu

eA = eA0 exp

[
−
(
3p

hs

)n]
/ k (6.14)

zu besseren Simulationsergebnissen führt.

Es ist erwähnenswert, dass sich für die Parameter k1 = k2 = λ = 0 aus der HP+GIS+ACST
direkt die HP+GIS ergibt, da so der Fabric-Einfluss im Stoffmodell deaktiviert ist. Der
Einfluss der zyklischen Vorbelastung lässt sich durch χ0 = χmax = 1 ebenfalls deaktivie-
ren.

Im Folgenden wird die HP+GIS+ACST anhand von Elementsimulationen und deren
Vergleich mit Simulationen der HP+IS sowie mit experimentellen Daten analysiert. Der
überwiegend verwendete KFS wurde in Abschnitt 3.1 beschrieben. Zusätzlich zum KFS
werden auch Simulationen mit dem Fraser River Sand (FRS) durchgeführt. Die zu-
gehörigen Parametersätze sind Tabelle 6.2 zu entnehmen.

In den nachfolgenden Elementsimulationen ist der initiale Spannungszustand σ0 sowie die
initiale Porenzahl e0 entsprechend den experimentell bestimmten Werten gewählt. Zudem
wird in den Simulationen für den KFS eine initial teilweise mobilisierte intergranulare
Dehnung in isotroper Richtung mit h0 = −0,77R/

√
3δ gewählt. Für die Simulationen des

FRS wurde hingegen h0 = −0,5R/
√
3δ initialisiert. Die Fabric wurde gemäß Gl. (5.7)

zu F0 = 0,5 initialisiert, was mit Initialisierungen aus der Literatur übereinstimmt [41,
42, 80, 142, 209]. Die übrigen Zustandsvariablen wurden zu Null initialisiert (Ω0 = 0,
H0 = 0). Die Zustandsvariablen der HP+IS wurden entsprechend initialisiert.

6.5.1 Anisotropie infolge der Sedimentationsrichtung

Das mechanische Verhalten von Sand kann durch die Richtung der Belastung in Bezug auf
die Sedimentationsrichtung erheblich beeinflusst werden. Dieser Anisotropieeffekt kann
durch einen Winkel α, welcher als kleinstmöglicher Winkel zwischen der Belastungs- und
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KFS FRS

H
P
+
IS

(K
F
S
-W

ic
h
t-
2
)

H
P
+
G
IS
+
A
C
S
T

H
P
+
G
IS
+
A
C
S
T

H
P

φc 33,1◦ 35◦

hs 4000 MPa 3000 MPa

n 0,27 0,33

ei0 1,212 1,2

ec0 1,054 1,029

ed0 0,677 0,69

α 0,14 0,17 0,4

β 2,5 1,2

G
IS
/I
S

R 0,0001 0,0003

mR 2,2 2,2

mT 1,1 1,1

βR 0,1 0,2 0,25

χR 5,5 2

G
IS

γχ 2 4

χ0 1,27 1††

χmax 3,22 1††

CΩ 60 0††

γΩ 1 1††

A
C
S
T

k1 0,05 0,14

k2 0,4 0,6

µ0 25 500

λ 0† 0,38

m 15 17

αD 0,3 0

cr 1††† 1†††

† anisotrope Festigkeit deaktiviert
†† zyklische Vorbelastung deaktiviert
††† Abbau der Dilatanzgeschichte nicht kalibriert

Tabelle 6.2: Parametersätze der Stoffmodelle HP+IS und HP+GIS+ACST für Karlsruhe Fein-

sand (KFS) und für Fraser River Sand (FRS)
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Abbildung 6.11: Definition des Winkels α (kleinstmöglicher Winkel zwischen der Sedimentati-

onsrichtung und der/einer Richtung der betragsmäßig maximalen Hauptspannung)
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Abbildung 6.12: Einfluss des Winkels α auf monotone undrainierte Triaxialversuche an KFS in

Simulationen mittels der HP+GIS+ACST (p0 = 200 kPa, q = 0, e0 = 0, 9): a) Deviatorspannung

q in Abhängigkeit von der axialen Dehnung εa und b) effektiver Spannungspfad im pq-Diagramm

Sedimentationsrichtung definiert ist, quantifiziert werden. Die Definition von α ist in Ab-
bildung 6.11 unter axialsymmetrischen Bedingungen visualisiert. Wenn die betragsmäßig
maximale Hauptspannung entlang der Sedimentationsachse ausgerichtet ist (α = 0◦),
weist eine Bodenprobe im Allgemeinen eine größere Steifigkeit und Festigkeit auf, da die
Hauptspannungsrichtung mit der bevorzugten Ausrichtung der Kontaktnormalen überein-
stimmt und senkrecht zur Schichtung steht. Im Gegensatz dazu verhalten sich die Proben
weicher und zeigen eine geringere Festigkeit, wenn die Richtung der betragsmäßig maxi-
malen Hauptspannung orthogonal zur Sedimentationsachse (parallel zur Schichtung) mit
α = 90◦ verläuft [4, 126, 128, 212].

Experimentelle Daten für KFS zeigen, wohl aufgrund der relativ runden Kornform, nur
einen geringen Einfluss von α auf die Versuchsergebnisse [184]. Der Einfluss von α in der
HP+GIS+ACST kann dennoch demonstriert werden. Hierzu werden undrainierte triaxia-
le Kompressions- und Extensionsversuche mit einem isotropen Anfangsspannungszustand
p0 = 200 kPa und einer initial mitteldichten Probe e0 = 0, 9 (ID0 ≈ 0, 4) unter Variation
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Abbildung 6.13: Vergleich zwischen experimentellen Daten [171] und Simulationen mit der

HP+GIS+ACST undrainierter Hohlzylindertriaxialversuche an FRS mit b = 0 für variierende

Winkel α: a) und b) effektiver Spannungspfad im pq-Diagramm und c) und d) Deviatorspannung

als Funktion der Scherdehnung γ

von α simuliert. Zusätzlich zu F0 = 0, 5 wurde der Fall F0 = 0 betrachtet. Abbildung 6.12
zeigt anhand der Deviatorspannung q als Funktion der axialen Dehnung εa sowie dem
effektiven Spannungspfad im pq-Diagramm, dass die HP+GIS+ACST qualitativ den be-
schriebenen Einfluss von α auf das mechanische Verhalten von Sand bei triaxialer Kom-
pression sowie triaxialer Extension reproduziert, wenngleich die Effekte, wie von [184]
gezeigt, für KFS gering sind. Bei größeren Werten von α verhält sich die Probe weicher
und kontraktanter. Die Anisotropie kann durch einen erhöhten Wert des Parameters k1
verstärkt werden. Der Einfluss von α verschwindet bei einer isotropen initialen Fabric
F0 = 0.

Ein viel stärkerer Einfluss des Winkels α wurde experimentell in undrainierten Hohlzylin-
dertriaxialversuchen an Fraser River Sand (FRS) von Uthayakumar et al. [171] dokumen-
tiert. Abbildung 6.13 zeigt die Deviatorspannung q = σ3 − σ1 als Funktion des mittleren
effektiven Drucks p und der Scherdehnung γ = ε3 − ε1 für Tests mit p0 = 200 kPa,
ID0 = 0, 3 und einem konstanten Wert des Parameters b = (σ2−σ3)/(σ1−σ3) = 0 (Lode-
Winkel θ = 0◦) für verschiedene Winkel α. Die Versuche wurden bereits in Abbildung 3.7
gezeigt. Dabei bezeichnen σ1, σ3, ε1 und ε3 Hauptspannungen bzw. Hauptdehnungen.
Das ausgeprägte anisotrope Verhalten der Probe ist deutlich zu erkennen. Je größer α,
desto kontraktanter verhält sich der Boden. Die Simulationen mit der HP+GIS+ACST,
die ebenfalls in Abbildung 6.13 dargestellt sind, können die experimentellen Ergebnisse
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Abbildung 6.14: Vergleich zwischen experimentellen Daten [194] und Simulationen mit der

HP+IS und der HP+GIS+ACST für monotone undrainierte Triaxialversuche (Kompression)

unterschiedlicher Dichten an KFS (TMU2: ID0 = 0, 64; TMU5: ID0 = 0, 29; TMU6: ID0 =

0, 87): a) bis c) effektiver Spannungspfad im pq-Diagramm und d) bis e) Deviatorspannung q als

Funktion der axialen Dehnung εa

gut reproduzieren und erfassen das diskutierte anisotrope Verhalten bezüglich der Se-
dimentationsrichtung zufriedenstellend. Vergleichsberechnungen mit der HP+IS können
den Effekt von α aufgrund des fehlenden Fabric-Tensors nicht reproduzieren. Daher wird
auf deren Darstellung verzichtet.

6.5.2 Monotone undrainierte Triaxialversuche

Monotone undrainierte Triaxialversuche an KFS mit einem isotropen Anfangsspannungs-
zustand von p0 = 200 kPa und unterschiedlichen Dichten sind in Abbildung 6.14 für eine
triaxiale Kompression und in Abbildung 6.15 für eine triaxiale Extension gezeigt. Dabei
wird jeweils die Deviatorspannung q = σr−σa als Funktion des mittleren effektiven Drucks
p und der axialen Dehnung εa betrachtet. Die Versuchsdaten aus [194] zeigen eine ausge-
prägte Dichteabhängigkeit. Lockere Proben verhalten sich weicher und kontraktanter als
dichte Proben. Außerdem zeigen die Proben bei einer triaxialen Extension im Allgemei-
nen bei der vorliegenden Probenpräparationsmethode ein kontraktanteres und weicheres
Verhalten als bei einer triaxialen Kompression.
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Abbildung 6.15: Vergleich zwischen experimentellen Daten [194] und Simulationen mit der

HP+IS und der HP+GIS+ACST für monotone undrainierte Triaxialversuche (Extension) unter-

schiedlicher Dichten an KFS (TMU8: ID0 = 0, 53; TMU11: ID0 = 0, 24; TMU12: ID0 = 0, 94): a)

bis c) effektiver Spannungspfad im pq-Diagramm und d) bis e) Deviatorspannung q als Funktion

der axialen Dehnung εa

Alle sechs monotonen Versuche wurden mit der HP+GIS+ACST nachgerechnet. Zu Ver-
gleichszwecken wurden außerdem Simulationen mit der HP+IS durchgeführt. Die Simula-
tionen zeigen, dass beide Stoffmodelle das Bodenverhalten qualitativ reproduzieren. Die
HP+GIS+ACST erfasst die Versuchsergebnisse jedoch qualitativ und quantitativ zutref-
fender9. Das Modell reproduziert das steifere und weniger kontraktante Verhalten dichter
Proben im Vergleich zu lockeren Proben. Die Unterschiede zwischen triaxialer Kompres-
sion und Extension werden ebenfalls qualitativ reproduziert, wobei sich die Proben in-
folge einer triaxialen Extension kontraktanter verhalten. Dieser Unterschied lässt sich
hauptsächlich auf die im Modell enthaltene ACST in Kombination mit der Initialisierung
des Fabric-Tensors gemäß Gl. (5.7) zurückführen. Zu Beginn einer triaxialen Kompression
gilt bei der gewählten Initialisierung des Tensors F für die Anisotropievariable A > 1,
während zu Beginn einer triaxialen Extension A < 1 gilt, was im letzteren Fall zu einem
kontraktanteren Verhalten führt. Die HP+IS kann den Unterschied zwischen Extensi-
on und Kompression nur bedingt reproduzieren. Quantitativ wird jedoch auch mit der
HP+GIS+ACST der Abbau der mittleren effektiven Spannungen infolge einer triaxialen

9Mittels einer anderen Initialisierung der intergranularen Dehnung könnten die HP+IS Simulatio-

nen eventuell näher an die experimentellen Ergebnisse angepasst werden, es sei auf die Diskussion zur

Initialisierung der intergranularen Dehnung in Abschnitt 3.6.1 hingewiesen.
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Abbildung 6.16: Vergleich zwischen experimentellen Daten und Simulationen mit der HP+IS

und der HP+GIS+ACST für drainierte Triaxialversuche an lockeren Proben an KFS (TMD3:

p0 = 200 kPa, ID0 = 0, 21 [194] und TMD3o: p0 = 200 kPa, ID0 = 0, 33): a) bis c) Deviator-

spannung q und d) bis e) volumetrische Dehnung εv als Funktion der axialen Dehnung εa

Extension unterschätzt.

6.5.3 Monotone drainierte Triaxialversuche

Ergebnisse für monotone drainierte triaxiale Kompressionsversuche an KFS sind für initial
lockere Proben in Abbildung 6.16 und für initial dichten Proben in Abbildung 6.17 dar-
gestellt. Der anfängliche Spannungszustand ist isotrop mit p0 = 200 kPa. Neben den rein
monotonen Versuchen aus [194] (TMD3 und TMD23) wurde im Rahmen der vorliegenden
Arbeit für jede Dichte jeweils ein weiterer Versuch (TMD3o und TMD23o) durchgeführt,
bei dem die monotone Verformung durch fünf kleine Ent- und Wiederbelastungsschritte
unterbrochen wurde.10 Die drainierten Entlastungen von ∆q = 20 kPa wurden jeweils
nach einer axialen Dehnung von −2%, −4%, −6%, −8% und −10% aufgebracht. Abbil-
dung 6.16 und Abbildung 6.17 zeigen die Deviatorspannung q sowie die volumetrische
Dehnung εv als Funktion der axialen Dehnung εa.

10Die Versuchsrandbedingungen entsprechen den monotonen Versuchen aus Abschnitt 3.5 und denen

der monotonen Versuche.
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Abbildung 6.17: Vergleich zwischen experimentellen Daten und Simulationen mit der HP+IS

und der HP+GIS+ACST für drainierte Triaxialversuche an dichten Proben an KFS (TMD23:

p0 = 200 kPa, ID0 = 0, 92 [194] und TMD23o: p0 = 200 kPa, ID0 = 0, 93): a) bis c) Deviator-

spannung q und d) bis e) volumetrische Dehnung εv als Funktion der axialen Dehnung εa

Die lockere Probe (TMD3) zeigt, wie zu erwarten, keine Peak-Festigkeit und tendiert zur
asymptotischen Deviatorspannung. Dabei stellt sich ein leicht kontraktantes volumetri-
sches Verhalten ein, siehe Abbildung 6.16. Die dichte Probe (TMD23) hingegen erreicht
zunächst eine maximale Deviatorspannung (Peak-Festigkeit), bevor die Deviatorspannung
ebenfalls zu einem asymptotischen Wert tendiert. Nach initialer Kontraktanz stellt sich
eine ausgeprägte Volumenvergrößerung (Dilatanz) ein, siehe Abbildung 6.17. Die dichte
Probe verhält sich im Vergleich zur lockeren auch deutlich steifer. Die beiden Versuche
mit den zusätzlichen fünf kleinen Entlastungen (TMD3o und TMD23o) liefern nahezu
identische Versuchsdaten wie die Versuche mit rein monotoner Verformung. Die erkenn-
baren geringen Unterschiede lassen sich primär auf die unterschiedlichen Anfangsdichten
zurückführen.

Die Nachrechnung mit beiden Stoffmodellen liefert für die rein monotonen Versuche ver-
gleichbare Ergebnisse. In beiden Fällen wird die Dilatanz der dichten Probe unterschätzt,
und die maximale Deviatorspannung tritt bei einer geringeren axialen Dehnung als in
den Experimenten auf. Diese Abweichungen lassen sich auf Defizite der jeweils zugrunde
gelegten HP zurückführen (vgl. Kapitel 3).

Bei der Nachrechnung der Versuche mit den kleinen Entlastungsstufen ist in den Simula-
tionen mit der HP+IS unabhängig von der Dichte ein signifikanter Einfluss der Ent- und
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Abbildung 6.18: Entwicklung der a) Anisotropievariable (FAV) A, b) der Komponenten des

Fabric-Tensors F und c) des skalaren Faktors k in den Simulationen des Versuchs TMD23o mit

der HP+GIS+ACST aus Abbildung 6.17

Wiederbelastungen zu erkennen. Es tritt das in Abschnitt 3.6.3 diskutierte Overshooting
auf, was in diesem Fall zu einer dramatischen Überschätzung der Scherfestigkeit führt.
Neben der Auswirkung auf den Spannungs-Dehnungs-Pfad wirkt sich das Overshooting
auch auf das volumetrische Verhalten der Probe aus. In den Simulationen mit der HP+IS
unter Berücksichtigung der Ent- und Wiederbelastungsstufen ergibt sich demzufolge un-
abhängig von der initialen Dichte der Probe eine unrealistische Auflockerung, welche, wie
in Abschnitt 3.6.4 gezeigt, zu physikalisch unzulässig lockeren Zuständen führen kann.

Wie in Abschnitt 6.4 theoretisch erklärt, löst das GIS-Konzept das Problem des Overshoo-
tings der ASBS. Die Simulationen mit der HP+GIS+ACST zeigen entsprechend sowohl
bei den lockeren als auch bei den dichten Proben realistische Simulationsergebnisse. We-
der das Overshooting noch die unrealistische Auflockerung tritt in der HP+GIS+ACST
auf.

Für die Simulation der dichten Probe mit der HP+GIS+ACST unter Berücksichtigung
der Ent- und Wiederbelastungen (TMD23o) zeigt Abbildung 6.18 die Anisotropievaria-
ble A, die einzelnen Komponenten des Fabric-Tensors Fij und den skalaren Faktor k als
Funktion der axialen Dehnung εa. Aufgrund des dichten Bodens zeigt sich ein Peakwert
der Anisotropievariablen A mit A > 1. Basierend auf der Diskussion in Abschnitt 5.4
wird der Parametersatz so gewählt, dass der Peakwert nicht besonders ausgeprägt ist.
Asymptotisch wird der kritische Zustand mit Aasy,crit = ∥F asy,crit∥ = 1 angestrebt. Auf-
grund der axialsymmetrischen Verformung und der entsprechenden Initialisierung von F0

gilt Fa = −2 Fr während der gesamten Verformung. Infolge einer 180◦ Umkehr in der
Belastungsrichtung springt die Anisotropievariable von A1 auf A2 = −A1. Die einzel-
nen Komponenten der Fabric zeigen jedoch einen kontinuierlichen Verlauf ohne Sprünge.
Ebenso weist der Faktor k Sprünge infolge der Umkehr der Belastungsrichtung auf, obwohl
sich die zugehörige Zustandsgröße h kontinuierlich entwickelt (nicht dargestellt).
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Abbildung 6.19: Vergleich zwischen experimentellen Daten [193] und Simulationen mit der

HP+IS und der HP+GIS+ACST eines zyklischen undrainierten Triaxialversuchs an einer locke-

ren Probe aus KFS (TCUE15: ID0 = 0, 29): a) bis c) effektiver Spannungspfad im pq-Diagramm

und d) bis e) Deviatorspannung q als Funktion der axialen Dehnung εa

6.5.4 Zyklische undrainierte Triaxialversuche mit vorgegebener

Dehnungsamplitude

Im Folgenden werden zyklische undrainierte Triaxialversuche mit einer vorgegebenen
axialen Dehnungsamplitude von εampl

a = 10−2 betrachtet. Die Ergebnisse sind in Ab-
bildung 6.19 für eine lockere Probe, in Abbildung 6.20 für eine mitteldichte Probe und
in Abbildung 6.21 für eine dichte Probe dargestellt. Alle Versuche beginnen von einem
isotropen Anfangsspannungszustand mit p0 = 200 kPa. Die Abbildungen zeigen den ef-
fektiven Spannungspfad im pq-Diagramm sowie die Deviatorspannung q als Funktion der
axialen Dehnung εa.

Unabhängig von der Dichte der Probe führt die zyklische Belastung zum Erreichen eines
verflüssigten Zustands (p = q = 0). Die Dichte hat jedoch einen erheblichen Einfluss auf
die Anzahl der Zyklen, die bis zur Verflüssigung erforderlich sind: Je dichter die Probe,
desto mehr Zyklen können vor dem Erreichen der Bodenverflüssigung aufgebracht werden.
Die maximale Deviatorspannung wird am Ende der ersten Belastungsphase (1/4 Zyklus)
erreicht und steigt mit zunehmender Dichte. Mit zunehmender Anzahl von Zyklen nimmt
der mittlere effektive Druck ab, was zu einer erheblichen Reduktion der Steifigkeit führt
(Barotropie). Alle Proben verlieren daher am Ende vollständig ihre Schubsteifigkeit.
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Abbildung 6.20: Vergleich zwischen experimentellen Daten [193] und Simulationen mit der

HP+IS und der HP+GIS+ACST eines zyklischen undrainierten Triaxialversuchs an einer mit-

teldichten Probe aus KFS (TCUE16: ID0 = 0, 66): a) bis c) effektiver Spannungspfad im pq-

Diagramm und d) bis e) Deviatorspannung q als Funktion der axialen Dehnung εa

Die Nachrechnung des Versuchs an lockerem Sand mit den beiden Stoffmodellen, welche
in Abbildung 6.19 dargestellt sind, zeigt qualitativ eine gute Übereinstimmung mit den
experimentellen Daten. Sowohl mit der HP+IS als auch mit der HP+GIS stellt sich jeweils
ein Zustand mit verschwindenden bzw. sehr geringen mittleren effektiven Druck ein. Die
HP+IS liefert im Vergleich zur HP+GIS+ACST jedoch quantitativ weniger zutreffende
Ergebnisse. Zum einen wird mit der HP+IS die erreichte maximale Deviatorspannung in
der ersten Belastungsphase (1/4 Zyklus) überschätzt und zum anderen stellt sich nur bei
der Simulation mit der HP+IS ein Zustand mit einem geringen, jedoch keinem vollständig
verschwindenden mittleren effektiven Druck ein. Wie in Abbildung 6.19e zu erkennen, er-
reicht die Modellierung mit der HP+IS daher auch keine vollständig verschwindende Stei-
figkeit. Die HP+GIS+ACST reproduziert die Versuchsdaten hingegen auch quantitativ
zutreffend.

Die genannten Probleme der Simulation mittels der HP+IS verstärken sich, sofern dichtere
Proben betrachtet werden, siehe Abbildung 6.20 und Abbildung 6.21. Wie bereits in
Abschnitt 3.6.2 diskutiert, reproduziert die HP+IS das Verhalten der dichten Probe infolge
zyklischer Verformungen qualitativ nicht zutreffend. Wie in Abbildung 6.21b zu erkennen,
erhöht sich der mittlere effektive Druck in der Simulation der dichten Probe infolge der
Zyklen sogar. Diese Erhöhung des mittleren effektiven Drucks führt zudem zu der nicht
zutreffenden Spannungs-Dehnungs-Beziehungen in Abbildung 6.21e.
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Abbildung 6.21: Vergleich zwischen experimentellen Daten [193] und Simulationen mit der

HP+IS und der HP+GIS+ACST eines zyklischen undrainierten Triaxialversuchs an einer dich-

ten Probe aus KFS (TCUE17: ID0 = 0, 94): a) bis c) effektiver Spannungspfad im pq-Diagramm

und d) bis e) Deviatorspannung q als Funktion der axialen Dehnung εa

Im Gegensatz dazu zeigen die Simulationen mit der HP+GIS+ACST realistische Er-
gebnisse und eine vollständige Bodenverflüssigung selbst in dichtem Sand, vgl. Abbil-
dung 6.21. Die simulierten Spannungs-Dehnungs-Kurven sind auch mit den experimen-
tellen Ergebnissen vergleichbar. Diese Verbesserung ist primär auf die Kopplung mit der
ACST zurückzuführen. Im Allgemeinen können Stoffmodelle, welche einen sich entwickeln-
den Fabric-Tensor berücksichtigen, die Verflüssigung dichter Böden besser reproduzieren
als Modelle ohne einen sich entwickelnden Fabric-Tensor [16, 25, 40, 79, 162].

Schließlich zeigt Abbildung 6.22 für die Simulationen der dichten Probe mit der neu ein-
geführten HP+GIS+ACST aus Abbildung 6.21, die Anisotropievariable A, die einzelnen
Komponenten des Fabric-Tensors Fij und die Dilatanzgeschichte H als Funktion der An-
zahl der Zyklen N sowie die Zustandsmobilisierung S, den skalaren Faktor k und die
zyklische Vorbelastungsvariable Ω als Funktion der axialen Dehnung εa. Wie in Abbil-
dung 6.22a gezeigt und bereits zuvor diskutiert, führt jede Umkehr der Belastungsrich-
tung zu einem Sprung der Anisotropievariablen A. Nach einer Belastungsrichtungsumkehr
wird infolge der Scherung immer ein kritischer Zustand mit Aasy,crit = 1 angestrebt. Nach
einigen Zyklen hat sich der Einfluss des initialen Fabric-Tensors abgebaut, wie in Abbil-
dung 6.22b an den Komponenten von F zu erkennen ist. Da der dichte Boden in eini-
gen Phasen der Simulation dilatantes Verhalten (Aufbau des effektiven Drucks) aufweist,
kommt es zu einem kumulativen Aufbau der Dilatanzgeschichte H, siehe Abbildung 6.22c.



130 Kapitel 6. Generalisierte intergranulare Dehnung für zyklische Verformungen

-1,0

-0,5

0,0

0,5

1,0

0 2 4 6 8 10

 F
A

V
 A

 [
-]

 

Zyklenzahl N [-]

A1

A2 = -A1

a)

-0,4

-0,2

0,0

0,2

0,4

0,6

0 2 4 6 8 10
 -

 F
ij 

[-
] 

Zyklenzahl N [-]

 Fxy=Fxz=Fyz

 Fyy=Fzz=Fr

 Fxx=Fa 

b)

0,0

0,5

1,0

1,5

2,0

0 2 4 6 8 10

 H
 [
-]

 

Zyklenzahl N [-]

c)

0,4

0,6

0,8

1,0

1,2

-1,5 -1 -0,5 0 0,5 1 1,5

 S
 [
-]

 

Axiale Dehnung -εa [%]

d)

0,5

1,0

1,5

2,0

2,5

-1,5 -1 -0,5 0 0,5 1 1,5

 F
a

k
to

r 
k
 [
-]

 

Axiale Dehnung -εa [%]

mR

e)

-0,02

0,00

0,02

0,04

0,06

-1,5 -1 -0,5 0 0,5 1 1,5

 Ω
 [
-]

 
Axiale Dehnung -εa [%]

f)

Abbildung 6.22: Entwicklung a) der Anisotropievariable (FAV) A, b) des Fabric-Tensors F und

c) der Dilatanzgeschichte H als Funktion der Anzahl der Zyklen N und d) der Zustandsmobili-

sierung S, e) des skalaren Faktors k und f) der zyklischen Vorbelastungsvariable Ω als Funktion

der axialen Dehnung εa in den Simulationen des zyklischen undrainierten Versuchs an einer

dichten Probe mit der HP+GIS+ACST aus Abbildung 6.21

Abbildung 6.22d zeigt, dass der Zustand der dichten Probe zu Beginn der Simulation
und während der ersten Zyklen innerhalb der ASBS liegt (d.h. S < 1). Mit zunehmender
Anzahl von Zyklen (reduzierter effektiver Druck bei gleicher Porenzahl) nähert sich der
Zustand vor jeder Änderung der Belastungsrichtung der ASBS (S ≈ 1). Nach einer Um-
kehrung der Belastungsrichtung nimmt der skalare Faktor k den Maximalwert k = mR

an, siehe Abbildung 6.22e. Mit zunehmender Verformung nach der Umkehrung verringert
sich der Faktor auf k → 1. Die relativ große Dehnungsamplitude führt nicht zu einer
signifikanten Erhöhung der zyklischen Vorbelastungsvariable Ω, siehe Abbildung 6.22f.
Letztere Zustandsvariable würde für zyklische Verformungen mit kleinen Dehnungsampli-
tuden relevant werden.

In allen bisher gezeigten Simulationen hat die HP+GIS+ACST im Vergleich zu den expe-
rimentellen Daten vielversprechende Simulationsergebnisse gezeigt. Abbildung 6.23 zeigt
nun jedoch einen zyklischen undrainierten Triaxialversuch an einer dichten Probe mit einer
kleineren Dehnungsamplitude von εampl

a = 6·10−4. Im Experiment stellt sich die Bodenver-
flüssigung erst nach einer großen Anzahl von Zyklen ein. Die Akkumulation erfolgt dabei
vergleichsweise langsam. Während die HP+IS diese erhöhte Anzahl von Zyklen zumindest
qualitativ reproduzieren kann, zeigt die HP+GIS+ACST eine deutlich schnellere Akku-
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Abbildung 6.23: Vergleich zwischen experimentellen Daten [193] und Simulationen mit der

HP+IS und der HP+GIS+ACST eines zyklischen undrainierten Triaxialversuchs an einer Probe

aus KFS (TCUE9: ID = 0, 67): a) bis c) effektiver Spannungspfad im pq-Diagramm und d) bis

e) Deviatorspannung q als Funktion der axialen Dehnung εa

mulation als das Experiment und auch als die HP+IS. Die Bodenverflüssigung stellt sich
in der Simulation mit der HP+GIS+ACST bereits nach wenigen Zyklen ein. Insbesondere
wird die Kontraktanzrate nach jeder Belastungsrichtungsumkehr signifikant überschätzt,
was primär auf der ACST in Kombination mit der gewählten Entwicklungsgleichung des
Fabric-Tensors zurückzuführen ist.

6.5.5 Zyklischer undrainierter Triaxialversuch mit vorgegebe-

ner Spannungsamplitude

Nachdem bis hierhin lediglich zyklische Triaxialversuche mit vorgegebenen Dehnungsam-
plituden betrachtet wurden, zeigt Abbildung 6.24 einen zyklischen undrainierten Triaxi-
alversuch an einer KFS-Probe mit einer vorgegebenen Spannungsamplitude von qampl =
40 kPa und einem isotropen Anfangsspannungszustand von p0 = 200 kPa mit einer mit-
teldichten Lagerung. Auch hier wird die Deviatorspannung q in Abhängigkeit vom mitt-
leren effektiven Druck p und der axialen Dehnung εa dargestellt. Die Akkumulation in-
folge der zyklischen Verformung wird zudem anhand des effektiven mittleren Drucks p in
Abhängigkeit von den aufgebrachten Belastungszyklen N quantifiziert.
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Abbildung 6.24: Vergleich zwischen experimentellen Daten [194] und Simulationen mit der

HP+IS und der HP+GIS+ACST eines zyklischen undrainierten Triaxialversuchs an einer mit-

teldichten Probe aus KFS (TCUI11: ID0 = 0, 56): a) bis c) effektiver Spannungspfad im pq-

Diagramm, d) bis f) Deviatorspannung q als Funktion der axialen Dehnung εa und g) bis i)

Entwicklung des mittleren effektiven Drucks p in Abhängigkeit von der Zyklenzahl N

Der Versuch zeigt eine schnelle Reduktion des mittleren effektiven Drucks innerhalb der
ersten Belastungszyklen. Danach reduziert sich die Akkumulationsrate erheblich. Die Ak-
kumulation beschleunigt sich erneut, wenn der mittlere effektive Druck aufgrund der zy-
klischen undrainierten Verformung deutlich reduziert wurde. Die typische S-förmige Ak-
kumulation in zyklischen undrainierten Versuchen wird sichtbar. Schließlich tritt die sog.
zyklische Mobilität auf, bei der ein schmetterlingsförmiger effektiver Spannungspfad er-
reicht wird. Während der zyklischen Mobilität wird eine momentane Verflüssigung (p ≈ 0)
durchlaufen und die Dehnungsamplitude nimmt von Zyklus zu Zyklus zu. In diesem Zu-
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stand tritt in jedem Zyklus eine axiale Dehnung sowohl in Extensions- als auch in Kom-
pressionsrichtung auf. Die Akkumulation der Dehnung stellt sich in Extensionsrichtung
ein. Die zyklische Mobilität wurde im betrachteten Versuch nach 145 Zyklen erreicht.

Die HP+IS kann das beschriebene mechanische Verhalten nicht zutreffend reproduzieren.
Weder die nichtlineare Akkumulation, die Anzahl der Zyklen bis zur Verflüssigung, der
schmetterlingsförmige effektive Spannungspfad, der temporäre Zustand p ≈ 0 noch die
zunehmende Dehnungsamplitude in Kompressions- und Extensionsrichtung in der Phase
der zyklischen Mobilität können mit der HP+IS modelliert werden. Die HP+GIS+ACST
vereint hingegen die Vorteile der HP+GIS und der ACST und kann daher die nichtlinearen
Akkumulationseffekte, die Anzahl der Zyklen bis zum Erreichen der zyklischen Mobilität
und die zyklische Mobilität selbst qualitativ und quantitativ reproduzieren. Darüber hin-
aus werden die mit der Anzahl der Zyklen zunehmende Dehnungsamplitude und ihre
Akkumulation in Extensionsrichtung in der Phase der zyklischen Mobilität ebenfalls von
der HP+GIS+ACST erfasst.

6.6 Kopplung mit der MHP (MHP+GIS)

Wie im vorherigen Kapitel demonstriert, ist die HP+GIS+ACST zur ganzheitlichen Mo-
dellierung des mechanischen Verhaltens von Sand gut geeignet. Die realistische Modellie-
rung des realen Bodenverhaltens ist dabei unter anderem auf die extrahierte ASBS der HP
im Rahmen des GIS-Konzeptes zurückzuführen. Wie ausführlich in Kapitel 4 diskutiert,
wurde die ASBS für das Basismodell der HP jedoch nur aus den bereits existierenden Glei-
chungen extrahiert. Sie ist weder in der HP+GIS+ACST noch in der HP+GIS explizit
definiert.

Mit der MHP wurde in Abschnitt 4.5 hingegen erstmals ein hypoplastisches Stoffmodell
für Sand mit explizit definiertem Tensor A vorgestellt. In der MHP wurde hierzu eine neue
Kompressionsbeziehung definiert. Stellvertretend für die Kopplung eines hypoplastischen
Modells mit explizit definierter ASBS mit dem GIS-Konzept kann die MHP mit der GIS
durch die direkte Modifikation der Gl. (4.5) mit dem skalaren Faktor k, siehe Gl. (6.4),
kombiniert werden:

σ̇ = kfsL : ε̇− k

(
fd
fA∗d

)(kγ)

A : d ∥ε̇∥ . (6.15)

Eine Umformung der Gl. (6.15) gemäß Gl. (6.6) wäre ebenfalls möglich. Das Vorgehen hier-
zu ist in Abschnitt 4.2 gezeigt. Aus der Kombination der Gleichungen aus Abschnitt 4.5,
der Gleichungen aus diesem Kapitel und Gl. (6.15) ergibt sich das im Folgenden als
MHP+GIS bezeichnete Stoffmodell. Wie die HP+GIS hat auch die MHP+GIS mit der
effektiven Spannung σ, der Porenzahl e, der intergranularen Dehnung h und der zykli-
schen Vorbelastung Ω insgesamt vier Zustandsvariablen. Alle konstitutiven Beziehungen
der MHP+GIS sind in Anhang A.2 kompakt zusammengefasst.
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MHP

φc ei0 ec0 ed0 h∗s n∗ α β

.[◦] [-] [-] [-] [MPa] [-] [-] [-]

ZS 34 1,027 0,893 0,520 1117,46 0,346 0,15 2,2

IS/GIS GIS

R mR mT βR χR γχ χ0 χmax CΩ γΩ

.[-] [-] [-] [-] [-] [-] [-] [-] [-] [-]

ZS 10−4 5 2,5 0,1 4,0 1,7 0,8 1,5 45 1,0

Tabelle 6.3: Stoffmodellparameter des Zbraslav Sands (ZS) für die gekoppelte MHP+GIS:

(oben) Parameter der MHP, (unten links) geteilte Parameter der IS sowie der GIS und (un-

ten rechts) zusätzliche Parameter der GIS zur Berücksichtigung der zyklischen Vorbelastung

Wie bereits der Vergleich der HP mit der MHP aus Abschnitt 4.6 vermuten lässt, lie-
fert sowohl die MHP+GIS als such die HP+GIS bei einer entsprechenden Parameterwahl
sehr ähnliche Simulationsergebnisse. Letzteres ist anhand der Simulation von drainierten
Triaxialversuchen mit einer Entlastungsstufe nach −εa = 10% von ∆εa = R an mittel-
dichten ZS (e0 = 0, 7, p0 = 100 kPa und h0 = −R/

√
3δ) mit der MHP+GIS (Parameter

aus Tabelle 6.3) und der HP+GIS (Parameter aus Tabelle 6.1) in Abbildung 6.25 gezeigt.
Für die Parameterkalibration der MHP ist auf Abschnitt 4.5 und für die der GIS auf Ab-
schnitt 6.3 verwiesen. Zusätzlich enthält Abbildung 6.25 Simulationsergebnisse mit der
HP bzw. der MHP (mR = mT = 1) mit einer Entlastungsstufe von ∆εa = mRR. Hinweise
zur Implementierung der MHP und der MHP+GIS sind Anhang B zu entnehmen.

Wie an der Spannungs-Dehnungs-Kurve in Abbildung 6.25a zu erkennen ist, liefert die
MHP+GIS sehr vergleichbare Ergebnisse wie die HP+GIS. Beide verhindern das Ratche-
ting, welches bei den Simulationen mit der HP und der MHP zu erkennen ist. Ein Overs-
hooting tritt aufgrund der konstitutiven Berücksichtigung der ASBS im GIS-Konzept we-
der in der HP+GIS noch in der MHP+GIS auf. Die sehr ähnlichen Simulationsergebnisse
sind auch dem Dehnungspfad in Abbildung 6.25b zu entnehmen.

Die MHP+GIS ist das erste hypoplastische Modell für Sand, welches unter Berücksichti-
gung der erhöhten Steifigkeit bei kleinen Dehnungen mit dem Tensor A geschrieben werden
kann. Letzteres ist in Abschnitt 4.5 diskutiert. Neben diesem theoretischen Unterschied
zeigen sich jedoch keine weiteren nennenswerte Vorteile der MHP+GIS gegenüber der
HP+GIS bzw. der HP+GIS+ACST. Aus diesem Grund wird die MHP+GIS in dieser
Arbeit nicht weiter betrachtet.

6.7 Zusammenfassung

Im vorliegenden Kapitel wurde mit dem GIS-Konzept ein neues Erweiterungsmodell für
hypoplastische Stoffmodelle vorgestellt, das die erhöhte Steifigkeit bei kleinen Dehnun-
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Abbildung 6.25: Simulationen von drainierten Triaxialversuchen mit einer Ent- und Wieder-

belastung mittels der MHP+GIS, der HP+GIS, der MHP und der HP eines mitteldichten ZS

(p0 = 100, e0 = 0, 7, h0 = −Rδ/
√
3 und Ω0 = 0): a) Deviatorspannung q und b) volumetrische

Dehnung εvol als Funktion der axialen Dehnung εa

gen sowie den Einfluss einer zyklischen Vorbelastung berücksichtigt. Das GIS-Konzept
beruht auf dem originalen IS-Ansatz [121] und dem ISI-Konzept [29], behebt jedoch die
wichtigsten Defizite dieser Modelle. Letztere wurden in Kapitel 3 ausführlich diskutiert.

Zu den entscheidenden Vorteilen des neuen GIS-Konzepts zählen (1) das verhinderte
Overshooting durch die Berücksichtigung der ASBS, (2) eine realistische Simulation von
Akkumulationseffekten durch die Einführung einer skalaren Zustandsvariable der zykli-
schen Vorbelastung und (3) eine allgemeingültige Formulierung, sodass das GIS-Konzept
leicht auf viele Stoffmodelle angewandt werden kann.

Bis hierhin wurde das GIS-Konzept lediglich mit dem Basismodell der HP, welches zudem
um die ACST erweitert werden kann, und der sehr ähnlichen MHP gekoppelt. Diese
Modelle weisen jedoch selbst teils gravierende Defizite auf, siehe Kapitel 3. Um auch
letzteren zu begegnen, wird in den folgenden Kapitel mit der Neohypoplastizität (NHP)
ein neues und verbessertes hypoelastisches Basismodell eingeführt und ebenfalls mit der
GIS gekoppelt.





Kapitel 7

Neohypoplastizität

Die Neohypoplastizität (NHP) wurde ab etwa 2016 hauptsächlich von Niemunis am IBF
entwickelt, um den in Kapitel 3 beschriebenen Nachteilen der weit verbreiteten HP zu be-
gegnen. Im Rahmen der vorliegenden Dissertation wurde die NHP weiterentwickelt und
mit dem in Kapitel 6 eingeführten Konzept der generalisierten intergranularen Dehnung
(GIS) zur Simulation zyklischer Verformungen verknüpft. Das daraus resultierende Stoff-
modell der NHP+GIS bildet das mechanische Verhalten granularer Böden sowohl unter
monotoner als auch unter zyklischer Belastung ganzheitlich ab.

In diesem Kapitel wird das Basismodell der NHP detailliert vorgestellt. Teile der Ergeb-
nisse wurden bereits in [101, 106] veröffentlicht.

7.1 Über die Neohypoplastizität (NHP)

Frühere Versionen der NHP sind in [81, 117, 118, 120] beschrieben. Dabei ist die NHP
jedoch nicht für den/die Nutzer/in, sondern für den engen Kreis der Stoffmodellentwick-
ler/in dargestellt. Zusammen mit dem kontinuierlichen Entwicklungsprozess innerhalb der
genannten Veröffentlichungen fehlte es vor der vorliegenden Arbeit an einer nutzbaren
Version der NHP.

Der Zustand des Bodens wird in der NHP durch drei Zustandsvariablen beschrieben:

• effektive Cauchy-Spannung σ

• Porenzahl1 e

• tensorielle Strukturvariable (Fabric-Tensor) z

1Die Entwicklung der Porenzahl ergibt sich aus der volumetrischen Dehnungsrate, siehe Gl. (2.43).

137
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Für die effektive Spannungsrate σ̇ gilt in der NHP

σ̇ = E :
(
ε̇−mY ∥ε̇∥ −mzYz∥ε̇∥ −mdYd∥ε̇∥

)
. (7.1)

Die NHP orientiert sich somit an der mathematischen Form der generalisierten Hypoplas-
tizität, siehe Gl. (2.54), welche um zusätzliche Terme2 erweitert wurde. Die Kernelemente
der NHP sind:

• die asymptotisch hyperelastische Steifigkeit E, siehe Abschnitt 7.2 bis 7.4

• die Kompressionsbeziehung nach Bauer [8], siehe Abschnitt 7.5

• der Grad der Nichtlinearität Y , siehe Abschnitt 7.6

• die äquivalente hypoplastische Fließregel m, siehe Abschnitt 7.7

• der zusätzliche Kontraktanzterm mzYz∥ε̇∥ infolge des Einflusses der Strukturvaria-
blen (Fabric) z, siehe Abschnitt 7.8

• und der zusätzliche Dilatanzterm mdYd∥ε̇∥ zur Vermeidung unphysikalisch dichter
Zustände, siehe Abschnitt 7.9

Alle Komponenten von Gl. (7.1) werden im vorliegenden Kapitel ausführlich diskutiert.
Die NHP verfolgt das Konzept einer möglichst großen Variabilität, was insgesamt zu 29
Stoffmodellparametern führt. In der Anwendung können die meisten dieser Parameter
(18 von 29) jedoch als Stoffmodellkonstanten betrachtet werden. Im Rahmen einer Kali-
brierung sind daher nur 11 Stoffmodellparameter zu ermitteln. Das vorliegende Kapitel
beschreibt neben den mathematischen Beziehungen auch die Stoffmodellparameter und
deren Kalibrierung.

7.2 Hyperelastische Steifigkeit

Die NHP basiert auf einer hyperelastischen Steifigkeit. Vor deren Diskussion sei eine kur-
ze Einführung zu allgemeinen Formen der Elastizität gegeben. Basierend auf der Akku-
mulation von Spannung und/oder Energie infolge geschlossener Dehnungsschleifen, siehe
Abbildung 7.1, können drei Formen der Elastizität unterschieden werden [55, 114]: Hypo-
elastizität, Elastizität und Hyperelastizität.

• Die einzige Bedingung für eine Hypoelastizität, siehe Abbildung 7.1c, ist die inkre-
mentell lineare Beziehung

σ̇ij = fijklε̇kl = Eijklε̇kl . (7.2)

2Diese zusätzlichen Terme entsprechend der Funktion f(ε̇,α) in Gl. (4.9).
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Abbildung 7.1: Formen der Elastizität: Eine a) geschlossene Dehnungsschleife führt bei b) einem

hyperelastischem Modell zu einer geschlossenen Spannungsschleife mit Energieerhaltung, aber zu

einem Perpetuum mobile zweiter Art mit d) geschlossenem Spannungspfad bei einem elastischen

Modell und einem c) nicht geschlossenen Spannungspfad bei einem hypoelastischen Modell [114]

Die Steifigkeit E(σ,α, ...) kann sich dabei in Abhängigkeit vom aktuellen Zustand
ändern. Infolge einer geschlossenen Dehnungsschleife kann sich jedoch im Allgemei-
nen eine akkumulierte Spannung sowie eine akkumulierte Energie ergeben. Hypo-
elastische Formulierungen können dabei den zweiten Hauptsatz der Thermodyna-
mik verletzen, was als Perpetuum mobile zweiter Art bezeichnet wird. Das Problem
wurde bereits in Abschnitt 3.4 diskutiert.

• Als Elastizität oder auch Cauchy-Elastizität, siehe Abbildung 7.1d, kann ein Stoff-
modell bezeichnet werden, sofern eine Funktion

σij = fij(ε) (7.3)

existiert. Inkrementell folgt daraus

σ̇ij =
∂fij(ε)

∂εkl
ε̇kl = Eijklε̇kl , (7.4)

wodurch es infolge geschlossener Dehnungszyklen zu keiner akkumulierten Span-
nung kommen kann. Allerdings besteht auch bei dieser Form der Elastizität die
Möglichkeit einer Energieakkumulation, also eines physikalisch unmöglichen Perpe-
tuum mobile zweiter Art.

• Die Hyperelastizität oder Elastizität nach Green, siehe Abbildung 7.1b, kann dage-
gen als echte Elastizität bezeichnet werden, da sowohl die Energieerhaltung als auch
die Spannungserhaltung innerhalb eines geschlossenen Dehnungszyklus gewährleistet
ist. In einer Hyperelastizität existiert eine elastische Energiepotentialfunktion ψ(ε)
und es gilt für die Spannung

σij =
∂f(ε)

∂εij
=
∂ψ(ε)

∂εij
(7.5)
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und für die Spannungsrate

σ̇ij =
∂2f(ε)

∂εij∂εkl
ε̇kl =

∂2ψ(ε)

∂εij∂εkl
ε̇kl = Eijklε̇kl. (7.6)

7.2.1 Hyperelastizität in der NHP

Als theoretischer Grenzfall infolge kleiner zyklischer Verformungen sollte ein Stoffmodell
für Boden in einem hyperelastischen Stoffverhalten resultieren. In diesem

”
elastischen

Bereich“ dürfen sich infolge geschlossener Dehnungszyklen keine akkumulierten Spannun-
gen ergeben und das Prinzip der Energieerhaltung darf nicht verletzt sein. Die Rele-
vanz einer hyperelastischen Steifigkeit in Stoffmodellen für Boden ist unter anderem in
[45, 56, 115, 120, 145] diskutiert. In der NHP wird daher eine hyperelastische Steifigkeit
eingeführt.

Eine hyperelastische Steifigkeit kann sowohl von einer Energiepotentialfunktion ψ(ε) als
Funktion der elastischen Dehnung, siehe Gl. (7.6), als auch von einer komplementären
Energiepotentialfunktion ψ̄(σ) als Funktion der effektiven Spannung hergeleitet werden.
Letzteres geschieht in der NHP. In der Literatur werden verschiedene komplementäre
Energiepotentialfunktionen für Boden vorgeschlagen [56, 115, 120, 145]. Die hyperelas-
tische Steifigkeit der NHP wird von einer komplementären Energiepotentialfunktion der
Familie

ψ̄(σ) =
∑
α

P0 cα

(
P

P0

)α(
R

P0

)2−n−α

mit α ∈ R (7.7)

mit den isometrischen Invarianten P = −σii/
√
3 und R =

√
σijσij =

√
P 2 +Q2 und mit

dem Referenzdruck P0 = 1 kPa abgeleitet. Die Normierung mittels des Referenzdrucks P0

ist für die Dimensionsinvarianz von Gl. (7.7) unerlässlich [45], wird jedoch in der Literatur
häufig nicht beachtet [56, 101, 120].

Es zeigt sich, dass bereits eine einfache Form der komplementären Energiepotentialfunk-
tion nach Gl. (7.7) mit nur einem Summanden

ψ̄(σ) = P0 c

(
P

P0

)α(
R

P0

)2−n−α

(7.8)

das elastische Bodenverhalten gut reproduzieren kann [56, 65, 81, 120]. Aus Gl. (7.8)
ergeben sich als Materialparameter c, n und α. Im Weiteren bezeichnen P̄ = P/P0 und
R̄ = R/P0 mit dem Referenzdruck P0 normalisierte Spannungsgrößen.

Aus einer komplementären Energiepotentialfunktion kann die hyperelastische Nachgiebig-
keit C als zweite partielle Ableitung von ψ̄(σ) nach der Spannung bestimmt werden:

∂2ψ̄(σ)

∂σij∂σkl
= Cijkl . (7.9)
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Für die komplementäre Energiepotentialfunktion nach Gl. (7.8) gilt [45, 120]

Cijkl = Aδ⃗ij δ⃗kl +B
(
δ⃗ijσ⃗kl + σ⃗ij δ⃗kl

)
+ Cσ⃗ijσ⃗kl +DIijkl (7.10)

mit den Faktoren
A = c(α− 1)αP̄α−2R̄2−n−α P0

−1 , (7.11)

B = −cα(2− n− α)P̄α−1R̄1−n−α P0
−1 , (7.12)

C = c(2− n− α)(−n− α)P̄αR̄−n−α P0
−1 , (7.13)

D = c(2− n− α)P̄αR̄−n−α P0
−1 . (7.14)

Durch Invertierung lässt sich die hyperelastische Steifigkeit E bestimmen:

Eijkl = (Cijkl)
−1 . (7.15)

Die komplementäre Energiepotentialfunktion nach Gl. (7.8) weist bezüglich der Span-
nung σ einen Grad der Homogenität von 2− n auf. Daraus ergibt sich für die hyperelas-
tische Steifigkeit E einen Homogenitätsgrad bezüglich der Spannung von n [120].

7.2.2 Parameter n, c und α

Der Materialparameter n beschreibt die Homogenität der Steifigkeit bezüglich der Span-
nung. Für Sand sollte circa 0, 5 ≤ n ≤ 0, 7 gelten [120]. Der Materialparameter c stellt
einen Faktor zur Skalierung der Steifigkeit dar, wobei eine Reduktion von c letztere erhöht.
Der Exponent α beeinflusst die Rundheit der resultierenden Antwortumhüllenden und
kann für einen isotropen Spannungszustand (Q = 0) mit der Poissonzahl νiso korreliert
werden [45]:

α =
n2νiso + n2 − 5nνiso − 2n+ 6νiso

2νiso − 1
. (7.16)

Um die Parameter n, c und α zu bestimmen sind aufwendige Laborversuche erforderlich
[65, 81]. Abbildung 7.2 zeigt experimentelle Ergebnisse für Triaxialversuche an mittel-
dichtem KFS mit lokaler Dehnungsmessung aus [65] in Form von Antwortumhüllenden
im PQ-Diagramm, welche für ein Dehnungsinkrement von ∥∆ε∥ = 10−4 ermittelt wur-
den3. Es ist anzumerken, dass dieses Dehnungsinkrement für ein vollständig reversibles
Materialverhalten des Sandes bereits zu groß ist. Ein kleineres Dehnungsinkrement war
jedoch nicht realisierbar und die daraus resultierenden irreversiblen Verformungen wurden
vernachlässigt. Bei den Versuchen wurden 21 unterschiedliche mittlere Spannungszustände
betrachtet. Ausgehend von jedem dieser Zustände wurden Dehnungszyklen in variierender

3Streng genommen handelt es sich dabei um pfadebezogene Antwortumhüllenden, da das Bodenver-

halten entlang eines Dehnungspfades mit vorgegebener Länge und Richtung mit einem Zustand, der sich

während der Verformung entlang dieses Pfades ändert, betrachtet wird.
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Abbildung 7.2: Experimentell ermittelte Antwortumhüllende an mitteldichtem KFS mittels

Triaxialversuchen mit lokaler Dehnungsmessung im PQ-Diagramm für ein gegebenes Dehnungs-

inkrement von ∥∆ε∥ = 10−4 für verschiedene mittlere Spannungszustände aus [65] und berech-

nete Antwortumhüllenden für die komplementäre Energiepotentialfunktion nach Gl. (7.8)

Richtung aufgebracht und die jeweiligen Endpunkte im Spannungsraum zu den Antwor-
tumhüllenden zusammengesetzt. In Abbildung 7.2 sind neben den Antwortumhüllenden
auch die Punkte des mittleren Spannungszustands und der Zustände infolge isotroper
(ε̇Q = 0) und isochorer (ε̇P = 0) Dehnungszyklen aufgetragen.

Die Größe der Antwortumhüllenden nimmt mit steigendem mittlerem effektiven Druck
zu. Der Boden wird also mit zunehmendem Druck steifer (Barotropie). Außerdem ist der
größere Durchmesser der Antwortumhüllende circa doppelt so groß wie der kleinere Durch-
messer. Im Falle eines hydrostatischen Spannungszustands (Q = 0) lässt sich daraus auf
eine Poissonzahl von νiso ≈ 0, 2 schließen. Bei diesen Antwortumhüllenden stehen die Rich-
tung der Spannungsantwort infolge isotroper und isochorer Belastung nahezu senkrecht
aufeinander. Mit steigendem Spannungsverhältnis ändert sich dies und die Umhüllende
wird verzerrt. Der kleinste eingeschlossene Winkel der Richtung der Spannungsantwort
infolge isotroper und isochorer Verformung reduziert sich entsprechend. Auch die Nei-
gung der Antwortumhüllenden ändert sich. In erster Näherung entspricht die Neigung des
Hauptdurchmessers der Antwortumhüllenden im PQ-Raum dem Verhältnis Q/P .

Simulationen der Antwortumhüllenden für das resultierende hyperelastische Stoffmodell
nach Gl. (7.17) mit der hyperelastischen Steifigkeit nach Gl. (7.15) sind für die Parame-
ter c = 0, 00016, n = 0, 6 und α = 0, 1 ebenfalls Abbildung 7.2 zu entnehmen. Es zeigt
sich, dass sowohl die Form als auch die Größe der experimentell bestimmten Antwor-
tumhüllenden mit diesem Parametersatz und der gewählten komplementären Energiepo-
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tentialfunktion nach Gl. (7.8) zutreffend abgebildet werden können. Es gilt zu erwähnen,
dass sich auch mit anderen Parameterkombinationen sehr ähnliche Antwortumhüllende
erzielen lassen.

Im Sinne einer Parameterkalibrierung der NHP werden n = 0, 6 und α = 0, 1 als Stoff-
modellkonstanten für Sand empfohlen. Eine Anpassung dieser Parameter erfordert eine
detaillierte experimentelle Untersuchung. Aufgrund der Hypothese, dass die Form der aus
der elastischen Steifigkeit resultierenden Antwortumhüllenden von verschiedenen granula-
ren Medien prinzipiell ähnlich ist, können die oben genannten Werte auch ohne aufwendige
experimentelle Untersuchungen für verschiedene Sande übertragen werden. Zukünftige ex-
perimentelle oder numerische Betrachtungen (z.B. DEM-Simulationen) werden über diese
Hypothese weiteren Aufschluss liefern.

Ebenso wird als Materialparameter in der NHP c = 0, 001 empfohlen. Der Parameter kann
beispielsweise mittels monotoner Triaxialversuche an lockeren Proben kalibriert werden.
Der Unterschied zwischen dem vorgeschlagenen und dem in Abbildung 7.2 gewählten
Wert von c = 0, 00016 ist auf die jeweils unterschiedlich betrachteten Dehnungsniveaus
zurückzuführen. Während in [65] die betrachteten Dehnungen relativ gering waren (∥ε∥ ≈
10−4), wird eine praktische Kalibrierung von c mittels eines konventionellen monotonen
Triaxialversuchs für größere Dehnungen (∥ε∥ ≈ 10−3) vorgeschlagen. Eine Berücksichtigung
der erhöhten Steifigkeit bei kleineren Dehnungen erfolgt in Kapitel 8 mittels des GIS-
Konzepts. Die größere Steifigkeit in dichten Böden wird in der NHP zudem über den
Pyknotropiefaktor Fe, siehe Abschnitt 7.3, berücksichtigt.

7.2.3 Hyperelastizität verhindert künstliche Akkumulation

Die Akkumulation von Spannungen infolge geschlossener Dehnungszyklen eines hypoelas-
tischen Stoffmodells wurde in Abschnitt 3.4 anhand der hypoelastischen Steifigkeit L aus
der HP gezeigt und in Anlehnung an [144] als künstliche Akkumulation bezeichnet. Eine
Wiederholung der Simulation mit der hyperelastischen Steifigkeit E der NHP zeigt keine
Spannungsakkumulation. Hierzu wird das hyperelastische Stoffmodell

σ̇ij = Eijklε̇kl (7.17)

herangezogen. Die Berechnung erfolgt mit den Parametern des KFS, siehe Tabelle 8.1 und
Tabelle 7.1. Es ist zu erwähnen, dass alle im vorliegenden Kapitel folgenden Simulationen
ebenfalls mit diesem Parametersatz durchgeführt wurden. Es wird ein axialsymmetrischer
Spannungszustand mit σa = 2σr = −200 kPa initialisiert und geschlossene axialsymmetri-
sche Dehnungszyklen (∆εvol = ∆εq = 6 ·10−5) simuliert. Die Spannungskomponente σr in
Abhängigkeit von der Anzahl der Dehnungszyklen N ist in Abbildung 7.3 dargestellt. Die
Simulation zeigt, dass in einem hyperelastischen Modell keine künstliche Akkumulation
auftritt.
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Abbildung 7.3: Entwicklung der radialen Spannungskomponente σr als Funktion der Anzahl

aufgebrachter geschlossener Dehnungszyklen für den hyperelastischen Teil der NHP unter axial-

symmetrischen Bedingungen: eine künstliche Akkumulation tritt nicht auf (modifiziert aus [106])

7.3 Pyknotropiefaktor

Die Steifigkeit von Boden nimmt mit zunehmender Dichte zu (Pyknotropie). Um die dich-
teabhängige Steifigkeit in der NHP direkt zu berücksichtigen, wird die hyperelastische
Steifigkeit E mit dem Pyknotropiefaktor Fe(e) multipliziert. Dieser Modellierungsansatz
entspricht einer Anpassung des Materialparameters c der komplementären Energiepoten-
tialfunktion gemäß Gl. (7.8) in Abhängigkeit von der Dichte des Bodens.

Richart [148] schlug, aufbauend auf experimentell gemessenen Scherwellengeschwindigkei-
ten und basierend auf der Kornform des Materials, als Faktor

Fe(e) =
(2, 17− e)2

1 + e
bzw. Fe(e) =

(2, 97− e)2

1 + e
(7.18)

zur Skalierung der Steifigkeit in Abhängigkeit von der Porenzahl vor. Ein weiterer Ansatz
der porenzahlabhängigen Steifigkeitserhöhung ist in [45] mit

Fe(e) =
1 + e

e
(7.19)

gegeben. Unabhängig von diesen Ansätzen aus der Literatur, welche jeweils unabhängig
von den Grenzporenzahlen sind, wird für den Pyknotropiefaktor in der NHP

Fe(e, P ) = 1 + ke

〈 ec(P )− e

ec(P )− ed(P )

〉
(7.20)

mit dem Materialparameter ke vorgeschlagen. Der Ansatz nach Gl. (7.20) beinhaltet im
Vergleich zu den Ansätzen nach Gl. (7.18) und Gl. (7.19) eine Abhängigkeit von den
(druckabhängigen) Grenzporenzahlen bzw. von der bezogenen relativen Lagerungsdichte.
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Es gilt dabei per Definition Fe(e) ≥ 1. Je geringer die Porenzahl, desto größer ist der
Faktor Fe und desto größer ist die skalierte Steifigkeit

E
⋄
= Fe(e) E . (7.21)

7.3.1 Parameter ke

Der Parameter ke steuert die Dichteabhängigkeit der hyperelastischen Steifigkeit. Für
einen Wert von ke = 0 gilt Fe = 1 und die Abhängigkeit der Steifigkeit von der aktuellen
Dichte verschwindet. Eine Kalibrierung von ke kann anhand von monotonen drainierten
oder undrainierten Triaxialversuchen unterschiedlicher Dichte erfolgen. Zunächst muss
dabei der Parameter c, siehe Abschnitt 7.2.2, anhand eines Versuchs an einer lockeren
Probe kalibriert werden. Der Parameter ke ergibt sich dann durch einen Vergleich der
Steifigkeit einer lockeren und einer dichten Probe.

Es ist in erster Näherung davon auszugehen, dass der Wert ke für verschiedene granu-
lare Materialien als Konstante angenommen werden kann und erst nach ausreichender
Kalibrierung des Materialparameters c modifiziert werden sollte. Es wird ke ≈ 1, 5 vorge-
schlagen.

7.4 Rotation der hyperelastischen Steifigkeit

Experimentelle Untersuchungen zeigen, dass das maximal erreichte Spannungsverhältnis
bzw. der maximal mobilisierte Reibungswinkel φmax

mob in drainierten und in undrainierten
Versuchen bei gleicher Porenzahl und gleichem Spannungsniveau voneinander abweicht.
Im Falle von drainierten Versuchen stellt sich φmax

mob = φPeak und im Falle von undrainierten
Versuchen φmax

mob = φu ein [120, 184]. φu ist immer geringer als φPeak. Bei dichten Proben
ist dies offensichtlich, wenngleich der Effekt auch bei lockeren Proben beobachtet wer-
den kann. Schematisch ist die beschriebene experimentelle Beobachtung in Abbildung 7.4
dargestellt. Natürlich sind sowohl φPeak als auch φu dichteabhängig.

In [120] wurde anhand von Triaxialversuchen mit wechselnden Drainagebedingungen der
Beweis erbracht, dass die unterschiedlichen maximalen Spannungsverhältnisse nicht auf
sich in undrainierten Versuchen früher bildende Scherfugen mit entsprechend lokal ge-
ringerer Dichte und demzufolge geringerer Scherfestigkeit zurückzuführen sind. Vielmehr
zeigt sich, dass der Unterschied der maximal mobilisierten Reibungswinkel φPeak > φu

eine konstitutiv zu berücksichtigende Materialeigenschaft darstellt.

Wie ausführlich in [120] beschrieben, hängt in einem Stoffmodell die Differenz zwischen
φpeak und φu von der Form und Orientierung der Antwortumhüllenden und damit ent-
scheidend auch vom elastischen Teil eines hypoplastischen Stoffmodells ab. Es ergibt sich
die in Abbildung 7.5 schematisch dargestellte Forderung an die elastische Steifigkeit: Im
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Abbildung 7.4: Schematische Darstellung des maximal erreichten Spannungsverhältnis Q/P

bzw. des maximal mobilisierten Reibungswinkels φmax
mob eines dichten und lockeren Bodens in ei-

nem Triaxialversuch für drainierte und undrainierte Bedingungen sowie für Versuche mit wech-

selnder Drainagebedingung (modifiziert aus [120])

PQ-Diagramm sollte eine undrainierte Scherung in dichtem Sand für φmax
mob = φu zu ei-

ner Spannungsrate nach rechts und in lockerem Sand zu einer Spannungsrate nach links
führen. Dabei wird jeweils die Proportionalität Q̇/Ṗ ∝ Q/P gefordert. Um gleichzeitig
φPeak > φu zu gewährleisten, muss zudem für den Grad der Nichtlinearität Y < 1 gelten.
Der Grad der Nichtlinearität in der NHP wird ausführlich in Abschnitt 7.6 beschrieben
und es sei auf die Dichteabhängigkeit von φu = φu(e) hingewiesen.

Die diskutierte Anforderung an die elastische Steifigkeit kann, wie in [118] beschrieben,
durch eine tensorielle Modifikation der hyperelastischen Steifigkeit E

⋄
zu E berücksichtigt

werden. Diese Modifikation kann auch als Rotation des Steifigkeitstensors interpretiert
werden. Die vorgeschlagene Rotation hängt von der effektiven Spannung σ, der Poren-
zahl e und der Strukturvariablen z ab. Letztere wird in Abschnitt 7.8 eingeführt. Die
Norm der Strukturvariable erreicht infolge einer monotonen Scherung einen asymptoti-
schen Wert von ∥z∥ = zmax. In Analogie zur Rodriguez-Formel wird mit den Tensoren

uij = −δ⃗ij und vij = z⃗ij der Operator

Rijkl = Iijkl + (cos β − 1) (uijukl + vijvkl)−
√

1− (cos β)2 (uijvkl − vijukl) (7.22)

eingeführt. Der Drehwinkel β ist in Abhängigkeit von den Materialparametern nL, βL ≥ 0,
βD ≤ 0 und zmax als Funktion des aktuellen Zustands des Bodens durch

β =

(
∥z∥
zmax

)nL


βL

e− ec(P )

ei(p)− ec(P )
für e > ec(P )

βD
ec(P )− e

ec(p)− ed(P )
für e < ec(P )

(7.23)
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Abbildung 7.5: Anforderung zur Gewährleistung von φPeak > φu an die elastische Steifigkeit:

Die Spannungsantwort infolge einer undrainierten Scherung (isochor) muss für φmob = φu im

PQ-Diagramm für einen lockeren Sand nach links und für einen dichten Sand nach rechts jeweils

entlang der Gerade Q/P zeigen (modifiziert aus [120])

gegeben. Winkel β ist positiv für einen lockeren und negativ für einen dichten Sand.
Mit zwei Operatoren zur Extraktion des hydrostatischen Teils Aijkl = δ⃗ij δ⃗kl und des
deviatorischen Teils Dijkl = Iijkl − Aijkl eines Tensors vierter Stufe kann die rotierte
elastische Steifigkeit der NHP

E = A : E
⋄
+R : D : E

⋄
= (A+R : D) : E

⋄
(7.24)

berechnet werden. Gemäß Gl. (7.24) wird nur der deviatorische Teil der Materialantwort
gedreht. Eine isotrope Kompression oder Extension sind nicht betroffen, was der in Ab-
bildung 7.5 skizzierten Anforderung entspricht.

Durch diese Rotation geht im Allgemeinen die Symmetrie des Steifigkeitstensors verloren,
d.h. Ēijkl ̸= Ēklij. Folglich ist E im Allgemeinen nicht mehr hyperelastisch. Es ist jedoch
hervorzuheben, dass die Steifigkeit E der NHP infolge einer monotonen Scherung asym-
ptotisch hyperelastisch wird, da im kritischen Zustand β = 0 gilt. Ein sog. Shakedown der
Zustandsvariablen durch viele geschlossene Dehnungszyklen mit kleiner Amplitude führt
ebenfalls zu einer hyperelastischen Steifigkeit E, da in diesem Fall ∥z∥ = 0 erreicht wird
[117]. Der theoretische Grenzfall des hyperelastischen Materialverhaltens des elastischen
Teils der NHP, welcher im Detail in Abschnitt 7.2 diskutiert wurde, bleibt daher erhalten.

7.4.1 Parameter βL, βD und nL

Die Materialparameter nL, βL ≥ 0, βD ≤ 0 und zmax steuern die Rotation der elastischen
Steifigkeit. Letztere wird durch die resultierende Antwortumhüllende für das elastische
Stoffmodell σ̇ = E : ε̇ sowohl eines axialsymmetrischen Kompressionsspannungszustands
als auch eines axialsymmetrischen Extensionsspannungszustands im PQ-Diagramm in
Abbildung 7.6 veranschaulicht. Für die Berechnung der Antwortumhüllenden wurde die
jeweilige Strukturvariable z so gewählt, wie sie sich gemäß einer monotonen Scherung
beginnend bei Q = 0 in Richtung des jeweils betrachteten mittleren Spannungszustands
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Abbildung 7.6: Antwortumhüllende für das elastische Stoffmodell σ̇ = E : ε̇ (elastischer Teil

der NHP) in dichtem und lockerem Sand für einen axialsymmetrischen Spannungszustand im

Bereich der a) triaxialen Kompression und der b) triaxialen Extension

entwickeln würde (∥z∥ = zmax). Für jeden Spannungszustand wurde sowohl eine Porenzahl
von e0 = 0, 7 (dichter Sand) als auch von e0 = 1, 2 (lockerer Sand) betrachtet.

Im triaxialen Kompressionsbereich, welcher in Abbildung 7.6a dargestellt ist, ergibt sich
für einen lockeren Sand eine Rotation der Stoffmodellantwort infolge einer deviatorischen
Dehnungsrate gegen den Uhrzeigersinn (nach links) und für einen dichten Sand im Uhr-
zeigersinn (nach rechts). Im Bereich der triaxialen Extension, welcher in Abbildung 7.6b
abgebildet ist, kehren sich die Rotationsrichtungen entsprechend um. Im Falle einer rein
isotropen Dehnungsrate ändert sich die Richtung der Spannungsantwort unabhängig von
der Dichte der Probe nicht. Die größere Antwortumhüllende für den dichten Boden zeigt
erneut die Dichteabhängigkeit der Steifigkeit der NHP.

Der Einfluss der Materialparameter nL, βL und βD ist anhand effektiver Spannungspfade
infolge einer undrainierten triaxialen Kompression in Abbildung 7.7a für einen dichten
(e0 = 0, 7) und in Abbildung 7.7b für einen lockeren (e0 = 1, 1) KFS gezeigt. Die Si-
mulationen gehen von einem isotropen Anfangsspannungszustand von p0 = 200 kPa und
z0 = 0 aus. Die Entwicklung der Strukturvariablen z wird in Abschnitt 7.8 diskutiert.

Je größer die absoluten Werte der Winkel βD und βL, desto weiter rechts verlaufen die
effektiven Spannungspfade des dichten Sands bzw. desto weiter links verlaufen die effek-
tiven Spannungspfade des lockeren Sands infolge der stärkeren Rotation der elastischen
Steifigkeit in die jeweilige Richtung. Der Exponent nL steuert die Stärke dieser Rotation
für Zustände ∥z∥ < zmax. Geringere Werte von nL führen zu einer ausgeprägteren Rota-
tion. Ein großer Wert von nL führt hingegen zu einer nahezu vollständigen Deaktivierung
der Rotation für ∥z∥ < zmax.

Im Sinne einer vereinfachten Parameterkalibrierung für grobkörnige Böden können die
Parameter nL, βL und βD als Materialkonstanten betrachtet werden. Es wird nL = 0, 1,
βL = 30◦ und βD = −15◦ vorgeschlagen. Eine genauere Kalibrierung dieser Materialpara-
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Abbildung 7.7: Einfluss der Materialparameter nL, βL und βD auf effektive Spannungspfade

im pq-Diagramm infolge einer undrainierten triaxialen Kompression für a) einen dichten und b)

einen lockeren Sand
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Abbildung 7.8: Simulierte effektive Spannungspfade im PQ-Diagramm mit der NHP für ein

dichte KFS-Proben (e0 = 0, 7) für Triaxialversuche unter undrainierten, drainierten und wech-

selnden Drainagebedingungen: φPeak > φu

meter kann anhand von undrainierten Triaxialversuchen unterschiedlicher Dichte erfolgen,
erfordert jedoch ein vertieftes Verständnis des Modells.

Abschließend zeigt Abbildung 7.8 effektive Spannungspfade im PQ-Diagramm von, mit
der NHP simulierten, monotonen Triaxialversuchen unterschiedlicher Drainagebedingun-
gen an KFS (undrainiert, drainiert, wechselnd). Die Simulationen gehen von einem isotro-
pen Anfangsspannungszustand von p0 = 150 kPa, einer dichten Probe mit e0 = 0, 7 und
z0 = 0 aus. Die Simulationen zeigen, dass der maximal erreichte mobilisierte Reibungs-
winkel (bzw. das Spannungsverhältnis) unter drainierten Bedingungen φPeak größer ist als
letzterer unter undrainierten Bedingungen φu. Diese bereits in Abbildung 7.4 diskutierte
experimentelle Beobachtung kann in der NHP tatsächlich zutreffend modelliert werden.
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7.5 Kompressionsbeziehung nach Bauer

Ebenso wie die HP und die HP+IS berücksichtigt auch die NHP die von Gudehus [47]
vorgeschlagenen druckabhängigen Grenzporenzahlen:

• ei(p) - Porenzahl bei minimal möglicher Dichte

• ec(p) - Porenzahl im kritischen Zustand

• ed(p) - Porenzahl bei maximaler Dichte

Es gilt ei(p) > ec(p) > ed(p). Zur Berücksichtigung ihrer Abhängigkeit vom mittleren ef-
fektiven Druck p liegt der NHP die Kompressionsbeziehung nach Bauer [8], welche bereits
in Abschnitt 4.5 ausführlich diskutiert wurde, zugrunde:

ei
ei0

=
ec
ec0

=
ed
ed0

= exp

[
−
(
3p

hs

)nB
]
. (7.25)

Die Kompressionskurven der drei Grenzporenzahlen sind für die Parameter des KFS, siehe
Tabelle 8.1, in Abbildung 7.9a dargestellt.

Interessanterweise zeigt sich, dass in der NHP tatsächlich nur die kritische Porenzahl
ec(p) nach Gl. (7.25) mit der Porenzahl im kritischen Zustand der NHP übereinstimmt.
Die mittels der NHP erreichbare dichteste Porenzahl ed(p) und lockerste Porenzahl ei(p)
stimmen nicht mit der Kompressionsbeziehung nach Gl. (7.25) überein. Letzteres ist an-
hand numerischer Beispiele in Abschnitt 7.10 gezeigt. Ursächlich hierfür ist die fehlende
Berücksichtigung entsprechender Konsistenzbedingungen [122] zwischen Gl. (7.25) und
der NHP.

7.5.1 Parameter hs, nB, ed0, ec0 und ei0

Die Kalibrierung der fünf Materialparameter hs, nB, ed0, ec0 und ei0 entspricht der Ka-
librierung derselben Parameter in der HP oder der HP+IS. Details sind [51, 53, 91] zu
entnehmen. Die Grenzporenzahlen ed0, ec0, ei0 können vereinfachend aus Laborversuchen
zur Bestimmung der lockersten und dichtesten Lagerung [28] bestimmt werden. Aus die-
sen Versuchen ergeben sich die minimale und die maximale Porenzahl (emin und emax),
welche zur Abschätzung der Grenzporenzahlen herangezogen werden können:

ed0 ≈ emin , (7.26)

ec0 ≈ emax , (7.27)

ei0 ≈ 1, 2 emax . (7.28)
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Abbildung 7.9: Kompressionsbeziehung nach Bauer [8]: a) Grenzporenzahlen ei(p), ec(p) und

ed(p) für die Parameter des KFS aus Tabelle 8.1 und b) Einfluss der Granulathärte hs und des

Exponenten nB auf die Kompressionskurven

Der Parameter hs, welcher auch Granulathärte genannt wird und die Einheit einer Span-
nung aufweist, und der Exponent nB kontrollieren die Form der Kompressionskurve. Kom-
pressionskurven für verschiedene Kombinationen von hs und nB sind in Abbildung 7.9b
dargestellt. Während ein geringerer Wert von hs die Steigung der Kompressionskurve
erhöht, das Material also eine geringere Steifigkeit aufweist, vergrößert ein größerer Wert
des Exponenten nB die Krümmung der Kompressionskurve.

Theoretisch wäre zur Bestimmung von hs und nB beispielsweise eine isotrope Kompression
an einer lockeren Probe möglich. Praktischerweise wird auch häufig ein Ödometerversuch
an einer lockeren Probe zur Kalibrierung von hs und nB verwendet. Details zu möglichen
Kalibrierungsprozeduren finden sich in [51, 53, 91].

Es ist zu beachten, dass aufgrund der fehlenden Konsistenzbedingung bei der isotropen
Kompression neben dem Vergleich der experimentell bestimmten Kompressionsbeziehun-
gen mit der Kompressionsbeziehung nach Gl. (7.25) auch eine Nachrechnung des Versuchs
mit der NHP selbst zu empfehlen ist. Gegebenenfalls sollten die Parameter entsprechend
feinjustiert werden.

Sofern die fünf Parameter hs, nB, ed0, ec0 und ei0 für ein Material bereits für die HP oder
die HP+IS existieren, können diese in erster Näherung direkt in die NHP übernommen
werden.

7.6 Grad der Nichtlinearität

Der Grad der Nichtlinearität Y kontrolliert die Intensität der irreversiblen Verformungen.
In der NHP wird der Grad der Nichtlinearität als gemeinsame Funktion der Spannung und
der Porenzahl Y (e,σ) definiert und nicht, wie in der HP in Abschnitt 2.6 beschrieben, als
ein Produkt Y = fd ∥B(σ)∥. Letzteres kann, wie in Abschnitt 3.3 gezeigt, in der HP zu
unzulässigen Spannungszuständen führen. Es ist zu erwähnen, dass der Pyknotropiefaktor
fd in der NHP nicht definiert ist.
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Zunächst wird die Spannungsinvariante H(σ) für Spannungen im negativen Oktant des
Hauptspannungsraums (Druckspannungen) eingeführt:

H(σ) = tr(σ)tr(σ−1)− 9 ∈ (0,∞) . (7.29)

Für einen triaxialen Spannungszustand lässt sich Gl. (7.29) mit

H(σ) = 9
√
2(Q/P +

√
2)/[(

√
2−Q/P )(2Q/P +

√
2)]− 9 (7.30)

ausdrücken [120]. Beispielsweise gilt nach Gl. (7.29) für einen hydrostatischen Spannungs-
zustand

[σij]
Hydro =

σ1 0 0
0 σ1 0
0 0 σ1

 (7.31)

H(σHydro) = 0 und für einen axialsymmetrischen Kompressionsspannungszustand

[σij]
Triax =

σa = 3σr 0 0
0 σr 0
0 0 σr

 (7.32)

H(σTriax) = 8/3 ≈ 2, 6667.

Die NHP beruht auf dem Festigkeitskriterium nach Matsuoka-Nakai [83]. Letzteres kann
mit der eingeführten Invariante H(σ) geschrieben werden:

FMN(σ) = H(σ)−Hmax ≤ 0 mit Hmax(φ) = 8 tan2(φ) . (7.33)

Das Festigkeitskriterium nach Gl. (7.33) ist für einen Reibungswinkel von φ = 30◦ in
Abbildung 7.10 dargestellt. Für φ = 30◦ gilt Hmax(φ) = 8 tan2(φ) = 8/3, woraus sich für
den Spannungszustand σTriax nach Gl. (7.32) FMN = 0 ergibt und dieser auf der Fläche
FMN = 0 im Spannungsraum liegt, siehe Abbildung 7.10a. Die Fläche FMN = 0 wird
im Jargon der Elasto-Plastizität als Fließfläche bezeichnet. Wie in Abbildung 7.10b dar-
gestellt, weist das Festigkeitskriterium nach Matsuoka-Nakai [83] auf der deviatorischen
Ebene keine Ecken auf, worin ein entscheidender Vorteil gegenüber dem klassischen Fes-
tigkeitskriterium nach Mohr-Coulomb (FMC) liegt. Im Falle einer triaxialen Kompression
und einer triaxialen Extension gilt FMN = FMC. Dazwischen erlaubt das Kriterium nach
Matsuoka-Nakai [83] geringfügig größere Spannungsverhältnisse.

Das Matsuoka-Nakai-Kriterium [83] wird in der NHP jedoch nicht mit einem konstanten,
sondern mit einem druck- und dichteabhängigen Reibungswinkel φ(e, p) berücksichtigt:
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Abbildung 7.10: Festigkeitskriterium nach Matsouka-Nakai [83] a) im Hauptspannungsraum

und b) auf der deviatorischen Ebene im Vergleich mit dem Kriterium nach Mohr-Coulomb

(modifiziert aus [94])

φ(e, p) = φc +


(φd − φc)

ec(p)− e

ec(p)− ed(p)
für e ≤ ec(p)

(φi − φc)
e− ec(p)

ei(p)− ec(p)
für e > ec(p)

. (7.34)

Als Materialparameter werden der kritische Reibungswinkel φc, der Reibungswinkel im
dichtesten Zustand φd und der Reibungswinkel im lockersten Zustand φi benötigt. In-
folge einer monotonen Scherung werden asymptotisch die kritische Porenzahl ec und der
kritische mittlere effektive Druck pc erreicht, woraus φ = φc folgt.

Es zeigt sich, dass eine einfache Definition des Grads der Nichtlinearität, z. B. mit Y =
H/Hmax(φ), zur Beschreibung des mechanischen Verhaltens von Boden nicht zielführend
ist, da zur Simulation ausgeprägter nichtlinearer Effekte von Boden in einem möglichst
großen Spannungsbereich Y ≈ 1 gelten muss. Ein Beispiel für eine ungeeignete Form
der Funktion Y ist für einen axialsymmetrischen Spannungszustand Abbildung 7.11 zu
entnehmen. Aus diesem Grund sind auch die in [146] vorgeschlagene Funktion Y (σ) sowie
die in [39] vorgeschlagene Funktion Y (σ, e) nicht zu empfehlen. Das beschriebene Problem
der unzureichenden Reproduktion des nichtlinearen Bodenverhaltens zeigt sich in [39,
146] anhand der Simulationen drainierter Triaxialversuche, in denen im Vergleich zu den
experimentellen Daten bis zum Erreichen der maximalen Deviatorspannung deutlich zu
geringe irreversible Verformungen auftreten.

Der Grad der Nichtlinearität ist in der NHP als Funktion des Verhältnisses x = H/Hmax(φ)
definiert:

Y (x) = AY exp

(
−1

BY xnY + CY

)
mit x =

H

Hmax(φ)
. (7.35)
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Abbildung 7.11: Einfluss der Materialparameter BY , CY , nY und der Dichte auf den Grad der

Nichtlinearität Y für axialsymmetrische Spannungszustände

Auf der hydrostatischen Achse gilt x = 0. Infolge einer monotonen Scherung wird asymp-
totisch φ = φc mit H = Hmax und somit x = 1 erreicht. Aufgrund von Hmax(φi) ̸=
Hmax(φc) ̸= Hmax(φd) zeigt der Grad der Nichtlinearität außerdem eine signifikante Druck-
und Porenzahlabhängigkeit. Die Konstante AY ist kein Materialparameter und kann durch
die Bedingung Y (1) = 1 ermittelt werden. Es folgt

AY = exp

(
1

BY + CY

)
. (7.36)

Für den Grad der Nichtlinearität der NHP sind als Materialparameter BY , CY und nY
zu kalibrieren. Die Funktion Y (x) = Y (σ, e) ist in Abbildung 7.11 für axialsymmetrische
Zustände, sowohl für einen lockeren als auch einen dichten Boden, dargestellt. In einem lo-
ckeren Boden treten aufgrund von Ylocker > Ydicht ausgeprägtere irreversible Verformungen
als in einem dichten Boden auf.

7.6.1 Parameter BY , CY und nY

Der Einfluss der Materialparameter BY , CY und nY auf den Grad der Nichtlinearität
Y (σ, e) ist in Abbildung 7.11 dargestellt und kann zusammengefasst werden:

• Vergrößerung von BY erweitert den Bereich Y ≈ 1

• Vergrößerung von CY erhöht den minimalen Wert Ymin = Y (0)

• Vergrößerung von nY erweitert den Bereich Y ≈ Ymin

Im Rahmen einer Kalibrierung können BY = 12, CY = 0, 35 und nY = 1, 1 als Material-
konstanten angenommen werden.
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Abbildung 7.12: Einfluss der Materialparameter φd, φi, BY und nY auf die Deviatorspannung

in einem drainierten triaxialen Kompressionsversuch an a) einem dichten und b) einem lockeren

KFS

7.6.2 Parameter φi, φc und φd

Von den Materialparametern φi, φc und φd lässt sich nur der kritische Reibungswinkel φc
experimentell bestimmen. Hierzu können entweder Schüttkegelversuche oder Scherversu-
che (bevorzugt Triaxialversuche) durchgeführt werden. Die in beiden Versuchen bestimm-
baren kritischen Reibungswinkel stimmen nicht überein, die Abweichungen sind jedoch
gering [53]. Details zur Bestimmung von φc können der Literatur [51, 53, 91] entnommen
werden. Aufbauend auf dem kritischen Reibungswinkel φc wird

0, 75φc < φi < 0, 9φc und φd ≈ 1, 5φc (7.37)

zur Abschätzung von φi und φd vorgeschlagen.

Der Einfluss von φi und φd auf die Entwicklung der Deviatorspannung in einem drainier-
ten Triaxialversuch ist in Abbildung 7.12a für eine initial dichte Probe (e0 = 0, 7) und in
Abbildung 7.12b für eine initial lockere Probe (e0 = 1, 1 > ec(p)) gezeigt. Ausgehend von
den vorgeschlagenen Parametern des KFS aus Tabelle 8.1 wurde φd um 5◦ erhöht und φi
um 5◦ reduziert. Die Simulationen beginnen von einem isotropen effektiven Anfangsspan-
nungszustand mit p0 = 100 kPa und ∥z0∥ = zmax mit der Richtung des entsprechenden
kritischen Zustands.

Wie in Abbildung 7.12a zu erkennen, führt ein größerer Wert von φd in dichtem Sand zu
einer größeren maximalen Deviatorspannung bei gleichzeitig vergrößerter Steifigkeit. Der
Einfluss von φi auf die Simulation des dichten Sandes ist dagegen gering. Bei einer lockeren
Probe führt eine Reduktion von φi zu einer geringeren Steifigkeit und verstärkten irrever-
siblen Verformungen, siehe Abbildung 7.12b. Bei diesen Simulationen hat der Parameter
φd keinen Einfluss auf die Ergebnisse.
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Zuletzt wurden alle Simulationen mit einem vergrößerten Wert des Parameters BY und
einem reduzierten Wert von nY wiederholt. Wie bereits in Abschnitt 7.6.1 diskutiert,
führt dies allgemein zu einer Vergrößerung des Grads der Nichtlinearität Y und somit zu
verstärkten irreversiblen Verformungen in den simulierten drainierten Triaxialversuchen.
Der Effekt wird in Abbildung 7.12 sowohl für die initial dichten als auch die initial lockeren
Proben deutlich.

7.7 Äquivalente hypoplastische Fließregel

Die Intensität der irreversiblen Verformungen wird durch den zuvor eingeführten Grad
der Nichtlinearität Y (σ, e) beschrieben. Die hypoplastische Fließregel m gibt dagegen die
Richtung der irreversiblen Verformungen an. Zunächst wird ein dichteabhängiger Phasen-
transformationswinkel φPT definiert:

φPT(e) = φc + (φi − φc)

〈
ec(p)− e

ec(p)− ed(p)

〉
. (7.38)

Mittels dieses Winkels lässt sich die Phasentransformation, also der Übergang von kon-
traktantem Verhalten (Verdichtung) bei φmob < φPT zu dilatantem Verhalten (Auflocke-
rung) für φmob > φPT modellieren. Dieser Übergang ist dichteabhängig [184, 194]. Je
dichter der Boden, desto geringer ist φPT. Im dichtesten Zustand (e = ed(p)) ist der Pha-
sentransformationswinkel klein (φPT = φi). Im kritischen Zustand (e = ec(p)) und für
lockere Böden mit e > ec(p) gilt φPT = φc > φi.

Die äquivalente hypoplastische Fließregel ist für bestimmte Spannungszustände, ausge-
drückt durch die Spannungsinvariante H(σ) nach Gl. (7.29), explizit definiert4:

mij =


ma
ij = (∂H/∂σij)

→ =
[
δijσ

−1
kk − σkkσ

−2
ij

]→
für H ≥ Hmax(φa)

mc
ij =

([
δijσ

−1
kk − σkkσ

−2
ij

]∗)→
für H = Hmax(φPT)

mi
ij = − (δij)

→ für H = 0

. (7.39)

Der Reibungswinkel φa definiert das Spannungsverhältnis, über welchem die sog. äquiva-
lente hypoplastische assoziierte Fließregel gilt. Als äquivalente hypoplastische assoziierte
Fließregel ist hier die Bedingung m ∝ ∂H/∂σ zu verstehen. Dies entspricht der klassi-
schen Definition einer assoziierten Fließregel aus der Elasto-Plastizität, sofern eine dem
Matsuoka-Nakai-Kriterium [83] entsprechende Fließfunktion f(σ) gewählt und diese mit
dem plastischen Potential g(σ) gleichgesetzt wird.

Bei φmob = φPT liefert Gl. (7.39) eine rein deviatorische Richtung der irreversiblen Verfor-
mungen, während für einen isotropen Spannungszustand die äquivalente hypoplastische
Fließregel nur einen volumetrischen Anteil aufweist.

4Es gilt σ−2 = σ−1 · σ−1 .
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Abbildung 7.13: Schematische Darstellung der äquivalenten hypoplastischen Fließregeln m für

axialsymmetrische Spannungszustände: Dilatanz oder Kontraktanz als Verhältnis des volume-

trischen (mP ) zum deviatorischen Anteil (mQ) der äquivalenten hypoplastischen Fließregeln m

in Abhängigkeit vom Spannungsverhältnis Q/P für zwei verschiedene Porenzahlen

Für Zustände zwischen den in Gl. (7.39) explizit berücksichtigten Spannungszuständen
wird die äquivalente hypoplastische Fließregel interpoliert. Für H < Hmax(φPT) gilt

m =
[
ymc + (1− y)mi

]→
mit y =

(
H(σ)

Hmax(φPT)

)n1

(7.40)

und für Hmax(φPT) < H < Hmax(φa) gilt

m = [yma + (1− y)mc]→ mit y =

(
H(σ)−Hmax(φPT)

Hmax(φa)−Hmax(φPT)

)n2

. (7.41)

Die Interpolation mit den Exponenten n1 und n2 bietet eine große Flexibilität zur Mo-
dellierung der Richtung der irreversiblen Verformungen. Die äquivalente hypoplastische
Fließregel ist unter axialsymmetrischen Bedingungen für zwei verschiedene Porenzahlen
in Abbildung 7.13 schematisch dargestellt.

7.7.1 Parameter φa, n1 und n2

Der Reibungswinkel φa beschreibt das Spannungsverhältnis, ab welchem die Bedingung
m ∝ ∂H/∂σ gilt. Eine experimentelle Bestimmung von φa ist nicht trivial und es wird
in Anlehnung an Abschnitt 7.6.2 die Abschätzung

φa ≈ φd ≈ 1, 5 φc (7.42)

vorgeschlagen.



158 Kapitel 7. Neohypoplastizität

0.8 1.0

1.0

H = Hmax(φc)

mi

mc

H = 0

n1 = 0.3

n1 = 0.2

n1 = 0.1

Kontraktanz

H = Hmax(φPT)

,
,
,

a)

0.2 0.4 0.6 0.8

-1.0

H = Hmax(φc)

ma

mc

H = Hmax(φa)

n2 = 1.2

n2 = 1.0

n2 = 0.8

Dilatanz

H = Hmax(φPT)

,
,
,

H = Hmax(φPT) H = Hmax(φa)

b)

Abbildung 7.14: Interpolation der äquivalenten hypoplastischen Fließregel m und der Einfluss

der Exponenten n1 und n2 auf a) den kontraktanten Bereich mit H ≤ Hmax(φPT) und auf b)

den dilatanten Bereich mit Hmax(φPT) ≤ H ≤ Hmax(φa)

Der Exponent n1 beeinflusst die Interpolation zwischen einer rein volumetrischen (kon-
traktanten) Richtung von m bei einem isotropen Spannungszustand (Q = 0 bzw. H = 0)
und einer rein deviatorischen (volumenkonstanten) Richtung von m bei einem mobili-
sierten Reibungswinkel von φmob = φPT (H = Hmax(φPT)). Wie in Abbildung 7.14a
dargestellt, vergrößert ein größerer Exponent n1 die Intensität der Kontraktanz im kon-
traktanten Bereich. Analog steuert der Exponent n2 die Interpolation im dilatanten Be-
reich. Eine Vergrößerung des Exponenten n2 reduziert die Dilatanz im dilatanten Bereich,
siehe Abbildung 7.14b.

Eine genaue Kalibrierung der Exponenten ist beispielsweise in einem monotonen drai-
nierten Triaxialversuch an einer dichten Probe anhand der volumetrischen Dehnung in
Abhängigkeit vom mobilisierten Reibungswinkel möglich. Im Rahmen einer Kalibrierung
der NHP können die beiden Exponenten in erster Näherung als Materialkonstanten be-
trachtet werden und es wird n1 = 0, 22 und n2 = 0, 9 vorgeschlagen.

7.8 Kontraktanz infolge der Strukturvariable

Aufbauend auf der Diskussion aus Abschnitt 3.5 bezüglich einer erforderlichen Zustands-
variable zur Berücksichtigung der aktuellen anisotropen Mikrostruktur (Fabric) in fort-
geschrittenen Stoffmodellen wurde in der NHP die Strukturvariable z eingeführt. Der
Ansatz in der NHP unterscheidet sich dabei von der in Kapitel 5 beschriebenen Kopp-
lung eines hypoplastischen Modells mit der Theorie des anisotropen kritischen Zustands
(ACST) [78]. Daher wird die Strukturvariable der NHP bewusst als z benannt, während
der Fabric-Tensor in Kapitel 5 mittels F bezeichnet wurde. Wie auch bei F handelt es
sich bei dem Tensor zweiter Stufe z um einen Deviator, welcher sich ausschließlich durch
eine deviatorische Dehnungsrate entwickelt.

Im Rahmen der vorliegenden Arbeit wurde das ursprüngliche Konzept der Strukturva-
riablen z in der NHP, welches unter anderem in [101, 118, 120] beschrieben ist, an die
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ACST angepasst. Allerdings wird in der NHP bewusst auf eine direkte Beeinflussung der
Kompressionsbeziehung durch die Strukturvariable verzichtet, weshalb die NHP nach wie
vor nicht strikt dem Konzept der ACST folgt. Die NHP demonstriert somit die Vielfalt
der konstitutiven Möglichkeiten der Berücksichtigung der anisotropen Mikrostruktur in
einem Stoffmodell und stellt ein alternatives Konzept zur ACST dar. In der NHP wird
die Strukturvariable in Gl. (7.1) durch den zusätzlichen Term

mzYz∥ε̇∥ mit mz = σ⃗ (7.43)

und
Yz = ω(zmax − z : ⃗̇ε) (7.44)

berücksichtigt. Für isotrope Spannungszustände führt Gl. (7.43) und Gl. (7.44) in Abhän-
gigkeit vom Unterschied zwischen der Richtung der Strukturvariable z und der Richtung
der Dehnungsrate ⃗̇ε zu einer zusätzlichen Kontraktanz. Je größer dieser Unterschied, desto
größer wird der Grad der zusätzlichen Nichtlinearität infolge der Strukturvariablen Yz. Der
größte Einfluss von z tritt bei einem vollständig mobilisierten Strukturtensor mit seinem
asymptotischen Wert ∥z∥ = zmax infolge einer vorangegangenen monotonen Verformung
und einer folgenden Umkehr der Belastungsrichtung um 180◦ auf. In diesem Fall gilt
Yz = 2ωzmax.

Der Grad der zusätzlichen Nichtlinearität infolge der Strukturvariable Yz ist druckabhängig,
was mittels der Funktion

ω(e, P ) = ωz(P ) fac(e) =
Pz

zmax (100P0 + P )︸ ︷︷ ︸
ωz(P )

fac(e) (7.45)

und den Materialparametern Pz und zmax unter Berücksichtigung des Referenzdrucks P0

modelliert wird. ω wächst bei abnehmendem mittleren effektiven Druck, was der Be-
obachtung zunehmender zyklischer Akkumulationsraten bei geringerem effektiven Druck
entspricht. Die Funktion

fac(e) = 1− 1

1 + exp (kd[e− ed(P )])
(7.46)

mit dem Materialparameter kd deaktiviert die zusätzliche Dilatanz bei dichten Zuständen
e < ed. In Abschnitt 7.8.2 werden die Funktionen ωz(P ) und fac im Zuge der Diskussion
einzelner Stoffmodellparameter detailliert dargestellt.

Aufgrund der druckabhängigen Definition von ωz nach Gl. (7.45) tritt bei geringem mitt-
leren effektiven Druck eine ausgeprägte zusätzliche Kontraktanz auf, welche beispielsweise
bei einer undrainierten Scherung die Spannungsrelaxation in Richtung von mz diktiert.
Um potentielle Probleme beispielsweise durch Auftreten von Zugspannungszuständen zu
vermeiden, wird die Richtung von mz anstelle von mz ∝ δ⃗ aus [118, 120] zu mz ∝ σ⃗
gewählt. Es ist zu erwähnen, dass mz durch diesen Ansatz bei nicht isotropen Spannungs-
zuständen auch einen deviatorischen Anteil aufweist.
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Abbildung 7.15: Graphische Interpretation der Gl. (7.48): Die Funktion sin (ϑ)20 = (∥ε̇∗∥/∥ε̇∥)20

als a) Polardiagramm und b) Funktion des Winkels ϑ

Die Entwicklungsgleichung der Strukturvariable

ż = Az

(
ε̇⋄ − z⃗

(
∥z∥
zmax

)βz
∥ε̇⋄∥

)(
αz +

(
∥z∥
zmax

)nz
)

(7.47)

besteht aus drei Faktoren. Die Dehnungsrate ε̇⋄ ist dabei als

ε̇⋄
def
=

(
ε̇2Q

ε̇2Q + ε̇2P

)10

ε̇∗ =

(
∥ε̇∗∥
∥ε̇∥

)20

ε̇∗ = sin(ϑ)20 ε̇∗ (7.48)

definiert. In der Version der NHP von [118] konnte sich die Strukturvariable beispiels-
weise auch infolge einer ödometrischen Kompression aufgrund des deviatorischen Anteils
der Dehnungsrate relativ schnell entwickeln, was nicht zutreffend erscheint. Der Faktor
(∥ε̇∗∥/∥ε̇∥)20 beschränkt daher die Entwicklung von z primär auf deviatorische Dehnungs-
raten. Der Exponent wurde empirisch gewählt. Je größer der volumetrische Anteil einer
Dehnungsrate, desto langsamer erfolgt die Entwicklung der Strukturvariable. Eine rein
volumetrische Verformung führt zu keiner Änderung von z. Eine grafische Interpretation
von Gl. (7.48) ist Abbildung 7.15 zu entnehmen.

Die Strukturvariable z der NHP kann als Rollen von Körnern interpretiert werden [101,
117, 118, 217]. Der zugrunde liegenden Hypothese zufolge können aufgrund monotoner
Scherbeanspruchung bei großen Spannungsverhältnissen einzelne Körner über- bzw. ge-
geneinander rollen. Durch eine Umkehr der Belastungsrichtung rollen die Körner zurück,
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Abbildung 7.16: Zweidimensionale, mikromechanische Interpretation von drainierten Triaxial-

versuchen in einem Spannungs-Dehnungs-Dilatanz Diagramm und Rückschlüsse auf die Ent-

wicklung der Strukturvariablen z: langsamer Aufbau von z bei geringem und schneller Aufbau

von z bei großem Spannungsverhältnis sowie ein schneller Abbau von z infolge einer Belastungs-

richtungsumkehr (modifiziert aus [101, 114, 118, 120])

was die beschriebene ausgeprägte zusätzliche Kontraktanz verursacht. Eine mikromecha-
nische, zweidimensionale Interpretation dieser Hypothese mitsamt Rückschlüssen zur Ent-
wicklung von z ist Abbildung 7.16 zu entnehmen.

Der Exponent βz < 1 muss auch bei geringen Werten von z einen schnellen Abbau der
Strukturvariablen gewährleisten. Dies wird mit dem unmittelbaren Zurückrollen einzelner
aufgerollter Körner nach einer Belastungsrichtungsumkehr assoziiert. Der Aufbau von z
soll dagegen für größere Werte von z schneller erfolgen, da dies mit einer dilatanten
Verformung und einem vermehrten Herausrollen einzelner Körner assoziiert wird. Der
asymptotische Wert ∥z∥ = zmax darf nicht überschritten werden, d.h. bei ∥z∥ = zmax und
einer fortgesetzten Verformung muss ż = 0 gewährleistet sein. Zu diesem Zweck wird die
gesamte Entwicklungsgleichung mit dem Faktor

αz +

(
∥z∥
zmax

)nz

(7.49)

multipliziert. Die positive Rückkopplung wird über den Exponenten nz > 1 erreicht. Eine
Entwicklung auch bei geringen Werten z wird durch αz > 0 gewährleistet.

Beginnt eine axialsymmetrische und undrainierte triaxiale Kompression/Extension von
einem Zustand mit ∥z∥ = zmax auf der CSL im Extensionsbereich/Kompressionsbereich,
so sollte, unmittelbar nachdem Q = 0 durchlaufen wurde, ∥z∥ = 0 erreicht werden. Daher
wird die Entwicklungsgleichung mit dem druckabhängigen Faktor Az multipliziert.

Zur Ermittlung vonAz wird zunächst die Scherdehnung εzQ (als skalare Größe) abgeschätzt,
die ungefähr erforderlich ist, um aus einem Spannungszustand auf der CSL einen isotro-
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pen Spannungszustand (Q = 0) zu erreichen. Für einen Boden mit einem Reibungswinkel
von φ = 30◦ kann, ähnlich wie in [101] gezeigt, εzQ zu

εzQ = 0, 3 c(2− n− α)(P/P0)
1−n/Fe (7.50)

abgeschätzt werden. Gl. (7.47) lässt sich eindimensional (z statt z) ausdrücken:

∂z

∂εQ
= Az

(
1− sgn(z)

(
|z|
zmax

)βz)(
αz +

(
|z|
zmax

)nz
)
. (7.51)

Mit der Bedingung z(εQ = 0) = −zmax beschreibt Gl. (7.51) für εQ > 0 zunächst den
Abbau, gefolgt von einem Aufbau von z bis zum asymptotischen Wert z = zmax. Die
Bedingung zur Bestimmung von Az ist ein vollständiger Abbau bei der Dehnung εzQ aus-
gehend von einer vollständigen Mobilisierung, siehe Abbildung 7.17. Numerisch lässt sich
aus der Lösung der Gl. (7.51) unter Berücksichtigung der Bedingungen z(εQ = 0) = −zmax

und z(εQ = εzQ) = 0 ein skalarer Wert Uz als Funktion der Parameter αz, nz, βz und zmax

bestimmen [101]. Es gilt

Az =
Uz
εzQ

=
Fe Uz

0, 3 c(2− n− α)(P/P0)1−n
. (7.52)

Aufgrund der aufwendigen Prozedur zur mathematischen Ermittlung von Uz ist es jedoch
zweckmäßiger, direkt einen zusätzlichen Materialparameter uz einzuführen:

Az =
Fe uz

c (2− n− α)(P/P0)1−n
(7.53)

Die Strukturvariable z und die Interpretation des Rollens der Körner in der NHP erinnern
an die Zustandsvariable z des bekannten SaniSand Modells [25]. Es sei angemerkt, dass
sich die Strukturvariable z in der NHP nicht nur bei einer dilatanten Verformung entwi-
ckelt. Dennoch soll Gl. (7.47) sicherstellen, dass die Entwicklung der Strukturvariable im
Fall von ∥z∥ ≈ 0 deutlich langsamer erfolgt als bei ∥z∥ ≫ 0. Letzteres ist typischerweise
bei monotonen Verformungen und großen Spannungsverhältnissen, bei welchen sich der
Boden dilatant verhält, der Fall.

Zuletzt sei erwähnt, dass, wie im Abschnitt 7.4 beschrieben, die Strukturvariable auch die
tensorielle Modifikation (Rotation) der Steifigkeit beeinflusst.

7.8.1 Parameter zmax, αz, βz, uz und nz

Die Entwicklung von z wird mit den Materialkonstanten zmax, αz, nz, βz und uz gesteuert.
Zur Beschreibung der Einflüsse der einzelnen Parameter wird zunächst die eindimensionale
Gl. (7.51) mit Az = uz/0, 0125 mit der Bedingung z(εQ = 0) = −zmax und εQ > 0
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betrachtet. Der Nenner von 0,0125 ergibt sich für die Parameter des KFS in etwa für
einen mittleren effektiven Druck von p = 150 kPa. Abbildung 7.17 zeigt den Verlauf
z(εQ) für verschiedene Parameterkombinationen.

Eine Erhöhung von βz führt zu einem minimal langsameren Abbau und zugleich zu einem
deutlich schnelleren Aufbau der Strukturvariablen. Eine insgesamt schnellere Entwick-
lung von z kann durch eine Erhöhung von uz erreicht werden. Der asymptotische Wert
der Strukturvariablen kann durch zmax bestimmt werden. Die Entwicklung im Bereich
von kleinen z ist durch αz beeinflusst. Eine Erhöhung von αz führt zu einer stärkeren
Entwicklung im Bereich von z ≈ 0. Ein größerer Exponent nz führt zu einer insgesamt
deutlich langsameren Entwicklung der Strukturvariable im Bereich von |z| < zmax. Die Er-
kenntnisse aus der eindimensionalen Betrachtung lassen sich qualitativ auf die tensorielle
Formulierung übertragen.

Da gegenwärtig mit gängigen experimentellen Methoden weder die Strukturvariable noch
deren Entwicklung messtechnisch erfasst werden kann, stellt die Kalibrierung der genann-
ten Parameter eine große Herausforderung dar. Das Konzept der Strukturvariablen in
der NHP basiert auf empirischen Überlegungen und dementsprechend sind auch die Ma-
terialparameter empirisch ermittelt. Die Parameter sind so zu wählen, dass sich, wie
bereits beschrieben und in Abbildung 7.17 dargestellt, z infolge der Scherdehnung εzQ
vollständig abbauen kann. Zur Prüfung der gewählten Parameter kann ein zyklischer un-
drainierter Triaxialversuch mit qav = 0 und einer Spannungsamplitude von beispielsweise
qampl = 60 kPa simuliert und die Strukturvariable als Funktion der Deviatorspannung be-
trachtet werden. In erster Näherung können die betreffenden Parameter als Konstanten zu
zmax = 0, 05, αz = 0, 01, βz = 0, 15 und nz = 2 angenommen werden. Die allgemeine Ge-
schwindigkeit der Entwicklung von z lässt sich direkt über den Wert von uz beeinflussen,
für welchen uz = 0, 4 vorgeschlagen wird.

7.8.2 Parameter kd, Pz und P0

Die Funktionen ωz(P ) und fac(e), siehe Gl. (7.45) und Gl. (7.46), sowie der Einfluss
der Parameter zmax, kd, Pz und des Referenzdrucks P0 auf diese Funktionen sind in
Abbildung 7.18 dargestellt. Abbildung 7.18a zeigt, dass die Intensität der zusätzlichen
Kontraktanz mit zunehmendem Druck abnimmt. Eine Reduktion von Pz führt zu einer
geringeren zusätzlichen Kontraktanz. Eine Erhöhung von zmax hat denselben Effekt. Ei-
ne Erhöhung des Referenzdrucks P0 reduziert die Druckabhängigkeit und die Intensität
der zusätzlichen Kontraktanz. Die Funktion fac(e) deaktiviert die zusätzliche Kontrak-
tanz für dichte Zustände e < ed, wie in Abbildung 7.18b gezeigt. Der Materialpara-
meter kd steuert den Übergang zwischen einer vollständigen Deaktivierung (fac = 0)
und einer vollständigen Aktivierung (fac = 1). Je größer kd, desto kleiner ist dieser
Übergangsbereich. Auch für diese Parameter ist festzuhalten, dass gegenwärtig eine direk-
te experimentelle Kalibrierung nicht möglich ist. Im Rahmen einer Kalibrierung können
kd = 200 und P0 = 1 kPa als Konstanten angenommen werden.
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Abbildung 7.17: Einfluss der Materialparameter a) βz und uz sowie b) zmax, αz und nz auf die

Entwicklung der Strukturvariablen z anhand der Lösung der eindimensionalen Entwicklungs-

gleichung (Gl. (7.51))

Eine Kalibrierung von Pz kann anhand von undrainierten, monotonen Triaxialversuchen
an lockeren Proben erfolgen, die mit derselben Probenpräparationsmethode und axialer
Sedimentationsrichtung hergestellt wurden. Solche Proben zeigen bei einem Extensions-
versuch ein deutlich kontraktanteres Verhalten als im Kompressionsversuch. Dieses aniso-
trope Bodenverhalten kann bei entsprechender Initialisierung von z durch eine geeignete
Wahl von Pz reproduziert werden. Ein größerer Wert von Pz führt zu ausgeprägteren
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Abbildung 7.18: Einfluss der Materialparameter Pz und kd sowie des Referenzdrucks P0 auf die

zusätzliche Kontraktanz infolge der Strukturvariablen z: a) Intensität der zusätzlichen Kontrak-

tanz ωz(P ) und b) Funktion fac(e) zur Deaktivierung der zusätzlichen Kontraktanz bei dichten

Zuständen e < ed

anisotropen Effekten. Eine Deaktivierung der zusätzlichen Dilatanz kann mittels Pz = 0
erfolgen. Dabei ist zu beachten, dass die Rotation der Steifigkeit mit Pz = 0 nicht deak-
tiviert ist.

7.8.3 Vergleich der Strukturvariable in der NHP und des Fabric-

Tensors in der HP+ACST

Im Rahmen dieser Arbeit wurden nun mit (1) dem Fabric-Tensor F der HP+ACST
in Kapitel 5 und mit (2) der Strukturvariablen z der NHP im vorliegenden Kapitel zwei
Ansätze einer sich entwickelnden Mikrostruktur und deren konstitutiven Berücksichtigung
in einem hypoplastischen Stoffmodell verfolgt. Beide Ansätze werden im Folgenden kurz
verglichen und diskutiert. Zunächst ist offensichtlich, dass in beiden Modellen die Einflüsse
der anisotropen Mikrostruktur das kontraktante Bodenverhalten verstärken. Während die
zusätzliche Kontraktanz in der HP+ACST über die Modifikation der Kompressionsbezie-
hung der Grenzporenzahlen erfolgt, führt die NHP hierzu direkt einen von der Strukturva-
riablen abhängigen zusätzlichen nichtlinearen Term für die Entwicklung der Spannungs-
rate ein.

Sowohl F als auch z sind deviatorische Tensoren zweiter Stufe, welche sich gemäß Gl. (5.9)

Ḟ = [n− (1 +D)αDF ] m ∥ε̇∗∥ (7.54)

bzw. Gl. (7.55)
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ż = Az

(
ε̇⋄ − z⃗

(
∥z∥
zmax

)βz
∥ε̇⋄∥

)(
αz +

(
∥z∥
zmax

)nz
)

(7.55)

infolge einer deviatorischen Dehnungsrate in die Richtung letzterer entwickeln. Als ent-
scheidende Unterschiede beider Gleichungen sind zu nennen:

• Während F als mit seiner Norm im kritischen Zustand skalierter Tensor interpretiert
wird (wobei im kritischen Zustand ∥F ∥ = 1 gilt), ist die Norm der Strukturvariable
z mit ∥z∥ = zmax ein empirisch bestimmter Materialparameter. Eine Skalierung von
z wäre allerdings problemlos möglich.

• Während sich für verschiedene proportionale Dehnungspfade verschiedene asym-
ptotische Zustände von F ergeben und sich somit auch Peakwerte in dichten Pro-
ben erreichen lassen, führt jeder proportionale Dehnungspfad mit ε̇Q ̸= 0 nach
einer ausreichend langen Verformung zum asymptotischen Wert ∥z∥ = zmax, der nie
überschritten wird und z somit keine Peakwerte erreichen kann. Allerdings ist die
Geschwindigkeit der Entwicklung von z für verschiedene proportionale Dehnungs-
pfade aufgrund der verwenden Dehnungsrate ε⋄, siehe Gl. (7.48), stark unterschied-
lich.

Zusammenfassend lässt sich sagen, dass somit zwei verschiedene Konzepte zur Berück-
sichtigung einer anisotropen Mikrostruktur in hypoplastischen Stoffmodellen im Rahmen
dieser Arbeit vorgestellt wurden. Wie der Vergleich mit experimentellen Daten für die
HP+GIS+ACST in Kapitel 6 bereits zeigte und für die NHP+GIS in Kapitel 8 noch zeigen
wird, führen beide Konzepte zu qualitativ und quantitativ guten Simulationsergebnissen
und sind daher als gleichwertig zu bewerten.

7.9 Dilatanz zur Vermeidung zu dichter Zustände

Die druckabhängige Grenzporenzahl ed(P ) beschreibt den physikalisch dichtest möglichen
Zustand eines granularen Bodens. Die Druckabhängigkeit der Grenzporenzahlen wird in
der NHP gemäß der Kompressionsbeziehung nach Bauer [8], siehe Abschnitt 7.5, beschrie-
ben. Es zeigt sich jedoch, dass diese dichteste Lagerung ed(P ) unterschritten werden kann.
Beispiele hierzu werden in Abschnitt 7.10.2 gezeigt. Um unzulässig dichte Zustände mit
e < ed(P ) in der NHP zu vermeiden, wurde in Gl. (7.1) ein zusätzlicher Dilatanzterm

mdYd∥ε̇∥ (7.56)

eingeführt. Die Richtung der zusätzlichen Dilatanz ist rein volumetrisch und es gilt somit
md = δ⃗. Die Intensität der zusätzlichen Dilatanz Yd hängt von der Differenz der aktuellen
Porenzahl und der dichtesten Porenzahl e− ed(P ) ab [117]. Es gilt
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√
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(7.57)

mit
EPP = δijEijklδkl und a =

√
3/hs . (7.58)

Für die Funktion

fad = 1− 1

1 + exp (kd[ed(P )− e])
(7.59)

gilt fad ≫ 0 nur für Porenzahlen e ≈ ed bzw. e < ed, also für dichte bzw. für unzulässig
dichte Zustände. Für Zustände e ≫ ed ist aufgrund von fad ≈ 0 die zusätzliche Dilatanz
deaktiviert. Abbildung 7.19 stellt die Funktion fad in Abhängigkeit der Differenz ed − e
sowie den Einfluss des Parameters kd grafisch dar.

7.10 Grafische Darstellung der NHP

Die grundsätzlichen Eigenschaften von Stoffmodellen können grafisch dargestellt und in-
terpretiert werden [50, 69]. Dies erlaubt eine einfache und zugleich fundierte Einschätzung
der konstitutiven Formulierung und ermöglicht einen einfachen Vergleich verschiedener
Stoffmodelle auf qualitativer Ebene. Im Folgenden wird die NHP anhand von Antwor-
tumhüllenden und anhand des asymptotischen Verhaltens infolge monotoner Verformun-
gen mittels numerischen Beispielen untersucht.
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7.10.1 Antwortumhüllende

Das Konzept der Antwortumhüllenden wurde bereits in Abschnitt 2.2 beschrieben. In
Abbildung 7.20 sind für die Parameter des KFS aus Tabelle 8.1 und Tabelle 7.1 Antwor-
tumhüllende der NHP für verschiedene axialsymmetrische Spannungszustände und ver-
schiedene Dichten (e = 0, 7 und e = 0, 9) gegeben. In Abbildung 7.20a wurde der Effekt
der Strukturvariable z mittels des Parameters Pz = 0 deaktiviert. Aufgrund von z = 0 ist
zudem auch die Rotation der elastischen Steifigkeit nicht aktiviert. In Abbildung 7.20b
sind hingegen Zustände mit z = 0 und Pz ̸= 0 untersucht und in Abbildung 7.20c ist
der Fall ∥z∥ = 0, 4zmax (za = −0, 016 = −2zr), ebenfalls mit Pz ̸= 0, betrachtet. Letzte-
rer wird in Abschnitt 8.3 als Initialisierung für die Nachrechnung realer Triaxialversuche
verwendet.

Die NHP ist inkrementell nichtlinear. Als Antwortumhüllende ergeben sich unter den
betrachteten axialsymmetrischen Bedingungen Ovale, welche bei deaktiviertem Einfluss
der Strukturvariable z zu Ellipsen mutieren. Die Mittelpunkte der Umhüllenden sind
bezüglich der betrachteten Spannungszustände verschoben. Die Größe der Verschiebung
hängt vom Grad der Nichtlinearität Y und der zusätzlichen Nichtlinearität infolge der
Strukturvariablen Yz ab5. Die Richtung der Verschiebung der Ovale wird entsprechend
durch m bzw. mz diktiert. An den Antwortumhüllenden ist die Druck- und Dichte-
abhängigkeit der NHP deutlich zu erkennen. Je dichter der Boden und je größer der
mittlere effektive Druck, desto größer werden die Antwortumhüllenden und desto größer
ist entsprechend die Steifigkeit in der NHP.

Bei deaktivierten Effekten infolge der Strukturvariablen gilt Yz = 0. Der Grad der Nicht-
linearität Y ist für einen isotropen Spannungszustand relativ gering, weshalb die NHP
nahezu elastisch ist und sich daher eine vergleichsweise geringe Verschiebung des Mittel-
punktes der Antwortumhüllenden bezüglich des betrachteten Zustands zeigt, siehe Abbil-
dung 7.20a. Bei großen Spannungsverhältnissen ist der Grad der Nichtlinearität Y hinge-
gen groß, weshalb sich eine größere Verschiebung der Antwortumhüllenden ergibt. Sofern
Y > 1 gilt, was in hypoplastischen Modellen problemlos möglich ist, liegt der betrachtete
Spannungszustand außerhalb der Antwortumhüllenden. Da jedoch auch für große Span-
nungsverhältnisse Y nur geringfügig größer als 1 ist, liegt der betrachtete Spannungs-
zustand auch für große Spannungsverhältnisse nicht weit von der Antwortumhüllenden
entfernt.

Wenn hingegen die Strukturvariable z aktiviert wird, vergrößert Yz die Verschiebung der
Antwortumhüllenden bezüglich deren Mittelpunkte, was beim Vergleich zwischen Ab-
bildung 7.20a und Abbildung 7.20b deutlich wird. Es zeigt sich ein anisotropes Mate-
rialverhalten. Deutlich zu erkennen ist dies beispielsweise bei der Betrachtung von iso-
tropen Spannungszuständen und den resultierenden Spannungsraten infolge einer iso-
choren triaxialen Kompression im Vergleich zur isochoren triaxialen Extension in Abbil-
dung 7.20c.

5Die Nichtlinearität Yd ist für die betrachteten Zustände nicht relevant, da e > ed(P ) gilt.
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Abbildung 7.20: Antwortumhüllende an ausgewählten Zuständen in der NHP im σa
√
2σr- bzw.

σ̇a
√
2σ̇r-Rendulic-Diagramm für KFS für a) eine deaktivierte zusätzliche Kontraktanz infolge

der Strukturvariablen (Pz = 0), b) für z = 0 und für c) ∥z∥ = 0, 4zmax (za = −0, 016 = −2zr)

7.10.2 Asymptotisches Verhalten

Das asymptotische Verhalten von Boden wurde in Kapitel 4 ausführlich diskutiert. Um den
aus der NHP resultierenden Spannungspfad infolge eines monotonen Dehnungspfads zu
bewerten, werden im Folgenden isotrope (iso), ödometrische (oed) und volumenkonstante
(crit) Dehnungspfade betrachtet. Erneut wird der Parametersatz des KFS herangezogen.
Um verstärkte nichtlineare Effekte zu Beginn der Verformung, die für das asymptotische
Verhalten nicht von Interesse sind, zu vermeiden, wurde der Parameter Pz = 0 gewählt.

Ausgehend von zwei anisotropen und axialsymmetrischen Anfangsspannungszuständen
mit derselben Porenzahl (e0 = 0, 96) werden zunächst die monotonen Dehnungspfa-
de jeweils in Extensions- und in Kompressionsrichtung aufgebracht. Die resultierenden
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axialsymmetrischen effektiven Spannungspfade sind in Abbildung 7.21a dargestellt. Die
Spannungspfade zeigen das erwartete Verhalten. Während die volumenkonstanten Pfa-
de asymptotisch zu Spannungsverhältnissen entsprechend des kritischen Zustands führen,
tendieren die isotropen Pfade asymptotisch zu einem isotropen Spannungszustand, wenn-
gleich sehr große mittlere effektive Drücke hierzu erforderlich sind. Auch die ödometrischen
Pfade tendieren zu den gleichen Spannungsverhältnissen. Nach Kapitel 4 beeinflusst der
Anfangszustand einer monotonen proportionalen Verformung das asymptotische Verhal-
ten von Boden nicht. Dies wird auch in den Simulationen der NHP deutlich und die
berechneten Spannungspfade lassen auf ein konvergentes Verhalten schließen. Die exten-
siven Pfade tendieren, wie erwartet, zu einem spannungsfreien Zustand.

Ausgehend von einem isotropen Anfangsspannungszustand mit p0 = 2 kPa wurden die
kompressiblen Dehnungspfade zusätzlich für verschiedene Anfangsporenzahlen betrachtet.
Die resultierende Porenzahl e in Abhängigkeit vom mittleren effektiven Druck p ist in
Abbildung 7.21b dargestellt. Neben den Simulationsergebnissen der NHP sind auch die
druckabhängigen Grenzporenzahlen der zugrunde gelegten Kompressionsbeziehung nach
Bauer [8] gemäß Gl. (7.25) eingetragen. Die Simulationen der volumenkonstanten Pfade
tendieren asymptotisch zur kritischen Porenzahl ec(P ) der Kompressionsbeziehung, welche
infolgedessen tatsächlich die CSL der NHP im ep-Diagramm darstellt.

Allerdings führt die isotrope Kompression nicht zu Zuständen auf der durch die Kom-
pressionsbeziehung gemäß Gl. (7.25) definierten Kurve ei(P ). Die sich aus der NHP erge-
bende isotrope Kompressionslinie entspricht also nicht der Kompressionsbeziehung nach
Bauer [8]. Dies ist auf die nicht berücksichtigte Konsistenz zwischen der Rate des mittle-
ren effektiven Drucks und der Porenzahl infolge einer monotonen isotropen Kompression
zwischen der Kompressionsbeziehung und dem Stoffmodell selbst zurückzuführen.

Im Folgenden werden nur die Simulationen mit der größten initialen Porenzahl (e0 = 1, 1)
aus Abbildung 7.21b betrachtet. Sowohl der isotrope Pfad als auch der ödometrische Pfad
führt im Bereich praktisch relevanter effektiver Drücke zu größeren Porenzahlen als durch
die CSL definiert. Auch wenn diese beiden Pfade zu Beginn der Simulation noch keine
asymptotischen Zustände darstellen, entspricht die Beobachtung dennoch der Erwartung
im Sinne der asymptotischen Zustände von ed < ec < ei. Erstaunlicherweise schneiden
sowohl die ödometrische Kompressionslinie als auch die isotrope Kompressionslinie der
Simulation mit der NHP bei zunehmendem Druck die CSL. Wie in Kapitel 4 diskutiert,
ist dies physikalisch unbegründet und widerspricht experimentellen Ergebnissen [50, 93].
Die sich infolge einer ödometrischen Kompression asymptotisch einstellenden Porenzahlen
sind unabhängig vom mittleren effektiven Druck geringer als die Porenzahlen infolge der
isotropen Kompression, was wiederum physikalisch begründet ist [50, 93].

Die in Kapitel 4 diskutierte ASBS kann für die NHP gegenwärtig mathematisch nicht
hergeleitet werden. Die gezeigten Beispielsimulationen beweisen dennoch, dass die ASBS
der NHP für den Bereich großer effektiver Spannungen eine physikalisch nicht begründete
Form aufweist. Es lässt sich schlussfolgern, dass lediglich ec(P ) als explizit definierter
Bestandteil der ASBS der NHP anzusehen ist, nicht jedoch die ebenfalls durch Gl. (7.25)
definierte Funktion ei(P ).
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Abbildung 7.21: Asymptotisches Verhalten der NHP infolge proportionaler axialsymmetrischer

Dehnungspfade: a) effektive Spannungspfade im σa
√
2σr-Rendulic-Diagramm und b) ep-Pfade

im Kompressionsdiagramm

Neben den diskutierten kompressiblen proportionalen Dehnungspfaden wurde auch ei-
ne isotrope Extension betrachtet. Diese Simulation beginnt von einem isotropen An-
fangsspannungszustand mit p0 = 15 MPa und e0 = 0, 5. Für den Fall einer deaktivier-
ten zusätzlichen Dilatanz (Yd = 0) nach Abschnitt 7.9 ergeben sich signifikant dichtere
Zustände als durch die Kompressionsbeziehung ed(P ) nach Gl. (7.25) definiert. Dies ist
physikalisch unbegründet. Durch die Berücksichtigung der eingeführten zusätzlichen Di-
latanz liegen die asymptotisch erreichbaren dichtesten Zustände in erster Näherung im
Bereich der dichtesten Zustände entsprechend der Kompressionsbeziehung nach Gl. (7.25).

Zuletzt muss erwähnt werden, dass für die Lösung bodenmechanischer Fragestellungen
das asymptotische Verhalten von Stoffmodellen bei extrem großen Drücken meist nicht
relevant wird. Die gezeigten Defizite der NHP diesbezüglich können zwar theoretisch dis-
kutiert werden, schließen eine Anwendung der NHP jedoch nicht aus.

7.11 Vereinfachte NHP-Parameterkalibration

Mit der NHP wurde in diesem Kapitel ein neues hypoplastisches Modell zur Simulation
monotoner Verformungen eingeführt. In Summe verwendet die NHP 29 Stoffmodellpa-
rameter. All diese Parameter wurden im vorliegenden Kapitel bereits an der Stelle der
jeweiligen Einführung diskutiert. Die Erkenntnisse werden nachfolgend zusammengefasst.

Anhand von vielen Elementsimulationen, siehe hierzu Abschnitt 8.3, zeigt sich, dass 18 der
29 erwähnten Parameter als

”
fortgeschrittene Parameter“ oder

”
Konstanten“ betrachtet

werden können [106]. Diese lassen sich auf Standardwerte setzen und müssen zunächst
für unterschiedliche Materialien nicht kalibriert werden. Alle 18 NHP-Konstanten sind in
Tabelle 7.1 aufgelistet. Die Kalibration der übrigen 11 NHP-Parameter wird im Folgenden
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zusammengefasst. Das Kalibrierungsverfahren ähnelt dabei stark dem bereits für frühere
hypoplastische Modelle vorgeschlagenen Vorgehen [51, 53, 91].

Die granulare Härte hs, der Exponent nB sowie die Grenzporenzahlen ed0, ec0 und ei0
in der NHP entsprechen der Kompressionsbeziehung nach Bauer [8] und wurden unter
anderem in Abschnitt 7.5.1 diskutiert. Die Parameter hs und nB bestimmen die Form der
Kompressionskurve und können beispielsweise anhand einer ödometrischen oder isotropen
Kompression an einer lockeren Probe kalibriert werden. Die Grenzporenzahlen bei p = 0
ergeben sich aus Versuchen zur Bestimmung der lockersten und dichtesten Lagerung (emin

und emax) [28, 51, 53, 91]. Es gilt folgende Abschätzung:

ed0 ≈ emin, ec0 ≈ emax und ei0 ≈ 1, 2 emax . (7.60)

Allgemein muss ed0 < ec0 < ei0 gelten. Aufgrund der nicht berücksichtigten Konsistenz-
bedingung zwischen der Kompressionsbeziehung und dem Stoffmodell selbst liefert die
Kompressionsbeziehung und Simulationen mit der NHP nicht dieselbe Kompressionskur-
ve, siehe Abschnitt 7.10.2. Es wird daher empfohlen, die Parameter hs, nB, ed0, ec0 und
ei0 zunächst anhand der Kompressionsbeziehung nach Bauer [8] zu kalibrieren und darauf
aufbauend dieselbe Kompression mit der NHP zu simulieren um sicherzustellen, dass die
Unterschiede für das untersuchte bodenmechanische Problem vernachlässigbar sind.

Der Parameter c steuert die Größe der hyperelastischen Steifigkeit und kann anhand der
Spannungs-Dehnungs-Kurve eines monotonen Triaxialversuchs an einer locker gelagerten
Probe kalibriert werden. In erster Näherung kann c ≈ 0, 001 angesetzt werden.

Der kritische Reibungswinkel φc lässt sich sowohl aus einem Schüttkegel als auch aus
Triaxialversuchen ableiten [51, 53, 91]. Für die verbleibenden Reibungswinkel φi, φd und
φa kann näherungsweise

φi ≈ 0, 75φc bis 0, 9φc und φd ≈ φa ≈ 1, 5φc (7.61)

angenommen werden. Um die Werte von φd und φa genauer zu kalibrieren, wird ein mo-
notoner drainierter Triaxialversuch an einer möglichst dichten Probe empfohlen. Anhand
des sich dabei einstellenden Peakwertes der Deviatorspannung lässt sich der Winkel φd
kalibrieren, siehe Abschnitt 7.6.2. Der Winkel φa kann mit dem sich einstellenden Deh-
nungspfad (Dilatanz) modifiziert werden, siehe Abschnitt 7.7.1. Mittels eines weiteren
monotonen undrainierten triaxialen Kompressionsversuch an einer lockeren Probe kann
zudem der Winkel φi angepasst werden, siehe Abschnitt 7.6.2.

Der Parameter Pz beschreibt die Intensität der anisotropen Effekte infolge der Strukturva-
riablen z. Eine praktische Kalibrierung ist über undrainierte monotone Triaxialversuche
an locker gelagerten Proben möglich, die mit derselben Präparationsmethode und axialer
Sedimentation hergestellt wurden. Solche Proben zeigen infolge einer triaxialen Extension
ein deutlich kontraktanteres Verhalten als infolge einer triaxialen Kompression. Diese Be-
obachtung lässt sich durch eine geeignete Wahl von Pz sowie eine korrekte Initialisierung
des Strukturtensors z0 reproduzieren. Ein größerer Wert von Pz führt zu ausgeprägteren
anisotropen Effekten. Die Struktureffekte können über Pz = 0 deaktiviert werden.
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P0 n α n1 n2 βL βD nL

[kPa] [-] [-] [-] [-] [◦] [◦] [-]

1 0,6 0,1 0,22 0,9 30 -15 0,1

BY CY nY az nz βz uz zmax kd ke

[-] [-] [-] [-] [-] [-] [-] [-] [-] [-]

12 0,35 1,1 0,01 2 0,15 0,4 0,05 200 1,5

Tabelle 7.1: NHP-Konstanten

Zur Kalibrierung der 11 NHP-Parameter mit möglichst wenig Aufwand wird zusammen-
fassend folgendes Versuchsprogramm vorgeschlagen:

• Schüttkegel

• Lockerste und dichteste Lagerung

• Monotoner Kompressionsversuch (ödometrisch oder isotrop) an einer lockeren Probe

• Monotoner drainierter triaxialer Kompressionsversuch an einer lockeren Probe

• Monotoner drainierter triaxialer Kompressionsversuch an einer dichten Probe

• Monotoner undrainierter triaxialer Kompressionsversuch an einer lockeren Probe

• Monotoner undrainierter triaxialer Extensionsversuch an einer lockeren Probe

Mit der bis hierhin ausführlich diskutierten NHP wurde ein neues hypoplastisches Stoff-
modell zur Simulation monotoner Verformungen vorgestellt, welches die in Kapitel 3 ge-
zeigten Defizite der HP behebt. Bevor die NHP tatsächlichen experimentellen Daten ge-
genübergestellt wird, erfolgt im nächsten Kapitel zunächst die Kopplung der NHPmit dem
GIS-Konzept zur NHP+GIS, welche dann auch zur Simulation zyklischer Verformungen
herangezogen werden kann. Kalibrierte NHP-Parameter werden daher im Rahmen der
Parametersätze der NHP+GIS für verschiedene granulare Materialien in Abschnitt 8.3
präsentiert.





Kapitel 8

Neohypoplastizität für zyklische

Verformungen

Im vorherigen Kapitel wurde mit der Neohypoplastizität (NHP) ein neues ratenunab-
hängiges hypoplastisches Stoffmodell zur Simulation monotoner Verformungen granularer
Böden vorgestellt. Das vorliegende Kapitel erweitert die NHP, um auch zyklische Verfor-
mungen zuverlässig abbilden zu können. Dazu wird die NHP mit dem bereits in Kapitel 6
eingeführten Konzept der generalisierten intergranularen Dehnung (GIS) zur NHP+GIS
gekoppelt. Im Folgenden werden nur die wichtigsten Formeln benannt, um eine Wieder-
holung mit bereits eingeführten Gleichungen in Kapitel 6 und Kapitel 7 zu vermeiden. Die
Gleichungen der NHP+GIS sind in Anhang A.3 zusammengefasst. Die Ergebnisse dieses
Kapitels wurden teilweise in [106] veröffentlicht.

8.1 Einfacher Ansatz für zyklische Verformungen

Die Steifigkeit der NHP aus den Versionen von [117, 118, 120] und auch in der in Kapi-
tel 7 diskutierten aktuellen Version der NHP wurde mithilfe von monotoner Versuche bei
Dehnungen von etwa ε ≈ 10−3 kalibriert [120]. Der Materialparameter c der hyperelasti-
schen Potentialfunktion, welcher, wie in Abschnitt 7.2 beschrieben, ein Skalierungsfaktor
für die Steifigkeit darstellt, wurde für diese relativ großen Dehnungen abgeleitet. Eine
erhöhte Steifigkeit bei kleinen Dehnungen (engl. small strain stiffness) ist dabei nicht
berücksichtigt. Allerdings ist gerade für die Simulation zyklischer Verformungen mit klei-
nen Dehnungsamplituden in Verbindung mit dem dabei auftretenden hysteretischen Ver-
halten die Berücksichtigung der zutreffenden Steifigkeit auch bei kleinen Dehnungen in
Stoffmodellen für Böden elementar.

Zur Berücksichtigung der erhöhten Steifigkeit bei kleinen Dehnungen in der NHP war
ursprünglich eine Kopplung der NHP mit der Paraelastizität [123, 145] angestrebt. Erste
Ansätze hierzu sind [117] zu entnehmen. In [101] wurde mit dem Ansatz der sog. letzten
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Abbildung 8.1: Zyklischer undrainierter Triaxialversuch mit einer vorgegebenen Dehnungsam-

plitude von εampl
a = 6·10−4 an einer mitteldichten Probe aus KFS (TCUE9 aus [193], ID0 = 0, 67)

und Nachrechnung mittels der NHP+LR aus [101]: a) effektiver Spannungspfad im pq-Diagramm

und b) Deviatorspannung q als Funktion der axialen Dehnung εa

Richtungsumkehr (engl. last reversal (LR)) ein vereinfachter paraelastischer Ansatz mit
der NHP gekoppelt. In diesem Ansatz speichert eine tensorielle und dehnungsähnliche Zu-
standsvariable hr (Last reversal) die Dehnung bei der letzten Belastungsrichtungsumkehr.
Sofern

(ε− hr) : ε̇ > 0 (8.1)

gilt, findet eine Lastumkehr statt und die Zustandsvariable hr wird mit der aktuellen
Dehnung ε aktualisiert. Die Zustandsvariable hr erfährt also einen Sprung. Der vorherige
Wert von hr wird nicht gespeichert. In Abhängigkeit des skalarwertigen Abstands

dr = ∥ε− hr∥ (8.2)

von der aktuellen Dehnung ε zu hr im Dehnungsraum lässt sich ein skalarer Faktor k zur
Skalierung der Steifigkeit definieren:

E
skaliert

= k E mit k = f(dr) . (8.3)

Unmittelbar nach einer 180◦ Belastungsrichtungsumkehr gilt k = mR > 1 und infolge lan-
ger monotoner Verformungen wird asymptotisch k = 1 erreicht. Die Steifigkeitsabnahme
mit zunehmender Verformung nach einer Belastungsrichtungsumkehr lässt sich mittels
einer Funktion k = f(dr) modellieren.

Grundsätzlich kann mit dem vorgestellten LR-Ansatz, welcher im Detail in [101] be-
schrieben ist, und dem daraus resultierenden Modell der NHP+LR das Bodenverhalten
unter zyklischer Verformung mit ca. 180◦ Belastungsrichtungsumkehrungen gut modelliert
werden. Entsprechend gute Übereinstimmungen von Simulationsergebnissen und Experi-
menten unter axialsymmetrischen Bedingungen sind in [101] dokumentiert. Abbildung 8.1
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Abbildung 8.2: Visualisierung der unstetigen Steifigkeit der NHP+LR mittels einer Antwor-

tumhüllenden im zweidimensionalen σ1σ2 bzw. σ̇1σ̇2-Diagramm

verdeutlicht dies anhand eines zyklischen undrainierten Triaxialversuchs mit einer vorge-
gebenen Dehnungsamplitude von εampl

a = 6 · 10−4 an einer mitteldichten Probe aus KFS
(TCUE9 aus [193], ID0 = 0, 67, p0 = 200 kPa). Die Simulation erfolgt mit dem Parame-
tersatz für KFS aus [101]. Es sei darauf hingewiesen, dass die Version der NHP aus [101]
sich leicht von der Version der NHP aus Kapitel 7 unterscheidet. Sowohl der effektive
Spannungspfad im pq-Diagramm, siehe Abbildung 8.1a, als auch die Deviatorspannung
q als Funktion der axialen Dehnung εa, siehe Abbildung 8.1b, kann durch die NHP+LR
bemerkenswert gut reproduziert werden. Die Hysteresen der Spannungs-Dehnungs-Kurve
und die Akkumulation werden ebenfalls zutreffend abgebildet.

Trotz der guten Simulationsergebnisse aus Abbildung 8.1 bringt der LR-Ansatz Nachteile
mit sich, welche einer Anwendung der NHP+LR in einem ARWP entgegenstehen und im
Folgenden diskutiert werden. Die Tangentensteifigkeit der NHP+LR ist unstetig. Zur Ver-
anschaulichung werden zwei Dehnungsraten ε̇1 und ε̇2 mit unterschiedlichen Richtungen
(⃗ε̇1 ̸= ⃗̇ε2) betrachtet. Über das Skalarprodukt

cos(α) = ⃗̇ε1 : ⃗̇ε2 (8.4)

lässt sich der Winkel der Richtungsumkehr α bei einer Änderung der Belastungsrichtung
von ε̇1 zu ε̇2 definieren. Es gilt −1 ≤ cos(α) ≤ 1 bzw. 0 ≤ α ≤ 180◦. Weiter wird ein
Zustand mit hr ∝ ε̇1 und ε ∝ ε̇1 betrachtet, woraus hr ∝ ε folgt. Außerdem wird dr ≫ 0
angenommen. Für eine Dehnungsrate ε̇2 mit α > 90◦ ist Gl. (8.1) erfüllt und hr wird
upgedatet. Für α ≤ 90◦ ist Gl. (8.1) nicht erfüllt und hr bleibt unverändert. Unmittelbar
nach einem Richtungswechsel von ε̇1 zu ε̇2 gilt infolgedessen für α > 90◦ k = mR > 1
und für α ≤ 90◦ k = 1. Die Steifigkeit der NHP+LR ist demzufolge beim Übergang von
α = 90◦ unstetig. Abbildung 8.2 visualisiert die unstetige Tangentensteifigkeit exempla-
risch mittels einer Antwortumhüllenden. Diese Unstetigkeit ist neben der numerischen
Problematik auch physikalisch unbegründet. Die maximale Steifigkeitserhöhung im Ver-
gleich zu einer monotonen Fortsetzung der Verformung zeigt eine Lastrichtungsumkehr
von α = 180◦. Bei einer Umkehr von α = 90◦ ist die Steifigkeitserhöhung dagegen etwa
halbiert [5].
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Abbildung 8.3: Mathematische Schlechtgestelltheit der NHP+LR: a) eine minimale Störung

einer monotonen Verformung hat einen starken Einfluss auf die Lösung, wobei b) der Sprung in

der Zustandsvariablen hr ursächlich ist

Zusätzlich zu der unstetigen Steifigkeit ist die Sprungbedingung der Zustandsvariablen
hr selbst problematisch und führt zu einem mathematisch schlecht gestellten Problem.
Abbildung 8.3 zeigt die Simulationen eines monotonen drainierten Triaxialversuchs in
dichtem KFS mit der NHP+LR aus [101]. Es wurde p0 = 100 kPa, e0 = 0, 735, z0 = 0 und
hr0 = 0 initialisiert. Neben einer monotonen Verformung ist auch eine Simulation mit einer
geringen Störung ∆εa = 10−8 (Entlastung gefolgt von einer Wiederbelastung) betrachtet.
Eine solch geringe Störung sollte, wie in Abschnitt 3.6.5 beschrieben, keinen Einfluss auf
die Berechnungsergebnisse haben. In Abbildung 8.3a ist jedoch ein deutlicher Einfluss der
minimalen Störung auf die Spannungs-Dehnungs-Kurve zu erkennen. Dieser verschwindet
auch bei weiterer Reduktion der Störung nicht und das mathematische Problem ist somit
schlecht gestellt. Der Grund liegt, wie in Abbildung 8.3b dargestellt, im Sprung1 der
Zustandsvariable hr, welcher bei jeder noch so kleinen Störung auftritt.

Aufgrund der dargestellten Problematik des LR-Ansatzes wird dieser hier nicht weiter ver-
folgt. Details zur NHP+LR sind [101] zu entnehmen. Im Folgenden erfolgt die Kopplung
der NHP mit dem GIS-Ansatz, welcher bereits in Kapitel 6 eingeführt wurde.

8.2 Kopplung der NHP mit der GIS (NHP+GIS)

Das GIS-Konzept ist im Detail in Abschnitt 6.2 beschrieben. Für die Zustandsvariable der
intergranularen Dehnung h gilt die Entwicklungsgleichung (2.48). In Abhängigkeit von h
und von der Dehnungsrate ε̇ lässt sich nach Gl. (6.4) der skalare Faktor k bestimmen.

1Genauer gesagt treten in der Simulation sogar zwei Sprünge von hr auf. Der zweite Sprung infolge

der Wiederbelastung ist jedoch verglichen mit dem ersten Sprung infolge der Entlastung sehr gering und

daher in der Abbildung 8.3b nicht zu erkennen.
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Das GIS-Konzept kann mit der NHP gekoppelt werden, indem die Gl. (7.1) mit diesem
skalaren Faktor k modifiziert wird:

σ̇ = k E :
(
ε̇−mY (kγ)∥ε̇∥ −mzYz

(kγ)∥ε̇∥ −mdYd∥ε̇∥
)
. (8.5)

Der Exponent γ ermöglicht die Berücksichtigung der Zustandsvariablen der zyklischen
Vorbelastung Ω mit der Entwicklungsgleichung (6.9). Die einzelnen Komponenten von
Gl. (8.5) wurden bereits in Kapitel 6 und Kapitel 7 ausführlich diskutiert. Es ist zu
erwähnen, dass die NHP gegenwärtig nicht mittels der Zustandsmobilisierung S = fd/f

A∗
d

ausgedrückt werden kann, da weder der Pyknotropiefaktor fd noch der asymptotische Py-
knotropiefaktor fAd noch eine dazu ähnliche Größe fA∗d in der NHP definiert sind. Die
Kopplung der NHP mit der GIS erfolgt daher mittels des Grads der Nichtlinearität Y .
Wie in Abschnitt 6.3.2 dargelegt, folgt aus dieser Tatsache direkt, dass in der NHP+GIS
nur das Overshooting des definierten Grenzkriteriums nach Matsuoka-Nakai [83] verhin-
dert ist. Für andere asymptotische Zustände gilt Y ̸= 1, sodass infolge kleiner Ent- und
Wiederbelastungen ein Overshooting zu erwarten ist.

In der NHP+GIS wird im Einflussbereich der intergranularen Dehnung die elastische
Steifigkeit durch E → k E erhöht und die irreversiblen Verformungen reduziert. In der
NHP erfolgt letzteres sowohl mittels des Grads der Nichtlinearität Y → Y (kγ) als auch
mittels der Nichtlinearität infolge der Strukturvariablen Yz → Y

(kγ)
z .

Unmittelbar nach einer Belastungsrichtungsumkehr ist der Faktor k maximal, d.h. der
Grad der Nichtlinearität wird für Y < 1 maximal minimiert. Infolge einer monotonen
Verformung nähert sich k asymptotisch dem Wert 1 an. Abbildung 8.4 zeigt den Grad
der Nichtlinearität Y (kγ) = Y GIS als Funktion von x = H/Hmax für k = 1 und k = 5 mit
variierendem γ. Im Bereich von 0 ≤ x < 1 führt k > 1 zu einem reduzierten Grad der
Nichtlinearität, d.h. zu einem elastischeren Bodenverhalten. Je größer γ, desto stärker ist
die genannte Reduktion von Y (kγ). Die Bedingung Y (x = 1) = 1 bleibt unbeeinflusst und
für x > 1 wird der Grad der Nichtlinearität für k > 1 sogar vergrößert.

Der Faktor Az, siehe Gl. (7.52), welcher die Entwicklung der Strukturvariablen z di-
rekt beeinflusst, wurde unter Berücksichtigung der Bodensteifigkeit abgeleitet. Infolge der
erhöhten Steifigkeit im Einflussbereich der intergranularen Dehnung muss daher auch
dieser Faktor zu

Az =
k Fe uz

c (2− n− α)(P/P0)1−n
(8.6)

angepasst werden. Zusammengefasst umfasst die NHP+GIS fünf Zustandsvariablen:

• effektive Cauchy-Spannung σ

• Porenzahl e

• Strukturvariable z
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Abbildung 8.4: Grad der Nichtlinearität Y GIS = Y kγ der NHP+GIS: ohne Einfluss der inter-

granularen Dehnung infolge einer monotonen Verformung (für k = 1), für k = 5 und γ = 0, 3

und für k = 5 und γ = 0, 8

• intergranulare Dehnung h

• zyklische Vorbelastungsvariable Ω.

Eine ausreichend lange monotone Verformung führt zu ż = 0, Ω̇ = 0 und ḣ = 0.

In der NHP, siehe Gl. (7.1), ergeben sich für dichte Zustände e ≈ ed zusätzliche irreversible
Verformungen aus dem in Abschnitt 7.9 diskutierten Term

mdYd∥ε̇∥ . (8.7)

Wie in Abbildung 7.21b hervorgehoben, sind diese zusätzlichen irreversiblen Verformungen
(Auflockerung) zur Vermeidung unphysikalisch dichter Zustände mit e < ed unabdingbar.

Im gekoppelten Modell NHP+GIS gilt zu klären, inwiefern die aus dem Term (8.7) re-
sultierenden irreversiblen Verformungen ebenfalls vom Faktor k beeinflusst werden soll-
ten. Hierzu werden exemplarisch zyklische ödometrische Ent- und Wiederbelastungen mit
N = 50 Zyklen von ∆σa = 480 kPa simuliert. Die Simulationen werden mit dem Pa-
rametersatz des KFS, siehe Tabelle 8.1 und Tabelle 8.2, durchgeführt und ein isotroper
Anfangsspannungszustand von p0 = 500 kPa mit einer Anfangsporenzahl von e0 = 0, 7
wird betrachtet. Weiter gilt z0 = h0 = 0 und Ω0 = 0.

Abbildung 8.5 zeigt das Porenzahl-Druck-Diagramm für Simulationen mit deaktivierter
zusätzlicher Dilatanz Yd = 0 und mit verschiedenen Möglichkeiten der Berücksichtigung
von k im Term (8.7). Dabei ist zu beachten, dass Yd nach Gl. (7.57) von Y nach Gl. (7.35)
abhängt. Sofern die zusätzliche Dilatanz deaktiviert wurde (Yd = 0), werden physika-
lisch unzulässig dichte Zustände mit e < ed(P ) erreicht. Hingegen zeigen sich mit der
berücksichtigten zusätzlichen Dilatanz sowohl gemäß

md(Yd)
kγ∥ε̇∥ mit Yd = f(Y kγ ) (8.8)
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Abbildung 8.5: Einfluss der GIS auf die Nichtlinearität Yd der zusätzlichen Dilatanz zur Vermei-

dung unzulässig dichter Zustände: ep-Diagramm für eine zyklische (N = 50) ödometrische Ent-

und Wiederbelastung ohne zusätzliche Dilatanz (Yd = 0) und für verschiedene Abhängigkeiten

der zusätzlichen Dilatanz vom Faktor k

bzw. mittels

md(Yd)
kγ∥ε̇∥ mit Yd = f(Y ) (8.9)

als auch bei vollständiger Vernachlässigung des Faktors k in

mdYd∥ε̇∥ mit Yd = f(Y ) (8.10)

nahezu identische Simulationsergebnisse und die Vermeidung von Zuständen e < ed(P ).
Im Sinne der Vereinfachung wurde daher auf die Berücksichtigung des Faktors k im
Term (8.7) verzichtet und der Ansatz gemäß Gl. (8.10) gewählt.

8.3 Elementsimulationen

Im Folgenden werden Elementsimulationen mit der NHP+GIS experimentellen Daten
der drei in Abschnitt 3.1 vorgestellten Versuchsmaterialien Karlsruher Feinsand (KFS),
Karlsruher Sand (KS) und Zbraslav Sand (ZS) gegenübergestellt. Entsprechende NHP-
Parametersätze können der Tabelle 8.1 entnommen werden. Letztere enthält die 11 zu
kalibrierenden Parameter der NHP, welche in Abschnitt 7.11 zusammenfassend disku-
tiert wurden. Die in erster Näherung als Konstanten anzunehmenden 18 fortgeschrittenen
Konstanten der NHP sind der Tabelle 7.1 zu entnehmen.

Die für das erweiterte NHP+GIS Modell erforderlichen zusätzlichen 10 Stoffmodellpara-
meter sind in Tabelle 8.2 aufgelistet. Für Details der Parameterkalibration sei auf Kapitel 6
und Kapitel 7 verwiesen. Die NHP-Parameter für KFS und ZS bzw. die NHP-Konstanten
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c hs nB ei0 ec0 ed0 φi φc φd φa Pz

[-] [kPa] [-] [-] [-] [-] [◦] [◦] [◦] [◦] [kPa]

KFS 0,001 4 · 106 0,27 1,212 1,054 0,677 25 33,1 50 50 40

KS 0,001 5, 8 · 106 0,28 1 0,84 0,54 25 33 49 49 20

ZS 0,001 111746 0,346 1,027 0,893 0,52 31 34 49 49 20

Tabelle 8.1: NHP-Parameter für das gekoppelte Modell NHP+GIS

R mR mT βR χR γχ χ0 χmax CΩ γΩ

. [-] [-] [-] [-] [-] [-] [-] [-] [-] [-]

KFS 10−4 5 2 0,5 6 0,28 1,45 2,73 50 1

KS 10−4 5 2 0,5 6 0,35 1† 1† 0 1

ZS 10−4 5 2,5 0,5 6 0,31 1,09 2,214 41 1
† Deaktivierung der zyklische Vorbelastung durch χ0 = χmax = 1

Tabelle 8.2: GIS-Parameter für das gekoppelte Modell NHP+GIS

entsprechen den in [106] veröffentlichten Werten. Es sei darauf hingewiesen, dass die
in [101] publizierten NHP-Parameter der NHP+LR von KFS aufgrund der angepassten
konstitutiven Formulierung leicht von den hier präsentierten Stoffmodellparametern der
NHP+GIS abweichen.

Im Rahmen der vorliegenden Arbeit erfolgte die Parameterkalibration per Hand. Eine
händische Kalibration erfordert in der Regel eine Vielzahl von Iterationsschritten und ba-
siert außerdem auf einer augenscheinlichen Bewertung der Simulationsergebnisse, welche
zwangsläufig nicht objektiv sein kann. Die Grundidee der NHP besteht unter anderem dar-
in, dem Nutzer eine problembezogene Stoffmodellkalibrierung zu ermöglichen. Dies führt
zu einer Vielzahl an Parametern. Automatische Kalibrierungstools [59, 82, 117] können
in Zukunft zu einer Reduktion des Kalibrierungsaufwands führen.

Die im Folgenden betrachteten experimentellen Daten von KFS, KS und ZS entstammen
der Literatur [30, 31, 132, 175, 193, 194]. Es werden Triaxialversuche und Ödometerversuche
sowohl unter monotoner als auch zyklischer Verformung betrachtet. Es sei darauf hinge-
wiesen, dass viele der im Folgenden gezeigten Versuche an KFS bereits in Abschnitt 6.5
mit der HP+IS und mit der HP+GIS+ACST simuliert wurden.

Die Initialisierung der Zustandsvariablen ist von großer Bedeutung für den Vergleich von
Simulationen mit Versuchsdaten. Der effektive Anfangsspannungszustand σ0 und die An-
fangsporenzahl e0 können in den Versuchen gemessen und entsprechend initialisiert wer-
den. Die Initialisierung zusätzlicher Zustandsvariablen ist jedoch nicht trivial, da diese in
herkömmlichen Experimenten mit konventioneller Messtechnik oftmals nicht direkt mess-
bar sind.

Die Initialisierung der intergranularen Dehnung wurde ausführlich in Abschnitt 3.6.1 bzw.
6.4.5 diskutiert. In den folgenden Simulationen wird h0 = −0, 9R/

√
3δ initialisiert. Bei

den Ödometerversuchen wird die intergranulare Dehnung aufgrund der Sedimentation in
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axialer Richtung mit ha0 = −R vollständig mobilisiert initialisiert. Da in den betrachteten
Experimenten keine bekannte zyklische Vorbelastung vorliegt, wird Ω0 = 0 gewählt.

Die Probenpräparation beeinflusst das mechanische Verhalten von Boden erheblich, was
auf unterschiedliche Mikrostrukturen der Probe zurückzuführen ist. Unterschiedliche Pro-
benpräparationsmethoden können durch entsprechende Werte der initialen Strukturvaria-
ble z0 berücksichtigt werden. Für die Initialisierung der Strukturvariablen kann zunächst
eine transversale Isotropie entsprechend der Sedimentationsrichtung in x1-Richtung (axia-
le Richtung) angenommen werden:

z0 = ∥z0∥

 −2/
√
6 0 0

0 1/
√
6 0

0 0 1/
√
6

 . (8.11)

Damit ist nur die Norm ∥z0∥ der initialen Strukturvariablen unbekannt. Die Triaxialver-
suche an KFS wurden trocken eingerieselt (engl. air pluviation (AP)) oder feucht einge-
stampft (engl. moist tamping (MT)) [193, 194]. Die KS-Proben wurden mittels der AP-
Methode präpariert. Die ZS-Proben wurden durch trockene Sedimentation im lockersten
Zustand mit anschließender Verdichtung hergestellt [30].

Die aus den verschiedenen Präparationsmethoden resultierende unterschiedliche Mikro-
struktur wurde für AP-Proben mit ∥z0∥ = 0, 4zmax und für MT-Proben oder Proben
mit trockener Sedimentation im lockersten Zustand mit anschließender Verdichtung mit
∥z0∥ = zmax berücksichtigt

2. Falls die Initialisierung von z von den oben genanntenWerten
abweicht, wird dies angegeben und begründet.

8.3.1 Monotone drainierte Triaxialversuche

Monotone drainierte Triaxialversuche an KFS sind in Abbildung 8.6 für unterschiedliche
Anfangsdichten und in Abbildung 8.7 für dichte Proben mit variierendem initialem mittle-
ren effektiven Druck dargestellt. Abbildung 8.8 stellt monotone drainierte Triaxialversuche
an KS mit verschiedener initialer Dichte dar und Abbildung 8.9 zeigt Versuche an ZS mit
variierender Anfangsdichte und mittlerem effektivem Druck. Die Spannungs-Dehnungs-
Kurven (Deviatorspannung q in Abhängigkeit von der axialen Dehnung εa) zeigen in
den Abbildungen 8.6a, 8.7a, 8.8a und 8.9a eine bemerkenswert gute Übereinstimmung
zwischen den Simulationen und den Experimenten. Die Peak-Festigkeit dichter Proben,
die asymptotische Deviatorspannung bei großen Dehnungen sowie die dichteabhängige
Steifigkeit können durch die NHP+GIS gut reproduziert werden. Auch die volumetrische
Dehnung εvol in Abhängigkeit von der axialen Dehnung εa kann gut modelliert werden,

2Es wurde unter axialsymmetrischen Bedingungen za0 = 0, 016 = 2zr0 (∥z0∥ = 0, 392zmax) und

za0 = 0, 04 = 2zr0 (∥z0∥ = 0, 98zmax) initialisiert.
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Abbildung 8.6: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS monotoner drai-

nierter Triaxialversuche an KFS für Proben unterschiedlicher initialer Dichte: a) Deviatorspan-

nung q, b) volumetrische Dehnung εvol und c) Zustandsvariablen Ω, ha und za in Abhängigkeit

von der axialen Dehnung εa

siehe Abbildungen 8.6b, 8.7b, 8.8b und 8.9b. Sowohl die anfängliche Kontraktanz, deren
Dichteabhängigkeit als auch die sich anschließende ausgeprägte Dilatanz dichter Proben
werden reproduziert. Wie in Abbildung 8.7 gezeigt, kann das Bodenverhalten in mono-
tonen drainierten Triaxialversuchen durch die NHP+GIS über einen weiten Bereich ef-
fektiver mittlerer Spannungen abgebildet werden. Eine Zunahme des mittleren effektiven
Spannungsniveaus führt zu einer Erhöhung der im Versuch erreichten Deviatorspannung.
Neben der zuverlässigen Modellierung der Dilatanz der dichten Probe ist hervorzuheben,
dass auch die zum Erreichen der Peak-Festigkeit erforderliche Größe der Dehnung gut
reproduziert wird. Beide Effekte können, wie in Abschnitt 3.2 gezeigt, mit der HP+IS
nicht akkurat modelliert werden.

Exemplarisch zeigt Abbildung 8.6c die Entwicklung der zusätzlichen Zustandsvariablen
(Ω, h und z) bzw. deren Komponenten des in Abbildung 8.6 betrachteten dichten Ver-



8.3. Elementsimulationen 185

0

500

1000

1500

2000

0 4 8 12 16 20

D
e

v
ia

to
ri

c
 s

tr
e

s
s
 q

 [
k
P

a
]

Axial strain -εa [%]

Experiment
NHP+GIS

TMD21: p0=50 kPa
TMD22: p0=100 kPa

TMD23: p0=200 kPa

TMD24: p0=300 kPa

TMD25: p0=400 kPa

||z0||=0.4zmax

0.85 < ID0 < 0.950.85 < ID0 < 0.95

||z0|| = 0.4zmax

Dev
iato

rspa
nnu

ng q
 [kP

a]

Axiale Dehnung -εa [%]

,, ,

,

a)

-10

-8

-6

-4

-2

0

2

0 4 8 12 16 20

V
o

lu
m

e
tr

ic
 s

tr
a

in
 ε

v
o

l [
%

]

Axial strain -εa [%]

Experiment
NHP+GIS

0.85 < ID0 < 0.95

TMD21-TMD25:

50 kPa < p0 < 400 kPa

0.85 < ID0 < 0.95

Vol
. De

hnu
ng -

ε vo
l [%

]
Axiale Dehnung -εa [%]

,, ,

b)

Abbildung 8.7: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS monotoner drai-

nierter Triaxialversuche an KFS für dichte Proben unterschiedlicher initialer mittlerer effektiver

Drücke: a) Deviatorspannung q und b) volumetrische Dehnung εvol in Abhängigkeit von der

axialen Dehnung εa
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Abbildung 8.8: Versuchsergebnisse [175] vs. Simulationen mit der NHP+GIS monotoner drai-

nierter Triaxialversuche an KS für Proben unterschiedlicher initialer Dichte: a) Deviatorspan-

nung q und b) volumetrische Dehnung εvol in Abhängigkeit von der axialen Dehnung εa

suchs an KFS. Während der monotonen Verformung tritt keine relevante Änderung der
zyklischen Vorbelastungsvariablen Ω auf und Ω = 0 wird asymptotisch erreicht. Wäre
Ω0 ̸= 0 initialisiert worden, würde eine monotone Verformung die zyklische Vorbelastung
auslöschen und es würde sich asymptotisch ebenfalls Ω = 0 einstellen. Hingegen zeigen
sich infolge der Scherung deutliche Änderungen der Strukturvariablen z. Die Änderung
der intergranularen Dehnung h ist zu Beginn der Simulation am ausgeprägtesten. Ein
monotoner drainierter Triaxialversuch führt asymptotisch zu einem volumenkonstanten
proportionalen Dehnungspfad (kritischer Zustand). Dies erklärt die asymptotischen Werte
aller Zustandsvariablen und die gleiche Richtung von z und h im kritischen Zustand.
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Abbildung 8.9: Versuchsergebnis [32, 132] vs. Simulation mit der NHP+GIS monotoner drai-

nierter Triaxialversuche an ZS für Proben unterschiedlicher initialer Dichte und variierendem

initialen mittlerem effektiven Druck: a) Deviatorspannung q und b) volumetrische Dehnung εvol

in Abhängigkeit von der axialen Dehnung εa

8.3.2 Monotone undrainierte Triaxialversuche

Monotone undrainierte Triaxialversuche an KFS sind für mitteldichte Proben mit un-
terschiedlichen initialen mittleren effektiven Drücken in Abbildung 8.10 sowie für va-
riierende Anfangsdichten in Abbildung 8.11 dargestellt. Dabei werden sowohl triaxiale
Kompressions- als auch triaxiale Extensionsversuche betrachtet.

Im effektiven Spannungspfad ist zwischen den Simulationen mit der NHP+GIS und den
Experimenten in Abbildung 8.10a und Abbildung 8.11a eine geringe Abweichung zu erken-
nen. Die Simulationen zeigen zu Beginn der Versuche eine weniger ausgeprägte Reduktion
des mittleren effektiven Drucks, also ein zu gering ausgeprägtes kontraktantes Verhalten.
Dieses Defizit der NHP+GIS ist auf das Basismodell der NHP zurückzuführen und re-
sultiert nicht aus der GIS-Erweiterung. Eine Verbesserung der Simulationen wäre durch
eine Modifikation der Parameter für den Grad der Nichtlinearität Y , für die äquivalente
hypoplastische Fließregel m oder für den Einfluss der Strukturvariablen z möglich. Im
Rahmen der händischen Parameterkalibration in dieser Arbeit wurde jedoch auf eine
weitere Parameteroptimierung verzichtet. Die Entwicklung der Deviatorspannung q in
Abhängigkeit von der axialen Dehnung εa, dargestellt in Abbildung 8.10b und Abbil-
dung 8.11b, zeigt eine gute Reproduktion der allgemeinen Bodensteifigkeit. Insbesondere
die erhöhte Steifigkeit bei geringen Spannungsverhältnissen zu Beginn der Versuche sowie
die deutlich reduzierte Steifigkeit bei großen Spannungsverhältnissen werden durch die
NHP+GIS realitätsnah modelliert.

Die dichten und mitteldichten Proben durchlaufen während der Scherung eine Phasen-
transformation von einem initial kontraktanten zu einem dilatanten Verhalten, was in
undrainierten Versuchen durch einen initialen Abbau gefolgt von einem erneuten Aufbau



8.3. Elementsimulationen 187

-400

-200

0

200

400

600

0 100 200 300 400 500 600

D
e

v
ia

to
ri

c
 s

tr
e

s
s
 q

 [
k
P

a
]

Mean effecitive pressure p [kPa]

Experiment
NHP+GIS

TM
U1

TMU2

TMU3

TMU4

TMU7
TMU8

TMU9

TMU10

0.53 < ID0 < 0.64

||z0|| =
0.4zmax

||z0|| =
0.4zmax

0.53 < ID0 < 0.64

D
ev

ia
to

rs
pa

nn
un

g 
q 

[k
P

a]

Mittlerer effektiver Druck p [kPa]

, ,

,

a)

-400

-200

0

200

400

600

-8 -4 0 4 8

D
e

v
ia

to
ri

c
 s

tr
e

s
s
 q

 [
k
P

a
]

Axial strain -εa [%]

Experiment
NHP+GIS

TM
U1

TM
U2

TM
U

3
T

M
U

4

||z0|| =
0.4zmax

TMU7

TMU8

TM
U9

TM
U10

0.53 < ID0 < 0.640.53 < ID0 < 0.64

||z0|| =
0.4zmax

D
ev

ia
to

rs
pa

nn
un

g 
q 

[k
P

a]

Axiale Dehnung -εa [%]

,

, ,

b)

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

0 1 2 3 4 5

 Ω
 [
-]

 o
r 

h
a
/R

 [
-]

 o
r 

z
a
/z

m
a

x
 [
-]

Axial strain |εa| [%]

Ω 
ha/R 
za/zmax
TMU2
TMU8

initialisation

asymptotic value

asymptotic value

triaxial extension

triaxial compression

asymptotic value
triaxial extension

initialisation
triaxial compression

asymptotic value

initialization p0=200 kPa

Axiale Dehnung -εa [%]

asymptotischer Wert

Initialisierung

asymptotischer Wert

triaxiale Extension

triaxiale Kompression

Ω
 [-] 

bzw
. h a

/R [
-] b

zw.
 z a/

z ma
x [-]

,
,
,
,
,
,
,

c)

Abbildung 8.10: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an KFS mit variierendem mittleren effektiven Anfangsdruck: a)

effektiver Spannungspfad im pq-Diagramm, b) Deviatorspannung q und c) Zustandsvariablen Ω,

ha und za in Abhängigkeit von der axialen Dehnung εa

des mittleren effektiven Drucks ersichtlich wird. Die Phasentransformationslinie (engl.
phase transformation line (PTL)), d.h. der mobilisierte Reibungswinkel, bei dem die Pha-
sentransformation stattfindet, ist dichteabhängig und nimmt mit zunehmender Dichte
ab [194]. Dieser Effekt wird bei den gezeigten triaxialen Kompressionsversuchen durch
die NHP+GIS reproduziert, siehe Abbildung 8.11a.

Hervorzuheben ist außerdem, dass die NHP+GIS das in den Experimenten sichtbare ani-
sotrope Bodenverhalten qualitativ reproduzieren kann. Dies zeigt sich in den diskutierten
Versuchen durch die deutlich stärkere Spannungsrelaxation und das weichere Verhalten
der Probe bei triaxialen Extensionsversuchen im Vergleich zu triaxialen Kompressionsver-
suchen. Das Stoffmodell bildet diesen Effekt durch die Initialisierung der Strukturvariablen
z entsprechend der Sedimentation in vertikaler Richtung nach Gl. (8.11) ab.
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Abbildung 8.11: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an KFS mit variierender Ausgangsdichte: a) effektiver Spannungs-

pfad im pq-Diagramm und b) Deviatorspannung q als Funktion der axialen Dehnung εa

Die Entwicklung der Zustandsvariablen Ω, h und z bzw. deren Komponenten ist für je-
weils einen triaxialen Kompressions- und einen triaxialen Extensionsversuch an KFS aus
Abbildung 8.10 in Abbildung 8.10c dargestellt. Es sind die gleichen Zusammenhänge,
wie bereits für den monotonen drainierten Triaxialversuch beschrieben, erkennbar. Die
asymptotischen Werte beider Versuche (Kompression und Extension) weisen allerdings
entgegengesetzte Vorzeichen auf. Darüber hinaus ist ersichtlich, dass bei einem triaxia-
len Extensionsversuch wegen der Initialisierung von z in triaxialer Kompressionsrichtung
zum Erreichen der asymptotischen Werte eine größere Verformung erforderlich ist als bei
dem triaxialen Kompressionsversuch. Dadurch wird der Einfluss der Strukturvariablen im
triaxialen Extensionsversuch verstärkt und das anisotrope Bodenverhalten kann abgebil-
det werden.

Drei monotone undrainierte triaxiale Kompressionsversuche an sehr lockeren Proben aus
KFS mit unterschiedlichen Anfangsspannungen, die feucht eingestampft wurden (MT),
sind in Abbildung 8.12 dargestellt. Die aufgebrachte Scherung führt aufgrund der sehr lo-
ckeren Lagerung (e0 > ec(p0)) in allen Versuchen zu einer starken Reduktion des mittleren
effektiven Drucks (Kontraktanz). Eine Phasentransformation findet nicht statt. Letzt-
lich tritt eine statische Bodenverflüssigung (p = q = 0) ein. Die unterschiedlichen An-
fangsspannungen führen lediglich vorübergehend zu einer höheren Deviatorspannung. Die
NHP+GIS kann das Bodenverhalten der lockeren Proben qualitativ reproduzieren, wobei
die Entfestigung nach Erreichen der Peak-Spannung in den Experimenten deutlich schnel-
ler erfolgt als in den Simulationen. Daher ist in den Simulationen bei dem betrachteten
Dehnungsniveau noch keine vollständige statische Verflüssigung eingetreten.

Versuche an KFS-Proben, die mit unterschiedlichen Präparationsmethoden (trockenes
Einrieseln (AP) und feuchtes Einstampfen (MT)) hergestellt wurden, sind in Abbil-
dung 8.13 gezeigt. In den Experimenten wird der Einfluss der Probenherstellung auf das
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Abbildung 8.12: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an sehr lockerem KFS (MT): a) effektiver Spannungspfad im pq-

Diagramm und b) Deviatorspannung q als Funktion der axialen Dehnung εa
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Abbildung 8.13: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an KFS für Proben mit verschiedenen Einbaumethoden: a) ef-

fektiver Spannungspfad im pq-Diagramm und b) Deviatorspannung q als Funktion der axialen

Dehnung εa

mechanische Verhalten der Proben für unterschiedliche initiale Spannungsniveaus deut-
lich. Die AP-Proben verhalten sich im Allgemeinen kontraktanter und weicher als die
MT-Proben, was sowohl im effektiven Spannungspfad in Abbildung 8.13a als auch in der
Spannungs-Dehnungs-Kurve in Abbildung 8.13b zu erkennen ist. Für die Simulationen
der MT-Proben wurde die Strukturvariable mit ∥z0∥ = zmax initialisiert. Für die AP-
Proben wurde, abweichend von den zuvor betrachteten AP-Proben, ∥z0∥ = 0 gewählt.
Diese Initialisierung verstärkt die Unterschiede zwischen den Simulationen. Die bei un-
terschiedlichen mittleren effektiven Drücken durchgeführten Simulationen zeigen, dass
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Abbildung 8.14: Versuchsergebnisse [31] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an ZS mit variierendem mittleren effektiven Anfangsdruck: a)

effektiver Spannungspfad im pq-Diagramm und b) Deviatorspannung q in Abhängigkeit von der

axialen Dehnung εa

die NHP+GIS den allgemeinen Unterschied zwischen den beiden Präparationsmethoden
qualitativ abbilden kann. Dennoch treten einige auffällige Unterschiede zwischen Simula-
tionen und Experimenten auf. Die simulierten AP-Proben verhalten sich im Allgemeinen
weniger kontraktant als die Versuche, während die simulierten MT-Proben sich qualitativ
zu kontraktant verhalten. Die Unterschiede infolge der Präparationsmethoden sind in den
Simulationen geringer als in den Experimenten, was durch eine gezielte Parameterkali-
brierung verbessert werden könnte.

Ergebnisse monotoner undrainierter Triaxialversuche an ZS-Proben mit mittlerer Dichte
und unterschiedlichen initialen Drücken sind in Abbildung 8.14 dargestellt. Der Einfluss
unterschiedlicher Dichten auf monotone undrainierte Triaxialversuche an ZS ist in Abbil-
dung 8.15 gezeigt. Zunächst fällt auf, dass die Versuche an ZS ein deutlich weniger kon-
traktantes Verhalten zeigen als die zuvor diskutierten Versuche an KFS. Dies kann auf un-
terschiedliche Präparationsmethoden, aber auch auf das andere Material zurückzuführen
sein. Die für KFS beschriebenen Unterschiede zwischen den experimentellen Daten und
den NHP+GIS-Simulationen zeigen sich bei den ZS-Versuchen nicht. Die Versuchsergeb-
nisse von ZS lassen sich durch die NHP+GIS gut reproduzieren. Lediglich die Simulationen
der lockeren Proben zeigen im Vergleich zu den Experimenten ein etwas zu kontraktantes
und zu weiches Verhalten. Diese kleine Abweichung könnte ihre Ursache in einer gerin-
gen Diskrepanz der kalibrierten Kompressionskurve der kritischen Porenzahl ec(p) haben.
Eine noch bessere Übereinstimmung zwischen Experimenten und Simulationen ließe sich
durch eine leichte Erhöhung des Parameters ec0 erreichen. Da dieser Parameter jedoch
aus [32] übernommen wurde, wurde auf eine solche Anpassung verzichtet.
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Abbildung 8.15: Versuchsergebnisse [31] vs. Simulationen mit der NHP+GIS für monotone

undrainierte Triaxialversuche an ZS mit variierender initialer Dichte: a) effektiver Spannungspfad

im pq-Diagramm und b) Deviatorspannung q in Abhängigkeit von der axialen Dehnung εa

8.3.3 Ödometerversuche ohne und mit Richtungsumkehr

Im Folgenden werden Ödometerversuche in Abbildung 8.16 an KFS und in Abbildung 8.17
an ZS betrachtet. Da der initiale Spannungszustand in den Experimenten nicht direkt
gemessen werden kann, wird in den Simulationen mit der NHP+GIS ein anisotroper ef-
fektiver Anfangsspannungszustand mit σa0 = 1kPa sowie σr0 = K0σa0 = (1 − sinφc)σa0
angenommen. Die initiale intergranulare Dehnung wird in axialer Richtung mit ha0 = −R
und ρ = 1 vollständig mobilisiert initialisiert. Die Strukturvariable wird für die KFS-
Proben mit ∥z0∥ = zmax initialisiert, während für ZS-Proben ∥z0∥ = 0 gewählt wird.
Dies berücksichtigt die zu Beginn eines Ödometerversuch bei niedrigen Spannungen ty-
pischerweise vorhandenen Unsicherheiten. Nach aktuellem Kenntnisstand existieren zum
Einfluss der initialen Mikrostruktur auf das Materialverhalten bei Ödometerversuchen
nur wenig experimentelle Untersuchungen. Es ist allerdings bekannt, dass eine dünne und
aufgelockerte obere Schicht der Probe teils erheblichen Einfluss auf das beobachtete Kom-
pressionsverhalten haben kann [194].

Die Porenzahl e ist in Abhängigkeit von der axialen Spannung σa in Abbildung 8.16
für KFS und in Abbildung 8.17 für ZS dargestellt. Die Abbildungen 8.16a und 8.17a
zeigen Versuche mit Erstbelastung und anschließender Entlastung für drei unterschiedliche
Anfangsdichten. Versuche an einer mitteldichten Probe, auf welche jeweils vier Ent- und
Wiederbelastungszyklen aufgebracht wurden, sind in den Abbildungen 8.16b und 8.17b
gezeigt.

Die ödometrische Steifigkeit wird durch die NHP+GIS sowohl für die Erstbelastung als
auch für die Entlastung für alle betrachteten Dichten und Spannungsniveaus qualitativ
gut reproduziert. Lediglich die Steifigkeit der lockeren KFS-Probe bei Erstbelastung wird
in den Simulationen geringfügig unterschätzt.
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Abbildung 8.16: Versuchsergebnisse [193, 194] vs. Simulationen mit der NHP+GIS für

Ödometerversuche an KFS im eσa-Diagramm für a) drei Versuche mit einer Erstbelastung ge-

folgt von einer Entlastung und b) einem Versuch mit 4 Ent- und Wiederbelastungszyklen
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Abbildung 8.17: Versuchsergebnisse [31] vs. Simulationen mit der NHP+GIS für

Ödometerversuche an ZS im eσa-Diagramm für a) drei Versuche mit einer Erstbelastung ge-

folgt von einer Entlastung und b) einem Versuch mit 4 Ent- und Wiederbelastungszyklen

Wie bereits in Abschnitt 8.2 und Gl. (8.5) diskutiert, erfolgt die Kopplung der NHP mit
dem GIS-Konzept unter Verwendung des explizit definierten Grades der Nichtlinearität Y .
Durch diese Kopplung wird ein Überschreiten des definierten Grenzspannungszustands
(Y = 1) infolge von Ent- und Wiederbelastung verhindert. Allerdings gilt Y = 1 nicht
generell für alle asymptotischen Zustände. Proportionale kompressive Dehnungspfade mit
einem asymptotisch mobilisierten Reibungswinkel φmob < φc (beispielsweise eine isotrope
oder ödometrische Kompression) streben einen Grad der Nichtlinearität Y < 1 an. Folg-
lich verhindert die NHP+GIS lediglich das Overshooting des Grenzspannungszustands,
während das Overshooting der ödometrischen oder isotropen Kompressionslinie weiterhin
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möglich sind. Zudem kann, analog zum ursprünglichen IS-Konzept, bei zu großen Ent-
und Wiederbelastungsamplituden auch in der NHP+GIS das bekannte Problem des Rat-
chetings auftreten. Aus diesem Grund wurde in Abbildung 8.16b und in Abbildung 8.17b
die simulierte Entlastungsamplitude so gewählt, dass weder ein Overshooting noch ein
Ratcheting beobachtet wird. Es sei betont, dass die GIS-Parameter nicht anhand der
Ödometerversuche, sondern mittels der im Folgenden beschriebenen zyklischen undrai-
nierten Triaxialversuche kalibriert wurden.

8.3.4 Undrainierte zyklische Triaxialversuche mit vorgegebener

Spannungsamplitude

Abbildung 8.18 zeigt einen zyklischen undrainierten Triaxialversuch an KFS mit einer
Spannungsamplitude von qampl = 40 kPa, während Abbildung 8.19 einen entsprechenden
Versuch an ZS mit einer erhöhten Amplitude von qampl = 45 kPa betrachtet. Die GIS-
Parameter für sämtliche durchgeführten Simulationen mit der NHP+GIS wurden anhand
dieser beiden Versuche kalibriert. Die effektiven Spannungspfade im pq-Diagramm, siehe
Abbildungen 8.18a und 8.19a, zeigen eine gute Übereinstimmung zwischen der Simulation
und dem Experiment. Innerhalb der ersten Zyklen ist die Spannungsrelaxation vergleich-
bar schnell, bevor sie sich deutlich verlangsamt. Gegen Ende des Versuchs beschleunigt
sich die Akkumulation erneut und zuletzt stellt sich in der Phase der zyklischen Mobilität
der charakteristische, schmetterlingsförmige effektive Spannungspfad ein. Die zyklische
Verflüssigung (p = q = 0) wird in den Simulationen näherungsweise erreicht.

Die Spannungs-Dehnungs-Kurven in den Abbildungen 8.18b und 8.19b entsprechen bis
zur zyklischen Mobilität weitgehend den Experimenten. Mit Eintreten der zyklischen Mo-
bilität vergrößert sich die Dehnungsamplitude sowohl in der Simulation als auch im Expe-
riment signifikant. Allerdings tritt in der Simulation mit der NHP+GIS eine unrealistische
unsymmetrische Dehnungsakkumulation ausschließlich in Extensionsrichtung auf. Außer-
dem sind die simulierten Dehnungsamplituden innerhalb der zyklischen Mobilität nahezu
konstant, während in den Experimenten innerhalb der zyklischen Mobilität eine Zunah-
me der Dehnungsamplitude mit zunehmender Zyklenzahl zu beobachten ist. Beide Effekte
sind bekannte Schwächen hypoplastischer Stoffmodelle und wurden zumindest teilweise
auch im Rahmen der HP+GIS+ACST, siehe Abschnitt 6.5, diskutiert.

Abbildung 8.18c zeigt für die Simulation des KFS die Entwicklung der zyklischen Vor-
belastungsvariablen Ω sowie der Norm der Strukturvariablen ∥z∥ in Abhängigkeit von
der Zyklenzahl N . In den ersten Zyklen reduziert sich ∥z∥ gegen Null, während sich ein
Aufbau von Ω zeigt. Bereits nach den ersten 10 Zyklen gilt ∥z∥ ≈ 0, während Ω etwa in
den ersten 100 Zyklen monoton anwächst. Beide Effekte führen zu einer Reduktion der
Akkumulationsrate. Diese ist detailliert in Abbildung 8.20a dargestellt, welche den nor-
mierten Porenwasserdruck pf/p0 in Abhängigkeit von der Zyklenzahl N zeigt und später
ausführlicher diskutiert wird.
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Abbildung 8.18: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für einen undrai-

nierten zyklischen Triaxialversuch an KFS mit qampl = 40 kPa einer mitteldichten Probe: a)

effektiver Spannungspfad im pq-Diagramm, b) Spannungs-Dehnungs-Kurve sowie die c) zykli-

sche Vorbelastungsvariable Ω und Strukturvariable ∥z∥/zmax und d) die Komponente ha/R der

intergranularen Dehnung als Funktion der Zyklenzahl N

Mit abnehmendem mittleren effektiven Druck bewirkt die vorgegebene Spannungsampli-
tude aufgrund der reduzierten Steifigkeit (Barotropie) eine Zunahme der Dehnungsam-
plitude. In der Folge erreicht Ω ein Maximum, bevor sich die zyklische Vorbelastungs-
variable wieder abbaut. Sobald die zyklische Mobilität erreicht wird, fällt Ω infolge der
großen Dehnungsamplituden rasch gegen Null. Die Entwicklung von ∥z∥ verläuft ent-
gegengesetzt: Bei zunächst kleinen Dehnungsamplituden nimmt die Strukturvariable ab
(∥z∥ ≈ 0), bevor z sich in der Phase der zyklischen Mobilität mit großen Dehnungs-
amplituden zwischen den Lastumkehrpunkten jeweils zunächst abbaut und dann jeweils
vollständig aufbaut (∥z∥ = zmax, mit umgekehrtem Vorzeichen in triaxialer Kompression
und triaxialer Extension).
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Abbildung 8.19: Versuchsergebnisse [30] vs. Simulationen mit der NHP+GIS für einen undrai-

nierten zyklischen Triaxialversuch an ZS mit qampl = 45 kPa: a) effektiver Spannungspfad im

pq-Diagramm und b) Spannungs-Dehnungs-Kurve
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Abbildung 8.20: Versuchsergebnisse [30, 194] vs. Simulationen mit der NHP+GIS für die Ent-

wicklung des normalisierten Porenwasserdrucks pf/p0 in Abhängigkeit von der Zyklenzahl N für

undrainierte zyklische Triaxialversuche unterschiedlicher Spannungsamplitude an a) KFS und

b) ZS

Die Entwicklung der intergranularen Dehnung, ausgedrückt durch die Komponente ha,
in den ersten Zyklen ist in Abbildung 8.18d dargestellt. Es zeigt sich eine ausgeprägte
zyklische Variation mit schneller Änderung nach jeder Lastumkehr. Die Initialisierung von
ha wird bereits nach dem ersten Zyklus mit relativ kleinen Dehnungsamplituden und ρ < 1
überschrieben. Während der Phase der zyklischen Mobilität baut sich die intergranulare
Dehnung innerhalb jeder Lastumkehr zunächst ab und dann mit umgekehrtem Vorzeichen
vollständig wieder auf (nicht dargestellt).



196 Kapitel 8. Neohypoplastizität für zyklische Verformungen

Zusätzlich wurden für beide Sande (KFS und ZS) weitere zyklische undrainierte Triaxi-
alversuche mit größeren Spannungsamplituden betrachtet. Die normierten Porenwasser-
druckverläufe pf/p0 in Abhängigkeit von der ZyklenzahlN sind für KFS in Abbildung 8.20a
und für ZS in Abbildung 8.20b dargestellt. Eine erhöhte Spannungsamplitude führt zu
größeren Dehnungsamplituden und einer schnelleren Akkumulation des Porenwasserdrucks.
Die Kalibrierung der GIS-Parameter erfolgte anhand der Versuche mit der kleinsten Span-
nungsamplitude. Die Anzahl der Zyklen bis zur Verflüssigung kann in den zusätzlichen
Versuchen qualitativ wiedergegeben werden, obwohl quantitative Abweichungen zwischen
Simulation und Experiment bestehen. Besonders hervorzuheben ist der typische S-förmige
Verlauf der Porenwasserdruckentwicklung: Ein schneller Anstieg zu Beginn, eine langsa-
mere Akkumulation in der Mitte und eine erneute Zunahme der Akkumulationsgeschwin-
digkeit gegen Ende der Versuche. Die logarithmische Darstellung in Abbildung 8.20 ist zu
berücksichtigen.

8.3.5 Undrainierte zyklische Triaxialversuche mit vorgegebener

Dehnungsamplitude

Im Folgenden werden anstelle der oben diskutierten Versuche mit vorgegebener Span-
nungsamplitude Versuche mit vorgegebener Dehnungsamplitude betrachtet. Undrainierte
zyklische Triaxialversuche mit einer vorgegebenen Amplitude von εampl

a = 10−2 an KFS-
Proben sind in Abbildung 8.21 für drei unterschiedliche Anfangsdichten dargestellt. Die
effektiven Spannungspfade im pq-Diagramm sind in den Abbildungen 8.21a, 8.21c und
8.21e gezeigt, während die Spannungs-Dehnungs-Kurven in den Abbildungen 8.21b, 8.21d
und 8.21f zu finden sind. Es zeigt sich, dass in den Experimenten unabhängig von der An-
fangsdichte eine zyklische Bodenverflüssigung (p = q = 0) eintritt. Je dichter der Boden,
desto mehr Zyklen sind zum Erreichen von p = 0 erforderlich. Aufgrund der betrachte-
ten, vergleichsweise großen Dehnungsamplitude ist die Zyklenzahl bis zum Erreichen der
Verflüssigung jedoch allgemein gering.

Die Simulationen mit der NHP+GIS reproduzieren das experimentell beobachtete Bo-
denverhalten qualitativ gut und zeigen eine ausgeprägte Tendenz zur Verflüssigung. Bei
lockerem Boden wird die Verflüssigung mit p = q = 0 vollständig erreicht. Bei dichtem
Boden liefert die NHP+GIS zwar nur p ≈ 0, modelliert die experimentelle Beobachtung
dennoch qualitativ zutreffend. Auch die Anzahl der Zyklen bis zur Verflüssigung wird
durch die NHP+GIS reproduziert.

Im Gegensatz dazu zeigt Abbildung 8.22 einen undrainierten zyklischen Triaxialversuch
mit einer kleineren vorgegebenen Dehnungsamplitude von εampl

a = 6 · 10−4 an einer mit-
teldichten KFS-Probe. Ähnlich wie in den vorherigen Experimenten neigt der Boden
zur Verflüssigung (p = q = 0), wie im effektiven Spannungspfad in Abbildung 8.22a
und in der Spannungs-Dehnungs-Kurve in Abbildung 8.22b ersichtlich ist. Aufgrund der
kleineren Dehnungsamplitude ist die Anzahl der Zyklen bis zur Verflüssigung im Ver-
gleich zu den Versuchen aus Abbildung 8.21 deutlich erhöht. Während die Simulation
mit der NHP+GIS die hysteretischen Spannungs-Dehnungs-Kurven und die Tendenz zur
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Abbildung 8.21: Versuchsergebnisse [193] vs. Simulationen mit der NHP+GIS für undrainierte

zyklische Triaxialversuche mit einer vorgegebenen Dehnungsamplitude von εampl
a = 10−2 an KFS

an Proben mit unterschiedlicher Dichte: a), c) und e) effektive Spannungspfade im pq-Diagramm

und b), d) und f) Deviatorspannung q als Funktion der aufgebrachten axialen Dehnung εa
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Abbildung 8.22: Versuchsergebnisse [193] vs. Simulationen mit der NHP+GIS für undrainierte

zyklische Triaxialversuche mit einer vorgegebenen Dehnungsamplitude von εampl
a = 6 · 10−4 an

KFS: a) effektiver Spannungspfad im pq-Diagramm und b) Deviatorspannung q als Funktion

der aufgebrachten axialen Dehnung εa

Verflüssigung gut abbildet, wird die Akkumulationsrate in den Simulationen deutlich
überschätzt. Es sei darauf hingewiesen, dass die GIS-Parameter der NHP+GIS nicht für
diesen Versuch kalibriert wurden. Ähnliche Abweichungen bei der Akkumulationsrate sind
auch in den zuvor diskutierten Ergebnissen in Abbildung 8.20a zu beobachten, wenn die
GIS-Parameter nicht spezifisch für den jeweils betrachteten Versuch kalibriert wurden.

8.3.6 Steifigkeitsdegradation und Materialdämpfung

Der Sekantenschubmodul G und die dazugehörige Materialdämpfung D in Abhängigkeit
von der Scherdehnungsamplitude wurden bereits für die HP+IS in Abschnitt 3.6.7 und
für die HP+GIS in Abschnitt 6.4.2 betrachtet. Im Folgenden werden der Sekantenschub-
modul G und die dazugehörige Materialdämpfung D in der NHP+GIS anhand der Si-
mulation von zyklischen Einfachscherversuchen an KFS, KS und ZS simuliert. Dabei gilt
σ̇11 = 0 = ε̇22 = ε̇33 = ε̇13 = ε̇23. Die Scherdehnungsamplitude εampl

12 = 0, 5γampl
12 wur-

de variiert. Alle Simulationen beginnen mit einem isotropen Anfangsspannungszustand
von p0 = 200 kPa und einer Porenzahl von e0 = 0, 7. Weiter gilt h0 = z0 = 0 sowie
Ω0 = 0. Der normalisierte Sekantenschubmodul G/Gmax sowie die Dämpfung D werden
aus der resultierenden hysteretischen σ12-γ12-Kurve bestimmt, wobei jeweils der dritte
Zyklus ausgewertet wurde.

Der resultierende normierte Sekantenschubmodul G(γampl)/Gmax in Abhängigkeit von
der Scherdehnungsamplitude γampl ist in Abbildung 8.23a dargestellt, während Abbil-
dung 8.23b die zugehörige Dämpfungskurve D(γampl) zeigt. Mit steigender Dehnungs-
amplitude nimmt der Sekantenschubmodul ab, während die Materialdämpfung zunimmt.
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Abbildung 8.23: Simulationen von zyklischen Einfachscherversuchen mit der NHP+GIS: a)

Normalisierter Sekantenschubmodul G(γ)/Gmax und b) Dämpfung D(γ) in Abhängigkeit von

der Scherdehnungsamplitude γampl
12

Bei sehr kleinen Dehnungsamplituden (γampl < 10−4) bleibt der Sekantenschubmodul G
nahezu konstant und die Dämpfung kann in diesem

”
elastischen Bereich“ vernachlässigt

werden. Es sei angemerkt, dass unrealistische Dämpfungskurven mit lokalen Extremwer-
ten, wie sie beispielsweise für die HP+IS in Abschnitt 3.6.7 beschrieben wurden, auch in
der NHP+GIS auftreten können. Entsprechend empfiehlt es sich, Parametersätze gezielt
auf das Auftreten einer unrealistischen Dämpfungskurve zu prüfen und die Parameter ggf.
anzupassen.

8.3.7 Grafische Darstellung mittels Antwortumhüllenden

Für die NHP wurden bereits in Abbildung 7.20 Antwortumhüllende diskutiert. Für die-
selben axialsymmetrischen Zustände und Porenzahlen (e = 0, 7 und e = 0, 9) werden im
vorliegenden Abschnitt in Abbildung 8.24 Antwortumhüllende für das gekoppelte Modell
der NHP+GIS für KFS präsentiert. Die Größe der Umhüllenden in Abbildung 8.24 wurde
im Vergleich zur Abbildung 7.20 zur besseren Darstellung skaliert.

Zunächst zeigt Abbildung 8.24a die Antwortumhüllenden für die NHP aus Abbildung 7.20b
als Referenz mit deaktiviertem GIS-Konzept (mR = mT = 1). Die Antwortumhüllenden
aus Abbildung 8.24b, 8.24c und 8.24d, welche sich für die NHP+GIS ergeben, sind si-
gnifikant größer als für jene der NHP alleine, da das GIS-Konzept die Steifigkeit der
NHP erhöht. Um den Einfluss der intergranularen Dehnung h sowie der Strukturvaria-
ble z zu verdeutlichen, zeigt Abbildung 8.24b Zustände mit z = h = 0, während in
Abbildung 8.24c Zustände mit h = 0, aber ∥z∥ = 0, 4zmax ̸= 0 mit der Initialisierung
für AP-Proben betrachtet wird. Zuletzt stellt Abbildung 8.24d Antwortumhüllende dar,
bei denen sowohl h = −0, 9Rδ/

√
3 als auch ∥z∥ = 0, 4zmax gemäß der oben angesetz-

ten Initialisierung für AP-Proben betrachtet wurde. In allen Simulationen gilt außerdem
Ω = 0.
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Abbildung 8.24: Antwortumhüllende an ausgewählten Zustände in der NHP im σa
√
2σr- bzw.

σ̇a
√
2σ̇r-Rendulic-Diagramm für KFS unter a) Deaktivierung des GIS-Konzepts (mR = mT = 1)

mit z = 0 gemäß Abbildung 8.24b und mit b) z = h = 0, c) ∥z∥ = 0, 4zmax (za = −0, 016 =

−2zr) mit h = 0 und d) ∥z∥ = 0, 4zmax mit h = −0, 9Rδ/
√
3

Die NHP+GIS liefert stetige Antwortumhüllende. Je dichter der Boden, desto größer ist
seine Steifigkeit (Pyknotropie). Letzteres zeigt sich in größeren Antwortumhüllenden. Bei
isotropen Spannungszuständen mit h = 0 zeigt das Material ein nahezu elastisches Ver-
halten, wobei der betrachtete Zustand nahe dem Zentrum der Antwortumhüllenden liegt.
Für z ̸= 0 verhält sich der Boden anisotrop, was an den verschobenen Punkten der iso-
choren Scherung in Kompressions- und Extensionsrichtung erkennbar ist. Bei h ̸= 0 wird
die Antwortumhüllende deutlich verschoben und verzerrt, was eine Folge der verstärkt
richtungsabhängigen Steifigkeit infolge des GIS-Konzepts ist.
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Für Zustände mit größeren Spannungsverhältnissen verschiebt sich die Antwortumhüllende
kontinuierlich relativ zum betrachteten Zustand. Bei sehr hohen Spannungsverhältnissen
kann der betrachtete Spannungszustand in hypoplastischen Modellen sogar außerhalb der
dazugehörigen Antwortumhüllenden liegen. Alle Antwortumhüllenden der NHP+GIS sind
stetig. Es ist zu erwähnen, dass die ersichtliche Nichtkonvexität3 kein Problem darstellt
und vielmehr in den meisten Plastizitätsmodellen auftritt.

8.4 Diskussion zur NHP+GIS

Die zuvor gezeigten Elementsimulationen zeigen, dass die NHP+GIS bereits viele für
die Praxis relevanten Aspekte des mechanischen Bodenverhaltens zutreffend modellieren
kann. Dennoch ergeben sich einige Limitationen des Modells, welche teilweise bereits
genannt wurden und im Folgenden zusammenfassend diskutiert werden.

(1) Die Kopplung der NHP mit dem GIS-Konzept erfolgt über den Grad der Nichtli-
nearität Y , wodurch das Overshooting nur für Zustände mit Y = 1 verhindert wird.
Aufgrund der Definition von Y nach Gl. (7.35), bei der gezielt bei großen Span-
nungsverhältnissen Y ≈ 1 gilt, liefert die NHP+GIS in diesem Spannungsbereich
zudem ein zu weiches Stoffverhalten bzw. das sog. Ratcheting. Das Phänomen ist in
Abbildung 8.25 anhand eines drainierten Triaxialversuchs an KFS (AP-Probe) mit
vier Ent- und Wiederbelastungsstufen auf jeweils q = 0 an einer mitteldichten Probe
(TMCD4 aus [193]: ID0 = 0, 62 und p0 = 100 kPa) und deren Simulation mittels
der NHP+GIS gezeigt. Es ist deutlich zu erkennen, dass die NHP+GIS die erhöhte
Steifigkeit infolge einer Wiederbelastung im Bereich geringer Spannungsverhältnisse
gut reproduzieren kann. Für große Spannungsverhältnisse ist die NHP+GIS jedoch
im Vergleich zu den Versuchsdaten signifikant zu weich. Das Problem wird zwar re-
duziert, ergibt sich jedoch auch für einen 10-fach vergrößerten

”
elastischen Bereich”,

wie mittels einer zusätzlichen Simulation mit einem angepassten Materialparameter
von R = 0, 001 gezeigt ist. Zur Demonstration des verhinderten Overshootings wird
außerdem eine Simulation mit Entlastungsstufen von jeweils ∆q = 5 kPa betrachtet.
Infolge der Wiederbelastung kommt es, wie erwartet, zu keinem Überschießen der
Spannungsantwort. Auch tritt keine unphysikalische Auflockerung ein.

(2) Die Kalibration der GIS-Parameter muss in der NHP+GIS mit großer Sorgfalt erfol-
gen. Bei zu großem Einfluss der zyklischen Vorbelastung (Parameter γχ χ0, χmax, CΩ

und γΩ) auf das Materialverhalten kann sich die Akkumulationsrichtung umkehren.
Dieser unphysikalische Effekt ist exemplarisch in Abbildung 8.26 mittels der Poren-
wasserdruckentwicklung in einem zyklischen undrainierten Triaxialversuchs an KFS
dargestellt. Der gezeigte Versuch (TCUI11 aus [194]: ID0 = 0, 56, p0 = 200 kPa und
qampl = 40 kPa) und die Nachrechnung mit dem gut kalibrierten Parametersatz von

3Existieren keine zwei Spannungszustände auf der Antwortumhüllenden, deren Verbindungsstrecke die

Antwortumhüllende schneiden, kann letztere als konvexe Antwortumhüllende bezeichnet werden.
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Abbildung 8.25: Versuchsergebnisse [193] vs. Simulationen mit der NHP+GIS eines monotonen

drainierten Triaxialversuchs an KFS für eine mitteldichte Probe mit Ent- undWiederbelastungen

auf q = 0: a) Deviatorspannung q und b) volumetrische Dehnung εvol in Abhängigkeit von der

axialen Dehnung εa

KFS liefert die erwartete nichtlineare Akkumulation des Porenwasserdrucks. Wird
jedoch beispielsweise der Parameter χmax = 2, 78 (statt χmax = 2, 72) gewählt, zeigt
die Simulation eine sich nach circa 80 Zyklen umkehrende Richtung der Akkumulati-
on. Anstelle eines Porenwasserdruckaufbaus ergibt sich ein Porenwasserdruckabbau.
Das Auftreten des Effekts ist grundsätzlich auch für andere Basismodelle im GIS-
Konzept möglich, wurde aber in der NHP+GIS entdeckt.

(3) Die asymptotische Zustandsoberfläche der NHP und somit auch der NHP+GIS ist
nicht bekannt. Bei hohen Drücken ist es möglich, dass eine isotrope Kompression
zu geringeren Porenzahlen als im kritischen Zustand führen, was physikalisch un-
begründet ist. Die Konsistenzbedingung [122] der isotropen Kompression zwischen
dem Stoffmodell und der Kompressionsbeziehung ei(p) ist nicht eingehalten.

(4) Für eine isotrope Kompression gilt ε̇∗ = 0 und somit findet keine Entwicklung der
Strukturvariablen z statt. Aufgrund der druckabhängigen Definition von ω nach
Gl. (7.45) gilt jedoch limp→∞ ω = 0 und der Einfluss der Strukturvariablen ver-
schwindet asymptotisch infolge einer isotropen Kompression.

(5) Als weitere, bereits zuvor beschriebene, Modelldefizite der NHP+GIS sind die nicht
zutreffende Modellierung der zyklischen Mobilität und die nicht zutreffende Re-
produktion der Akkumulationseffekte für Versuche, an welchen die GIS-Parameter
nicht kalibriert wurden, zu nennen. Zudem kann das Modell in Abhängigkeit des
Parametersatzes unrealistische Dämpfungskurven liefern.

Zusammenfassend lässt sich sagen, dass die neu eingeführte NHP+GIS als fortgeschrit-
tenes hypoplastisches Stoffmodell zur ganzheitlichen Modellierung des Bodenverhaltens
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Abbildung 8.26: Versuchsergebnisse [194] vs. Simulationen mit der NHP+GIS für die Ent-

wicklung des normalisierten Porenwasserdrucks pf/p0 in Abhängigkeit von der Zyklenzahl N

für einen undrainierten zyklischen Triaxialversuch mit dem Parametersatz des KFS und mit

einem erhöhtem Wert des Parameters γmax = 2, 78: Eine nicht sorgfältige Kalibration der GIS-

Parameter kann zu einer unphysikalischen Umkehr der Akkumulationsrichtung führen.

geeignet ist. Es modelliert unter anderem zutreffend die Dilatanz dichter Böden infol-
ge monotoner Verformungen bei verhindertem Auftreten von Zugspannungszuständen.
Durch die konstitutive Berücksichtigung der tensoriellen Strukturvariable kann der Ein-
fluss der anisotropen Mikrostruktur, beispielsweise infolge unterschiedlicher Probenprä-
parationsmethoden, abgebildet werden. Zudem ermöglicht die NHP+GIS aufgrund der
Kopplung mit dem GIS-Konzept die Simulation zyklischer Verformungen mit verhinder-
tem Überschreiten der Festigkeit (Overshooting) sowie die Berücksichtigung des Einflusses
einer zyklischen Vorbelastung auf das zyklische Akkumulationsverhalten.





Kapitel 9

Gegenüberstellung,

Zusammenfassung, Ausblick

9.1 Gegenüberstellung entwickelter Stoffmodelle

Im Folgenden werden die beiden neu entwickelten Stoffmodelle HP+GIS+ACST und
NHP+GIS vergleichend anhand eines Anfangsrandwertproblems (ARWP) gegenüberge-
stellt, bevor im weiteren Verlauf des vorliegenden Kapitels die Arbeit mit einer Zusam-
menfassung und einem Ausblick abgerundet wird.

Für die Gegenüberstellung wird aufgrund der Ähnlichkeit mit der HP+GIS und der Ver-
nachlässigung der Fabric auf Simulationen mit der MHP+GIS verzichtet. Als numerisches
Beispiel wird die plötzliche Entstehung einer Scherfuge, auch als Bifurkationsproblem be-
kannt, betrachtet. Dabei tritt eine Lokalisierung der Verformungen innerhalb der Scher-
fuge auf. Das Problem der Bifurkation in hypoplastischen Modellen ist in der Literatur
ausführlich diskutiert [9, 74, 200, 206]. Entsprechende numerische Simulationen finden
sich beispielsweise in [106, 168, 169]. Im Allgemeinen ist der Beginn der Lokalisierung
nicht deterministisch. Eine Scherfuge kann oder kann auch nicht auftreten und ist nur
eine mögliche Lösung des mathematischen Problems [112]. Für inkrementell nichtlinea-
re Stoffmodelle lässt sich eine notwendige Bedingung für die Scherfugenbildung herleiten.
Die Lokalisierung kann für einen Zustand außerhalb, aber nicht innerhalb der sogenannten
Bifurkationsfläche auftreten [112, 200, 206].

Im Folgenden wird die quasi-statische Scherfugenbildung in einem ebenen Verformungs-
zustand (biaxiale Kompression) mittels der Finiten-Elemente-Methode (FEM) in dem
kommerziellen Programmcode Abaqus/Standard betrachtet. Es werden die Stoffmodell-
parameter des KFS verwendet (siehe Tabelle 6.2 für die HP+GIS+ACST bzw. Tabelle 8.2
und Tabelle 8.1 für die NHP+GIS). Das zugehörige zweidimensionale Randwertproblem
ist in Abbildung 9.1 visualisiert. Ein Volumen aus trockenem KFS mit einem Seiten-
verhältnis von h/b = 2 wird betrachtet. Die vertikalen Ränder werden in horizontaler

205
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Abbildung 9.1: Untersuchtes ARWP zur ebenen (biaxialen) Scherfugenbildung in trockenem

Sand (modifiziert aus [106])

Richtung (x1) einem konstanten Druck von t1 = 100 kPa beaufschlagt. Der untere Rand
ist in vertikaler Richtung (x2) fixiert (u2 = 0). Am oberen Modellrand ist eine monoto-
ne vertikale Verschiebung u2(t) vorgegeben. Ausgehend von u2 = 0 wird am Ende der
Simulation u2 = h/10 erreicht. Schubspannungen sind an allen Rändern untersagt. Um
einen kinematischen Mechanismus zu vermeiden, ist der Knoten in der linken unteren
Ecke ebenfalls in horizontaler Richtung fixiert (u1 = 0). Die Ergebnisse eines ähnlichen
Problems wurden bereits in [106] publiziert.

Die Simulationen basieren auf einem isotropen und homogenen Anfangsspannungszustand
von p0 = 100 kPa, einer Anfangsporenzahl von e0 = 0, 8 (lockerer Sand), einer initialen in-
tergranularen Dehnung h0 = 0 und einer zyklischen Vorbelastung von Ω0 = 0. Die initiale
anisotrope Mikrostruktur wurde zu F0 = z0 = 0 initialisiert (isotrope Mikrostruktur) und
für die Simulation mit der HP+GIS+ACST gilt H0 = 0.

Die Schwerkraft wird vernachlässigt. Zur numerischen Lösung werden 1732 CPE4-Elemente
verwendet. Es wurden keine

”
schwachen“ Elemente oder ähnliches definiert und die Bi-

furkation ist ein implizites Ergebnis der Simulationen. Ob die Berechnung nach der Bi-
furkation weiterläuft oder abbricht, hängt vom gewählten Jacobian1 ab, welcher in den
Simulationen mittels einer numerischen Perturbation2 (HP+GIS+ACST) bzw. mittels der
maximalen elastischen Steifigkeit E

max
= E mR (NHP+GIS) abgeschätzt wurde. Es sei

vorweg auf die Abhängigkeit der Ergebnisse von der räumlichen Diskretisierung in nume-
rischen Simulationen der Scherfugenbildung hingewiesen. Die Ergebnisse sind vollständig
netzabhängig, da die Stoffmodelle keine charakteristische Länge enthalten [15].

Zunächst zeigt Abbildung 9.2 die räumliche Verteilung der normalisierten Verschiebungs-
komponente u2/h am Ende der Simulationen mit dem dabei verzerrten Netz. Anhand

1In Abaqus dient der Jacobian zur Abschätzung der Tangentensteifigkeit als Grundlage für die Lösung

nichtlinearer Probleme mittels des Newton-Raphson-Verfahrens.
2Bei der numerischen Perturbation werden kleine Dehnungsinkremente in allen Richtungen aufge-

bracht und die Tangentensteifigkeit anhand der aus dem Stoffmodell resultierenden Spannungsinkremente

abgeschätzt. Der Zustand des Bodens darf sich durch die numerische Perturbation nicht ändern.
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Abbildung 9.2: Räumliche Verteilung der normalisierten Verschiebungskomponente u2/h am

Ende der Simulation mit der a) HP+GIS+ACST und b) NHP+GIS

letzterem lässt sich die Scherfugenbildung bei beiden Stoffmodellen direkt erkennen. Bei
der quantitativen Betrachtung des Verschiebungsfeldes zeigt sich, dass in den Bereichen
außerhalb der Scherfuge bei der Simulation mit der HP+GIS+ACST kleinere und in-
nerhalb der Scherfuge größere Gradienten der Verschiebung als in den Simulationen mit
der NHP+GIS existieren. Dies lässt bereits den Schluss zu, dass die Lokalisierung der
Verformungen in der Berechnung mit der HP+GIS+ACST zu einem früheren Zeitpunkt
erfolgte als bei den NHP+GIS-Simulationen. Dass die beiden Scherfugen an der nahe-
zu identischen Position auftreten, ist rein zufällig und aufgrund der Verwendung von
zwei unterschiedlichen Stoffmodellen im Allgemeinen auch nicht zu erwarten. Die sich in
der Simulation mit der HP+GIS+ACST ergebende dickere Scherfuge ist erwähnenswert,
sollte aber aufgrund der Netzabhängigkeit der Simulationsergebnisse nicht überbewertet
werden.

Die räumlichen Verteilungen der Porenzahl e am Ende der Simulationen beider Stoff-
modelle ist in Abbildung 9.3 gezeigt. Entsprechend zeigt Abbildung 9.4 die Zustands-
mobilisierung S bzw. den Grad der Nichtlinearität Y und Abbildung 9.5 die Norm des
Fabric-Tensors ∥F ∥ bzw. die Norm der Strukturvariable ∥z∥.

Die Ähnlichkeit der Simulationsergebnisse wird deutlich. Innerhalb der Scherfuge kommt
es zu einer signifikanten Auflockerung des Bodens, während sich die Porenzahl in den
Bereichen außerhalb der Scherfuge aufgrund der initial bereits lockeren Lagerung nur
gering ändert. Quantitativ liefert die NHP+GIS im betrachteten Fall sowohl innerhalb
als auch außerhalb der Scherfuge geringfügig lockerere Zustände als die HP+GIS+ACST.
Infolge einer monotonen Scherung tendieren beide Stoffmodelle zum kritischen Zustand
(ec(p = 100 kPa) ≈ 0, 97), bei welchem für die Zustandsmobilisierung bzw. den Grad
der Nichtlinearität S = Y = 1 gilt. Dieser Wert wird, wie in Abbildung 9.4 dargestellt,
im Bereich der Scherfuge angestrebt und nahezu erreicht. Außerhalb der Scherfuge ist
der Wert etwas geringer. Letzteres ist auf die signifikant geringere (im Allgemeinen nicht
verschwindende) Dehnungsrate ab demMoment der Lokalisierung außerhalb der Scherfuge
zurückzuführen, wobei der kritische Zustand vor der Lokalisierung noch nicht erreicht
wurde.
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Abbildung 9.3: Räumliche Verteilung der Porenzahl e am Ende der Simulation mit der a)

HP+GIS+ACST und b) NHP+GIS
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Abbildung 9.4: Räumliche Verteilung der Zustandsmobilisierung S bzw. des Grads der Nichtli-

nearität Y am Ende der Simulation mit der a) HP+GIS+ACST und b) NHP+GIS
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Abbildung 9.5: Räumliche Verteilung der Norm der jeweiligen Zustandsvariable zur

Berücksichtigung der anisotropen Mikrostruktur (∥F ∥ bzw. ∥z∥) am Ende der Simulation mit

der a) HP+GIS+ACST und b) NHP+GIS
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Abbildung 9.6: Entwicklung der Spannungskomponente σ22 in der Elementsimulation und in

einem Element außerhalb (Element A) bzw. innerhalb (Element B) der Scherfuge in Simulationen

mit der a) HP+GIS+ACST und b) der NHP+GIS

Sowohl die HP+GIS+ACST als auch die NHP+GIS berücksichtigen mit F bzw. z eine
tensorielle Zustandsvariable, welche die anisotrope Mikrostruktur des Bodens beschreibt.
Die räumliche Verteilung derer Norm (skalare Größe) am Ende der Simulationen ist in
Abbildung 9.5 dargestellt. Es zeigt sich, dass sich in beiden Stoffmodellen im Bereich
der Scherfuge ein signifikanter Aufbau der anisotropen Mikrostruktur ergibt und sich
die entsprechende Zustandsvariable dem jeweiligen Wert im kritischen Zustand annähert.
Im Rahmen der NHP+GIS wurde die Entwicklung von z mit einem Aufrollen einzelner
Körner beschrieben. Die Simulationen der Scherfugenbildung lassen nun ein verstärktes
Rollen einzelner Körner in letzterer vermuten. Diese aus den kontinuumsmechanischen
Berechnungen abgeleiteten mikromechanischen Aspekte entsprechen aktuellen experimen-
tellen Arbeiten, welche mittels Röntgentomographie mikromechanische Beobachtungen
während der Scherung von Boden erlauben. Ein Rollen der Körner innerhalb von Scher-
fugen wurde beispielsweise in [152] dokumentiert.

Der Unterschied zwischen der Mikrostruktur innerhalb und außerhalb der Scherfuge ist
bei den Simulationen mit der HP+GIS+ACST deutlich größer als in den Simulationen mit
der NHP+GIS. Dieser quantitative Unterschied ist auf den unterschiedlichen Zeitpunkt
der Scherfugenbildung und die quantitativ verschiedenen Entwicklungsgleichungen von F
bzw. z in beiden Stoffmodellen zurückzuführen.

Es ist offensichtlich, dass die in den Abbildungen 9.2 bis 9.5 dargestellten Felder nicht
räumlich homogen verteilt sind, d. h. für die Zustandsvariablen α zumindest in den Be-
reichen der Scherfuge räumliche Gradienten existieren. Mit anderen Worten: Ausgehend
von homogenen Feldern treten während der Berechnung nicht-homogene Felder der Zu-
standsvariablen aufgrund der Bifurkation auf.

Im Folgenden wird die Entwicklung ausgewählter Zustandsvariablen als Funktion der
aufgebrachten Verformung ∆h/h dargestellt. Es wird das Element A außerhalb und das
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Abbildung 9.7: Entwicklung der Porenzahl e in der Elementsimulation und in einem Element

außerhalb (Element A) bzw. innerhalb (Element B) der Scherfuge in Simulationen mit der a)

HP+GIS+ACST und b) der NHP+GIS

Element B innerhalb der Scherfuge betrachtet. Beide sind in Abbildung 9.2 hervorgeho-
ben. Für den Vergleich wird zudem eine tatsächliche Elementsimulation eines drainierten
biaxialen Kompressionsversuch mittels IncrementalDriver [113] betrachtet.

Die Spannungskomponente σ22 ist für jeden der vier Integrationspunkte (IP) der bei-
den Elemente des Anfangsrandwertproblems sowie für die Elementsimulation in Abbil-
dung 9.6 dargestellt. Zu Beginn ist die Entwicklung der Spannungskomponente in allen
Integrationspunkten und auch in der Elementsimulation nahezu identisch. In dieser Be-
rechnungsphase hat noch keine Bifurkation stattgefunden und die räumliche Verteilung
der Zustandsvariablen ist noch homogen. σ22 ist außerdem eine Hauptspannung. Nach
einer bestimmten Deformation tritt jedoch eine Abweichung der Spannungskomponente
zwischen den Elementen und sogar zwischen den einzelnen Integrationspunkten auf. Ab
diesem Punkt verlieren die angesprochenen Felder der Zustandsvariablen ihre Homoge-
nität und die Lokalisierung findet statt. Der Vergleich der beiden Stoffmodelle zeigt, dass
die Bifurkation in der HP+GIS+ACST zu einem deutlich früheren Zeitpunkt stattfindet
als in der NHP+GIS. Letztere liefert ein allgemein weicheres Bodenverhalten, wodurch die
maximale Deviatorspannung ebenfalls später erreicht wird. Die quantitativen Unterschie-
de der Stoffmodelle bei den erreichten Spannungen ist jedoch gering und die Scherfugen-
bildung erfolgt für beide Stoffmodelle etwa im Bereich der maximalen Deviatorspannung.

Die Entwicklung der Porenzahl ist in Abbildung 9.7 gezeigt. Nach der Bifurkation ten-
diert diese innerhalb der Scherfuge schnell zur kritischen Porenzahl ec(p). Gemessen an
der globalen Verformung ∆h/h geschieht dies deutlich schneller als in den Elementsimu-
lationen. Außerhalb der Scherfuge bleibt die Porenzahl in beiden Stoffmodellen nach der
Bifurkation etwa konstant.

Zuletzt zeigt Abbildung 9.8 die Entwicklung von ∥F ∥ bzw. ∥z∥. Der Maximalwert tritt
innerhalb der Scherfuge auf, während außerhalb letzterer der entsprechende Wert kleiner
ist. Wie bereits in Abbildung 9.5 diskutiert, kann dies qualitativ dem mikro-mechanischen
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Abbildung 9.8: Entwicklung der Norm der jeweiligen Zustandsvariable zur Berücksichtigung

der anisotropen Mikrostruktur (∥F ∥ bzw. ∥z∥) in der Elementsimulation und in einem Element

außerhalb (Element A) bzw. innerhalb (Element B) der Scherfuge in Simulationen mit der a)

HP+GIS+ACST und b) der NHP+GIS

Rollen der Körner zugeschrieben werden, was innerhalb der Scherfuge deutlich ausge-
prägter erwartet wird als außerhalb. Die Entwicklung von ∥F ∥ bzw. ∥z∥ weist quanti-
tativ geringfügige Unterschiede auf, was auf die verschiedenen Entwicklungsgleichungen
zurückzuführen ist.

Das untersuchte ARWP verdeutlicht die Anwendbarkeit der HP+GIS+ACST bzw. der
NHP+GIS auf komplexe Randwertprobleme. Vor der Bifurkation entspricht die Lösung
des Randwertproblems einer Elementsimulation mit homogenen Feldern. Nach der Bifur-
kation zeigt die Lösung inhomogene Felder aller Zustandsvariablen. Ab dem Moment der
Bifurkation ist das Problem mathematisch schlecht gestellt und die erhaltene Lösung stellt
daher immer nur eine mögliche Lösung dar. Die Interpretation der Simulationsergebnisse
nach der Bifurkation sollte daher sowohl im ARWP als auch in der Elementsimulation
mit Vorsicht erfolgen, was jedoch außerhalb des Forschungsschwerpunktes dieser Arbeit
lag.

Die beiden im Rahmen dieser Arbeit eingeführten fortgeschrittenen hypoplastischen Mo-
delle HP+GIS+ACST und NHP+GIS liefern im untersuchten ARWP weitestgehend ver-
gleichbare Ergebnisse. Die Unterschiede lassen sich mit den Darstellungen dieser Arbeit
erklären und die beiden Stoffmodelle stützen sich somit gegenseitig.

9.2 Zusammenfassung der Arbeit

Die zutreffende und möglichst ganzheitliche konstitutive Beschreibung des mechanischen
Verhaltens von granularen Böden ist Gegenstand jahrzehntelanger bodenmechanischer
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Forschung. So wurden in der Vergangenheit unzählige Stoffmodelle und zahlreiche Stoff-
modellfamilien für Böden entwickelt. Gerade fortgeschrittene elasto-plastische und hypo-
plastische Modelle werden heutzutage sowohl zur Simulation monotoner als auch zykli-
scher Verformungen von Boden herangezogen. Stoffmodelle stellen jedoch immer nur eine
begründete Schätzung des realen Bodenverhaltens dar und können gegenwärtig das rea-
le Bodenverhalten nie exakt reproduzieren und werden das auch zukünftig nicht leisten
können. Die Qualität des in geotechnischen numerischen Untersuchungen zugrunde geleg-
ten Stoffmodells ist dennoch entscheidend für die Aussagekraft der Simulationsergebnisse.
Während für Tragfähigkeitsabschätzungen die durch das Stoffmodell bestimmte Boden-
festigkeit entscheidend ist, ist für Gebrauchstauglichkeitsbetrachtungen auch eine zutref-
fende Beschreibung der ausgeprägt nichtlinearen Bodensteifigkeit nötig. Je höherwertiger
das verwendete Stoffmodell, desto optimierter (Kosten-, Zeit- und Materialeinsatz) lassen
sich geotechnische Strukturen planen und umsetzen.

Trotz der vorhandenen enormen Fülle an Stoffmodellen in der Literatur existieren nach wie
vor große Schwierigkeiten in der ganzheitlichen Modellierung von Boden. Gerade bei der
Simulation zyklischer Verformungen und bei der Berücksichtigung der Effekte infolge einer
anisotropen Mikrostruktur im Boden geraten viele existierende Stoffmodelle unabhängig
von der jeweiligen Stoffmodellklasse an ihre Grenzen.

Das Ziel der vorliegenden Arbeit war es daher, existierende hypoplastische Modelle weiter-
zuentwickeln und bezüglich der Simulation zyklischer Verformungen sowie der Berücksich-
tigung einer anisotropen Mikrostruktur zu optimieren. Zunächst wurde hierzu das heut-
zutage weit verbreitete hypoplastische Modell nach von Wolffersdorff [179] (HP) mit der
Erweiterung der intergranularen Dehnung (IS) nach Niemunis und Herle [121] (HP+IS) in-
tensiv untersucht und bestehende Defizite des Stoffmodells dargestellt. Die HP+IS wurde
ursprünglich vor ca. 25 Jahren formuliert und findet heutzutage sowohl in der geotechni-
schen Praxis als auch in der bodenmechanischen Forschung Anwendung. Die detaillierte
Untersuchung dieses Referenzmodells zeigt jedoch, dass es sowohl qualitativ als auch quan-
titativ das mechanische Verhalten von Boden teils nicht zufriedenstellend modelliert. So
können beispielsweise unzulässige Zugspannungszustände erreicht und in dichtem Boden
weder die Dilatanz noch die zyklische Verflüssigung zutreffend abgebildet werden. Au-
ßerdem vernachlässigt das Modell den Einfluss der anisotropen Mikrostruktur und der
zyklischen Vorbelastung auf das mechanische Bodenverhalten und zeigt das Problem des
sog. Overshootings.

Zur Behebung der detektierten Nachteile der HP+IS wurden in dieser Arbeit mit der
HP+GIS+ACST, der MHP+GIS und der NHP+GIS primär drei neue hypoplastische
Stoffmodelle entwickelt. Die grundlegende Neuerung liegt dabei in dem entwickelten Kon-
zept der generalisierten intergranularen Dehnung (GIS), einem Erweiterungsmodell zur
zutreffenden Simulation zyklischer Verformungen im Boden. Das GIS-Konzept behebt
dabei unter anderem das Problem des sog. Overshootings und der linearen Akkumulation
bei der Simulation vieler Zyklen und stellt somit eine entscheidende Weiterentwicklung
für Stoffmodelle für Boden dar. Das GIS-Konzept wurde mit drei verschiedenen hypoplas-
tischen Basismodellen für Sand (HP(+ACST), MHP, NHP) gekoppelt.
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In der HP+GIS+ACST konnten durch die mathematisch äquivalente Umformung der HP
unter Berücksichtigung der asymptotischen Zustandsoberfläche (ASBS) und der Kopp-
lung mit der Theorie des anisotropen kritischen Zustands (ACST) im Vergleich zum
Referenzmodell der HP+IS trotz identischem Basismodells (HP) signifikante Verbesse-
rungen erzielt werden. In der HP+GIS+ACST ist das Overshooting der gesamten ASBS
verhindert. Das Modell kann den Effekt der Probenpräparation reproduzieren und Bo-
denverflüssigungseffekte lassen sich auch in dichten Böden simulieren. Akkumulationsef-
fekte werden realitätsnah nichtlinear modelliert und nicht zuletzt ist auch die Simulation
der zyklischen Mobilität erheblich verbessert. Durch Deaktivierung der ACST ergibt sich
das Modell der HP+GIS, welches bei gleicher Parameteranzahl und Parameterkalibrati-
on bereits das entscheidende Problem der HP+IS, das Overshooting, behebt. Im Zuge
vertiefter theoretischer Überlegungen wurde mit der MHP+GIS zusätzlich ein neues und
zur HP+GIS sehr ähnliches Modell entwickelt, welches erstmals für ein Modell für Sand
mittels eines explizit definierten Tensors A ausgedrückt werden kann.

In der NHP+GIS wurde hingegen die Neohypoplastizität (NHP), ein neues hypoplasti-
sches Stoffmodell, welches in der jüngeren Vergangenheit am IBF entwickelt wurde, als
Basismodell zur Kopplung mit dem GIS-Konzept gewählt. Die NHP wurde dabei im Rah-
men der vorliegenden Arbeit zunächst grundlegend überarbeitet. In der NHP+GIS wird
unter anderem die Dilatanz dichter Böden zutreffend reproduziert und Zugzustände sind
per Definition ausgeschlossen. Außerdem kann der Einfluss einer anisotropen Mikrostruk-
tur auf das mechanische Verhalten von Sand berücksichtigt werden. Die NHP behebt
somit entscheidende Nachteile der HP und kann, in Kombination mit dem GIS-Konzept,
zur ganzheitlichen Modellierung von Boden herangezogen werden.

9.3 Ausblick

Essentially, all models are wrong, but some are useful.

G. E. P. Box

Die ganzheitliche Beschreibung des mechanischen Verhaltens von Boden ist ein ambi-
tioniertes Ziel der Bodenmechanik, welches, ganz im Sinne der Worte von Prof. Box,
gerade aufgrund der Formulierung eines konstitutiven Modells nie vollständig zufrieden-
stellend gelingen kann. Die vorliegende Arbeit hat mit der Entwicklung unter anderem
der HP+GIS+ACST und der NHP+GIS umfassende Fortschritte auf dem Gebiet der
bodenmechanischen Stoffmodelle liefern können, gleichzeitig aber auch Ansatzpunkte zur
vertieften Forschung herausgearbeitet. Mögliche Schwerpunkte zukünftiger Untersuchun-
gen sind im Folgenden thematisch getrennt aufgelistet:
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Output Version 22.0.0.1733
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Abbildung 9.9: Anwendung der HP+GIS+ACST in einem ARWP einer zweifach

rückverankerten Verbauwand mittels Plaxis2D [104]
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Abbildung 9.10: Anwendung der NHP+GIS in einem ARWP einer zyklisch belasteten zweifach

ausgesteiften Verbauwand mittels Abaqus/Standard [102]

• Anwendung der Modelle in Anfangsrandwertproblemen

Auch wenn im vorliegenden Dokument mit Ausnahme dieses Kapitels primär Ele-
mentsimulationen betrachtet wurden, wurden die entwickelten Stoffmodelle zu je-
dem Entwicklungsschritt bereits zur Lösung exemplarischer ARWP verwendet. So
wurden die HP+GIS und die NHP+GIS beispielsweise zur Nachrechnung von phy-
sikalischen Modellversuchen eines horizontal belasteten Pfahls und eines Flachfun-
daments verwendet [198]. In [102] wurde mit der HP+GIS+ACST eine zweifach
rückverankerte Verbauwand in Plaxis2D simuliert, siehe Abbildung 9.9. Wie in Ab-
bildung 9.10 dargestellt, wurde die NHP+GIS außerdem in [102] mittels Abaqus
zur Simulation eines zweifach ausgesteiften Baugrubenverbaus unter einer zykli-
schen Temperaturbelastung herangezogen. Zukünftig gilt es jedoch die entwickelten
Modelle vertieft auch in Anfangsrandwertproblemen auch unter Berücksichtigung
zyklischer Belastungen zu prüfen. Hierzu werden sich sowohl Feld- als auch Modell-
versuche eignen.
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• Konzept der generalisierten intergranularen Dehnung (GIS)

Das GIS-Konzept sollte in Zukunft mit weiteren hypoplastischen Modellen gekoppelt
werden. Beispielsweise lässt sich das Modell für Ton von Maš́ın [88] aufgrund der
darin bereits explizit definierten ASBS mit dem GIS-Konzept problemlos koppeln.
Das gegenwärtig bestehende Overshooting-Problem wäre infolgedessen auch für ein
Stoffmodell für Ton behoben.

Das GIS-Konzept kann perspektivisch auch mit elasto-plastischen Stoffmodellen der
allgemeinen Form

σ̇ = Eel :
(
ε̇− ε̇pl

)
(9.1)

gekoppelt werden. Durch die Skalierung der elastischen Steifigkeit

Eel-GIS = k Eel (9.2)

ließe sich in diesem Fall das hysteretische Bodenverhalten infolge einer zyklischen
Verformung modellieren. Ein ähnlicher Ansatz wird in [154] beschrieben. Im All-
gemeinen würde sich durch diese Modifikation der elastischen Steifigkeit auch die
elasto-plastische Steifigkeit Eelpl-GIS verändern. Elasto-plastische Modelle lagen je-
doch außerhalb des Fokus dieser Arbeit, weshalb dieser Ansatz nicht weiter verfolgt
wurde und daher Gegenstand zukünftiger Forschung sein könnte.

• Theorie des anisotropen kritischen Zustands (ACST)

Die ACST ist gegenwärtig weit verbreitet. In zahlreichen wissenschaftlichen Publika-
tionen wird beispielsweise der Einfluss der Sedimentationsrichtung und die Entwick-
lung des entsprechenden Fabric-Tensors bzw. davon abgeleiteter Größen diskutiert.
Experimentelle Untersuchungen zum Einfluss der Probenpräparationsmethoden und
der entsprechenden zielgerichteten Initialisierung des Fabric-Tensors selbst, auch un-
ter Berücksichtigung verschiedener Belastungsrichtungen wie etwa eines triaxialen
Kompressions- bzw. Extensionsversuchs, stehen noch aus und können Anreiz für
zukünftige Forschungsarbeiten bieten.

• Neohypoplastizität (NHP)

Die Beschreibung asymptotischer Zustände in der Neohypoplastizität, sei es durch
eine explizite Definition der ASBS oder durch Extraktion letzterer, könnte zukünftig
verbessert werden. Eng verknüpft mit der besseren Beschreibung der asymptotischen
Zustände in der NHP ist die Umformulierung der NHP+GIS mit der Zustandsmobi-
lisierung S anstelle des Grads der Nichtlinearität Y . Somit könnte das Overshooting
der gesamten ASBS auch in der NHP+GIS verhindert werden. Die NHP+GIS liefert
bei großen Spannungsverhältnissen infolge einer zyklischen Verformung ein zu wei-
ches Bodenverhalten. Dieser Effekt ist ebenfalls auf die Kopplung der NHP mit dem
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GIS-Konzept mittels des Grads der Nichtlinearität Y zurückzuführen und könnte
durch eine mathematische Reformulierung des Modells behoben werden.

Im Rahmen dieser Arbeit wurde nur ratenunabhängiges Materialverhalten betrach-
tet. Die NHP könnte zukünftig auch ratenabhängig formuliert werden. Somit könnte
sowohl das oft vernachlässigte Kriechen granularer Böden als auch die Zeitabhängig-
keit feinkörniger Böden modelliert werden.

Zuletzt basiert die im Rahmen dieser Arbeit vorgestellte Version der NHP auf einer
hyperelastischen Energiepotentialfunktion, welche anhand von Experimenten an nur
einem Material hergeleitet wurde. Die NHP baut auf der Hypothese auf, dass sowohl
die Energiepotentialfunktion selbst als auch die entsprechenden Materialparameter
auf andere granulare Materialien übertragbar sind. Diese Hypothese sollte zukünftig,
beispielsweise mittels Experimenten oder DEM-Simulationen, überprüft werden.

Obwohl die vorliegende Arbeit bestehende Stoffmodelle grundlegend verbessern konnte
und neue konstitutive Konzepte einführte, zeigen die noch offenen Fragestellungen, dass
nach wie vor Anlass zur Forschung im spannenden Feld der bodenmechanischen Stoffmo-
delle besteht.
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[29] J. Duque, D. Maš́ın und W. Fuentes. Improvement to the intergranular strain model
for larger numbers of repetitive cycles. Acta Geotechnica, 15(12):3593–3604, 2020.

[30] J. Duque, J. Roháč und D. Maš́ın. On the influence of drained cyclic preloadings on
the cyclic behaviour of Zbraslav sand. Soil Dynamics and Earthquake Engineering,
165:107666, 2023.
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Anhang A

Zusammenfassung der Gleichungen

Im Folgenden sind alle geltenden Gleichungen der im Rahmen der vorliegenden Arbeit
eingeführten Stoffmodelle kommentarlos zusammengefasst.

A.1 HP+GIS+ACST

σ̇ = k E :
(
ε̇−m C S(kγ) ∥ε̇∥

)
(A.1)

E = Lfs m = ⃗−[L−1 : N ] (A.2)

C = ∥L−1 : N∥fA∗d S = fd/f
A∗
d (A.3)

fA∗d =

√√√√√√√√
∥B∥2 +

∥C∥
(
1 + e

e

)
trB

G−
(
1 + e

e

)
trC


2

+

2(B : C) trB

(
1 + e

e

)
G−

(
1 + e

e

)
trC


−1

(A.4)

fd =

(
e− ed
ec − ed

)α
(A.5)

L =
1

σ̂ : σ̂

[
(F hyp)2I+ a2σ̂σ̂

]
(A.6)

N =
F hyp a

σ̂ : σ̂
(σ̂ + σ̂∗) (A.7)
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σ̂ =
σ

trσ
σ̂∗ = σ̂ − 1

3
δ a =

√
3

8

(3− sinφc)

sinφc
(A.8)

F hyp = F hyp
0 exp[λ(A− 1)] (A.9)

F hyp
0 =

√
1

8
tan2 ψ +

2− tan2 ψ

2 +
√
2 tanψ cos (3θ)

− 1

2
√
2
tanψ (A.10)

cos (3θ) = −
√
6
tr(σ̂∗ · σ̂∗ · σ̂∗)

[σ̂∗ : σ̂∗]3/2
tanψ =

√
3||σ̂∗|| (A.11)

fs =
hs
n

(ei
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)β 1 + ei
ei

(
− trσ

hs

)1−n [
3 + a2 − a

√
3

(
ei0 − ed0
ec0 − ed0

)α]−1

(A.12)

ḣ =

{
(I− h⃗h⃗ρβR) : ε̇ falls h⃗ : ε̇ > 0

ε̇ falls h⃗ : ε̇ ≤ 0
(A.13)

h⃗ =


h

||h||
falls h ̸= 0

0 falls h = 0
ρ =

∥h∥
R

(A.14)

k = [ρχRmT + (1− ρχR)mR] +

{
ρχR(1−mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ > 0

−ρχR(mR −mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ ≤ 0
(A.15)

γ = γχχ χ = χ0 + Ω(χmax − χ0) (A.16)

Ω̇ = CΩ (1− ργΩ − Ω) ∥ε̇∥ (A.17)

A = F : n = FnF : n n =
ε̇∗

∥ε̇∗∥
(A.18)

Ḟ = [n− (1 +D)αDF ] m ∥ε̇∗∥ (A.19)
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ei = ei0 exp

[
−
(
− trσ

hs

)n]
+ eA(A− 1) (A.21)

ed = ed0 exp
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− trσ
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ec = ec0 exp
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− trσ
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eA = eA0 exp
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− trσ
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Fd =
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McF hypfd
− 1 (A.25)

eA0 = k1 + k2
H

1 +H
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Ḣ = µ0 ⟨Fd⟩ ∥ε̇∥ −Hcr ⟨−Fd/|Fd|⟩ | tr ε̇| . (A.27)

ė = (1 + e) tr(ε̇) (A.28)

A.2 MHP+GIS
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fA∗d =
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√
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(A.41)

h⃗ =


h

||h||
falls h ̸= 0

0 falls h = 0
ρ =

∥h∥
R

(A.42)

k = [ρχRmT + (1− ρχR)mR] +
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ed = (ed0 + 1) exp

[
−
(
3p

h∗s

)n∗]
− 1 (A.47)

ec = (ec0 + 1) exp
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ė = (1 + e) tr(ε̇) (A.49)

A.3 NHP+GIS

σ̇ = k E :
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ε̇−mY (kγ)∥ε̇∥ −mzYz
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Aijkl = δ⃗ij δ⃗kl Dijkl = Iijkl − Aijkl (A.60)
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ż = Az

(
ε̇⋄ − z⃗

(
∥z∥
zmax

)βz
∥ε̇⋄∥

)(
αz +

(
∥z∥
zmax

)nz
)

(A.77)

ε̇⋄ =

(
ε̇2Q

ε̇2Q + ε̇2P

)10

ε̇∗ (A.78)

Az =
k Fe uz

c (2− n− α)(P/P0)1−n
(A.79)

mz = σ⃗ (A.80)

Yd = fad Ydd = fad

(
Y + 1− a

(
P

P0

)1−nB 1 + ed(P )

EPP a nB ed(P )

)
(A.81)

EPP = (δijEijkl)δkl/
√
3 und a =

√
3/hs (A.82)

fad = 1− 1

1 + exp (kd(ed(P )− e))
(A.83)

md = δ⃗ (A.84)



242 Anhang A. Zusammenfassung der Gleichungen

ḣ =

{
(I− h⃗h⃗ρβR) : ε̇ falls h⃗ : ε̇ > 0

ε̇ falls h⃗ : ε̇ ≤ 0
(A.85)

h⃗ =
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h

||h||
falls h ̸= 0

0 falls h = 0
ρ =

∥h∥
R

(A.86)

k = [ρχRmT + (1− ρχR)mR] +

{
ρχR(1−mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ > 0

−ρχR(mR −mT )h⃗ : ⃗̇ε falls h⃗ : ε̇ ≤ 0
(A.87)

γ = γχχ χ = χ0 + Ω(χmax − χ0) (A.88)

Ω̇ = CΩ (1− ργΩ − Ω) ∥ε̇∥ (A.89)



Anhang B

Numerische Implementierungen

Im Rahmen der vorliegenden Arbeit wurden für die entwickelten Stoffmodelle (HP+GIS,
HP+GIS+ACST, MHP+GIS und NHP+GIS) numerische Implementierungen in Form
einer Abaqus/Standard umat.for und teilweise einer Abaqus/Explicit vumat.for und einer
Plaxis udsm.dll entwickelt. Die Implementierungen basieren auf der frei zugänglichen1

Implementierung für die HP+IS von Maš́ın.

Die numerische Integration der Stoffmodelle folgt einem expliziten Runge-Kutta Verfah-
ren mit einer lokalen adaptiven Zeitschritt-Strategie mit variablen Teilschrittlänge. Dies
ermöglicht eine numerisch möglichst effiziente Integration der Stoffmodelle, was gerade
bei der Lösung von komplexen ARWP relevant ist. Die Wahl der Teilschrittlänge erfolgt
adaptiv durch Vergleich der mit derselben Zeitschrittlänge erhaltenen Lösungen mit zwei-
er expliziten Methoden unterschiedlicher Ordnung (mit Fehlerabschätzung) [90, 164, 166].

Die Implementierungen sind unter folgendem Link zu finden:

Abbildung B.1: https://doi.org/10.5281/zenodo.16936031

1https://soilmodels.com/
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