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 a b s t r a c t

Interface-resolved simulations are essential for predicting and understanding boiling heat trans-
fer phenomena. Such simulations generally come at a high computational cost, which continues 
to motivate the development of efficient frameworks. In recent years, conservative second-order 
phase field methods have gained popularity due to their efficient representation of phase in-
terfaces. However, their potential for simulating complex boiling phenomena has not yet been 
explored. To address this gap, we develop a consistent and highly efficient framework suitable 
for simulating large-scale boiling flows. We derive a set of mixture equations to describe the 
two-phase flow. The mixture equations are coupled with the accurate conservative diffuse inter-
face method [1] to capture the interface. We present additional terms in the momentum balance 
equation and demonstrate that the proposed momentum balance modifications are mandatory for 
accurately capturing phase-change-induced pressure jumps. To solve the set of equations, an al-
ternative Fast Fourier Transform (FFT)-based pressure solution scheme is proposed. Additionally, 
a modified kinetic phase change model is utilized that does not involve calculating temperature 
gradients and avoids problem-dependent parameters. The framework is tested against a variety 
of benchmark simulations, both with and without phase change. Moreover, we achieve improved 
accuracy when simulating bubble dynamics without phase change at high density ratios. We 
show that the proposed FFT-based pressure solution scheme exhibits superior performance in cal-
culating interfacial pressure jumps compared with a commonly used FFT solver. Regardless of 
phase change, more accurate startup behaviour is observed. In the presence of phase change, we 
are successful in removing interfacial pressure oscillations. Across all phase-change benchmark 
simulations, the new phase change model consistently provides reliable results. Finally, we suc-
cessfully simulate the dynamics of bubbles in superheated liquid subjected to gravity and validate 
the results with experimental data.

1.  Introduction

Boiling flows enable highly efficient heat transfer, which is of ever-growing interest to meet the cooling requirements of numerous 
high-performance applications (e.g. computer electronics, vehicle electronics, fusion reactor design) [2]. To predict and improve 
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$\rho _i$


$\tilde {\rho }_i$


$\rho $


\begin {equation}\label {eqs-dens-def} \tilde {\rho }_i = \alpha _i \rho _i \quad \text {and} \quad \rho = \sum \tilde {\rho }_i,\end {equation}


$\sum \alpha _i = 1$


$\nabla \cdot \vec {u}_i = 0$


$\vec {u}$


\begin {equation}\label {eqs-vol-avg-vel} \vec {u} = \sum _i \alpha _i\vec {u}_i.\end {equation}


$\vec {u}$


$\vec {u}_1 \ne \vec {u}_2$


$\Delta \vec {u} = \vec {u}_1 - \vec {u}_2$


\begin {equation}\label {eqs-vol-mix-rel} \vec {u}_1 = \vec {u} + \alpha _2\Delta \vec {u} \quad \text {and} \quad \vec {u}_2 = \vec {u} - \alpha _1\Delta \vec {u}.\end {equation}


\begin {equation}\label {eqs-gov1} \frac {\partial \tilde {\rho }_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i \vec {u}_i) = \mathcal {M}_i,\end {equation}


$\rho _i=const.$


$\mathcal {M}_i$


$i$


$\sum _i\mathcal {M}_i = 0$


$\phi $


$\alpha _1$


$\alpha _1 = \phi $


$\alpha _2 = (1-\phi )$


$\rho _i$


$i=1$


$\phi $


\begin {equation}\label {eqs-phasefield-phasic} \frac {\partial \phi }{\partial t} + \nabla \cdot (\phi \vec {u}_1) = \frac {\mathcal {M}_1}{\rho _1}.\end {equation}


$\mathcal {M}_1$


$\mathcal {M}_1 = \mathcal {M}$


$\mathcal {M}_2 = -\mathcal {M}$


$\phi $


\begin {equation}\label {eqs-phasefield-mix} \frac {\partial \phi }{\partial t} + \nabla \cdot (\phi \vec {u}) = \frac {\mathcal {M}}{\rho _1} - \nabla \cdot (\phi (1-\phi )\Delta \vec {u}) = \frac {\mathcal {M}}{\rho _1} + \nabla \cdot \vec {\mathcal {R}}.\end {equation}


$\vec {\mathcal {R}} = -\phi (1-\phi )\Delta \vec {u}$


$\Delta \vec {u}$


$\Delta \vec {u}$


$\vec {\mathcal {R}}$


$\alpha _i$


$\vec {u}$


\begin {equation}\label {eqs-vol-div} \sum _i \bigg [\frac {\partial \alpha _i}{\partial t} + \nabla \cdot (\alpha _i \vec {u}_i)\bigg ] = \nabla \cdot \vec {u} = \mathcal {M}\bigg (\frac {1}{\rho _1}-\frac {1}{\rho _2}\bigg ).\end {equation}


\begin {equation}\label {eqs-mass-cons} \sum _i \bigg [\frac {\partial \tilde {\rho }_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i \vec {u}_i)\bigg ] = \frac {\partial \rho }{\partial t} + \nabla \cdot (\rho \vec {u}) = (\rho _1-\rho _2)\nabla \cdot \vec {\mathcal {R}} = \nabla \cdot \vec {\mathcal {F}}.\end {equation}


$(\rho _1-\rho _2)\vec {\mathcal {R}}$


$\vec {\mathcal {F}}$


$\mathcal {M}$


$\vec {\mathcal {R}}$


\begin {equation}\label {eqs-acdi} \vec {\mathcal {R}} = \Gamma \bigg [\epsilon \nabla \phi - \frac {1}{4}\bigg (1-\text {tanh}^2\bigg (\frac {\Psi }{2\epsilon }\bigg )\bigg )\vec {n} \bigg ].\end {equation}


$\vec {\mathcal {R}}$


$\mathcal {M}$


$\vec {\mathcal {R}}$


$\Gamma $


$\epsilon $


$\vec {n}$


$\Psi $


$\Gamma $


$u_{\max }$


$\Gamma = \Gamma ^\ast \lvert u_{\max } \rvert $


$\Gamma ^\ast $


$\epsilon $


$\Delta x$


$\epsilon ^\ast $


$\epsilon = \epsilon ^\ast \Delta x$


$\Psi $


\begin {equation}\label {eqs-ls} \Psi =\epsilon \text {ln}\bigg (\frac {\phi + \varepsilon }{1-\phi + \varepsilon }\bigg ).\end {equation}


$\vec {n} = \nabla \Psi / \lvert \nabla \Psi \rvert $


$\varepsilon $


$\varepsilon $


$\Psi $


$10^{-16}$


$i$


\begin {equation}\label {eqs-gov2} \frac {\partial \alpha _i \rho _i \vec {u}_i}{\partial t} +\nabla \cdot ( \alpha _i \rho _i \vec {u}_i \otimes \vec {u}_i) = -\alpha _i\nabla p + \nabla \cdot \tau _i + \alpha _i \rho _i \vec {g} + \vec {I}_i + \vec {E}_i,\end {equation}


$\tau _i$


$\tau _i = \alpha _i\mu _i (\nabla \vec {u}_i+\nabla \vec {u}_i^T)$


$\mu _i$


$\vec {g}$


$\vec {I_i}$


$\sum _i\vec {I_i} = \vec {0}$


$\vec {E}_i$


$\vec {E}_i$
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$\vec {\mathcal {R}}$


$\vec {\mathcal {F}}$


\begin {equation}\label {eqs-mom-mix-1} \begin {split} \sum _i\bigg [\frac {\partial \alpha _i \rho _i \vec {u}_i}{\partial t} +\nabla \cdot ( \alpha _i \rho _i \vec {u}_i \otimes \vec {u}_i)\bigg ] =& \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \big (\rho \vec {u}\otimes \vec {u}\big )-\nabla \cdot \big (\vec {\mathcal {F}}\otimes \vec {u}\big )\\ & - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big ) + \nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg )\\ =& \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \bigg (\big (\rho \vec {u}-\vec {\mathcal {F}}\big )\otimes \vec {u}\bigg ) + \vec {\mathcal {C}}. \end {split}\end {equation}


$\vec {\mathcal {C}}$


$\vec {\mathcal {C}}$


$\vec {\mathcal {C}}$


$\vec {\mathcal {R}}$


$\partial \vec {\mathcal {F}}/\partial t + \nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )$


$\partial \vec {\mathcal {F}}/\partial t + \nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )$


$\vec {\mathcal {C}}$


$\vec {v} = \sum _i(\tilde {\rho }_i \vec {u}_i)\rho ^{-1}$


$\rho \vec {v} = \rho \vec {u} - \vec {\mathcal {F}}$


\begin {align}\label {eqs-mom-mix-2} \begin {split} \frac {\partial \rho \vec {u}}{\partial t} &+ \nabla \cdot \big (\rho \vec {u}\otimes \vec {u}\big )-\nabla \cdot \big (\vec {\mathcal {F}}\otimes \vec {u}\big ) - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big ) +\nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ) \\ &= \frac {\partial \rho \vec {v}}{\partial t} + \nabla \cdot \big (\rho \vec {v}\otimes \vec {v}\big )+\nabla \cdot \bigg (\bigg ( \frac {\rho _1\rho _2}{\rho \phi (1-\phi )}\bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ). \end {split}\end {align}


$\vec {v}$


$\mathcal {M} = 0$


$\nabla \cdot \vec {v} = \nabla \cdot \vec {u} - \nabla \cdot (\rho ^{-1}\vec {\mathcal {F}})$


$\vec {u}$


$\vec {v}$


$\vec {v}$


$\vec {u}$


$\sum _i(-\alpha _i\nabla p+\alpha _i \rho _i \vec {g} + \vec {I}_i) = -\nabla p+\rho \vec {g}$


$\sum _i(\tau _i)$


\begin {equation}\label {eqs-mom-visc} \sum _i(\tau _i) \approx \tau = \mu (\nabla \vec {u}+\nabla \vec {u}^T - 2\nabla \cdot \vec {u} \mathbb {I} ).\end {equation}


$\mathbb {I}$


$\mu = \sum _i \alpha _i \mu _i$


$2\nabla \cdot \vec {u} \mathbb {I}$


$\sum _i \vec {E}_i$


$\sum _i \vec {E}_i$


$\vec {f}_{ST}$


$\vec {f}_{ST}$


\begin {equation}\label {eqs-mom-final} \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \bigg (\big (\rho \vec {u}-\vec {\mathcal {F}}\big )\otimes \vec {u}\bigg ) + \vec {\mathcal {C}} = -\nabla p + \nabla \cdot \tau + \rho \vec {g} + \vec {f}_{ST},\end {equation}


\begin {equation}\label {eqs-mom-final-c} \vec {\mathcal {C}} = - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )+\nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ).\end {equation}


$\tilde {\rho }_i h_i$


$h_i$


$i$


$h_i = c_{p,i}T_{abs}+h_{0,i}$


$T_{abs}$


$c_{p,i}$


$h_{0,i}$


$0$


$c_{p,i}$


$\tilde {\rho }_i h_i$


\begin {equation}\label {eqs-gov3} \frac {\partial \tilde {\rho }_i h_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i h_i \vec {u}_i) = \nabla \cdot (\alpha _i\lambda _i \nabla T_{abs}).\end {equation}


$i$


\begin {equation}\label {eqs-ent-mix-1} \frac {\partial \rho h}{\partial t} + \nabla \cdot (\rho h \vec {u}) = \nabla \cdot (\lambda \nabla T_{abs}) + \nabla \cdot \big [(\rho _1 h_1 - \rho _2 h_2)\vec {\mathcal {R}}\big ].\end {equation}


$\rho h = \sum _i \tilde {\rho }_i h_i$


$\lambda = \sum _i \alpha _i \lambda _i$


$\lambda _i$


$T=T_{abs}-T_{sat}$


$T_{sat}$


$L_{sat} = h_1(T_{sat})-h_2(T_{sat})$


\begin {equation}\label {eqs-ent-mix-2} \frac {\partial \rho c_p T}{\partial t} + \nabla \cdot (\rho c_p T \vec {u}) = \nabla \cdot (\lambda \nabla T) - \mathcal {M} L_{sat} + (\rho _1 c_{p,1} - \rho _2 c_{p,2})\nabla \cdot (T\vec {\mathcal {R}}).\end {equation}


$\rho c_p = \sum _i \tilde {\rho }_i c_{p,i}$


\begin {equation}\label {eqs-ent-mix-3} \rho c_p \bigg (\frac {\partial T}{\partial t} + \vec {u}\cdot \nabla T\bigg ) = \nabla \cdot (\lambda \nabla T) - L\mathcal {M} + \Delta \rho c_p \vec {\mathcal {R}}\cdot \nabla T.\end {equation}


$L= f(T) = L_{sat} + (c_{p,1} - c_{p,2}) T$


$\Delta \rho c_p = \rho _1c_{p,1} - \rho _2c_{p,2}$


$\vec {\mathcal {R}}$


$\vec {\mathcal {R}}$


$\rho c_p$


\begin {equation}\label {eqs-ent-final} \rho c_p \bigg (\frac {\partial T}{\partial t} + \vec {u}\cdot \nabla T\bigg ) = \nabla \cdot (\lambda \nabla T) + \nabla \cdot \vec {j} - L\mathcal {M} + \Delta \rho c_p \vec {\mathcal {R}}\cdot \nabla T,\end {equation}


\begin {equation}\label {eqs-anti-trapping} \vec {j} = -\vec {n}\mathcal {M}L\epsilon \bigg (\frac {\lambda _1}{\lambda _2}-1\bigg ).\end {equation}


$\vec {j}$
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$\Delta x^3$
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$\vec {u}$


$p$


$T$
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$\phi $
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$f_{t,1}$


$f_{t,2}$


\begin {equation}\label {eqs-adam-coeff1} f_{t,1} = 1+\frac {\Delta t^{n+1}}{2\Delta t^{n}} \quad \text {and} \quad f_{t,2} = -\frac {\Delta t^{n+1}}{2\Delta t^{n}}.\end {equation}


$\mathcal {B}^{n}_c$


$c$


$n$


$(\partial c / \partial t )^n= \mathcal {B}^{n}_c$


$\phi $


$T$


$\mathcal {B}_\phi ^n$


$\mathcal {B}_{T}^n$


$\mathcal {M}$


$\mathcal {M}$


$\mathcal {M}^{n+1}$


$\phi ^{n+1}$


$T^{n+1}$


\begin {equation}\label {eqs-adam-final} \phi ^{n+1} = \phi ^\ast + \Delta t^{n+1} \frac {\mathcal {M}^{n+1}}{\rho _1},\quad \text {and}\quad T^{n+1} = T^\ast + \Delta T_{PC}^{n+1}.\end {equation}


$\Delta T_{PC}^{n+1}$


$(\rho \vec {v} )^{*}$


\begin {equation}\label {eqs-adam3} (\rho \vec {v} )^\ast = (\rho \vec {v} )^n + \Delta t^{n+1}\bigg [\big (f_{t,1} \vec {\mathcal {B}}_{\rho \vec {v}}^n+ f_{t,2}\vec {\mathcal {B}}_{\rho \vec {v}}^{n-1}\big ) + \rho ^{n+1} \vec {g} + \vec {f}_{ST}^{n+1} -\nabla p^n\bigg ].\end {equation}


$\vec {f}_{ST}$


$\vec {g}$


$n+1$


$p^{n+1} = p^{n} + \psi ^{n+1}$


$p^n$


$(\rho \vec {v} )^n = \rho ^n \vec {u}^n - \vec {\mathcal {F}}^n$


$\vec {\mathcal {B}}_{\rho \vec {v}}^{n}$


\begin {equation}\label {eqs-adam-coeff-4} \vec {\mathcal {B}}_{\rho \vec {v}}^{n} = - \nabla \cdot \big (\rho ^{n}\vec {v}^{n}\otimes \vec {v}^{n}\big )-\nabla \cdot \bigg (\bigg ( \frac {\rho _1\rho _2}{\rho ^{n}\phi ^{n}(1-\phi ^{n})}\bigg )\vec {\mathcal {R}}^{n} \otimes \vec {\mathcal {R}}^{n}\bigg ) + \nabla \cdot \tau ^n.\end {equation}


$\vec {u}^{n+1}$


$\psi ^{n+1} = p^{n+1} - p^{n}$


$(\rho \vec {v} )^\ast $


$\psi ^{n+1}$


$\vec {u}^{n+1}$


\begin {equation}\label {eqs-pres-direct} \nabla \cdot \Big (\frac {1}{\rho ^{n+1}} \nabla \psi ^{n+1}\Big ) = \frac {1}{\Delta t^{n+1}}\bigg [\nabla \cdot \vec {v}^{\ast }-\mathcal {M}^{n+1}\bigg (\frac {1}{\rho _1}-\frac {1}{\rho _2} \bigg )+\nabla \cdot \bigg (\frac {\vec {\mathcal {F}}^{n+1}}{\rho ^{n+1}}\bigg )\bigg ].\end {equation}


$(\rho \vec {v})^{\ast } = \rho ^{n+1}\vec {v}^{\ast }$


\begin {equation}\label {eqs-pres-direct-update} \vec {u}^{n+1} =\vec {v}^{\ast } - \frac {\Delta t^{n+1}}{\rho ^{n+1}}\nabla \psi ^{n+1} + \frac {\vec {\mathcal {F}}^{n+1}}{\rho ^{n+1}} \quad \text {,} \quad p^{n+1} = p^{n} + \psi ^{n+1}.\end {equation}


$\nabla \cdot ({\rho ^{n+1}}^{-1} \nabla \psi ^{n+1}\big )$


\begin {equation}\label {eqs-splitting-approx} \frac {1}{\rho ^{n+1}} \nabla \psi ^{n+1} = \frac {1}{\rho _0} \nabla \psi ^{n+1} + \bigg (\frac {1}{\rho ^{n+1}}-\frac {1}{\rho _0}\bigg ) \nabla \psi ^{n+1} \approx \frac {1}{\rho _0} \nabla \psi ^{n+1} + \bigg (\frac {1}{\rho ^{n+1}}-\frac {1}{\rho _0}\bigg ) f_{ex} \nabla \psi ^{n},\end {equation}


$\rho _0 = \text {min}(\rho _1,\rho _2) = constant$


$f_{ex} = \Delta t^{n+1}/\Delta t^{n}$


$\psi ^{n+1}$


$f_{ex}\psi ^{n}$


$\vec {v}^{\ast \ast }$


$(\rho \vec {v})^\ast $


$(\rho \vec {v})^{n+1}$


$\vec {u}^{n+1}$


$\mathcal {M}^{n+1}({\rho _1}^{-1}-{\rho _2}^{-1})$


$t^{n+1}$


$\widetilde {\text { }\cdot \text { }}$


$\widetilde {\rho \vec {v}}$


$(\rho \vec {v})^{n+1}$


$\widehat {\psi }$


$\psi ^{n+1}$


\begin {equation}\label {eqs-pres-prop-stage2-1} \nabla ^2\widehat {\psi } = \frac {1}{\Delta t^{n+1}}\bigg [\nabla \cdot (\rho \vec {v})^\ast -\nabla \cdot \widetilde {\rho \vec {v}}\bigg ].\end {equation}


$\widehat {\psi }$


$\widehat {\psi }$
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$p^{n+1}$


$\vec {u}^{n+1}$


$\vec {v}^{\ast \ast \ast }$


$\widehat {\psi }$


$c$


$\widehat {\psi }$


$\widetilde {\psi }$


\begin {equation}\label {eqs-pres-limiter} c = \text {min}\Bigg (1, \frac {\lvert \text {min}\big (\widetilde {\psi }\big )\rvert }{\lvert \text {min}\big (\widehat {\psi }\big )\rvert } ,\frac {\lvert \text {max}\big (\widetilde {\psi }\big )\rvert }{\lvert \text {max}\big (\widehat {\psi }\big )\rvert }\Bigg ).\end {equation}
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$\widehat {\psi }$


$\widetilde {\psi }$


$\widetilde {\rho \vec {v}}$


$\widehat {\psi }$


$\widetilde {\psi }$


$\phi $


$T$


$\Delta T_{PC}^{n+1} = T^{n+1} - T^\ast $


$T^{n+1} = 0$


\begin {equation}\label {eqs-deltaT-old} \Delta T_{PC}^{n+1} = (T_{sat} - T^\ast _{abs}) = - T^\ast .\end {equation}


$\Delta T_{PC}^{n+1}$


$\mathcal {M}$


\begin {equation}\label {eqs-update-M} \mathcal {M}^{n+1} = -\frac {(\rho c_p)^\ast \Delta T_{PC}^{n+1}}{L(T^\ast ) \Delta t^{n+1}},\end {equation}


$\Delta T_{PC}^{n+1}$


$\Delta T_{PC}^{n+1}$


$(\rho c_p)^\ast $


$(\rho c_p)^\ast $


$\mathcal {M}^{n+1}$


\begin {equation}\label {eqs-deltaT-new} \Delta T_{PC}^{n+1} = - T^\ast \theta _t \theta _{pc} \theta _{\rho c_p}^\ast \theta _\phi ^\ast .\end {equation}


$\Delta T_{PC}^{n+1}$


$T^\ast $


$T^\ast $


$\theta $


$\theta _\phi ^\ast =\theta _\phi (\phi ^\ast )$


$\theta _{\rho c_p}^\ast =\theta _{\rho c_p}(\phi ^\ast )$


$\theta _\phi $


$\theta _\phi $


\begin {equation}\label {eqs-interface-indicator} \theta _\phi = \frac {1}{2} \bigg (1+\cos {\big (2\pi \lvert \phi -0.5\rvert \big )}\bigg ).\end {equation}


$\mathcal {M}$


$\theta _\phi $


$\phi $


$x/\epsilon $


$\Delta x$


$\theta _\phi $


$\theta _\phi (\phi =0)=\theta _\phi (\phi =1)=0$


$\theta _\phi (\phi =0.5)=1$


$\phi =0.5$


$\theta _t$


$\Delta T_{PC}^{n+1}$


$t_{pc}$


$\Delta t^{n+1}$


\begin {equation}\label {eqs-pc-timescale} t_{pc} = \frac {\Delta x^2 }{a_2}, \quad \text {and} \quad \theta _t = \frac {\Delta t^{n+1}}{t_{pc}},\end {equation}


$a_i=\lambda _i/(\rho _i c_{p,i})$


$\rho c_p$


$\theta _{\rho c_p}$


\begin {equation}\label {eqs-pc-weighting} \theta _{\rho c_p} = \frac {1}{\frac {\rho _1 c_{p,1}}{\rho _2 c_{p,2}}\alpha _1 + \alpha _2}.\end {equation}


$\theta _{\rho c_p}$


$\Delta T_{PC}^{n+1}$


$\rho c_p$


$\mathcal {M}$


$\theta _{pc}$


$\theta _{pc}=0.65$


$\theta _t \theta _{pc} \theta _{\rho c_p}^\ast \theta _\phi ^\ast <1$


$\Delta t_{pc}$


\begin {equation}\label {eqs-pc-timeconstraint} \Delta t_{pc} = \frac {1}{\theta _{pc}} \frac {\lambda _1}{\lambda _2} \frac {\Delta x^2 }{a_1}.\end {equation}


$\Delta x^2 a_1^{-1}$


$\Delta t_{pc}$


$\Delta t^{n+1}$


$\lambda _1\lambda _2^{-1}$
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$\mathcal {M}$


$\phi $


$\mathcal {M}>0$


$\vec {\mathcal {R}}$


$\epsilon ^\ast = 1$


$\Gamma ^\ast = 1$


$\epsilon ^\ast $


\begin {equation}\label {eqs-acdi-timeconstraint} \Delta t_{\phi } = \min _i\left [\dfrac {1}{\text {max}\bigg \{\big (\frac {6\Gamma \epsilon }{\Delta x^2}\big )-\big (\frac {\partial u_i}{\partial x_i}\big ),0\bigg \}}\right ]\end {equation}


$\Delta t_{\phi }$


$\Delta t_{\phi }$


$\Delta t_{pc}<\Delta t_{\phi }$


$\Gamma $


$\Gamma ^\ast $


$\Delta t^{n+1} = C_{CFL}\Delta t_{\phi }$


$\Delta t_{\vec {u}}$


$\Delta t_\mu $


$\Delta t_\lambda $


$\Delta t_\sigma $


$\Delta t_{\vec {g}}$


$\kappa $


$\kappa = \nabla \cdot \vec {n}$


\begin {equation}\label {eqs-deltat-comb} \Delta t_{\Sigma } = \frac {2}{\frac {1}{\Delta t_{\vec {u}}} + \frac {1}{\Delta t_{\mu }} + \sqrt {\bigg (\frac {1}{\Delta t_{\vec {u}}} + \frac {1}{\Delta t_{\mu }}\bigg )^2 + \frac {4}{\Delta t_{\vec {g}}^{2}} + \frac {4}{\Delta t_{\sigma }^{2}} }}.\end {equation}


$\Gamma ^\ast _{\min }$


$\Gamma ^\ast $


\begin {equation}\label {eqs-acdi-timeconstraint-min} \Delta t_{\phi ,min} = \min _i\left [\dfrac {1}{\text {max}\bigg \{\bigg (\dfrac {6\Gamma ^\ast _{min} \lvert u_{max} \rvert \epsilon }{\Delta x^2}\bigg )-\bigg (\dfrac {\partial u_i}{\partial x_i}\bigg ),0\bigg \}}\right ].\end {equation}


$\Delta t_{\phi ,min} > \min (\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc})$


\begin {equation}\label {eqs-gamma-update} \Gamma ^\ast = \frac {\Delta x^2}{6 \lvert u_{max} \rvert \epsilon }\bigg [\frac {1}{\min (\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc})} + \min _i \bigg (\frac {\partial u_i}{\partial x_i}\bigg )\bigg ].\end {equation}


$\Delta t_{\phi ,min}$


$\Gamma ^\ast = \Gamma ^\ast _{\min }$


$\Delta t^{n+1}$


\begin {equation}\label {eqs-timestep-update} \Delta t^{n+1} = C_{CFL} \min (\Delta t_{\phi ,min},\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc}),\end {equation}


$C_{CFL}$
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boiling heat transfer, researchers strive to delve deeper into the underlying physical phenomena through simulations and experiments. 
In this context, interface-resolved simulations are a crucial tool [3], as they provide full access to flow quantities and eliminate the 
need for potentially hazardous or expensive experiments. However, most interface-resolved simulations for boiling flows come at 
high computational costs, due to resolution requirements [4]. Consequently, complex flows become challenging, or even impossible, 
to resolve [3], which motivates the development of more efficient frameworks.

A wide range of methods for representing the gas-liquid interface have been applied to boiling flows. These can be categorized 
into sharp and diffuse interface methods. Sharp-interface methods, a class of methods in which the phases are fully separated by 
an interface, were first introduced in 1998, when Juric and Tryggvason [5] proposed a front-tracking method for simulating film 
boiling on a horizontal plate. In the same year, the level-set method was introduced by Son and Dhir [6]. Later, the volume of fluid 
(VOF) method for simulating film boiling was also successfully utilized by Welch and Wilson [7]. Computationally, sharp-interface 
methods may result in an increased cost due to interface reinitialization (level-set), interface reconstruction (VOF), or interpolation 
steps (front-tracking).

In contrast, diffuse interface methods, also known as phase field methods, are characterized by an artificially thickened interface 
region in which both phases coexist. In terms of computational costs, diffuse interface methods are advantageous, as they only require 
solving a single advection equation [8]. The phase field method was first used for one-dimensional phase change simulations in 2001 
[9]. Around this time, Sun and Beckermann [10] derived a diffuse interface model, which was also used to simulate interfacial velocity 
and pressure jumps. Later, more complex two-dimensional simulations were conducted for boiling on a heated surface [11] and for 
studying bubble growth with contact angle dynamics [12]. For simulating three-dimensional flows, another phase-field-like approach 
was proposed in [13,14].

Within the class of diffuse interface methods, most approaches are based on either the Allen-Chan (AC) equation [15] or the Cahn-
Hillard (CH) equation [16]. The CH-based approach, often chosen for its mass-conserving property, has seen several applications 
for boiling flows [17–19]. However, the CH approach can be numerically problematic as it entails solving a fourth-order partial 
differential equation (PDE). In this regard, the AC-based approach is preferable as it only contains second derivatives in space, but 
it does not conserve mass. For that reason, the AC equation was modified [20,21] to derive a mass-conservative second-order phase 
field equation, which has been successfully used for simulating a variety of boiling flow problems [22,23].

The conservative second-order phase field equation was further investigated by Mirjalili et al. [24] and Jain et al. [25] for 
application to incompressible and compressible flows, respectively. It was proven that specific parameter choices allow for discretizing 
spatial derivatives using exclusively central differences. These advancements have significantly improved the simulation of complex 
flows, as scalability is enhanced, and resolving turbulence benefits from the non-dissipative nature of the discretization [26]. In 
the following, we refer to this subclass as the conservative diffuse interface (CDI) method [24]. Further improvements [1] led to 
(i) relaxing the parameter constraints and (ii) enhancing the model’s accuracy, which is referred to as the accurate conservative 
diffuse interface (ACDI) method [1]. This method has been used for a variety of phase change phenomena, including icing [27] and 
concentration-driven evaporation [28,29]. Few researchers have explored the capabilities of these recent advancements in simulating 
boiling phenomena. To the best of our knowledge, only nucleate boiling [30], and bubble growth [31], in two dimensions have been 
studied. Therefore, a versatile framework for complex boiling flow using the ACDI equation is needed. Such a framework should 
consider the aspects: (i) the coupling with the Navier-Stokes equation, (ii) the modelling of the surface tension, (iii) the efficient 
solution of the pressure, and (iv) the use of a suitable phase change model. The reasons these aspects should be discussed are 
presented below.

Coupling a diffuse interface method to the Navier-Stokes equation by deriving consistent equations to describe a multiphase 
mixture is still an open topic [32]. In the CDI community, a mixture formulation, as in [33], is commonly selected, however, the 
rationale behind this choice is rarely discussed. In contrast, many [32,34–40] have discussed mathematical variations for consistently 
describing CH-type mixtures. The selection of a mixture formulation is generally based on the model assumptions and numerical 
design choices. For example, [38] indicate that some mixture descriptions might not be consistent for arbitrary differential fluxes
(or regularization fluxes in the CDI community). However, a comprehensive discussion in the context of boiling flow simulations is 
missing.

Modelling of the surface tension in the momentum balance equation is an essential aspect when deriving mixture equations. 
Surface tension models are commonly associated with spurious flow structures [41], which can negatively impact the results or even 
lead to instabilities. For CDI equations, two classes of surface tension models are commonly used [42]: (i) the continuum surface force 
(CSF) [43], and (ii) the energy-based (or chemical potential-based) model [44,45]. In the absence of phase change, the energy-based 
model was found to have better accuracy and convergence properties in terms of spurious currents [42,46,47]. With phase change, 
an amplification of spurious currents is generally observed [48]. Researchers [49] have also reported interactions with the thermal 
boundary layer and the phase change model. To reduce these currents, several variations of both the CSF model, e.g. [50,51], and 
the energy-based model, e.g. [52,53], exist. Regarding boiling flow simulations, a comprehensive suitability assessment for the CDI 
approach has not been conducted yet.

As concerns the numerical solution of the CDI mixture equations, the pressure Poisson equation (PPE) is commonly associated 
with the highest computational cost [8] at each time step. For high-density ratios, iterative solvers exhibit a reduced convergence 
rate [54], which motivates the search for fast alternatives. A common method is to reformulate the PPE with constant coefficients as 
in [55–57], allowing for the use of Fast Fourier transformations (FFTs) [58]. In recent years, many studies have successfully utilized 
this approach for simulating complex multiphase flows, e.g. [29,59–61]. Despite its advantages, this approach was shown to cause 
pressure oscillations at interfaces subjected to pressure jumps due to surface tension [62] or due to the recoil pressure jump in phase 
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change scenarios [61]. Although the latter two studies present significant improvements, complex flow cases can still suffer from 
oscillations in boiling flow simulations [61].

The selection of the phase change model can also influence the framework’s scalability potential for parallel computing. Generally, 
two types of models exist: (i) heat conduction models [49,63,64] that use the interfacial jump conditions to calculate the mass transfer 
rate, and (ii) kinetic models [65–67] that use the local superheat. The first model class is computationally more expensive, as it requires 
temperature gradient calculations. Nevertheless, heat conduction models are widely used in phase field methods [19,23,31], as they 
are free from empirical coefficients [3]. Although traditional kinetic models come with problem-dependent constants [65–67], simpler 
formulations exist [68,69] that have not been adopted by the CDI community, thus far.

In this study, we work to address the research gaps identified in the preceding paragraphs. For this purpose, we develop a 
sophisticated diffuse interface framework for simulating boiling flows. The methods of this framework were chosen to support large-
scale, massively parallel simulations by design. The aims of this study are (i) to derive a consistent mixture formulation for the ACDI 
equation for application to boiling flows, (ii) to develop an improved FFT-based pressure solution scheme, (iii) to find an efficient yet 
versatile phase change formulation for the chosen phase field model, and (iv) to incorporate these features in a robust time-stepping 
algorithm.

The remainder of this paper is structured as follows. First, we derive a suitable set of mixture equations in Section 2. For the 
numerical solution of the equations (Section 3), we present the time-stepping methodology in Section 3.2, which we complete by 
developing an FFT pressure solution scheme (Section 3.3). In Section 3.4, we modify an existing kinetic phase change model for 
the ACDI application. The corresponding solution algorithm is presented in Section 3.6. After discussing the methods, we present a 
comprehensive testing campaign to highlight the achieved improvements (Section 4). Finally, in Section 5, we summarize the main 
findings and compare them with the aims of the study.

2.  Governing equations

This paper considers an immiscible two-phase flow, where the phases are separated by a diffuse interface, in which both phases 
coexist. Using the volume fraction 𝛼𝑖 and the density of the ith phase 𝜌𝑖, we define partial densities 𝜌̃𝑖 and mixture density 𝜌 as

𝜌̃𝑖 = 𝛼𝑖𝜌𝑖 and 𝜌 =
∑

𝜌̃𝑖, (1)

where ∑ 𝛼𝑖 = 1. Both phases are assumed incompressible; thus, ∇ ⋅ 𝑢𝑖 = 0. A volume averaging approach is chosen for the mixture 
velocity. Consequently, ⃗𝑢 denotes the velocity resulting from volume averaging

𝑢 =
∑

𝑖
𝛼𝑖𝑢𝑖. (2)

A favourable feature of volume averaging is that 𝑢 is divergence-free in the absence of phase change; therefore, it is used by many 
authors in the phase field community [36,37,70]. In general, ⃗𝑢1 ≠ 𝑢2, which is why we introduce the differential velocity Δ𝑢 = 𝑢1 − 𝑢2, 
following the notation of [13]. This allows the phase velocities to be expressed in terms of the mixture quantities

𝑢1 = 𝑢 + 𝛼2Δ𝑢 and 𝑢2 = 𝑢 − 𝛼1Δ𝑢. (3)

Using these mixture quantities, we derive the governing equations by (i) starting from the conservation equation for each phase, 
(ii) deriving the mixture equation, and (iii) making appropriate modelling choices for the considered problem. In the following 
subsections, this procedure is applied to the mass and phase field transport equations, the momentum transport equation, and the 
energy transport equation.

2.1.  Mass and phase field transport

The mass conservation in each phase reads as
𝜕𝜌̃𝑖
𝜕𝑡

+ ∇ ⋅ (𝜌̃𝑖𝑢𝑖) = 𝑖, (4)

where 𝜌𝑖 = 𝑐𝑜𝑛𝑠𝑡., and the source 𝑖 denotes the interfacial mass transfer density of the 𝑖th phase with 
∑

𝑖𝑖 = 0.
We introduce the phase field variable 𝜙 being equal to the volume fraction 𝛼1, which corresponds to the gaseous phase for the 

remainder of this paper. Consequently, 𝛼1 = 𝜙 and 𝛼2 = (1 − 𝜙). Dividing (4) by 𝜌𝑖 for 𝑖 = 1, we arrive at the evolution equation for 
the phase field variable 𝜙,

𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝜙𝑢1) =
1
𝜌1

. (5)

The subscript 1 of the mass transfer term 1 is dropped for the remainder of this paper for convenience, thus 1 =  and 2 = −. 
Applying the mixture relations from Eqs. (3) to (5) results in the evolution equation for the phase field variable 𝜙 expressed in terms 
of mixture quantities,

𝜕𝜙
𝜕𝑡

+ ∇ ⋅ (𝜙𝑢) = 
𝜌1

− ∇ ⋅ (𝜙(1 − 𝜙)Δ𝑢) = 
𝜌1

+ ∇ ⋅ ⃗. (6)

In Eq. (6), we introduce the term ⃗ = −𝜙(1 − 𝜙)Δ𝑢. The differential velocity Δ𝑢 is typically associated with a sharpening or diffusion 
of the interface region. This difference is not necessarily connected to a physical interpretation. For non-phase-change problems, this 

Journal of Computational Physics 551 (2026) 114680 

3 



L. Weber, A. Mukherjee, A.G. Class et al.

is often explained with counter-acting the numerical diffusion (i.e. resharpening). In the presence of phase change, an analogy may 
be drawn to the interface normal velocity jump. In general, Δ𝑢 is not accessible and a separate treatment is required for ⃗, which we 
discuss at the end of this section. Summing the transport equations for both 𝛼𝑖, we obtain the relation for the divergence of ⃗𝑢

∑

𝑖

[

𝜕𝛼𝑖
𝜕𝑡

+ ∇ ⋅ (𝛼𝑖𝑢𝑖)
]

= ∇ ⋅ 𝑢 = 
(

1
𝜌1

− 1
𝜌2

)

. (7)

Similar to Eq. (7), the mass transport is the sum of Eq. (4) for both phases
∑

𝑖

[

𝜕𝜌̃𝑖
𝜕𝑡

+ ∇ ⋅ (𝜌̃𝑖𝑢𝑖)
]

=
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑢) = (𝜌1 − 𝜌2)∇ ⋅ ⃗ = ∇ ⋅ ⃗ . (8)

Here, (𝜌1 − 𝜌2)⃗ is denoted ⃗ , which is the differential mass flux between the two phases. As such, Eqs. (5) and (8) have the same 
structure as those found in the conservative diffuse interface literature, e.g. [25,33], but carry an additional phase change term . 
To close the system, we need an expression for the term ⃗ since the differential velocity is, in general, unknown. Using the accurate 
conservative diffuse interface method [1], we set

⃗ = Γ
[

𝜖∇𝜙 − 1
4

(

1 − tanh2
(

Ψ
2𝜖

))

𝑛
]

. (9)

For situations involving phase change, the closure of ⃗ could be further augmented by calculating the interface velocity jump due 
to mass transfer. This velocity jump can be approximated using an interface normal integral of . For computational efficiency, 
calculating this integral was not considered. A satisfactory closure was obtained using Eq. (9) as shown through the testing campaign 
in Section 4. For the remainder of this paper we will refer to ⃗ as the regularization term [1]. In Eq. (9), Γ is the regularization 
speed, 𝜖 a measure for the interface thickness, 𝑛 the interface normal vector, and Ψ the level-set function. Typically Γ is related to 
the largest velocity in the domain 𝑢max, i.e. Γ = Γ∗|𝑢max|, where Γ∗ is dimensionless factor. Further, 𝜖 is related to the grid spacing 
Δ𝑥 and a dimensionless factor 𝜖∗ so that 𝜖 = 𝜖∗Δ𝑥. Special choices for the values of those parameters were made by [1] to enable 
the discretization with central differencing schemes. In Section 3.4, we present an extension to boiling flows. Finally, the level-set 
function Ψ is calculated [1] from

Ψ = 𝜖ln
(

𝜙 + 𝜀
1 − 𝜙 + 𝜀

)

. (10)

The level-set function is also used to calculate the interface normal vector 𝑛 = ∇Ψ∕|∇Ψ|. For numerical stability reasons, a small 
number 𝜀 is added to Eq. (10). Note that 𝜀 can vary depending on the implementation. However, in this study, robust calculations 
of Ψ were obtained by using values in the order of 10−16. This completes the derivation of the phase field evolution equation. In the 
next step, the focus is turned to the momentum balance of the mixture.

2.2.  Momentum transport

To derive the mixture momentum transport equation, we start at the transport equations for each phase separately. This strategy 
was also followed in [10,13,36,39] and, more recently, in [32,40]. For the 𝑖th phase, the linear momentum balance equation is given 
by

𝜕𝛼𝑖𝜌𝑖𝑢𝑖
𝜕𝑡

+ ∇ ⋅ (𝛼𝑖𝜌𝑖𝑢𝑖 ⊗ 𝑢𝑖) = −𝛼𝑖∇𝑝 + ∇ ⋅ 𝜏𝑖 + 𝛼𝑖𝜌𝑖𝑔 + 𝐼𝑖 + 𝐸⃗𝑖, (11)

where 𝜏𝑖 is the viscous stress tensor 𝜏𝑖 = 𝛼𝑖𝜇𝑖(∇𝑢𝑖 + ∇𝑢𝑇𝑖 ), 𝜇𝑖 the constant dynamic viscosity, 𝑔 the earth’s gravitational force, and 
𝐼𝑖 represents all phase interaction forces. Note that 

∑

𝑖 𝐼𝑖 = 0⃗. The term 𝐸⃗𝑖 represents the contributions of the surface energy in the 
context of Allen-Cahn or Cahn-Hillard models [32]. More generally, 𝐸⃗𝑖 represents the effect of surface tension (see [10]). Further we 
assume that both phases share locally the same pressure 𝑝. The sum of the left-hand side (LHS) of Eq. (11) over the phase index 𝑖 may 
be expressed in terms of the mixture quantities 𝜌, ⃗𝑢, ⃗, and ⃗ as

∑

𝑖

[

𝜕𝛼𝑖𝜌𝑖𝑢𝑖
𝜕𝑡

+ ∇ ⋅ (𝛼𝑖𝜌𝑖𝑢𝑖 ⊗ 𝑢𝑖)
]

=
𝜕𝜌𝑢
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑢 ⊗ 𝑢
)

− ∇ ⋅
(

⃗ ⊗ 𝑢
)

− 𝜕⃗
𝜕𝑡

− ∇ ⋅
(

𝑢 ⊗ ⃗
)

+ ∇ ⋅
((

𝜌1
𝜙

+
𝜌2

1 − 𝜙

)

⃗⊗ ⃗
)

=
𝜕𝜌𝑢
𝜕𝑡

+ ∇ ⋅
(

(

𝜌𝑢 − ⃗
)

⊗ 𝑢
)

+ ⃗.

(12)

Eq. (12) is the complete LHS that describes the coupling of the momentum equation with the diffuse interface model. The second line 
of Eq. (12) represents the terms commonly neglected when a volume-averaged mixture velocity is used. For conciseness, these terms 
are replaced by ⃗ in the third line. Without the terms summarized by ⃗, Eq. (12) is identical to the LHS of the momentum equation 
used by the CDI community [25,33]. Note that ⃗ is solely active within the diffuse interface region and vanishes for the pure gas and 
liquid phases. These terms originate from the diffuse interface model and represent a correction accounting for the additional mass 
flux due to the interface regularization ⃗ (see Eq. (8)).
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Neglecting the terms 𝜕⃗∕𝜕𝑡 + ∇ ⋅
(

𝑢 ⊗ ⃗
) (Eq. (12)) is commonly justified by the assumption that the “relative momenta […] are 

negligible when computed relative to the gross motion of the fluid” [34]. Subsequently, this assumption was followed in numerous 
studies, e.g. [37,39,71]. In other works [25,33,52], this simplification is utilized implicitly. As shown in the literature [33,52], this 
assumption leads to another possible (kinetic energy conservative) coupling of phase field models with the Navier Stokes Equations 
(NSE). Nevertheless, formally, the term 𝜕⃗∕𝜕𝑡 + ∇ ⋅

(

𝑢 ⊗ ⃗
) is not zero [32,40] and recent numerical experiments [70] show that 

keeping the terms led to accurate results in two-phase flows.
The last term of the second line of Eq. (12) received different treatment in the literature. Though often neglected, it is worth 

noting that in [13] the term is recognized as part of the pressure. In [39] this term is incorporated into the stress tensor. For the 
present study, this term is retained in ⃗ and its relevance will be evaluated in the context of boiling flows in the subsequent sections.

When using a density averaged (barycentric) mixture velocity ⃗𝑣 = ∑

𝑖(𝜌̃𝑖𝑢𝑖)𝜌−1, we can reformulate Eq. (12) in a more concise form 
through the relation 𝜌𝑣 = 𝜌𝑢 − ⃗ as follows 

𝜕𝜌𝑢
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑢 ⊗ 𝑢
)

− ∇ ⋅
(

⃗ ⊗ 𝑢
)

− 𝜕⃗
𝜕𝑡

− ∇ ⋅
(

𝑢 ⊗ ⃗
)

+ ∇ ⋅
((

𝜌1
𝜙

+
𝜌2

1 − 𝜙

)

⃗⊗ ⃗
)

=
𝜕𝜌𝑣
𝜕𝑡

+ ∇ ⋅
(

𝜌𝑣 ⊗ 𝑣
)

+ ∇ ⋅
((

𝜌1𝜌2
𝜌𝜙(1 − 𝜙)

)

⃗⊗ ⃗
)

.
(13)

Eq. (13) is equivalent to the momentum balance found in [10]. A drawback of using 𝑣 is that the mixture velocity is not divergence-
free when  = 0, because ∇ ⋅ 𝑣 = ∇ ⋅ 𝑢 − ∇ ⋅ (𝜌−1⃗ ). However, formulating the momentum balance LHS in terms of a volume-averaged 
velocity ⃗𝑢 or a density-averaged velocity 𝑣 leads to equivalent mixture formulations [70]. For conciseness, we will occasionally use 𝑣
in this study, bearing in mind that ⃗𝑢 is the primary solution quantity.

For the mixture formulation of the right-hand side (RHS) of Eq. (11), we will discuss each term separately. Evidently, ∑𝑖(−𝛼𝑖∇𝑝 +
𝛼𝑖𝜌𝑖𝑔 + 𝐼𝑖) = −∇𝑝 + 𝜌𝑔, but modelling ∑𝑖(𝜏𝑖) in terms of mixture quantities is not trivial. Although complete formulations [32,36] or 
approximations [10] are available, we choose to use

∑

𝑖
(𝜏𝑖) ≈ 𝜏 = 𝜇(∇𝑢 + ∇𝑢𝑇 − 2∇ ⋅ 𝑢𝕀). (14)

Here, 𝕀 is the identity tensor and 𝜇 =
∑

𝑖 𝛼𝑖𝜇𝑖. Note that 2∇ ⋅ 𝑢𝕀 removes the spurious pressure contribution of the normal viscous stress 
component [5,72].

Lastly, the term ∑𝑖 𝐸⃗𝑖 of Eq. (11) represents the surface tension effect. Since the conservative diffuse interface method does not 
obey a known energy functional like the Cahn-Hillard or Allen-Cahn models [42], we replace ∑𝑖 𝐸⃗𝑖 with a general forcing vector 
𝑓𝑆𝑇  to model the effect of surface tension. Selection of a model for 𝑓𝑆𝑇  is sensitive, as spurious currents can significantly impact the 
overall result quality [48]. In Section 4, we will compare different surface tension models and provide best practice guidelines.

The final momentum balance equation in terms of mixture quantities reads
𝜕𝜌𝑢
𝜕𝑡

+ ∇ ⋅
(

(

𝜌𝑢 − ⃗
)

⊗ 𝑢
)

+ ⃗ = −∇𝑝 + ∇ ⋅ 𝜏 + 𝜌𝑔 + 𝑓𝑆𝑇 , (15)

where

⃗ = − 𝜕⃗
𝜕𝑡

− ∇ ⋅
(

𝑢 ⊗ ⃗
)

+ ∇ ⋅
((

𝜌1
𝜙

+
𝜌2

1 − 𝜙

)

⃗⊗ ⃗
)

. (16)

2.3.  Energy transport

To derive the energy transport, we start at the partial enthalpy density 𝜌̃𝑖ℎ𝑖 as the transported, conserved quantity. Here, ℎ𝑖 is the 
enthalpy of the 𝑖th phase, which we define as ℎ𝑖 = 𝑐𝑝,𝑖𝑇𝑎𝑏𝑠 + ℎ0,𝑖. We utilize the absolute temperature 𝑇𝑎𝑏𝑠 and the heat capacity 𝑐𝑝,𝑖
(at constant pressure). As a reference enthalpy, the enthalpy of formation ℎ0,𝑖 at 0 K is used. Further we assume 𝑐𝑝,𝑖 to be constant. 
The transport equation for 𝜌̃𝑖ℎ𝑖 is then [13]

𝜕𝜌̃𝑖ℎ𝑖
𝜕𝑡

+ ∇ ⋅ (𝜌̃𝑖ℎ𝑖𝑢𝑖) = ∇ ⋅ (𝛼𝑖𝜆𝑖∇𝑇𝑎𝑏𝑠). (17)

Summing Eq. (17) for all 𝑖 and expressing the result in mixture quantities results in
𝜕𝜌ℎ
𝜕𝑡

+ ∇ ⋅ (𝜌ℎ𝑢) = ∇ ⋅ (𝜆∇𝑇𝑎𝑏𝑠) + ∇ ⋅
[

(𝜌1ℎ1 − 𝜌2ℎ2)⃗
]

. (18)

Here, the mixture enthalpy density is 𝜌ℎ =
∑

𝑖 𝜌̃𝑖ℎ𝑖 and the mixture heat conductivity 𝜆 =
∑

𝑖 𝛼𝑖𝜆𝑖 with 𝜆𝑖 assumed constant.
Introducing a relative temperature 𝑇 = 𝑇𝑎𝑏𝑠 − 𝑇𝑠𝑎𝑡 based on the (constant) saturation temperature 𝑇𝑠𝑎𝑡 and the latent heat at 

saturation temperature 𝐿𝑠𝑎𝑡 = ℎ1(𝑇𝑠𝑎𝑡) − ℎ2(𝑇𝑠𝑎𝑡), we can rewrite (18) as
𝜕𝜌𝑐𝑝𝑇
𝜕𝑡

+ ∇ ⋅ (𝜌𝑐𝑝𝑇 𝑢) = ∇ ⋅ (𝜆∇𝑇 ) −𝐿𝑠𝑎𝑡 + (𝜌1𝑐𝑝,1 − 𝜌2𝑐𝑝,2)∇ ⋅ (𝑇 ⃗). (19)

Taking 𝜌𝑐𝑝 =
∑

𝑖 𝜌̃𝑖𝑐𝑝,𝑖 out of the derivatives leads us to the following transport equation for the temperature

𝜌𝑐𝑝

(

𝜕𝑇
𝜕𝑡

+ 𝑢 ⋅ ∇𝑇
)

= ∇ ⋅ (𝜆∇𝑇 ) − 𝐿 + Δ𝜌𝑐𝑝⃗ ⋅ ∇𝑇 . (20)
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In Eq. (20), 𝐿 = 𝑓 (𝑇 ) = 𝐿𝑠𝑎𝑡 + (𝑐𝑝,1 − 𝑐𝑝,2)𝑇  is the temperature-dependent latent heat and Δ𝜌𝑐𝑝 = 𝜌1𝑐𝑝,1 − 𝜌2𝑐𝑝,2. The term ⃗ is kept in 
Eq. (20) for consistency. Nevertheless various phase field studies do not seem to require this contribution [19,22,23,30]. It is worth 
mentioning that in some works [13,14,73,74], the contribution of ⃗ is included in the temperature transport. However, in the latter 
works, a different closure procedure was used.

Mathematically, Eqs. (18)–(20) are equivalent, but they differ when implemented numerically. In this paragraph, we discuss 
the choice of the equation in detail. Clearly, from an energy conservation point of view, Eqs. (18) or (19) are preferred. For the 
discretization of the advection term, a different scheme has to be selected than that for the phase field transport Eq. (6). In general 
the temperature field may contain steep gradients or jumps (e.g. at the interface), which limit the use of central differencing schemes 
for the spatial discretization. As such, specialized flux limiter or WENO schemes [75] are required.

Applying different spatial discretization schemes for transporting physical properties can lead to inconsistencies. Here, the trans-
port of the physical property 𝜌𝑐𝑝 is implied by both Eqs. (18) and (19), although the transport of this quantity is already defined by 
Eq. (6). This is inconsistent, as the same physical property would be transported twice, with two different numerical schemes. We 
overcome this problem by using Eq. (20) to separate the temperature transport (Eq. (20)) from the transport of physical properties 
(Eq. (6)). Choosing Eq. (20) for simulating the thermal energy transport can lead to conservation errors due to its non-conservative 
form. This error is discussed further in Section 4.4. Note that, apart from Eq. (20), all numerical implementations use central differ-
encing methods for discretizing spatial derivatives.

The final energy balance equation has the form

𝜌𝑐𝑝

(

𝜕𝑇
𝜕𝑡

+ 𝑢 ⋅ ∇𝑇
)

= ∇ ⋅ (𝜆∇𝑇 ) + ∇ ⋅ 𝑗 − 𝐿 + Δ𝜌𝑐𝑝⃗ ⋅ ∇𝑇 , (21)

with

𝑗 = −𝑛𝐿𝜖
(

𝜆1
𝜆2

− 1
)

. (22)

In Eq. (21), the term 𝑗 was artificially added. This term is called the anti-trapping current [76]. In the context of phase field 
modelling, 𝑗 is used to improve convergence to the sharp interface limit [13,76–78]. For the present application, we used a simplified 
version of the anti-trapping current proposed in [13]. This simplification is based on the assumption that the heat transport from the 
liquid to the interface is high compared to the heat coming from the vapour side. The reader is referred to the work in Ref. [13] for 
further details.

3.  Numerical implementation

The following section presents a discrete scheme for solving the governing equations. First, we briefly discuss the spatial operators 
required to discretize the equations in space. The remainder of the section is primarily devoted to elaborating on the temporal 
integration. Finally, the numerical implementation of the phase change and the associated impact on the time-stepping is discussed.

3.1.  Spatial discretization

We now discuss the discretization in space. For the discrete representation of 𝜙, 𝑢, 𝑝, and 𝑇 , we decompose the computational 
domain into uniform cubic cells of volume Δ𝑥3. In each cell, the solution variables are located in a staggered arrangement, such that 
scalars (i.e. 𝜙, 𝑝, and 𝑇 ) are defined at the cell centres and vectors (e.g. 𝑢) at the cell faces. Fig. 1 illustrates this situation for two 
dimensions; the extension to three dimensions is straightforward.

The governing equations derived in Section 2 allow the use of central differencing schemes for almost all spatial derivatives. 
As described in Section 2.3, the exception is the transport equation for thermal energy, where a 5th-order WENO scheme [75] is 
employed. Therefore, a single neighbouring grid point is required for the discrete operators using second-order central schemes and 
two points for those using the WENO scheme (i.e. for 𝑇 ). For inter-process communication in parallel computing, this reduces data 
exchange between processes, and consequently, an improved scalability.

3.2.  Temporal discretization

In this section, we present the numerical integration of the variables 𝜙, ⃗𝑢,𝑝,𝑇  in time. First, we use a second-order explicit Adams-
Bashforth scheme to compute intermediate values between time steps 𝑛 and 𝑛 + 1 for the fields 𝜙 and 𝑇 . This state is denoted with 
the superscript * and obtained by solving

𝜙∗ = 𝜙𝑛 + Δ𝑡𝑛+1
(

𝑓𝑡,1𝑛𝜙 + 𝑓𝑡,2𝑛−1𝜙
)

, (23)

𝑇 ∗ = 𝑇 𝑛 + Δ𝑡𝑛+1
(

𝑓𝑡,1𝑛𝑇 + 𝑓𝑡,2𝑛−1𝑇
)

. (24)

According to the Adams-Bashforth scheme, the coefficients 𝑓𝑡,1,𝑓𝑡,2 are

𝑓𝑡,1 = 1 + Δ𝑡𝑛+1
2Δ𝑡𝑛

and 𝑓𝑡,2 = −Δ𝑡𝑛+1
2Δ𝑡𝑛

. (25)
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Fig. 1. Schematic visualization for deployed finite volume discretization in two dimensions.

Furthermore, a term 𝑛𝑐 denotes the rate of change for a quantity 𝑐 at time step 𝑛, i.e., (𝜕𝑐∕𝜕𝑡)𝑛 = 𝑛𝑐 . Following this procedure for 𝜙
and 𝑇  and rearranging Eqs. (6) and (21), we write 𝑛𝜙 and 𝑛𝑇  as

𝑛𝜙 = −∇ ⋅ (𝜙𝑛𝑢𝑛) + ∇ ⋅ ⃗𝑛 (26)

𝑛𝑇 = −𝑢𝑛 ⋅ ∇𝑇 𝑛 + 1
(𝜌𝑐𝑝)∗

(

∇ ⋅ (𝜆𝑛∇𝑇 𝑛) + ∇ ⋅ 𝑗𝑛 + Δ𝜌𝑐𝑝⃗𝑛 ⋅ ∇𝑇 𝑛
)

. (27)

In Eqs. (26) and (27), the contribution of the phase change term  was ignored when computing the intermediate stage *. In 
Section 3.4 we discuss calculating  as a function of the intermediate variable values. This step enhances the numerical stability. 
After calculating 𝑛+1, the final values 𝜙𝑛+1 and 𝑇 𝑛+1 are obtained as

𝜙𝑛+1 = 𝜙∗ + Δ𝑡𝑛+1
𝑛+1

𝜌1
, and 𝑇 𝑛+1 = 𝑇 ∗ + Δ𝑇 𝑛+1𝑃𝐶 . (28)

Here Δ𝑇 𝑛+1𝑃𝐶  is the temperature increment due to phase change (see Section 3.4).
The velocity field is advanced in time using Eq. (15). Starting with the intermediate momentum (𝜌𝑣)∗ as

(𝜌𝑣)∗ = (𝜌𝑣)𝑛 + Δ𝑡𝑛+1
[

(

𝑓𝑡,1⃗𝑛𝜌𝑣 + 𝑓𝑡,2⃗
𝑛−1
𝜌𝑣

)

+ 𝜌𝑛+1𝑔 + 𝑓 𝑛+1𝑆𝑇 − ∇𝑝𝑛
]

. (29)

The surface tension 𝑓𝑆𝑇  and the effect of gravity through 𝑔 are excluded from the Adams-Bashforth scheme since their values for 
time step 𝑛 + 1 are already known. Additionally, we decompose the new pressure 𝑝𝑛+1 = 𝑝𝑛 + 𝜓𝑛+1 and add the contribution of the 
old pressure 𝑝𝑛 in Eq. (29) to the intermediate momentum. We recall that (𝜌𝑣)𝑛 = 𝜌𝑛𝑢𝑛 − ⃗𝑛. The term ⃗𝑛

𝜌𝑣
, containing the advection 

and viscus effects, is defined as

⃗𝑛𝜌𝑣 = −∇ ⋅
(

𝜌𝑛𝑣𝑛 ⊗ 𝑣𝑛
)

− ∇ ⋅
((

𝜌1𝜌2
𝜌𝑛𝜙𝑛(1 − 𝜙𝑛)

)

⃗𝑛 ⊗ ⃗𝑛
)

+ ∇ ⋅ 𝜏𝑛. (30)

3.3.  Pressure solution

This section presents calculating 𝑢𝑛+1 and the pressure increment 𝜓𝑛+1 = 𝑝𝑛+1 − 𝑝𝑛 from the intermediate momentum (𝜌𝑣)∗. For 
simulations using the CDI method, solving the PPE is the most expensive step in terms of computational cost [8,79]. Consequently, 
we devote special attention to this solution procedure. The intuitive method for obtaining 𝜓𝑛+1 and 𝑢𝑛+1 may be to use a pressure 
correction step [80]

∇ ⋅
( 1
𝜌𝑛+1

∇𝜓𝑛+1
)

= 1
Δ𝑡𝑛+1

[

∇ ⋅ 𝑣∗ −𝑛+1
(

1
𝜌1

− 1
𝜌2

)

+ ∇ ⋅
(

⃗𝑛+1

𝜌𝑛+1

)]

. (31)

Using (𝜌𝑣)∗ = 𝜌𝑛+1𝑣∗, one sets

𝑢𝑛+1 = 𝑣∗ − Δ𝑡𝑛+1

𝜌𝑛+1
∇𝜓𝑛+1 + ⃗𝑛+1

𝜌𝑛+1
, 𝑝𝑛+1 = 𝑝𝑛 + 𝜓𝑛+1. (32)
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Solving Eq. (31) with an iterative scheme is expensive for large density ratios, as this requires specialized preconditioners [81] 
and results in slow convergence rates. FFT-based solvers can offer a substantial speed-up potential and are frequently utilized for 
multiphase flows [29,59,61]. As such, we explore the use of FFT-based solvers to reduce the computational cost.

Using an FFT-solver requires rewriting ∇ ⋅ (𝜌𝑛+1−1∇𝜓𝑛+1
) to obtain a constant-coefficient matrix as proposed in [56,57]. In the 

following, we will: (i) repeat the method proposed in [57] to outline the shortcomings for boiling applications, and (ii) propose an 
alternative pressure solution scheme for boiling flows. For details on the FFT usage, we refer the readers to the work in [58].

3.3.1.  Density splitting and pressure extrapolation
This section reports the method employed in [57]. This is included to motivate seeking an alternative formulation for boiling flow 

applications. The main idea is based on the approximation [56]
1

𝜌𝑛+1
∇𝜓𝑛+1 = 1

𝜌0
∇𝜓𝑛+1 +

(

1
𝜌𝑛+1

− 1
𝜌0

)

∇𝜓𝑛+1 ≈ 1
𝜌0

∇𝜓𝑛+1 +
(

1
𝜌𝑛+1

− 1
𝜌0

)

𝑓𝑒𝑥∇𝜓𝑛, (33)

where 𝜌0 = min(𝜌1, 𝜌2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and the extrapolation coefficient 𝑓𝑒𝑥 = Δ𝑡𝑛+1∕Δ𝑡𝑛. As such, the density is split into a constant and a 
variable part (first step). For the approximation of the variable part, 𝜓𝑛+1 is replaced with the extrapolated pressure increment 𝑓𝑒𝑥𝜓𝑛
of the previous time step (second step). Furthermore, in line with [60] and [57], we find the velocity and pressure field at the next 
time step through

𝑣∗∗ = 𝑣∗ − Δ𝑡𝑛+1
[( 1
𝜌𝑛+1

− 1
𝜌0

)

𝑓𝑒𝑥∇𝜓𝑛
]

, (34)

∇2𝜓𝑛+1 =
𝜌0

Δ𝑡𝑛+1

[

∇ ⋅ 𝑣∗∗ −𝑛+1
(

1
𝜌1

− 1
𝜌2

)

+ ∇ ⋅
(

⃗𝑛+1

𝜌𝑛+1

)]

, (35)

𝑢𝑛+1 = 𝑣∗∗ − Δ𝑡𝑛+1
𝜌0

∇𝜓𝑛+1 + ⃗𝑛+1

𝜌𝑛+1
, and 𝑝𝑛+1 = 𝑝𝑛 + 𝜓𝑛+1. (36)

Here, 𝑣∗∗ represents a second intermediate velocity field that contains the extrapolated pressure contribution of the variable 
density part. While the above procedure has gained popularity, it was shown in [62] that using the approximation in Eq. (33) is 
problematic for interfacial pressure jumps. This is the case in the presence of surface tension in combination with a density jump at 
a phase interface, where spurious pressure oscillations were reported [62]. In that context a specialized scheme for treating forcing 
terms on the RHS of the momentum equation was proposed in order to remove oscillations.

In boiling flow scenarios, interfacial pressure jumps are caused by the recoil pressure, which generates similar oscillations [61]. 
In [61], the same scheme is used for additional forcing terms to correct the recoil pressure [82]. This led to a significant reduction of 
oscillations, although some oscillations remained during the simulation start-up phase.

Moreover, the additional requirements on the CFL number, reported in [62], increase the computational cost when using 
Eqs. (34)–(36). Acknowledging the recent advancements, we propose an alternative pressure solution procedure to overcome the 
aforementioned drawbacks.

3.3.2.  Proposed FFT scheme
The key idea of the proposed solution stems from the works of Juric and Tryggvason [5], and Shin and Juric [83]. According to 

their scheme, the intermediate momentum (𝜌𝑣)∗ is not divided by the density, when assembling the RHS of Eq. (31). Adapted to the 
present work, the scheme used in [5] reads

∇2𝜓𝑛+1 = 1
Δ𝑡𝑛+1

[

∇ ⋅ (𝜌𝑣)∗ − ∇ ⋅ (𝜌𝑣)𝑛+1
]

, (37)

𝑢𝑛+1 =
(𝜌𝑣)∗ − Δ𝑡𝑛+1∇𝜓𝑛+1 + ⃗𝑛+1

𝜌𝑛+1
. (38)

This procedure avoids the splitting approach from Eq. (33) and naturally returns a constant coefficient matrix suitable for applying 
FFT solvers. However, using Eq. (37) poses two difficulties: (i) momentum (𝜌𝑣)𝑛+1 needs to be approximated, and (ii) divergence of 
the velocity ⃗𝑢𝑛+1 is not necessarily equal to 𝑛+1(𝜌1−1 − 𝜌2−1) after the correction step (38).

We address these difficulties of Eq. (37) by deploying three solution stages, each including a matrix inversion of a constant 
coefficient matrix which can be efficiently solved using FFT.

Stage 1: In the first stage the momentum for the time step 𝑡𝑛+1 is estimated. This is done through the splitting approach, as in 
Section 3.3.1. Quantities emerging from this estimation stage are marked by a tilde ⋅̃ . Formally,

𝑣∗∗ = 𝑣∗ − Δ𝑡𝑛+1
[( 1
𝜌𝑛+1

− 1
𝜌0

)

𝑓𝑒𝑥∇𝜓𝑛
]

, (39)

∇2𝜓̃ =
𝜌0

Δ𝑡𝑛+1

[

∇ ⋅ 𝑣∗∗ −𝑛+1
(

1
𝜌1

− 1
𝜌2

)

+ ∇ ⋅
(

⃗𝑛+1

𝜌𝑛+1

)]

, (40)

and 𝜌𝑣 = 𝜌𝑛+1𝑣∗∗ − Δ𝑡𝑛+1
𝜌𝑛+1

𝜌0
∇𝜓̃ . (41)
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Stage 2: The momentum estimate 𝜌𝑣 is used as an approximation for the momentum (𝜌𝑣)𝑛+1 at the next time step. Modifying 
Eq. (37) allows solving the second Poisson equation without the splitting approach. Using this momentum-based PPE, we calculate the 
improved pressure increment 𝜓̂ as a better estimate of the pressure increment 𝜓𝑛+1. Consequently we solve

∇2𝜓̂ = 1
Δ𝑡𝑛+1

[

∇ ⋅ (𝜌𝑣)∗ − ∇ ⋅ 𝜌𝑣
]

. (42)

Stage 3: As mentioned above, the improved pressure increment 𝜓̂ does not guarantee a divergence-free velocity field, which is 
why the final step of the pressure solution is required. Analogously to stage 1, using 𝜓̂ instead of 𝜓𝑛 for the splitting, we compute 
𝑝𝑛+1 and ⃗𝑢𝑛+1 by solving

𝑣∗∗∗ = 𝑣∗ − Δ𝑡𝑛+1
[( 1
𝜌𝑛+1

− 1
𝜌0

)

𝑐∇𝜓̂
]

, (43)

∇2𝜓𝑛+1 =
𝜌0

Δ𝑡𝑛+1

[

∇ ⋅ 𝑣∗∗∗ −𝑛+1
(

1
𝜌1

− 1
𝜌2

)

+ ∇ ⋅
(

⃗𝑛+1

𝜌𝑛+1

)]

, (44)

𝑢𝑛+1 = 𝑣∗∗∗ − Δ𝑡𝑛+1
𝜌0

∇𝜓𝑛+1 + ⃗𝑛+1

𝜌𝑛+1
, (45)

and 𝑝𝑛+1 = 𝑝𝑛 + 𝜓𝑛+1. (46)

Here, 𝑣∗∗∗ denotes the improved prediction velocity containing the contribution of the variable density with the pressure increment 
𝜓̂ . In Eq. (43) we used a constant 𝑐 to limit the pressure increment 𝜓̂ based on 𝜓̃ . This limiter is calculated as follows

𝑐 = min

(

1,
|min

(

𝜓̃
)

|

|min
(

𝜓̂
)

|

,
|max

(

𝜓̃
)

|

|max
(

𝜓̂
)

|

)

. (47)

This limiter 𝑐 is necessary to stabilize the method. Note that ̂𝜓 and ̃𝜓 are linked through the momentum estimation ̃𝜌𝑣. Consequently, 
Stages 1–3 are only valid if 𝜓̂ and 𝜓̃ are similar, whereas larger deviations will cause the solution to diverge.

This FFT scheme is subsequently referred to as the Momentum-based Pressure treatment for Density Jumps (short FFT-MPDJ) to 
highlight the feature of using Stage 2. In Section 4, we evaluate the proposed FFT-MPDJ scheme and compare it to the established 
method in [57,60].

3.4.  Phase change model

A crucial part of this study is selecting an adequate numerical procedure to model phase change. Large-scale simulations of 
boiling flows require a phase change model that ensures: (i) numerical efficiency, (ii) scalability, and (iii) robustness. Although heat 
conduction models are generally free from empirical parameters [3], they are computationally more expensive due to their need to 
calculate temperature gradients across the interface. Thus, we use a simpler kinetic model loosely based on [68,69], but modified for 
the present phase field model.

As shown in Section 3.2, the numerical integration of 𝜙 and 𝑇  is split into two steps, which are deployed to improve numerical 
stability. The temperature increment due to phase change is defined as Δ𝑇 𝑛+1𝑃𝐶 = 𝑇 𝑛+1 − 𝑇 ∗. Ideally, at a sharp interface, the phase 
change would happen instantaneously, so that 𝑇 𝑛+1 = 0 (i.e. at saturation temperature) and consequently

Δ𝑇 𝑛+1𝑃𝐶 = (𝑇𝑠𝑎𝑡 − 𝑇 ∗
𝑎𝑏𝑠) = −𝑇 ∗. (48)

With Δ𝑇 𝑛+1𝑃𝐶 , the mass transfer term  can be easily calculated from Eq. (21) resulting in

𝑛+1 = −
(𝜌𝑐𝑝)∗Δ𝑇 𝑛+1𝑃𝐶

𝐿(𝑇 ∗)Δ𝑡𝑛+1
, (49)

which reassembles the formulation in [68] and [69]. However, there are drawbacks of using Eq. (48) to calculate Δ𝑇 𝑛+1𝑃𝐶  in the context 
of the present study. Namely:

• the accuracy of the model strongly depends on the time step, as pointed out in [84],
• Eq. (48) is not restricted to the interfacial region, and
• no weighting of Δ𝑇 𝑛+1𝑃𝐶  accounts for the interfacial jumps in (𝜌𝑐𝑝)∗. As indicated by Eq. (49) the same temperature increment results 
in different mass transfer rates on either side of the interface (due to the multiplication with (𝜌𝑐𝑝)∗). This leads to an unbalanced 
distribution of 𝑛+1.

To address these drawbacks, we use the following modified version of Eq. (48)
Δ𝑇 𝑛+1𝑃𝐶 = −𝑇 ∗𝜃𝑡𝜃𝑝𝑐𝜃

∗
𝜌𝑐𝑝
𝜃∗𝜙. (50)

As seen in Eq. (50), we maintain the structure of Eq. (48) so that Δ𝑇 𝑛+1𝑃𝐶  is still proportional to 𝑇 ∗. But, we multiply 𝑇 ∗ by four 
non-dimensional factors 𝜃. Note that 𝜃∗𝜙 = 𝜃𝜙(𝜙∗) and 𝜃∗𝜌𝑐𝑝 = 𝜃𝜌𝑐𝑝 (𝜙

∗).
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Fig. 2. Visualization of the discretized interface indicator in Eq. (51), used to restrict the mass transfer  to the interface region. The interface 
indicator 𝜃𝜙 is shown together with the phase field variable 𝜙, as function of the non-dimensional interface distance 𝑥∕𝜖. Circles represent the values 
computed at cell-centers, where the cells have a uniform size of Δ𝑥.

The factor 𝜃𝜙 restricts the mass transfer to the interface region. We choose 𝜃𝜙 as

𝜃𝜙 = 1
2

(

1 + cos
(

2𝜋|𝜙 − 0.5|
)

)

. (51)

The distribution in the discrete case is found in Fig. 2. In theory, the choice of 𝜃𝜙 is arbitrary, provided 𝜃𝜙(𝜙 = 0) = 𝜃𝜙(𝜙 = 1) = 0 and 
𝜃𝜙(𝜙 = 0.5) = 1. However, we use Eq. (51) for its high concentration around 𝜙 = 0.5, which we found to be advantageous (see Fig. 2).

With the factor 𝜃𝑡, the temperature increment Δ𝑇 𝑛+1𝑃𝐶  is linked to a characteristic phase change timescale 𝑡𝑝𝑐 , decoupling the phase 
change model from the chosen time step size Δ𝑡𝑛+1. We assume that the phase change is governed by the heat conduction in the liquid 
phase, thus,

𝑡𝑝𝑐 =
Δ𝑥2
𝑎2

, and 𝜃𝑡 =
Δ𝑡𝑛+1
𝑡𝑝𝑐

, (52)

where 𝑎𝑖 = 𝜆𝑖∕(𝜌𝑖𝑐𝑝,𝑖) is the thermal diffusivity.
Accounting for the jump in 𝜌𝑐𝑝 we use 𝜃𝜌𝑐𝑝  defined as

𝜃𝜌𝑐𝑝 =
1

𝜌1𝑐𝑝,1
𝜌2𝑐𝑝,2

𝛼1 + 𝛼2
. (53)

As seen in Eq. (53), 𝜃𝜌𝑐𝑝  weights Δ𝑇 𝑛+1𝑃𝐶  stronger on the vapour side (proportional to the ratio of 𝜌𝑐𝑝), resulting in a balanced distribution 
of . Lastly, 𝜃𝑝𝑐 is a model parameter that we found to be independent of (i) the simulation setup and (ii) the physical properties of 
the fluid. For the remainder of the study, we fix 𝜃𝑝𝑐 = 0.65.

Comparing Eqs. (48) and (50) reveals the requirement 𝜃𝑡𝜃𝑝𝑐𝜃∗𝜌𝑐𝑝𝜃
∗
𝜙 < 1 to avoid overshooting the saturation temperature. This leads 

to an implicit phase change time step constraint Δ𝑡𝑝𝑐 given by

Δ𝑡𝑝𝑐 =
1
𝜃𝑝𝑐

𝜆1
𝜆2

Δ𝑥2
𝑎1

. (54)

Note that Eq. (54) is written in terms of the heat conduction timescale for the vapor Δ𝑥2𝑎−11 , which is usually more restrictive than 
that of the liquid phase. Therefore, Δ𝑡𝑝𝑐 will only affect Δ𝑡𝑛+1 when the ratio 𝜆1𝜆−12  is small. In contrast to [69], no iteration loop 
over the energy transport is necessary when following the strategy described above. For the verification of the phase change model, 
a series of simulations is performed and presented in Section 4.

3.5.  Time step size and adaptive Γ∗

To apply the CDI method to flows involving boiling phenomena, a central difficulty needs to be addressed: the profile of the 
phase field function 𝜙 loses its equilibrium hyperbolic tangent shape because of the strong divergence of 𝑢 at the interface. In other 
words, the source term  causes the profile of 𝜙 to thicken or even lose its shape entirely. This occurs when  > 0 and the speed of 
regularization term ⃗ is insufficient. Given the use of central differencing schemes in space, [24,25] suggest that 𝜖∗ = 1 and Γ∗ = 1, 
while [1] reports that using Eq. (9) would allow for even lower values of 𝜖∗. Let us recall the diffuse interface time step constraint

Δ𝑡𝜙 = min
𝑖

⎡

⎢

⎢

⎢

⎢

⎣

1

max
{

( 6Γ𝜖
Δ𝑥2

)

−
( 𝜕𝑢𝑖
𝜕𝑥𝑖

)

, 0
}

⎤

⎥

⎥

⎥

⎥

⎦

(55)
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from [25], which we use as a conservative estimate for the time step constraint. However, Δ𝑡𝜙 might not be the limiting factor. 
When Δ𝑡𝜙 is not restrictive (e.g. because Δ𝑡𝑝𝑐 < Δ𝑡𝜙), the regularization speed Γ might be too slow to maintain the hyperbolic tangent 
interface shape. For those cases, we propose an adaptive change of Γ∗ to keep Δ𝑡𝑛+1 = 𝐶𝐶𝐹𝐿Δ𝑡𝜙 at all times. The remaining time 
step constraints for the present simulations are: (i) the convective time step constraint Δ𝑡𝑢, (ii) the momentum diffusion constraint 
Δ𝑡𝜇 , (iii) the heat conduction constraint Δ𝑡𝜆, (iv) the capillary time step constraint Δ𝑡𝜎 , and (v) the constraint due to gravitational 
acceleration Δ𝑡𝑔 . These are given by [85]

Δ𝑡𝑢 = Δ𝑥
max(|𝑢1| + |𝑢2| + |𝑢3|)

, (56)

Δ𝑡𝜇 = Δ𝑥2
6

min
𝑖

(

𝜌𝑖
𝜇𝑖

)

, (57)

Δ𝑡𝑔 =
√

Δ𝑥
|𝑔|

, (58)

Δ𝑡𝜎 =

√

Δ𝑥2 min𝑖 𝜌𝑖
𝜎max|𝜅|

, (59)

Δ𝑡𝜆 = Δ𝑥2
6

min
𝑖

(

𝑎−1𝑖

)

. (60)

Here, 𝜅 is the interface curvature calculated from 𝜅 = ∇ ⋅ 𝑛. Following [85], Eqs. (56)–(59) can be combined into

Δ𝑡Σ = 2

1
Δ𝑡𝑢

+ 1
Δ𝑡𝜇

+

√

(

1
Δ𝑡𝑢

+ 1
Δ𝑡𝜇

)2
+ 4

Δ𝑡2
𝑔
+ 4

Δ𝑡2𝜎

. (61)

In contrast to the available literature on the conservative diffuse interface method, we solely define a minimum regularization 
speed Γ∗min and let Γ∗ adjust to the time step. Using Eq. (55), this is done by calculating

Δ𝑡𝜙,𝑚𝑖𝑛 = min
𝑖

⎡

⎢

⎢

⎢

⎢

⎣

1

max
{(6Γ∗𝑚𝑖𝑛|𝑢𝑚𝑎𝑥|𝜖

Δ𝑥2

)

−
(

𝜕𝑢𝑖
𝜕𝑥𝑖

)

, 0
}

⎤

⎥

⎥

⎥

⎥

⎦

. (62)

In case Δ𝑡𝜙,𝑚𝑖𝑛 > min(Δ𝑡Σ,Δ𝑡𝜆,Δ𝑡𝑝𝑐 ), we rearrange Eq. (55) to obtain the maximum allowed regularization speed as

Γ∗ = Δ𝑥2
6|𝑢𝑚𝑎𝑥|𝜖

[

1
min(Δ𝑡Σ,Δ𝑡𝜆,Δ𝑡𝑝𝑐 )

+ min
𝑖

(

𝜕𝑢𝑖
𝜕𝑥𝑖

)]

. (63)

If Δ𝑡𝜙,𝑚𝑖𝑛 is the restricting time step constraint, then Γ∗ = Γ∗min. Regardless, the time step Δ𝑡𝑛+1 is adjusted according to
Δ𝑡𝑛+1 = 𝐶𝐶𝐹𝐿min(Δ𝑡𝜙,𝑚𝑖𝑛,Δ𝑡Σ,Δ𝑡𝜆,Δ𝑡𝑝𝑐 ), (64)

where 𝐶𝐶𝐹𝐿 is the CFL safety factor, which is chosen to be 0.4 ≤ 𝐶𝐶𝐹𝐿 ≤ 0.5 for all test cases in Section 4. For the application to 
boiling flows, we found values in the range 1 ≤ Γ∗min ≤ 2 and 𝜖∗ = 1 to return favourable results.

3.6.  Algorithm

The procedure introduced in Sections 3.2–3.5 is shown as a pseudo code in Algorithm 1. We report the exact order in which we 
solve the conservation equations from Section 2.

This algorithm exhibits several distinct features, which are summarized and highlighted as follows:
• Phase change model: As described in Section 3.4, we presented a modified kinetic model using only the local superheat, which is 
designed to be (i) efficient, (ii) robust, and (ii) free from simulation-dependent parameters. We also derived the relevant time step 
constraint (Eq. (54)) for a stable simulation.

• Momentum balance equation: Staying in line with the conservative diffuse interface method framework, we included additional 
terms (see Eq. (16)) related to the regularization term ⃗ following a similar strategy as [10,32]. Note that, no assumptions on the 
relevance of these terms have been made.

• Pressure solution scheme: For the present study, we implement the FFT-MPDJ solver specialized for flows subjected to phase 
change. Through additional solution stages, we eliminate the drawbacks commonly reported by other studies [61,62] that are 
using the density splitting approach (Section 3.3.1). Through the design of the pressure scheme, no pressure oscillations related 
to interfacial pressure jumps occur.

• Adaptive Γ∗: Phase change poses a new requirement on the speed of the regularization term, which is not always satisfied by a 
fixed coupling to the maximum velocity. As shown in Section 3.5, we present a methodology that continuously updates Γ∗ to keep 
the regularization speed at the level of the smallest timescale.

In the remainder of this paper, Algorithm 1 is tested against various benchmark simulations, through which we test the numerical 
scheme, and also discuss the effect and relevance of the above-mentioned features.
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Algorithm 1 Proposed procedure for solving the governing equations.
1: Set initial conditions 𝜙(𝑡 = 0), 𝑇 (𝑡 = 0), 𝑝(𝑡 = 0) , and ⃗𝑢(𝑡 = 0)
2: Set the physical properties 𝜌, 𝑐𝑝, 𝜆, 𝜇
3: Calculate initial Ψ using Eq. (10)
4: Calculate ⃗ from Eq. (9)
5: while 𝑡 < 𝑡𝑒𝑛𝑑 do 
6:  Obtain intermediate phase field value 𝜙∗ from Eq. (23)
7:  Update physical properties 𝜌∗, 𝑐∗𝑝
8:  Obtain intermediate temperature 𝑇 ∗ from Eq. (24)
9:  Calculate Δ𝑇 𝑛+1𝑃𝐶  using Eq. (50)
10:  Obtain 𝑛+1 using Eq. (49)
11:  Final states of 𝜙𝑛+1 and 𝑇 𝑛+1 through Eq. (28)
12:  Update Ψ𝑛+1, 𝑛𝑛+1, 𝜅𝑛+1

13:  Update the physical properties 𝜌𝑛+1, 𝑐𝑛+1𝑝 , 𝜆𝑛+1, 𝜇𝑛+1

14:  Calculate prediction momentum (𝜌𝑣)∗ from Eq. (29)
15:  Update ⃗𝑛+1 with Eq. (9)
16:  Approximate (𝜌𝑣)𝑛+1 with ̃𝜌𝑣 by Eq. (39) - Eq. (41)
17:  Obtain pressure estimate 𝜓̂ by solving Eq. (42)
18:  Find final 𝑝𝑛+1 and ⃗𝑢𝑛+1 through Eq. (43) - Eq. (46)
19:  Update time step size Δ𝑡𝑛+1 with Eq. (64)
20:  if Δ𝑡𝜙,𝑚𝑖𝑛 > min(Δ𝑡Σ,Δ𝑡𝜆,Δ𝑡𝑝𝑐 ) then
21:  Γ∗ with Eq. (63)
22:  else
23:  Use Γ∗min
24:  end if
25: end while
26: End of simulation

4.  Simulations

In this section, we solve the governing equations with the method introduced above for a range of benchmark simulations. We 
conduct simulations including and excluding phase change, while the complexity of the flow problems increases towards the end of 
the section.

4.1.  One-dimensional recoil pressure jump

The first benchmark case, inspired by [10], is a simple one-dimensional domain in which a moving coordinate system follows 
an interface (see Fig. 3(a)), so that the phase field variable 𝜙 is constant in time (Fig. 3(b)). A velocity jump 𝑈 is prescribed by 
defining the mass transfer term as  = 𝑈 |∇𝜙|

(

𝜌−11 − 𝜌−12
)−1, implying that the flow field is fully defined by the continuity equation 

(Eq. (7)). Following [10], the coordinate system moves at interface velocity 𝑢𝑖𝑛𝑡 = −𝑈 (𝜌2∕𝜌1 − 1)−1. Accordingly, the phase velocities 
in the moving reference frame are 𝑢1 = 𝑈 − 𝑢𝑖𝑛𝑡 and 𝑢2 = −𝑢𝑖𝑛𝑡 (see Fig. 3(a)). Consequently, the theoretical recoil pressure jump at 
the interface is given by Δ𝑝𝑡ℎ = 𝑝1 − 𝑝2 = −𝑢2𝑖𝑛𝑡𝜌2(𝜌2∕𝜌1 − 1). As the phase field 𝜙 and the density 𝜌 are constant in the moving frame, 
we can integrate Eq. (8) to obtain an exact expression for the regularization term ⃗ = (𝜌𝑢 + 𝑢𝑖𝑛𝑡𝜌2)(𝜌1 − 𝜌2)−1. We now conduct two 
different tests: one with 𝑈 = 𝑐𝑜𝑛𝑠𝑡. and another with 𝑈 = 𝑓 (𝑡). For all simulations, we use a grid of size Δ𝑥 = 10−3 m in a domain of 
length 𝑙 = 0.1 m, and set the densities to 𝜌1 = 0.001 kg m−3 and 𝜌2 = 1 kg m−3.

4.1.1.  Pressure solver comparison
In the first test, we set 𝑈 = 0.5 m/s (see Fig. 4(a)) and monitor the behaviour of the pressure solver when calculating the pressure 

jump. Solvers (e.g. iterative or direct) that invert the matrix in Eq. (31) can reliably return the pressure distribution seen in Fig. 4(b) 
after one iteration, since all other quantities are constant. However, as shown in [61], simulating this pressure jump with FFT solvers 
using the density splitting (Section 3.3.1) can be challenging due to pressure oscillations.

We then compare the FFT-MPDJ solver (Section 3.3.2) with the FFT solver in [57] by measuring the relative pressure jump error 
versus the iteration count. The relative error in Δ𝑝𝑡ℎ is visualized in Fig. 5 for the two solvers under investigation; the FFT-MPDJ 
solver reaches an relative deviation from Δ𝑝𝑡ℎ of 10−8% in less than 10 iterations. In contrast, the density splitting approach in [57] 
exhibits strong oscillations at the start of the simulation, only reaching an acceptable deviation from Δ𝑝𝑡ℎ after completing ∼ 104

iterations. Once reaching a steady state, both solvers return the pressure distribution shown in Fig. 4(b).

4.1.2.  Evaluation of the momentum balance equation
In the second stage of the recoil pressure experiments, a variable velocity jump is applied and the pressure equation is solved with 

the FFT-MPDJ solver. This enables us to evaluate the relevance of ⃗ (see Eq. (16)). As seen in, e.g., Fig. 4(a), the interface speed is small 
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Fig. 3. Basic simulation settings for the case of the one-dimensional recoil pressure jump.

Fig. 4. Numerical results of the one-dimensional recoil pressure jump test case when prescribing a constant interfacial velocity jump 𝑈 = 0.5 m/s 
and 𝜌2∕𝜌1 = 1000. The velocity (a) and the pressure (b) have a smoothed jump due to the diffused interface representation. Solid lines represent the 
analytical jump conditions.

Fig. 5. Relative error as measured by Δ𝑝𝑡ℎ over the iteration count for different PPE solvers.
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Fig. 6. Numerical results of the one-dimensional recoil pressure jump test case when prescribing a variable interfacial velocity jump 𝑈 = 𝑈 (𝑡) =
[0.5 − 0.04𝑡] m/s and 𝜌2∕𝜌1 = 1000. The velocity (a) jump is shown at the start (𝑡 = 10 s) and at the end (𝑡 = 10 s) of the simulation. Since ⃗𝑢 is fully 
determined by the continuity equation (Eq. (7)), neglecting ⃗ has no impact on the velocity 𝑢. The pressure at 𝑡 = 10 s is shown in (b), where a 
strong dependence of ⃗𝑢 on ⃗ is seen. Analytical results are represented by solid lines.

compared to the velocity jump 𝑈 = Δ𝑢, which is proportional to ⃗; thus, the additional terms (i.e. ⃗) are more prominent. Fig. 6(a) 
illustrates the change in the velocity field from 𝑡 = 0 s to 𝑡 = 10 s when the velocity jump is prescribed as 𝑈 = 𝑈 (𝑡) = [0.5 − 0.04𝑡] m/s. 
We carry out two simulations: (i) one including ⃗, and (ii) one excluding. Fig. 6(b) shows the pressure distribution at time 𝑡 = 10 s, 
where the red dashed line represents the simulation with ⃗ and the green dashed line the one without. The analytical solution (black 
solid line) shows the pressure jump Δ𝑝𝑡ℎ along with the slope 𝜕𝑝∕𝜕𝑥 = 𝜌2𝜕𝑢𝑖𝑛𝑡∕𝜕𝑡 in each phase. While the simulation including the 
additional terms matches the analytical solution, a major discrepancy is seen for the simulation where ⃗ was neglected. Not only 
becomes the magnitude (green dashed) of the jump incorrect, but also its sign, underlining the importance of ⃗ for boiling flow 
phenomena.

Both of the recoil pressure tests demonstrate the improvements achieved through the methodology developed in the present study. 
First, the deployed FFT-MPDJ solver exhibits superior properties for calculating the recoil pressure jump at interfaces subjected to 
phase change. Second, for capturing the pressure distribution accurately, this test case shows the importance of keeping the additional 
terms the momentum equation (Eq. (15)), which arise from the differential velocity in the interfacial region. Although these two 
features significantly improve the results for the one-dimensional phase change tests, an obvious question arises: how do they affect 
the simulation of three-dimensional bubble dynamics in the absence of phase change? This is addressed in the next subsection.

4.2.  Three-dimensional rising bubble

Simulating the dynamics of bubbles rising due to gravity is a common benchmark. Specifically, one may test the interface capturing 
model or the pressure solution scheme [56,60,62,70,86]. In detail, we consider a three-dimensional setup using the geometry from 
[87]. Refer to Fig. 7 for a schematic diagram of this flow configuration. At 𝑡 = 0, a spherical bubble of diameter 𝐷0 is initialized at 
location 𝑥1 = 𝑥2 = 𝑥3 = 𝐷0. The no-slip condition is applied at all boundaries of the domain.

This benchmarks involves two different sets of fluid properties, which differ in the gas density and viscosity, as well as the 
surface tension (Table 1). The relevant non-dimensional numbers are the Reynolds number 𝑅𝑒 = 𝜌1𝑢𝑟𝑒𝑓 𝑙𝑟𝑒𝑓𝜇−11 , the Weber number 
𝑊 𝑒 = 𝜌1𝑢2𝑟𝑒𝑓 𝑙𝑟𝑒𝑓𝜎

−1, and the Froude number 𝐹𝑟 = 𝑢𝑟𝑒𝑓∕
√

‖𝑔‖𝑙𝑟𝑒𝑓  [60]. The selected reference quantities are

𝑙𝑟𝑒𝑓 = 𝐷0, 𝑡𝑟𝑒𝑓 =

√

𝑙𝑟𝑒𝑓
‖𝑔‖

, 𝑢𝑟𝑒𝑓 =
√

𝑙𝑟𝑒𝑓‖𝑔‖, 𝑝𝑟𝑒𝑓 =
𝑢𝑟𝑒𝑓𝜇2
𝑙𝑟𝑒𝑓

. (65)

The values in Table 1 show that a laminar flow is expected in both cases. In ’Case B’ the influence of the surface tension is lower, 
whereas for ’Case A’ the inertial effects are comparable to the effect of the surface tension. In this section, all non-dimensionalized 
results are marked with an asterix. For this benchmark, the Continuum Surface Force CSF [43] is used. A detailed description of this 
model is found in Section 4.5.1.

4.2.1.  Pressure solver comparison
In the first series of simulations, we switch off ⃗ and compare the pressure solver in [57] with the FFT-MPDJ solver of the present 

study (see data in Fig. 8). Simulations are carried out for two uniform grid spacings (i) with Δ𝑥 = 𝐷0∕32 and (ii) with Δ𝑥 = 𝐷0∕64. Both 

Journal of Computational Physics 551 (2026) 114680 

14 



L. Weber, A. Mukherjee, A.G. Class et al.

Fig. 7. Simulation setup for the bubble rising benchmark.

Table 1 
Corresponding fluid properties (see [87]).
 Name 𝜌2

𝜌1

𝜇2
𝜇1

𝑅𝑒 𝑊 𝑒 𝐹𝑟

 Case A 10 10 35 1 1
 Case B 1000 100 3.5 0.125 1

are applied to two sets of fluid properties ’Case A’ and ’Case B’. Note that the density splitting approach’s (Section 3.3.1) capability of 
simulating bubble dynamics has been verified repeatedly in the literature [56,60]. Accordingly, the FFT-MPDJ solver should ideally 
return the same results as the common density splitting FFT [57].

The quantities of interest are (i) the centre of mass of the gaseous phase (left panels of Fig. 8), (ii) the sphericity of the bubble 
(middle panels of Fig. 8) defined as 𝐴(𝑡 = 0)∕𝐴(𝑡), where 𝐴 is the surface area of the isocontour of the phase field 𝜙 = 0.5, and 
(iii) the bubble rise velocity (right panels of Fig. 8). The data in Fig. 8(a) confirm that the results obtained from both solvers are 
indistinguishable. For the higher density ratio ’Case B’, the agreement remains very good, although a slight difference can be observed 
in the sphericity for both grid resolutions (Fig. 8(b)).

In the next step, we investigate the source of the small differences seen for the high density ratio by examining the pressure 
field evolution versus simulation runtime. We consider the pressure along a line parallel to the 𝑥3-axis cutting through the centre of 
the bubble. Qualitatively, the pressure should exhibit a linear increase towards the lower domain boundary (hydrostatic pressure), 
interrupted at the (upward-moving) bubble location, due to its lower density and its velocity.

The pressure distribution was collected 32 times until 𝑡∗ = 1.34 for both solvers. The result for Δ𝑥 = 𝐷0∕32 is seen in Fig. 9, where 
the solver from [57] (left) is compared to the present FFT-MPDJ solver (middle), using the initial condition 𝑝∗(𝑡 = 0) = 0. The pressure 
field for the density splitting scheme requires almost the entire observation interval to adjust to the hydrostatic pressure. In contrast, 
the FFT-MPDJ solver adapts by 𝑡∗ = 0.04. As can be seen on the right panel of Fig. 9, both solvers return the same pressure distribution 
after the start-up phase. Long start-up phases for adjusting the pressure field to the flow are deemed to have a minor impact on the 
bubble dynamics depicted in Fig. 8(b).

4.2.2.  Evaluation of the momentum balance equation
The second series of simulations aims to investigate the effect of the additional momentum transport terms (i.e. ⃗) on the bubble 

dynamics in the absence of phase change. In the literature [34], the transport of relative momenta is often neglected. This is reasonable 
when comparing the differential mass flux ⃗ to the momentum 𝜌𝑢 for pure interface transport when excluding phase change. To 
quantify the effect, we conduct simulations for ’Case A’ and ’Case B’ using the FFT-MPDJ solver and the previous two resolutions. For 
each case, the results obtained including and excluding the additional terms are compared (see Fig. 10). We also include the benchmark 
data published in [87] as further reference. The reference data was obtained through the codes: (i) DROPS (level-set, finite element 
method) [88], (ii) NASt3D (level-set, finite difference method) [89] , and (iii) OpenFOAM (VOF, finite volume method) [90]. We 
refer the interested reader to the publication by [87] for further simulation details. The results for both density ratios, together with 
the reference data, are shown in Fig. 10. In this figure, it becomes apparent that for all simulations, an improvement is seen when ⃗
is included. The main effect is seen in the sphericity (middle), where the results clearly improve towards the reference data when ⃗
is used. Slight improvements are also visible throughout the simulations for the rise velocity (right panels of the same figure).

To conclude, with this non-phase change benchmark, we demonstrate that the proposed FFT-MPDJ solver can accurately simulate 
bubble dynamics in three dimensions. Additionally, we show that the our approach is superior for adjusting the pressure field to the 
flow problem at high density ratios. Lastly, this benchmark demonstrates that the modified momentum balance equation, incorpo-
rating the additional terms from Eq. (16), also exhibits clear, albeit minor, improvements when simulating bubble dynamics in the 
absence of phase change. Despite these improvements, we acknowledge that there is merit in the common assumption of neglecting 
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Fig. 8. Comparison of the pressure solution scheme by [57] (blue and pink solid lines) with the FFT-MPDJ solver (Section 3.3.2, black dashed and 
dotted lines) for simulating bubble dynamics without phase change. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 9. Evolution of the pressure distribution along the 𝑥3 direction through the bubble centerline for Case B (𝜌2∕𝜌1 = 1000) with Δ𝑥 = 32−1𝐷0. 
Comparison between two pressure solution schemes (left and middle panel). The pressure distribution at 𝑡∗ = 1.34 obtained with either scheme is 
compared on the right panel.

⃗ for non-phase change problems. Based on the findings of these first benchmarks, the FFT-MPDJ solver and the full momentum 
balance equation are used for the simulations in the following sections.

4.3.  Stefan problem

The Stefan problem is a one-dimensional phase-change problem in which a superheated wall heats a growing gaseous layer, 
pushing away the adjacent liquid phase. This situation is visualized in Fig. 11(a), where a typical temperature profile is sketched. 
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Fig. 10. Comparing the effect of ⃗ on bubble dynamics without phase change with respect to reference simulations (black lines) from [87].

Table 2 
Physical properties of various two-phase fluid systems. 

 Property  Unit Fluid𝐴 Fluid𝐵 Fluid𝐶  Water1  Ethanol1
𝜌1 kg m−3  0.01  0.25  5  0.597  1.647
𝜌2 kg m−3  1  2.5  200  958.4  736.44
𝜇1 kg m−1 s−1  n/a  n/a  0.005 1.26 ⋅ 10−5 1.02 ⋅ 10−5

𝜇2 kg m−1 s−1  n/a  n/a  0.1 2.80 ⋅ 10−4 4.49 ⋅ 10−4

𝑐𝑝,1 J kg−1 K−1  200  10  200  2030  1806
𝑐𝑝,2 J kg−1 K−1  n/a  10  n/a  4216  3185
𝜆1 W m−1 K−1  0.005  0.0035  1  0.025  0.0199
𝜆2 W m−1 K−1  n/a  0.0015  n/a  0.679  0.1654
𝐿𝑠𝑎𝑡 J kg−1 104 102 104 2.26 ⋅ 106 8.499 ⋅ 105

𝑇𝑠𝑎𝑡  °C  n/a  n/a  n/a  100  78.2
𝜎 N m−1  n/a  n/a  0.1  0.059  0.0174

1 at 1013 hPa

The distance of the interface from the wall 𝑥𝑖𝑛𝑡 has an analytical solution [91] of the form

𝑥𝑖𝑛𝑡(𝑡) = 2𝛽
√

𝑎1𝑡 , and 𝛽 exp (𝛽2)erf(𝛽) =
𝑐𝑝,1(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡)

𝐿(𝑇𝑠𝑎𝑡)
√

𝜋
, (66)

where 𝛽 is the growth constant, which depends on the wall superheat 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 and the physical properties of the vapour. This case 
is a classical benchmark for phase change models [7,92].

Using the parameter settings from [92], i.e. 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 = 10 K, and the physical properties of Fluid𝐴 (see Table 2), a growth 
constant of 𝛽 = 0.3064 is numerically determined. For the simulation, a domain of length 𝑙 = 0.05 m is discretized with four different 
grids using the grid spacings Δ𝑥 = 2 mm, 1 mm, 0.5 mm, and 0.25 mm, respectively. All simulations are initialized at physical time 
𝑡 = 38.34 ms, with the interface (𝜙 = 0.5) located at 𝑥0.5 = 6 mm and the corresponding analytical (linear) temperature profile.

The interface location 𝑥0.5 is plotted over time 𝑡, together with the analytical solution, in Fig. 11(b). With decreasing grid spacing, 
convergence to the analytical solution of Eq. (66) is achieved. Results with a grid spacing of Δ𝑥 = 2 mm exhibit a notable deviation 
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Fig. 11. (a) Schematic sketch of the Stefan problem with (b) the results for the interface location over time for four different grid spacings.

Fig. 12. Stefan problem: (a) Temperature profiles in comparison to the analytical solution, and (b) error convergence using Eq. (67).

from the analytical solution. Towards smaller grid spacings, a good agreement appears at Δ𝑥 = 1 mm, becoming almost identical to 
the analytical solution at Δ𝑥 = 0.5 mm and Δ𝑥 = 0.25 mm.

The results in [92] (sharp interface, VOF) report grid convergence at Δ𝑥 = 2 mm. In contrast, the method presented in this study 
requires roughly twice the number of grid points for convergence. This confirms a typical trend of the increased resolution requirement 
for diffuse-interface methods compared to sharp-interface methods [8].

In Fig. 12(a), we compare the temperature distributions obtained from the different grid spacings to the analytical solution at time 
𝑡 = 0.823 s. The temperature profiles confirm the findings in Fig. 11(b). With Δ𝑥 = 2 mm the temperature greatly deviates from the 
analytical (linear) temperature distribution. Using Δ𝑥 = 1 mm a good agreement is observed and further decreasing the grid spacing 
results in minor improvements.

For quantifying the error reduction with the grid spacing, an error measure is introduced. The error is quantified using the 
difference of the simulated interface position 𝑥0.5 where 𝜙 = 0.5, and the analytical position 𝑥𝑖𝑛𝑡 as

Error =

√

√

√

√

∑

𝑡
(

𝑥𝑖𝑛𝑡 − 𝑥0.5
)2

∑

𝑡 𝑥
2
𝑖𝑛𝑡

. (67)

In Fig. 12(b) this error measure is shown for the different grid spacings. The error reduces at an approximately second-order rate for 
the Stefan problem.

4.4.  The sucking interface problem

The sucking interface problem (or absorption problem) describes a situation where a growing gaseous layer pushes a liquid away 
from a wall. Unlike the Stefan problem, the liquid is superheated, with the gaseous phase and the wall remaining at saturation 
conditions. The heat reaches the interface from the liquid side, where a thermal layer is developing. This situation is depicted in 
Fig. 13.
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Fig. 13. Setup of the sucking interface problem.

According to the analytical solution, the interface location 𝑥𝑖𝑛𝑡 has a square-root dependence with respect to time 𝑡,
𝑥𝑖𝑛𝑡(𝑡) = 2𝛽

√

𝑎1𝑡. (68)

However, for the sucking interface problem, the growth constant 𝛽 is obtained from a different transcendental equation [91] that 
determines 𝛽

exp (𝛽2)erf(𝛽)

[

𝛽 −
(𝑇∞ − 𝑇𝑠𝑎𝑡)𝑐𝑝,1𝜆2

√

𝑎1 exp
(

− 𝛽2
𝜌21𝑎1
𝜌22𝑎2

)

𝐿𝑠𝑎𝑡𝜆1
√

𝜋𝑎2 erfc 
(

𝛽
𝜌1

√

𝑎1
𝜌2

√

𝑎2

)

]

= 0. (69)

The corresponding analytic temperature profile of the liquid phase 𝑇2(𝑥, 𝑡) reads

𝑇2(𝑥, 𝑡) = 𝑇∞ −

[

(𝑇∞ − 𝑇𝑤𝑎𝑙𝑙)

 erfc (𝛽 𝜌1
√

𝑎1
𝜌2

√

𝑎2

)

]

 erfc 
(

𝑥
2
√

𝑎2𝑡
+
𝛽(𝜌1 − 𝜌2)

𝜌2

√

𝑎1
𝑎2

)

. (70)

This flow problem is tested with two liquids, namely (i) a generic Fluid𝐵 , and (ii) saturated Water at 100 °C (see Table 2), posing 
different challenges to our phase change model.

The first set of simulations with Fluid𝐵 replicates the settings used in [93], where the liquid phase has a far-field temperature 
𝑇∞ − 𝑇𝑠𝑎𝑡 = 2 K. Using Eq. (69), 2 K above the saturation temperature leads to the growth constant value 𝛽 ≈ 0.2689. The discretization 
of the computational domain (𝑙 = 1 m) is conducted using cell sizes Δ𝑥 = 20 mm, 10 mm, 5 mm, 2.5 mm, and 1.25 mm. At physical 
time 𝑡 = 4 s, the simulation is started, with the centre of the phase field being located at 𝑥𝑖𝑛𝑡 = 0.0402 m. In this simulation, the 
temperature of the liquid is initialized using Eq. (70), with the gas being saturated.

As commonly observed for this benchmark [49,93], the front speed is underestimated for coarse grids. This is reflected on the 
left side of Fig. 14(a). Larger deviations are observed for grid spacings Δ𝑥 = 20 mm and Δ𝑥 = 10 mm. Therefore, the resolution was 
increased, resulting in good agreement with grid spacing Δ𝑥 = 5 mm and finer. The error reduction with decreasing grid spacing is 
visualized in Fig. 15(a) where Eq. (67) is used to quantify the error. For this set of fluid properties, the error reduces at a first-order 
rate.

Additional insights are obtained by examining the temperature distribution at a physical time 𝑡 = 240.8 s (Fig. 14(a), middle and 
right plots). For the two coarse grids, a significant deviation from the analytical temperature is observed in the gaseous phase. In the 
liquid phase, away from the interface, all profiles collapse onto the analytical solution. Slight superheat appearing in the gas could 
be a result of the anti-trapping current 𝑗 (see Eq. (22)). For Fluid𝐵 the heat conductivities are 𝜆1 > 𝜆2. This causes 𝑗 to switch sign, 
leading to additional heat transport into the gas. This could also explain the reduced error reduction rate seen in Fig. 15(a). However, 
for most ’real’ fluids, 𝜆1 < 𝜆2 (see Table 2). Therefore we regard the results concerning this fluid as an exception.

In the second set of simulations, the fluid properties of saturated water at 100 °C are considered. For these simulations, the far-
field temperature of the liquid is 5 K above the saturation temperature. The water properties exhibit a high density ratio, a high heat 
capacity, and fast growth rates. These conditions allow us to test the limits of the phase change module (here, 𝛽 ≈ 0.767). We use the 
five grids with Δ𝑥 = 8 µm, Δ𝑥 = 4 µm, Δ𝑥 = 2 µm, Δ𝑥 = 1 µm, and Δ𝑥 = 0.5 µm, and a domain of length 𝑙 = 0.4 mm.

Fig. 14(b) shows the results when starting the simulation at time 𝑡 = 5 µs and using the corresponding analytical solution as the 
initial condition. On the left, the interface position versus time is shown. With an increased grid resolution, the result quality is visibly 
improved. The rate at which the results converge to the analytical solution is shown in Fig. 15(b). The convergence rate is slightly 
improved compared to the case employing the fluid properties of Fluid𝐵 , but slower than that seen for the Stefan problem. Lower 
resolutions under-predict the growth rate in the start-up phase, resulting in a permanent offset relative to the analytical solution 
for the remainder of the simulation runtime. This indicates that, at lower resolutions, the initial thermal profile is under-resolved, 
resulting in erroneous interface speeds. The middle and left plots show the steep temperature profile, characteristic of the selected 
physical properties. Here, 𝜆1 < 𝜆2, which is also reflected in the temperature profiles, where no spurious temperature distribution is 
found in the gaseous phase (compare with Fig. 14(a)).

The utilized temperature transport equation (Eq. (20)) has a non-conservative form, and thus, the enthalpy error accumulation 
over time is investigated. We consider the sucking interface problem with the Water properties to construct a critical scenario. This is 
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Fig. 14. Results of the sucking interface problem.

Fig. 15. Error convergence rates for both fluids in the sucking interface problem calculated from Eq. (67).
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Fig. 16. Conservation error calculated from the total enthalpy in the domain using Eq. (71) and a grid spacing of Δ𝑥 = 2 µm.

due to the large contrasts in fluid properties and the presence of steep temperature gradients on the interface. For this test, we monitor 
the enthalpy over time to evaluate its change. As the left boundary is an adiabatic wall, this evaluation solely needs to account for the 
outflow of liquid on the outflow boundary 𝜕Ω𝑂 in the boundary normal direction ⃗𝑛𝑂 (right of Fig. 13). The total enthalpy is calculated 
from

𝐻𝑡𝑜𝑡(𝑡) = ∫Ω
𝜌ℎ + ∫

𝑡

0 ∫𝜕Ω𝑂
𝜌ℎ(𝑛𝑂 ⋅ 𝑢). (71)

In Fig. 16 the change of 𝐻𝑡𝑜𝑡(𝑡) in relation to its value at simulation start is plotted in percent versus the simulation runtime. The 
maximum observed conservation error is 0.4 %. Therefore, we conclude that gain or loss of thermal energy plays a negligible role in 
the presented framework for the problems considered in this study.

In the subsequent sections, the phase change model is subjected to more complex cases in two and three dimensions.

4.5.  Three-dimensional bubble growth

In three dimensions, an important benchmark is the study of a bubble growing in a superheated liquid at zero gravity. This problem 
can reduce to a spherically symmetric flow, for which a known analytical solution is available [94] and serves as reference for the 
following numerical tests. The analytical solution has a square-root dependency on time 𝑡, such that the radial interface position 𝑅𝑖𝑛𝑡
is

𝑅𝑖𝑛𝑡(𝑡) = 2𝛽
√

𝑎2𝑡. (72)

For the three-dimensional bubble growth [94], 𝛽 is governed by the following transcendental equation
𝜌2𝑐𝑝,2(𝑇∞ − 𝑇𝑠𝑎𝑡)

𝜌1
(

𝐿𝑠𝑎𝑡 + (𝑐𝑝,2 − 𝑐𝑝,1)(𝑇∞ − 𝑇𝑠𝑎𝑡)
)

= 2𝛽2 ∫

1

0
exp

[

− 𝛽2
(

(

1 − 𝜒
)−2 − 2𝜒

(

1 − 𝜌1∕𝜌2
)

− 1
)]

𝑑𝜒.

(73)

In all subsequent simulations, we consider 1∕8th of the bubble, by placing an initial bubble in the corner of a cubic domain. This 
setup is sketched in Fig. 17, where the domain boundaries intersecting the bubble are symmetry boundaries, and the opposite ones 
are outflow boundaries. Using properties of water (see Table 2), and a far-field temperature of 𝑇∞ − 𝑇𝑠𝑎𝑡 = 5 K, leads to a growth 
constant of 𝛽 ≈ 15.073 when solving Eq. (73).

The cubic computational domain is discretized using uniform grids of sizes Δ𝑥 = 125 µm, Δ𝑥 = 62.5 µm, Δ𝑥 = 31.3 µm, and 
Δ𝑥 = 15.6 µm. In the computational domain of length 𝑙 = 4 mm, a bubble is placed with an initial radius of 𝑅0 = 𝑙∕4, corresponding 
to a physical time 𝑡 = 6.55 ms at simulation start. The temperature field is initialized with the analytical temperature profile [94]

𝑇2(𝑟, 𝑅𝑖𝑛𝑡) = 𝑇∞ −
2𝛽2𝜌1
𝜌2𝑐𝑝,2

(

𝐿𝑠𝑎𝑡 + (𝑐𝑝,2 − 𝑐𝑝,1)(𝑇∞ − 𝑇𝑠𝑎𝑡)
)

×∫

1

1− 𝑅𝑖𝑛𝑡
𝑟

exp
[

− 𝛽2
(

(

1 − 𝜒
)−2 − 2𝜒

(

1 − 𝜌1∕𝜌2
)

− 1
)]

𝑑𝜒.
(74)

Note that for the first set of simulations, surface tension is disabled, as it does not (from an analytical point of view, see Eqs. (72)–(74)) 
impact the bubble growth, itself.

Fig. 18(a) shows the size of the bubble over time for all grids in comparison to the analytical solution. A strong dependency 
on the grid resolution is observed, resulting in significant deviations from the analytical growth rate for grids using Δ𝑥 = 125 µm 
and Δ𝑥 = 62.5 µm. Good agreement with Eq. (72) is only achieved by using a grid spacing of Δ𝑥 = 15.6 µm. In Fig. 18(c), the 
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Fig. 17. Setup for simulating three dimensional bubble growth.

error convergence for the considered grid spacings is shown when using the error definition of Eq. (67). Across all grid spacings, 
an approximately second-order error reduction rate can be observed. The reason for the high resolution requirements is evident in 
Fig. 18(b), which depicts the analytical solutions steep temperature gradients. Although the results obtained from Δ𝑥 = 15.6 µm 
to Δ𝑥 = 62.5 µm seem to be similar, they still exhibit distinct differences in the temperature gradient close to the interface, which 
explains the superior performance when using Δ𝑥 = 15.6 µm. More details on the results when using Δ𝑥 = 15.6 µm are found in 
Fig. 19, where we visualize the velocity field alongside the temperature distribution (left) and the distribution of the mass transfer 
 (right). The velocity field jumps in the radial direction across the interface, whereas the gas velocity inside the bubble stays at 
rest. Additionally,  has a smooth distribution, verifying the modelling choices made in Section 3.4. Interestingly, for this flow, 
is slightly shifted towards the liquid side. This slight asymmetry of  could be a result of the temperature transport contribution of 
the regularization terms ⃗ through Eq. (21). However, a negative impact was not observed in this study.

4.5.1.  Evaluation of surface tension models
Here, the same computational settings are considered, but the surface tension is also included, i.e., 𝑓𝑆𝑇 ≠ 0. In the context of the 

CDI method, two classes of surface tension models are used: (i) the continuum surface force (CSF), and (ii) energy-based models. The 
CSF model [43] takes the simple form

𝑓𝑆𝑇 ,𝐶𝑆𝐹 = 𝜎𝜅∇𝜙, (75)

where 𝜎 is the surface tension coefficient and 𝜅 the interface curvature is defined as 𝜅 = ∇ ⋅ 𝑛. The energy-based models for CDI are 
based on the free-energy functional taken from the Allen-Chan model [42]. The generic energy-based method [13,42,45] reads

𝑓𝑆𝑇 ,𝐸𝐵 = 𝜉∇𝜙, 𝜉 = 6𝜎
𝜖

(

𝜕Φ
𝜕𝜙

− 𝜖2∇2𝜙
)

, and Φ = 1
2
[

𝜙(1 − 𝜙)
]2, (76)

where 𝜉 denotes the chemical potential. The chemical potential uses the free energy Φ of the phase field variable 𝜙 ∈ [0, 1]. For 
applications without phase change, the energy-based method is deemed superior to the CSF due to its improved convergence rate 
[42,47].

In general, including the effect of surface tension in interface-resolved simulations commonly introduces spurious (or parasitic) 
currents due to unbalanced forces at the gas-liquid interface [95]. In the context of boiling flows, this issue is often amplified by 
the velocity jump across the interface [48]. Fig. 20(a) shows the spurious currents (using the CSF) at the interface (left), which 
can disturb the thermal layer around the bubble through advection (close-up). This amplification leads to erroneous growth rates 
(Fig. 20(b)). Consequently, selection of the surface tension model is a deciding factor for the simulation success. We therefore take 
this opportunity to compare the performance of several surface tension models applied to boiling flows using the CDI method to (i) 
guide future studies, and (ii) select the best-performing model for the following sections.

The spurious flow structures that develop during the simulation are investigated with three different grids and visualized in Fig. 21. 
Here, the direction and magnitude of the velocity field is shown for time 𝑡 = 29 ms. The first, second, and third rows correspond to 
the grid resolutions with Δ𝑥 = 125 µm, Δ𝑥 = 62.5 µm, and Δ𝑥 = 31.3 µm, respectively. On the left, the results for 𝜎 = 0 are included 
as a reference. Both surface tension models (Eqs. (75) and (76)) introduce severe flow structures. The resolution changes the pattern 
of the spurious flow, where the results obtained with lower resolutions seem to be less affected. Refined grids exhibit larger velocity 
magnitudes of the spurious currents, which affect the overall growth rate of the bubble (compare with Fig. 20(b)). For all grid 
resolutions, the energy-based surface tension model performs worse than the CSF. But neither of the models (Eqs. (75), (76)) provide 
satisfactory results for the study of bubble growth.

In the literature, several variations of both surface tension model classes exist. Seeking a robust model for the present application, 
we explore selected variations [51–53]. For the energy-based surface tension model, researchers reformulated the expression for the 
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Fig. 18. Numerical results for 3D bubble growth without gravity for four different grids. The bubble radius over time (a), and the radial temperature 
distribution at time 𝑡 = 51.5 ms (b) together with the analytical solutions Eqs. (72) and (74) are shown.The error convergence using Eq. (67) of the 
simulated bubble radius compared to the analytical solution Eq. (72) is shown in panel (c).

surface tension stress such that the forcing term differs on a discrete level, but remains mathematically equivalent. For example, 
Eq. (76) was reformulated in Ref. [52] as

𝑓 ∗
𝑆𝑇 ,𝐸𝐵 = 6𝜎

𝜖

(

𝜕Φ
𝜕𝜙

− 𝜖2∇2𝜙
)

∇𝜙 = 6𝜎
𝜖

(

∇Φ − 𝜖2(∇2𝜙)∇𝜙
)

. (77)

They refer to this formulation as the conservative method by rearranging the derivatives. A different strategy is followed by [53], 
where the surface tension is expressed in terms of the level-set function Ψ (Eq. (10)). Expressing 𝑓𝑆𝑇 ,𝐸𝐵 in terms of the level-set 
function yields

𝑓 ∗∗
𝑆𝑇 ,𝐸𝐵 = 6𝜎

𝜖

(

𝜙(1 − 𝜙)(1 − 2𝜙)(1 − |Ψ|2) − 𝜖𝜙(1 − 𝜙)∇2Ψ
)

. (78)

We compare the formulations in Eqs. (76)–(78), obtaining the flow structures visualized in Fig. 22. This figure shows the signif-
icant impact of the discrete representation of the surface tension formulation on the spurious currents. While the results obtained 
through the standard method and the level-set formulation [53] are comparable, a noticeable worsening is observed when using the 
conservative formulation. None of the considered formulations are capable of reducing the spurious flow structures to an acceptable 
level. Acknowledging the advantageous properties of the energy-based model class for non-phase change problems, we disregard 
these models for the remainder of this study.

Regarding the CSF model, a promising variation of Eq. (75) was proposed in [51], where the gradient of a sharpened phase 
indicator 𝜙′ replaces the term ∇𝜙. Therefore, the CSF variation by [51] reads

𝑓 ∗
𝑆𝑇 ,𝐶𝑆𝐹 = 𝜎𝜅∇𝜙′, (79)

where 𝜙′ is the sharpened phase indicator calculated from

𝜙′ = 1
1 − 𝜂

[

min
(

max
(

𝜙,
𝜂
2

)

, 1 −
𝜂
2

)

−
𝜂
2

]

, (80)

with 𝜂 being the sharpening factor. The authors of Ref. [51] suggested using 𝜂 = 0.5 for VOF methods. We reevaluate this value in the 
context of the ACDI method. For this purpose, we study the development of spurious currents for 𝜂 = 0.5 and 𝜂 = 0.75 and compare 
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Fig. 19. Results on a slice through the bubble centre. Temperature distribution and qualitative velocity field at time 𝑡 = 51.5 ms (left). The closeup 
view (right) shows the distribution of the mass transfer  with respect to the interface location. In the closeup, the black lines correspond to the 
isocontours of the phase field variable.

Fig. 20. Demonstration of the effect of spurious currents on the bubble growth. A slice through the bubble centre (a) visualizes the spurious velocities 
in the gas and liquid phase at 𝑡 = 29 ms. The close-up shows how the spurious velocities transport the thermal boundary layer around the bubble. 
Comparison of the growth rate (b) with and without the influence of the spurious currents. Results corresponding to Δ𝑥 = 31.3 µm and using the 
CSF model.

them to the standard CSF model. The effect of 𝜂 is visualized in Fig. 23, where 𝜙′ is compared to 𝜙. It is shown that for 𝜂 = 0.5 and 
𝜖 = Δ𝑥, the gradient of 𝜙′ only differs from zero for 3-4 cell edges, whereas for 𝜂 = 0.75, it only differs from zero for 2-3 cell edges. 
As a result, ∇𝜙′ is significantly more concentrated around 𝜙 = 0.5.

We now investigate the benefit of this increased concentration for spurious currents. The effect of the sharpened model on the 
bubble growth is studied with two values of 𝜂. Fig. 24 summarizes the results obtained using Δ𝑥 = 62.5 µm, with the standard CSF 
results included as a reference. We observe that spurious currents drastically reduce with increased 𝜂. In addition, spurious flow 
patterns observed with the sharpened CSF do not increase over the simulation runtime. We may argue that 𝜂 should be set as large 
as possible while still allowing for a stable simulation. From our experiments we found that 𝜂 = 0.75 provides a good compromise 
reducing the spurious currents (see Fig. 24) and exhibiting stable and robust numerical behaviour (given 𝜖∗ = 1). Hence, the expression 
in Eq. (79) with 𝜂 = 0.75 is implemented for all remaining simulations in this study due to its superior performance in reducing spurious 
currents.

4.6.  Two-dimensional film boiling

Our next step is assessing the framework’s capability of simulating complex boiling flows in multi-dimensional spaces. In this 
section, we consider the simulation of film boiling in two dimensions. In this case, a horizontal, heated plate with a fixed temperature 
𝑇𝑤𝑎𝑙𝑙 is separated from the liquid phase by a growing gas layer (Fig. 25(a)). The gas layer grows until the interface becomes unstable 
due to gravity, leading to the detachment of a rising bubble.
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Fig. 21. Visualization of spurious flow structures at 𝑡 = 29 ms. Slice through the bubble centre for different surface tension models and three 
resolutions. The solid, dashed and dotted lines mark the isocontour lines of the phase field at 𝜙 = 0.9, 0.5, and 0.1, respectively.

Fig. 22. Velocity field slicing through the bubble at 𝑡 = 29 ms obtained by using Δ𝑥 = 62.5 µm. Comparison of different formulations of the energy-
based models: (i) standard energy-based formulation using Eq. (76); (ii) the conservative formulation [52] using Eq. (77); (iii) the level-set based 
formulation [53] using Eq. (78). The solid, dashed and dotted lines mark the isocontour lines of the phase field at 𝜙 = 0.9, 0.5, and 0.1, respectively.
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Fig. 23. Phase field variable 𝜙 and sharpened phase indicator 𝜙′ plotted over the dimensionless interface distance 𝑥∕𝜖. Comparison of different 
sharpening factors 𝜂 for different locations of 𝜙 = 0.5, with circles marking the cell centres.

Fig. 24. Comparison of the sharpened CSF method [51], i.e. Eq. (79), using different sharpening factors 𝜂 with the standard CSF, Eq. (75). The 
evolution of the spurious currents is visualized by including two time steps, i.e., 𝑡 = 29 ms (top row) and 𝑡 = 51.5 ms (bottom row). Results were 
obtained by using Δ𝑥 = 62.5 µm.

The length scale 𝓁0, characterizing the instability, is the two-dimensional Taylor wavelength [96],

𝓁0 = 2𝜋

√

3𝜎
‖𝑔‖(𝜌2 − 𝜌1)

. (81)

Note that 𝓁0 is equal to 𝜋
√

12 times the capillary length 𝑙𝑐 =
√

𝜎‖𝑔‖−1(𝜌2 − 𝜌1)−1. Exploiting the symmetry of the detaching bubble, 
half the domain is simulated. To reduce the computational cost, we truncate the domain, in the 𝑥2 direction, to a size of 3𝓁∕2 and 
apply an outflow boundary condition at the top. We employ the outflow boundary method proposed in [97], which allows bubbles 
of a wide range of Weber numbers to exit the domain. Thus, an ordinary homogeneous Dirichlet boundary condition for the pressure 
at the outflow becomes applicable, as required by the FFT solver [58].

In line with previous studies [7,19,92,98], the physical properties of Fluid𝐶 are utilized (see Table 2). In contrast to these studies, 
we use a wall superheat 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 of only 1 K. We chose this modification, as phase field models seem to struggle to allow detach-
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Fig. 25. Schematic sketch of the film boiling simulation (a). Nusselt number over time (b) for three different meshes. The results for 𝑁𝑢 correspond 
to using Fluid𝐶 and 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 = 1 K.

Table 3 
Two-dimensional film boiling. Time averaged Nus-
selt numbers compared to 𝑁𝑢𝐾 from Eq. (84). 

 Grid spacing Δ𝑥 𝓁0∕128 𝓁0∕256 𝓁0∕512

𝑁𝑢 2.538 2.583 2.562
𝑁𝑢∕𝑁𝑢𝐾 − 1 −22.4% −21.0% −21.7%

ments of vapour bubbles with these fluid properties in two dimensions [19]. The initial conditions [92] for the phase field 𝜙 are set 
by placing the centre of the interface (𝜙 = 0.5) along the path described by the function 𝜙0 according to

𝜙0 =
𝓁0
32

+
𝓁0
128

cos
(

2𝜋𝑥1
𝓁0

)

, (82)

to trigger an early detachment of a bubble with this first instability. The initial temperature field decreases linearly from 𝑇 (𝑥2 =
0) = 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡 to 𝑇 (𝑥2 = 𝜙0) = 0 in the 𝑥2 direction. After startup, the simulations are run until 𝑡 = 4 s to capture approximately 
six bubble detachment cycles. For the discretization of the computational domain, we use three (uniform) grids with Δ𝑥 = 𝓁0∕128, 
Δ𝑥 = 𝓁0∕256, and Δ𝑥 = 𝓁0∕512.

The simulations are evaluated considering the temporal evolution of the Nusselt number 𝑁𝑢, which quantifies the heat transfer. 
To obtain the instantaneous Nusselt number, we compute

𝑁𝑢 =
𝑙𝑐

(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡)

∫𝜕Ω𝑤𝑎𝑙𝑙
𝜕𝑇
𝜕𝑥2

|

|

|𝑥2=0
𝑑𝑥1

∫𝜕Ω𝑤𝑎𝑙𝑙 𝑑𝑥1
. (83)

Here, the spatially averaged temperature gradient at the bottom domain boundary is non-dimensionalized by the wall superheat 
and the capillary length scale 𝑙𝑐 . To compare the results to the literature, in particular the well-established empirical correlation by 
Klimenko [96], we compute the time-averaged Nusselt number 𝑁𝑢. For the given parameters, this empirical Nusselt number, denoted 
by 𝑁𝑢𝐾 , is

𝑁𝑢𝐾 = 0.19Gr
1
3 Pr

1
3 𝑓,with Gr =

𝑙𝑐‖𝑔‖𝜌21
𝜇21

(

𝜌2
𝜌1

− 1
)

, 𝑓 = 0.89𝜁
1
3 , (84)

where Pr = 𝑐𝑝,1𝜇1𝜆−11  and 𝜁 = 𝑐𝑝,1(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑠𝑎𝑡)𝐿−1
𝑠𝑎𝑡.

Fig. 25(b) shows the temporal evolution of the instantaneous Nusselt number for all examined grid resolutions. As reference, 
the red solid line in Fig. 25(b) represents the value of the empirical correlation 𝑁𝑢𝐾 . Apart from the start-up phase, the two finest 
grids result in the same Nusselt numbers (Fig. 25(b)). The coarse grid exhibits smaller amplitudes in 𝑁𝑢, yet yields the same bubble 
detachment frequency as the other two finer grids. For further comparison, we calculate the time-averaged Nusselt numbers 𝑁𝑢, 
which are summarized in Table 3, along with the relative deviation from 𝑁𝑢 to 𝑁𝑢𝐾 . All grid resolutions show a discrepancy from 
𝑁𝑢𝐾 of at least 21% (Table 3).
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Fig. 26. Two-dimensional film boiling. Effect of resolution on the startup phase. Iso-contour of 𝜙 = 0.5 for all grids at three different times.

Fig. 27. (a) Schematics of the computational setup including dimensions and boundary conditions. The suitability of grid spacing Δ𝑥 = 11.6𝜇𝑚 and 
Δ𝑥 = 7𝜇𝑚 are confirmed by comparing with the zero gravity solutions of: (b) the bubble size in Eq. (72) and (c) temperature in Eq. (74).

Fig. 26 depicts the differences in results during the start-up phase at three different time steps. For the coarser grids, the departure 
of the first bubble is delayed (Fig. 26). The shapes of the detached bubbles are similar for the two finer grids, whereas that of the 
coarsest grid is significantly different. The difference in the bubble departure time, for the two finer grids, reduces in the remainder 
of the simulations, as indicated by the evolution of the Nusselt number in Fig. 25(b).

4.7.  Bubble growth subjected to gravity

As a final benchmark, we consider a three-dimensional growing bubble in a superheated liquid, subjected to gravity. This situation 
was experimentally investigated for various fluids at different degrees of superheat in [99]. We compare our numerical predictions 
to the experimental results obtained for Ethanol (see Table 2) at 3.1 K superheat. Several numerical studies [14,49,61,73,100] have 
used the same experimental case to validate their implementations. This flow is symmetric about the vertical axis, allowing for a 
reduced computational cost by simulating a quarter of the domain. This situation is presented in Fig. 27(a), with the placement of 
the initial bubble of radius 𝑅0 on one edge of the computational domain. Furthermore, the symmetry boundary condition is applied 
on the domain faces intersecting the bubble, while the free-slip boundary condition is imposed on the opposite faces. The coordinate 
system moves together with the rising bubble, allowing for the use of a significantly smaller domain (see [73]). This is enforced by 
dynamically adjusting the inflow velocity to keep the rising bubble at a constant location within the moving coordinate system. The 
set of boundary conditions is completed by using an outflow boundary at the bottom of the domain. For the validation, we adopt two 
uniform grids, with the grid spacings Δ𝑥 = 11.6 µm and Δ𝑥 = 7 µm. For all simulations, we use an initial bubble radius of 𝑅0 = 210
µm, which is a common choice [14,49,61,73,100].

We first perform simulations with zero gravity to confirm the grid’s capability to resolve the temperature field. The procedure 
described in Section 4.5 gives a bubble growth rate and temperature distribution with growth constant 𝛽 ≈ 5.4969. As seen in Fig. 27(b) 
and (c), similar results are obtained for both of the grid spacings, when gravity is neglected. The simulation shows good agreement 
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Fig. 28. Analysis of current implementation regarding (a) the scaling and (b) the profiler analysis.

Fig. 29. Bubble growth subjected to gravity. (a) Comparison of the time evolution of the bubble size against the experiments in [99] and the 
numerical studies of [49]. (b) Visualization of the temperature distribution at four selected time steps for both grid resolutions considered.
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Fig. 30. (a) Close up view of the bubble shows the mass transfer density, velocity field, and temperature distribution for a selected time. (b) The 
bubble rise velocity is compared to the results by [14,49].

with the analytical solution for the bubble size, although the growth rate is slightly under-predicted (Fig. 27(b)). This is also reflected 
in the temperature profiles in Fig. 27(c), where the finer grid spacing shows minor improvements.

Before simulating the bubble growth subjected to gravity, the current implementation is evaluated regarding its performance in a 
high-performance computing (HPC) environment. The implementation uses Fortran95 and is based on the open-source codes FluTAS 
[60] and CaNS [58]. For the scaling test, the code was executed on the CPU nodes of the HoreKa cluster at the Karlsruhe Institute 
of Technology (KIT) using the Intel Xeon Platinum 8368 hardware. Considering the grid with Δ𝑥 = 7 µm and four different numbers 
of cores ranging from 102 to 103 CPUs, the average time required for advancing the simulation by one time step was measured. The 
resulting normalized speed-up is visualized in Fig. 28(a). Here, good scaling properties were observed for the considered range of 
CPU cores. In Fig. 28(b), the proportion of time spent to complete each sub-task is visualized when using 103 CPUs.

In the next step we add gravity, ‖𝑔‖ = 9.81 m s−2. Again, we use the analytical zero-gravity solution (Eqs. (72) and (74)) as an 
initial condition. This choice is justified by the assumption that buoyancy effects are negligible for very small bubbles, during the short 
startup phase. Using Eq. (72) and 𝑅0 = 210 µm, this translates, again, into a physical time 𝑡0 = 5.17 ms at the start of the simulation. 
For both grids, the simulation proceeds until the physical time 𝑡 = 90 ms is reached.

To evaluate the results, we begin by comparing the simulated bubble size to the literature data. For that purpose, an equivalent 
bubble radius 𝑅𝑒𝑞 is utilized [99]. The equivalent radius is calculated as

𝑅𝑒𝑞 =
1
4
(𝐷12 +𝐷3), (85)

where 𝐷12 is the bubble diameter in the 𝑥1𝑥2-plane and 𝐷3 is the one measured in the 𝑥3 direction. Fig. 29(a) shows the evolution of 
𝑅𝑒𝑞 over time, together with the experimental data by [99] for 𝑇∞ − 𝑇𝑠𝑎𝑡 = 2.8 K, 3.1 K, and 3.2 K. Additionally, the numerical results 
from [49] are included for reference, using various grid spacings. As in the zero-gravity simulations, there is a weak dependence 
on grid spacing. For both simulations, the equivalent bubble radius is within the range of data points observed in the experiments, 
although more of the measurement points are scattered below the values predicted by the simulations. In comparison, our results are 
higher than those of [49] for all resolutions. However, our results align with [49] for the smallest grid spacing.

Fig. 29(b) displays the temperature distribution in the plane cutting through the bubble at four times for both considered grid 
resolutions (left and right half of the figure). We correct the data by accounting for the moving coordinate system such that all bubbles 
are displayed in the laboratory coordinate system. Fig. 29(b) shows how the bubble grows and rises, where green represents areas in 
which the fluid is at saturation temperature and white areas represent those at which 𝑇∞ − 𝑇𝑠𝑎𝑡 = 3.1 K. The temperature distribution 
is characterized by a thin thermal layer at the top of the bubble and cooled liquid trailing behind the rising bubble. A clear separation 
between liquid and gas is observed, as indicated by the saturation temperature. Both grids result in similar temperature distributions 
and interface locations. For the fine grid (right), the wake of cooled liquid trailing behind the bubble seems to be less pronounced 
compared to the coarse grid (left).

To gain further insights, the bubble is examined in more detail at 𝑡 = 68.8 ms. A close-up view is presented in Fig. 30(a), where 
the temperature distribution and the velocity vector field are shown on the left half. On the right, we display the distribution of the 
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mass transfer density , along with a magnified view of a section in the top part of the bubble. As expected, the mass transfer is 
concentrated on the top of the bubble. At the bottom, almost no mass transfer occurs, due to the cooled liquid wake.

Another quantity of interest is the bubble rise velocity, which is commonly reported in the literature. The velocities are compared 
to those by [14] and [49] in Fig. 30(b). The simulations using grid spacing Δ𝑥 = 7 µm and 11.6 µm, yield similar rise velocities. 
Between the two grids, a slight difference of 0.6% is observed, where the velocities reach their peak. Compared to [14] and [49], our 
results exhibit a considerably slower bubble acceleration. However, the peak values are in agreement with [14], although they occur 
at different times. The velocity predicted in [49] shows a higher acceleration and a larger maximum. A possible explanation for the 
differences might be that the domain size and boundary conditions differ throughout the literature (e.g. smaller domain in [14] or 
different boundary conditions in [73]). A larger database of simulation results is required to claim evidence for this explanation. The 
experiment in [99] does not report this quantity.

Generally, quasi grid-independent results are achieved using Δ𝑥 = 11.6 µm, which is comparable to numerical studies using a 
sharp-interface approach [49,61,100]. The study by Giustini and Issa [73] used Δ𝑥 = 3.12 µm, which was arguably not necessary for 
the present study.

5.  Conclusion

In this study, we present a framework to simulate boiling flows using the Accurate Conservative Diffuse Interface method for tracking 
the liquid-gas interface. The main objectives of our implementation are efficiency and consistency. We successfully develop and 
implement models that are computationally efficient, while consistently formulating the set of equations for the calculation of boiling 
flows.

To achieve consistency, we derive the governing equations of the mixture and identify the contributions of the regularization 
terms. As an outcome, we recognize the existence of additional contributions in the momentum balance equation that are often 
neglected. We consider them through an alternative formulation based on developments intended for Cahn-Hillard models. With this 
approach, we introduce a novel coupling of the momentum equation with the regularization terms, which significantly improves the 
accuracy of the results. Keeping all regularization terms is crucial for an accurate prediction of the interfacial pressure jump, especially 
for unsteady phase change. The use of this modified set of equations results in significant improvements, also when simulating bubble 
dynamics in the absence of phase change. From a more fundamental viewpoint, we demonstrate that the regularization terms can 
account for velocity differences among the two phases within the diffuse interface, and that neglecting these has a negative impact 
on the pressure jump at the interface. Thus, in contrast to previously proposed ACDI mixture equations, we conclude that including 
all regularization terms is mandatory to obtain accurate results in boiling scenarios.

To the best of our knowledge, our work is the first to implement this set of equations in the context of boiling flows in order to 
resolve complex, three-dimensional problems. These equations, based on the Accurate Conservative Diffuse Interface formulation, 
allows us to use central differencing schemes, which improves the scalability and efficiency.

Furthermore, we also enhance efficiency by utilizing a FFT-based solver for the pressure Poisson equation. We implement and 
test our alternative FFT-MPDJ scheme, which addresses the well-known shortcomings of existing solvers. Specifically, all simulation 
results demonstrate that our methodology: (i) avoids spurious pressure oscillations at the interface; (ii) provides a high accuracy in 
calculating the interfacial pressure jumps; and (iii) attains a faster adaptation to the flow in the startup phase.

We present a simple and efficient kinetic phase change model for the ACDI method. For this phase change model, we analyze the 
time-step constraint and introduce a dynamic adjustment of the regularization speed. The phase change model is tested against several 
boiling scenarios with a variety of fluid properties. We find the model to be free of problem-dependent parameters, and capable of 
converging to the analytical solution across all benchmarks. However, compared to Sharp Interface methods, the model required a 
slightly higher resolution to achieve convergence. Overall, we conclude that the phase change model is efficient, versatile, and, when 
combined with the dynamic regularization speed, robust.

Modelling surface tension is often connected with challenges for boiling flow simulations, mainly because of spurious currents 
around the phase interface. To address this issue, we investigate the performance of different energy-based and CSF models, using 
a bubble growth benchmark (Section 4.5). Although energy-based surface tension formulations are known to have advantages for 
problems when excluding phase change, we find them to cause increased spurious currents for boiling flows. It is concluded that a 
sharpened CSF model returns the lowest intensity of spurious currents.

Finally, we successfully simulate the dynamics of a single bubble subjected to phase change and gravity (Section 4.7). We validate 
that our framework is capable of accurately calculating real world boiling flows. We find good agreement between our results and 
experimental data for the bubble growth rate. The results are also consistent with other numerical studies using Sharp Interface 
methods at a comparable grid resolution.

For further investigation of boiling heat-transfer phenomena, accurate interface-resolved simulations play an important role. The 
results obtained in this study show that our developed framework is a suitable tool for that purpose. As such, we intend to apply the 
presented methodology to large-scale boiling flows for which the above-demonstrated properties are indispensable. In this context, 
additional extensions to this framework are planned to enable the numerical investigation of conjugate heat transfer phenomena.
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