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ARTICLE INFO ABSTRACT

Keywords: Interface-resolved simulations are essential for predicting and understanding boiling heat trans-
Phase field fer phenomena. Such simulations generally come at a high computational cost, which continues
Boiling

to motivate the development of efficient frameworks. In recent years, conservative second-order
phase field methods have gained popularity due to their efficient representation of phase in-
terfaces. However, their potential for simulating complex boiling phenomena has not yet been
explored. To address this gap, we develop a consistent and highly efficient framework suitable
for simulating large-scale boiling flows. We derive a set of mixture equations to describe the
two-phase flow. The mixture equations are coupled with the accurate conservative diffuse inter-
face method [1] to capture the interface. We present additional terms in the momentum balance
equation and demonstrate that the proposed momentum balance modifications are mandatory for
accurately capturing phase-change-induced pressure jumps. To solve the set of equations, an al-
ternative Fast Fourier Transform (FFT)-based pressure solution scheme is proposed. Additionally,
a modified kinetic phase change model is utilized that does not involve calculating temperature
gradients and avoids problem-dependent parameters. The framework is tested against a variety
of benchmark simulations, both with and without phase change. Moreover, we achieve improved
accuracy when simulating bubble dynamics without phase change at high density ratios. We
show that the proposed FFT-based pressure solution scheme exhibits superior performance in cal-
culating interfacial pressure jumps compared with a commonly used FFT solver. Regardless of
phase change, more accurate startup behaviour is observed. In the presence of phase change, we
are successful in removing interfacial pressure oscillations. Across all phase-change benchmark
simulations, the new phase change model consistently provides reliable results. Finally, we suc-
cessfully simulate the dynamics of bubbles in superheated liquid subjected to gravity and validate
the results with experimental data.

Conservative diffuse interface
Phase change
FIuTAS

1. Introduction

Boiling flows enable highly efficient heat transfer, which is of ever-growing interest to meet the cooling requirements of numerous
high-performance applications (e.g. computer electronics, vehicle electronics, fusion reactor design) [2]. To predict and improve
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$\alpha _i$


$\rho _i$


$\tilde {\rho }_i$


$\rho $


\begin {equation}\label {eqs-dens-def} \tilde {\rho }_i = \alpha _i \rho _i \quad \text {and} \quad \rho = \sum \tilde {\rho }_i,\end {equation}


$\sum \alpha _i = 1$


$\nabla \cdot \vec {u}_i = 0$


$\vec {u}$


\begin {equation}\label {eqs-vol-avg-vel} \vec {u} = \sum _i \alpha _i\vec {u}_i.\end {equation}


$\vec {u}$


$\vec {u}_1 \ne \vec {u}_2$


$\Delta \vec {u} = \vec {u}_1 - \vec {u}_2$


\begin {equation}\label {eqs-vol-mix-rel} \vec {u}_1 = \vec {u} + \alpha _2\Delta \vec {u} \quad \text {and} \quad \vec {u}_2 = \vec {u} - \alpha _1\Delta \vec {u}.\end {equation}


\begin {equation}\label {eqs-gov1} \frac {\partial \tilde {\rho }_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i \vec {u}_i) = \mathcal {M}_i,\end {equation}


$\rho _i=const.$


$\mathcal {M}_i$


$i$


$\sum _i\mathcal {M}_i = 0$


$\phi $


$\alpha _1$


$\alpha _1 = \phi $


$\alpha _2 = (1-\phi )$


$\rho _i$


$i=1$


$\phi $


\begin {equation}\label {eqs-phasefield-phasic} \frac {\partial \phi }{\partial t} + \nabla \cdot (\phi \vec {u}_1) = \frac {\mathcal {M}_1}{\rho _1}.\end {equation}


$\mathcal {M}_1$


$\mathcal {M}_1 = \mathcal {M}$


$\mathcal {M}_2 = -\mathcal {M}$


$\phi $


\begin {equation}\label {eqs-phasefield-mix} \frac {\partial \phi }{\partial t} + \nabla \cdot (\phi \vec {u}) = \frac {\mathcal {M}}{\rho _1} - \nabla \cdot (\phi (1-\phi )\Delta \vec {u}) = \frac {\mathcal {M}}{\rho _1} + \nabla \cdot \vec {\mathcal {R}}.\end {equation}


$\vec {\mathcal {R}} = -\phi (1-\phi )\Delta \vec {u}$


$\Delta \vec {u}$


$\Delta \vec {u}$


$\vec {\mathcal {R}}$


$\alpha _i$


$\vec {u}$


\begin {equation}\label {eqs-vol-div} \sum _i \bigg [\frac {\partial \alpha _i}{\partial t} + \nabla \cdot (\alpha _i \vec {u}_i)\bigg ] = \nabla \cdot \vec {u} = \mathcal {M}\bigg (\frac {1}{\rho _1}-\frac {1}{\rho _2}\bigg ).\end {equation}


\begin {equation}\label {eqs-mass-cons} \sum _i \bigg [\frac {\partial \tilde {\rho }_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i \vec {u}_i)\bigg ] = \frac {\partial \rho }{\partial t} + \nabla \cdot (\rho \vec {u}) = (\rho _1-\rho _2)\nabla \cdot \vec {\mathcal {R}} = \nabla \cdot \vec {\mathcal {F}}.\end {equation}


$(\rho _1-\rho _2)\vec {\mathcal {R}}$


$\vec {\mathcal {F}}$


$\mathcal {M}$


$\vec {\mathcal {R}}$


\begin {equation}\label {eqs-acdi} \vec {\mathcal {R}} = \Gamma \bigg [\epsilon \nabla \phi - \frac {1}{4}\bigg (1-\text {tanh}^2\bigg (\frac {\Psi }{2\epsilon }\bigg )\bigg )\vec {n} \bigg ].\end {equation}


$\vec {\mathcal {R}}$


$\mathcal {M}$


$\vec {\mathcal {R}}$


$\Gamma $


$\epsilon $


$\vec {n}$


$\Psi $


$\Gamma $


$u_{\max }$


$\Gamma = \Gamma ^\ast \lvert u_{\max } \rvert $


$\Gamma ^\ast $


$\epsilon $


$\Delta x$


$\epsilon ^\ast $


$\epsilon = \epsilon ^\ast \Delta x$


$\Psi $


\begin {equation}\label {eqs-ls} \Psi =\epsilon \text {ln}\bigg (\frac {\phi + \varepsilon }{1-\phi + \varepsilon }\bigg ).\end {equation}


$\vec {n} = \nabla \Psi / \lvert \nabla \Psi \rvert $


$\varepsilon $


$\varepsilon $


$\Psi $


$10^{-16}$


$i$


\begin {equation}\label {eqs-gov2} \frac {\partial \alpha _i \rho _i \vec {u}_i}{\partial t} +\nabla \cdot ( \alpha _i \rho _i \vec {u}_i \otimes \vec {u}_i) = -\alpha _i\nabla p + \nabla \cdot \tau _i + \alpha _i \rho _i \vec {g} + \vec {I}_i + \vec {E}_i,\end {equation}


$\tau _i$


$\tau _i = \alpha _i\mu _i (\nabla \vec {u}_i+\nabla \vec {u}_i^T)$


$\mu _i$


$\vec {g}$


$\vec {I_i}$


$\sum _i\vec {I_i} = \vec {0}$


$\vec {E}_i$


$\vec {E}_i$


$p$


$i$
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$\vec {u}$


$\vec {\mathcal {R}}$


$\vec {\mathcal {F}}$


\begin {equation}\label {eqs-mom-mix-1} \begin {split} \sum _i\bigg [\frac {\partial \alpha _i \rho _i \vec {u}_i}{\partial t} +\nabla \cdot ( \alpha _i \rho _i \vec {u}_i \otimes \vec {u}_i)\bigg ] =& \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \big (\rho \vec {u}\otimes \vec {u}\big )-\nabla \cdot \big (\vec {\mathcal {F}}\otimes \vec {u}\big )\\ & - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big ) + \nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg )\\ =& \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \bigg (\big (\rho \vec {u}-\vec {\mathcal {F}}\big )\otimes \vec {u}\bigg ) + \vec {\mathcal {C}}. \end {split}\end {equation}


$\vec {\mathcal {C}}$


$\vec {\mathcal {C}}$


$\vec {\mathcal {C}}$


$\vec {\mathcal {R}}$


$\partial \vec {\mathcal {F}}/\partial t + \nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )$


$\partial \vec {\mathcal {F}}/\partial t + \nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )$


$\vec {\mathcal {C}}$


$\vec {v} = \sum _i(\tilde {\rho }_i \vec {u}_i)\rho ^{-1}$


$\rho \vec {v} = \rho \vec {u} - \vec {\mathcal {F}}$


\begin {align}\label {eqs-mom-mix-2} \begin {split} \frac {\partial \rho \vec {u}}{\partial t} &+ \nabla \cdot \big (\rho \vec {u}\otimes \vec {u}\big )-\nabla \cdot \big (\vec {\mathcal {F}}\otimes \vec {u}\big ) - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big ) +\nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ) \\ &= \frac {\partial \rho \vec {v}}{\partial t} + \nabla \cdot \big (\rho \vec {v}\otimes \vec {v}\big )+\nabla \cdot \bigg (\bigg ( \frac {\rho _1\rho _2}{\rho \phi (1-\phi )}\bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ). \end {split}\end {align}


$\vec {v}$


$\mathcal {M} = 0$


$\nabla \cdot \vec {v} = \nabla \cdot \vec {u} - \nabla \cdot (\rho ^{-1}\vec {\mathcal {F}})$


$\vec {u}$


$\vec {v}$


$\vec {v}$


$\vec {u}$


$\sum _i(-\alpha _i\nabla p+\alpha _i \rho _i \vec {g} + \vec {I}_i) = -\nabla p+\rho \vec {g}$


$\sum _i(\tau _i)$


\begin {equation}\label {eqs-mom-visc} \sum _i(\tau _i) \approx \tau = \mu (\nabla \vec {u}+\nabla \vec {u}^T - 2\nabla \cdot \vec {u} \mathbb {I} ).\end {equation}


$\mathbb {I}$


$\mu = \sum _i \alpha _i \mu _i$


$2\nabla \cdot \vec {u} \mathbb {I}$


$\sum _i \vec {E}_i$


$\sum _i \vec {E}_i$


$\vec {f}_{ST}$


$\vec {f}_{ST}$


\begin {equation}\label {eqs-mom-final} \frac {\partial \rho \vec {u}}{\partial t} + \nabla \cdot \bigg (\big (\rho \vec {u}-\vec {\mathcal {F}}\big )\otimes \vec {u}\bigg ) + \vec {\mathcal {C}} = -\nabla p + \nabla \cdot \tau + \rho \vec {g} + \vec {f}_{ST},\end {equation}


\begin {equation}\label {eqs-mom-final-c} \vec {\mathcal {C}} = - \frac {\partial \vec {\mathcal {F}}}{\partial t} -\nabla \cdot \big (\vec {u}\otimes \vec {\mathcal {F}}\big )+\nabla \cdot \bigg (\bigg ( \frac {\rho _1}{\phi }+\frac {\rho _2}{1-\phi } \bigg )\vec {\mathcal {R}} \otimes \vec {\mathcal {R}}\bigg ).\end {equation}


$\tilde {\rho }_i h_i$


$h_i$


$i$


$h_i = c_{p,i}T_{abs}+h_{0,i}$


$T_{abs}$


$c_{p,i}$


$h_{0,i}$


$0$


$c_{p,i}$


$\tilde {\rho }_i h_i$


\begin {equation}\label {eqs-gov3} \frac {\partial \tilde {\rho }_i h_i}{\partial t} + \nabla \cdot (\tilde {\rho }_i h_i \vec {u}_i) = \nabla \cdot (\alpha _i\lambda _i \nabla T_{abs}).\end {equation}


$i$


\begin {equation}\label {eqs-ent-mix-1} \frac {\partial \rho h}{\partial t} + \nabla \cdot (\rho h \vec {u}) = \nabla \cdot (\lambda \nabla T_{abs}) + \nabla \cdot \big [(\rho _1 h_1 - \rho _2 h_2)\vec {\mathcal {R}}\big ].\end {equation}


$\rho h = \sum _i \tilde {\rho }_i h_i$


$\lambda = \sum _i \alpha _i \lambda _i$


$\lambda _i$


$T=T_{abs}-T_{sat}$


$T_{sat}$


$L_{sat} = h_1(T_{sat})-h_2(T_{sat})$


\begin {equation}\label {eqs-ent-mix-2} \frac {\partial \rho c_p T}{\partial t} + \nabla \cdot (\rho c_p T \vec {u}) = \nabla \cdot (\lambda \nabla T) - \mathcal {M} L_{sat} + (\rho _1 c_{p,1} - \rho _2 c_{p,2})\nabla \cdot (T\vec {\mathcal {R}}).\end {equation}


$\rho c_p = \sum _i \tilde {\rho }_i c_{p,i}$


\begin {equation}\label {eqs-ent-mix-3} \rho c_p \bigg (\frac {\partial T}{\partial t} + \vec {u}\cdot \nabla T\bigg ) = \nabla \cdot (\lambda \nabla T) - L\mathcal {M} + \Delta \rho c_p \vec {\mathcal {R}}\cdot \nabla T.\end {equation}


$L= f(T) = L_{sat} + (c_{p,1} - c_{p,2}) T$


$\Delta \rho c_p = \rho _1c_{p,1} - \rho _2c_{p,2}$


$\vec {\mathcal {R}}$


$\vec {\mathcal {R}}$


$\rho c_p$


\begin {equation}\label {eqs-ent-final} \rho c_p \bigg (\frac {\partial T}{\partial t} + \vec {u}\cdot \nabla T\bigg ) = \nabla \cdot (\lambda \nabla T) + \nabla \cdot \vec {j} - L\mathcal {M} + \Delta \rho c_p \vec {\mathcal {R}}\cdot \nabla T,\end {equation}


\begin {equation}\label {eqs-anti-trapping} \vec {j} = -\vec {n}\mathcal {M}L\epsilon \bigg (\frac {\lambda _1}{\lambda _2}-1\bigg ).\end {equation}


$\vec {j}$


$\vec {j}$


$\phi $
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$p$


$T$


$\Delta x^3$


$\phi $
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$5{\text {th}}$
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$\phi $


$\vec {u}$


$p$


$T$


$n$


$n+1$


$\phi $


$T$


$f_{t,1}$


$f_{t,2}$


\begin {equation}\label {eqs-adam-coeff1} f_{t,1} = 1+\frac {\Delta t^{n+1}}{2\Delta t^{n}} \quad \text {and} \quad f_{t,2} = -\frac {\Delta t^{n+1}}{2\Delta t^{n}}.\end {equation}


$\mathcal {B}^{n}_c$


$c$


$n$


$(\partial c / \partial t )^n= \mathcal {B}^{n}_c$


$\phi $


$T$


$\mathcal {B}_\phi ^n$


$\mathcal {B}_{T}^n$


$\mathcal {M}$


$\mathcal {M}$


$\mathcal {M}^{n+1}$


$\phi ^{n+1}$


$T^{n+1}$


\begin {equation}\label {eqs-adam-final} \phi ^{n+1} = \phi ^\ast + \Delta t^{n+1} \frac {\mathcal {M}^{n+1}}{\rho _1},\quad \text {and}\quad T^{n+1} = T^\ast + \Delta T_{PC}^{n+1}.\end {equation}


$\Delta T_{PC}^{n+1}$


$(\rho \vec {v} )^{*}$


\begin {equation}\label {eqs-adam3} (\rho \vec {v} )^\ast = (\rho \vec {v} )^n + \Delta t^{n+1}\bigg [\big (f_{t,1} \vec {\mathcal {B}}_{\rho \vec {v}}^n+ f_{t,2}\vec {\mathcal {B}}_{\rho \vec {v}}^{n-1}\big ) + \rho ^{n+1} \vec {g} + \vec {f}_{ST}^{n+1} -\nabla p^n\bigg ].\end {equation}


$\vec {f}_{ST}$


$\vec {g}$


$n+1$


$p^{n+1} = p^{n} + \psi ^{n+1}$


$p^n$


$(\rho \vec {v} )^n = \rho ^n \vec {u}^n - \vec {\mathcal {F}}^n$


$\vec {\mathcal {B}}_{\rho \vec {v}}^{n}$


\begin {equation}\label {eqs-adam-coeff-4} \vec {\mathcal {B}}_{\rho \vec {v}}^{n} = - \nabla \cdot \big (\rho ^{n}\vec {v}^{n}\otimes \vec {v}^{n}\big )-\nabla \cdot \bigg (\bigg ( \frac {\rho _1\rho _2}{\rho ^{n}\phi ^{n}(1-\phi ^{n})}\bigg )\vec {\mathcal {R}}^{n} \otimes \vec {\mathcal {R}}^{n}\bigg ) + \nabla \cdot \tau ^n.\end {equation}


$\vec {u}^{n+1}$


$\psi ^{n+1} = p^{n+1} - p^{n}$


$(\rho \vec {v} )^\ast $


$\psi ^{n+1}$


$\vec {u}^{n+1}$


\begin {equation}\label {eqs-pres-direct} \nabla \cdot \Big (\frac {1}{\rho ^{n+1}} \nabla \psi ^{n+1}\Big ) = \frac {1}{\Delta t^{n+1}}\bigg [\nabla \cdot \vec {v}^{\ast }-\mathcal {M}^{n+1}\bigg (\frac {1}{\rho _1}-\frac {1}{\rho _2} \bigg )+\nabla \cdot \bigg (\frac {\vec {\mathcal {F}}^{n+1}}{\rho ^{n+1}}\bigg )\bigg ].\end {equation}


$(\rho \vec {v})^{\ast } = \rho ^{n+1}\vec {v}^{\ast }$


\begin {equation}\label {eqs-pres-direct-update} \vec {u}^{n+1} =\vec {v}^{\ast } - \frac {\Delta t^{n+1}}{\rho ^{n+1}}\nabla \psi ^{n+1} + \frac {\vec {\mathcal {F}}^{n+1}}{\rho ^{n+1}} \quad \text {,} \quad p^{n+1} = p^{n} + \psi ^{n+1}.\end {equation}


$\nabla \cdot ({\rho ^{n+1}}^{-1} \nabla \psi ^{n+1}\big )$


\begin {equation}\label {eqs-splitting-approx} \frac {1}{\rho ^{n+1}} \nabla \psi ^{n+1} = \frac {1}{\rho _0} \nabla \psi ^{n+1} + \bigg (\frac {1}{\rho ^{n+1}}-\frac {1}{\rho _0}\bigg ) \nabla \psi ^{n+1} \approx \frac {1}{\rho _0} \nabla \psi ^{n+1} + \bigg (\frac {1}{\rho ^{n+1}}-\frac {1}{\rho _0}\bigg ) f_{ex} \nabla \psi ^{n},\end {equation}


$\rho _0 = \text {min}(\rho _1,\rho _2) = constant$


$f_{ex} = \Delta t^{n+1}/\Delta t^{n}$


$\psi ^{n+1}$


$f_{ex}\psi ^{n}$


$\vec {v}^{\ast \ast }$


$(\rho \vec {v})^\ast $


$(\rho \vec {v})^{n+1}$


$\vec {u}^{n+1}$


$\mathcal {M}^{n+1}({\rho _1}^{-1}-{\rho _2}^{-1})$


$t^{n+1}$


$\widetilde {\text { }\cdot \text { }}$


$\widetilde {\rho \vec {v}}$


$(\rho \vec {v})^{n+1}$


$\widehat {\psi }$


$\psi ^{n+1}$


\begin {equation}\label {eqs-pres-prop-stage2-1} \nabla ^2\widehat {\psi } = \frac {1}{\Delta t^{n+1}}\bigg [\nabla \cdot (\rho \vec {v})^\ast -\nabla \cdot \widetilde {\rho \vec {v}}\bigg ].\end {equation}


$\widehat {\psi }$


$\widehat {\psi }$


$\psi ^{n}$


$p^{n+1}$


$\vec {u}^{n+1}$


$\vec {v}^{\ast \ast \ast }$


$\widehat {\psi }$


$c$


$\widehat {\psi }$


$\widetilde {\psi }$


\begin {equation}\label {eqs-pres-limiter} c = \text {min}\Bigg (1, \frac {\lvert \text {min}\big (\widetilde {\psi }\big )\rvert }{\lvert \text {min}\big (\widehat {\psi }\big )\rvert } ,\frac {\lvert \text {max}\big (\widetilde {\psi }\big )\rvert }{\lvert \text {max}\big (\widehat {\psi }\big )\rvert }\Bigg ).\end {equation}
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$\widehat {\psi }$


$\widetilde {\psi }$


$\widetilde {\rho \vec {v}}$


$\widehat {\psi }$


$\widetilde {\psi }$


$\phi $


$T$


$\Delta T_{PC}^{n+1} = T^{n+1} - T^\ast $


$T^{n+1} = 0$


\begin {equation}\label {eqs-deltaT-old} \Delta T_{PC}^{n+1} = (T_{sat} - T^\ast _{abs}) = - T^\ast .\end {equation}


$\Delta T_{PC}^{n+1}$


$\mathcal {M}$


\begin {equation}\label {eqs-update-M} \mathcal {M}^{n+1} = -\frac {(\rho c_p)^\ast \Delta T_{PC}^{n+1}}{L(T^\ast ) \Delta t^{n+1}},\end {equation}


$\Delta T_{PC}^{n+1}$


$\Delta T_{PC}^{n+1}$


$(\rho c_p)^\ast $


$(\rho c_p)^\ast $


$\mathcal {M}^{n+1}$


\begin {equation}\label {eqs-deltaT-new} \Delta T_{PC}^{n+1} = - T^\ast \theta _t \theta _{pc} \theta _{\rho c_p}^\ast \theta _\phi ^\ast .\end {equation}


$\Delta T_{PC}^{n+1}$


$T^\ast $


$T^\ast $


$\theta $


$\theta _\phi ^\ast =\theta _\phi (\phi ^\ast )$


$\theta _{\rho c_p}^\ast =\theta _{\rho c_p}(\phi ^\ast )$


$\theta _\phi $


$\theta _\phi $


\begin {equation}\label {eqs-interface-indicator} \theta _\phi = \frac {1}{2} \bigg (1+\cos {\big (2\pi \lvert \phi -0.5\rvert \big )}\bigg ).\end {equation}


$\mathcal {M}$


$\theta _\phi $


$\phi $


$x/\epsilon $


$\Delta x$


$\theta _\phi $


$\theta _\phi (\phi =0)=\theta _\phi (\phi =1)=0$


$\theta _\phi (\phi =0.5)=1$


$\phi =0.5$


$\theta _t$


$\Delta T_{PC}^{n+1}$


$t_{pc}$


$\Delta t^{n+1}$


\begin {equation}\label {eqs-pc-timescale} t_{pc} = \frac {\Delta x^2 }{a_2}, \quad \text {and} \quad \theta _t = \frac {\Delta t^{n+1}}{t_{pc}},\end {equation}


$a_i=\lambda _i/(\rho _i c_{p,i})$


$\rho c_p$


$\theta _{\rho c_p}$


\begin {equation}\label {eqs-pc-weighting} \theta _{\rho c_p} = \frac {1}{\frac {\rho _1 c_{p,1}}{\rho _2 c_{p,2}}\alpha _1 + \alpha _2}.\end {equation}


$\theta _{\rho c_p}$


$\Delta T_{PC}^{n+1}$


$\rho c_p$


$\mathcal {M}$


$\theta _{pc}$


$\theta _{pc}=0.65$


$\theta _t \theta _{pc} \theta _{\rho c_p}^\ast \theta _\phi ^\ast <1$


$\Delta t_{pc}$


\begin {equation}\label {eqs-pc-timeconstraint} \Delta t_{pc} = \frac {1}{\theta _{pc}} \frac {\lambda _1}{\lambda _2} \frac {\Delta x^2 }{a_1}.\end {equation}


$\Delta x^2 a_1^{-1}$


$\Delta t_{pc}$


$\Delta t^{n+1}$


$\lambda _1\lambda _2^{-1}$


$\Gamma ^\ast $


$\phi $


$\vec {u}$


$\mathcal {M}$


$\phi $


$\mathcal {M}>0$


$\vec {\mathcal {R}}$


$\epsilon ^\ast = 1$


$\Gamma ^\ast = 1$


$\epsilon ^\ast $


\begin {equation}\label {eqs-acdi-timeconstraint} \Delta t_{\phi } = \min _i\left [\dfrac {1}{\text {max}\bigg \{\big (\frac {6\Gamma \epsilon }{\Delta x^2}\big )-\big (\frac {\partial u_i}{\partial x_i}\big ),0\bigg \}}\right ]\end {equation}


$\Delta t_{\phi }$


$\Delta t_{\phi }$


$\Delta t_{pc}<\Delta t_{\phi }$


$\Gamma $


$\Gamma ^\ast $


$\Delta t^{n+1} = C_{CFL}\Delta t_{\phi }$


$\Delta t_{\vec {u}}$


$\Delta t_\mu $


$\Delta t_\lambda $


$\Delta t_\sigma $


$\Delta t_{\vec {g}}$


$\kappa $


$\kappa = \nabla \cdot \vec {n}$


\begin {equation}\label {eqs-deltat-comb} \Delta t_{\Sigma } = \frac {2}{\frac {1}{\Delta t_{\vec {u}}} + \frac {1}{\Delta t_{\mu }} + \sqrt {\bigg (\frac {1}{\Delta t_{\vec {u}}} + \frac {1}{\Delta t_{\mu }}\bigg )^2 + \frac {4}{\Delta t_{\vec {g}}^{2}} + \frac {4}{\Delta t_{\sigma }^{2}} }}.\end {equation}


$\Gamma ^\ast _{\min }$


$\Gamma ^\ast $


\begin {equation}\label {eqs-acdi-timeconstraint-min} \Delta t_{\phi ,min} = \min _i\left [\dfrac {1}{\text {max}\bigg \{\bigg (\dfrac {6\Gamma ^\ast _{min} \lvert u_{max} \rvert \epsilon }{\Delta x^2}\bigg )-\bigg (\dfrac {\partial u_i}{\partial x_i}\bigg ),0\bigg \}}\right ].\end {equation}


$\Delta t_{\phi ,min} > \min (\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc})$


\begin {equation}\label {eqs-gamma-update} \Gamma ^\ast = \frac {\Delta x^2}{6 \lvert u_{max} \rvert \epsilon }\bigg [\frac {1}{\min (\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc})} + \min _i \bigg (\frac {\partial u_i}{\partial x_i}\bigg )\bigg ].\end {equation}


$\Delta t_{\phi ,min}$


$\Gamma ^\ast = \Gamma ^\ast _{\min }$


$\Delta t^{n+1}$


\begin {equation}\label {eqs-timestep-update} \Delta t^{n+1} = C_{CFL} \min (\Delta t_{\phi ,min},\Delta t_{\Sigma },\Delta t_{\lambda },\Delta t_{pc}),\end {equation}


$C_{CFL}$


$0.4 \leq C_{CFL} \leq 0.5$


$1 \leq \Gamma ^\ast _{\min } \leq 2$
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boiling heat transfer, researchers strive to delve deeper into the underlying physical phenomena through simulations and experiments.
In this context, interface-resolved simulations are a crucial tool [3], as they provide full access to flow quantities and eliminate the
need for potentially hazardous or expensive experiments. However, most interface-resolved simulations for boiling flows come at
high computational costs, due to resolution requirements [4]. Consequently, complex flows become challenging, or even impossible,
to resolve [3], which motivates the development of more efficient frameworks.

A wide range of methods for representing the gas-liquid interface have been applied to boiling flows. These can be categorized
into sharp and diffuse interface methods. Sharp-interface methods, a class of methods in which the phases are fully separated by
an interface, were first introduced in 1998, when Juric and Tryggvason [5] proposed a front-tracking method for simulating film
boiling on a horizontal plate. In the same year, the level-set method was introduced by Son and Dhir [6]. Later, the volume of fluid
(VOF) method for simulating film boiling was also successfully utilized by Welch and Wilson [7]. Computationally, sharp-interface
methods may result in an increased cost due to interface reinitialization (level-set), interface reconstruction (VOF), or interpolation
steps (front-tracking).

In contrast, diffuse interface methods, also known as phase field methods, are characterized by an artificially thickened interface
region in which both phases coexist. In terms of computational costs, diffuse interface methods are advantageous, as they only require
solving a single advection equation [8]. The phase field method was first used for one-dimensional phase change simulations in 2001
[9]. Around this time, Sun and Beckermann [10] derived a diffuse interface model, which was also used to simulate interfacial velocity
and pressure jumps. Later, more complex two-dimensional simulations were conducted for boiling on a heated surface [11] and for
studying bubble growth with contact angle dynamics [12]. For simulating three-dimensional flows, another phase-field-like approach
was proposed in [13,14].

Within the class of diffuse interface methods, most approaches are based on either the Allen-Chan (AC) equation [15] or the Cahn-
Hillard (CH) equation [16]. The CH-based approach, often chosen for its mass-conserving property, has seen several applications
for boiling flows [17-19]. However, the CH approach can be numerically problematic as it entails solving a fourth-order partial
differential equation (PDE). In this regard, the AC-based approach is preferable as it only contains second derivatives in space, but
it does not conserve mass. For that reason, the AC equation was modified [20,21] to derive a mass-conservative second-order phase
field equation, which has been successfully used for simulating a variety of boiling flow problems [22,23].

The conservative second-order phase field equation was further investigated by Mirjalili et al. [24] and Jain et al. [25] for
application to incompressible and compressible flows, respectively. It was proven that specific parameter choices allow for discretizing
spatial derivatives using exclusively central differences. These advancements have significantly improved the simulation of complex
flows, as scalability is enhanced, and resolving turbulence benefits from the non-dissipative nature of the discretization [26]. In
the following, we refer to this subclass as the conservative diffuse interface (CDI) method [24]. Further improvements [1] led to
(i) relaxing the parameter constraints and (ii) enhancing the model’s accuracy, which is referred to as the accurate conservative
diffuse interface (ACDI) method [1]. This method has been used for a variety of phase change phenomena, including icing [27] and
concentration-driven evaporation [28,29]. Few researchers have explored the capabilities of these recent advancements in simulating
boiling phenomena. To the best of our knowledge, only nucleate boiling [30], and bubble growth [31], in two dimensions have been
studied. Therefore, a versatile framework for complex boiling flow using the ACDI equation is needed. Such a framework should
consider the aspects: (i) the coupling with the Navier-Stokes equation, (ii) the modelling of the surface tension, (iii) the efficient
solution of the pressure, and (iv) the use of a suitable phase change model. The reasons these aspects should be discussed are
presented below.

Coupling a diffuse interface method to the Navier-Stokes equation by deriving consistent equations to describe a multiphase
mixture is still an open topic [32]. In the CDI community, a mixture formulation, as in [33], is commonly selected, however, the
rationale behind this choice is rarely discussed. In contrast, many [32,34-40] have discussed mathematical variations for consistently
describing CH-type mixtures. The selection of a mixture formulation is generally based on the model assumptions and numerical
design choices. For example, [38] indicate that some mixture descriptions might not be consistent for arbitrary differential fluxes
(or regularization fluxes in the CDI community). However, a comprehensive discussion in the context of boiling flow simulations is
missing.

Modelling of the surface tension in the momentum balance equation is an essential aspect when deriving mixture equations.
Surface tension models are commonly associated with spurious flow structures [41], which can negatively impact the results or even
lead to instabilities. For CDI equations, two classes of surface tension models are commonly used [42]: (i) the continuum surface force
(CSF) [43], and (ii) the energy-based (or chemical potential-based) model [44,45]. In the absence of phase change, the energy-based
model was found to have better accuracy and convergence properties in terms of spurious currents [42,46,47]. With phase change,
an amplification of spurious currents is generally observed [48]. Researchers [49] have also reported interactions with the thermal
boundary layer and the phase change model. To reduce these currents, several variations of both the CSF model, e.g. [50,51], and
the energy-based model, e.g. [52,53], exist. Regarding boiling flow simulations, a comprehensive suitability assessment for the CDI
approach has not been conducted yet.

As concerns the numerical solution of the CDI mixture equations, the pressure Poisson equation (PPE) is commonly associated
with the highest computational cost [8] at each time step. For high-density ratios, iterative solvers exhibit a reduced convergence
rate [54], which motivates the search for fast alternatives. A common method is to reformulate the PPE with constant coefficients as
in [55-57], allowing for the use of Fast Fourier transformations (FFTs) [58]. In recent years, many studies have successfully utilized
this approach for simulating complex multiphase flows, e.g. [29,59-61]. Despite its advantages, this approach was shown to cause
pressure oscillations at interfaces subjected to pressure jumps due to surface tension [62] or due to the recoil pressure jump in phase
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change scenarios [61]. Although the latter two studies present significant improvements, complex flow cases can still suffer from
oscillations in boiling flow simulations [61].

The selection of the phase change model can also influence the framework’s scalability potential for parallel computing. Generally,
two types of models exist: (i) heat conduction models [49,63,64] that use the interfacial jump conditions to calculate the mass transfer
rate, and (ii) kinetic models [65-67] that use the local superheat. The first model class is computationally more expensive, as it requires
temperature gradient calculations. Nevertheless, heat conduction models are widely used in phase field methods [19,23,31], as they
are free from empirical coefficients [3]. Although traditional kinetic models come with problem-dependent constants [65-67], simpler
formulations exist [68,69] that have not been adopted by the CDI community, thus far.

In this study, we work to address the research gaps identified in the preceding paragraphs. For this purpose, we develop a
sophisticated diffuse interface framework for simulating boiling flows. The methods of this framework were chosen to support large-
scale, massively parallel simulations by design. The aims of this study are (i) to derive a consistent mixture formulation for the ACDI
equation for application to boiling flows, (ii) to develop an improved FFT-based pressure solution scheme, (iii) to find an efficient yet
versatile phase change formulation for the chosen phase field model, and (iv) to incorporate these features in a robust time-stepping
algorithm.

The remainder of this paper is structured as follows. First, we derive a suitable set of mixture equations in Section 2. For the
numerical solution of the equations (Section 3), we present the time-stepping methodology in Section 3.2, which we complete by
developing an FFT pressure solution scheme (Section 3.3). In Section 3.4, we modify an existing kinetic phase change model for
the ACDI application. The corresponding solution algorithm is presented in Section 3.6. After discussing the methods, we present a
comprehensive testing campaign to highlight the achieved improvements (Section 4). Finally, in Section 5, we summarize the main
findings and compare them with the aims of the study.

2. Governing equations

This paper considers an immiscible two-phase flow, where the phases are separated by a diffuse interface, in which both phases
coexist. Using the volume fraction «; and the density of the ith phase p;, we define partial densities 5, and mixture density p as

pi=ap; and p= 2 bi> (€8]

where Y a; = 1. Both phases are assumed incompressible; thus, V - i; = 0. A volume averaging approach is chosen for the mixture
velocity. Consequently, i denotes the velocity resulting from volume averaging

i= Z ;. 2

A favourable feature of volume averaging is that i is divergence-free in the absence of phase change; therefore, it is used by many
authors in the phase field community [36,37,70]. In general, i, # u,, which is why we introduce the differential velocity Au = u; — i,
following the notation of [13]. This allows the phase velocities to be expressed in terms of the mixture quantities

Uy =i+aAu and i, =i — a Al 3)
Using these mixture quantities, we derive the governing equations by (i) starting from the conservation equation for each phase,
(ii) deriving the mixture equation, and (iii) making appropriate modelling choices for the considered problem. In the following
subsections, this procedure is applied to the mass and phase field transport equations, the momentum transport equation, and the
energy transport equation.

2.1. Mass and phase field transport

The mass conservation in each phase reads as

9p;
i V- (piidy) = 4
where p; = const., and the source M; denotes the interfacial mass transfer density of the ith phase with ), M; = 0.

We introduce the phase field variable ¢ being equal to the volume fraction «;, which corresponds to the gaseous phase for the
remainder of this paper. Consequently, «; = ¢ and a, = (1 — ¢). Dividing (4) by p; for i = 1, we arrive at the evolution equation for
the phase field variable ¢,

op

LM
E+V'(¢“1)—p—l- )

The subscript 1 of the mass transfer term M, is dropped for the remainder of this paper for convenience, thus M, = M and M, = - M.
Applying the mixture relations from Egs. (3) to (5) results in the evolution equation for the phase field variable ¢ expressed in terms
of mixture quantities,

L@ = ——v (1 — AT = —+v 7. ©)

In Eq. (6), we introduce the term R = —¢(1 — ¢)Aii. The differential velocity Aii is typically associated with a sharpening or diffusion
of the interface region. This difference is not necessarily connected to a physical interpretation. For non-phase-change problems, this

3
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is often explained with counter-acting the numerical diffusion (i.e. resharpening). In the presence of phase change, an analogy may
be drawn to the interface normal velocity jump. In general, Ai is not accessible and a separate treatment is required for R, which we
discuss at the end of this section. Summing the transport equations for both «;, we obtain the relation for the divergence of u

|5 o] =i (1)
Y| +Veaiy| =V i=M(—-—). %)
— | ot P P

Similar to Eq. (7), the mass transport is the sum of Eq. (4) for both phases

0p; . op - - -
Z[E+V'(piu,~)]=E+V'(Pu)=(ﬂ1—ﬂz)V'R=V'7’- (8)
1
Here, (p;, — p2)7_é is denoted f’, which is the differential mass flux between the two phases. As such, Egs. (5) and (8) have the same
structure as those found in the conservative diffuse interface literature, e.g. [25,33], but carry an additional phase change term M.
To close the system, we need an expression for the term R since the differential velocity is, in general, unknown. Using the accurate
conservative diffuse interface method [1], we set

ﬁ:r[quﬁ—%(l—tanhz(%))ﬁ]. 9

For situations involving phase change, the closure of R could be further augmented by calculating the interface velocity jump due
to mass transfer. This velocity jump can be approximated using an interface normal integral of M. For computational efficiency,
calculating this integral was not considered. A satisfactory closure was obtained using Eq. (9) as shown through the testing campaign
in Section 4. For the remainder of this paper we will refer to R as the regularization term [1]. In Eq. (9), I is the regularization
speed, ¢ a measure for the interface thickness, # the interface normal vector, and ¥ the level-set function. Typically I is related to
the largest velocity in the domain u,,,, i.e. I' = I'*|u,,,. |, where I'* is dimensionless factor. Further, ¢ is related to the grid spacing
Ax and a dimensionless factor ¢* so that ¢ = ¢*Ax. Special choices for the values of those parameters were made by [1] to enable
the discretization with central differencing schemes. In Section 3.4, we present an extension to boiling flows. Finally, the level-set
function ¥ is calculated [1] from

xyzeln<£>_ (10)
1-¢p+e

The level-set function is also used to calculate the interface normal vector # = V¥/|V¥|. For numerical stability reasons, a small
number ¢ is added to Eq. (10). Note that ¢ can vary depending on the implementation. However, in this study, robust calculations
of ¥ were obtained by using values in the order of 10~'6. This completes the derivation of the phase field evolution equation. In the
next step, the focus is turned to the momentum balance of the mixture.

2.2. Momentum transport

To derive the mixture momentum transport equation, we start at the transport equations for each phase separately. This strategy
was also followed in [10,13,36,39] and, more recently, in [32,40]. For the ith phase, the linear momentum balance equation is given
by

da; p;ii;

T+V-(a,-p,~z7i®ﬂ,~)=—ain+V~T,»+a,~p,-§+7,v+£7?,-, 11

where 7, is the viscous stress tensor z; = a;u,(Vii; + Vil ), p; the constant dynamic viscosity, g the earth’s gravitational force, and
I, represents all phase interaction forces. Note that ¥, I, = 0. The term E, represents the contributions of the surface energy in the

context of Allen-Cahn or Cahn-Hillard models [32]. More generally, E,- represents the effect of surface tension (see [10]). Further we
assume that both phases share locally the same pressure p. The sum of the left-hand side (LHS) of Eq. (11) over the phase index i may
be expressed in terms of the mixture quantities p, 4, R, and F as

Oa; p,ii; i -
Z[%+V~(aipﬂ,®ﬁi)] =%+V~(pﬁ®ﬁ)—V~(F®ﬁ)
i
Py meF (P 2 V\p R 12)
5~V (@ F)+V ( ¢+1_¢>R®R>
opii - R =
_W-FV <(pu—F)®u>+C

Eq. (12) is the complete LHS that describes the coupling of the momentum equation with the diffuse interface model. The second line
of Eq. (12) represents the terms commonly neglected when a volume-averaged mixture velocity is used. For conciseness, these terms
are replaced by € in the third line. Without the terms summarized by C, Eq. (12) is identical to the LHS of the momentum equation
used by the CDI community [25,33]. Note that C is solely active within the diffuse interface region and vanishes for the pure gas and
liquid phases. These terms originate from the diffuse interface model and represent a correction accounting for the additional mass
flux due to the interface regularization R (see Eq. (8)).
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Neglecting the terms 0F /ot + V - (i ® f’) (Eq. (12)) is commonly justified by the assumption that the “relative momenta [...] are
negligible when computed relative to the gross motion of the fluid” [34]. Subsequently, this assumption was followed in numerous
studies, e.g. [37,39,71]. In other works [25,33,52], this simplification is utilized implicitly. As shown in the literature [33,52], this
assumption leads to another possible (kinetic energy conservative) coupling of phase field models with the Navier Stokes Equations
(NSE). Nevertheless, formally, the term oF Jot+V - (Zi ® 7_5) is not zero [32,40] and recent numerical experiments [70] show that
keeping the terms led to accurate results in two-phase flows.

The last term of the second line of Eq. (12) received different treatment in the literature. Though often neglected, it is worth
noting that in [13] the term is recognized as part of the pressure. In [39] this term is incorporated into the stress tensor. For the
present study, this term is retained in C and its relevance will be evaluated in the context of boiling flows in the subsequent sections.

When using a density averaged (barycentric) mixture velocity & = Y,(5;4;)p~", we can reformulate Eq. (12) in a more concise form
through the relation pi = pii — 7 as follows

@+V-(pﬁ®ﬁ)—v-(f@ﬁ)—i—v-(ﬁ®f’)+v-<(p—1+ P2 )ﬁ@fa)

ot ot ¢ 1-¢ (13)
_aLﬁ (o ) P1P2 - 2,
== +V-(p®0)+V <(—p¢(l_¢)>R®R>.

Eq. (13) is equivalent to the momentum balance found in [10]. A drawback of using 7 is that the mixture velocity is not divergence-
free when M = 0, because V- 5=V - ii — V - (p~! F). However, formulating the momentum balance LHS in terms of a volume-averaged
velocity i or a density-averaged velocity o leads to equivalent mixture formulations [70]. For conciseness, we will occasionally use
in this study, bearing in mind that # is the primary solution quantity.

For the mixture formulation of the right-hand side (RHS) of Eq. (11), we will discuss each term separately. Evidently, >.(-a;Vp +
;0,8 + I,) = —=Vp + pg, but modelling >..(z;) in terms of mixture quantities is not trivial. Although complete formulations [32,36] or
approximations [10] are available, we choose to use

Y ()~ 7= u(Vii+ Vi =2V - ). 14)

i

Here, [ is the identity tensor and 4 = ), «; ;. Note that 2V - iil removes the spurious pressure contribution of the normal viscous stress
component [5,72].

Lastly, the term Y, E,- of Eq. (11) represents the surface tension effect. Since the conservative diffuse interface method does not
obey a known energy functional like the Cahn-Hillard or Allen-Cahn models [42], we replace }; E,- with a general forcing vector
fsr to model the effect of surface tension. Selection of a model for f; is sensitive, as spurious currents can significantly impact the
overall result quality [48]. In Section 4, we will compare different surface tension models and provide best practice guidelines.

The final momentum balance equation in terms of mixture quantities reads

dpii e P §+ /-

0pzu+V'((Pu—f’)®">+C=—VP+V'T+/’g+fST’ "
where

- oF L = i 2 \poR

_oF . 7 (P RQR). '

e v @oR) v (54725 )ReR) (6)

2.3. Energy transport

To derive the energy transport, we start at the partial enthalpy density 5,5, as the transported, conserved quantity. Here, 4; is the
enthalpy of the ith phase, which we define as h; = ¢, T,,; + h(;. We utilize the absolute temperature T, and the heat capacity c,;
(at constant pressure). As a reference enthalpy, the enthalpy of formation 4, ; at 0 K is used. Further we assume c,,; to be constant.

The transport equation for j;4; is then [13]

9p;h; Ny oy 1

TE + V- (pihiu;) =V - (0; 4, VT,,). a7
Summing Eq. (17) for all i and expressing the result in mixture quantities results in

oph . -

% +V - (phil) = V - (AVT ) + V - [(01h — pyh)R]. (18)

Here, the mixture enthalpy density is ph = ), 5;h; and the mixture heat conductivity 1 = ), ¢;4; with 1; assumed constant.
Introducing a relative temperature 7' =T, — T, based on the (constant) saturation temperature 7T,,, and the latent heat at
saturation temperature L, = h;(Ty,,) — h,(T,,), we can rewrite (18) as
dpc, T
ot
Taking pc, = ¥, j;c,; out of the derivatives leads us to the following transport equation for the temperature

+ V. (pcpTL_i) =V (AVT) = MLy, + (picy ) — prc,2)V - (Tfé). (19)

pcp<‘;—f +17vVT> =V (AVT) = LM+ Apc,R - VT. (20)
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In Eq. (20), L = f(T) = Ly, + (c,; — ¢,,)T is the temperature-dependent latent heat and Apc, = p;c,; — p;¢,,. The term R is kept in
Eq. (20) for consistency. Nevertheless various phase field studies do not seem to require this contribution [19,22,23,30]. It is worth
mentioning that in some works [13,14,73,74], the contribution of R is included in the temperature transport. However, in the latter
works, a different closure procedure was used.

Mathematically, Eqgs. (18)—(20) are equivalent, but they differ when implemented numerically. In this paragraph, we discuss
the choice of the equation in detail. Clearly, from an energy conservation point of view, Egs. (18) or (19) are preferred. For the
discretization of the advection term, a different scheme has to be selected than that for the phase field transport Eq. (6). In general
the temperature field may contain steep gradients or jumps (e.g. at the interface), which limit the use of central differencing schemes
for the spatial discretization. As such, specialized flux limiter or WENO schemes [75] are required.

Applying different spatial discretization schemes for transporting physical properties can lead to inconsistencies. Here, the trans-
port of the physical property pc, is implied by both Egs. (18) and (19), although the transport of this quantity is already defined by
Eq. (6). This is inconsistent, as the same physical property would be transported twice, with two different numerical schemes. We
overcome this problem by using Eq. (20) to separate the temperature transport (Eq. (20)) from the transport of physical properties
(Eq. (6)). Choosing Eq. (20) for simulating the thermal energy transport can lead to conservation errors due to its non-conservative
form. This error is discussed further in Section 4.4. Note that, apart from Eq. (20), all numerical implementations use central differ-
encing methods for discretizing spatial derivatives.

The final energy balance equation has the form

pc,,(‘)a—f +17vVT>:V~(AVT)+V~f—LM+Apcp7€~VT, (21)
with

fz-ﬁMLe<ﬂ-1>. (22)
A

In Eq. (21), the term ] was artificially added. This term is called the anti-trapping current [76]. In the context of phase field
modelling, J is used to improve convergence to the sharp interface limit [13,76-78]. For the present application, we used a simplified
version of the anti-trapping current proposed in [13]. This simplification is based on the assumption that the heat transport from the
liquid to the interface is high compared to the heat coming from the vapour side. The reader is referred to the work in Ref. [13] for
further details.

3. Numerical implementation

The following section presents a discrete scheme for solving the governing equations. First, we briefly discuss the spatial operators
required to discretize the equations in space. The remainder of the section is primarily devoted to elaborating on the temporal
integration. Finally, the numerical implementation of the phase change and the associated impact on the time-stepping is discussed.

3.1. Spatial discretization

We now discuss the discretization in space. For the discrete representation of ¢, i, p, and T, we decompose the computational
domain into uniform cubic cells of volume Ax3. In each cell, the solution variables are located in a staggered arrangement, such that
scalars (i.e. ¢, p, and T) are defined at the cell centres and vectors (e.g. ) at the cell faces. Fig. 1 illustrates this situation for two
dimensions; the extension to three dimensions is straightforward.

The governing equations derived in Section 2 allow the use of central differencing schemes for almost all spatial derivatives.
As described in Section 2.3, the exception is the transport equation for thermal energy, where a 5th-order WENO scheme [75] is
employed. Therefore, a single neighbouring grid point is required for the discrete operators using second-order central schemes and
two points for those using the WENO scheme (i.e. for T'). For inter-process communication in parallel computing, this reduces data
exchange between processes, and consequently, an improved scalability.

3.2. Temporal discretization

In this section, we present the numerical integration of the variables ¢, i,p,T in time. First, we use a second-order explicit Adams-
Bashforth scheme to compute intermediate values between time steps n and »n + 1 for the fields ¢ and T. This state is denoted with
the superscript * and obtained by solving

¢* = @'+ A (f By + fi2B)), (23)
T = T"+ A (£, Bh + £,B8570). 24
According to the Adams-Bashforth scheme, the coefficients f, ,,f,, are

Atn+1

- 25
2A1" (25)

AI"+1
fr,l =1+

2am 2d Jio=
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Fig. 1. Schematic visualization for deployed finite volume discretization in two dimensions.

Furthermore, a term B! denotes the rate of change for a quantity c at time step », i.e., (dc/dt)" = B!. Following this procedure for ¢
and T and rearranging Egs. (6) and (21), we write B; and B"T as

B ==V (@"@")+V - R" (26)

Bl = —il" - VT" + (v (VT 4V - '+ Ape,R"- VT”). 27)

1
(pe,p)*
In Egs. (26) and (27), the contribution of the phase change term M was ignored when computing the intermediate stage *. In
Section 3.4 we discuss calculating M as a function of the intermediate variable values. This step enhances the numerical stability.
After calculating M"*!, the final values ¢"*! and T"*! are obtained as
il Mn+1

P1

¢ = 9" + At and T"' =T* + AT} (28)

Here AT,’ZEI is the temperature increment due to phase change (see Section 3.4).
The velocity field is advanced in time using Eq. (15). Starting with the intermediate momentum (p?)* as

(PD)* = (pD)" + Ar™H! [(f,,l B+ fiaBl) + 0"+ T - Vl’"] : (29)

The surface tension f. o7 and the effect of gravity through g are excluded from the Adams-Bashforth scheme since their values for
time step n + 1 are already known. Additionally, we decompose the new pressure p"*! = p" + y"*! and add the contribution of the
old pressure p" in Eq. (29) to the intermediate momentum. We recall that (p0)" = p"u" — F". The term BZ&’ containing the advection

and viscus effects, is defined as
b - - P1P2 2 2
B ==V (p"0"QU" —V-<<—>R"®R”>+V- ) (30)
o v ) 71— ) i

3.3. Pressure solution

This section presents calculating i#"*!' and the pressure increment y"*! = p"™! — p" from the intermediate momentum (po)*. For
simulations using the CDI method, solving the PPE is the most expensive step in terms of computational cost [8,79]. Consequently,
we devote special attention to this solution procedure. The intuitive method for obtaining y"*! and #"*! may be to use a pressure
correction step [80]

o+l
v ( 1 vyl) = 1 [v-ﬁ*—M”“(i—i>+V~<F >] @31
pn+1 Atn+1 p1 P pn+l

Using (pD)* = p"*'5*, one sets

=+l _ e Athrl n+1 fn+l n+l _ n n+l
erEr ey R Al A (32)
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Solving Eq. (31) with an iterative scheme is expensive for large density ratios, as this requires specialized preconditioners [81]
and results in slow convergence rates. FFT-based solvers can offer a substantial speed-up potential and are frequently utilized for
multiphase flows [29,59,61]. As such, we explore the use of FFT-based solvers to reduce the computational cost.

Using an FFT-solver requires rewriting V - (p"+1_1 Vy"*1) to obtain a constant-coefficient matrix as proposed in [56,57]. In the
following, we will: (i) repeat the method proposed in [57] to outline the shortcomings for boiling applications, and (ii) propose an
alternative pressure solution scheme for boiling flows. For details on the FFT usage, we refer the readers to the work in [58].

3.3.1. Density splitting and pressure extrapolation
This section reports the method employed in [57]. This is included to motivate seeking an alternative formulation for boiling flow
applications. The main idea is based on the approximation [56]

1 n+l _ 1 n+l 1 1 n+l 1 n+1 1 1 n
FVW = %Vu/ + s - % V" x p—OVy/ + F — P_o foex VY, (33)
where p, = min(p;, p,) = constant and the extrapolation coefficient f,, = Ar"*!/A¢". As such, the density is split into a constant and a
variable part (first step). For the approximation of the variable part, w"*! is replaced with the extrapolated pressure increment f,,.y"
of the previous time step (second step). Furthermore, in line with [60] and [57], we find the velocity and pressure field at the next
time step through

7 = 5 — At [(—pl+ - i) fexvl,/"], (34)
Font1

V2l = o [v-ﬁ**—M"+'(i—i>+V~<—P >] (35)
Aln+l p1 P> pn+1

N s Athrl f*nJrl
un+1 = 0 — Vl/ln+l +

—. and pn+1 — pn + l//n+1. (36)
Po 4

Here, 0** represents a second intermediate velocity field that contains the extrapolated pressure contribution of the variable
density part. While the above procedure has gained popularity, it was shown in [62] that using the approximation in Eq. (33) is
problematic for interfacial pressure jumps. This is the case in the presence of surface tension in combination with a density jump at
a phase interface, where spurious pressure oscillations were reported [62]. In that context a specialized scheme for treating forcing
terms on the RHS of the momentum equation was proposed in order to remove oscillations.

In boiling flow scenarios, interfacial pressure jumps are caused by the recoil pressure, which generates similar oscillations [61].
In [61], the same scheme is used for additional forcing terms to correct the recoil pressure [82]. This led to a significant reduction of
oscillations, although some oscillations remained during the simulation start-up phase.

Moreover, the additional requirements on the CFL number, reported in [62], increase the computational cost when using
Egs. (34)-(36). Acknowledging the recent advancements, we propose an alternative pressure solution procedure to overcome the
aforementioned drawbacks.

3.3.2. Proposed FFT scheme

The key idea of the proposed solution stems from the works of Juric and Tryggvason [5], and Shin and Juric [83]. According to
their scheme, the intermediate momentum (p)* is not divided by the density, when assembling the RHS of Eq. (31). Adapted to the
present work, the scheme used in [5] reads

1
2. n+l _ . SNk . >\n+1
Vo't = A V- (p0)* =V - (p0)"™ |, (37)
~ Sk At"+1V n+l 7_$n+1
ot = (pv) yrr o+ ) (38)
pn+1

This procedure avoids the splitting approach from Eq. (33) and naturally returns a constant coefficient matrix suitable for applying
FFT solvers. However, using Eq. (37) poses two difficulties: (i) momentum (p5)"*! needs to be approximated, and (ii) divergence of
the velocity @**! is not necessarily equal to M"*1(p, ™! — p,~1) after the correction step (38).

We address these difficulties of Eq. (37) by deploying three solution stages, each including a matrix inversion of a constant
coefficient matrix which can be efficiently solved using FFT.

Stage 1: In the first stage the momentum for the time step #'*! is estimated. This is done through the splitting approach, as in

Section 3.3.1. Quantities emerging from this estimation stage are marked by a tilde . Formally,
Sk ok A gntl 1 _ i) n]
U = §* — Ar [<pn+1 o foxVy'|, (39)
7on+1
V2 = 20 [V‘D**—M"+]<l—i>+V~<—P >] (40)
AI"'H p1 P pn+1
~ n+1
and pb = Pl — At v (41)

Po
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Stage 2: The momentum estimate ;;E is used as an approximation for the momentum (p7)"*' at the next time step. Modifying
Eq. (37) allows solving the second Poisson equation without the splitting approach. Using this momentum-based PPE, we calculate the
improved pressure increment { as a better estimate of the pressure increment w"*!. Consequently we solve

1
Antl

V2 = [v B -V 775] (42)

Stage 3: As mentioned above, the improved pressure increment i does not guarantee a divergence-free velocity field, which is
why the final step of the pressure solution is required. Analogously to stage 1, using { instead of w" for the splitting, we compute
p"t! and #"*! by solving

7 = 5 - e[ - L)evp), (43)
ol po

Zon+1
V2Wn+1 - Po V.5 = Mn+l i _ L +V. P_ , (44)

Apntl p1 P ﬂ"+1
ﬂ"'H i Atn+l Vl[/n+l F’::l , (45)

Po p"

and pn+1 — pn +WV1+1_ (46)

Here, 7*** denotes the improved prediction velocity containing the contribution of the variable density with the pressure increment
. In Eq. (43) we used a constant ¢ to limit the pressure increment { based on . This limiter is calculated as follows

c=min<1 —Imin(nTl)l —lmaX(ITI)l). 47)

A~

Imin ()| |max(#)]
This limiter c is necessary to stabilize the method. Note that { and y are linked through the momentum estimation ;5 Consequently,
Stages 1-3 are only valid if  and i are similar, whereas larger deviations will cause the solution to diverge.
This FFT scheme is subsequently referred to as the Momentum-based Pressure treatment for Density Jumps (short FFT-MPDJ) to

highlight the feature of using Stage 2. In Section 4, we evaluate the proposed FFT-MPDJ scheme and compare it to the established
method in [57,60].

3.4. Phase change model

A crucial part of this study is selecting an adequate numerical procedure to model phase change. Large-scale simulations of
boiling flows require a phase change model that ensures: (i) numerical efficiency, (ii) scalability, and (iii) robustness. Although heat
conduction models are generally free from empirical parameters [3], they are computationally more expensive due to their need to
calculate temperature gradients across the interface. Thus, we use a simpler kinetic model loosely based on [68,69], but modified for
the present phase field model.

As shown in Section 3.2, the numerical integration of ¢ and T is split into two steps, which are deployed to improve numerical
stability. The temperature increment due to phase change is defined as ATI’,’JE1 = T"*+! — T*, Ideally, at a sharp interface, the phase
change would happen instantaneously, so that T7"*! = 0 (i.e. at saturation temperature) and consequently

AT = (Ty, =T ) = =T*. (48)
With AT;’EI, the mass transfer term M can be easily calculated from Eq. (21) resulting in
(pC )»- AT”+1
Y g P —— S (49)
L(T*)Ar+!

which reassembles the formulation in [68] and [69]. However, there are drawbacks of using Eq. (48) to calculate AT}’Lzl in the context
of the present study. Namely:

o the accuracy of the model strongly depends on the time step, as pointed out in [84],

e Eq. (48) is not restricted to the interfacial region, and

¢ no weighting of ATI';JEI accounts for the interfacial jumps in (pc,)*. As indicated by Eq. (49) the same temperature increment results
in different mass transfer rates on either side of the interface (due to the multiplication with (pc,)*). This leads to an unbalanced
distribution of M"+!.

To address these drawbacks, we use the following modified version of Eq. (48)

+1 _ * 3
AT = —=T%0,0,.07 63. (50)

¥pe”pe,

As seen in Eq. (50), we maintain the structure of Eq. (48) so that AT}’,’JE1 is still proportional to T*. But, we multiply 7* by four
non-dimensional factors 6. Note that 9;) =04(¢%) and 6/’;’ . = 0pcp ().
P

9
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Fig. 2. Visualization of the discretized interface indicator in Eq. (51), used to restrict the mass transfer M to the interface region. The interface
indicator 6,, is shown together with the phase field variable ¢, as function of the non-dimensional interface distance x/e. Circles represent the values
computed at cell-centers, where the cells have a uniform size of Ax.

The factor 6, restricts the mass transfer to the interface region. We choose 6, as

9¢:%<1+c0s(27[|¢—0.5|)>. G

The distribution in the discrete case is found in Fig. 2. In theory, the choice of 6, is arbitrary, provided 6,(¢ = 0) = (¢ = 1) = 0 and
0,(¢ = 0.5) = 1. However, we use Eq. (51) for its high concentration around ¢ = 0.5, which we found to be advantageous (see Fig. 2).

With the factor 6,, the temperature increment ATITE1 is linked to a characteristic phase change timescale 7,,., decoupling the phase
change model from the chosen time step size Af"*!. We assume that the phase change is governed by the heat conduction in the liquid
phase, thus,

2 n+1
lpe = AY  and 0, = arr (52)
a t
2 pc
where a; = 4;/(p;c, ;) is the thermal diffusivity.
Accounting for the jump in pc, we use epcp defined as
o - | (53)
Pe " p1%p a +a2.
P2Cp2

Asseenin Eq. (53), 0 e, weights AT;:;' stronger on the vapour side (proportional to the ratio of pc,), resulting in a balanced distribution
of M. Lastly, 6, is a model parameter that we found to be independent of (i) the simulation setup and (ii) the physical properties of
the fluid. For the remainder of the study, we fix 6, = 0.65.
Comparing Eqs. (48) and (50) reveals the requirement 6,6, 9;” by <1to avoid overshooting the saturation temperature. This leads
to an implicit phase change time step constraint Af,. given by
2
Aty = HL%A(I—" (54)
pc 2 1
Note that Eq. (54) is written in terms of the heat conduction timescale for the vapor szal‘l, which is usually more restrictive than
that of the liquid phase. Therefore, Ar,. will only affect A"+ when the ratio 4, /1;1 is small. In contrast to [69], no iteration loop
over the energy transport is necessary when following the strategy described above. For the verification of the phase change model,

a series of simulations is performed and presented in Section 4.
3.5. Time step size and adaptive I'*

To apply the CDI method to flows involving boiling phenomena, a central difficulty needs to be addressed: the profile of the
phase field function ¢ loses its equilibrium hyperbolic tangent shape because of the strong divergence of i at the interface. In other
words, the source term M causes the profile of ¢ to thicken or even lose its shape entirely. This occurs when M > 0 and the speed of
regularization term R is insufficient. Given the use of central differencing schemes in space, [24,25] suggest that ¢* = 1 and T™* = 1,
while [1] reports that using Eq. (9) would allow for even lower values of ¢*. Let us recall the diffuse interface time step constraint

Aty = min (55)
1

10
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from [25], which we use as a conservative estimate for the time step constraint. However, Af, might not be the limiting factor.
When At is not restrictive (e.g. because Az, < Aty), the regularization speed I might be too slow to maintain the hyperbolic tangent
interface shape. For those cases, we propose an adaptive change of I'* to keep At"*! = Cpy Aty at all times. The remaining time
step constraints for the present simulations are: (i) the convective time step constraint Ar;, (ii) the momentum diffusion constraint
At (iii) the heat conduction constraint Az,, (iv) the capillary time step constraint Af,, and (v) the constraint due to gravitational
acceleration At;. These are given by [85]

Ax

At; = , (56)
‘o max(lug | + up| + lus])
Ax? Pi
Ar, = Tm{ln(ﬂ—'[) (57)

Ay = /A5 (58)
12l
Ax2 min. .

Ar, = /AN g 59)
o max|x|

2
A, = A% nin <a.-l>. (60)
6 i !
Here, « is the interface curvature calculated from x = V - 7. Following [85], Egs. (56)-(59) can be combined into
Aty = 2 ‘ 61)

2
1 1 1 1 4 4
Ll (= +2) +5+%
Ay A, \/( Ar; Ary) At§ A2

In contrast to the available literature on the conservative diffuse interface method, we solely define a minimum regularization
speed I'7 . and let I'* adjust to the time step. Using Eq. (55), this is done by calculating

Aty iy = min ! . 62)
1

O . Uy, € ou;
min!~max i
m _)-{—).0
aX{( sz > <0x,-> }

we rearrange Eq. (55) to obtain the maximum allowed regularization speed as

In case Aty ,,;, > min(Aty, At, At,.),

2 ou;
= _AX - ! +min [ 24| (63)
6luty4 € | min(Aty, Aty, At)) i\ Ox;

If Aty i is the restricting time step constraint, then I'* =T'%. . Regardless, the time step A" is adjusted according to

A = Copp min(Aty i, Ats, Aty Aty,), (64)

where Cp; is the CFL safety factor, which is chosen to be 0.4 < Cop; < 0.5 for all test cases in Section 4. For the application to
boiling flows, we found values in the range 1 <T"". <2 and ¢ = 1 to return favourable results.

3.6. Algorithm

The procedure introduced in Sections 3.2-3.5 is shown as a pseudo code in Algorithm 1. We report the exact order in which we
solve the conservation equations from Section 2.
This algorithm exhibits several distinct features, which are summarized and highlighted as follows:

¢ Phase change model: As described in Section 3.4, we presented a modified kinetic model using only the local superheat, which is
designed to be (i) efficient, (ii) robust, and (ii) free from simulation-dependent parameters. We also derived the relevant time step
constraint (Eq. (54)) for a stable simulation.

e Momentum balance equation: Staying in line with the conservative diffuse interface method framework, we included additional

terms (see Eq. (16)) related to the regularization term R following a similar strategy as [10,32]. Note that, no assumptions on the

relevance of these terms have been made.

Pressure solution scheme: For the present study, we implement the FFT-MPDJ solver specialized for flows subjected to phase

change. Through additional solution stages, we eliminate the drawbacks commonly reported by other studies [61,62] that are

using the density splitting approach (Section 3.3.1). Through the design of the pressure scheme, no pressure oscillations related

to interfacial pressure jumps occur.

Adaptive I'*: Phase change poses a new requirement on the speed of the regularization term, which is not always satisfied by a

fixed coupling to the maximum velocity. As shown in Section 3.5, we present a methodology that continuously updates I'* to keep

the regularization speed at the level of the smallest timescale.

In the remainder of this paper, Algorithm 1 is tested against various benchmark simulations, through which we test the numerical
scheme, and also discuss the effect and relevance of the above-mentioned features.

11
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Algorithm 1 Proposed procedure for solving the governing equations.
: Set initial conditions ¢(t = 0), T(t = 0), p(t = 0) , and i(t = 0)

=

2: Set the physical properties p, c,, 4, y
3: Calculate initial ¥ using Eq. (10)
4: Calculate R from Eq. (9)
5: whiler <1¢,,;, do
6: Obtain intermediate phase field value ¢* from Eq. (23)
7: Update physical properties p*, <,
8: Obtain intermediate temperature 7* from Eq. (24)
9: Calculate AT‘,';E1 using Eq. (50)
10: Obtain M"+! using Eq. (49)
11: Final states of ¢"*! and T"*! through Eq. (28)
12: Update P"*!, ji"+! | g+l
13:  Update the physical properties p"*!, e Lopmtl | yyntl
14: Calculate prediction momentum (po)* from Eq. (29)
15: Update R"+! with Eq. (9)
16: Approximate (p7)"*! with ﬁ' by Eq. (39) - Eq. (41)
17: Obtain pressure estimate i by solving Eq. (42)
18: Find final p™*! and #"*! through Eq. (43) - Eq. (46)
19:  Update time step size Ar"*! with Eq. (64)
20: if Aty ,,;, > min(Aty, At, At ) then
21: I'* with Eq. (63)
22: else
23: UseI” .
24: end if

25: end while
26: End of simulation

4. Simulations

In this section, we solve the governing equations with the method introduced above for a range of benchmark simulations. We
conduct simulations including and excluding phase change, while the complexity of the flow problems increases towards the end of
the section.

4.1. One-dimensional recoil pressure jump

The first benchmark case, inspired by [10], is a simple one-dimensional domain in which a moving coordinate system follows
an interface (see Fig. 3(a)), so that the phase field variable ¢ is constant in time (Fig. 3(b)). A velocity jump U is prescribed by
defining the mass transfer term as M = U|V¢| (/’1_1 -p; ! )_1, implying that the flow field is fully defined by the continuity equation
(Eq. (7)). Following [101], the coordinate system moves at interface velocity u;,, = —U(p,/p, — 1)~!. Accordingly, the phase velocities
in the moving reference frame are u; = U —u;,, and u, = —u;,, (see Fig. 3(a)). Consequently, the theoretical recoil pressure jump at
the interface is given by Ap,, = p, —p, = _uizm‘ p2(pa/p; — D). As the phase field ¢ and the density p are constant in the moving frame,
we can integrate Eq. (8) to obtain an exact expression for the regularization term R = (Pl + uj 2P — pz)_l. We now conduct two
different tests: one with U = const. and another with U = f(¢). For all simulations, we use a grid of size Ax = 10~ m in a domain of
length / = 0.1 m, and set the densities to p; = 0.001 kg m~3 and p, = 1 kg m™>.

4.1.1. Pressure solver comparison

In the first test, we set U = 0.5 m/s (see Fig. 4(a)) and monitor the behaviour of the pressure solver when calculating the pressure
jump. Solvers (e.g. iterative or direct) that invert the matrix in Eq. (31) can reliably return the pressure distribution seen in Fig. 4(b)
after one iteration, since all other quantities are constant. However, as shown in [61], simulating this pressure jump with FFT solvers
using the density splitting (Section 3.3.1) can be challenging due to pressure oscillations.

We then compare the FFT-MPDJ solver (Section 3.3.2) with the FFT solver in [57] by measuring the relative pressure jump error
versus the iteration count. The relative error in Ap,, is visualized in Fig. 5 for the two solvers under investigation; the FFT-MPDJ
solver reaches an relative deviation from Ap,;, of 1078% in less than 10 iterations. In contrast, the density splitting approach in [57]
exhibits strong oscillations at the start of the simulation, only reaching an acceptable deviation from Ap,, after completing ~ 10*
iterations. Once reaching a steady state, both solvers return the pressure distribution shown in Fig. 4(b).

4.1.2. Evaluation of the momentum balance equation
In the second stage of the recoil pressure experiments, a variable velocity jump is applied and the pressure equation is solved with
the FFT-MPDJ solver. This enables us to evaluate the relevance of C (see Eq. (16)). As seen in, e.g., Fig. 4(a), the interface speed is small

12
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Fig. 3. Basic simulation settings for the case of the one-dimensional recoil pressure jump.
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Fig. 4. Numerical results of the one-dimensional recoil pressure jump test case when prescribing a constant interfacial velocity jump U = 0.5 m/s
and p,/p, = 1000. The velocity (a) and the pressure (b) have a smoothed jump due to the diffused interface representation. Solid lines represent the
analytical jump conditions.
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Fig. 5. Relative error as measured by Ap,, over the iteration count for different PPE solvers.
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Fig. 6. Numerical results of the one-dimensional recoil pressure jump test case when prescribing a variable interfacial velocity jump U = U(t) =
[0.5—0.04¢] m/s and p,/p, = 1000. The velocity (a) jump is shown at the start (+ = 10 s) and at the end (¢ = 10 s) of the simulation. Since i is fully
determined by the continuity equation (Eq. (7)), neglecting C has no impact on the velocity u. The pressure at t = 10 s is shown in (b), where a
strong dependence of ii on C is seen. Analytical results are represented by solid lines.

compared to the velocity jump U = Ai, which is proportional to R; thus, the additional terms (i.e. ) are more prominent. Fig. 6(a)
illustrates the change in the velocity field from ¢ = 0 s to ¢+ = 10 s when the velocity jump is prescribed as U = U(¢) = [0.5 — 0.047] m/s.
We carry out two simulations: (i) one including 5, and (ii) one excluding. Fig. 6(b) shows the pressure distribution at time r = 10 s,
where the red dashed line represents the simulation with € and the green dashed line the one without. The analytical solution (black
solid line) shows the pressure jump Ap,, along with the slope dp/dx = p,du;,, /ot in each phase. While the simulation including the
additional terms matches the analytical solution, a major discrepancy is seen for the simulation where ¢ was neglected. Not only
becomes the magnitude (green dashed) of the jump incorrect, but also its sign, underlining the importance of C for boiling flow
phenomena.

Both of the recoil pressure tests demonstrate the improvements achieved through the methodology developed in the present study.
First, the deployed FFT-MPDJ solver exhibits superior properties for calculating the recoil pressure jump at interfaces subjected to
phase change. Second, for capturing the pressure distribution accurately, this test case shows the importance of keeping the additional
terms the momentum equation (Eq. (15)), which arise from the differential velocity in the interfacial region. Although these two
features significantly improve the results for the one-dimensional phase change tests, an obvious question arises: how do they affect
the simulation of three-dimensional bubble dynamics in the absence of phase change? This is addressed in the next subsection.

4.2. Three-dimensional rising bubble

Simulating the dynamics of bubbles rising due to gravity is a common benchmark. Specifically, one may test the interface capturing
model or the pressure solution scheme [56,60,62,70,86]. In detail, we consider a three-dimensional setup using the geometry from
[87]. Refer to Fig. 7 for a schematic diagram of this flow configuration. At ¢t = 0, a spherical bubble of diameter D, is initialized at
location x; = x, = x3 = D,. The no-slip condition is applied at all boundaries of the domain.

This benchmarks involves two different sets of fluid properties, which differ in the gas density and viscosity, as well as the
surface tension (Table 1). The relevant non-dimensional numbers are the Reynolds number Re = p i, /l,.f /41’1, the Weber number

We= plufe rlre ,0!, and the Froude number Fr = u,,;/4/l|glll,.; [60]. The selected reference quantities are

lref / N Upef Ho
lref = DO’ tre/' = ] urcf = Ircf”g”’ pref = . (65)
llgll lref

The values in Table 1 show that a laminar flow is expected in both cases. In ’Case B’ the influence of the surface tension is lower,
whereas for ’Case A’ the inertial effects are comparable to the effect of the surface tension. In this section, all non-dimensionalized
results are marked with an asterix. For this benchmark, the Continuum Surface Force CSF [43] is used. A detailed description of this

model is found in Section 4.5.1.

4.2.1. Pressure solver comparison
In the first series of simulations, we switch off C and compare the pressure solver in [57] with the FFT-MPDJ solver of the present

study (see data in Fig. 8). Simulations are carried out for two uniform grid spacings (i) with Ax = D,,/32 and (ii) with Ax = D, /64. Both
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Fig. 7. Simulation setup for the bubble rising benchmark.

Table 1
Corresponding fluid properties (see [87]).
Name & -] Re We Fr
21 Hy
Case A 10 10 35 1 1

Case B 1000 100 35 0.125 1

are applied to two sets of fluid properties ’Case A’ and ’Case B’. Note that the density splitting approach’s (Section 3.3.1) capability of
simulating bubble dynamics has been verified repeatedly in the literature [56,60]. Accordingly, the FFT-MPDJ solver should ideally
return the same results as the common density splitting FFT [57].

The quantities of interest are (i) the centre of mass of the gaseous phase (left panels of Fig. 8), (ii) the sphericity of the bubble
(middle panels of Fig. 8) defined as A(r = 0)/A(r), where A is the surface area of the isocontour of the phase field ¢ = 0.5, and
(iii) the bubble rise velocity (right panels of Fig. 8). The data in Fig. 8(a) confirm that the results obtained from both solvers are
indistinguishable. For the higher density ratio ’Case B’, the agreement remains very good, although a slight difference can be observed
in the sphericity for both grid resolutions (Fig. 8(b)).

In the next step, we investigate the source of the small differences seen for the high density ratio by examining the pressure
field evolution versus simulation runtime. We consider the pressure along a line parallel to the x;-axis cutting through the centre of
the bubble. Qualitatively, the pressure should exhibit a linear increase towards the lower domain boundary (hydrostatic pressure),
interrupted at the (upward-moving) bubble location, due to its lower density and its velocity.

The pressure distribution was collected 32 times until r* = 1.34 for both solvers. The result for Ax = D, /32 is seen in Fig. 9, where
the solver from [57] (left) is compared to the present FFT-MPDJ solver (middle), using the initial condition p*(r = 0) = 0. The pressure
field for the density splitting scheme requires almost the entire observation interval to adjust to the hydrostatic pressure. In contrast,
the FFT-MPDJ solver adapts by t* = 0.04. As can be seen on the right panel of Fig. 9, both solvers return the same pressure distribution
after the start-up phase. Long start-up phases for adjusting the pressure field to the flow are deemed to have a minor impact on the
bubble dynamics depicted in Fig. 8(b).

4.2.2. Evaluation of the momentum balance equation

The second series of simulations aims to investigate the effect of the additional momentum transport terms (i.e. 5) on the bubble
dynamics in the absence of phase change. In the literature [34], the transport of relative momenta is often neglected. This is reasonable
when comparing the differential mass flux F to the momentum pii for pure interface transport when excluding phase change. To
quantify the effect, we conduct simulations for ’Case A’ and ’Case B’ using the FFT-MPDJ solver and the previous two resolutions. For
each case, the results obtained including and excluding the additional terms are compared (see Fig. 10). We also include the benchmark
data published in [87] as further reference. The reference data was obtained through the codes: (i) DROPS (level-set, finite element
method) [88], (ii) NASt3D (level-set, finite difference method) [89] , and (iii) OpenFOAM (VOF, finite volume method) [90]. We
refer the interested reader to the publication by [87] for further simulation details. The results for both density ratios, together with
the reference data, are shown in Fig. 10. In this figure, it becomes apparent that for all simulations, an improvement is seen when C
is included. The main effect is seen in the sphericity (middle), where the results clearly improve towards the reference data when c
is used. Slight improvements are also visible throughout the simulations for the rise velocity (right panels of the same figure).

To conclude, with this non-phase change benchmark, we demonstrate that the proposed FFT-MPDJ solver can accurately simulate
bubble dynamics in three dimensions. Additionally, we show that the our approach is superior for adjusting the pressure field to the
flow problem at high density ratios. Lastly, this benchmark demonstrates that the modified momentum balance equation, incorpo-
rating the additional terms from Eq. (16), also exhibits clear, albeit minor, improvements when simulating bubble dynamics in the
absence of phase change. Despite these improvements, we acknowledge that there is merit in the common assumption of neglecting
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C for non-phase change problems. Based on the findings of these first benchmarks, the FFT-MPDJ solver and the full momentum

balance equation are used for the simulations in the following sections.

4.3. Stefan problem
The Stefan problem is a one-dimensional phase-change problem in which a superheated wall heats a growing gaseous layer,
pushing away the adjacent liquid phase. This situation is visualized in Fig. 11(a), where a typical temperature profile is sketched.
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Fig. 10. Comparing the effect of C on bubble dynamics without phase change with respect to reference simulations (black lines) from [87].

Table 2

Physical properties of various two-phase fluid systems.
Property  Unit Fluid,  Fluid, Fluid,  Water! Ethanol'
o kg m™ 0.01 0.25 5 0.597 1.647
P kg m™ 1 2.5 200 958.4 736.44
m kgm™'s'  n/a n/a 0.005 126105  1.02-107°
iy kgm™'s'  n/a n/a 0.1 2.80- 107  4.49.107*
Cp Jkg?' k7' 200 10 200 2030 1806
¢ Jkg?' k' n/a 10 n/a 4216 3185
A Wm™' K  0.005 0.0035 1 0.025 0.0199
A Wm'K!' n/a 0.0015 n/a 0.679 0.1654
Ly, Jkg™! 10* 102 10* 2.26 - 106 8.499 - 10
T, °C n/a n/a n/a 100 78.2
c Nm™ n/a n/a 0.1 0.059 0.0174

! at 1013 hPa

The distance of the interface from the wall x;,, has an analytical solution [91] of the form
Cp,l(Twall - Tsat)

L(Ty)V7

where f is the growth constant, which depends on the wall superheat T, ,;, — T,,, and the physical properties of the vapour. This case
is a classical benchmark for phase change models [7,92].

Using the parameter settings from [92], i.e. T, — Ty, = 10 K, and the physical properties of Fluid, (see Table 2), a growth
constant of # = 0.3064 is numerically determined. For the simulation, a domain of length / = 0.05 m is discretized with four different
grids using the grid spacings Ax =2 mm, 1 mm, 0.5 mm, and 0.25 mm, respectively. All simulations are initialized at physical time
t = 38.34 ms, with the interface (¢ = 0.5) located at x, ; = 6 mm and the corresponding analytical (linear) temperature profile.

The interface location x) 5 is plotted over time ¢, together with the analytical solution, in Fig. 11(b). With decreasing grid spacing,
convergence to the analytical solution of Eq. (66) is achieved. Results with a grid spacing of Ax = 2 mm exhibit a notable deviation

Xip(t) = 2B+/a;t ,and Pexp (FPerf(f) = (66)
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Fig. 11. (a) Schematic sketch of the Stefan problem with (b) the results for the interface location over time for four different grid spacings.
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Fig. 12. Stefan problem: (a) Temperature profiles in comparison to the analytical solution, and (b) error convergence using Eq. (67).

from the analytical solution. Towards smaller grid spacings, a good agreement appears at Ax = 1 mm, becoming almost identical to
the analytical solution at Ax = 0.5 mm and Ax = 0.25 mm.

The results in [92] (sharp interface, VOF) report grid convergence at Ax = 2 mm. In contrast, the method presented in this study
requires roughly twice the number of grid points for convergence. This confirms a typical trend of the increased resolution requirement
for diffuse-interface methods compared to sharp-interface methods [8].

In Fig. 12(a), we compare the temperature distributions obtained from the different grid spacings to the analytical solution at time
t = 0.823 s. The temperature profiles confirm the findings in Fig. 11(b). With Ax = 2 mm the temperature greatly deviates from the
analytical (linear) temperature distribution. Using Ax = 1 mm a good agreement is observed and further decreasing the grid spacing
results in minor improvements.

For quantifying the error reduction with the grid spacing, an error measure is introduced. The error is quantified using the
difference of the simulated interface position x,, 5 where ¢ = 0.5, and the analytical position x;,, as

Error = (67)

In Fig. 12(b) this error measure is shown for the different grid spacings. The error reduces at an approximately second-order rate for
the Stefan problem.

4.4. The sucking interface problem

The sucking interface problem (or absorption problem) describes a situation where a growing gaseous layer pushes a liquid away
from a wall. Unlike the Stefan problem, the liquid is superheated, with the gaseous phase and the wall remaining at saturation
conditions. The heat reaches the interface from the liquid side, where a thermal layer is developing. This situation is depicted in
Fig. 13.
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Fig. 13. Setup of the sucking interface problem.

According to the analytical solution, the interface location x;,, has a square-root dependence with respect to time 7,

int
Xin(1) = 2/ 1. (68)

However, for the sucking interface problem, the growth constant f is obtained from a different transcendental equation [91] that
determines g

May
. (T = Tya)Cp 1 Aar/ar exp (— péaz )
exp (fO)erf(B) | f - G =0. (69
1V41
Ly, A +/7a, erfc (ﬁh@)
The corresponding analytic temperature profile of the liquid phase T, (x, ) reads
T, -T, -
Ty(x,0) =T, — M erfe (L_,.M ﬂ)h (70)
erfe (ﬂ P]\/‘Tl) 24/ayt 23 a,
p2y/ay

This flow problem is tested with two liquids, namely (i) a generic Fluidg, and (ii) saturated Water at 100 °C (see Table 2), posing
different challenges to our phase change model.

The first set of simulations with Fluid replicates the settings used in [93], where the liquid phase has a far-field temperature
T, —T,, =2XK. Using Eq. (69), 2 K above the saturation temperature leads to the growth constant value g ~ 0.2689. The discretization
of the computational domain (/ = 1 m) is conducted using cell sizes Ax = 20 mm, 10 mm, 5 mm, 2.5 mm, and 1.25 mm. At physical
time ¢t = 4 s, the simulation is started, with the centre of the phase field being located at x;,, = 0.0402 m. In this simulation, the
temperature of the liquid is initialized using Eq. (70), with the gas being saturated.

As commonly observed for this benchmark [49,93], the front speed is underestimated for coarse grids. This is reflected on the
left side of Fig. 14(a). Larger deviations are observed for grid spacings Ax = 20 mm and Ax = 10 mm. Therefore, the resolution was
increased, resulting in good agreement with grid spacing Ax = 5 mm and finer. The error reduction with decreasing grid spacing is
visualized in Fig. 15(a) where Eq. (67) is used to quantify the error. For this set of fluid properties, the error reduces at a first-order
rate.

Additional insights are obtained by examining the temperature distribution at a physical time ¢ = 240.8 s (Fig. 14(a), middle and
right plots). For the two coarse grids, a significant deviation from the analytical temperature is observed in the gaseous phase. In the
liquid phase, away from the interface, all profiles collapse onto the analytical solution. Slight superheat appearing in the gas could
be a result of the anti-trapping current j (see Eq. (22)). For Fluid, the heat conductivities are A, > A,. This causes j to switch sign,
leading to additional heat transport into the gas. This could also explain the reduced error reduction rate seen in Fig. 15(a). However,
for most ’real’ fluids, 4, < A, (see Table 2). Therefore we regard the results concerning this fluid as an exception.

In the second set of simulations, the fluid properties of saturated water at 100 °C are considered. For these simulations, the far-
field temperature of the liquid is 5 K above the saturation temperature. The water properties exhibit a high density ratio, a high heat
capacity, and fast growth rates. These conditions allow us to test the limits of the phase change module (here, § ~ 0.767). We use the
five grids with Ax =8 um, Ax =4 um, Ax =2 pm, Ax = 1 pm, and Ax = 0.5 um, and a domain of length / = 0.4 mm.

Fig. 14(b) shows the results when starting the simulation at time = 5 us and using the corresponding analytical solution as the
initial condition. On the left, the interface position versus time is shown. With an increased grid resolution, the result quality is visibly
improved. The rate at which the results converge to the analytical solution is shown in Fig. 15(b). The convergence rate is slightly
improved compared to the case employing the fluid properties of Fluidg, but slower than that seen for the Stefan problem. Lower
resolutions under-predict the growth rate in the start-up phase, resulting in a permanent offset relative to the analytical solution
for the remainder of the simulation runtime. This indicates that, at lower resolutions, the initial thermal profile is under-resolved,
resulting in erroneous interface speeds. The middle and left plots show the steep temperature profile, characteristic of the selected
physical properties. Here, 4, < 4,, which is also reflected in the temperature profiles, where no spurious temperature distribution is
found in the gaseous phase (compare with Fig. 14(a)).

The utilized temperature transport equation (Eq. (20)) has a non-conservative form, and thus, the enthalpy error accumulation
over time is investigated. We consider the sucking interface problem with the Water properties to construct a critical scenario. This is
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Fig. 15. Error convergence rates for both fluids in the sucking interface problem calculated from Eq. (67)
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Fig. 16. Conservation error calculated from the total enthalpy in the domain using Eq. (71) and a grid spacing of Ax =2 pum.

due to the large contrasts in fluid properties and the presence of steep temperature gradients on the interface. For this test, we monitor
the enthalpy over time to evaluate its change. As the left boundary is an adiabatic wall, this evaluation solely needs to account for the
outflow of liquid on the outflow boundary 0Q,, in the boundary normal direction 7, (right of Fig. 13). The total enthalpy is calculated
from

i
H,w(t)=/ph+/ / ph(iip - ). (71)
Q 0 Joa,

In Fig. 16 the change of H,,(7) in relation to its value at simulation start is plotted in percent versus the simulation runtime. The
maximum observed conservation error is 0.4 %. Therefore, we conclude that gain or loss of thermal energy plays a negligible role in
the presented framework for the problems considered in this study.

In the subsequent sections, the phase change model is subjected to more complex cases in two and three dimensions.

4.5. Three-dimensional bubble growth

In three dimensions, an important benchmark is the study of a bubble growing in a superheated liquid at zero gravity. This problem
can reduce to a spherically symmetric flow, for which a known analytical solution is available [94] and serves as reference for the
following numerical tests. The analytical solution has a square-root dependency on time 7, such that the radial interface position R;,,
is

R;,;(t) = 2p4/ayt. (72)
For the three-dimensional bubble growth [94], f is governed by the following transcendental equation
%) cp,2 (Too - sat)
P1 (Lsat + (Cp,Z - Cp,l)(Too - Txat))

=2ﬂ2/01 exp [—ﬂ2<(1 —2) 7 =22(1=py/py) - 1>]d1~

In all subsequent simulations, we consider 1/8th of the bubble, by placing an initial bubble in the corner of a cubic domain. This
setup is sketched in Fig. 17, where the domain boundaries intersecting the bubble are symmetry boundaries, and the opposite ones
are outflow boundaries. Using properties of water (see Table 2), and a far-field temperature of T, — T,,, = 5 K, leads to a growth
constant of # ~ 15.073 when solving Eq. (73).

The cubic computational domain is discretized using uniform grids of sizes Ax = 125 pm, Ax = 62.5 pm, Ax =31.3 pum, and
Ax = 15.6 um. In the computational domain of length / = 4 mm, a bubble is placed with an initial radius of R, = /4, corresponding
to a physical time 7 = 6.55 ms at simulation start. The temperature field is initialized with the analytical temperature profile [94]

(73)

_ 2ﬂ2p1
T2(r’ Rint) = Toc - Lmt + (cp¢2 - cp,l)(Tao - Tsm‘)
pZCp,Z (74)
1 ) o
X/I_MeXp[—ﬁ ((1—1) —2)((1—/11//12)—1)](1)(.

Note that for the first set of simulations, surface tension is disabled, as it does not (from an analytical point of view, see Egs. (72)—(74))
impact the bubble growth, itself.

Fig. 18(a) shows the size of the bubble over time for all grids in comparison to the analytical solution. A strong dependency
on the grid resolution is observed, resulting in significant deviations from the analytical growth rate for grids using Ax = 125 um
and Ax = 62.5 pum. Good agreement with Eq. (72) is only achieved by using a grid spacing of Ax =15.6 um. In Fig. 18(c), the
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Fig. 17. Setup for simulating three dimensional bubble growth.

error convergence for the considered grid spacings is shown when using the error definition of Eq. (67). Across all grid spacings,
an approximately second-order error reduction rate can be observed. The reason for the high resolution requirements is evident in
Fig. 18(b), which depicts the analytical solutions steep temperature gradients. Although the results obtained from Ax = 15.6 um
to Ax = 62.5 um seem to be similar, they still exhibit distinct differences in the temperature gradient close to the interface, which
explains the superior performance when using Ax = 15.6 pm. More details on the results when using Ax = 15.6 um are found in
Fig. 19, where we visualize the velocity field alongside the temperature distribution (left) and the distribution of the mass transfer
M (right). The velocity field jumps in the radial direction across the interface, whereas the gas velocity inside the bubble stays at
rest. Additionally, M has a smooth distribution, verifying the modelling choices made in Section 3.4. Interestingly, for this flow, M
is slightly shifted towards the liquid side. This slight asymmetry of M could be a result of the temperature transport contribution of
the regularization terms R through Eq. (21). However, a negative impact was not observed in this study.

4.5.1. Evaluation of surface tension models

Here, the same computational settings are considered, but the surface tension is also included, i.e., f s # 0. In the context of the
CDI method, two classes of surface tension models are used: (i) the continuum surface force (CSF), and (ii) energy-based models. The
CSF model [43] takes the simple form

fst.csr =okV, (75)

where o is the surface tension coefficient and « the interface curvature is defined as k = V - ii. The energy-based models for CDI are
based on the free-energy functional taken from the Allen-Chan model [42]. The generic energy-based method [13,42,45] reads

0P
5
where ¢ denotes the chemical potential. The chemical potential uses the free energy @ of the phase field variable ¢ € [0, 1]. For
applications without phase change, the energy-based method is deemed superior to the CSF due to its improved convergence rate
[42,47].

In general, including the effect of surface tension in interface-resolved simulations commonly introduces spurious (or parasitic)
currents due to unbalanced forces at the gas-liquid interface [95]. In the context of boiling flows, this issue is often amplified by
the velocity jump across the interface [48]. Fig. 20(a) shows the spurious currents (using the CSF) at the interface (left), which
can disturb the thermal layer around the bubble through advection (close-up). This amplification leads to erroneous growth rates
(Fig. 20(b)). Consequently, selection of the surface tension model is a deciding factor for the simulation success. We therefore take
this opportunity to compare the performance of several surface tension models applied to boiling flows using the CDI method to (i)
guide future studies, and (ii) select the best-performing model for the following sections.

The spurious flow structures that develop during the simulation are investigated with three different grids and visualized in Fig. 21.
Here, the direction and magnitude of the velocity field is shown for time ¢ = 29 ms. The first, second, and third rows correspond to
the grid resolutions with Ax = 125 um, Ax = 62.5 um, and Ax = 31.3 um, respectively. On the left, the results for ¢ = 0 are included
as a reference. Both surface tension models (Egs. (75) and (76)) introduce severe flow structures. The resolution changes the pattern
of the spurious flow, where the results obtained with lower resolutions seem to be less affected. Refined grids exhibit larger velocity
magnitudes of the spurious currents, which affect the overall growth rate of the bubble (compare with Fig. 20(b)). For all grid
resolutions, the energy-based surface tension model performs worse than the CSF. But neither of the models (Egs. (75), (76)) provide
satisfactory results for the study of bubble growth.

In the literature, several variations of both surface tension model classes exist. Seeking a robust model for the present application,
we explore selected variations [51-53]. For the energy-based surface tension model, researchers reformulated the expression for the

fsrep=¢Ve, &= 6;"( e2v2¢), and ®= %[¢(1 -0 (76)
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Fig. 18. Numerical results for 3D bubble growth without gravity for four different grids. The bubble radius over time (a), and the radial temperature
distribution at time ¢ = 51.5 ms (b) together with the analytical solutions Eqgs. (72) and (74) are shown.The error convergence using Eq. (67) of the
simulated bubble radius compared to the analytical solution Eq. (72) is shown in panel (c).

surface tension stress such that the forcing term differs on a discrete level, but remains mathematically equivalent. For example,
Eq. (76) was reformulated in Ref. [52] as

89 (22 _ 2v24 \vg = 2 (vo - 2(v2p)ve ). (77)
e \ d¢ €

They refer to this formulation as the conservative method by rearranging the derivatives. A different strategy is followed by [53],
where the surface tension is expressed in terms of the level-set function ¥ (Eq. (10)). Expressing fgr gp in terms of the level-set
function yields

2 _
fST,EB =

it = 2 <¢<1 — )1 = 29)(1 - %) = e - ¢)v2\P>. o8

We compare the formulations in Egs. (76)—(78), obtaining the flow structures visualized in Fig. 22. This figure shows the signif-
icant impact of the discrete representation of the surface tension formulation on the spurious currents. While the results obtained
through the standard method and the level-set formulation [53] are comparable, a noticeable worsening is observed when using the
conservative formulation. None of the considered formulations are capable of reducing the spurious flow structures to an acceptable
level. Acknowledging the advantageous properties of the energy-based model class for non-phase change problems, we disregard
these models for the remainder of this study.

Regarding the CSF model, a promising variation of Eq. (75) was proposed in [51], where the gradient of a sharpened phase
indicator ¢’ replaces the term V¢. Therefore, the CSF variation by [51] reads

Forcsp =0xVe, (79
where ¢’ is the sharpened phase indicator calculated from

¢’=l+r,[min<max <¢g>1—g>—g} (80)

with 5 being the sharpening factor. The authors of Ref. [51] suggested using = 0.5 for VOF methods. We reevaluate this value in the
context of the ACDI method. For this purpose, we study the development of spurious currents for n = 0.5 and 5 = 0.75 and compare
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Fig. 20. Demonstration of the effect of spurious currents on the bubble growth. A slice through the bubble centre (a) visualizes the spurious velocities
in the gas and liquid phase at = 29 ms. The close-up shows how the spurious velocities transport the thermal boundary layer around the bubble.
Comparison of the growth rate (b) with and without the influence of the spurious currents. Results corresponding to Ax = 31.3 um and using the
CSF model.

them to the standard CSF model. The effect of 5 is visualized in Fig. 23, where ¢’ is compared to ¢. It is shown that for n = 0.5 and
€ = Ax, the gradient of ¢’ only differs from zero for 3-4 cell edges, whereas for n = 0.75, it only differs from zero for 2-3 cell edges.
As a result, V¢' is significantly more concentrated around ¢ = 0.5.

We now investigate the benefit of this increased concentration for spurious currents. The effect of the sharpened model on the
bubble growth is studied with two values of 5. Fig. 24 summarizes the results obtained using Ax = 62.5 um, with the standard CSF
results included as a reference. We observe that spurious currents drastically reduce with increased #. In addition, spurious flow
patterns observed with the sharpened CSF do not increase over the simulation runtime. We may argue that » should be set as large
as possible while still allowing for a stable simulation. From our experiments we found that n = 0.75 provides a good compromise
reducing the spurious currents (see Fig. 24) and exhibiting stable and robust numerical behaviour (given ¢* = 1). Hence, the expression
in Eq. (79) with # = 0.75 is implemented for all remaining simulations in this study due to its superior performance in reducing spurious
currents.

4.6. Two-dimensional film boiling

Our next step is assessing the framework’s capability of simulating complex boiling flows in multi-dimensional spaces. In this
section, we consider the simulation of film boiling in two dimensions. In this case, a horizontal, heated plate with a fixed temperature
T, is separated from the liquid phase by a growing gas layer (Fig. 25(a)). The gas layer grows until the interface becomes unstable
due to gravity, leading to the detachment of a rising bubble.
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Fig. 24. Comparison of the sharpened CSF method [51], i.e. Eq. (79), using different sharpening factors # with the standard CSF, Eq. (75). The
evolution of the spurious currents is visualized by including two time steps, i.e., 7 = 29 ms (top row) and ¢ = 51.5 ms (bottom row). Results were
obtained by using Ax = 62.5 pm.

The length scale 7, characterizing the instability, is the two-dimensional Taylor wavelength [96],

30
ly=2my| ——. (81)
S TP

Note that £, is equal to 74/12 times the capillary length /, = \/s||gll-1(p, — p;)~!. Exploiting the symmetry of the detaching bubble,
half the domain is simulated. To reduce the computational cost, we truncate the domain, in the x, direction, to a size of 3¢/2 and
apply an outflow boundary condition at the top. We employ the outflow boundary method proposed in [97], which allows bubbles
of a wide range of Weber numbers to exit the domain. Thus, an ordinary homogeneous Dirichlet boundary condition for the pressure
at the outflow becomes applicable, as required by the FFT solver [58].

In line with previous studies [7,19,92,98], the physical properties of Fluid. are utilized (see Table 2). In contrast to these studies,
we use a wall superheat T, — T, of only 1 K. We chose this modification, as phase field models seem to struggle to allow detach-
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Fig. 25. Schematic sketch of the film boiling simulation (a). Nusselt number over time (b) for three different meshes. The results for Nu correspond
to using Fluid. and T,,,;, - T,,, = 1 K.

Table 3

Two-dimensional film boiling. Time averaged Nus-

selt numbers compared to Nuy from Eq. (84).

Grid spacing Ax ¢y/128 ?/256 ty/512

Nu 2.538 2.583 2.562
Nu/Nuyg —1 -224%  -21.0% -217%

ments of vapour bubbles with these fluid properties in two dimensions [19]. The initial conditions [92] for the phase field ¢ are set
by placing the centre of the interface (¢ = 0.5) along the path described by the function ¢, according to

‘y ¢ 27mx,
_h D o , 82
P0=3 % 128 °°5< 70 (82)

to trigger an early detachment of a bubble with this first instability. The initial temperature field decreases linearly from T'(x, =
0) =T,a1 — Tyar to T(xy = ¢py) =0 in the x, direction. After startup, the simulations are run until =4 s to capture approximately
six bubble detachment cycles. For the discretization of the computational domain, we use three (uniform) grids with Ax = £,,/128,
Ax = £,/256, and Ax = £,/512.

The simulations are evaluated considering the temporal evolution of the Nusselt number Nu, which quantifies the heat transfer.
To obtain the instantaneous Nusselt number, we compute

X
xp=0 !

dx,

T
lc /’.)anll 0x;
(Twall - Tsut) /dﬂ

Here, the spatially averaged temperature gradient at the bottom domain boundary is non-dimensionalized by the wall superheat
and the capillary length scale /.. To compare the results to the literature, in particular the well-established empirical correlation by
Klimenko [96], we compute the time-averaged Nusselt number Nu. For the given parameters, this empirical Nusselt number, denoted
by Nug, is

Nu

(83)

wall

L Dr3 118}
Nuyg =0.19Gr3Pr3 f,with Gr= ¢ 1 (ﬂz

——1>, f=0.89§%, (84
My P1

where Pr=c, i 47" and ¢ = ¢, (T — Toa) L)

Fig. 25(b) shows the temporal evolution of the instantaneous Nusselt number for all examined grid resolutions. As reference,
the red solid line in Fig. 25(b) represents the value of the empirical correlation Nuy. Apart from the start-up phase, the two finest
grids result in the same Nusselt numbers (Fig. 25(b)). The coarse grid exhibits smaller amplitudes in Nu, yet yields the same bubble
detachment frequency as the other two finer grids. For further comparison, we calculate the time-averaged Nusselt numbers Nu,
which are summarized in Table 3, along with the relative deviation from Nu to Nuj. All grid resolutions show a discrepancy from

Nuyg of at least 21 % (Table 3).
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Fig. 27. (a) Schematics of the computational setup including dimensions and boundary conditions. The suitability of grid spacing Ax = 11.6um and
Ax = 7um are confirmed by comparing with the zero gravity solutions of: (b) the bubble size in Eq. (72) and (c) temperature in Eq. (74).

Fig. 26 depicts the differences in results during the start-up phase at three different time steps. For the coarser grids, the departure
of the first bubble is delayed (Fig. 26). The shapes of the detached bubbles are similar for the two finer grids, whereas that of the
coarsest grid is significantly different. The difference in the bubble departure time, for the two finer grids, reduces in the remainder
of the simulations, as indicated by the evolution of the Nusselt number in Fig. 25(b).

4.7. Bubble growth subjected to gravity

As a final benchmark, we consider a three-dimensional growing bubble in a superheated liquid, subjected to gravity. This situation
was experimentally investigated for various fluids at different degrees of superheat in [99]. We compare our numerical predictions
to the experimental results obtained for Ethanol (see Table 2) at 3.1 K superheat. Several numerical studies [14,49,61,73,100] have
used the same experimental case to validate their implementations. This flow is symmetric about the vertical axis, allowing for a
reduced computational cost by simulating a quarter of the domain. This situation is presented in Fig. 27(a), with the placement of
the initial bubble of radius R, on one edge of the computational domain. Furthermore, the symmetry boundary condition is applied
on the domain faces intersecting the bubble, while the free-slip boundary condition is imposed on the opposite faces. The coordinate
system moves together with the rising bubble, allowing for the use of a significantly smaller domain (see [73]). This is enforced by
dynamically adjusting the inflow velocity to keep the rising bubble at a constant location within the moving coordinate system. The
set of boundary conditions is completed by using an outflow boundary at the bottom of the domain. For the validation, we adopt two
uniform grids, with the grid spacings Ax = 11.6 pm and Ax =7 pm. For all simulations, we use an initial bubble radius of R, = 210
um, which is a common choice [14,49,61,73,100].

We first perform simulations with zero gravity to confirm the grid’s capability to resolve the temperature field. The procedure
described in Section 4.5 gives a bubble growth rate and temperature distribution with growth constant § ~ 5.4969. As seen in Fig. 27(b)
and (c), similar results are obtained for both of the grid spacings, when gravity is neglected. The simulation shows good agreement
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29



L. Weber, A. Mukherjee, A.G. Class et al. Journal of Computational Physics 551 (2026) 114680

x107*
sy
) —_ TrTr—o
=S -
- . 1.50 A,
g = T T e
=
=125
=
i3}
% 1.00 1
= 7
2 0.75 1 /5
. 2 3 —— Present, Az = 11.7um
2 = 0.50 7 —— Present, Az = Tum
T x1073 /A .
1 [m] 0.25 —-— Sato & Nicento (2013), Az = 7.8um
| . . 5 - ' 20 PR Badillo (2013), Az = 15.6um
0 1 2 3 0.0 0.5 1.0 1.5 2.0 0.00 T T T T
x10? 0.0 0.2 0.4 0.6 0.8 1.0
Superheat T [K] Masstransfer M [kgm=3s71] Time [s] X107
(a) Bubble at r = 68.8ms (b) Bubble rise velocity

Fig. 30. (a) Close up view of the bubble shows the mass transfer density, velocity field, and temperature distribution for a selected time. (b) The
bubble rise velocity is compared to the results by [14,49].

with the analytical solution for the bubble size, although the growth rate is slightly under-predicted (Fig. 27(b)). This is also reflected
in the temperature profiles in Fig. 27(c), where the finer grid spacing shows minor improvements.

Before simulating the bubble growth subjected to gravity, the current implementation is evaluated regarding its performance in a
high-performance computing (HPC) environment. The implementation uses Fortran95 and is based on the open-source codes FIuTAS
[60] and CaNS [58]. For the scaling test, the code was executed on the CPU nodes of the HoreKa cluster at the Karlsruhe Institute
of Technology (KIT) using the Intel Xeon Platinum 8368 hardware. Considering the grid with Ax = 7 um and four different numbers
of cores ranging from 102 to 10> CPUs, the average time required for advancing the simulation by one time step was measured. The
resulting normalized speed-up is visualized in Fig. 28(a). Here, good scaling properties were observed for the considered range of
CPU cores. In Fig. 28(b), the proportion of time spent to complete each sub-task is visualized when using 103 CPUs.

In the next step we add gravity, ||g]| = 9.81 m s~2. Again, we use the analytical zero-gravity solution (Eqs. (72) and (74)) as an
initial condition. This choice is justified by the assumption that buoyancy effects are negligible for very small bubbles, during the short
startup phase. Using Eq. (72) and R, = 210 um, this translates, again, into a physical time #, = 5.17 ms at the start of the simulation.
For both grids, the simulation proceeds until the physical time ¢ = 90 ms is reached.

To evaluate the results, we begin by comparing the simulated bubble size to the literature data. For that purpose, an equivalent
bubble radius R, is utilized [99]. The equivalent radius is calculated as

1
Ry = 7(Dyy + D). (85)

where D,, is the bubble diameter in the x,x,-plane and D; is the one measured in the x5 direction. Fig. 29(a) shows the evolution of
R,, over time, together with the experimental data by [99] for T, — T,,, = 2.8 K, 3.1 K, and 3.2 K. Additionally, the numerical results
from [49] are included for reference, using various grid spacings. As in the zero-gravity simulations, there is a weak dependence
on grid spacing. For both simulations, the equivalent bubble radius is within the range of data points observed in the experiments,
although more of the measurement points are scattered below the values predicted by the simulations. In comparison, our results are
higher than those of [49] for all resolutions. However, our results align with [49] for the smallest grid spacing.

Fig. 29(b) displays the temperature distribution in the plane cutting through the bubble at four times for both considered grid
resolutions (left and right half of the figure). We correct the data by accounting for the moving coordinate system such that all bubbles
are displayed in the laboratory coordinate system. Fig. 29(b) shows how the bubble grows and rises, where green represents areas in
which the fluid is at saturation temperature and white areas represent those at which T, — T, = 3.1 K. The temperature distribution
is characterized by a thin thermal layer at the top of the bubble and cooled liquid trailing behind the rising bubble. A clear separation
between liquid and gas is observed, as indicated by the saturation temperature. Both grids result in similar temperature distributions
and interface locations. For the fine grid (right), the wake of cooled liquid trailing behind the bubble seems to be less pronounced
compared to the coarse grid (left).

To gain further insights, the bubble is examined in more detail at = 68.8 ms. A close-up view is presented in Fig. 30(a), where
the temperature distribution and the velocity vector field are shown on the left half. On the right, we display the distribution of the
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mass transfer density M, along with a magnified view of a section in the top part of the bubble. As expected, the mass transfer is
concentrated on the top of the bubble. At the bottom, almost no mass transfer occurs, due to the cooled liquid wake.

Another quantity of interest is the bubble rise velocity, which is commonly reported in the literature. The velocities are compared
to those by [14] and [49] in Fig. 30(b). The simulations using grid spacing Ax =7 pm and 11.6 um, yield similar rise velocities.
Between the two grids, a slight difference of 0.6 % is observed, where the velocities reach their peak. Compared to [14] and [49], our
results exhibit a considerably slower bubble acceleration. However, the peak values are in agreement with [14], although they occur
at different times. The velocity predicted in [49] shows a higher acceleration and a larger maximum. A possible explanation for the
differences might be that the domain size and boundary conditions differ throughout the literature (e.g. smaller domain in [14] or
different boundary conditions in [73]). A larger database of simulation results is required to claim evidence for this explanation. The
experiment in [99] does not report this quantity.

Generally, quasi grid-independent results are achieved using Ax = 11.6 um, which is comparable to numerical studies using a
sharp-interface approach [49,61,100]. The study by Giustini and Issa [73] used Ax = 3.12 um, which was arguably not necessary for
the present study.

5. Conclusion

In this study, we present a framework to simulate boiling flows using the Accurate Conservative Diffuse Interface method for tracking
the liquid-gas interface. The main objectives of our implementation are efficiency and consistency. We successfully develop and
implement models that are computationally efficient, while consistently formulating the set of equations for the calculation of boiling
flows.

To achieve consistency, we derive the governing equations of the mixture and identify the contributions of the regularization
terms. As an outcome, we recognize the existence of additional contributions in the momentum balance equation that are often
neglected. We consider them through an alternative formulation based on developments intended for Cahn-Hillard models. With this
approach, we introduce a novel coupling of the momentum equation with the regularization terms, which significantly improves the
accuracy of the results. Keeping all regularization terms is crucial for an accurate prediction of the interfacial pressure jump, especially
for unsteady phase change. The use of this modified set of equations results in significant improvements, also when simulating bubble
dynamics in the absence of phase change. From a more fundamental viewpoint, we demonstrate that the regularization terms can
account for velocity differences among the two phases within the diffuse interface, and that neglecting these has a negative impact
on the pressure jump at the interface. Thus, in contrast to previously proposed ACDI mixture equations, we conclude that including
all regularization terms is mandatory to obtain accurate results in boiling scenarios.

To the best of our knowledge, our work is the first to implement this set of equations in the context of boiling flows in order to
resolve complex, three-dimensional problems. These equations, based on the Accurate Conservative Diffuse Interface formulation,
allows us to use central differencing schemes, which improves the scalability and efficiency.

Furthermore, we also enhance efficiency by utilizing a FFT-based solver for the pressure Poisson equation. We implement and
test our alternative FFT-MPDJ scheme, which addresses the well-known shortcomings of existing solvers. Specifically, all simulation
results demonstrate that our methodology: (i) avoids spurious pressure oscillations at the interface; (ii) provides a high accuracy in
calculating the interfacial pressure jumps; and (iii) attains a faster adaptation to the flow in the startup phase.

We present a simple and efficient kinetic phase change model for the ACDI method. For this phase change model, we analyze the
time-step constraint and introduce a dynamic adjustment of the regularization speed. The phase change model is tested against several
boiling scenarios with a variety of fluid properties. We find the model to be free of problem-dependent parameters, and capable of
converging to the analytical solution across all benchmarks. However, compared to Sharp Interface methods, the model required a
slightly higher resolution to achieve convergence. Overall, we conclude that the phase change model is efficient, versatile, and, when
combined with the dynamic regularization speed, robust.

Modelling surface tension is often connected with challenges for boiling flow simulations, mainly because of spurious currents
around the phase interface. To address this issue, we investigate the performance of different energy-based and CSF models, using
a bubble growth benchmark (Section 4.5). Although energy-based surface tension formulations are known to have advantages for
problems when excluding phase change, we find them to cause increased spurious currents for boiling flows. It is concluded that a
sharpened CSF model returns the lowest intensity of spurious currents.

Finally, we successfully simulate the dynamics of a single bubble subjected to phase change and gravity (Section 4.7). We validate
that our framework is capable of accurately calculating real world boiling flows. We find good agreement between our results and
experimental data for the bubble growth rate. The results are also consistent with other numerical studies using Sharp Interface
methods at a comparable grid resolution.

For further investigation of boiling heat-transfer phenomena, accurate interface-resolved simulations play an important role. The
results obtained in this study show that our developed framework is a suitable tool for that purpose. As such, we intend to apply the
presented methodology to large-scale boiling flows for which the above-demonstrated properties are indispensable. In this context,
additional extensions to this framework are planned to enable the numerical investigation of conjugate heat transfer phenomena.
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