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CHAPTER 1

Introduction

Imagine throwing a dice. In a perfect setting, each side of the dice has an equal chance of appearing. However,
due to manufacturing imperfections, different dice can have different biases. Now imagine we have a bag full
of dice and we randomly select one to throw. This scenario illustrates a probability distribution (selecting a
dice) over a set of probability distributions (different dice) and illustrates the idea underlying the Dirichlet
process, which defines a probability distribution over probability measures. The Dirichlet process is widely
used in statistical modelling, particularly for tasks such as clustering, density estimation and modelling
distributions where the number of components is not fixed in advance (for example, clustering a dataset into
groups without specifying the number of groups beforehand). Examples are Ferreira da Silva (2007), which
uses a model based on a Dirichlet process to segment brain tissue in MRI images, Rodríguez-Álvarez, Inácio
and Klein (2025) for a recent density regression model and Topkaya, Erdogan and Porikli (2013), where a
method to automatically detect and track a previously unknown number of objects in videos is presented.
A comprehensive statistical perspective on Dirichlet processes can be found in Teh (2010). Moreover, Shiga
(1990) shows that the distribution of a Dirichlet process is the unique stationary reversible distribution of a
Fleming–Viot process with parent-independent mutation, a measure-valued Markov process in population
genetics. The Dirichlet process is well-known in number theory and combinatorics (cf. Billingsley (1972)
showing that the sequence consisting of the atoms of a Dirichlet process arises as limiting distribution in
prime factorisation or Pitman (2006) for random partitions). A survey connecting population genetics,
statistics and number theory is Crane (2016).

Returning to our dice example, consider the task of defining a probability distribution over a set of
probability distributions on a finite set with n ≥ 1 elements (in case of a six-sided dice, n = 6). This can be
approached as follows. Any probability distribution on a set with n elements is characterised by a vector
(p1, . . . , pn) whose entries are non-negative and sum to one. In other words, every probability distribution
on this set corresponds to a point in the simplex

∆n := {(p1, . . . , pn) ∈ [0, 1]n : p1 + . . .+ pn = 1}.

The Dirichlet distribution is a probability distribution on this simplex. For n ≥ 2 and a parameter vector
(α1, . . . , αn) with α1, . . . , αn ∈ (0,∞) the Dirichlet distribution Dir(α1, . . . , αn) assigns to each Borel subset
S of ∆n the value

Γ(α1 + . . .+ αn)
Γ(α1) . . .Γ(αn)

∫ 1

0
. . .

∫ 1

0
1S(x1, . . . , xn)xα1−1

1 · · ·xαn−1
n dx1 . . . dxn,

where Γ denotes the Gamma function Γ(z) =
∫∞

0 tz−1e−t dt, z > 0. As is customary, we extend the defini-
tion to allow for parameter vectors in which some entries vanish. Let n ≥ 2 and suppose α1 = . . . = αk = 0
for some k < n while αk+1, . . . , αn > 0. Then we define Dir(α1, . . . , αn) = δ⊗k

0 ⊗ Dir(αk+1, . . . , αn), the
product measure consisting of k times the Dirac measure in 0, denoted by δ0, and the Dirichlet distribution
Dir(αk+1, . . . , αn) on the lower-dimensional simplex ∆n−k. This reflects the fact that components corre-
sponding to zero parameters are almost surely equal to zero. A similar definition applies when parameter
vectors (α1, . . . , αn) with α1, . . . , αn ∈ [0,∞) and α1 + . . .+ αn > 0 are considered. Furthermore, if n = 1
and α1 > 0, we set Dir(α1) = δ1, the Dirac measure in 1. The Dirichlet distribution is widely applied
in various settings, including machine learning, Bayesian statistics and population genetics. A thorough
treatment can be found for example in Ng, Tian and Tang (2011).

The task of defining a probability distribution over distributions on arbitrary spaces proves to be more
intricate if the probability distribution is expected to place positive mass on a rich class of measures while
remaining analytically and computationally tractable. The fundamental idea introduced by Ferguson was
to extend the concept of the Dirichlet distribution to a general setting. The Dirichlet process is a random
probability measure such that, for any finite partition of the underlying space, the vector of probabilities
assigned to the partition elements follows a Dirichlet distribution governed by some parameter measure.
Formally, let (X,X ) be a measurable space carrying a finite measure ρ ≠ 0 and let (Ω,A,P) be a probability
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space. A random probability measure is a measurable mapping from Ω to the set of all finite measures,
equipped with the standard σ-field. Ferguson’s definition now reads as follows.

Definition 1.1 (Ferguson (1973)). A random probability measure ζ on X is called a Dirichlet process with
parameter measure ρ if

P((ζ(B1), . . . , ζ(Bn)) ∈ ·) = Dir(ρ(B1), . . . , ρ(Bn)) (1.1)
for every measurable partition B1, . . . , Bn, n ∈ N, of X.

One method of studying random processes is stochastic analysis. Stochastic analysis or stochastic calculus
is an extension of calculus to stochastic processes. In calculus, an elementary identity is the integration by
parts formula. Generalised to an open subset D of Rn with sufficiently smooth boundary, it states∫

D

⟨∇f(x), h(x)⟩ dx = −
∫

D

f(x) div h(x) dx

for continuously differentiable f : D → R and h : D → Rn with compact support in D. (Of course, the
assumptions can be weakened. Since we are here primarily interested in using the intuition from elementary
calculus as a guiding star, we impose stronger assumptions than necessary.) Here, ⟨·, ·⟩ denotes the standard
scalar product in Rn, the gradient ∇f is, as usual, a vector containing the partial derivatives of f and the
divergence div h is defined by

div h := ∂1h1 + . . .+ ∂nhn,

where hi is for i ∈ {1, . . . , n} the ith component of h. Introducing the Laplace operator ∆, which is for
f ∈ C2(D,R) given by

∆f := ∂11f + . . .+ ∂nnf,

the identity
div ∇f = ∆f

follows for f ∈ C2(D,R). Moreover, for f, g ∈ C2(D,R) with compact support, we obtain∫
D

∆f(x)g(x) dx =
∫

D

f(x)∆g(x) dx = −
∫

D

(∇f(x),∇g(x)) dx.

In stochastic analysis, the Lebesgue measure is replaced by the distribution of a random process and the
considered functions are random variables which are square integrable with respect to this distribution. The
construction of derivatives becomes more intricate in this infinite-dimensional setting. One possible approach
is to consider random variables of a specific form for which a gradient can be defined explicitly. Gradients
for a broader class of random variables can subsequently be defined through approximation techniques.
Another approach is to use an orthogonal decomposition of the space of all square integrable random
variables, often referred to as chaos expansion. With the help of this decomposition, every square-integrable
random variable can be represented as a (possibly infinite) sum of integrals with respect to the process.
Using this representation of a random variable, it is possible to define a gradient in terms of the chaos
expansion. Once a gradient is available, one can define an adjoint operator that satisfies an integration
by parts formula, analogous to the divergence in Rn. Within the framework of random processes, the
adjoint operator to the gradient in a suitable space, commonly also referred to as the divergence operator,
is denoted by δ. The composition of the divergence δ and the gradient ∇ results, as in Rn, in yet another
operator. This operator is usually denoted by L and is the generator of an associated Markov process. We
conclude the motivating example with a connection to stochastic analysis. Let

Ptf(x) := 1
(4πt)n/2

∫
Rn

e− |x−y|2
4t f(y) dy, t > 0, x ∈ Rn,

for bounded and continuous functions f : Rn → R. It can be shown that {Pt, t ≥ 0}, where P0 is the identity
mapping, forms a semigroup of operators and that the function u : (0,∞)×Rn → R with u(t, x) = Ptf(x) for
a bounded and continuous function f is a solution of the heat equation ∂t = ∆x with limt→0 u(t, x) = f(x)
for every x ∈ Rn. Moreover, it holds

Ptf(x) = E[f(x+B2t)], t > 0, x ∈ Rn,

for a bounded and continuous function f and a Brownian motion (Bt)t≥0 in Rn. This sparks the idea that
the Brownian motion is the associated Markov process. (For rigorous statements and proofs concerning the
heat semigroup, see e.g. Bakry, Gentil and Ledoux (2014), Ethier and Kurtz (2005) or Jost (2013).)
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Regarding the Dirichlet process, preliminary steps in stochastic analysis have already been taken.
In Peccati (2008), a chaos expansion for square integrable functions is established and in Flint and Torrisi
(2023) a partial integration formula with what Dello Schiavo and Lytvynov (2023) refer to as “the discrete
gradient” is derived. The exact results will be recalled in Chapter 2. In the context of Fleming–Viot
processes, also a gradient and a generator, defined with the help of a class of smooth cylindrical functions,
are studied. We recall the Fleming–Viot process with parent-independent mutation in Chapter 2. There
are several other measure-valued processes closely related, e.g. the process on the space of all probability
measures on the unit interval [0, 1] constructed in Shao (2011), which is reversible with respect to the
distribution of a Dirichlet process, the Wasserstein diffusion on the same state space from von Renesse and
Sturm (2009) or the process considered in Dello Schiavo (2022), where also a comparison to the Wasserstein
diffusion as well as the Fleming–Viot process with parent-independent mutation can be found. More
generally, processes related to the Poisson–Dirichlet distribution or the Pitman–Yor process are explored
for instance in Petrov (2009) or Feng and Sun (2010). The study of Markov processes also encompasses
functional inequalities, such as the Poincaré inequality. A Poincaré inequality for the Dirichlet form of
the Fleming–Viot process with parent-independent mutation is proven in Stannat (2000). Functional
inequalities for the process from von Renesse and Sturm (2009) and the Poisson–Dirichlet distribution are
derived in Döring and Stannat (2009) and Feng, Sun, Wang and Xu (2011), respectively. The spectral gap
of another Dirichlet form related to the Dirichlet and the Gamma process is estimated in Ren and Wang
(2020). A Poincaré inequality for the Dirichlet distribution is established in Feng, Miclo and Wang (2017).

Despite the various works concerning different facets of stochastic analysis of the Dirichlet process, a
thorough and unified examination remains absent. The present thesis proposes an approach based on
explicit formulas for the chaos expansion. These explicit formulas are derived with the help of a multivariate
integral equation for the Dirichlet process. Before we can formulate the equation, we introduce some
notation. Let (X,X ) be a measurable space. Given a measure µ on X and a natural number n ∈ N, we
define a measure µ[n] by

µ[n](B) :=
∫
X
. . .

∫
X
1B(x1, . . . , xn) (µ+ δx1 + . . .+ δxn−1)(dxn) . . . (µ+ δx1)(dx2)µ(dx1), B ∈ X ⊗n.

If the distribution of a Dirichlet process ζ on X with parameter measure ρ is denoted by Dir(ρ) and the set
of all finite measures on X by M(X), the multivariate Mecke-type equation from Chapter 3 states∫

M(X)

∫
Xn

f(µ, x1, . . . , xn)µn(d(x1, . . . , xn)) Dir(ρ, dµ)

= 1
ρ[n](Xn)

∫
Xn

∫
M(X)

f(µ, x1, . . . , xn) Dir(ρ+ δx1 + . . .+ δxn , dµ) ρ[n](d(x1, . . . , xn))

for all measurable f : M(X) × Xn → [0,∞). Using this equation, in Chapter 4, we are able to show that
every measurable mapping F : M(X) → R such that E[F (ζ)2] < ∞ can be written as an orthogonal series

F (ζ) = E[F ] +
∞∑

n=1

∫
Xn

fn(x) ζn(dx), P-a.s.

where the convergence is in L2(P). Moreover, we can explicitly calculate the kernel functions fn, n ∈ N. In
terms of the chaos expansion, we specify a dense subset dom(∇) of all square-integrable mappings F for
which we then define a gradient ∇F in Chapter 5. As a next step, we introduce a divergence operator δ
acting as an adjoint of ∇ in the sense that

E
[∫

X
H(x)∇xF ζ(dx)

]
= E [δ(H)F ]

for mappings F such that ∇F is defined and suitable H : Ω × X → R. Note that the integration on the
left-hand side is taken with respect to the random measure ζ, in contrast to the Gaussian and Poisson case,
where integration with respect to a deterministic measure is considered. Finally, we construct an operator
L satisfying

−δ(∇F ) = LF, P-a.s.

as well as
E[(LF )G] = E[F (LG)] = −E(∇F,∇G)



4 Chapter 1. Introduction

for all mappings F,G in its domain. Here, E is the Dirichlet form associated with the Fleming–Viot process
with parent-independent mutation. We show that L is the generator of this process. An application of the
theory developed in the present thesis is a sharp Poincaré inequality and a reverse Poincaré inequality for
the Dirichlet process, deduced in Chapter 7.

This thesis is structured as follows. Chapter 2 reviews concepts and results from the literature relevant
for this thesis and explains the notation used. Chapter 3 is devoted to the study of a multivariate version
of the Mecke-type equation, which is stated in Theorem 3.7, along with an analysis of the properties of the
associated moment measures. As a corollary, an explicit formula for the moment measures of a Dirichlet
process is obtained in (3.4). The multivariate Mecke-type equation is the basis for Chapter 4, in which the
chaos expansion, stated in Theorem 4.18, is derived. An explicit formula for the involved kernel functions is
given in (4.16). Chapter 5 makes use of the chaos expansion to define the operators ∇, δ and L in dedicated
sections. The integration by parts formula connecting these three operators is established in Theorem 5.20.
The connection to the Fleming–Viot process with parent-independent mutation is drawn in Chapter 6. In
particular, in Theorem 6.5 the associated Dirichlet form is obtained (in terms of the chaos decomposition).
Chapter 7 contains the variance bounds in Theorem 7.1 (sharp Poincaré inequality) and Theorem 7.6
(reverse Poincaré inequality). For the sake of readability, two elementary summation formulas used in
various parts of this thesis have been collected in the appendix.



CHAPTER 2

Dirichlet processes

This chapter provides an overview of key concepts from the existing literature. The first section collects
some constructions of Dirichlet processes to give the reader a brief impression of the process’s versatility.
To situate these constructions within a broader conceptual landscape, this section includes blue boxes
that point to related concepts or provide background information. The second section is devoted to the
Mecke-type equation. The third section reviews relevant concepts from the literature. The final section
explains the notation used in this thesis.

2.1. Construction
Since Ferguson’s seminal work in Ferguson (1973), in which he defined and proved the existence of Dirichlet
processes through the verification of Kolmogorov’s consistency conditions (conditions that ensure that
a collection of finite-dimensional distributions gives rise to a stochastic process; Ferguson shows that it
is possible to define a random probability measure by specifying the distribution on partitions under
certain conditions, which, in particular, guarantee consistency under refinements of the partitions) and
gave a construction using Gamma processes (§ 4 in Ferguson (1973)), a variety of alternative constructions
have been proposed in the subsequent literature. In this section, we provide a brief overview of different
constructions.

Let (X,X ) be a measurable space with a non-zero finite measure ρ.

Construction with a Gamma random measure
Analogous to the construction of a random vector with a Dirichlet distribution via independent Gamma
random variables, a Dirichlet process can be constructed. This approach is described, for instance, in
Appendix 2 in Kingman (1975), in § 9.2 in Kingman (1993) or in Example 15.6 in combination with
Exercise 15.1 in Chapter 15 in Last and Penrose (2017).

Construction of a Dirichlet-distributed random vector using Gamma distributed random variables
(cf. e.g. Example 3.3.6 in Hogg, McKean and Craig (2019))

Let k ∈ N and let θ1, . . . , θk > 0. Moreover, let Y1, . . . , Yk be independent random variables such that
Yi follows a Gamma distribution with shape parameter θi and rate parameter 1 for each i ∈ {1, . . . , k}.
By standard properties of the Gamma distribution, Y = Y1 + . . .+ Yk has a Gamma distribution
with shape parameter θ1 + . . .+ θk and rate parameter 1.
A change of variable argument for the corresponding densities shows that the vector (Y1/Y, . . . , Yk/Y )
is Dirichlet-distributed with parameter (θ1, . . . , θk) and independent of Y .

Let η be a Poisson process on X × (0,∞) whose intensity measure is the product of ρ and the measure
on (0,∞) that has Lebesgue-density r 7→ r−1e−r. Then,

ξ(B) :=
∫

B×(0,∞)
r η(d(x, r)), B ∈ X ,

defines a random measure ξ on X (cf. Example 15.6 in Last and Penrose (2017)), which is completely
independent, i.e. for pairwise disjoint measurable sets B1, . . . , Bm the random variables ξ(B1), . . . , ξ(Bm)
are independent (m ∈ N). Furthermore, ξ(B) follows a Gamma distribution with shape parameter ρ(B)
and scale parameter 1 for B ∈ X (cf. Example 15.6 in Last and Penrose (2017)). Thus, ξ is called Gamma
random measure.
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As ρ is assumed to be finite, ξ(X) is finite with probability one and the random probability measure ζ,
defined by

ζ(B) := ξ(B)
ξ(X) , B ∈ X , (2.1)

is a Dirichlet process with parameter measure ρ (cf. e.g. Appendix 2 in Kingman (1975)), independent
of ξ(X) (cf. e.g. § 4 in Ferguson (1973) or Lemma 1 in Tsilevich and Vershik (1999)). We note that the
distribution of a Dirichlet process is determined by its parameter measure (cf. Proposition 13.2 in Last and
Penrose (2017)).

Construction with the Poisson–Dirichlet distribution
Closely related to the construction with a Gamma random measure is the already mentioned construction
from § 4 in Ferguson (1973).

Let Γ1 > Γ2 > . . . be the points of a Poisson process η̃ on (0,∞) whose intensity measure has the density
r 7→ ρ(X)r−1e−r with respect to the Lebesgue measure on (0,∞). (We can also view η̃ as the restriction
η(X × ·) of the Poisson process from the last section). Since

E

[ ∞∑
i=1

Γi

]
= E

[∫ ∞

0
x η̃(dx)

]
= ρ(X)

∫ ∞

0
x(x−1e−x) dx = ρ(X),

the sum Γ =
∑∞

i=1 Γi is almost surely finite and we can set

Pi = Γi

Γ , i ∈ N.

Let Y1, Y2, . . . be independent random variables in X with distribution ρ
ρ(X) , independent of Γ1,Γ2, . . ..

Theorem 2.1 (Theorem 2 in § 4 in Ferguson (1973)). The random probability measure
∑∞

i=1 PiδYi is a
Dirichlet process with parameter measure ρ.

The law of the sequence (Pi)i∈N on the set

∇∞ =
{

(an)n∈N : 1 ≥ a1 ≥ a2 ≥ . . . ≥ 0,
∞∑

n=1
an = 1

}

is called Poisson–Dirichlet distribution with parameter 0 and ρ(X), abbreviated PD(0, ρ(X)). This distribu-
tion, sometimes also referred to as PD(ρ(X)), was introduced in Kingman (1975) and later generalised to the
two-parameter setting in Pitman and Yor (1997). The component “Dirichlet” in the name Poisson–Dirichlet
distribution is explained by the following box.

Relation between the one-parameter Poisson–Dirichlet distribution and the Dirichlet distribution
(cf. Kingman (1975) and § 9.3 in Kingman (1993)))

Let Q(n) = (Q(n)
1 , . . . , Q

(n)
n ) for n ∈ N be a Dirichlet-distributed vector with parameter (θ(n)

1 , . . . , θ
(n)
n )

where θ(n)
1 , . . . , θ

(n)
n > 0. Furthermore, assume

max
(
θ

(n)
1 , . . . , θ(n)

n

)
→ 0 and

n∑
i=1

θ
(n)
i → λ, n → ∞,

for a constant λ > 0. Then, for any k ∈ N, the decreasing order statistic (Q(n)
(1) , . . . , Q

(n)
(k)), i.e.

Q
(n)
(1) ≥ . . . ≥ Q

(n)
(k) are the k largest values in (Q(n)

(1) , . . . , Q
(n)
(n)), converges as n → ∞ to (P1, . . . , Pk),

where (Pi)i∈N follows a Poisson–Dirichlet distribution with parameter λ.

We note that, according to § 9.6 in Kingman (1993), the Poisson–Dirichlet distribution is “rather less
than user-friendly”. However, in the context of population genetics, where this distribution arises as the
stationary distribution of a studied Markov process (the infinitely-many neutral alleles diffusion model,
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cf. e.g. Ethier and Kurtz (1981) for a rigorous derivation of the model and a proof of stationarity in
Theorem 4.3), Watterson (1976) establishes results on the distribution of the vector (P1, . . . , Pk), k ∈ N,
for a sequence (Pi)i∈N with Poisson–Dirichlet distribution. A detailed treatment of the Poisson–Dirichlet
distribution is given in Feng (2010).

Construction with a Polyá urn scheme
Urn models can be used to describe many phenomena in stochastic (cf. Mahmoud (2008) for a general
overview and applications to informatics and population genetics). An urn scheme that can be used to
describe Dirichlet processes was given by Blackwell and MacQueen (1973). It is now widely known as the
Blackwell–MacQueen urn scheme in their honour. In their paper, Blackwell and MacQueen assumed that
(X,X ) is a complete, separable metric space with Borel-σ-field. This assumption can be weakened, as can
be seen, for example, in Pitman (1996).

Let (Xn)n∈N be a sequence of random variables such that

P(X1 ∈ ·) = ρ(·)
ρ(X) and P(Xn+1 ∈ · |X1, . . . , Xn) = (ρ+ δX1 + . . .+ δXn

) (·)
ρ(X) + n

. (2.2)

The sequence (Xn)n∈N is called a Pólya sequence with parameter ρ.

Theorem 2.2 (Blackwell and MacQueen (1973), cf. Theorem 2 in Pitman (1996)). Let (Xn)n∈N be a
sequence of random variables with distribution given by (2.2). Moreover, let the random measures ρn, n ∈ N,
be constructed by

ρn = ρ+
n∑

i=1
δXi , n ∈ N.

Then the measures ρn

ρn(X) converge in total variation norm for n → ∞ almost surely to a discrete random
measure ζ which is a Dirichlet process with parameter measure ρ. Furthermore, given ζ, the random
variables X1, X2, . . . are independent with distribution ζ.

For every fixed N ∈ N, the vector (X1, . . . , XN ) constructed as in (2.2) induces a random partition of the
set {1, . . . , N} by grouping together integers i, j ∈ {1, . . . , N} for which Xi = Xj . That is, the partition
corresponds to the equivalence classes of the relation i ∼ j if and only if Xi = Xj for i, j ∈ {1, . . . , N}.
If ρ is assumed to be diffuse, i.e., it has no atoms, the resulting sequence of partitions corresponds to a
realisation of the so-called Chinese restaurant process.

Chinese restaurant process (cf. Chapter 3 in Pitman (2006) or (11.19) in Aldous (1985))

Let θ > 0. Consider a restaurant with infinitely many tables, each with infinite seating capacity. The
first customer enters and sits at the first table. The second customer either joins the first at the same
table with probability 1

θ+1 or chooses to sit at a new table with probability θ
θ+1 . More generally,

suppose n ∈ N customers are currently seated at k ∈ {1, . . . , n} tables, with n1, . . . , nk customers at
each table, where

∑k
j=1 nj = n. Then, customer n + 1 decides to sit at table j ∈ {1, . . . , k} with

probability nj

θ+n or opens a new table with probability θ
θ+n .

This procedure yields an exchangeable random partition of N, that is, a sequence (Πn)n∈N of random
partitions satisfying two properties: First, for each n ∈ N, the partition Πn is a random partition of
{1, . . . , n} whose distribution is invariant under permutations of {1, . . . , n}. Second, the sequence
(Πn)n∈N is consistent in the sense that, for n > 1, the partition Πn−1 is almost surely obtained from
Πn by removing the element n.

Construction with Stick-breaking
In general, stick-breaking is a method for constructing a discrete random probability measure by distributing
the total mass of one to different points. The idea is as follows. We identify the mass 1 with a stick of
length 1. In the first step, we break the stick at the random variable V1 taking values in [0, 1]. The amount
V1 is then assigned to the first point. Next, the remainder of the stick with length 1 − V1 is broken into two
pieces with lengths relative to V2 and 1 − V2 for the realisation of a second random variable V2 in [0, 1]. We
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allocate the mass (1 − V1)V2 to the second point and are left with a stick of length (1 − V1)(1 − V2). By
iteratively introducing random variables V3, . . . , Vn with values in [0, 1], the mass of the n-th point (n ∈ N)
is Vn

∏n−1
k=1(1 − Vk). In the statistics literature, a stick-breaking construction for Dirichlet processes was

introduced by Sethuraman (1994). However, in the context of population genetics, it was already discovered
in McCloskey (1965).

Theorem 2.3 (Theorem 3.4 in Sethuraman (1994)). Let Z1, Z2, . . . and V1, V2, . . . be independent random
variables such that Zn is distributed according to ρ

ρ(X) and Vn follows a Beta(1, ρ(X))-distribution, n ∈ N.
Then

ζ =
∞∑

n=1
Vn

n−1∏
k=1

(1 − Vk)δZn

is a Dirichlet process with parameter measure ρ.

To prove the theorem, Sethuraman (1994) uses a distributional equation for Dirichlet processes that is
interesting in its own right. Let V ∼ Beta(1, ρ(X)) and X ∼ ρ

ρ(X) be independent. We consider the equation

P
d= V δX + (1 − V )P (2.3)

where d= denotes equality in distribution and P is a random measure independent of (V,X). It can be
shown (cf. proof of Theorem 3.4 in Sethuraman (1994)) that a Dirichlet process with parameter measure ρ
is the unique solution to this equation.

Let

W1 = V1 and Wn = Vn

n−1∏
k=1

(1 − Vk), n ∈ N, n > 1,

for the random variables V1, V2, . . . from the preceding Theorem. Then the distribution of the sequence
(Wn)n∈N in the set

∆∞ =
{

(an)n∈N : 0 ≤ a1, a2, . . . ≤ 1,
∞∑

n=1
an = 1

}
is called GEM(ρ(X))-distribution (cf. p. 321 in Ewens (2004)). The distribution is named after Griffiths

(1980), Engen (1975) and McCloskey (1965), who introduced it in the context of population genetics and
studied its properties.

One may inquire about the connection between the stick-breaking representation of a Dirichlet process
and its representation via the Poisson–Dirichlet distribution. The relationship between a sequence (Wn)n∈N
following a GEM-distribution and a sequence (Pi)i∈N distributed according to the Poisson–Dirichlet law
is addressed by Patil and Taillie (1977), who show that (Wn)n∈N is a sized-bias permutation of (Pi)i∈N.
A random sequence (P̃i)i∈N is called a size-biased permutation of P = (Pi)i∈N if, conditionally given P ,
the first element P̃1 equals Pi with probability Pi, i ∈ N, and, given P , the element P̃2 is equal to Pj ,
j ≠ i, with probability Pj

1−Pi
. This process continues iteratively, selecting each subsequent element with

probability proportional to its weight among the remaining unchosen components.
If the parameter measure ρ is diffuse, the locations of the weights in the above theorem (and in the con-

struction with a Poisson–Dirichlet distribution) are almost surely distinct. In this case, both constructions
yield almost surely the same process (cf. Corollary 9 and Corollary 10 in Pitman (1996)). By sorting the
weights from the stick-breaking construction in decreasing order, one obtains a sequence that follows the
Poisson–Dirichlet distribution. The associated locations are reordered accordingly, maintaining the corre-
spondence between each weight and its location. Conversely, starting from a Poisson–Dirichlet distributed
sequence of weights, one can recover the GEM-representation by applying a size-biased permutation to the
weights and reordering the associated locations in the same manner.

By modifying the parameters in the Beta-distribution that determine the weights in the stick-breaking
representation, we obtain the two-parameter Poisson–Dirichlet distribution and a generalisation of Dirichlet
processes: Pitman–Yor processes.
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Pitman–Yor processes (cf. Pitman and Yor (1997))

Let 0 ≤ α < 1 and θ > −α. Let V1, V2, . . . be independent random variables with Vn ∼ Beta(1 −
α, θ + nα), n ∈ N. We define Ỹ1 = V1 and Ỹn =

∏n−1
i=1 (1 − Vi)Vn for n ∈ N, n > 1. Further, we

denote the decreasing order statistics of (Ỹn)n∈N by (Yn)n∈N, i.e. Y1 ≥ Y2 ≥ . . .. Then the law of the
sequence (Yn)n∈N is called two-parameter Poisson–Dirichlet distribution with parameter α and θ or
PD(α, θ)-distribution for short. Moreover, let X1, X2, . . . be independent and identically distributed
random variables in X such that the sequences (Xn)n∈N and (Vn)n∈N are independent. Let ν be the
distribution of Xn, n ∈ N. The random measure

∞∑
n=1

YnδXn

is called Pitman–Yor process with discount parameter α, strength parameter θ and base distribution
ν. We note that the case α = 0 corresponds to a Dirichlet process with parameter measure θν.

2.2. Mecke-type equation
A deeper structural understanding of random measures can be gained through integral identities. In the
context of Poisson processes, a fundamental result in this regard is the Mecke equation, originally established
by Mecke (1967). Let (X,X ) be a measurable space with a s-finite measure λ, i.e. λ is a countable sum of
finite measures and denote by N(X) the set of all measures on X that can be written as a countable sum of
finite counting measures, i.e. measures that take only values in N0. Equipped with the smallest σ-field such
that all mappings N(X) ∋ µ 7→ µ(B), B ∈ X , become measurable, this space becomes a measurable space.
The Mecke equation (cf. e.g. Theorem 4.1 in Last and Penrose (2017)) states that a point process, i.e. a
measurable mapping η : Ω → N(X) is a Poisson process with intensity measure λ if and only if

E
[∫

X
f(η, x) η(dx)

]
=
∫
X
E [f(η + δx, x)] λ(dx)

for all measurable functions f : N(X) × X → [0,∞].
This identity for Poisson processes has inspired analogous identities for other random measures, commonly

referred to as Mecke-type equations. In the case of Dirichlet processes, the fixed point equation (2.3)
from Sethuraman (1994) shows that a random probability measure ζ on a measurable space (X,X ) which
satisfies

E [f(ζ)] = E
[∫

X

∫ 1

0
f((1 − u)ζ + uδx) Beta(1, θ)(du) ν(dx)

]
for all measurable f : M(X) → [0,∞) as well as a constant θ > 0 and a probability measure ν is a Dirichlet
process. Here, M(X) denotes the set of all s-finite measures on X, which we equip with the smallest
σ-field that makes the mappings M(X) ∋ µ 7→ µ(B), B ∈ X , measurable. A characterisation in terms of a
Mecke-type equation in the case of a diffuse parameter measure is proven in Dello Schiavo and Lytvynov
(2023) using a Mecke-type equation for a Gamma random measure (derived in Lemma 2.2 in Dello Schiavo
and Lytvynov (2023) from the Mecke equation for Poisson processes).

Theorem 2.4 (Theorem 1.1 in Dello Schiavo and Lytvynov (2023)). Let ρ be a finite diffuse measure on
(X,X ) and θ = ρ(X). A random measure ζ on X is a Dirichlet process with parameter measure ρ if and
only if

E [ζ(X)f(ζ)] = E
[∫

X

∫ 1

0
f((1 − u)ζ + uδx)(1 − u)θ−1 du ρ(dx)

]
for every measurable function f : M(X) → [0,∞).

Moreover, if ζ is a Dirichlet process with parameter measure ρ, for each measurable function f : M1(X) ×
X → [0,∞), where M1(X) ⊆ M(X) denotes the measurable subset of all probability measures, it holds

E
[∫

X
f(ζ, x) ζ(dx)

]
= E

[∫
X

∫ 1

0
f((1 − u)ζ + uδx, x)(1 − u)θ−1 du ρ(dx)

]
. (2.4)
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In the initial version of their work, published as the arXiv preprint arXiv:1706.07602 in 2017, Dello Schiavo
and Lytvynov assumed the underlying space X to be a locally compact Polish space. Subsequently, Last
(2020) achieved a more general formulation. In particular, Last (2020) considers an arbitrary measurable
space (X,X ) and does not assume the measure to be diffuse. Last (2020) refers to a probability measure
ν on X as good if there exists a measurable set B ⊆ X such that ν(B) ∈ (0, 1) \ { 1

2 }. For instance, if
ν = 1

2 (δx + δy) with distinct points x, y ∈ X, then the measure ν is not good.

Theorem 2.5 (Theorem 1.1 and Theorem 2.1 in Last (2020)). Let ν be a good probability measure on
X and let G be a probability measure on [0, 1] with first moment b1 =

∫ 1
0 tG(dt) ∈ (0, 1). Suppose that a

random measure ζ on X satisfies the identity

E
[∫

X
f(ζ, x) ζ(dx)

]
= E

[∫
X

∫ 1

0
f((1 − t)ζ + tδx, x)G(dt) ν(dx)

]
(2.5)

for all measurable f : M(X)×X → [0,∞). Then ζ is a Dirichlet process with parameter measure (1−b1)b−1
1 ν.

Moreover, in this case, G is the Beta-distribution Beta(1, (1−b1)b−1
1 ). Conversely, if ζ is a Dirichlet process

with parameter measure ρ, then (2.5) holds for all measurable f : M(X) × X → [0,∞) with ν = ρ(X)−1ρ
and G = Beta(1, ρ(X)).

Comparing the Mecke-type identity for Dirichlet processes with the Mecke equation for Poisson processes
reveals a key difference in the way new points on the right-hand side of the equation are incorporated.
Whereas in the Poisson case, a new point is added to the process, in the Dirichlet case, the process is
perturbed by forming a convex combination of the process and a new point. The weights are governed by a
Beta-distribution, ensuring that the resulting measure remains a probability measure.

2.3. Survey of related literature
In the following section, we summarise relevant concepts from the literature. In particular, we recall moment
formulas, the chaos decomposition from Peccati (2008), the integration by parts formula from Flint and
Torrisi (2023) and the Fleming–Viot process with parent-independent mutation.

As an initial application, the Mecke-type equation from the previous section provides a means to compute
the moments of integrals with respect to a Dirichlet process. While Corollary 3.5 in Dello Schiavo and
Lytvynov (2023) states a recursive formula directly derived from the Mecke-type equation, we instead cite
the non-recursive formulation given in Lemma 2.2 of Ethier (1990).

Proposition 2.6 (Lemma 2.2 in Ethier (1990), cf. Corollary 3.5 in Dello Schiavo and Lytvynov (2023)). Let ζ
be a Dirichlet process with parameter measure ρ and set θ = ρ(X). Suppose n ∈ N and let f1, . . . , fn : X → R
be measurable and bounded functions. It then holds

E

[
n∏

i=1

(∫
X
fi(x) ζ(dx)

)]
=

n∑
d=1

∑
β∈π(n,d)

c(β)
d∏

k=1

∫
X

∏
i∈βk

fi(x) ρ(dx)


where π(n, d) denotes the set of partitions of {1, . . . , n} into d non-empty subsets β1, . . . , βd and

c(β) = (|β1| − 1)! · · · (|βd| − 1)!
θ(θ + 1) · · · (θ + n− 1) .

As this result already suggests, general expressions for such moments can become intricate and combina-
torial in nature. Another formula for the moments of products of integrals, similar to the one considered in
Proposition 2.6, can be found in Corollary 3.5 of Dello Schiavo and Quattrocchi (2023). Their expression is
derived from moments of the Dirichlet distribution, which they deduced through a refined combinatorial
analysis of exponent patterns. However, the explicit formulation involves further notation and combi-
natorial concepts such as multinomial coefficients for q-coloured set partitions, defined by Dello Schiavo
and Quattrocchi (2023) in Definition 2.1, Definition 2.2 and Definition 2.3. For this reason, a detailed
exposition is omitted here and the interested reader is referred to Dello Schiavo and Quattrocchi (2023)
for a comprehensive treatment. Further formulas of this type involving cycle index polynomials of the
symmetric group are used in Dello Schiavo (2019).

A chaos expansion for square-integrable random variables of a Dirichlet process is proven in Peccati
(2008). We recall Theorem 1 from Peccati (2008), which states the decomposition.
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Theorem 2.7 (Theorem 1 in Peccati (2008)). Let ζ be a Dirichlet process with parameter measure ρ on the
measurable space (X,X ) with ρ(X) = θ. Each F : M(X) → R that satisfies E[F (ζ)2] < ∞ admits a unique
representation of the type

F (ζ) = E[F (ζ)] +
∞∑

n=1

∫
Xn

hn(x) ζn(dx), P-a.s.,

where the convergence is in L2(P) and, for every n ∈ N, the function hn : Xn → R is symmetric and satisfies

E
[
hn(X1, . . . , Xn)2] < ∞ and E (hn(X1, . . . , Xn) |X1, . . . , Xn−1) = 0, P-a.s.

for a Pólya sequence (Xn)n∈N with parameter ρ as defined in (2.2).

A characterisation of the kernel functions hn : Xn → R, n ∈ N, appearing in the chaos expansion is
provided in Theorem 2 of Peccati (2008).

Theorem 2.8 (Theorem 2 and Lemma 1 in Peccati (2008)). If a function F admits a decomposition as
specified in the previous Theorem, then, for each n ∈ N, the function hn fulfils

hn(x1, . . . , xn) =
n∑

k=1
θ(n,k)

∑
1≤j1≤...≤jk≤n

E (F (ζ) − E[F (ζ)] |X1 = xj1 , . . . , Xk = xjk
)

for (x1, . . . , xn) in a subset of Xn that has full measure under the probability measure induced by the
vector (X1, . . . , Xn) from the Pólya sequence defined in (2.2). The coefficients θ(n,k) are for n ∈ N and
k ∈ {1, . . . , n} defined as

θ(n,k) = lim
N→∞

(
N

n

)(
N − k

n− k

)−1
θ

(n,k)
N ,

where the terms θ(n,k)
N solve the recursion{

θ
(n,n)
N = ΨN (n, n, n)−1,∑n

i=q

∑i
j=q θ

(i,j)
N ΨN (q, n, j) = 0, q ∈ {1, . . . , n− 1},

and

θ
(N,k)
N = −

N−1∑
s=k

θ
(s,k)
N , k ∈ {1, . . . , N − 1}, as well as θ

(N,N)
N = 1

with

ΨN (q, n,m) =
q∑

r=0

(
q

r

)(
N − n

m− r

)
1{N−n≥m−r}

(m− r)!
(m− q)!

∏m−q
s=1 [θ + q + s− 1]∏m−r
s=1 [θ + n+ s− 1]

, 1 ≤ q ≤ m ≤ n ≤ N.

An integration-by-parts formula involving what Dello Schiavo and Lytvynov (2023) refer to as “the
discrete gradient” is established in Flint and Torrisi (2023). We recall their result. Let P(X) denote the
set of all discrete probability measures on a locally compact Polish space X with Borel-σ-field X . For a
measurable function F : P(X) → R, Flint and Torrisi (2023) define for x ∈ X and t ∈ [0, 1] in equation (1) a
gradient D(x,t)F of F by

D(x,t)F (µ) = F ((1 − t)µ+ tδx) − F (µ), µ ∈ P(X).

As noted by Flint and Torrisi on p. 704, their notion of a gradient corresponds to the difference operator
in the Poisson setting (cf. chapter 18.1 in Last and Penrose (2017)), including an additional re-balancing
mechanism to ensure that the perturbed measure remains a probability measure. Moreover, let ρ be a
diffuse measure on X such that θ = ρ(X) ∈ (0,∞) and let the probability measure ρ̂ on X × [0, 1] be given
by

ρ̂(A) =
∫ 1

0

∫
X
1A(x, t) ρ(dx) (1 − t)θ−1 dt

for all measurable A ⊆ X × [0, 1]. Theorem 1 in Flint and Torrisi (2023) establishes the adjoint of D on
L2(X × [0, 1], ρ̂).
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Theorem 2.9 (Theorem 1 in Flint and Torrisi (2023)). Let p, q ∈ [1,∞] with 1
p + 1

q = 1 and let F : P(X) → R
be a measurable function satisfying E[F (ζ)p] < ∞. Furthermore, assume that h : P(X) × X × [0, 1] → R is a
measurable function satisfying

E

[∫
X×[0,1]

|h(ζ, x, t)|q ρ̂(d(x, t))
]
< ∞.

Then there exists a random variable δ(h) ∈ L1(P) such that

E

[∫
X×[0,1]

h(ζ, x, t)D(x,t)F (ζ) ρ̂(d(x, t))
]

= E [F (ζ)δ(h)] .

In population genetics, the distribution of a Dirichlet process arises as the stationary distribution of the
Fleming—Viot process with parent-independent mutation. We recall this process. Let X be a compact metric
space with Borel σ-field X and denote by M1(X) the set of all probability measures on X. Furthermore, let
θ > 0 and ν0 ∈ M1(X) with support X. We set ρ = θν0. A Fleming—Viot process with parent-independent
mutation, a measure-valued stochastic process (Xt)t≥0 with almost surely continuous paths, is the solution
to the martingale problem (FC∞, Lρ) with

FC∞ :=
{
F : M1(X) → R : F (µ) = φ

(∫
X
f1(y)µ(dy), . . . ,

∫
X
fd(y)µ(dy)

)
,

φ ∈ C∞(Rd), fi ∈ C(X), i ∈ {1, . . . , d}, d ∈ N
}

and

(LρF )(µ) := 1
2

d∑
i,j=1

(∂i∂jφ)
(∫

X
f1(y)µ(dy), . . . ,

∫
X
fd(y)µ(dy)

)
Covµ(fi, fj)

+
d∑

i=1
(∂iφ)

(∫
X
f1(y)µ(dy), . . . ,

∫
X
fd(y)µ(dy)

)∫
X
(Afi)(x)µ(dx), µ ∈ M1(X), (2.6)

where the mutation operator A is for f ∈ C(X) given by

Af(x) := 1
2

∫
X
f(y) − f(x) ρ(dy), x ∈ X. (2.7)

That means, for every F ∈ FC∞, the process (MF
t )t≥0 defined by

MF
t := F (Xt) − F (X0) −

∫ t

0
(LρF )(Xs) ds, t ≥ 0,

is a martingale with respect to the canonical filtration (Ft)t≥0 with Ft = σ(Xs : s ≤ t), t ≥ 0 (cf. (3.12),
(3.14) as well as (8.1) in Ethier and Kurtz (1993) for the description of the problem and Theorem 3.2
of Ethier and Kurtz (1993) for the well-posedness of the martingale problem and the uniqueness of the
solution). According to Theorem 8.1 and Theorem 8.2 of Ethier and Kurtz (1993) (with proofs provided in
the references cited therein), the distribution of a Dirichlet process with parameter measure ρ is the unique
stationary reversible distribution of this Markov process.

Motivation for the Fleming—Viot process
This section provides a brief motivation for the Fleming–Viot process. It is not required for the present
thesis and can be skipped. It is included for the benefit of readers who appreciate a more explicit conceptual
bridge.

Population genetics seeks to understand how genetic variation is shaped and maintained over often long
time scales, possibly ranging from decades to thousands of years. To achieve this, mathematical models
that describe genetic diversity under specific assumptions can play an important role. These models not
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only enable the analysis of the mechanisms driving evolutionary change, but also provide a framework for
investigating the impact of the underlying assumptions themselves. One of the simplest and best-known
models is the Wright–Fisher model, named after Ronald A. Fisher and Sewall Wright (cf. Fisher (1930);
Wright (1931)). A short description of the model can be found in the box below.

Neutral Wright–Fisher model (cf. Definition 2.1 in Etheridge (2011))

Consider a population of size N ∈ N evolving in discrete generations. For each k ∈ N0, generation
k + 1 is formed by randomly sampling N genes with replacement from generation k. That is, each
gene in the next generation independently selects its parent at random from the individuals present
in the previous generation.
Biologically, the Wright–Fisher model assumes non-overlapping generations (as, for example, in annual
plants) of a fixed size and identical environmental conditions for all individuals. The population
is considered neutral, meaning that all variants of a gene have equal reproductive success. Most
species are either haploid, carrying only a single copy of each chromosome (e.g. bacteria), or diploid,
carrying two copies of each chromosome (e.g. humans). The Wright–Fisher model assumes a haploid
population, so each individual has exactly one parent. In diploid populations, although individuals
have two parents, each gene can be traced back to a single parental copy. Therefore, it is common to
model a diploid population of size N as a haploid population of size 2N .
In its simplest form, the two-type Wright–Fisher model without mutation and without selection
assumes the existence of two alleles (variants of a gene), denoted by A and a. The number of A-alleles
in generation k forms a Markov chain with transition probabilities given by

pij =
(
N

j

)(
i

N

)j (
N − i

N

)N−j

, i, j ∈ {0, . . . , N}.

Here, pij denotes the probability of transitioning from i copies of allele A in generation k to j copies
in generation k + 1, i, j ∈ {0, . . . , N}.
For further properties and extensions, the interested reader is referred to the vast literature on this
subject, e.g. Etheridge (2011); Ewens (2004); Hofrichter, Jost and Tran (2017).

The neutral K-type Wright–Fisher model with mutation considers K ∈ N distinct allelic types A1, . . . , AK

within a population of constant size N ∈ N. At each time step n ∈ N0, the state of the population is
represented by a vector ZN (n) ∈ {0, . . . , N}K , where the ith component ZN

i (n) denotes the number of
genes of type Ai for i ∈ {1, . . . ,K} and ZN

1 (n) + . . .+ ZN
K (n) = N . Mutation is incorporated by assuming

that allele Ai mutates to allele Aj at a rate uij ∈ [0, 1] for all i, j ∈ {1, . . . ,K}. The transition probabilities
of the resulting Markov chain (ZN (n))n∈N0 are then given by a multinomial distribution. If the mutation
probabilities satisfy

uij = min
{
µij

N
,

1
K

}
, i, j ∈ {1, . . . ,K},

for constants µij ≥ 0 with µii = 0, i, j ∈ {1, . . . ,K}, it can be shown (cf. Theorem 1.1 in Chapter 10
of Ethier and Kurtz (2005)) that the rescaled process (XN (t))t≥0 with XN (t) := ZN

1 ([Nt])
N , t ≥ 0, satisfies

lim
N→∞

sup
0≤t≤t0

sup
x∈S

∣∣E (f (XN
1 (t), . . . , XN

K−1(t)
)∣∣(XN

1 (0), . . . , XN
K−1(0)

)
= x

)
−E (f(X1(t), . . . , XK−1(t))|(X1(0), . . . , XK−1(0)) = x)| = 0

for all f ∈ C(∆K) and t0 ≥ 0, where

S :=
{

1
N
x : x ∈ NK−1

0 ,

K−1∑
i=1

xi ≤ N

}
as well as ∆̃K :=

{
x ∈ [0, 1]K−1 :

K−1∑
i=1

xi ≤ 1
}

and (X(t))t≥0 is the K-type Wright–Fisher diffusion process. The Wright–Fisher diffusion process is
a Markov process with sample paths in the space of continuous functions from [0,∞) into the simplex
∆K = {x ∈ [0, 1]K : x1 + . . .+ xK = 1}. It is characterised by its generator L : C2(∆̃K) → C(∆̃K), given
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by

(L(f))(x) := 1
2

K−1∑
i,j=1

xi(1{i=j} − xj)
(
∂2

∂i∂j
f

)
(x) +

K−1∑
i=1

K−1∑
j=1

(µjixj − µijxi)

( ∂
∂i
f

)
(x), x ∈ ∆̃K .

For general positive mutation rates between distinct alleles, the Wright–Fisher diffusion process has a
stationary distribution, but its closed form remains unknown and is an area of research (cf. e.g. Burden
and Griffiths (2019), where the stationary distribution in the case of small mutation rates, which occur,
for example, in Drosophila, is obtained). In parent-independent mutation, i.e. the probability of mutation
depends solely on the target allele, irrespective of the ancestral allele, the stationary reversible distribution
is a Dirichlet distribution.

From a biological perspective, mutations can give rise to novel alleles that have not previously occurred
in the population. Modelling this process requires an extension to an infinite type space. Under suitable
conditions on the mutation rates, the generator L can be extended when the type space X is countably
infinite. A classical example is the stepwise mutation model from Ohta and Kimura (1973), where the
set of possible alleles is the set of integers and allele i ∈ Z may mutate to i − 1 or i + 1. However, for
uncountably infinite type spaces, a different approach is required. The approach introduced in Fleming and
Viot (1979) is to consider a complete, separable metric space X as the set of possible types and to replace
the simplex ∆K used in the previous analysis with the space P(X) of all Borel probability measures on X.
The generator becomes

(L(φ))(µ) = 1
2

∫
X

∫
X

(
∂2

∂µ(x)∂µ(y)φ
)

(µ) (δx(dy)−µ(dy))µ(dx)+
∫
X

(
A

(
∂

∂µ
φ

))
(x)µ(dx), µ ∈ P(X),

where φ is an element of a suitable function space, ∂
∂µ(x)φ(µ) = limε→0 ε

−1 (φ(µ+ εδx) − φ(µ)) and A is
an operator representing mutation. (It is also possible to include selection and recombination (cf. (3.12)
in Ethier and Kurtz (1993).) Here, we followed the presentation in the article Ethier and Kurtz (1993).
This article addresses general measure-valued diffusion processes arising in population genetics, named
Fleming–Viot processes after Fleming and Viot. Ethier and Kurtz establish the existence of these processes
under general assumptions and analyse their properties. Under suitable conditions, they show that Fleming–
Viot processes approximate Wright–Fisher diffusions. We refer the interested reader to their comprehensive
treatment or to Dawson (1993) for further details on measure-valued Markov processes.

2.4. General notation
In this section, we introduce notation used throughout this thesis.

We denote by R, Z, N0 and N the real line, the set of integers, the set of nonnegative integers and the
set of positive integers, respectively. Given a, b ∈ R, we define a ∧ b := min{a, b}. If x ∈ R and n ∈ N, we
denote by x(n) for n ∈ N and x ∈ R the rising factorial

x(n) := x(x+ 1) . . . (x+ n− 1) =
n∏

l=1
(x+ n− l).

Moreover, let x(0) := 1. For an arbitrary set A and r ∈ N, we define

[r]0 := {0, . . . , r}, [r] := [r]0 \ {0} and A[r] := {(i1, . . . , ir) ∈ Ar : ik ̸= il if k ̸= l, k, l ∈ {1, . . . , r}}

if A contains at least r elements. Otherwise, let A[r] := ∅, the empty set. By 1{·}, we mean the indicator
function.

Let (X,X ) be a measurable space. The Dirac measure at a point x ∈ X is denoted by δx. Given n ∈ N
and (x1, . . . , xn) ∈ Xn, we define xn := (x1, . . . , xn) ∈ Xn as well as δxn

:= δx1 + . . . + δxn
and interpret

x0 and δx0 as void. Moreover, we sometimes write ν(f) instead of
∫
X f(x) ν(dx) for a measure ν on X

and an integrable function f . To enhance readability for those primarily interested in the statements, we
refrain from using this notation within the statements themselves. Let Cb(X) be the space of all bounded
and continuous functions f : X → R and denote by C∞(X) the space of all smooth functions f : X → R.
We write M(X) for the set of all finite measures on X equipped with the smallest σ-field that makes the
mappings M(X) ∋ µ 7→ µ(B), B ∈ X , measurable and denote by M1(X) the set of all probability measures
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on X. Given a probability space (Ω,A,P), we denote by ζ a Dirichlet process, i.e. a random measure (a
measurable mapping ζ : Ω → M(X)) satisfying (1.1). We refer to Kallenberg (2017) for a comprehensive
treatment of random measures.





CHAPTER 3

A multivariate perspective on the Mecke-type
equation

In this chapter, we begin by defining measures that will play a central role in the subsequent analysis.
Properties of these measures, which are used in the development of a multivariate formulation of the
Mecke-type equation, are established. Finally, a formula for evaluating certain integrals with respect to
these measures, which will be used in later chapters, is obtained.

Throughout the chapter, let (X,X ) be a measurable space.

3.1. A multivariate Mecke-type equation
In this section, we derive a multivariate version of the Mecke-type equation. We begin by introducing the
measures involved.

Definition 3.1. Given a measure µ on (X,X ) and n ∈ N, let the measure µ[n] on Xn be defined by

µ[n](B) :=
∫
X

∫
X
. . .

∫
X
1B(x1, . . . , xn) (µ+ δx1 + . . .+ δxn−1)(dxn) . . . (µ+ δx1)(dx2)µ(dx1), B ∈ X ⊗n.

Furthermore, set µ[0](c) := c for c ∈ R.

We observe that in the special case n = 1, we have µ[1] = µ. We illustrate this definition with an example.

Example 3.2. Let µ be a measure on (X,X ) and n ∈ N. Given pairwise disjoint B1, . . . , Bn ∈ X , we have

µ[n](B1 × . . .×Bn) =
n∏

i=1
µ(Bi)

and
µ[n](Bn

1 ) = µ(B1)(µ(B1) + 1) . . . (µ(B1) + n− 1). ◦

We recall the definitions [n]0 := {0, . . . , n} and [n] := {1, . . . , n} for n ∈ N. We begin with a lemma that
characterises integrability with respect to µ[n] for a σ-finite measure µ on X and n ∈ N.

Lemma 3.3. Let µ be a σ-finite measure on X. Let p ∈ [1,∞) and n ∈ N. A function f : Xn → R is an
element of Lp(µ[n]) if and only if f is measurable and for all m ∈ [n− 1]0 and all permutations π of [n] it
holds ∫

Xn−m

∫
Xm

|f(xπ(1), . . . , xπ(n))|p
m∏

k=1
δxn

(dxk)µn−m(d(xm+1, . . . , xn)) < ∞.

Proof. It suffices to consider p = 1 since f ∈ Lp if and only if |f |p ∈ L1. We proceed by induction over
n ∈ N. For n = 1, the claim follows immediately from the fact that f ∈ L1(µ) if and only if f is measurable
and

∫
X |f(x)|µ(dx) < ∞. Assume that the assertion holds for some n ∈ N. A function f : Xn+1 → R is

an element of L1(µ[n+1]) if and only if f is measurable and
∫
Xn+1 |f(x)|µ[n+1](dx) < ∞. By definition of

µ[n+1] and µ[n], we have∫
Xn+1

|f(x)|µ[n+1](dx) =
∫
Xn

∫
X

|f(xn, xn+1)| (µ+ δxn)(dxn+1)µ[n](dxn).

Thus,
∫
Xn+1 |f(x)|µ[n+1](dx) is finite if and only if g ∈ L1(µ[n]), where

g(x1, . . . , xn) :=
∫
X

|f(x1, . . . , xn, y)| (µ+ δx1 + . . .+ δxn
)(dy).
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According to the induction hypothesis, this holds if and only if g is measurable and for all m ∈ [n− 1]0 and
all permutations π of [n] it holds∫

Xn−m

∫
Xm

|g(xπ(1), . . . , xπ(n))|
m∏

k=1
δxn

(dxk)µn−m(d(xm+1, . . . , xn)) < ∞.

By the definition of g, the integral in the previous line is∫
Xn−m

∫
Xm

∫
X

|f(xπ(1), . . . , xπ(n), y)| (µ+ δx1 + . . .+ δxn
)(dy)

m∏
k=1

δxn
(dxk)µn−m(d(xm+1, . . . , xn))

=
∫
Xn−m

∫
Xm

∫
X

|f(xπ(1), . . . , xπ(n), y)|µ(dy)
m∏

k=1
δxn

(dxk)µn−m(d(xm+1, . . . , xn))

+
n∑

j=1

∫
Xn−m

∫
Xm

|f(xπ(1), . . . , xπ(n), xj)|
m∏

k=1
δxn(dxk)µn−m(d(xm+1, . . . , xn)) =: I1,m + I2,m.

From this, we obtain the assertion (The cases m = 0 and m = n of the assertion for f follow from I1,0 and
I2,n−1, respectively. The case m ∈ [n− 1] follows from I2,m−1 and I1,m.).

As the following example shows, the space L2(µ[n]) may be smaller than L2(µn).

Example 3.4. On X := [0, 1] we consider the restriction µ of the Lebesgue measure to [0, 1] and f : X2 → R
defined by f(x, y) := 1(0,1)2(x, y) 1

3√xy . Because of

∫ 1

0

∫ 1

0
f(x, y)2 dx dy =

∫ 1

0

∫ 1

0

(
1

3
√
xy

)2
dx dy =

(∫ 1

0
x− 2

3 dx
)2

< ∞

we have f ∈ L2(µ2). On the other hand, the integral∫ 1

0

∫ 1

0
f(x, y)2µ[2](d(x, y)) =

∫ 1

0

∫ 1

0
f(x, y)2(µ+ δx)(dy)µ(dx)

=
∫ 1

0

∫ 1

0
f(x, y)2 dy dx+

∫ 1

0
f(x, x)2 dx =

∫ 1

0

∫ 1

0
f(x, y)2 dy dx+

∫ 1

0
x− 4

3 dx

is not finite. ◦

We continue with a simple yet useful lemma that collects properties of the measures.

Lemma 3.5. Let µ be a σ-finite measure on X. Then the measure µ[n] is symmetric for every n ∈ N and,
for every m,n ∈ N and B ∈ X ⊗(n+m), it holds

µ[n+m](B) =
∫
Xm

∫
Xn

1B(x1, . . . , xn+m) (µ+ δx1 + . . .+ δxm)[n](d(xm+1, . . . , xm+n)) (3.1)

µ[m](d(x1, . . . , xm)).

Proof. We first establish the recursion formula (3.1), which will be a key ingredient in showing the symmetry
of the measure. We use induction with respect to n ∈ N. Let A ∈ X ⊗(1+m) and B ∈ X ⊗(n+1+m). By
definition, we have

µ[1+m](A) =
∫
X

∫
X
. . .

∫
X

∫
X
1A(xm+1) (µ+ δxm)(dxm+1) (µ+ δxm−1)(dxm) . . . (µ+ δx1)(dx2)µ(dx1)

=
∫
Xm

∫
X
1A(xm+1) (µ+ δxm)[1](dxm+1)µ[m](dxm+1),

the base case of the induction. Furthermore, it holds

µ[n+1+m](B) =
∫
X
. . .

∫
X
1B(xm+n+1) (µ+ δxn+1+m)(dxn+1+m) . . . (µ+ δx1)(dx2)µ(dx1)
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=
∫
Xn+m

∫
X
1B(xm+n+1) (µ+ δxn+m)(dxn+1+m)µ[n+m](dxn+m))

=
∫
Xm

∫
Xn

∫
X
1B(xm+n+1) (µ+ δxn+m)(dxn+1+m) (µ+ δxm)[n](d(xm+1, . . . , xm+n))µ[m](dxm)

=
∫
Xm

∫
Xn+1

1B(xm+n+1) (µ+ δxm)[n+1](d(xm+1, . . . , xn+1+m))µ[m](dxm),

where the penultimate equality is a consequence of the induction hypothesis.
To establish the symmetry, we show the validity of∫

Xn

f(x1, . . . , xn)µ[n](d(x1, . . . , xn)) =
∫
Xn

f(xπ(1), . . . , xπ(n))µ[n](d(x1, . . . , xn))

for all n ∈ N, permutations π of [n] and measurable f : Xn → [0,∞) by induction on n. If n = 2 and
f : X2 → [0,∞) is measurable, the definition of µ[2] yields∫

X2
f(x1, x2)µ[2](d(x1, x2)) =

∫
X

∫
X
f(x1, x2) (µ+ δx1)(dx2)µ(dx1)

=
∫
X2
f(x1, x2)µ2(d(x1, x2)) +

∫
X
f(x1, x1)µ(dx1) =

∫
X2
f(x2, x1)µ[2](d(x1, x2)).

For the induction step, let n ∈ N and assume the symmetry of µ[k] for all natural numbers k < n. Let
f : Xn → [0,∞) be measurable and π be a permutation of [n]. Define l := π−1(n) and assume l > 1 (if this
is not the case, take l = π−1(n− 1) and modify the following calculations as necessary). We decompose π
as π = σ ◦ (l n) with σ = π ◦ (l n). Here, (l n) denotes the transposition that exchanges the numbers l
and n. It holds σ(n) = n and thus σ permutes the numbers 1, . . . , n− 1. The recursion from (3.1) and the
induction hypothesis yield∫

Xn

f(xn)µ[n](dxn)

=
∫
Xl−1

∫
Xn−l+1

f(xn) (µ+ δxl−1)[n−l+1](d(xl, . . . , xn))µ[l−1](dxl−1)

=
∫
Xl−1

∫
Xn−l+1

f(xl−1, xn, xl+1, . . . , xn−1, xl) (µ+ δxl−1)[n−l+1](d(xl, . . . , xn))µ[l−1](dxl−1)

=
∫
Xn

f(xl−1, xn, xl+1, . . . , xn−1, xl)µ[n](dxn)

=
∫
Xn−1

∫
X
f(xl−1, xn, xl+1, . . . , xn−1, xl) (µ+ δxn−1)(dxn)µ[n−1](dxn−1).

=
∫
Xn−1

F (xn−1)µ[n−1](dxn−1),

where F : Xn−1 → [0,∞) is defined by

F (x1, . . . , xn−1) :=
∫
X
f(x1, . . . , xl−1, xn, xl+1, . . . , xn−1, xl) (µ+ δxn−1)(dxn).

Let σ̂ be the permutation of [n− 1] that satisfies σ̂(i) = σ(i) for every i ∈ [n− 1]. The induction hypothesis
gives ∫

Xn−1
F (xn−1)µ[n−1](dxn−1) =

∫
Xn−1

F (xσ̂(1), . . . , xσ̂(n−1))µ[n−1](dxn−1)

=
∫
Xn−1

∫
X
f(xσ(1), . . . , xσ(l−1), xn, xσ(l+1), . . . , xσ(n−1), xσ(l)) (µ+ δxn−1)(dxn)µ[n−1](dxn−1)

=
∫
Xn

f(xπ(1), . . . , xπ(n))µ[n](dxn).

The following superposition lemma (cf. Lemma 2.1 in Ethier and Griffiths (1993) for the weighted sum
of two independent Dirichlet processes) is a key ingredient in the multivariate version of the Mecke-type
equation.
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Lemma 3.6. Let n ∈ N and ζj be independent Dirichlet processes with parameter measures ρj, j ∈ [n].
Further, let Z be independent of (ζ1, . . . , ζn) and follow a Dir(ρ1(X), . . . , ρn(X)) distribution. Then

n∑
j=1

Zjζj (3.2)

is a Dirichlet process with parameter measure ρ =
∑n

j=1 ρj.

Proof. We make use of the construction of Dirichlet processes with Poisson processes (cf. (2.1) in Section 2.1)
and the superposition theorem for independent Poisson processes (cf. Theorem 3.3 in Last and Penrose
(2017)).

Let ρ :=
∑n

j=1 ρj . Furthermore, let ηj , j ∈ [n], be independent Poisson processes on X × (0,∞) with
intensity measures Eηj(d(x, r)) = r−1e−r dr ρj(dx). Let j ∈ [n]. We define a random measure ξj on X by

ξj(B) :=
∫
X×(0,∞)

1B(x) ηj(d(x, r)), B ∈ X ,

and set
ζ∗

j := ξj

ξj(X) .

The random variable ξj(X) follows a Gamma distribution with shape parameter ρj(X) and scale parameter
1. Moreover, ζ∗

j is a Dirichlet process independent of ξj(X) with parameter measure ρj and is thus equal in
distribution to ζj . By the independence of the underlying Poisson processes, (ξ1(X), ζ∗

1 ), . . . , (ξn(X), ζ∗
n) are

independent. Since ξj(X) and ζj are independent (cf. e.g. § 4 in Ferguson (1973) or Lemma 1 in Tsilevich
and Vershik (1999)), j ∈ [n], we obtain that ξ1(X), . . . , ξn(X), ζ∗

1 , . . . , ζ
∗
n are independent. Let

ζ :=
∑n

j=1 ξj∑n
j=1 ξj(X)

.

From the superposition theorem for independent Poisson processes (cf. Theorem 3.3 in Last and Penrose
(2017)) it follows that ζ is a Dirichlet process with parameter measure ρ. Further, it holds

ζ =
n∑

j=1

ξj

ξj(X)
ξj(X)∑n

j=1 ξj(X)
=

n∑
j=1

Z∗
j ζ

∗
j ,

where
Z∗

j := ξj(X)∑n
j=1 ξj(X)

, j ∈ [n].

The random vector Z∗ := (Z∗
1 , . . . , Z

∗
n) has a Dirichlet distribution with parameter vector (ρ1(X), . . . , ρn(X)).

All in all, Z∗, ζ∗
1 , . . . , ζ

∗
n are independent and (Z∗, ζ∗

1 , . . . , ζ
∗
n) is in distribution equal to (Z, ζ1, . . . , ζn). We

conclude

ζ =
n∑

j=1
Z∗

j ζ
∗
j

d=
n∑

j=1
Zjζj .

The preceding lemma (or Sethuraman’s fixed point equation (2.3)) shows that for a Dirichlet process
ζ with parameter measure ρ, an independent Beta(1, θ)-distributed random variable Z and x ∈ X, the
random measure (1 − Z)ζ + Zδx is a Dirichlet process with parameter measure ρ+ δx. This gives rise to
the following different formulation of the Mecke-type equation from Dello Schiavo and Lytvynov (2023)
and Last (2020) recalled in (2.4) and (2.5). Let ζρ denote a Dirichlet process with parameter measure ρ.
For a measurable function f : M(X) × X → [0,∞), where M(X) denotes the set of finite measures on X,
equation (2.5) can be written as

E
[∫

X
f(ζρ, x) ζρ(dx)

]
= 1
ρ(X)E

[∫
X
f(ζρ+δx , x) ρ(dx)

]
.

Using this point of view, it is possible to state a multivariate version of the Meck-type equation. From
Section 2.4, we recall the notation x(n) for the rising factorial

x(n) = x(x+ 1) . . . (x+ n− 1) =
n∏

l=1
(x+ n− l), n ∈ N, x ∈ R.
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Theorem 3.7. Let ζ be a Dirichlet process with parameter measure ρ, let n ∈ N and f : M(X)×Xn → [0,∞)
be a measurable function. Then

E
[∫

Xn

f(ζρ, x1, . . . , xn) ζn
ρ (d(x1, . . . , xn))

]
= 1
θ(n)E

[∫
Xn

f(ζρ+δx1 +...+δxn
, x1, . . . , xn) ρ[n](d(x1, . . . , xn))

]
. (3.3)

Proof. We proceed by induction using the Mecke-type equation (2.4) from Dello Schiavo and Lytvynov
(2023) as the base case. For the induction step, let n ∈ N and f : M(X) × Xn → [0,∞) be measurable. We
define H : M(X) × X → [0,∞) by

H(µ, x1) :=
∫
Xn

f(µ, x1, x2, . . . , xn+1)µn(d(x2, . . . , xn+1)).

The Mecke-type equation from Dello Schiavo and Lytvynov (2023) (or the one from Last (2020)) yields

E
[∫

Xn+1
f(ζρ, x1, . . . , xn+1) ζn+1

ρ (d(x1, . . . , xn+1))
]

= E
[∫

X
H(ζρ, x1) ζρ(dx1)

]
= 1
θ
E
[∫

X
H(ζρ+δx1

, x1) ρ(dx1)
]

= 1
θ
E
[∫

X

∫
Xn

f(ζρ+δx1
, x1, . . . , xn+1) ζn

ρ+δx1
(d(x2, . . . , xn+1)) ρ(dx1)

]
.

By the induction hypothesis and the recursion form Lemma 3.5, this is equal to

1
θ
E
[∫

X

1
(θ + 1)(n)

∫
Xn

f(ζρ+δx1 +...+δxn+1
, x1, . . . , xn+1) (ρ+ δx1)[n](d(x2, . . . , xn+1)) ρ(dx1)

]
= 1
θ(n+1)E

[∫
Xn+1

f(ζρ+δx1 +...+δxn+1
, x1, . . . , xn+1) ρ[n+1](d(x1, . . . , xn+1))

]
.

A direct consequence of this multivariate Mecke-type equation is a formula for the moment measures of a
Dirichlet process.

Corollary 3.8. Let n ∈ N. A Dirichlet process ζ with parameter measure ρ satisfies

E [ζn(B)] = 1
θ(n) ρ

[n](B), B ∈ X ⊗n. (3.4)

3.2. Integral formula for subsequent applications
As we will later encounter integrals with respect to the sum of a measure and Dirac measures, we provide a
formula for their evaluation.

We fix some notation. Let m, r ∈ N with m ≥ r and (i1, . . . , ir) ∈ [m][r]. Suppose 1 ≤ j1 < j2 < . . . <
jm−r ≤ m are such that {j1, . . . , jm−r} = [m] \ {i1, . . . , ir}. Define the mapping fi1,...,ir : Xm → R for a
function f : Xm → R by

fi1,...,ir
(x1, . . . , xm) := f(x̃1, . . . , x̃m), (3.5)

where

x̃i1 = x1, . . . , x̃ir = xr, x̃j1 = xr+1, . . . , x̃jm−r = xm.

That is, in order to compute fi1,...,ir
(x1, . . . , xm) for (x1, . . . , xm) ∈ Xm, the function f is evaluated at the

point whose ik-th coordinate is xk for k ∈ [r] and whose remaining coordinates are filled with xr+1, . . . , xm.
Finally, for k ∈ N and x1, . . . , xk, z1, . . . , zm−r ∈ X let

fk
i1,...,ir

(x1, . . . , xk, z1, . . . , zm−r) :=
∑

1≤j1≤...≤jr≤k

fi1,...,ir
(xj1 , . . . , xjr

, z1, . . . , zm−r) (3.6)

if m > r. If m = r, define

fk
i1,...,ir

(x1, . . . , xk) :=
∑

1≤j1≤...≤jr≤k

fi1,...,ir
(xj1 , . . . , xjr

). (3.7)

We illustrate these concepts with an example.
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Example 3.9. Let f : X5 → R. For x1, x2, z1, z2 ∈ X, it then holds

f2
5,1,4(x1, x2, z1, z2) =

∑
1≤j1≤j2≤j3≤2

f5,1,4(xj1 , xj2 , xj3 , z1, z2)

= f5,1,4(x1, x1, x1, z1, z2) + f5,1,4(x1, x1, x2, z1, z2) + f5,1,4(x1, x2, x2, z1, z2) + f5,1,4(x2, x2, x2, z1, z2)
= f(x1, z1, z2, x1, x1) + f(x1, z1, z2, x2, x1) + f(x2, z1, z2, x2, x1) + f(x2, z1, z2, x2, x2). ◦

A special case arises when the considered function is given as a product of functions, each depending
on a different variable. Specifically, let m, r ∈ N with m ≥ r and f1, . . . , fm : X → R. The tensor product
(⊗m

j=1fj) : Xm → R is defined by

(
m⊗

j=1
fj)(x1, . . . , xr) :=

m∏
j=1

fj(xj). (3.8)

For (i1, . . . , ir) ∈ [m][r] define

f⊗i1,...,ir
:=

r⊗
j=1

fij
and f⊗i1,...,ir :=

⊗
j /∈{i1,...,ir}

fj , (3.9)

where f⊗i1,...,im := 1. Given k ∈ N and x1, . . . , xk ∈ X, let

fk
⊗i1,...,ir

(x1, . . . , xk) :=
∑

1≤j1≤...≤jr≤k

f⊗i1,...,ir
(xj1 , . . . , xjr ). (3.10)

We begin with a recursive formula for integrals with respect to the sum of a measure and a Dirac measure.

Lemma 3.10. Let µ be a σ-finite measure on X and x ∈ X. Then for each m ∈ N and each g : Xm → R
that is integrable with respect to (µ+ δx)[m], using the notation from (3.5), it holds∫

Xm

g(y1, . . . , ym) (µ+ δx)[m](d(y1, . . . , ym))

=
∫
Xm

g(y)µ[m](dy) +
m∑

i=1

∫
Xm−1

gi(x, y1, . . . , ym−1) (µ+ δx)[m−1](d(y1, . . . , ym−1)).

Proof. By assumption, the integrals on the right-hand side are finite. We proceed by induction over m ∈ N.
The base case is ∫

X
g(y) (µ+ δx)(dy) =

∫
X
g(y)µ(dy) + g(x)

for integrable functions g : X → R. We now assume the validity of the assertion for all functions that are
integrable with respect to (µ+ δx)[m]. Let g : Xm+1 → R be integrable with respect to (µ+ δx)[m+1]. From
the recursion (3.1) in Lemma 3.5 we obtain∫

Xm+1
g(y) (µ+ δx)[m+1](dy) =

∫
Xm

∫
X
g(ym+1) (µ+ δx + δym)(dym+1) (µ+ δx)[m](dym)

=
∫
Xm

F (ym) (µ+ δx)[m](dym)

with F : Xm → R defined by

F (ym) :=
∫
X
g(ym+1) (µ+ δx + δym)(dym+1) =

∫
X
g(ym+1) (µ+ δym)(dym+1) + g(ym, x).

The induction hypothesis and the recursion (3.1) yield∫
Xm+1

g(y) (µ+ δx)[m+1](dy) =
∫
Xm

F (ym)µ[m](dym) +
m∑

i=1

∫
Xm−1

Fi(x,ym−1) (µ+ δx)[m−1](dym−1)

=
∫
Xm+1

g(ym+1)µ[m+1](dym+1) +
∫
Xm

g(ym, x)µ[m](dym)
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+
m∑

i=1

∫
Xm

∫
X
gi(x,ym−1, ym+1) (µ+ δym−1 + δx)(dym+1) (µ+ δx)[m−1](dym−1)

+
m∑

i=1

∫
Xm−1

gi(x,ym−1, x) (µ+ δx)[m−1](dym−1),

which is equal to∫
Xm+1

g(ym+1)µ[m+1](dym+1) +
∫
Xm

gm+1(x,ym)µ[m](dym)

+
m∑

i=1

∫
Xm

gi(x,ym) (µ+ δx)[m](dym) +
m∑

i=1

∫
Xm−1

gm+1,i(x, x,ym−1) (µ+ δx)[m−1](dym−1).

An application of the induction hypothesis to the function ym 7→ gm+1(x,ym) shows∫
Xm

gm+1(x,ym) (µ+ δx)[m](dym) =
∫
Xm

gm+1(x,ym)µ[m](dym)

+
m∑

i=1

∫
Xm−1

gm+1,i(x, x,ym−1) (µ+ δx)[m−1](dym−1).

Hence, we conclude∫
Xm+1

g(y) (µ+ δx)[m+1](dy) =
∫
Xm+1

g(ym+1)µ[m+1](dym+1) +
m∑

i=1

∫
Xm

gi(x,ym) (µ+ δx)[m](dym)

+
∫
Xm

gm+1(x,ym) (µ+ δx)[m](dym).

The next proposition considers integrals with respect to the sum of a measure and several Dirac measures.
We recall the notation introduced in (3.6) and (3.7).
Proposition 3.11. Let µ be a σ-finite measure. Then for all m, k ∈ N, x1, . . . , xk ∈ X and functions
f : Xm → R that are integrable with respect to (µ+ δx1 + . . .+ δxk

)[m] it holds∫
Xm

f(z) (µ+ δx1 + . . .+ δxk
)[m](dz) (3.11)

=
∫
Xm

f(z)µ[m](dz) +
m∑

r=1

∑
(i1,...,ir)∈[m][r]

∫
Xm−r

fk
i1,...,ir

(x1, . . . , xk, z1, . . . , zm−r)µ[m−r](d(z1, . . . , zm−r)).

In (3.11), consistent with our notation µ[0](c) = c, c ∈ R, we interpret∑
(i1,...,im)∈[m][m]

∫
X0
fk

i1,...,im
(xk, z0)µ[0](dz0) =

∑
(i1,...,im)∈[m][m]

fk
i1,...,im

(xk).

Proof. By assumption, the right-hand side is finite. We prove the assertion by induction on m. If m = 1,
we have

(µ+ δxk) (f) = µ (f) +
k∑

i=1
f(xi) = µ (f) + fk

1 (x1, . . . , xk)

by definition of fk
1 . For the induction step, we assume that the assertion holds for some m ∈ N, all k ∈ N

and all x1, . . . , xk ∈ X as well as all integrable f : Xm → R. To establish the formula for m + 1, we use
induction on k ∈ N. By an application of Lemma 3.10, for integrable f : Xm+1 → R, we find

(µ+ δx1)[m+1](f) = µ[m+1](f) +
m+1∑
i=1

∫
Xm

fi(x1,ym) (µ+ δx1)[m](dym).

Let i ∈ [m+ 1]. The induction hypothesis in the induction on m applied to the function ym 7→ f (i)(ym) :=
fi(x1,ym) shows that the second term on the right-hand side is

m+1∑
i=1

∫
Xm

f (i)(ym)µ[m](dym) +
m+1∑
i=1

m∑
r=1

∑
(i1,...,ir)∈[m][r]

∫
Xm−r

(f (i))1
i1,...,ir

(x1, zm−r)µ[m−r](dzm−r)
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=
m+1∑
i=1

∫
Xm

fi(x1,ym)µ[m](dym) +
m∑

r=1

∑
(i1,...,ir+1)∈[m+1][r+1]

∫
Xm−r

f1
i1,...,ir+1

(x1, zm−r)µ[m−r](dzm−r)

=
m+1∑
r=1

∑
(i1,...,ir)∈[m+1][r]

∫
Xm−r

f1
i1,...,ir

(x1, zm−r)µ[m−r](dzm−r),

which finishes the base case of the induction on k. Next, we assume that the assertion holds for some k ∈ N.
Lemma 3.10 for an integrable function f : Xm+1 → R yields

(µ+ δxk+1)[m+1](f) = (µ+ δxk)[m+1](f) +
m+1∑
i=1

∫
Xm

fi(xk+1,ym) (µ+ δxk+1)[m](dym)

= (µ+ δxk)[m+1](f) +
m+1∑
i=1

∫
Xm

f (i)(ym) (µ+ δxk+1)[m](dym),

where f (i)(ym) := fi(xk+1,ym) for ym ∈ Xm and i ∈ [m + 1]. Using the induction hypothesis in the
induction on k, we obtain

(µ+ δxk)[m+1](f) = µ[m+1](f) +
m+1∑
r=1

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

fk
i1,...,ir

(xk, zm+1−r)µ[m+1−r](dzm+1−r).

Let i ∈ [m+ 1]. The induction hypothesis in the induction on m yields∫
Xm

f (i)(ym) (µ+ δxk+1)[m](dym)

= µ[m](f (i)) +
m∑

r=1

∑
(i1,...,ir)∈[m][r]

∫
Xm−r

(f (i))k+1
i1,...,ir

(xk+1, zm−r)µ[m−r](dzm−r).

Combining these findings, we find

(µ+ δxk+1)[m+1](f)

= µ[m+1](f) +
m+1∑
r=1

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

fk
i1,...,ir

(xk, zm+1−r)µ[m+1−r](dzm+1−r) +
m+1∑
i=1

µ[m](f (i))

+
m+1∑
i=1

m∑
r=1

∑
(i1,...,ir)∈[m][r]

∫
Xm−r

(f (i))k+1
i1,...,ir

(xk+1, zm−r)µ[m−r](dzm−r).

By definition, for r ∈ [m+ 1], (i1, . . . , ir) ∈ [m+ 1][r] and zm+1−r ∈ Xm+1−r, we have

fk+1
i1,...,ir

(xk+1, zm+1−r) =
∑

1≤j1≤...≤jr≤k+1
fi1,...,ir

(xj1 , . . . , xjr
, zm+1−r)

=
∑

1≤j1≤...≤jr≤k

fi1,...,ir
(xj1 , . . . , xjr

, zm+1−r) +
∑

1≤j1≤...≤jr−1≤k+1
fi1,...,ir

(xj1 , . . . , xjr−1 , xk+1, zm+1−r)

= fk
i1,...,ir

(xk, zm+1−r) +
∑

1≤j1≤...≤jr−1≤k+1
fi1,...,ir (xj1 , . . . , xjr−1 , xk+1, zm+1−r)

if r ≥ 2. In the case r = 1, it holds

fk+1
i1

(xk+1, zm) =
∑

1≤j1≤k+1
fi1(xj1 , zm) =

∑
1≤j1≤k

fi1(xj1 , zm) + fi1(xk+1, zm) = fk
i1

(xk, zm) + f (i1)(zm).

Thus, the claim is now a consequence of

m+1∑
r=1

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

fk+1
i1,...,ir

(xk+1, zm+1−r)µ[m+1−r](dzm+1−r)
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=
m+1∑
r=1

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

fk
i1,...,ir

(xk, zm+1−r)µ[m+1−r](dzm+1−r) +
m+1∑
i1=1

∫
Xm

f (i1)(zm)µ[m](dzm)

+
m+1∑
r=2

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

∑
1≤j1≤...≤jr−1≤k+1

fi1,...,ir
(xj1 , . . . , xjr−1 , xk+1, zm+1−r)µ[m+1−r](dzm+1−r).

and the observation that
m+1∑
r=2

∑
(i1,...,ir)∈[m+1][r]

∫
Xm+1−r

∑
1≤j1≤...≤jr−1≤k+1

fi1,...,ir
(xj1 , . . . , xjr−1 , xk+1, zm+1−r)µ[m+1−r](dzm+1−r)

=
m∑

r=1

∑
(i1,...,ir)∈[m][r]

m+1∑
i=1

∫
Xm−r

∑
1≤j1≤...≤jr≤k+1

(f (i))i1,...,ir (xj1 , . . . , xjr , zm−r)µ[m−r](dzm−r).

In the special case, when the considered function is given as a product, the proposition simplifies. We
recall the definitions (3.9) and (3.10).

Corollary 3.12. Let µ be a σ-finite measure on X. Then∫
Xm

(
m⊗

i=1
fi)(z) (µ+ δx1 + . . .+ δxk

)[m](dz)

=
∫
Xm

(
m⊗

i=1
fi)(z)µ[m](dz) +

m∑
r=1

∑
(i1,...,ir)∈[m][r]

fk
⊗i1,...,ir

(x1, . . . , xk)
∫
Xm−r

f⊗i1,...,ir (z)µ[m−r](dz)

holds true if k,m ∈ N, x1, . . . , xk ∈ X and f1, . . . , fm : X → R are measurable functions such that ⊗m
i=1fi is

integrable with respect to (µ+ δx1 + . . .+ δxk
)[m].





CHAPTER 4

Chaos expansion

Orthogonal decompositions constitute a fundamental tool with widespread applications across mathematics.
In the context of stochastic analysis, the orthogonal decomposition of a square-integrable random variable
into an infinite orthogonal sum is commonly referred to as the chaos expansion. This concept was initially
introduced in the setting of the Wiener process by Wiener (1938). Subsequently, Itô (1951) proved that this
decomposition can be represented in terms of iterated stochastic integrals. Over time, this methodology
has found widespread applications and has been extended beyond the Gaussian setting (cf. e.g. Last and
Penrose (2011) for Poisson processes).

As recalled in Chapter 2.3, Peccati (2008) establishes a chaos expansion for random variables that
are square-integrable with respect to the distribution of a Dirichlet process. In this chapter, we give an
alternative, constructive proof of the chaos expansion obtained by Peccati (2008), including explicit formulas
for the projections. To this end, the first two sections are devoted to the definition of relevant function
spaces and an analysis of their structural properties. The chaos expansion is then the subject of the final
section. We consider a measurable space (X,X ) with a finite measure ρ ≠ 0 and set θ := ρ(X). Furthermore,
let ζ be a Dirichlet process with parameter measure ρ and define

L2(ζ) := {F : M(X) → R | F is measurable and E[F (ζ)2] < ∞}.

4.1. The spaces Hn

This section is dedicated to the study of the spaces Hn, n ∈ N, which consist of functions that will later
serve as integrands in the projection onto the nth chaos. At first, we define these spaces and then study
their properties.

Definition 4.1. Let n ∈ N. A function g ∈ L2(ρ[n]) is said to be symmetric if

g(x1, . . . , xn) = g(xπ(1), . . . , xπ(n)) ρ[n]-a.e. (x1, . . . , xn) ∈ Xn

for every permutation π of [n]. Let Hn denote the set of all symmetric functions g ∈ L2(ρ[n]) satisfying∫
X
g(x1, . . . , xn−1, x) (ρ+ δx1 + . . .+ δxn−1)(dx) = 0 (4.1)

for ρ[n−1]-almost all (x1, . . . , xn−1) ∈ Xn−1. Further, let H0 := R.

We note that in the special case n = 1, the space H1 consists of all functions g ∈ L2(ρ) that satisfy the
condition

∫
X g(x) ρ(dx) = 0. Moreover, we recall the recursion for the measures ρ[n], n ∈ N, from (3.1) in

Lemma 3.5.
Since for each n ∈ N the measure 1

θ(n) ρ
[n] is the joint distribution of the first n elements of the Pólya

sequence (Xn)n∈N from (2.2), we have for g ∈ Hn that

E(g(X1, . . . , Xn)|X1, . . . , Xn−1) = 0, P-a.s.,

or, equivalently,
E[g(X1, . . . , Xn)h(X1, . . . , Xn−1)] = 0

for every measurable and bounded function h : Xn−1 → [0,∞). The last equation gives rise to an idea for a
characterisation of the spaces Hn, n ∈ N, if n > 1.

Lemma 4.2. Let n ∈ N, n > 1. A symmetric function g ∈ L2(ρ[n]) is an element of Hn if and only if for
all measurable and bounded functions h : Xn−1 → [0,∞) it holds∫

Xn

h(x1, . . . , xn−1)g(x1, . . . , xn) ρ[n](d(x1, . . . , xn)) = 0.
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Proof. If g ∈ Hn and h : Xn−1 → [0,∞) is measurable and bounded, using the recursion (3.1) from
Lemma 3.5, we have∫

Xn

h(xn−1)g(xn) ρ[n](dxn) =
∫
Xn−1

h(xn−1)
(∫

X
g(xn−1, xn) (ρ+ δxn−1)(dxn)

)
ρ[n−1](dxn−1) = 0.

On the other hand, let g ∈ L2(ρ[n]) be a symmetric function satisfying the equation from the statement for
all measurable functions h. We assume g /∈ Hn, i.e. we assume that there exists a measurable set B ⊆ Xn−1

with ρ[n−1](B) > 0 and ∫
X
g(xn−1, x) (ρ+ δxn−1)(dx) ̸= 0, xn−1 ∈ B.

For h = 1B , using once again the recursion (3.1) from Lemma 3.5, it then holds∫
Xn

h(xn−1)g(xn) ρ[n](dxn) =
∫

B

∫
X
g(xn) (ρ+ δxn−1)(dxn) ρ[n−1](dxn−1) ̸= 0.

This contradicts the assumption.

The preceding lemma allows us to establish that the spaces Hn, n ∈ N, are closed.

Lemma 4.3. Given n ∈ N, the set Hn is a closed subset of L2(ρ[n]).

Proof. The claim holds for n = 0. Let n ≥ 1 and (gm)m∈N be a sequence in Hn with gm → g, m → ∞, for
some function g ∈ L2(ρ[n]). To begin with, we observe that g is symmetric since the subspace of symmetric
functions is closed. (For every permutation π of [n], the mapping Sπ : L2(ρ[n]) → L2(ρ[n]) defined by
(Sπf)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)), (x1, . . . , xn) ∈ Xn, is an isometry. Hence, the set of all symmetric
functions, ∩π permutation of [n] ker(id −Sπ), where ker denotes the kernel of a linear mapping, is closed.) Let
h : Xn−1 → [0,∞) be measurable and bounded. Since gm ∈ Hn for each m ∈ N, Lemma 4.2 implies∫

Xn

h(xn−1)g(xn) ρ[n](dxn) =
∫
Xn

h(xn−1)(g(xn) − gm(xn)) ρ[n](dxn) +
∫
Xn

h(xn−1)gm(xn) ρ[n](dxn)

=
∫
Xn

h(xn−1)(g(xn) − gm(xn)) ρ[n](dxn).

By the Cauchy–Schwarz inequality, the absolute value of this integral is bounded by(∫
Xn

h(xn−1)2 ρ[n](dxn)
) 1

2
(∫

Xn

(g(xn) − gm(xn))2 ρ[n](dxn)
) 1

2

,

which converges to zero as m → ∞. Thus, the claim is a consequence of Lemma 4.2.

We proceed with a general lemma that facilitates the evaluation of integrals. As immediate corollaries,
we obtain formulas for integrating products of functions from Hm and Hn, m,n ∈ N, required in the
subsequent analysis.

Lemma 4.4. Let m,n, r ∈ N0 so that r < n. Further, let f : Xm+r+n → R be such that f ∈ L1(ρ[m+r+n])
and f(x1, . . . , xm+r, ·) ∈ Hn for ρ[m+r]-almost all (x1, . . . , xm+r) ∈ Xm+r. Then∫

Xm+n

f(x1, . . . , xm, y1, . . . , yr, y1, . . . , yn) ρ[m+n](d(x1, . . . , xm, y1, . . . , yn))

=
∑

(i1,...,in−r)∈[m][n−r]

∫
f(x1, . . . , xm, y1, . . . , yr, y1, . . . , yr, xi1 , . . . , xin−r ) ρ[m+r](d(x1, . . . , xm, y1, . . . , yr))

is valid whenever m ≥ n− r. If m < n− r, the integral on the left-hand side vanishes.

Proof. We first consider the case m ≥ n− r. The recursion (3.1) from Lemma 3.5 leads to∫
Xm+n

f(xm,yr,yn) ρ[m+n](d(xm,yn))

=
∫
Xn−1

∫
Xm

∫
X
f(xm,yr,yn) (ρ+ δxm + δyn−1)(dyn) (ρ+ δyn−1)[m](dxm) ρ[n−1](dyn−1)
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=
∫
Xn−1

∫
Xm

m∑
i1=1

f(xm,yr,yn−1, xi1) (ρ+ δyn−1)[m](dxm) ρ[n−1](dyn−1).

If n ≥ 2, a repetition of this procedure shows that the integral equals∫
Xn−2

∫
Xm

m∑
i1=1

m∑
i2=1,i2 ̸=i1

f(xm,yr,yn−2, xi2 , xi1) (ρ+ δyn−2)[m](dxm) ρ[n−2](dyn−2)

=
∫
Xm+n−2

∑
(i1,i2)∈[m][2]

f(xm,yr,yn−2, xi2 , xi1) ρ[m+n−2](d(xm,yn−2)).

Inductively, we obtain∫
Xm+n

f(xm,yr,yn) ρ[m+n](d(xm,yn))

=
∫
Xm+r

∑
(i1,...,in−r)∈[m][n−r]

f(xm,yr,yr, xi1 , . . . , xin−r
) ρ[m+r](d(xm,yr)).

In particular, if m = n− r, this equals

m!
∫
Xm+r

f(xm,yr,yr,xm) ρ[m+r](d(xm,yr))

by the symmetry of functions in Hn. If m < n− r, the defining properties of Hn provide∫
Xm+n

f(xm,yr,yn) ρ[m+n](d(xm,yn))

=
∫
Xn

∑
(i1,...,im)∈[m][m]

f(xm,yr,yn−m, xi1 , . . . , xim
) ρ[n](d(xm,yn−m))

= m!
∫
Xn−1

∫
X
f(xm,yr,yn−m−1, yn−m,xm) (ρ+ δxm + δyn−m−1)(dyn−m) ρ[n−1](d(xm,yn−m−1)) = 0.

The following corollary gives the first of the previously announced formulas.

Corollary 4.5. Let n, l, k ∈ N0 with n ≥ l ≥ k. Then functions g ∈ Hn and h ∈ L2(ρ[l]) satisfy∫
Xl+n−k

g(y1, . . . , yn)h(x1, . . . , xl−k, y1, . . . , yk) ρ[l+n−k](d(x1, . . . , xl−k, y1, . . . , yn))

= 1{l=n}(n− k)!
∫
Xn

g(z)h(z) ρ[n](dz).

Proof. If k = n, it holds n = l = k and there is nothing to show. Now, assume k < n. Then we are in the
setting of Lemma 4.4 with m = l − k, n, r = k and the function f : Xl+n → R given by

f(xl,yn) := h(xl)g(yn).

Since g and h are square-integrable and ρ is a finite measure, g and h are in L1(ρ[n]) and L1(ρ[l]), respectively.
Thus, the Cauchy–Schwarz inequality shows that f is an element of L1(ρ[l+n]). Applying Lemma 4.4 to∫

Xl−k+n

h(xl−k,yk)g(yn) ρ[l−k+n](d(xl−k,yn)) =
∫
Xl−k+n

f(xl−k,yk,yn) ρ[l−k+n](d(xl−k,yn)),

we obtain ∑
(i1,...,in−k)∈[l−k][n−k]

∫
Xl

f(xl−k,yk,yk, xi1 , . . . , xin−k
) ρ[l](d(xl−k,yk))

=
∑

(i1,...,in−k)∈[l−k][n−k]

∫
Xl

h(xl−k,yk)g(yk, xi1 , . . . , xin−k
) ρ[l](d(xl−k,yk)) (4.2)

if l− k ≥ n− k. Otherwise, the integral vanishes. By the assumption n ≥ l ≥ k and the symmetry of g, the
assertion follows.
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Another formula used later is stated in the subsequent corollary.

Corollary 4.6. Let k, l ∈ N0 with k ≥ l and g ∈ L2(ρ[k+1]), h ∈ L2(ρ[l+1]) such that g(x, ·) ∈ Hk and
h(x, ·) ∈ Hl for all x ∈ X. Then∫

Xk+l+1
g(x, x1, . . . , xk)h(x, y1, . . . , yl) ρ[k+l+1](d(x, x1, . . . , xk, y1, . . . , yl))

= 1{k=l+1}k!
∫
Xk

g(x1, x1, . . . , xk)h(x1, . . . , xk) ρ[k](d(x1, . . . , xk))

+ 1{k=l}k!
(∫

Xk+1
g(z)h(z) ρ[k+1](dz)

+k
∫
Xk

g(x1, x1, . . . , xk)h(x1, x1, . . . , xk) ρ[k](d(x1, . . . , xk))
)
.

Proof. If k = 0, then l = 0 as well and there is nothing to prove. Therefore, we assume k ≥ 1.
First, assume l ≥ 1. An application of Lemma 4.4 (with m = k + 1, n = l, r = 0) to the function

f : Xk+l+1 → R defined by
f(xk+1,yl) := g(xk+1)h(x1,yl)

yields∫
Xk+l+1

g(xk+1)h(x1,yl) ρ[k+l+1](d(xk+1,yl))

=
∑

(i1,...,il)∈[k+1][l]

∫
Xk+1

g(xk+1)h(x1, xi1 , . . . , xil
) ρ[k+1](dxk+1). (4.3)

Let (i1, . . . , il) ∈ [k + 1][l]. If there exists j ∈ {2, . . . , k + 1} \ {i1, . . . , il}, the defining properties of Hk give∫
Xk+1

g(xk+1)h(x1, xi1 , . . . , xil
) ρ[k+1](dxk+1)

=
∫
Xk

∫
X
g(xk+1) (ρ+ δxj−1 + δxj+1 + . . .+ δxk+1)(dxj)h(x1, xi1 , . . . , xil

) ρ[k](d(xj−1, xj+1, . . . , xk+1))

=
∫
Xk

g(x1, x1,xj−1, xj+1, . . . , xk+1)h(x1, xi1 , . . . , xil
) ρ[k](d(xj−1, xj+1, . . . , xk+1)). (4.4)

If, in addition, there exists i ∈ {2, . . . , k + 1} \ {j, i1, . . . , il}, we obtain∫
Xk+1

g(xk+1)h(x1, xi1 , . . . , xil
) ρ[k+1](dxk+1)

=
∫
Xk−1

∫
X
g(x1, x1,xj−1, xj+1, . . . , xk+1) (ρ+ δxk+1\i, j)(dxi)h(x1, xi1 , . . . , xil

) ρ[k−1](dxk+1\i, j)

= 0,

where xk+1\i, j denotes the vector xk+1 with the ith and jth entry omitted. Thus, if k ≥ l + 2,∫
Xk+l+1

g(xk+1)h(x1,yl) ρ[k+l+1](d(xk+1,yl)) = 0.

If k = l+1, the only summands remaining in (4.3) are the ones corresponding to tuples (i1, . . . , il) ∈ [k+1][l]
not containing 1 (because, in this case, {2, . . . , k + 1} \ {i1, . . . , il} contains exactly one element). Since
there are k! tuples of this kind, using the symmetry of h in its last arguments, we obtain∫

Xk+l+1
g(xk+1)h(x1,yl) ρ[k+l+1](d(xk+1,yl)) = k!

∫
Xk+1

g(xk+1)h(x1, x2, . . . , xk) ρ[k+1](dxk+1).

If k = l, the right-hand side of (4.3) becomes∑
(i1,...,ik)∈[k+1][k]

∫
Xk+1

g(xk+1)h(x1, xi1 , . . . , xik
) ρ[k+1](dxk+1).
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The set [k + 1][k] contains k · k! tuples containing 1 and k! tuples not containing 1. An application of (4.4)
and exploiting the symmetry of h yields

∑
(i1,...,ik)∈[k+1][k]

∫
Xk+1

g(xk+1)h(x1, xi1 , . . . , xik
) ρ[k+1](dxk+1)

= kk!
∫
Xk

g(x1, x1, . . . , xk)h(x1, x1, . . . , xk) ρ[k](d(x1, . . . , xk)) + k!
∫
Xk+1

g(xk+1)h(xk+1) ρ[k+1](dz).

If l = 0, by Lemma 4.4 (with m = 1, n = k, r = 0 and f(xk+1) := g(xk+1)h(x1), xk+1 ∈ Xk+1) we have∫
Xk+1

g(xk+1)h(x1) ρ[k+1](dxk+1) = 0

if k ≥ 2 and, if k = 1, ∫
Xk+1

g(xk+1)h(x1) ρ[k+1](dxk+1) =
∫
X
g(x1, x1)h(x1) ρ(dx1).

Several other formulas needed in the subsequent chapter are collected in the next corollary.

Corollary 4.7. Let m ∈ N0, n ∈ N, f ∈ Hn and h ∈ L2(ρ[m+1]) such that h(x, ·) ∈ Hm for all x ∈ X.
Then ∫

Xm+n+1
h(y)f(z) ρ[m+n+1](d(y, z))

=1{m=n+1}m!
∫
Xm

h(x1, x1, . . . , xm)f(x2, . . . , xm) ρ[m](d(x1, . . . , xm))

+ 1{m=n}

(
m!
∫
Xm+1

h(x1, . . . , xm+1)f(x2, . . . , xm+1) ρ[m+1](d(x1, . . . , xm+1))

+mm!
∫
Xm

h(x1, x1, . . . , xm)f(x1, . . . , xm) ρ[m](d(x1, . . . , xm))
)

+ 1{m+1=n}(m+ 1)!
∫
Xm+1

h(x1, . . . , xm+1)f(x1, . . . , xm+1) ρ[m+1](d(x1, . . . , xm+1))

as well as ∫
Xm+n

h(x, x1, . . . , xm)f(x, y1, . . . , yn−1) ρ[m+n](d(x, x1, . . . , xm, y1, . . . , yn−1))

=1{m=n}m!
∫
Xm

h(x1, x1, . . . , xm)f(x1, . . . , xm) ρ[m](d(x1, . . . , xm))

+ 1{m=n−1}m!
∫
Xm+1

h(x1, . . . , xm+1)f(x1, . . . , xm+1) ρ[m+1](d(x1, . . . , xm+1)).

and, if m is positive,∫
Xm+n

∫
X
h(x, x1, . . . , xm) (ρ+ δx1 + . . .+ δxm

)(dx)f(y1, . . . , yn) ρ[m+n](d(x1, . . . , xm, y1, . . . , yn))

=1{m=n}m!
∫
Xm+1

h(xm+1, x1, . . . , xm)f(x1, . . . , xm) ρ[m+1](d(x1, . . . , xm+1))

+ 1{m=n+1}m!
∫
Xm

h(xm, x1, . . . , xm)f(x1, . . . , xm−1) ρ[m](d(x1, . . . , xm)).

Proof. Corollary 4.6 applied to the functions h and g : Xn+1 → R defined by g(xn+1) := f(x2, . . . , xn+1)
yields the first assertion.

For the second integral, the case n ≥ m+ 1 follows from Corollary 4.5 (with k = 1). If n ≤ m, arguing
as in the proof of Corollary 4.5 (cf. (4.2)) yields∫

Xm+n

h(y1,xm)f(yn) ρ[m+n](d(xm,yn))
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=
∑

(i1,...,in−1)∈[m][n−1]

∫
Xm+1

h(y1,xm)f(y1, xi1 , . . . , xin−1) ρ[m+1](d(xm, y1)).

By the properties of h(x, ·) ∈ Hm, x ∈ X, disintegrating as in the proof of Corollary 4.6 (cf. (4.4)) yields
that the sum vanishes unless m = n and which case the integral takes the asserted value.

To conclude, we consider the third integral. An application of Lemma 4.4 to f̃ : Xm+n → R, given by

f̃(xm,yn) :=
∫
X
h(t,xm) (ρ+ δxm)(dt)f(yn)

gives ∫
Xm+n

∫
X
h(x,xm) (ρ+ δxm)(dx)f(yn) ρ[m+n](d(xm,yn))

=
∑

(i1,...,in)∈[m][n]

∫
Xm

∫
X
h(x,xm) (ρ+ δxm)(dx)f(xi1 , . . . , xin

) ρ[m](dxm)
(4.5)

unless m < n in which case the integral is zero. (Note that f̃ ∈ L1(ρ[m+n]) since its L1-norm is bounded by∫
Xm+n

∫
X

|h(t,xm)f(yn)| (ρ+ δxm)(dt) ρ[m+n](d(xm,yn))

≤
∫
Xm+n+1

|h(xm+1)f(yn)| ρ[m+n+1](d(xm+1,yn))

which by the Cauchy–Schwarz inequality is bounded by the product of the L2-norms of f and h.) By the
recursion (3.1) from Lemma 3.5, the integral (4.5) equals∑

(i1,...,in)∈[m][n]

∫
Xm+1

h(x,xm)f(xi1 , . . . , xin) ρ[m+1](d(x,xm)).

Using the properties of h and the symmetry of f yields the assertion.

A natural question arises whether functions of the type considered in Lemma 4.4, that is, measurable
functions which, upon fixing certain arguments, belong to the space Hn for some n ∈ N, also belong to a
space Hm for some m > n when regarded as functions of all variables. However, the following example
shows that this is not necessarily the case.

Example 4.8. Let B ∈ X and h : X2 → R be defined by

h(x, y) := 1
ρ(X) + 1(ρ(B) + 1B(y))1B(x) − 1

ρ(X)ρ(B)1B(x).

Because of∫
X
h(x, y) ρ(dy) = ρ(X)

ρ(X) + 1ρ(B)1B(x) + 1
ρ(X) + 1ρ(B)1B(x) − ρ(B)1B(x) = 0, x ∈ X,

we have h(x, ·) ∈ H1 for all x ∈ X. However, the function h is not symmetric and thus cannot be an element
of H2. Denoting its symmetrisation by h̃, we obtain∫

X
h̃(x, y) (ρ+ δx)(dy) =

∫
X

1
2 (h(x, y) + h(y, x)) (ρ+ δx)(dy)

= 1
2

∫
X

1
ρ(X) + 1(ρ(B)1B(x) + ρ(B)1B(y) + 2 · 1B(y)1B(x)) − 1

ρ(X)ρ(B) (1B(x) + 1B(y)) (ρ+ δx)(dy)

= 1
2

(
ρ(B)1B(x) + ρ(B)(ρ(B) + 1B(x))

ρ(X) + 1 + 2(ρ(B) + 1B(x))1B(x)
ρ(X) + 1 − ρ(B)((ρ(X) + 2)1B(x) + ρ(B))

ρ(X)

)
= 1

2

(
ρ(X) − 2
ρ(X)(2) ρ(B)1B(x) − 1

ρ(X)(2) ρ(B)2 + 2
ρ(X) + 11B(x)

)
, x ∈ X,
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and conclude that the symmetrisation does not need to be an element of H2 either. Moreover, also the
function f : X → R given by

y 7→
∫
X
h(x, y) (ρ+ δy)(dx)

may not be an element of H1: Indeed, we have

f(y) =
∫
X

1
ρ(X) + 1(ρ(B) + 1B(y))1B(x) − 1

ρ(X)ρ(B)1B(x) (ρ+ δy)(dx)

= 1
ρ(X) + 1(ρ(B) + 1B(y))2 − 1

ρ(X)ρ(B)(ρ(B) + 1B(y)), y ∈ X,

and ∫
X
f(y) ρ(dy) =

∫
X

1
ρ(X) + 1(ρ(B)2 + 2ρ(B)1B(y) + 1B(y)) − 1

ρ(X)ρ(B)(ρ(B) + 1B(y)) ρ(dy)

= ρ(B)2ρ(X)
ρ(X) + 1 + 2ρ(B)2

ρ(X) + 1 + ρ(B)
ρ(X) + 1 − ρ(B)2 − ρ(B)2

ρ(X) = ρ(B)
ρ(X) + 1 − ρ(B)2

ρ(X)(2) . ◦

Finally, we consider the situation in which a function, upon fixing one of its arguments, lies in Hm,
m ∈ N, while the full function in all variables is an element of Hm+1. The following lemma reveals a
characteristic property of the function in this case.

Lemma 4.9. Let m ∈ N and f : Xm+1 → R be such that f ∈ L2(ρ[m+1]) and f(x, ·) ∈ Hm for ρ-almost
all x ∈ X. Then f is an element of Hm+1 if and only if f is symmetric and f(ym, y1, . . . , ym) = 0 for
ρ[m]-almost all (y1, . . . , ym) ∈ Xm.

Proof. By assumption, there exists a null set N1 ∈ X such that f(x, ·) ∈ Hm for x ∈ X \N1, i.e. f(x, ·) is
symmetric and there is a ρ[m−1]-null set Nm−1 ⊆ Xm−1 such that

0 =
∫
X
f(x,ym−1, ym) (ρ+ δym−1)(dym) =

∫
X
f(x,ym−1, ym) ρ(dym) +

m−1∑
r=1

f(x,ym−1, yr) (4.6)

for all x ∈ X \N1 and ym−1 ∈ Xm−1 \Nm−1.
First, let f ∈ Hm+1. Then the function f is symmetric and a ρ[m]-null set Nm ⊆ Xm with

0 =
∫
X
f(ym, ym+1) (ρ+ δym)(dym+1) =

∫
X
f(ym, ym+1) ρ(dym+1) +

m∑
r=1

f(ym, yr)

for all ym ∈ Xm \Nm can be found. Together with (4.6) this shows

f(ym, ym) = 0

for ym ∈ (Xm \Nm) ∩ ((X \N1) × (Xm−1 \Nm−1)). As the complement of this set is a ρ[m]-null set, the
necessity is established.

Second, assume that f is symmetric and satisfies f(ym, y1, . . . , ym) = 0 for (y1, . . . , ym) ∈ Xm \ Ñm where
Ñm is a ρ[m]-null set. For (y1, . . . , ym) ∈ (Xm \ Ñm) ∩ ((X \N1) × (Xm−1 \Nm−1)), which is again a set
with full measure, equation (4.6) becomes

0 =
∫
X
f(ym, ym+1) (ρ+ δy2 + . . .+ δym

)(dym+1) =
∫
X
f(ym, ym+1) ρ(dym+1) +

m∑
r=2

f(ym, yr)

and it thus holds∫
X
f(ym, ym+1) (ρ+ δym)(dym+1) =

∫
X
f(ym, ym+1) ρ(dym+1) +

m∑
r=1

f(ym, yr) = 0.
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4.2. The spaces Fn
We now consider spaces Fn, n ∈ N, which are formed by integrating functions from Hn with respect to a
Dirichlet process with parameter measure ρ. In this section, we define the spaces and then discuss several
of their properties.

Definition 4.10. Let n ∈ N. Define the space Fn by

Fn :=
{∫

Xn

g(x) ζn(dx) : g ∈ Hn

}
⊆ L2(P).

Moreover, let F0 := R.

As a first step, we note that Corollary 3.8, together with Corollary 4.5, yields an isometry relation for
the elements of these spaces.

Corollary 4.11. Let m,n ∈ N. For functions g ∈ Hm and h ∈ Hn it holds true that

E
[∫

Xm

g(x) ζm(dx)
∫
Xn

h(y) ζn(dy)
]

= 1{m=n}
n!
θ(2n)

∫
Xn

g(x)h(x) ρ[n](dx).

Proof. By Corollary 3.8, we have

E
[∫

Xm

g(x) ζm(dx)
∫
Xn

h(y) ζn(dy)
]

= E
[∫

Xm+n

g(x)h(y) ζm+n(d(x, y))
]

= 1
θ(m+n)

∫
Xm+n

g(x)h(y) ρ[m+n](d(x, y)).

According to Corollary 4.5 (with k = 0), this is equal to

1{m=n}
n!
θ(2n)

∫
Xm

g(x)h(x) ρ[n](dx).

Next, we show that the coincidence of two random variables in Fn, n ∈ N, implies the ρ[n]-almost
everywhere coincidence of the functions appearing in their respective representations. This result will later
be used to show the almost everywhere uniqueness of the projections onto these spaces.

Corollary 4.12. Let n ∈ N and h, h̃ ∈ Hn be such that∫
Xn

h(x) ζn(dx) =
∫
Xn

h̃(x) ζn(dx), P-a.s.

Then h = h̃ holds ρ[n]-almost everywhere.

Proof. Let g ∈ L2(ρ[n]). The assumption and Corollary 4.11 yield

0 = E
[∫

Xn

g(x) ζn(dx)
∫
Xn

(h(y) − h̃(y)) ζn(dy)
]

= n!
θ(2n)

∫
Xn

g(x)(h(x) − h̃(x)) ρ[n](dx).

The next lemma provides yet another property of the spaces Fn, n ∈ N. The method employed in the
proof is a standard procedure in functional analysis. However, it is included here to help illustrate the
concepts.

Lemma 4.13. Let m,n ∈ N. The space Fm is a closed subset of L2(P) and is orthogonal to Fn, n ≠ m, in
L2(P).

Proof. The orthogonality is a consequence of Corollary 4.11. Let m ∈ N and let (Fn)n∈N with

Fn =
∫
Xm

gn(x) ζm(dx), n ∈ N,

be a sequence in Fm satisfying Fn → F in L2(P) as n → ∞ for a random variable F ∈ L2(P). Corollary 4.11
yields

E
[
(Fk − Fl)2] = E

[(∫
Xm

gk(x) − gl(x) ζm(dx)
)2
]

= m!
θ(2m)

∫
Xm

(gk(x) − gl(x))2 ρ[m](dx)
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for k, l ∈ N. Because (Fn)n∈N is a Cauchy sequence in L2(P), this shows that the functions gn, n ∈ N, form
a Cauchy sequence in Hm. Since this space is closed by Lemma 4.3, there exists a limit g ∈ Hm. Using the
inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R, we obtain

E

[(
F −

∫
Xm

g(x) ζm(dx)
)2
]

≤ 2E
[
(F − Fn)2

]
+ 2E

[(
Fn −

∫
Xm

g(x) ζm(dx)
)2
]
.

The convergence Fn → F , n → ∞, in L2(P) implies that the first expectation on the right-hand side tends
to zero. By Corollary 4.11 the second expectation is equal to

E

[(∫
Xm

gn(x) ζm(dx) −
∫
Xm

g(x) ζm(dx)
)2
]

= m!
θ(2m)

∫
Xm

(gn(x) − g(x))2 ρ[m](dx) → 0, n → ∞.

Thus, it follows that
F =

∫
Xm

g(x) ζm(dx), P-a.s.

4.3. Projections onto the spaces Fn
In this section, we derive formulas for the projections of a square integrable function of a Dirichlet process
onto the spaces Fn, n ∈ N. The general formula is given in Proposition 4.15. However, we begin with a
discussion of the underlying ideas and special cases. Readers primarily interested in the results may wish
to skip the preliminary discussion and proceed directly to Proposition 4.15.

Let F ∈ L2(ζ), i.e. F : M(X) → R is measurable and satisfies

E[F (ζ)2] < ∞.

Let n ∈ N0. To determine the orthogonal projection of F onto Fn, we seek hn ∈ Hn such that

E
[
F (ζ)

∫
Xn

g(x) ζn(dx)
]

= E
[∫

Xn

hn(y) ζn(dy)
∫
Xn

g(x) ζn(dx)
]

(4.7)

for all g ∈ Hn. By Theorem 3.7, the left-hand side of (4.7) becomes

E
[
F (ζ)

∫
Xn

g(x) ζn(dx)
]

= 1
θ(n)

∫
Xn

TF,n(x1, . . . , xn)g(x1, . . . , xn) ρ[n](d(x1, . . . , xn)),

where TF,0 := E [F (ζ)] and

TF,k(x1, . . . , xk) := E
[
F (ζρ+δx1 +...+δxk

)
]
, (x1, . . . , xk) ∈ Xk, k ∈ N. (4.8)

Using Corollary 4.11, the right-hand side of (4.7) is

E
[∫

Xn

hn(y) ζn(dy)
∫
Xn

g(y) ζn(dy)
]

= n!
θ(2n)

∫
Xn

g(x)hn(x) ρ[n](dx).

Thus, equation (4.7) is equivalent to

(θ + n)(n)

n!

∫
Xn

TF,n(x)g(x) ρ[n](dx) =
∫
Xn

g(x)hn(x) ρ[n](dx). (4.9)

In the case n = 0, the function h0 = E[F (ζ)] satisfies this equation. For n ∈ N, we proceed with the
following approach inspired by the Gram–Schmidt process

hn(x1, . . . , xn) := (θ + n)(n)

n! TF,n(x1, . . . , xn) +
n−1∑
j=0

∑
i1<...<ij

wj(xi1 , . . . , xij ), (4.10)

where wj ∈ L2(ρ[j]) for j ∈ [n− 1] are symmetric functions and w0 ∈ R is a constant. For each g ∈ Hn, we
then have∫

Xn

(
hn(x) − (θ + n)(n)

n! TF,n(x)
)
g(x) ρ[n](dx) =

n−1∑
j=0

∑
i1<...<ij

∫
Xn

wj(xi1 , . . . , xij
)g(x) ρ[n](dx) = 0
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by Lemma 4.2. Hence, hn fulfils condition (4.9) and it remains to determine the functions wj , j ∈ [n− 1],
such that hn ∈ Hn, i.e. such that∫

X
hn(x1, . . . , xn−1, x) (ρ+ δx1 + . . .+ δxn−1)(dx) = 0, ρ[n−1]-a.e. (x1, . . . , xn−1) ∈ Xn−1. (4.11)

Before addressing this task, we record a useful recursive property of the functions TF,n.

Lemma 4.14. It holds
∫
X TF,1(x) ρ(dx) = θTF,0. For each k ∈ N, the recursion∫

X
TF,k(x1, . . . , xk−1, x) (ρ+ δx1 + . . .+ δxk−1)(dx) = (θ + k − 1)TF,k−1(x1, . . . , xk−1)

is valid for ρ[k−1]-almost all (x1, . . . , xk−1) ∈ Xk−1.

Proof. If k = 1, the definition of TF,1, the Mecke-type equation from Theorem 3.7 and the definition of
TF,0 yield ∫

X
TF,1(x) ρ(dx) =

∫
X
E [F (ζρ+δx

)] ρ(dx) = θE [F (ζρ)] = θTF,0.

Let k ≥ 2 and g ∈ L2(ρ[k−1]). By the definitions of TF,k and ρ[k], we have∫
Xk−1

∫
X
TF,k(xk−1, xk) (ρ+ δxk−1)(dxk)g(xk−1) ρ[k−1](dxk−1) =

∫
Xk

E
[
F (ζρ+δxk

)
]
g(xk−1) ρ[k](dxk).

According to the Mecke-type equation from Theorem 3.7 and the fact that ζρ is a probability measure, this
is equal to

θ(k)E
[∫

Xk

F (ζρ)g(xk−1) ζk
ρ (dxk)

]
= θ(k)E

[∫
Xk−1

F (ζρ)g(xk−1) ζk−1
ρ (dxk−1)

]
.

Using the Mecke-type equation from Theorem 3.7 and the definition of TF,k−1, this equals

θ(k)

θ(k−1)

∫
Xk−1

E
[
F (ζρ+δxk−1

)
]
g(xk−1) ρ[k−1](dxk−1) = (θ+k−1)

∫
Xk−1

TF,k−1(xk−1)g(xk−1) ρ[k−1](dxk−1).

Before deriving a general formula for the projection onto Fn, n ∈ N, we will first consider the cases
n ∈ {1, 2, 3} to illustrate the general approach.

1) n = 1
In this case, we aim to determine

h1(x) = (θ + 1)(1)TF,1(x) + w0 = (θ + 1)TF,1(x) + w0, x ∈ X.

From condition (4.11), we obtain

0 =
∫
X
h1(x) ρ(dx) =

∫
X
(θ + 1)TF,1(x) ρ(dx) + θw0.

Moreover, Lemma 4.14 yields ∫
X
TF,1(x) ρ(dx) = θE[F (ζρ)].

Hence, choosing w0 := −(θ + 1)E[F (ζρ)] results in

h1(x) = (θ + 1)(TF,1(x) − E[F (ζρ)]), x ∈ X.
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2) n = 2
The approach from (4.10) in this case reads

h2(x1, x2) = (θ + 2)(θ + 3)
2 TF,2(x1, x2) + w1(x1) + w1(x2) + w0, (x1, x2) ∈ X2.

Hence, we seek w0 ∈ R and w1 ∈ L2(ρ) such that

0 =
∫
X
h2(x1, x2) (ρ+ δx1)(dx2), ρ-almost all x1 ∈ X.

Given x1 ∈ X, this integral is equal to∫
X

(θ + 2)(θ + 3)
2 TF,2(x1, x2) (ρ+ δx1)(dx2) + (θ + 2)w1(x1) +

∫
X
w1(x2) ρ(dx2) + (θ + 1)w0

and vanishes for the choice

w1(x1) := −θ + 3
2

∫
X
TF,2(x1, x2) (ρ+ δx1)(dx2), x1 ∈ X, and w0 := − 1

θ + 1

∫
X
w1(x) ρ(dx).

Using Lemma 4.14, these terms simplify to

w1(x1) = − (θ + 3)(θ + 1)
2 TF,1(x1), x1 ∈ X,

and
w0 = 1

θ + 1
(θ + 3)(θ + 1)

2

∫
X
TF,1(x) ρ(dx) = θ + 3

2 θTF,0 = (θ + 3)θ
2 θE[F (ζρ)].

Thus, we obtain

h2(x1, x2) = θ + 3
2 ((θ + 2)TF,2(x1, x2) − (θ + 1)TF,1(x1) − (θ + 1)TF,1(x2) + θTF,0) , (x1, x2) ∈ X2.

3) n = 3
We again use (4.10), i.e. we consider

h3(x1, x2, x3) = (θ + 3)(θ + 4)(θ + 5)
3! TF,3(x1, x2, x3) + w2(x1, x2) + w2(x1, x3) + w2(x2, x3)

+ w1(x1) + w1(x2) + w1(x3) + w0, (x1, x2, x3) ∈ X3,

and aim at determining w0 ∈ R, w1 ∈ L2(ρ) and a symmetric function w2 ∈ L2(ρ[2]) satisfying (4.11). In
this setting, (4.11) requires

0 =
∫
X
h3(x1, x2, x3) (ρ+ δx1 + δx2)(dx3)

=
∫
X

(θ + 3)(θ + 4)(θ + 5)
3! TF,3(x1, x2, x3) (ρ+ δx1 + δx2)(dx3) + (θ + 4)w2(x1, x2)

+
∫
X
w2(x1, x3) (ρ+ δx1)(dx3) +

∫
X
w2(x2, x3) (ρ+ δx2)(dx3) + (θ + 3)w1(x1) + (θ + 3)w1(x2)

+
∫
X
w1(x3) ρ(dx3) + (θ + 2)w0, ρ[2]-almost all (x1, x2) ∈ X2.

Let

w2(x1, x2) := − (θ + 3)(3)

3!(θ + 4)

∫
X
TF,3(x1, x2, y) (ρ+ δx1 + δx2)(dy), (x1, x2) ∈ X2,

w1(x) := − 1
θ + 3

∫
X
w2(x, y) (ρ+ δx)(dy), x ∈ X,



38 Chapter 4. Chaos expansion

w0 := − 1
θ + 2

∫
X
w1(y) ρ(dy).

By Lemma 4.14, we have

w2(x1, x2) = − (θ + 5)(θ + 3)(θ + 2)
3! TF,2(x1, x2), (x1, x2) ∈ X2,

w1(x) = (θ + 5)(θ + 2)
3!

∫
X
TF,2(x, y) (ρ+ δx)(dy) = (θ + 5)(θ + 2)(θ + 1)

3! TF,1(x), x ∈ X,

w0 = − (θ + 5)(θ + 1)
3!

∫
X
TF,1(y) ρ(dy) = − (θ + 5)(θ + 1)θ

3! TF,0,

from which it follows that

h3(x1, x2, x3) = θ + 5
3! ((θ + 3)(2)TF,3(x1, x2, x3) − (θ + 2)(2)(TF,2(x1, x2) + TF,2(x1, x3) + TF,2(x2, x3))

+ (θ + 1)(2)(TF,1(x1) + TF,1(x2) + TF,1(x3)) − (θ + 1)θTF,0), (x1, x2, x3) ∈ X3.

The formula for general n ∈ N is the subject of the following proposition.

Proposition 4.15. Let F ∈ L2(ζ). The projection of F onto F0 is E[F (ζ)]. The projection onto Fn,
n ∈ N, is

∫
Xn fn(x) ζn(dx), where fn ∈ Hn is for ρ[n]-almost all (x1, . . . , xn) ∈ Xn given by

fn(x1, . . . , xn) := θ + 2n− 1
n!

(−1)nθ(n−1)E [F (ζρ)]

+
n∑

j=1
(−1)n−j(θ + j)(n−1)

∑
1≤i1<...<ij≤n

E
[
F (ζρ+δxi1

+...+δxij
)
] . (4.12)

Proof. The first claim follows from E[F (ζ)c] = cE[F (ζ)] for all c ∈ F0 = R. We note that the inequality

(c1 + . . .+ ck)2 ≤ k(c2
1 + . . .+ c2

k)

holds for all c1, . . . , ck ∈ R and k ∈ N. Let n ∈ N. By the aforementioned inequality, the integral∫
Xn fn(x)2 ρ[n](dx) is bounded by

2(θ + 2n− 1)2

n!2

∫
Xn

(
θ(n−1)E [F (ζρ)]

)2
ρ[n](dxn)

+ 2(θ + 2n− 1)2

n!2

∫
Xn

 n∑
j=1

(−1)n−j(θ + j)(n−1)
∑

1≤i1<...<ij≤n

E
[
F (ζρ+δxi1

+...+δxij
)
]2

ρ[n](dxn).

The first integral in this expression is finite since ρ[n](X) is finite and the integrand is finite by Jensen’s
inequality. An upper bound for the second integral is∫

Xn

n

n∑
j=1

(
(θ + j)(n−1)

)2
(
n

j

) ∑
1≤i1<...<ij≤n

E
[
F (ζρ+δxi1

+...+δxij
)2
]
ρ[n](dxn).

According to the Mecke-type equation in Theorem 3.7, this integral is equal to the finite value

n

n∑
j=1

(
(θ + j)(n−1)

)2
(
n

j

)2
θ(n)E

[
F (ζρ)2] .

Hence, we conclude that fn is an element of L2(ρ[n]). Moreover, fn is symmetric. In order to show fn ∈ Hn,
we thus further need to establish∫

X
fn(xn−1, xn) (ρ+ δxn−1)(dxn) = 0 for ρ[n−1]-a.e. (x1, . . . , xn−1) ∈ Xn−1. (4.13)
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Let (x1, . . . , xn−1) ∈ Xn−1. By definition of fn and with the notation from (4.8), the integral in (4.13)
equals

θ + 2n− 1
n!

∫
X
(−1)nθ(n−1)TF,0 +

n∑
j=1

(−1)n−j(θ + j)(n−1)
∑

i1<...<ij

TF,j(xi1 , . . . , xij
) (ρ+ δxn−1)(dxn)

= θ + 2n− 1
n!

∫
X
(−1)nθ(n−1)TF,0 + (θ + n)(n−1)TF,n(xn)

+
n−1∑
j=1

∑
i1<...<ij

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij
) (ρ+ δxn−1)(dxn).

The integral in the first line is, according to Lemma 4.14, equal to∫
X
(−1)nθ(n−1)TF,0 + (θ + n)(n−1)TF,n(xn) (ρ+ δxn−1)(dxn)

= (−1)nθ(n−1)(θ + n− 1)TF,0 + (θ + n− 1)(θ + n)(n−1)TF,n−1(xn−1)
= (−1)nθ(n)TF,0 + (θ + n− 1)(n)TF,n−1(xn−1),

while a closer examination of the last line reveals that the sum appearing there can be further decomposed,
leading to∫

X

n−1∑
j=1

∑
1≤i1<...<ij≤n

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij ) (ρ+ δxn−1)(dxn)

=
n−1∑
j=1

∑
1≤i1<...<ij≤n−1

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij
)(θ + n− 1)

+
∫
X
(−1)n−1(θ + 1)(n−1)TF,1(xn) (ρ+ δxn−1)(dxn)

+
n−1∑
j=2

∑
1≤i1<...<ij−1≤n−1

∫
X
(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij−1 , xn) (ρ+ δxn−1)(dxn).

We proceed with the computation of the two remaining integrals in the last two lines of the above expression.
These are equal to∫

X
(−1)n−1(θ + 1)(n−1)TF,1(xn) ρ(dxn) +

n∑
l=1

(−1)n−1(θ + 1)(n−1)TF,1(xl)

+
n−1∑
j=2

∑
1≤i1<...<ij−1≤n−1

n−1∑
l=1,

l/∈{i1,...,ij−1}

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij−1 , xl) (4.14)

+
n−1∑
j=2

∑
1≤i1<...<ij−1≤n−1

∫
X
(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij−1 , xn) (ρ+ δxi1

+ . . .+ δxij−1
)(dxn).

By the recursion from Lemma 4.14, we have∫
X
(−1)n−1(θ + 1)(n−1)TF,1(xn) ρ(dxn)

+
n−1∑
j=2

∑
1≤i1<...<ij−1≤n−1

∫
X
(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij−1 , xn) (ρ+ δxi1

+ . . .+ δxij−1
)(dxn)

=(−1)n−1θ(n)TF,0 +
n−1∑
j=2

∑
1≤i1<...<ij−1≤n−1

(−1)n−j(θ + j − 1)(n)TF,j−1(xi1 , . . . , xij−1).

For j ∈ {2, . . . , n− 1}, the symmetry of TF,j and combinatorial counting (The sum on the left-hand side in
the following expression involves selecting a (j − 1)-tuple of distinct elements of the set [n− 1] and then
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inserting an additional integer l ∈ [n− 1] into it, where l is not in the set {i1, . . . , ij−1}. Because of the
symmetry of TF,j , the value of the function remains unchanged regardless of where l is inserted. This leads
to the sum on the right-hand side, where all possible j-tuples of integers are considered. The factor j
accounts for the j ways to insert l into the (j − 1)-tuple.) yield

∑
1≤i1<...<ij−1≤n−1

n−1∑
l=1,

l/∈{i1,...,ij−1}

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij−1 , xl)

= j
∑

1≤i1<...<ij≤n−1
(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij

).

Hence, (4.14) becomes
n∑

l=1
(−1)n−1((θ + 1)(n−1) + (θ + 1)(n))TF,1(xl) + (−1)n−1θ(n)TF,0

+
n−1∑
j=2

j
∑

1≤i1<...<ij≤n−1
(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij

)

+
n−2∑
l=2

∑
1≤i1<...<il≤n−1

(−1)n−l−1(θ + l)(n)TF,l(xi1 , . . . , xil
),

which can be simplified to
n∑

l=1
(−1)n(θ + 1)(n−1)(θ + n− 1)TF,1(xl) − (n− 1)(θ + n− 1)(n−1)TF,n−1(xn−1)

− (−1)nθ(n)TF,0 −
n−2∑
j=2

∑
1≤i1<...<ij≤n−1

(−1)n−j(θ + j)(n−1)(θ + n− 1)TF,j(xi1 , . . . , xij ).

Combining all our findings, we arrive at

n!
θ + 2n− 1

∫
X
fn(xn−1, xn) (ρ+ δxn−1)(dxn)

=(θ + n− 1)(n)TF,n−1(xn−1) +
n−1∑
j=1

∑
1≤i1<...<ij≤n−1

(−1)n−j(θ + j)(n−1)TF,j(xi1 , . . . , xij )(θ + n− 1)

+ (−1)nθ(n)TF,0 +
n∑

l=1
(−1)n(θ + 1)(n−1)(θ + n− 1)TF,1(xl) − (n− 1)(θ + n− 1)(n−1)TF,n−1(xn−1)

− (−1)nθ(n)TF,0 −
n−2∑
j=2

∑
1≤i1<...<ij≤n−1

(−1)n−j(θ + j)(n−1)(θ + n− 1)TF,j(xi1 , . . . , xij
).

By collecting like terms, this is equal to

TF,n−1(xn−1)
(

(θ + n− 1)(n) − (θ + n− 1)(n−1)(θ + n− 1) − (n− 1)(θ + n− 1)(n−1)
)

−
∑

1≤i1≤n−1
(−1)n(θ + 1)(n−1)TF,1(xi1)(θ + n− 1) +

n∑
l=1

(−1)n−1(θ + 1)(n−1)(θ + n− 1)TF,1(xl)

= 0.

Hence, fn is an element of Hn. As a final step, we show that
∫
Xn fn(x) ζn(x) is indeed the projection of F

onto Fn in L2(P). The almost sure uniqueness of the projection follows from Corollary 4.12. Let g ∈ Hn.
On the one hand, the Mecke-type equation from Theorem 3.7 yields

E
[
F (ζρ)

∫
Xn

g(x) ζn
ρ (dx)

]
= 1
θ(n)

∫
Xn

E
[
F (ζρ+δxn

)
]
g(xn) ρ[n](dxn). (4.15)
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On the other hand, Corollary 4.11 implies

E
[∫

Xn

fn(y) ζn
ρ (dy)

∫
Xn

g(x) ζn
ρ (dx)

]
= n!
θ(2n)

∫
Xn

fn(x)g(x) ρ[n](dx).

By the definition of fn, the right-hand side equals

n!
θ(2n)

∫
Xn

θ + 2n− 1
n!

(−1)nθ(n−1)TF,0 +
n∑

j=1
(−1)n−j(θ + j)(n−1)

∑
i1<...<ij

TF,j(xi1 , . . . , xij
)


g(xn) ρ[n](dxn).

Since g is an element of Hn and thus Corollary 4.5 (for k = 0) is applicable, this reduces to

n!
θ(2n)

∫
Xn

(
θ + 2n− 1

n! (−1)n−n(θ + n)(n−1)TF,n(xn)
)
g(xn) ρ[n](dxn)

which is, because of TF,n(xn) = E[F (ζρ+δxn
)], in turn equal to (4.15). Therefore,

∫
Xn fn(x) ζn(dx) is indeed

the orthogonal projection of F onto Fn.

A structural aspect of the projection formula is discussed in the subsequent remark.

Remark 4.16. The formula for the function fn, n ∈ N, from (4.12) in the previous statement can, provided
the summand for j = 0 is interpreted appropriately, i.e. the second sum is for j = 0 interpreted as E[F (ζρ)],
be written as follows

fn(x1, . . . , xn) = θ + 2n− 1
n!

n∑
j=0

(−1)n−j(θ + j)(n−1)
∑

1≤i1<...<ij≤n

E
[
F (ζρ+δxi1

+...+δxij
)
]

(4.16)

for ρ[n]-almost all (x1, . . . , xn) ∈ Xn. We thus see that the computation of fn involves the integration of
F ∈ L2(ζ) with respect to the Palm measures (in the sense of the definition on p. 212 in Kallenberg (2017))
of ζ. A comparison with the Poisson case (c.f. e.g. Chapter 18 in Last and Penrose (2017)) reveals a
structural similarity: In both settings, alternating sums of Palm expectations are considered. ⋄

We finish this section with an example that gives the orthogonal projections of particular random
variables.

Example 4.17. Let m ∈ N and f ∈ L2(ρ[m]). Then
∫
Xm f(x) ζm(dx) is contained in the spaces Fi, i ∈ [m]0,

that is ∫
Xm

f(x) ζm(dx) ∈
m⊕

i=0
Fi. (4.17)

Proof. Let F : M(X) → R be given by F (µ) := µm(f), where we used our notation µm(f) =
∫
Xm f(x)µm(dx)

(cf. Section 2.4). By the assumption on f and Corollary 3.8 it holds F ∈ L2(ζ). To begin with, we note
that for each n ∈ N such that n > m and for each g ∈ Hn, we have

E
[∫

Xm

f(x) ζm(dx)
∫
Xn

g(y) ζn(dy)
]

= 1
θ(m+n)

∫
Xm+n

f(x)g(y) ρ[m+n](d(x, y)) = 0

due to Corollary 3.8 and Corollary 4.5 (with k = 0). Hence, F is an element of the orthogonal complement
of Fj j > m. Next, we calculate the projections of F onto Fk, k ∈ [m]0. Let k ∈ [m]. According to (4.16),
the projection of F onto Fk is

∫
Xk fk(x) ζk(dx) where fk is for ρ[k]-almost all (x1, . . . , xk) ∈ Xk given by

fk(x1, . . . , xk) = θ + 2k − 1
k!

k∑
j=0

(−1)k−j(θ + j)(k−1)
∑

1≤i1<...<ij≤k

E
[
F (ζρ+δxi1

+...+δxij
)
]
.

By Corollary 3.8, this is equal to

θ + 2k − 1
k!

(−1)k θ
(k−1)

θ(m) ρ
[m](f) +

k∑
j=1

(−1)k−j (θ + j)(k−1)

(θ + j)(m)

∑
1≤i1<...<ij≤k

(ρ+ δxi1
+ . . .+ δxij

)[m](f)

 .
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The projection of F onto F0 is

E[F (ζ)] = E
[∫

Xm

f(x) ζm(dx)
]

= 1
θ(m) ρ

[m](f).

We now show

F (ζ) = E[F (ζ)] +
m∑

k=1

∫
Xk

fk(x) ζk(dx), P-a.s. (4.18)

The right-hand side of (4.18) is

1
θ(m) ρ

[m](f) +
m∑

k=1

θ + 2k − 1
k! (−1)k θ

(k−1)

θ(m) ρ
[m](f)

+
m∑

k=1

θ + 2k − 1
k!

k∑
j=1

(−1)k−j (θ + j)(k−1)

(θ + j)(m)

(
k

j

)∫
Xk

(ρ+ δxj)[m](f) ζk(dxk).

By Proposition 3.11, for k ∈ [m], j ∈ [k] and xj ∈ Xj , we have∫
Xk

(ρ+ δxj)[m](f) ζk(dxk)

= ρ[m](f) +
m∑

r=1

∑
(i1,...,ir)∈[m][r]

∫
Xj

∫
Xm−r

f j
i1,...,ir

(xj, zm−r) ρ[m−r](dzm−r) ζj(dxj),

using the notation introduced in (3.6) and (3.7). Hence, the right-hand side of (4.18) becomes

m∑
j=1

m∑
k=j

(θ + 2k − 1)
(k − j)!j! (−1)k−j (θ + j)(k−1)

(θ + j)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

∫
Xj

∫
Xm−r

f j
i1,...,ir

(xj, zm−r)ρ[m−r](dzm−r)ζj(dxj)

+

 1
θ(m) +

m∑
k=1

θ + 2k − 1
k! (−1)k θ

(k−1)

θ(m) +
m∑

j=1

m∑
k=j

θ + 2k − 1
(k − j)!j! (−1)k−j (θ + j)(k−1)

(θ + j)(m)

 ρ[m](f).

(4.19)

From Lemma A.2, we obtain the following summation formula
m∑

k=j

(−1)k−j θ + 2k − 1
(k − j)! (θ + j)(k−1) = (−1)m−j (θ + j)(m)

(m− j)!

for each m ∈ N and j ∈ [m− 1]. We now use this formula to simplify the second sum in the term inside the
parentheses in the second line of (4.19). This yields the following simplified form of the entire term inside
the parentheses

1
θ(m) +

m∑
k=1

θ + 2k − 1
k! (−1)k θ

(k−1)

θ(m) +
m∑

j=1

1
(m− j)!j! (−1)m−j .

Applying the binomial theorem to the last sum, we can further simplify this term to

1
θ(m) +

m∑
k=1

θ + 2k − 1
k! (−1)k θ

(k−1)

θ(m) − (−1)m

m! .

Lemma A.1 shows that this expression (and thus the entire second line in (4.19)) vanishes. Using the above
stated summation formula from Lemma A.2 also for the sum in the first line of (4.19), the entire expression
in (4.19) reduces to

m∑
r=1

∑
(i1,...,ir)∈[m][r]

m∑
j=1

(−1)m−j

(m− j)!j!

∫
Xj

∫
Xm−r

f j
i1,...,ir

(xj, zm−r) ρ[m−r](dzm−r) ζj(dxj).
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Let r ∈ [m]. By the definition of f j
i1,...,ir

, j ∈ [m], it holds

m∑
j=1

(−1)m−j

(m− j)!j!

∫
Xj

∫
Xm−r

∑
(i1,...,ir)∈[m][r]

f j
i1,...,ir

(xj, zm−r) ρ[m−r](dzm−r) ζj(dxj)

=
m∑

j=1

(−1)m−j

(m− j)!j!
∑

1≤l1≤...≤lr≤j

∫
Xj

∫
Xm−r

∑
(i1,...,ir)∈[m][r]

fi1,...,ir (xl1 , . . . , xlr , zm−r) ρ[m−r](dzm−r) ζj(dxj).

(4.20)

We now differentiate based on the number of identical arguments in the integrand, that is, we decompose
the set of all sequences (l1, . . . , lr) ∈ Nr with 1 ≤ l1 ≤ . . . ≤ lr ≤ j for j ∈ [m] according to the number of
repeated entries. To this end, let j ∈ [m], k ∈ [j ∧ r] and λ1, . . . , λk ∈ N with

k∑
i=1

λi = r.

We define λ as the multiset (a multiset is a generalisation of a set that allows multiple occurrences of the
same element; formally, a multiset over a set S can be defined as a function m : S → N0, where m(ν) gives
the number of times ν ∈ S appears in the multiset) containing λ1, . . . , λk. A sequence (l1, . . . , lr) ∈ Nr is
said to have multiplicity structure λ if there exist exactly k distinct values among the entries and each
distinct value appears λ1, . . . , λk times, respectively. Formally, this means that the multiset consisting
of l1, . . . , lr can be partitioned into k equivalence classes of equal entries, with cardinalities λ1, . . . , λk.
Moreover, we set

Bλ := {(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr ≤ j

and the multiset with elements l1, . . . , lr has multiplicity structure λ} .

We observe that the number of elements of Bλ is(
j

k

)
k!∏M(λ)

i=1 mλ(νi)!
,

where M(λ) is the number of distinct values in λ, which are denoted by ν1, . . . , νM(λ), each occurring
mλ(νi) times in λ, i ∈ [M(λ)]. We thus have the disjoint decomposition

{(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr ≤ j} =
j∧r⋃
k=1

⋃
λ multiset of k natural numbers

that sum up to r

Bλ

and (4.20) becomes

m∑
j=1

(−1)m−j

(m− j)!j!

j∧r∑
k=1

∑
λ

∑
(l1,...,lr)∈Bλ

∫∫ ∑
(i1,...,ir)∈[m][r]

fi1,...,ir (xl1 , . . . , xlr , zm−r) ρ[m−r](dzm−r) ζj(dxj),

(4.21)
where

∑
λ is used to express the sum over all multisets λ consisting of k natural numbers that sum to r.

Note that, for zm−r ∈ Xm−r, the function

Xr ∋ (x1, . . . , xr) 7→
∑

(i1,...,ir)∈[m][r]

fi1,...,ir
(x1, . . . , xr, zm−r)

is symmetric. Hence, for fixed j ∈ [m], k ∈ [j ∧ r], a multiset λ with elements λ1, . . . , λk with sum r and
(l1, . . . , lr) ∈ Bλ, the integral in the corresponding summand in (4.21) simplifies to∫

Xk

∫
Xm−r

∑
(i1,...,ir)∈[m][r]

fi1,...,ir
(x1, . . . , x1︸ ︷︷ ︸

λ1 times

, . . . , xk, . . . , xk︸ ︷︷ ︸
λk times

, zm−r) ρ[m−r](dzm−r) ζk(dxk) =: Iλ.
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We note that Iλ now depends only on λ and, consequently, on k and r. Inserting these expressions into (4.20)
yields

m∑
j=1

(−1)m−j

(m− j)!j!

j∧r∑
k=1

∑
λ

∑
(l1,...,lr)∈Bλ

Iλ =
r∑

k=1

∑
λ

Iλ

m∑
j=k

(−1)m−j

(m− j)!j!

(
j

k

)
k!∏M(λ)

i=1 mλ(νi)!
.

We now evaluate
m∑

j=k

(−1)m−j

(m− j)!j!

(
j

k

)
k!

for fixed k ∈ [r]. The binomial theorem yields

m∑
j=k

(−1)m−j

(m− j)!j!

(
j

k

)
k! =

m∑
j=k

(−1)m−j

(m− j)!(j − k)! =
m−k∑
i=0

(−1)m−k−i

(m− k − i)!i! = 1
(m− k)! (1 − 1)m−k.

This expression is zero unless k = m is satisfied, which can only occur when r = m and j = m. If this
is the case, the corresponding multiset λ consists of m times the value 1, i.e. M(λ) = 1, mλ(1) = m and
Bλ = {(1, 2, . . . ,m− 1,m)}. Putting everything together and using the symmetry of ζm for the final step,
we conclude, P-a.s., that

E[F (ζ)] +
m∑

k=1

∫
Xk

fk(x) ζk(dx) = 1
m!

∫
Xm

∑
(i1,...,im)∈[m][m]

fi1,...,im
(xm) ζm(dxm) =

∫
Xm

f(z) ζm(dz).

4.4. The chaos expansion
Having completed all necessary preparations, we can prove the chaos expansion in this section.

Theorem 4.18. Every F ∈ L2(ζ) admits a unique representation

F (ζ) = E[F (ζ)] +
∞∑

n=1

∫
Xn

fn(x) ζn(dx), P-a.s., (4.22)

where the convergence is in L2(P) and fn, n ∈ N, is ρ[n]-a.e. given by (4.16).

Proof. Uniqueness of the projections is a consequence of Lemma 4.12. By Proposition 4.15, the projection
of F onto Fn, n ∈ N, is

∫
Xn fn(x) ζn(dx) and the projection of F onto F0 is E[F (ζ)]. It remains to show

{F (ζ) : F ∈ L2(ζ)} =
∞⊕

n=0
Fn.

As a direct sum of closed subspaces,
⊕∞

n=0 Fn is closed in L2(P). It contains, by definition, random variables
of the form ∫

Xn

h(x) ζn(dx),

with h ∈ Hn and n ∈ N. Example 4.17 further shows that∫
Xn

g(x) ζn(dx) ∈
n⊕

i=0
Fi

for each g ∈ L2(ρ[n]), n ∈ N. The linear hull of such random variables is dense in {F (ζ) : F ∈ L2(ζ)}
according to Lemma 2 from Peccati (2008).

The functions fn, n ∈ N, in the above expansion (4.22) are also called kernel functions. Moreover, given
F,G ∈ L2(ζ) with kernel functions fn and gn, n ∈ N, respectively, we obtain the isometry formula

E [F (ζ)G(ζ)] = E [F (ζ)]E[G(ζ)] +
∞∑

n=1

n!
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx). (4.23)

Building on the chaos decomposition, the following remark addresses the associated Fock space.
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Remark 4.19. Let H be the vector space of all sequences g = (gk)k∈N0 such that g0 ∈ R, gk ∈ L2(ρ[k]) for
all k ∈ N and

∞∑
k=0

k!
θ(2k)

∫
Xk

gk(x)2 ρ[k](dx) < ∞.

Equipped with the norm

∥g∥H =
( ∞∑

k=0

k!
θ(2k)

∫
Xk

gk(x)2 ρ[k](dx)
) 1

2

, g = (gk)k∈N0 ∈ H,

the space H becomes a Hilbert space as a countable direct sum of Hilbert spaces. Moreover, the space H is
isometrically isomorphic to

⊕∞
k=0 Fk via the mapping

(fk)k∈N0 7→
∞∑

k=0

∫
Xk

fk(x) ζk(dx). ⋄





CHAPTER 5

Malliavin operators

We now turn to a powerful set of analytical tools known as Malliavin calculus or the stochastic calculus of
variations. Originally developed by Paul Malliavin in Malliavin (1976) as an infinite-dimensional integration
by parts technique in the Brownian motion case, this theory has since evolved into an important component
of modern stochastic analysis for different processes and has found widespread applications (cf. e.g. Privault
and Schoutens (2002) for Rademacher sequences, Nualart (2006) for the Wiener space and fractional
Brownian motion, Di Nunno, Øksendal and Proske (2009) for Lévy processes and Last (2016) for Poisson
processes).

In this chapter, the chaos expansion is employed to construct the fundamental operators of Malliavin
calculus: a gradient ∇, a divergence δ and a generator L. Each of these operators is discussed in a dedicated
section. Throughout the chapter, let (X,X , ρ) be a finite measure space with θ := ρ(X) > 0 and denote by
ζ a Dirichlet process on X with parameter measure ρ.

5.1. The gradient
In this section, we construct a gradient operator on a subset of L2(ζ).

Let Cζ be the Campbell measure of ζ, i.e. the probability measure on Ω × X defined by

Cζ(A) :=
∫

Ω

∫
X
1A(ω, x) ζ(ω,dx)P(dω), A ∈ A ⊗ X .

We begin by specifying the set of random variables for which the gradient will be defined.

Definition 5.1. Let dom(∇) denote the set of all F ∈ L2(ζ) with chaos expansion (4.22) such that the
kernel functions additionally satisfy

∞∑
n=1

(θ + n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) < ∞. (5.1)

We note that, since random variables of the form
∫
Xn f(x) ζn(dx) with n ∈ N and f ∈ L2(ρ[n]) are

elements of dom(∇), this set is dense in L2(ζ) (cf. Lemma 2 from Peccati (2008)).
The subsequent lemma lays the foundation for the definition of the gradient.

Lemma 5.2. Let F ∈ dom(∇) with chaos expansion (4.22). Then

Ω × X ∋ (ω, x) 7→
∞∑

n=1
n

(∫
Xn−1

fn(x, y1, . . . , yn−1) ζn−1(ω,d(y1, . . . , yn−1)) −
∫
Xn

fn(y) ζn(ω,dy)
)

converges in L2(Cζ).

Proof. Given n ∈ N, let Hn : Ω × X → R be defined by

Hn(ω, x) :=
∫
Xn−1

fn(x,yn−1) ζn−1(ω,dyn−1) −
∫
Xn

fn(y) ζn(ω,dy), n > 1,

H1(ω, x) := f1(x) −
∫
X
f1(y) ζ(ω, dy).

Let m,n ∈ N. It holds∫
Ω×X

Hm(ω, x)Hn(ω, x)Cζ(d(ω, x)) = E
[∫

X
Hm(x)Hn(x) ζ(dx)

]
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= E
[∫

X

(∫
Xm−1

fm(x,ym−1) ζm−1(dym−1) −
∫
Xm

fm(y) ζm(dy)
)

(∫
Xn−1

fn(x, zn−1) ζn−1(dzn−1) −
∫
Xn

fn(z) ζn(dz)
)
ζ(dx)

]
.

By Corollary 3.8, this expectation is equal to

1
θ(m+n−1)

∫
Xm+n−1

fm(x,ym−1)fn(x, zn−1) ρ[m+n−1](d(x,ym−1, zn−1))

− 1
θ(m+n)

∫
Xm+n

fm(ym)fn(zn) ρ[m+n](d(ym, zn)).

According to Corollary 4.5, this reduces to

1{m=n}

(
(n− 1)!
θ(2n−1)

∫
Xn

fn(x)2 ρ[n](dx) − n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)
)

= 1{m=n}
(n− 1)!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)2 ρ[n](dx).

Hence, for n0 ∈ N, we obtain

∫
Ω×X

(
n0∑

n=1
nHn(ω, x)

)2

Cζ(d(ω, x)) =
n0∑

n=1

n0∑
m=1

E
[∫

X
nmHn(x)Hm(x) ζ(dx)

]

=
n0∑

n=1

n2(n− 1)!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)2 ρ[n](dx).

Since F is an element of dom(∇), the series

∞∑
n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)2 ρ[n](dx)

converges. We conclude that (
n0∑

n=1
nHn

)
n0∈N

is a Cauchy sequence in L2(Cζ) and therefore convergent. Moreover, the following identity holds

E

∫
X

( ∞∑
n=1

nHn(x)
)2

ζ(dx)

 =
∞∑

n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)2 ρ[n](dx). (5.2)

We now introduce the gradient.

Definition 5.3. Let ∇ : dom(∇) → L2(Cζ) be defined by

(∇F )(ω, x) :=
∞∑

n=1
n

(∫
Xn−1

fn(x, y1, . . . , yn−1) ζn−1(ω, d(y1, . . . , yn−1)) −
∫
Xn

fn(y) ζn(ω, dy)
)
,

where the chaos expansion of F ∈ dom(∇) is given by (4.22).

We work with a measurable version of the gradient (This follows from the fact that convergence in
L2(Cζ) implies the existence of a subsequence that converges Cζ-a.e. Since each partial sum is measurable,
the pointwise limit of any such subsequence is measurable as well. Therefore, the limit function, which is
equal to the L2-limit, is measurable.) and occasionally suppress the dependence on Ω, writing simply ∇xF ,
x ∈ X, for the random variable ω 7→ (∇F )(ω, x).

The following corollary gathers two immediate properties of the gradient.
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Corollary 5.4. Let F,G ∈ dom(∇) and denote the kernel functions in their chaos expansions from (4.22)
by fn and gn, n ∈ N, respectively. Then

E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
=

∞∑
n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)gn(x) ρ[n](dx). (5.3)

Moreover, the gradient is centred in the sense that∫
X
(∇xF ) ζ(dx) = 0, P-a.s. (5.4)

Proof. The identity (5.2) implies (5.3) (note that the summands in the defining series of the gradient are
pairwise orthogonal in L2(Cζ)). To see the second claim, we may define for m ∈ N and x ∈ X the random
variable Hm

x by truncating the infinite series defining ∇xF at m. By the definition and the fact that ζ is a
probability measure, we then have

∫
XH

m
x ζ(dx) = 0. Jensen’s inequality (for the probability measure ζ)

yields

E

[(∫
X
(Hm

x − ∇xF ) ζ(dx)
)2
]

≤ E
[∫

X
(Hm

x − ∇xF )2 ζ(dx)
]

The assertion is now a consequence of the convergence of (Hm)m∈N to ∇F in L2(Cζ) established in
Lemma 5.2.

The next result shows that the gradient operator is closed. This property will play a key role in Chapter 6.

Lemma 5.5. Let (Fn)n∈N be a sequence in dom(∇) and assume that (∇Fn)n∈N forms a Cauchy sequence
in L2(Cζ), i.e.

lim
m,n→∞

E
[∫

X
(∇xFm − ∇xFn)2 ζ(dx)

]
= 0.

Then there exists F ∈ dom(∇) with

lim
n→∞

E
[∫

X
(∇xF − ∇xFn)2 ζ(dx)

]
= 0. (5.5)

If additionally Fn → F̃ as n → ∞ in L2(ζ) for some F̃ ∈ L2(ζ), the limit function F in (5.5) can be chosen
in such a way that F = F̃ holds P-almost surely.

Proof. Let for each n ∈ N the chaos expansion (4.22) of Fn ∈ L2(ζ) be given by

Fn(ζ) = E[Fn(ζ)] +
∞∑

k=1

∫
Xk

fn,k(x) ζk(dx).

The assumed convergence and (5.3) yield

0 = lim
m,n→∞

E
[∫

X
(∇xFm − ∇xFn)2 ζ(dx)

]
= lim

m,n→∞

∞∑
k=1

kk!
θ(2k) (θ + k − 1)

∫
Xk

(fm,k(x) − fn,k(x))2 ρ[k](dx).

Similar to the Fock space in Remark 4.19, let H̃ be the vector space of all sequences g = (gk)k∈N such that
gk ∈ L2(ρ[k]) for all k ∈ N and

∞∑
k=1

kk!(θ + k − 1)
θ(2k)

∫
Xk

gk(x)2 ρ[k](dx) < ∞.

In contrast to Remark 4.19, we now include an additional weighting factor in each summand. Equipped
with the norm

∥g∥
H̃

=
( ∞∑

k=1

kk!(θ + k − 1)
θ(2k)

∫
Xk

gk(x)2 ρ[k](dx)
) 1

2

, g = (gk)k∈N ∈ H̃,
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the space H̃ becomes a Hilbert space as a countable direct sum of Hilbert spaces. The sequence (fn)n∈N =
((fn,k)k∈N)n∈N from above is a Cauchy sequence in H̃. Hence, there exists a limit f = (fk)k∈N in H̃, i.e.

lim
n→∞

∞∑
k=1

kk!(θ + k − 1)
θ(2k)

∫
Xk

(fn,k(x) − fk(x))2 ρ[k](dx) = 0.

Since for each k ∈ N, we have fn,k → fk as n → ∞ and fn,k ∈ Hk for all n ∈ N the fact that Hk is closed by
Lemma 4.3 implies fk ∈ Hk. Thus, as f ∈ H̃, for each constant c ∈ R, the function Fc with chaos expansion

Fc(ζ) = c+
∞∑

k=1

∫
Xk

fk(x) ζk(dx),

belongs to dom(∇) and satisfies (5.5).
If (Fn)n∈N additionally converges to some F̃ in L2(ζ) and the kernel functions of F̃ are denoted by f̃n,

n ∈ N, we have by (4.23) that

E[(Fn(ζ) − F̃ (ζ))G(ζ)] =
∞∑

k=0

k!
θ(2k)

∫
Xk

(fn,k(x) − f̃k(x))gk(x) ρ[k](dx)

for each n ∈ N and every G ∈ L2(ζ) with kernel functions gk, k ∈ N. By the convergence Fn → F̃ , n → ∞,
and the Cauchy–Schwarz inequality, we thus obtain∫

Xk

(fn,k(x) − f̃k(x))g(x) ρ[k](dx) → 0, n → ∞,

for each k ∈ N and g ∈ Hk, implying fk = f̃k, ρ[k]-a.e. for each k ∈ N. Choosing c = E[F̃ (ζ)] yields that
FE[F̃ (ζ)] = F̃ holds P-a.s.

5.2. The divergence
In this section, we introduce the adjoint in L2(Cζ) of the gradient from the previous section.
Definition 5.6. Let dom(δ) denote the set of all measurable functions H : M(X) × X → R such that
E[
∫
XH(ζ, x)2 ζ(dx)] < ∞ and for which there exists a constant c ≥ 0 such that∣∣∣∣E [∫

X
H(x)∇xF ζ(dx)

]∣∣∣∣ ≤ cE[F (ζ)2] 1
2 (5.6)

for all F ∈ dom(∇).
The next lemma provides the necessary groundwork for defining the divergence.

Lemma 5.7. Let H ∈ dom(δ). Then there exists an P-a.s. uniquely determined σ(ζ)-measurable δ(H) ∈
L2(P) fulfilling

E [δ(H)F ] = E
[∫

X
H(x)∇xF ζ(dx)

]
(5.7)

for all F ∈ dom(∇).
Proof. By condition (5.6), the linear mapping dom(∇) ∋ F 7→ E

[∫
XH(x)∇xF ζ(dx)

]
is continuous and

can thus be extended to a linear mapping from L2(ζ) to R. The Riesz representation theorem yields a
unique element δ(H) ∈ L2(P) satisfying (5.7).

Definition 5.8. The operator δ is called divergence operator and equation (5.7) is referred to as integration
by parts or partial integration.

We note that the operator δ is linear. Choosing F ≡ 1 in (5.7) shows E[δ(H)] = 0 since the kernel
functions from the chaos decomposition (4.22) of F are given by fn = 0, n ∈ N, and thus, by definition,
∇F = 0.

For certain functions in L2(Cζ), it is possible to define an operator δ′ based on the chaos expansion.
This alternative construction will be pursued in the subsequent analysis. In particular, we will show that δ
and δ′ coincide on the set dom(δ′). We begin with a lemma that provides a criterion for the convergence
of a series in L2(Cζ). The functions that can be constructed in this manner will form the domain of the
operator δ′.
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Lemma 5.9. Let hn : Xn+1 → R, n ∈ N0, be measurable functions such that hn(x, ·) ∈ Hn for each x ∈ X
and

∞∑
n=1

(θ + n)2(n+ 1)!
θ(2n+2)

∫
Xn

hn(z)2 ρ[n+1](dz) < ∞. (5.8)

Then the series

(ω, x) 7→ h0(x) +
∞∑

n=1

∫
Xn

hn(x, y) ζn(ω,dy) (5.9)

converges in L2(Cζ).

Proof. Let m,n ∈ N with m ≥ n. Define Hn : Ω × X → R by

Hn(ω, x) :=
∫
Xn

hn(x,yn) ζn(ω, dyn).

By Corollary 3.8, we obtain∫
Ω×X

Hm(ω, x)Hn(ω, x)Cζ(d(ω, x)) = 1
θ(m+n+1)

∫
Xm+n+1

hm(x,ym)hn(x, zn) ρ[m+n+1](d(x,ym, zn)).

According to Corollary 4.6, we have∫
Xm+n+1

hm(x,ym)hn(x, zn) ρ[m+n+1](d(x,ym, zn))

= 1{m=n}m!
(∫

Xm+1
hm(xm+1)2 ρ[m+1](dxm+1) +

m∑
r=1

∫
Xm

hm(xr,xm)2 ρ[m](dxm)
)

+ 1{m=n+1}(n+ 1)!
∫
Xn+1

hn+1(x1,xn+1)hn(xn+1) ρ[n+1](dxn+1).

Hence, for n0, n1 ∈ N with n0 ≤ n1, it follows

E

∫
X

(
n1∑

n=n0

∫
Xn

hn(x, y) ζn(dy)
)2

ζ(dx)

 =
n1∑

m,n=n0

E
[∫

X
Hm(x)Hn(x) ζ(dx)

]

=
n1∑

n=n0

n!
θ(2n+1)

(∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1) +
n∑

r=1

∫
Xn

hn(xr,xn)2 ρ[n](dxn)
)

+
n1−1∑
n=n0

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn+1(x1,xn+1)hn(xn+1) ρ[n+1](dxn+1) =: S1 + S2.

We treat the sums S1 and S2 individually and establish upper bounds for both. On the one hand, because
of

n∑
r=1

∫
Xn

hn(xr,xn)2 ρ[n](dxn) =
∫
Xn

∫
X
hn(y,xn)2 δxn(dy) ρ[n](dxn)

≤
∫
Xn

∫
X
hn(y,xn)2 (ρ+ δxn)(dy) ρ[n](dxn) =

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1), n ∈ N,

where we used the symmetry of hn in its last n arguments, n ∈ N, we have

S1 ≤ 2
n1∑

n=n0

n!
θ(2n+1)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1).

On the other hand, the Cauchy–Schwarz inequality in L2(ρ[n+1]) yields∫
Xn+1

hn+1(x1,xn+1)hn(xn+1) ρ[n+1](dxn+1)
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≤
(∫

Xn+1
hn+1(x1,xn+1)2 ρ[n+1](dxn+1)

) 1
2
(∫

Xn+1
hn(xn+1)2 ρ[n+1](dxn+1)

) 1
2

, n ∈ N.

Inserting this in S2 yields the upper bound
n1−1∑
n=n0

(
(n+ 1)!
θ(2n+2)

∫
Xn+1

hn+1(x1,xn+1)2 ρ[n+1](dxn+1)
) 1

2
(

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1)
) 1

2

.

By the Cauchy–Schwarz inequality, this sum is bounded by(
n1−1∑
n=n0

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn+1(x1,xn+1)2 ρ[n+1](dxn+1)
) 1

2
(

n1−1∑
n=n0

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1)
) 1

2

.

From the symmetry of hn+1, n ∈ N, in the last n+ 1 arguments, we obtain

(n+ 1)
∫
Xn+1

hn+1(x1,xn+1)2 ρ[n+1](dxn+1) =
∫
Xn+1

∫
X
hn+1(y,xn+1)2 δxn+1(dy) ρ[n+1](dxn+1)

≤
∫
Xn+1

∫
X
hn+1(y,xn+1)2 (ρ+ δxn+1)(dy) ρ[n+1](dxn+1) =

∫
Xn+2

hn+1(xn+2)2 ρ[n+2](dxn+2), n ∈ N.

Thus, an upper bound for S2 is
n1∑

n=n0

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1).

Combining our findings, we arrive at

E

∫
X

(
n1∑

n=n0

∫
Xn

hn(x, y) ζn(dy)
)2

ζ(dx)


≤ 2

n1∑
n=n0

n!
θ(2n+1)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1) +
n1∑

n=n0

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1)

=
n1∑

n=n0

n!(2θ + 5n+ 3)
θ(2n+2)

∫
Xn+1

hn(xn+1)2 ρ[n+1](dxn+1).

By (5.8), the statement is thus a consequence of the inequality

n!(2θ + 5n+ 3)
θ(2n+2) ≤ (θ + n)2(n+ 1)!

θ(2n+2) , n ∈ N, n ≥ 3,

yielding that the series under consideration is a Cauchy sequence in L2(Cζ). The validity of this inequality
can be established as follows. The inequality is equivalent to 0 ≤ n3 +(1+2θ)n2 +(θ2 +2θ−5)n+θ2 −2θ−3.
The right-hand side of this expression is monotonically increasing in n ∈ N, and it is positive for all θ > 0
when n ≥ 3.

We can now define the domain of δ′.

Definition 5.10. Let hn : Xn+1 → R, n ∈ N0, be measurable functions such that hn(x, ·) ∈ Hn holds for
each x ∈ X and (5.8) is satisfied. Let H : M(X) × X → R be a measurable function such that the series of
functions from (5.9) converges in L2(Cζ) to (ω, x) 7→ H(ζ(ω), x). The set of all such functions H is denoted
by dom(δ′).

In the following lemma, we establish the convergence of a series in L2(P), which will later be used to
define the operator δ′.

Lemma 5.11. Let hn : Xn+1 → R, n ∈ N0, be measurable functions such that hn(x, ·) ∈ Hn for each x ∈ X
and (5.8) is satisfied. Then the series

∞∑
n=1

(
(θ + n)

∫
Xn+1

hn(z) ζn+1(dz) −
∫
Xn

∫
X
hn(x, y1, . . . , yn) (ρ+ δy1 + . . .+ δyn

)(dx) ζn(d(y1, . . . , yn))
)

converges in L2(P).
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Proof. Given n ∈ N, we define

Xn :=
∫
Xn+1

hn(z) ζn+1(dz) and Yn := 1
θ + n

∫
Xn

∫
X
hn(x,yn) (ρ+ δyn)(dx) ζn(dyn),

as well as Zn := (θ + n)(Xn − Yn). Then the series to be considered is
∞∑

n=1
(θ + n)(Xn − Yn) =

∞∑
n=1

Zn.

Let m,n ∈ N. Applying Jensen’s inequality (for the probability measure ζ) as well as Corollary 3.8, we
obtain

E[X2
n] = E

[(∫
Xn+1

hn(z) ζn+1(dz)
)2
]

≤ E
[∫

Xn+1
hn(z)2 ζn+1(dz)

]
= 1
θ(n+1)

∫
Xn+1

hn(z)2 ρ[n+1](dz).

An application of Jensen’s inequality to the probability measure (θ + n)−1(ρ+ δyn) ζn(dyn), together with
Corollary 3.8, leads to

E[Y 2
n ] = E

[(
1

θ + n

∫
Xn

∫
X
hn(x,yn) (ρ+ δyn)(dx) ζn(dyn)

)2
]

≤ E
[∫

Xn

1
θ + n

∫
X
hn(x,yn)2 (ρ+ δyn)(dx) ζn(dyn)

]
= 1
θ(n+1)

∫
Xn+1

hn(z)2 ρ[n+1](dz).

Hence, Xn and Yn are elements of L2(ζ). Moreover, let g ∈ Hm for m ∈ N. Corollary 3.8 yields

E
[
Xn

∫
Xm

g(x) ζm(dx)
]

= 1
θ(m+n+1)

∫
Xm+n+1

hn(z)g(x) ρ[m+n+1](d(x, z)) (5.10)

and

E
[
Yn

∫
Xm

g(x) ζm(dx)
]

= 1
θ(m+n)

∫
Xm+n

g(xm) 1
θ + n

∫
X
hn(t, zn) (ρ+ δzn)(dt) ρ[m+n](d(xm, zn)). (5.11)

By Corollary 4.7, the expressions in (5.10) and (5.11) vanish unless m ∈ {n+1, n, n−1} and m ∈ {n, n−1},
respectively. Thus, we conclude Xn ∈ Fn−1 ⊕ Fn ⊕ Fn+1 and Yn ∈ Fn−1 ⊕ Fn, which implies Zn ∈
Fn−1 ⊕ Fn ⊕ Fn+1.

We show that the series from the statement converges in L2(P). To this end, we show that the sequence
of its partial sums forms a Cauchy sequence. Let n0, n1 ∈ N with n0 ≤ n1. By the established orthogonality,
it holds

E

( n1∑
n=n0

Zn

)2
 =

n1∑
m,n=n0

1{|m−n|<3}E [ZmZn]

=
n1∑

n=n0

E
[
Z2

n

]
+ 2

n1−1∑
n=n0

E [ZnZn+1] + 2
n1−2∑
n=n0

E [ZnZn+2] .

From the inequality 2E [ZnZm] ≤ E[Z2
n] + E[Z2

m], m,n ∈ N, it follows that it suffices to consider
n1∑

n=n0

E
[
Z2

n

]
.

Let n ∈ N. Corollary 3.8 yields

E
[
Z2

n

]
= (θ + n)2E

[(∫
Xn+1

hn(z) ζn+1(dz) − 1
θ + n

∫
Xn

∫
X
hn(x,yn) (ρ+ δyn)(dx) ζn(dyn)

)2
]

= (θ + n)2

θ(2n+2)

∫
X2n+2

(hn ⊗ hn)(z) ρ[2n+2](dz)
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− 2(θ + n)2

θ(2n+1)(θ + n)

∫
X2n+1

hn(zn+1)
(∫

X
hn(x,yn) (ρ+ δyn)(dx)

)
ρ[2n+1](d(yn, zn+1)) (5.12)

+ (θ + n)2

θ(2n)(θ + n)2

∫
X2n

(∫
X
hn(x,yn) (ρ+ δyn)(dx)

)(∫
X
hn(x, zn) (ρ+ δzn)(dx)

)
ρ[2n](d(yn, zn)).

By the recursive definition of ρ[2n+2], it holds∫
X2n+2

(hn ⊗ hn)(z) ρ[2n+2](dz)

=
∫
X2n

∫
X

∫
X
hn(x,xn)hn(y,yn) (ρ+ δy + δxn + δyn)(dx) (ρ+ δxn + δyn)(dy) ρ[2n](d(xn,yn))

=
∫
X2n

( ∫
X2
hn(x,xn)hn(y,yn) ρ2(d(x, y)) + 2

∫
X
hn(x,xn) ρ(dx)

∫
X
hn(y,yn) δxn(dy)

+ 2
∫
X
hn(x,xn) ρ(dx)

∫
X
hn(y,yn) δyn(dy) +

∫
X
hn(y,xn)hn(y,yn) ρ(dy)

+ 2
∫
X
hn(y,xn)hn(y,yn) δxn(dy) + 2

∫
X
hn(x,xn) δxn(dx)

∫
X
hn(y,yn) δxn(dy)

+
∫
X
hn(x,xn) δxn(dx)

∫
X
hn(y,yn) δyn(dy) +

∫
X
hn(x,xn) δyn(dx)

∫
X
hn(y,yn) δxn(dy)

)
ρ[2n](d(xn,yn))

=: I1 + 2I2 + 2I3 + I4 + 2I5 + 2I6 + I7 + I8,

where, e.g.
I1 =

∫
X2n

∫
X2
hn(x,xn)hn(y,yn) ρ2(d(x, y)) ρ[2n](d(xn,yn)).

We can apply the recursion (3.1) from Lemma 3.5 to simplify the integral in the second to last line of (5.12)
to ∫

X2n+1
hn(zn+1)

(∫
X
hn(x,yn) ρ(dx)

)
ρ[2n+1](d(zn+1,yn))

+
n∑

r=1

∫
X2n+1

hn(zn+1)hn(yr,yn) ρ[2n+1](d(zn+1,yn))

=
∫
X2n

(∫
X2
hn(z, zn)hn(x,yn) ρ2(d(x, z)) +

n∑
r=1

∫
X
hn(x,yn) ρ(dx) (2hn(zr, zn) + hn(yr, zn))

+
n∑

i,j=1
(hn(zi, zn)hn(yj ,yn) + hn(yi, zn)hn(yj ,yn))

 ρ[2n](d(yn, zn)).

= I1 + 2I3 + I2 + I7 + I6.

Likewise, the integral in the last line of (5.12) equals∫
X2n

(∫
X
hn(x,yn) (ρ+ δyn)(dx)

)(∫
X
hn(x, zn) (ρ+ δzn)(dx)

)
ρ[2n](d(yn, zn)) = I1 + 2I3 + I7.

Consequently, (5.12) becomes

n2 − θ

θ(2n+2) (I1 + I7) − 2(n+ 1)(θ + n)
θ(2n+2) (I2 + I6) + 2(n2 − θ)

θ(2n+2) I3 + (θ + n)2

θ(2n+2) I4 + 2(θ + n)2

θ(2n+2) I5 + (θ + n)2

θ(2n+2) I8.

We now show that the terms |I1|, . . . , |I8| are each bounded by a multiple of

(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(z)2 ρ[n+1](dz)

and it thus holds
E
[
Z2

n

]
≤ C

(n+ 1)!(θ + n)2

θ(2n+2)

∫
Xn+1

hn(z)2 ρ[n+1](dz)
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for a suitable constant C > 0, independent of n ∈ N. The integral I1 can be simplified with the help of
Corollary 4.5 since hn(x, ·) is an element of Hn for each x ∈ X. Thus, we obtain

I1 = n!
∫
Xn

∫
X2
hn(x,xn)hn(y,xn) ρ2(d(x, y)) ρ[n](dxn) = n!

∫
Xn

(∫
X
hn(x,xn) ρ(dx)

)2
ρ[n](dxn).

Applying Jensen’s inequality for the probability measure θ−1ρ yields

|I1| = n!θ2
∫
Xn

(∫
X
hn(x,xn) 1

θ
ρ(dx)

)2
ρ[n](dxn) ≤ n!θ

∫
Xn

∫
X
hn(x,xn)2 ρ(dx) ρ[n](dxn).

An upper bound for this integral is

n!θ
∫
Xn

∫
X
hn(x,xn)2 (ρ+ δxn)(dx) ρ[n](dxn) = n!θ

∫
Xn+1

hn(z)2 ρ[n+1](dz).

Moreover, hn(x, ·) ∈ Hn for each x ∈ X also implies

I2 =
∫
X2n

∫
X
hn(x,xn) ρ(dx)

∫
X
hn(y,yn) δxn(dy) ρ[2n](d(xn,yn))

= n!
∫
Xn

∫
X
hn(x,xn) ρ(dx)

∫
X
hn(y,xn) δxn(dy) ρ[n](dxn).

From the Cauchy–Schwarz inequality, it follows

|I2| ≤ n!
(∫

Xn

(∫
X

|hn(x,xn)| ρ(dx)
)2

ρ[n](dxn)
) 1

2
(∫

Xn

(∫
X

|hn(y,xn)| δxn(dy)
)2

ρ[n](dxn)
) 1

2

.

By Jensen’s inequality for the probability measures θ−1ρ and n−1δxn for xn ∈ Xn, an upper bound for this
term is

n!
√
nθ

(∫
Xn

∫
X
hn(x,xn)2 ρ(dx) ρ[n](dxn)

) 1
2
(∫

Xn

∫
X
hn(y,xn)2 δxn(dy) ρ[n](dxn)

) 1
2

.

Using the recursive definition of ρ[n+1], this in turn is smaller than or equal to

n!
√
nθ

(∫
Xn

∫
X
hn(x,xn)2 (ρ+ δxn)(dx) ρ[n](dxn)

) 1
2
(∫

Xn

∫
X
hn(y,xn)2 (ρ+ δxn)(dy) ρ[n](dxn)

) 1
2

= n!
√
nθ

∫
Xn+1

hn(z)2 ρ[n+1](dz).

Regarding I3, Corollary 4.5 yields

I3 = n!
∫
Xn

∫
X
hn(x,yn) ρ(dx)

∫
X
hn(y,yn) δyn(dy) ρ[n](dyn) = I2.

Thus, an upper bound for the absolute value of this expression is

n!
√
nθ

∫
Xn+1

hn(z)2 ρ[n+1](dz).

In the case of the fourth integral I4, due to hn(x, ·) ∈ Hn, x ∈ X, Corollary 4.5 provides

|I4| =
∣∣∣∣∫

X2n

∫
X
hn(y,xn)hn(y,yn) ρ(dy) ρ[2n](d(xn,yn))

∣∣∣∣ = n!
∫
Xn

∫
X
hn(y,xn)2 ρ(dy) ρ[n](dxn),

which is bounded by
n!
∫
Xn+1

hn(z)2 ρ[n+1](dz).
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Moreover, using hn(y, ·) ∈ Hn for each y ∈ X results in

|I5| =
∣∣∣∣∫

X2n

∫
X
hn(y,xn)hn(y,yn) δxn(dy) ρ[2n](d(xn,yn))

∣∣∣∣ = n!
∫
Xn

∫
X
hn(y,xn)2 δxn(dy) ρ[n](dxn)

≤ n!
∫
Xn+1

hn(z)2 ρ[n+1](dz)

and

I6 =
∫
X2n

∫
X
hn(x,xn) δxn(dx)

∫
X
hn(y,yn) δxn(dy) ρ[2n](d(xn,yn))

= n!
∫
Xn

(∫
X
hn(x,xn) δxn(dx)

)2
ρ[n](dxn) = n!n2

∫
Xn

(∫
X
hn(x,xn) 1

n
δxn(dx)

)2
ρ[n](dxn).

Jensen’s inequality and the recursive definition of ρ[n+1] yield the upper bound

|I6| ≤ n!n
∫
Xn

∫
X
hn(x,xn)2 δxn(dx) ρ[n](dxn) ≤ n!n

∫
Xn+1

hn(z)2 ρ[n+1](dz)

on the absolute value of this integral. Using hn(y, ·) ∈ Hn for each y ∈ X once more, the penultimate
integral is

I7 =
∫
X2n

∫
X
hn(x,xn) δxn(dx)

∫
X
hn(y,yn) δyn(dy) ρ[2n](d(xn,yn))

=
n∑

i=1

∫
X2n

∫
X
hn(x,xn) δxn(dx)hn(yi,yn) ρ[2n](d(xn,yn))

=
n∑

i=1

∑
(i1,...,in−1)∈[n][n−1]

∫
Xn+1

∫
X
hn(x,xn) δxn(dx)hn(yi, yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))

=
n∑

i=1

n∑
j=1

∑
(i1,...,in−1)∈[n][n−1]

∫
Xn+1

hn(xj ,xn)hn(yi, yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi)). (5.13)

In order to further simplify this expression, we consider first a fixed summand. To this end, let i, j ∈ [n]
and (i1, . . . , in−1) ∈ [n][n−1]. If j ∈ {i1, . . . , in−1}, let k ∈ [n] \ {i1, . . . , in−1}. (In fact, in this case we have
[n] = {k} ∪ {i1, . . . , in−1}.) It then holds∫

Xn+1
hn(xj ,xn)hn(yi, yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))

=
∫
Xn

∫
X
hn(xj ,xn) (ρ+ δyi + δx1 + . . .+ δxk−1 + δxk+1 + . . .+ δxn)(dxk)

hn(yi, yi, xi1 , . . . , xin−1) ρ[n](d(x1, . . . , xk−1, xk+1, . . . , xn, yi))

=
∫
Xn

hn(xj , yi, xi1 , . . . , xin−1)hn(yi, yi, xi1 , . . . , xin−1) ρ[n](d(xi1 , . . . , xin−1 , yi)).

By the Cauchy–Schwarz inequality, the absolute value of this integral is bounded by

(∫
Xn

hn(xj , yi, xi1 , . . . , xin−1)2 ρ[n](d(xi1 , . . . , xin−1 , yi))
) 1

2

(∫
Xn

hn(yi, yi, xi1 , . . . , xin−1) ρ[n](d(xi1 , . . . , xin−1 , yi))
) 1

2

.

In (5.13), we have nn(n− 1)(n− 1)! summands of this type. If j /∈ {i1, . . . , in−1}, a direct application of
the Cauchy–Schwarz inequality gives∣∣∣∣∫

Xn+1
hn(xj ,xn)hn(yi, yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))

∣∣∣∣
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≤
(∫

Xn+1
hn(xj ,xn)2 ρ[n+1](d(xn, yi))

) 1
2
(∫

Xn+1
hn(yi, yi, xi1 , . . . , xin−1)2 ρ[n+1](d(xn, yi))

) 1
2

= (θ + n)
(∫

Xn

hn(xj ,xn)2 ρ[n](d(xn))
) 1

2
(∫

Xn

hn(yi, yi,xn−1)2 ρ[n](d(xn−1, yi))
) 1

2

.

There are nn(n− 1)! summands of this type in (5.13). We note that this case distinction also remains valid
in the case n = 1 (in this case we have [n][n−1] = ∅). Plugging these two cases in (5.13), employing the
triangle inequality and using the symmetry of hn in its last n arguments, leads to∣∣∣∣∫

X2n

∫
X
hn(x,xn) δxn(dx)

∫
X
hn(y,yn) δyn(dy) ρ[2n](d(xn,yn))

∣∣∣∣
≤

n∑
i=1

n∑
j=1

∑
(i1,...,in−1)∈[n][n−1]

∣∣∣∣∫
Xn+1

hn(xj ,xn)hn(yi, yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))
∣∣∣∣

≤ nn(n− 1)(n− 1)!
(∫

Xn

hn(x1,xn)2 ρ[n](dxn)
) 1

2
(∫

Xn

hn(x1,xn)2 ρ[n](dxn)
) 1

2

+ nn(n− 1)!(θ + n)
(∫

Xn

hn(x1,xn)2 ρ[n](d(xn))
) 1

2
(∫

Xn

hn(x1,xn)2 ρ[n](dxn)
) 1

2

.

This expression is equal to

nn!(θ + 2n− 1)
∫
Xn

hn(x1,xn)2 ρ[n](dxn) = n!(θ + 2n− 1)
∫
Xn

n∑
r=1

hn(xr,xn)2 ρ[n](dxn),

which in turn is smaller than or equal to

n!(θ + 2n− 1)
∫
Xn+1

hn(z)2 ρ[n+1](dz).

The last integral I8 can be treated analogously. Since hn(y, ·) ∈ Hn for each y ∈ X, it holds

I8 =
∫
X2n

∫
X
hn(x,xn) δyn(dx)

∫
X
hn(y,yn) δxn(dy) ρ[2n](d(xn,yn))

=
n∑

i,j=1

∫
X2n

hn(yi,xn)hn(xj ,yn) ρ[2n](d(xn,yn))

=
n∑

i,j=1

∑
(i1,...,in−1)∈[n][n−1]

∫
Xn+1

hn(yi,xn)hn(xj , yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi)). (5.14)

Again, we start by examining one summand. Therefore, we fix i, j ∈ [n] and (i1, . . . , in−1) ∈ [n][n−1]. If
j ∈ {i1, . . . , in−1}, let k ∈ [n] \ {i1, . . . , in−1}. It follows that∫

Xn+1
hn(yi,xn)hn(xj , yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))

=
∫
Xn

∫
X
hn(yi,xn)(ρ+ δyi

+ δx1 + . . .+ δxk−1 + δxk+1 + . . .+ δxn
)(dxk)

hn(xj , yi, xi1 , . . . , xin−1) ρ[n](d(x1, . . . , xk−1, xk+1, . . . , xn, yi))

=
∫
Xn

hn(xj , yi, xi1 , . . . , xin−1)hn(yi, yi, xi1 , . . . , xin−1) ρ[n](d(xi1 , . . . , xin−1 , yi)).

This term is the same as the one we encountered in this case for the penultimate summand. If j /∈
{i1, . . . , in−1}, we have [n] = {j} ∪ {i1, . . . , in−1} and can again apply the Cauchy–Schwarz inequality
directly. It holds∣∣∣∣∫

Xn+1
hn(yi,xn)hn(xj , yi, xi1 , . . . , xin−1) ρ[n+1](d(xn, yi))

∣∣∣∣
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≤
(∫

Xn+1
hn(yi,xn)2 ρ[n+1](d(xn, yi))

) 1
2
(∫

Xn+1
hn(xj , yi, xi1 , . . . , xin−1)2 ρ[n+1](d(xn, yi))

) 1
2

=
∫
Xn+1

hn(z)2 ρ[n+1](dz).

Inserting these findings in (5.14) yields, with again the help of the triangle inequality, the following upper
bound

|I8| ≤ nn(n− 1)(n− 1)!
∫
Xn

hn(x1,xn)2 ρ[n](dxn) + nn(n− 1)!
∫
Xn+1

hn(z)2 ρ[n+1](dz)

= n!(n− 1)
∫
Xn

n∑
r=1

hn(xr,xn)2 ρ[n](dxn) + nn!
∫
Xn+1

hn(z)2 ρ[n+1](dz)

≤ n!(2n− 1)
∫
Xn+1

hn(z)2 ρ[n+1](dz).

All in all, we have shown that E[Z2
n] is smaller than or equal to(

(n2 + θ)(2θ + 2n− 1)
θ(2n+2) + 2(n+ 1)(

√
nθ + n)(θ + n)

θ(2n+2) + 2(n2 + θ)
√
nθ

θ(2n+2) + 2(n+ 1)(θ + n)2

θ(2n+2)

)
n!ρ[n+1](h2

n)

and hence conclude

E

( n1∑
n=n0

Zn

)2
 ≤ 5

n1∑
n=n0

E
[
Z2

n

]
≤ C

n1∑
n=n0

(θ + n)2(n+ 1)!
θ(2n+2)

∫
Xn+1

hn(z)2 ρ[n+1](dz)

for a suitable constant C > 0.

Definition 5.12. For H ∈ dom(δ′), i.e. H is the limit in (5.9) where measurable functions hn : Xn+1 → R,
n ∈ N0, which satisfy hn(x, ·) ∈ Hn for each x ∈ X and (5.8), are considered, let

δ′(H) :=
∞∑

n=0

(
(θ + n)

∫
Xn+1

hn(z) ζn+1(dz)

−
∫
Xn

∫
X
hn(x, y1, . . . , yn) (ρ+ δy1 + . . .+ δyn

)(dx) ζn(d(y1, . . . , yn))
)
.

By the preceding lemma, it holds δ′(H) ∈ L2(P), i.e. E[δ′(H)2] < ∞.

Remark 5.13. One might be tempted to set

hn(x, y1, . . . , yn) := hn(x, y1, . . . , yn) − 1
θ + n

∫
X
hn(t, y1, . . . , yn) (ρ+ δy1 + . . .+ δyn)(dt)

for (x, y1, . . . , yn) ∈ Xn+1 and n ∈ N in the above expression defining δ′(H). Using that ζ is a probability
measure, δ′(H) can then be written as

δ′(H) =
∞∑

n=0
(θ + n)

∫
Xn+1

hn(z) ζn+1(dz).

However, one has to exercise caution since hn may not be an element of Hn+1, n ∈ N, as can be seen in the
following example. ⋄

Example 5.14. We continue Example 4.8, i.e. let B ∈ X and

h(x, y) := 1
θ + 1(ρ(B) + 1B(y))1B(x) − 1

θ
ρ(B)1B(x), (x, y) ∈ X2.

Example 4.8 showed h(x, ·) ∈ H1 for x ∈ X. Furthermore, given (x, y) ∈ X2, it holds

h(x, y) − 1
θ + 1

∫
X
h(x, y) (ρ+ δy)(dx)
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= h(x, y) − 1
θ + 1

∫
X

1
θ + 1(ρ(B) + 1B(y))1B(x) − 1

θ
ρ(B)1B(x) (ρ+ δy)(dx)

= − 1
θ(2) ρ(B)1B(x) + 1

θ + 11B(x)1B(y) −
(

1
θ + 1(ρ(B) + 1B(y))

)2
+ 1
θ(2) ρ(B)(ρ(B) + 1B(y))

= − 1
θ(2) ρ(B)1B(x) + 1

θ + 11B(x)1B(y) + ρ(B)2

θ(2)(θ + 1)
− θ − 1
θ(2)(θ + 1)

ρ(B)1B(y) − 1
(θ + 1)21B(y).

This function is not symmetric and hence for this mapping h, the function h introduced in the previous
remark does not belong to H2. For the symmetrization h̃, we have∫

X
h̃(x, y)(ρ+ δx)(dy)

= 1
2

∫
X

− 1
θ(2) ρ(B)1B(x) + 2

θ + 11B(x)1B(y) + 2ρ(B)2

θ(2)(θ + 1)
− θ − 1
θ(2)(θ + 1)

ρ(B)1B(y) − 1
(θ + 1)21B(y)

− 1
θ(2) ρ(B)1B(y) − θ − 1

θ(2)(θ + 1)
ρ(B)1B(x) − 1

(θ + 1)21B(x) (ρ+ δx)(dy)

= 1
2

(
−1
θ
ρ(B)1B(x) + 2(ρ(B) + 1)

θ + 1 1B(x) + 2ρ(B)2

θ(2) − θ − 1
θ(2)(θ + 1)

ρ(B)(ρ(B) + 1B(x))

− 1
(θ + 1)2 (ρ(B) + 1B(x)) − 1

θ(2) ρ(B)(ρ(B) + 1B(x)) − θ − 1
θ(2) ρ(B)1B(x) − 1

(θ + 1)1B(x)
)

= −1
(θ + 1)2 ρ(B)1B(x) + θ

2(θ + 1)21B(x) + ρ(B) θ + 2
2θ(2)(θ + 1)

+ 1
θ(2)(θ + 1)

ρ(B)2, x ∈ X,

indicating that it may likewise not belong to H2. ◦

The next theorem shows that δ′ satisfies an integration by parts formula.

Theorem 5.15. Let F ∈ dom(∇) and H ∈ dom(δ′). Then

E [δ′(H)F ] = E
[∫

X
H(x)(∇xF )ζ(dx)

]
. (5.15)

Proof. Before proving the formula, we establish the finiteness of both expectations. On the one hand,
since F ∈ dom(∇), we have in particular F ∈ L2(ζ). Hence, it holds E[F (ζ)2] < ∞. Thus, from the
Cauchy–Schwarz inequality and Lemma 5.11 we obtain

E [|δ′(H)F |] ≤
(
E
[
δ′(H)2]) 1

2
(
E
[
F (ζ)2]) 1

2 < ∞.

On the other hand, by Lemma 5.2 and definition, both ∇F and H are elements of L2(Cζ). The finiteness
of the expectation on the right-hand side is then again a consequence of the Cauchy–Schwarz inequality.

We consider both sides of the equation separately. Let F ∈ dom(∇) with chaos decomposition (4.22)
and let hn : Xn+1 → R, n ∈ N0, be measurable functions such that hn(x, ·) ∈ Hn for each x ∈ X and (5.8)
is satisfied. Given m0, n0 ∈ N, we have

E

[(
m0∑

m=0

(
(θ +m)

∫
Xm+1

hm(y) ζm+1(dy) −
∫
Xm

∫
X
hm(x,ym) (ρ+ δym)(dx) ζm(dym)

))
(
E[F (ζ)] +

n0∑
n=1

∫
Xn

fn(z) ζn(dz)
)]

= E[F (ζ)]E
[(

m0∑
m=0

(
(θ +m)

∫
Xm+1

hm(y) ζm+1(dy) −
∫
Xm

∫
X
hm(x,ym) (ρ+ δym)(dx) ζm(dym)

))]

+
m0∑

m=0

n0∑
n=1

(θ +m)E
[(∫

hm(y) ζm+1(dy) −
∫∫

hm(x,ym) (ρ+ δym)(dx) ζm(dym)
)∫

fn(z) ζn(dz)
]
.

By Corollary 3.8, this is equal to
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m0∑
m=0

n0∑
n=1

θ +m

θ(m+n+1)

∫
Xm+n+1

hm(ym+1)fn(zn) ρ[m+n+1](d(ym+1, zn))

−
m0∑

m=0

n0∑
n=1

1
θ(m+n)

∫
Xm+n

∫
X
hm(x,ym) (ρ+ δym)(dx)fn(zn) ρ[m+n](d(ym, zn)). (5.16)

According to Corollary 4.7, the first line of (5.16) is

m0∧(n0+1)∑
m=2

(θ +m)m!
θ(2m)

∫
Xm

hm(x1,xm)fm−1(x2, . . . , xm) ρ[m](dxm)

+
m0∧n0∑

m=1

(θ +m)m!
θ(2m+1)

(∫
Xm+1

hm(xm+1)fm(x2, . . . , xm+1) ρ[m+1](dxm+1)

+m
∫
Xm

hm(x1,xm)fm(xm) ρ[m](dxm)
)

+
m0∧(n0−1)∑

m=0

(θ +m)(m+ 1)!
θ(2m+2)

∫
Xm+1

hm(xm+1)fm+1(xm+1) ρ[m+1](dxm+1),

while the second equals

−
m0∧(n0+1)∑

m=2

m!
θ(2m−1)

∫
Xm

hm(xm,xm)fm−1(xm−1) ρ[m](dxm)

−
m0∧n0∑

m=1

m!
θ(2m)

∫
Xm+1

hm(xm+1,xm)fm(xm) ρ[m+1](dxm+1).

We summarise these terms and obtain that (5.16) is equal to

m0∧(n0+1)∑
m=2

(1 −m)m!
θ(2m)

∫
Xm

hm(xm,xm)fm−1(xm−1) ρ[m](dxm)

−
m0∧n0∑

m=1

(
mm!
θ(2m+1)

∫
Xm+1

hm(xm+1)fm(x2, . . . , xm+1) ρ[m+1](dxm+1)

− m(θ +m)m!
θ(2m+1)

∫
Xm

hm(x1,xm)fm(xm) ρ[m](dxm)
) (5.17)

+
m0∧(n0−1)∑

m=0

(θ +m)(m+ 1)!
θ(2m+2)

∫
Xm+1

hm(xm+1)fm+1(xm+1) ρ[m+1](dxm+1),

ending the study of the left-hand side of the integration by parts formula.
Let m0, n0 ∈ N. We now consider

E

[∫
X

(
m0∑

m=0

∫
Xm

hm(x,ym) ζm(dym)
)(

n0∑
n=1

n

(∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1) − ζn(fn)
))

ζ(dx)
]

=
m0∑

m=0

n0∑
n=1

nE
[∫

Xm+n

hm(x,xm)fn(x,yn−1) ζm+n(d(x,xm,yn−1))

−
∫
Xm+n+1

hm(xm+1)fn(yn) ζm+n+1(d(xm+1,yn))
]
,

where, in the first line, ζn(fn) =
∫
Xn fn(x) ζn(dx), n ∈ [n0], cf. Section 2.4. By Corollary 3.8, this is equal

to

m0∑
m=0

n0∑
n=1

n

θ(m+n)

∫
Xm+n

hm(x,xm)fn(x,yn−1) ρ[m+n](d(x,xm,yn−1))
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−
m0∑

m=0

n0∑
n=1

n

θ(m+n+1)

∫
Xm+n+1

hm(xm+1)fn(yn) ρ[m+n+1](d(xm+1,yn)). (5.18)

Using Corollary 4.7, we obtain that the first sum equals

m0∧n0∑
m=1

mm!
θ(2m)

∫
Xm

hm(x1,xm)fm(xm) ρ[m](dxm)

+
m0∧(n0−1)∑

m=0

(m+ 1)m!
θ(2m+1)

∫
Xm+1

hm(xm+1)fm+1(xm+1) ρ[m+1](dxm+1),

while the second is

−
m0∧(n0+1)∑

m=1

(m− 1)m!
θ(2m)

∫
Xm

hm(x1,xm)fm−1(x2, . . . , xm) ρ[m](dxm)

−
m0∧n0∑

m=1

mm!
θ(2m+1)

(∫
Xm+1

hm(xm+1)fm(x2, . . . , xm+1) ρ[m+1](dxm+1)

+ m

∫
Xm

hm(x1,xm)fm(xm) ρ[m](dxm)
)

−
m0∧(n0−1)∑

m=0

(m+ 1)(m+ 1)!
θ(2m+2)

∫
Xm+1

hm(xm+1)fm+1(xm+1) ρ[m+1](dxm+1).

After summarising the terms, (5.18) becomes (5.17).
Let m0, n0 ∈ N and, given x ∈ X, let

Fn0(ζ) := E[F (ζ)] +
n0∑

n=1

∫
Xn

fn(z) ζn(dz) and Hm0(x) :=
m0∑

m=0

∫
Xm

hm(x,ym) ζm(dym).

We then have

∇xFn0 =
n0∑

n=1
n

(∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1) −
∫
Xn

fn(y) ζn(dy)
)

and

δ′(Hm0) =
m0∑

m=0

(
(θ +m)

∫
Xm+1

hm(y) ζm+1(dy) −
∫
Xm

∫
X
hm(x,ym) (ρ+ δym)(dx) ζm(dym)

)
.

By Theorem 3.7 and Lemma 5.11, it holds Fn0(ζ) → F (ζ) and δ′(Hn0) → δ(H) in L2(P) for n0 → ∞,
respectively. Hence, with

|E [δ′(Hm0)Fn0 ] − E[δ′(H)F ]| = |E [(δ′(Hm0) − δ′(H))Fn0 ] + E [δ′(H) (Fn0 − F )]|

≤ E
[
(δ′(Hm0) − δ′(H))2

] 1
2 E
[
|Fn0 |2

] 1
2 + E

[
δ′(H)2] 1

2 E
[
(Fn0 − F )2

] 1
2
,

where we used the Cauchy–Schwarz inequality, we conclude

lim
m0,n0→∞

E [δ′(Hm0)Fn0 ] = E[δ′(H)F ].

On the other hand, by Lemma 5.2 and Lemma 5.9, the convergences ∇Fn0 → ∇F and Hn0 → H in L2(Cζ)
for n0 → ∞ hold true. Therefore, from the Cauchy–Schwarz inequality we obtain∣∣∣∣E [∫

X
Hm0(x)(∇xFn0) ζ(dx)

]
− E

[∫
X
H(x)(∇xF ) ζ(dx)

]∣∣∣∣
=
∣∣∣∣E [∫

X
(Hm0(x) −H(x)) (∇xFn0) ζ(dx)

]
+ E

[∫
X
H(x) (∇xFn0 − ∇xF ) ζ(dx)

]∣∣∣∣
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≤ E
[∫

X
(Hm0(x) −H(x))2

ζ(dx)
] 1

2

E
[∫

X
(∇xFn0)2 ζ(dx)

] 1
2

+ E
[∫

X
H(x)2 ζ(dx)

] 1
2

E
[∫

X
(∇xFn0 − ∇xF )2

ζ(dx)
] 1

2

,

and consequently

lim
m0,n0→∞

E
[∫

X
Hm0(x)(∇xFn0) ζ(dx)

]
= E

[∫
X
H(x)(∇xF ) ζ(dx)

]
.

The preceding theorem shows that δ′ coincides with δ on dom(δ′).

Corollary 5.16. It holds dom(δ′) ⊆ dom(δ) and for H ∈ dom(δ′), the random variables δ(H) and δ′(H)
coincide P-a.s.

Proof. Since δ′(H) satisfies partial integration, the claim follows from the definition of δ(H).

5.3. The generator
In this section, we consider the third operator in Malliavin calculus, the generator L. The designation will
become clear in Chapter 6, where we show that the operator generates a semigroup that arises naturally in
the context of Fleming—Viot processes. Again, we begin by specifying the class of functions on which this
operator is defined.

Definition 5.17. Let dom(L) stand for the set of all F ∈ L2(ζ) such that the functions from its chaos
expansion (4.22) satisfy

∞∑
n=1

(θ + n− 1)2n2n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) < ∞. (5.19)

A comparison with (5.1) in the definition of dom(∇), where the convergence of the series

∞∑
n=1

(θ + n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx),

is required, reveals that dom(L) ⊆ dom(∇).
The next lemma shows the convergence of a series used later in the definition of the operator L.

Lemma 5.18. Let F ∈ dom(L) with chaos expansion (4.22). Then the series

∞∑
n=1

n(θ + n− 1)
∫
Xn

fn(x) ζn(dx)

converges in L2(P).

Proof. Let m0, n0 ∈ N with m0 ≤ n0. Corollary 4.11 yields

E

( n0∑
n=m0

n(θ + n− 1)
∫
Xn

fn(x)ζn(dx)
)2
 =

n0∑
n=m0

n2(θ + n− 1)2n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

Consequently, the partial sums of the series under consideration form a Cauchy sequence in L2(P) if and
only if F ∈ dom(L).

We can now define the operator L.

Definition 5.19. For F ∈ dom(L) with chaos expansion (4.22) let

L(F ) := −
∞∑

n=1
n(θ + n− 1)

∫
Xn

fn(x) ζn(dx).



5.3. The generator 63

For reasons that will become clear in the next chapter, we refer to the linear mapping L : dom(L) → L2(P)
as Fleming–Viot operator or generator. It plays a similar role as the Ornstein–Uhlenbeck operator in a
Gaussian or Poisson context. This fact is supported by our next theorem.

Theorem 5.20. Let F ∈ dom(∇). Then F belongs to dom(L) if and only if ∇F ∈ dom(δ). Moreover, in
this case, it holds

δ(∇F ) = −L(F ), P-a.s. (5.20)

Proof. Let F ∈ dom(∇) with chaos expansion (4.22). On the one hand, if F ∈ dom(L), we infer from (5.3)
that

E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
=

∞∑
n=1

nn!(θ + n− 1)
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx)

holds for every G ∈ dom(∇) with chaos expansion G(ζ) = E[G(ζ)] +
∑∞

n=1
∫
Xn gn(x) ζn(dx). The absolute

value of this expression is, according to the Cauchy–Schwarz inequality, bounded by

∞∑
n=1

(
n

√
n!(θ + n− 1)√

θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)
) 1

2
( √

n!√
θ(2n)

∫
Xn

gn(x)2 ρ[n](dx)
) 1

2

.

Furthermore, by the Cauchy–Schwarz inequality, an upper bound for this series is( ∞∑
n=1

n2n!(θ + n− 1)
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)
) 1

2
( ∞∑

n=1

n!
θ(2n)

∫
Xn

gn(x)2 ρ[n](dx)
) 1

2

.

The assumptions F ∈ dom(L) and G ∈ dom(∇) imply that this equals cE[G(ζ)] 1
2 with c = E[(LF )2] 1

2 < ∞.
Thus, ∇F is an element of dom(δ).

On the other hand, if ∇F ∈ dom(δ), we obtain from the integration by parts formula the equality

E [δ(∇F )G] = E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
for all G ∈ dom(∇). We set H := δ(∇F ). Let the chaos expansions of H and G ∈ dom(∇) be given by

H(ζ) =
∞∑

n=1

∫
Xn

hn(x) ζn(dx) and G(ζ) = E[G(ζ)] +
∞∑

n=1

∫
Xn

gn(x) ζn(dx),

respectively. The isometry properties from (4.23) and (5.3) yield

E [δ(∇F )G] =
∞∑

n=1

n!
θ(2n)

∫
Xn

hn(x)gn(x) ρ[n](dx) (5.21)

as well as

E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
=

∞∑
n=1

nn!(θ + n− 1)
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx). (5.22)

Since these identities hold for all G ∈ dom(∇), by choosing, for example, gn = 0 for all n ∈ N except for
one, we obtain

n(θ + n− 1)
∫
Xn

fn(x)g(x) ρ[n](dx) =
∫
Xn

hn(x)g(x) ρ[n](dx)

for each n ∈ N and each g ∈ Hn. Equivalently,∫
Xn

(n(θ + n− 1)fn(x) − hn(x))g(x) ρ[n](dx) = 0

for each n ∈ N and each g ∈ Hn. Thus,

hn = n(θ + n− 1)fn, ρ[n]-a.e., n ∈ N.
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Since H ∈ L2(ζ), the convergence of

∞∑
n=1

n!
θ(2n)

∫
Xn

hn(x)2 ρ[n](dx) =
∞∑

n=1

n!n2(θ + n− 1)2

θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)

yields F ∈ dom(L). Finally, it follows

E [δ(∇F )G] =
∞∑

n=1

n!n(θ + n− 1)
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx) = E[(−L(F ))G].

The following remark gathers immediate properties of L.

Remark 5.21. Given F,G ∈ dom(L), by Theorem 5.20 and the partial integration formula (5.7), we
obtain

E [(−L(F ))G] = E [δ(∇F )G] = E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
= E [Fδ(∇G)] = E [(−L(G))F ] , (5.23)

showing that L is symmetric and negative semi-definite.
Since L(F ) is the L2-limit of centred random variables, we further infer E[L(F )] = 0 for each F ∈

dom(L). ⋄

5.4. The uncentred gradient
An examination of the definition of the gradient ∇ prompts consideration of the second term in each
summand in the defining series, which ensures that each summand is centred with respect to ζ. It is also
possible to define a gradient operator that omits this centring term. This alternative approach is explored
in the following section. However, we will see that this approach not only complicates calculations but
also lacks the link to the Fleming–Viot processes with parent-independent mutation studied in population
genetics.

Definition 5.22. Let dom(∇0) be the set of all F ∈ L2(ζ) with chaos expansion (4.22) such that the
kernel functions satisfy

∞∑
n=1

nn!
θ(2n−1)

∫
Xn

fn(x)2 ρ[n](dx) < ∞. (5.24)

The subsequent remark shows that the sets dom(∇) and dom(∇0) coincide.

Remark 5.23. The series in (5.1) converges if and only if the series in (5.24) converges. To see this, note
first that if F ∈ dom(∇0) with chaos expansion (4.22), the inequality

(θ + n− 1)nn!
θ(2n) ≤ nn!

θ(2n−1) , n ∈ N,

implies the convergence of
∞∑

n=1

(θ + n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)

and thus shows F ∈ dom(∇). Conversely, since the sequence ( θ+n−1
θ+2n−1 )n∈N converges to 1

2 , there exists some
n0 ∈ N such that

1
4 ≤ θ + n− 1

θ + 2n− 1 , n ≥ n0,

is valid, and we conclude
1
4

nn!
θ(2n−1) ≤ (θ + n− 1)nn!

θ(2n) , n ≥ n0. ⋄

As for the gradient ∇, the convergence of the series in the definition of the domain guarantees the
convergence of a series in L2(Cζ).
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Lemma 5.24. Let F ∈ dom(∇0) with chaos expansion (4.22). Then

Ω × X ∋ (ω, x) 7→
∞∑

n=1
n

∫
Xn−1

fn(x, y1, . . . , yn−1) ζn−1(ω,d(y1, . . . , yn−1))

converges in L2(Cζ).

Proof. Let n0 ∈ N. Similar to the proof of Lemma 5.2, it holds

E

∫
X

(
n0∑

n=1
n

∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1)
)2

ζ(dx)

 =
n0∑

n=1

n2(n− 1)!
θ(2n−1)

∫
Xn

fn(x)2 ρ[n](dx). (5.25)

The definition of the uncentred gradient reads as follows.

Definition 5.25. Let ∇0 : dom(∇0) → L2(Cζ), be defined by

(∇0F )(ω, x) :=
∞∑

n=1
n

∫
Xn−1

fn(x, y1, . . . , yn−1) ζn−1(ω, d(y1, . . . , yn−1)),

where the kernel functions from the chaos expansion (4.22) of F ∈ dom(∇0) are denoted by fn, n ∈ N.

Although the definition of the uncentred gradient may seem simpler at first glance, computations in
terms of the chaos expansion involving the uncentred gradient can become more complicated. For example,
formulas for partial integration become more intricate when the centring is omitted.

Example 5.26. Let h : X3 → R be square-integrable with respect to ρ[3] and assume h(x, ·) ∈ H2 for each
x ∈ X. Moreover, let F ∈ dom(∇0) with chaos expansion (4.22). Let n0 ∈ N, n0 ≥ 3. By Corollary 3.8 and
Corollary 4.7, we have

E

[∫
X

(∫
X2
h(x, z2) ζ2(dz2)

)( n0∑
n=1

n

∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1)
)
ζ(dx)

]

=
n0∑

n=1

n

θ(n+2)

∫
Xn+2

h(x, z2)fn(x,yn−1) ρ[n+2](d(x, z2,yn−1))

= 2 · 2!
θ(4)

∫
X2
h(x, x, y)f2(x, y) ρ[2](d(x, y)) + 3 · 2!

θ(5)

∫
X3
h(x, y, z)f3(x, y, z) ρ[3](d(x, y, z)).

Taking the limit n0 → ∞, which is feasible since ∇0F ∈ L2(Cζ), we obtain

E
[∫

X

(∫
X2
h(x, z2) ζ2(dz2)

)(
∇0

xF
)
ζ(dx)

]
= 2 · 2!

θ(4)

∫
X2
h(x, x, y)f2(x, y) ρ[2](d(x, y)) + 3 · 2!

θ(5)

∫
X3
h(x, y, z)f3(x, y, z) ρ[3](d(x, y, z)).

Because of

E

[∫
X3
h(z) ζ3(dz)

(
E[F (ζ)] +

n0∑
n=1

∫
Xn

fn(y) ζn(dy)
)]

=
n0∑

n=1

1
θ(n+3)

∫
Xn+3

h(z3)fn(yn) ρ[n+3](d(yn, z3))

= 2!
θ(4)

∫
X2
h(x, x, y)f1(y) ρ[2](d(x, y)) + 2!

θ(5)

∫
X3
h(x, y, z)f2(y, z) ρ[3](d(x, y, z))

+ 2 · 2!
θ(5)

∫
X2
h(x, x, y)f2(x, y) ρ[2](d(x, y)) + 3!

θ(6)

∫
X3
h(x, y, z)f3(x, y, z) ρ[3](d(x, y, z))

for each n0 ∈ N, n0 ≥ 3, by again Corollary 4.7, we conclude that in this case an adjoint or divergence
δ0(h), which satisfies

E
[∫

X

(∫
X2
h(x, z2) ζ2(dz2)

)(
∇0

xF
)
ζ(dx)

]
= E

[
Fδ0(h)

]
,
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has the form

δ0(h) = (θ + 5)
∫
X3
h(z) ζ3(dz) − θ + 5

θ + 4

∫
X2

∫
X
h(x,y2) ρ(dx) ζ2(dy2)

− 2(θ + 6)
θ + 4

∫
X2
h(x, x, y)ζ2(d(x, y)) − 4

(θ + 2)(3)

∫
X

∫
X
h(x, x, y) (ρ+ δy)(dx) ζ(dy), P-a.s.

(Note that, according to Corollary 5.4, the adjoint to the centred gradient is in this case

(θ + 2)
∫
X3
h(x) ζ3(dx) −

∫
X2

∫
X
h(t, y, z) (ρ+ δy + δz)(dt) ζ2(d(y, z)), P-a.s.)

In general, if a random variable δ0(hm), which satisfies

E
[∫

X

(∫
Xm

hm(x, zm) ζm(dzm)
)(

∇0
xF
)
ζ(dx)

]
= E

[
Fδ0(hm)

]
,

for some m ∈ N0 and a mapping hm ∈ L2(ρ[m+1]) with hm(x, ·) ∈ Hm for all x ∈ X, is to be established, a
similar calculation leads to the formula

δ0(hm) =(θ + 2m− 1)
∫
Xm+1

hm(z) ζm+1(dz) − θ + 2m− 1
θ + 2m

∫
Xm

∫
X
hm(x,ym) ρ(dx) ζm(dym)

− m(θ + 2m+ 2)
θ + 2m

∫
Xm

hm(x, x,ym−1)ζm(d(x,ym−1))

− 2m
(θ + 2m− 2)(3)

∫
Xm−1

∫
X
hm(x, x,ym−1) (ρ+ δym−1)(dx) ζm−1(dym−1), P-a.s.. ◦

This example not only illustrates that the adjoint in chaos expansion of the uncentred gradient is more
involved but also raises the question of an associated generator.

Definition 5.27. Let dom(L0) be the set of all F ∈ L2(ζ) with chaos expansion (4.22) such that
∞∑

n=1

(θ + 2n− 1)2n2n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) < ∞.

For such F , let

L0(F ) := −
∞∑

n=1
n(θ + 2n− 1)

∫
Xn

fn(x) ζn(dx).

We note that the condition imposed on the kernel functions in dom(L0) ensures the convergence of L0(F )
for F ∈ dom(L0). As in the case of the gradient, compared to L, the only modification is a factor of 2 in
each summand. While L and dom(L) involve terms of the form −n(θ+n− 1) and (θ(2n))−1(θ+n− 1)2nn!,
the expressions for L0 take up −n(θ + 2n− 1) and (θ(2n))−1(θ + 2n− 1)2nn! for each n ∈ N, respectively.
Thus, the domains of L and L0 also coincide.

The next result is analogous to (5.23) for the centred case.

Lemma 5.28. The set dom(L0) is a subset of dom(∇0). Furthermore, given F ∈ dom(L0) and G ∈
dom(∇0), it holds

E[(−L0(F ))G] = E
[∫

X
(∇0

xF )(∇0
xG) ζ(dx)

]
.

Proof. The inequality 1 ≤ n(θ + 2n− 1) for n ∈ N implies the inclusion dom(L0) ⊆ dom(∇0).
We denote the kernel functions of F ∈ dom(L0) and G ∈ dom(∇0) by fn and gn, n ∈ N, respectively.

From equation (5.25) and polarisation, we obtain

E
[∫

X
(∇0

xF )(∇0
xG) ζ(dx)

]
=

∞∑
n=1

nn!
θ(2n−1)

∫
Xn

fn(x)gn(x) ρ[n](dx).

Let n0,m0 ∈ N. Corollary 4.11 yields
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E

[(
n0∑

n=1
n(θ + 2n− 1)

∫
Xn

fn(x) ζn(dx)
)(

m0∑
n=0

∫
Xn

gn(x) ζn(dx)
)]

=
m0∧n0∑

n=1

(θ + 2n− 1)nn!
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx).

By the Cauchy–Schwarz inequality, an upper bound for this expression is(
m0∧n0∑

n=1

(θ + 2n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)
) 1

2
(

m0∧n0∑
n=1

(θ + 2n− 1)nn!
θ(2n)

∫
Xn

gn(x)2 ρ[n](dx)
) 1

2

.

Since F,G ∈ dom(∇0), it follows

E
[
(−L0(F ))G

]
=

∞∑
n=1

(θ + 2n− 1)nn!
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx).





CHAPTER 6

Connection to Markov processes from population
genetics

In this chapter, the gradient and the generator from the previous chapter are connected to the operators
considered in the study of Markov processes in population genetics. To this end, first some concepts used
in the study of Fleming–Viot processes are introduced. In dedicated sections, the gradient ∇, a bilinear
form arising from the scalar product in L2(Cζ) and the generator L are related to the operators considered
in the context of Fleming–Viot processes with parent-independent mutation.

Throughout this chapter, X is assumed to be a locally compact Polish space equipped with the Borel
σ-field X . By M1(X), the set of all probability measures on X is denoted. Furthermore, let θ > 0 and
ν0 ∈ M1(X) with support X. Let ρ := θν0 and consider a Dirichlet process ζ on X with parameter measure
ρ.

6.1. Relevant concepts
In this section, concepts used in the studies of Fleming–Viot processes are reviewed.

Let Cb(X) be the space of all bounded and continuous functions f : X → R and let S denote the space of
all functions F : M1(X) → R of the form

F (µ) = φ

(∫
X
g1(y)µ(dy), . . . ,

∫
X
gd(y)µ(dy)

)
,

where d ∈ N, g1, . . . , gd ∈ Cb(X) and φ ∈ C∞(Rd). We first revisit a notion of gradient commonly used in
the study of Fleming–Viot processes (cf. e.g. Overbeck, Röckner and Schmuland (1995) or Shao (2011) for
the definition given here). For F ∈ S define ∇∗ : Ω × X → R by

(∇∗F )(ω, x) :=
d∑

i=1
(∂iφ)

(∫
X
g1(y) ζ(ω, dy), . . . ,

∫
X
gd(y) ζ(ω, dy)

)(
gi(x) −

∫
X
gi(y) ζ(ω, dy)

)
. (6.1)

Similarly to before, we denote the random variable ω 7→ ∇∗F (ω, x) by ∇∗
xF . We further introduce a bilinear

form E∗ : S × S → R by
E∗(F,G) := E[Covζ(∇∗F,∇∗G)], F,G ∈ S. (6.2)

Here, we use the notation

Covζ(H, H̃) :=
∫
X
HxH̃x ζ(dx) −

∫
X
Hx ζ(dx)

∫
X
H̃x ζ(dx)

for measurable functions (ω, x) 7→ Hx(ω) and (ω, x) 7→ H̃x(ω) in L2(Cζ) and set Varζ(H) := Covζ(H,H).

6.2. The gradient
In this section, a connection between the gradient ∇ from Chapter 5 and the gradient ∇∗ is drawn.

We recall the tensor product from (3.8).

Lemma 6.1. Let m ∈ N and let h : Xm → R be measurable and of the form h = h1 ⊗ . . .⊗ hm, where each
hi : X → R, i ∈ [m], is bounded. Let F : M1(X) → R be defined by F (µ) =

∫
Xm h(y)µm(dy). It then holds

F (ζ) ∈ dom(∇) and
∇F = ∇∗F, Cζ-a.e.
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Proof. At first, we note that F ∈ L2(ζ) since h is bounded. The proof is divided into several steps. At
first, ∇∗F is calculated. In the next part, we consider ∇F , where we distinguish the cases m = 1 and
m ≥ 2. While the claim follows easily in the case m = 1, for m ≥ 2, in a first step we consider the terms
incorporating x. The terms independent of x are then collected in a final step.

(a) Since F can be represented as

F (µ) =
∫
X
h1(y)µ(dy) · . . . ·

∫
X
hm(y)µ(dy) = φ

(∫
X
g1(y)µ(dy), . . . ,

∫
X
gm(y)µ(dy)

)
, µ ∈ M1(X),

with gi = hi, i ∈ [m], and φ : Rm → R, φ(x1, . . . , xm) =
∏m

i=1 xi, it is an element of S and the explicit
formula yields

∇∗
xF =

m∑
i=1

(∂iφ)
(∫

X
h1(y) ζ(dy), . . . ,

∫
X
hm(y) ζ(dy)

)(
hi(x) −

∫
X
hi(y) ζ(dy)

)

=
m∑

i=1
hi(x)

m∏
j=1
j ̸=i

(∫
X
hj(y) ζ(dy)

)
−m

∫
Xm

h(y) ζm(dy), x ∈ X.

(b) As a next step, we consider ∇F .
First, assume m = 1, i.e. F (µ) =

∫
X h(y))µ(dy). The chaos expansion of F is given by

F (ζ) = E[F (ζ)] +
∫
X
f1(x) ζ(dx), P-a.s.

with

f1(x) = (θ + 1)
(

1
θ + 1

(∫
X
h(y) ρ(dy) + h(x)

)
− 1
θ

∫
X
h(y) ρ(dy)

)
, ρ-almost all x ∈ X.

Because of
∇xF = f1(x) −

∫
X
f1(x) ζ(dx) = h(x) −

∫
X
h(y) ζ(dy), x ∈ X,

the claim follows in this case.
Let m ≥ 2 and x ∈ X. By Example 4.17, the chaos expansion of F is finite, i.e.

∫
Xm h(y) ζm(dy) ∈

⊕m
i=0 Fi.

Consequently, F belongs to dom(∇). By definition, we have

∇xF =
m∑

n=1
n

∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1) −
m∑

n=1
n

∫
Xn

fn(yn) ζn(dyn),

where the chaos expansion of F is given by (4.22). According to (4.16), the function fn is for ρ[n]-almost
all (x1, . . . , xn) ∈ Xn given by

fn(x1, . . . , xn) = θ + 2n− 1
n!

n∑
j=0

(−1)n−j(θ + j)(n−1)
∑

1≤i1<...<ij≤n

E
[
F (ζρ+δxi1

+...+δxij
)
]
.

We recall the notation introduced in Section 2.4. We decompose ∇F into two parts: one that contains all
terms involving x (these terms will be considered in step 1)) and another that consists of the remaining
terms independent of x (these terms will be considered in step 2)). As the second sum in the definition of
∇F is independent of x, we consider it in step 2) and now decompose the first part. This gives

m∑
n=1

n

∫
Xn−1

fn(x,yn−1) ζn−1(dyn−1)

=
m∑

n=1

θ + 2n− 1
(n− 1)!

[
(−1)n θ

(n−1)

θ(m) ρ[m](h) + (−1)n−1 (θ + 1)(n−1)

(θ + 1)(m) (ρ+ δx)[m](h)

+
n−1∑
j=1

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

∑
1<i1<...<ij≤n

∫
(ρ+ δyi1

+ . . .+ δyij
)[m](h) ζn(dyn)

+
n∑

j=2
(−1)n−j (θ + j)(n−1)

(θ + j)(m)

∑
1<i2<...<ij≤n

∫
(ρ+ δx + δyi2

+ . . .+ δyij
)[m](h) ζn(dyn)

]
,
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where the sums in the last two lines are empty sums in the case n = 1. By Corollary 3.12, using the
notation introduced in (3.9), for n ∈ {2, . . . ,m}, the second to last sum in the square brackets is equal to

n−1∑
j=1

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j

)ρ[m](h) +
m∑

r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir )


while the last sum is

n∑
j=2

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j − 1

) ρ[m](h)

+
m∑

r=1

∑
(i1,...,ir)∈[m][r]

∫
Xj−1

hj
⊗i1,...,ir

(yj−1, x) ζj−1(dyj−1)ρ[m−r](h⊗i1,...,ir )

 .

1) In this step, the term containing x is examined, i.e.

m∑
n=2

θ + 2n− 1
(n− 1)!

n∑
j=2

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j − 1

) m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj−1(hj
⊗i1,...,ir

(·, x))ρ[m−r](h⊗i1,...,ir )

+
m∑

n=1

θ + 2n− 1
(n− 1)! (−1)n−1 (θ + 1)(n−1)

(θ + 1)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

h1
⊗i1,...,ir

(x)ρ[m−r](h⊗i1,...,ir ).

Interchanging the order of summation in the first sum gives

m∑
j=2

m∑
n=j

θ + 2n− 1
(j − 1)!(n− j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj−1(hj
⊗i1,...,ir

(·, x))ρ[m−r](h⊗i1,...,ir )

+
m∑

n=1

θ + 2n− 1
(n− 1)! (−1)n−1 (θ + 1)(n−1)

(θ + 1)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

h1
⊗i1,...,ir

(x)ρ[m−r](h⊗i1,...,ir ).

In both lines, applying Lemma A.2 to the sum over n and inserting the definition of hj
⊗i1,...,ir

for j, r ∈ [m]
and (i1, . . . , ir) ∈ [m][r] yields that the above equals

m∑
r=1

∑
(i1,...,ir)∈[m][r]

 m∑
j=2

(−1)m−j

(j − 1)!(m− j)!
∑

1≤l1≤...≤lr≤j

∫
h⊗i1,...,ir

(yl1 , . . . , ylr
) ζj−1(dyj−1)

+ (−1)m−1

(m− 1)! h⊗i1,...,ir (x, . . . , x)
)
ρ[m−r](h⊗i1,...,ir ), (6.3)

where we set yj := x in every summand in the first line, j ∈ {2, . . . ,m}. Let r ∈ N and (i1, . . . , ir) ∈ [m][r].
We now focus on the expression within the brackets. As in Example 4.17, we distinguish cases based on the
multiplicity of identical arguments in the integrand. However, here, we also account for the number i ∈ [r]0
of times x = yj , j ∈ [m], occurs. With this aim, for j ∈ {2, . . . ,m}, we decompose

{(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr ≤ j} = Br ∪
r−1⋃
i=0

(j−1)∧(r−i)⋃
k=1

⋃
λ multiset of k natural numbers

that sum up to r−i

Bλ,i,

where

Br := {(l1, . . . , lr) ∈ Nr : l1 = . . . = lr = j} ,
Bλ,0 := {(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr ≤ j − 1,

and the multiset with elements l1, . . . , lr has multiplicity structure λ}
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for a multiset λ containing λ1, . . . , λk ∈ N with sum r and

Bλ,i := {(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr−i ≤ j − 1, lr−i+1 = . . . = lr = j,

and the multiset with elements l1, . . . , lr−i has multiplicity structure λ}

for i ∈ [r − 1]0 and a multiset λ containing λ1, . . . , λk ∈ N with sum r − i. For such a multiset λ with
M(λ) distinct values, denoted by ν1, . . . , νM(λ), each occurring mλ(νh) times in λ, h ∈ [M(λ)], the set Bλ,i

contains (
j − 1
k

)
k!∏M(λ)

h=1 mλ(νh)!

elements, i ∈ [r − 1]. With this decomposition, for fixed r ∈ [m] and (i1, . . . , ir) ∈ [m][r], the term in the
brackets in (6.3) becomes

m∑
j=2

(−1)m−j

(j − 1)!(m− j)!

r−1∑
i=0

(j−1)∧(r−i)∑
k=1

∑
λ

∑
(l1,...,lr)∈Bλ,i

∫
h⊗i1,...,ir

(yl1 , . . . , ylr
) ζj−1(dyj−1)

+
m∑

j=2

(−1)m−j

(j − 1)!(m− j)!h⊗i1,...,ir
(x, . . . , x) + (−1)m−1

(m− 1)! h⊗i1,...,ir
(x, . . . , x),

where again
∑

λ in the first line is used to express the sum over all multisets λ as specified above. Since

Xr ∋ (t1, . . . , tr) 7→
∑

(i1,...,ir)∈[m][r]

h⊗i1,...,ir
(t1, . . . , tr)ρ[m−r](h⊗i1,...,ir )

is a symmetric function for r ∈ [m], we have∫
Xj−1

∑
(i1,...,ir)∈[m][r]

h⊗i1,...,ir
(yl1 , . . . , ylr

)ρ[m−r](h⊗i1,...,ir ) ζj−1(dyj−1)

=
∫
Xk

∑
(i1,...,ir)∈[m][r]

h⊗i1,...,ir
(y1, . . . , y1︸ ︷︷ ︸

λ1 times

, . . . , yk, . . . , yk︸ ︷︷ ︸
λk times

, x, . . . , x︸ ︷︷ ︸
i times

)ρ[m−r](h⊗i1,...,ir ) ζk(dyk) =: Iλ,i,r

for fixed j ∈ {2, . . . ,m}, i ∈ [r − 1]0, k ∈ [(j − 1) ∧ (r − i)], a multiset λ with elements λ1, . . . , λk whose
sum is r − i and (l1, . . . , lr) ∈ Bλ,i. The integral now depends solely on λ, which in turn is determined by
k, i, and r. Substituting this expression into (6.3) yields

m∑
r=1

m∑
j=2

(−1)m−j

(j − 1)!(m− j)!

r−1∑
i=0

(j−1)∧(r−i)∑
k=1

∑
λ

∑
(l1,...,lr)∈Bλ,i

Iλ,i,r

+
m∑

j=1

(−1)m−j

(j − 1)!(m− j)!

m∑
r=1

∑
(i1,...,ir)∈[m][r]

h⊗i1,...,ir (x, . . . , x)ρ[m−r](h⊗i1,...,ir )

=
m∑

r=1

r−1∑
i=0

r−i∑
k=1

∑
λ

Iλ,i,r

m∑
j=k+1

(
j − 1
k

)
k!∏M(λ)

h=1 mλ(νh)!
(−1)m−j

(j − 1)!(m− j)!

+
m∑

j=1

(−1)m−j

(j − 1)!(m− j)!

m∑
r=1

∑
(i1,...,ir)∈[m][r]

h⊗i1,...,ir
(x, . . . , x)ρ[m−r](h⊗i1,...,ir ).

Let i ∈ [r − 1]0 and k ∈ [(m− 1) ∧ (r − i)]0. We proceed by analysing the sum
m∑

j=k+1

(−1)m−j

(j − 1 − k)!(m− j)! .

According to an index shift and the binomial theorem, it is equal to
m−k−1∑

j=0

(−1)m−k−1−j

j!(m− k − 1 − j)! = 1
(m− k − 1)! (1 − 1)m−k−1
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which evaluates to zero unless k = m − 1, in which case the sum equals 1. If k = m − 1, we have
(r, i) = (m− 1, 0), (r, i) = (m, 0) or (r, i) = (m, 1). In the first two cases, we obtain a multiple of Iλ,0 for
suitable multisets λ. Being independent of x, these integrals will be considered in step 2). In the latter
case, r = m and i = 1, the remaining term is∑

λ multiset of m−1 natural numbers
that sum up to m−1

Iλ,1,m
1∏M(λ)

h=1 mλ(νh)!
= 1

(m− 1)!Iκ,1,m,

where the multiset κ consists of m− 1 times the element 1. This expression is equal to

1
(m− 1)!

∫
Xm−1

∑
(i1,...,im)∈[m][m]

h⊗i1,...,im(y1, . . . , ym−1, x) ζm−1(dym−1)

= 1
(m− 1)! (m− 1)!

m∑
i1=1

hi1(x)
∫
Xm−1

h⊗i1(y1, . . . , ym−1) ζm−1(dym−1) = ∇∗
xF +m

∫
Xm

h(y) ζm(dy),

which concludes step 1).
2) In this step, the terms independent of x in the above calculation of ∇F are studied. These terms are

−
m∑

n=1
n

∫
Xn

fn(yn) ζn(dyn),

the second sum in the definition of ∇F , and

m∑
n=1

θ + 2n− 1
(n− 1)!

θ(n−1)

θ(m) − (θ + 1)(n−1)

(θ + 1)(m) + 1{n≥2}

n−1∑
j=1

(−1)j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j

) (−1)nρ[m](h)

+ 1{n≥2}

n−1∑
j=1

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j

) m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir )

+1{n≥2}

n∑
j=2

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j − 1

)
ρ[m](h)


+

∑
λ multiset of m−1 natural numbers

that sum up to m−1

Iλ,0,m−1
1∏M(λ)

h=1 mλ(νh)!

+
∑

λ multiset of m−1 natural numbers
that sum up to m

Iλ,0,m
1∏M(λ)

h=1 mλ(νh)!
, (6.4)

from the above calculations. We consider them separately, starting with (6.4). The only multiset containing
m− 1 natural numbers with sum m− 1 is the set consisting of m− 1 times the value 1. Hence, the second
to last term in (6.4) is equal to

1
(m− 1)!

∫
Xm−1

∑
(i1,...,im−1)∈[m][m−1]

h⊗i1,...,im−1(y1, . . . , ym−1) ζm−1(dym−1)ρ[1](h⊗i1,...,im−1)

=
m∑

i1=1
ρ(hi1)ζm−1(h⊗i1).

A multiset of m− 1 natural numbers whose sum is m contains m− 2 times the value 1 and once the value
2. Thus, we obtain∑

λ multiset of m−1 natural numbers
that sum up to m

Iλ,0,m
1∏M(λ)

h=1 mλ(νh)!
= 1

(m− 2)!
∑

λ multiset of m−1 natural numbers
that sum up to m

Iλ,0,m.
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Furthermore, because of

m∑
n=2

θ + 2n− 1
(n− 1)! (−1)n

θ(n−1)

θ(m) − (θ + 1)(n−1)

(θ + 1)(m) +
n−1∑
j=1

(−1)j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j

)

+
n∑

j=2
(−1)j (θ + j)(n−1)

(θ + j)(m)

(
n− 1
j − 1

)− (θ + 1)
(

1
θ(m) − 1

(θ + 1)(m)

)

= −
m∑

n=1

θ + 2n− 1
(n− 1)! (−1)n−1 θ

(n−1)

θ(m) +
m−1∑
j=1

1
j!

m∑
n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m)

+
m∑

j=1

1
(j − 1)!

m∑
n=j

θ + 2n− 1
(n− j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) ,

which, when combining the first two sums and using Lemma A.2 as well as the binomial theorem in order
to evaluate the last, reduces to

m−1∑
j=0

1
j!

m∑
n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) +
m∑

j=1

1
(j − 1)!(m− j)! (−1)m−j

=
m−1∑
j=0

1
j!

m∑
n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) + 0,

expression (6.4) becomes

m−1∑
j=0

1
j!

m∑
n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) ρ[m](h) +
m∑

i1=1
ρ(hi1)ζm−1(h⊗i1)

+
m−1∑
j=1

1
j!

m∑
n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir )

+ 1
(m− 2)!

∑
λ multiset of m−1 natural numbers

that sum up to m

Iλ,0,m. (6.5)

On the other hand, by Corollary 3.12, we have

−
m∑

n=1
n

∫
Xn

fn(yn) ζn(dyn) = −
m∑

n=1

θ + 2n− 1
(n− 1)!

 n∑
j=0

(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n

j

)
ρ[m](h)

+
n∑

j=1
(−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
n

j

) m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir )

 .

This is equal to

−
m∑

j=0

1
j!

m∑
n=j

(θ + 2n− 1)n
(n− j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) ρ[m](h)

−
m∑

j=1

1
j!

m∑
n=j

(θ + 2n− 1)n
(n− j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m)

m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir ). (6.6)

Combining (6.5) and (6.6) leads to
m∑

j=0

1
j!Cjρ

[m](h) +
m∑

j=1

1
j!Cj

m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir ) +
m∑

i1=1
ρ(hi1)ζm−1(h⊗i1)
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+ 1
(m− 2)!

∑
λ multiset of m−1 natural numbers

that sum up to m

Iλ,0,m, (6.7)

with

Cj :=
m∑

n=j+1

θ + 2n− 1
(n− 1 − j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m)

(
1 − n

n− j

)
− (θ + 2j − 1)j (θ + j)(j−1)

(θ + j)(m) , j ∈ [m− 1]0,

and
Cm = −(θ + 2m− 1)m (θ +m)(m−1)

(θ +m)(m) = −m(θ + 2m− 1) 1
θ + 2m− 1 = −m.

For j ∈ [m− 1]0, Lemma A.2 implies

Cj = −j
m∑

n=j

(θ + 2n− 1)
(n− j)! (−1)n−j (θ + j)(n−1)

(θ + j)(m) = (−1)m−j−1 j

(m− j)! .

Because of
m∑

j=0

1
j!Cj =

m−1∑
j=1

(−1)m−j−1

(j − 1)!(m− j)! − 1
(m− 1)! =

m∑
j=1

(−1)m−j−1

(j − 1)!(m− j)! = −(1 − 1)m−1 = 0

by the binomial theorem, we obtain that (6.7) equals
m∑

j=1

(−1)m−j−1

(m− j)!(j − 1)!

m∑
r=1

∑
(i1,...,ir)∈[m][r]

ζj(hj
⊗i1,...,ir

)ρ[m−r](h⊗i1,...,ir ) +
m∑

i1=1
ρ(hi1)ζm−1(h⊗i1)

+ 1
(m− 2)!

∑
λ multiset of m−1 natural numbers

that sum up to m

Iλ,0,m.

The first term in this expression is

m∑
j=1

(−1)m−j−1

(m− j)!(j − 1)!

m∑
r=1

r∧j∑
k=1

∑
λ

∑
(l1,...,lr)∈Bλ

Iλ,0,r, (6.8)

where
∑

λ is the sum over all multisets λ consisting of k natural numbers that sum to r and

Bλ := {(l1, . . . , lr) ∈ Nr : 1 ≤ l1 ≤ . . . ≤ lr ≤ j

and the multiset with elements l1, . . . , lr has multiplicity structure λ} .

By symmetry, (6.8) equals
m∑

r=1

r∑
k=1

∑
λ

Iλ,r

m∑
j=k

(−1)m−j−1j

(m− j)!(j − k)!
1∏M(λ)

i=1 mλ(νi)!
.

Let r ∈ [m] and k ∈ [r]. We now proceed to evaluate
m∑

j=k

(−1)m−j−1j

(m− j)!(j − k)! .

Through a series of index shifts and applications of the binomial theorem, this sum simplifies to

m−k∑
j=0

(−1)m−k−j−1j

(m− k − j)!j! − k

m−k∑
j=0

(−1)m−k−j

(m− k − j)!j! =
m−k∑
j=1

(−1)m−k−j−1

(m− k − j)!(j − 1)! − k
(1 − 1)m−k

(m− k)!

=
m−k−1∑

j=0

(−1)m−k−j

(m− k − 1 − j)!j! − k
(1 − 1)m−k

(m− k)! = −1{m−k−1≥0}
(1 − 1)m−k−1

(m− k − 1)! − k
(1 − 1)m−k

(m− k)! .
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Thus, the only terms remaining in (6.8) are those corresponding to k = m and k = m− 1, i.e. the cases
when (r, k) ∈ {(m,m), (m− 1,m− 1), (m,m− 1)}. In the case r = k = m, the expression in (6.8) is

−m
∑

λ multiset of m natural numbers
that sum up to m

Iλ,0,m
1∏M(λ)

i=1 mλ(νi)!
= − m

m!Iκ′,0,m

= − m

m!

∫
Xm

∑
(i1,...,im)∈[m][m]

h⊗i1,...,im(y1, . . . , ym) ζm(dym) = −m
∫
Xm

h(y) ζm(dy),

with κ′ denoting the multiset consisting of m times the value 1 – the only multiset of m natural numbers
summing to m. If r = m− 1 and k = m− 1, we obtain∑

λ multiset of m−1 natural numbers
that sum up to m−1

Iλ,0,m−1
(−1)∏M(λ)

i=1 mλ(νi)!
= − 1

(m− 1)!Iκ,0,m−1 = −
m∑

i1=1
ρ(hi1)ζm−1(h⊗i1).

Finally, if r = m and k = m− 1,∑
λ multiset of m−1 natural numbers

that sum up to m

Iλ,0,m
(−1)∏M(λ)

h=1 mλ(νh)!
= − 1

(m− 2)!
∑

λ multiset of m−1 natural numbers
that sum up to m

Iλ,0,m.

Building on the previous result, we establish a connection between ∇∗F and ∇F for arbitrary F ∈ S.

Lemma 6.2. Let F ∈ S. Then F is an element of dom(∇) and it holds

E
[∫

X
(∇∗

xF − ∇xF )2 ζ(dx)
]

= 0. (6.9)

Proof. Let F ∈ S with representation F (µ) = φ (µ(g1), . . . , µ(gd)), µ ∈ M1(X), for some d ∈ N, φ ∈ C∞(Rd)
and measurable as well as bounded gi : X → R, i ∈ [d]. The boundedness of g1, . . . , gk implies the existence
of a constant c > 0 such that |gj(x)| ≤ c holds for all x ∈ X and j ∈ [k]. By the Weierstrass approximation
theorem (cf. Theorem 1.6.2 in Narasimhan (1985)), for each n ∈ N, there exists a polynomial φn : Rk → R
such that

lim
n→∞

φn = φ and lim
n→∞

∂jφn = ∂jφ, for all j ∈ [k],

uniformly on [−c, c]k. Given n ∈ N, let Fn : M1(X) → R, be defined by

Fn(µ) := φn (µ(g1), . . . , µ(gd)) .

Because of
E[(Fn(ζ) − F (ζ))2] = E[((φn − φ)(ζ((g1), . . . , ζ(gn))2] → 0, n → ∞,

by dominated convergence, we have Fn → F as n → ∞ in L2(ζ). Furthermore, dominated convergence also
yields

E
[∫

X
(∇∗Fn − ∇∗F )2

ζ(dx)
]

= E

∫
X

(
k∑

i=1
(∂i(φn − φ)) (ζ(g1), . . . , ζ(gn)) (gi − ζ(gi))

)2

ζ(dx)


→ 0, n → ∞.

Since each φn is a polynomial, the corresponding function Fn, n ∈ N, can be written as a finite sum of
functions of the form considered in Lemma 6.1. Hence, by Lemma 6.1, it follows that for each n ∈ N we
have Fn ∈ dom(∇) and

E
[∫

X
(∇∗

xFm − ∇∗
xFn)2 ζ(dx)

]
= E

[∫
X
(∇xFm − ∇xFn)2 ζ(dx)

]
, m ∈ N.

As the left-hand side tends to zero for m,n → ∞, Lemma 5.5 yields F ∈ dom(∇) and

lim
n→∞

E
[∫

X
(∇xF − ∇xFn)2 ζ(dx)

]
= 0.

The assertion follows from the triangle inequality in L2(Cζ).
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The above lemma also states a connection to the “the discrete gradient”. (This name is coined in Dello
Schiavo and Lytvynov (2023).) The precise connection as well as the connection between the integration-
by-parts formula from Flint and Torrisi (2023) in L2(ρ̂) and the partial integration in L2(Cζ) introduced in
the previous chapter is subject to further research.

6.3. The Dirichlet form
In this section, we introduce a bilinear form E defined on dom(∇) ×dom(∇), which we will identify with the
Dirichlet form associated with the generator Lρ from (2.6). For an introduction to the theory of Dirichlet
forms, we refer to Fukushima, Oshima and Takeda (1994) or Ma and Röckner (1992).

Definition 6.3. Let E : dom(∇) × dom(∇) → R be defined by

E(F,G) := E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
, F,G ∈ dom(∇), (6.10)

and set E(F ) := E(F, F ), F ∈ dom(∇).

By Corollary 5.4, the gradient is centred with respect to ζ and we can thus write E(F,G) for F,G ∈ dom(∇)
as

E(F,G) = E
[∫

X
(∇xF )(∇xG) ζ(dx)

]
− E

[∫
X
(∇xF ) ζ(dx)

∫
X
(∇xG) ζ(dx)

]
= E [Covζ(∇F,∇G)] (6.11)

or, in terms of the chaos expansion,

E(F,G) =
∞∑

n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)gn(x) ρ[n](dx) (6.12)

for F,G ∈ dom(∇) (cf. equation (5.3)), where the kernel functions of F and G are denoted by fn and gn,
n ∈ N, respectively. From (5.23), it follows further that

E(F,G) = E[(−LF )G], F ∈ dom(L), G ∈ dom(∇). (6.13)

Moreover, we note that, due to the properties of the covariance, E is bilinear, symmetric and positive
semi–definit.

We now establish that E is a closed form (cf. e.g. property (E .3) on p. 4 of Fukushima, Oshima
and Takeda (1994)), i.e. the space dom(∇) with the metric dom(∇) × dom(∇) ∋ (F,G) 7→ E1(F,G) :=
E(F,G) + E[F (ζ)G(ζ)] is complete.

Lemma 6.4. Let (Fn)n∈N be a sequence in dom(∇) and assume that limm,n→∞ E(Fm − Fn) = 0, i.e.
(∇Fn)n∈N is a Cauchy sequence in L2(Cζ). Then there exists F ∈ dom(∇) with

lim
n→∞

E(F − Fn) = 0.

Proof. The assertion is a consequence of (5.4) and Lemma 5.5.

The above lemma is a key ingredient in the proof of the next result. We recall the definition of E∗

from (6.2), namely
E∗(F,G) = E[Covζ(∇∗F,∇∗G)], F,G ∈ S.

Theorem 6.5. The operator (dom(∇) × dom(∇), E) is the closure of (S × S, E∗).

Proof. By the polarisation identity,

E(F,G) = 1
4 (E(F +G) − E(F −G)) , F,G ∈ dom(∇),

it suffices to consider the form E as acting on a single argument, i.e. in the following analysis we consider
the mapping F 7→ E(F ).
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Let F ∈ S. According to Lemma 6.2, it holds E [Varζ(∇∗F − ∇F )] = 0. Thus, by the symmetry of
E [Covζ(·, ·)], it follows

E [Varζ(∇F )] − E [Varζ(∇∗F )] = E [Covζ(∇F − ∇∗F,∇F )] − E [Covζ(∇∗F − ∇F,∇∗F )]
= E [Covζ(∇F − ∇∗F,∇F + ∇∗F )] .

Applying the Cauchy Schwarz inequality leads to

|E [Varζ(∇F )] − E [Varζ(∇∗F )]| ≤ E [Varζ(∇F − ∇∗F )]
1
2 E [Varζ(∇F + ∇∗F )]

1
2 = 0.

Hence, E(F ) = E∗(F ) for F ∈ S. Furthermore, E is closed by Lemma 6.4.
We now show that the closure of the graph of E∗ is the graph of E . On the one hand, based on the

reasoning above and the inclusion S ⊆ dom(∇) from Lemma 6.2, the graph of E∗ is contained within the
graph of E . Since the graph of E is closed, this inclusion also extends to the closure of the graph of E∗. On
the other hand, we show that S is dense in the Hilbert space (dom(∇), E1), where

E1(F,G) := E[F (ζ)G(ζ)] + E(F,G), F,G ∈ dom(∇).

(The completeness of the space is a consequence of the fact that E is closed (cf. p. 4 in Fukushima, Oshima
and Takeda (1994)).) We already know from Lemma 5.5 and Lemma 6.2 that dom(∇) is closed and that
S ⊆ dom(∇). It remains to show that each F ∈ dom(∇) can be approximated by a sequence from S. Let
F ∈ dom(∇). By (4.23) and (6.12) we have

E1(F, F ) = E[F (ζ)2] +
∞∑

n=1

n! + (θ + n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

Let ε > 0 and choose k ∈ N such that
∞∑

n=k+1

n! + (θ + n− 1)nn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) ≤ ε.

Let

F0 := E[F (ζ)2] +
k∑

n=1

∫
Xn

fn(x) ζn(dx)

and S0 be the subspace of S spanned by the functions

µ 7→
∫
X
h1(x)µ(dx) · . . . ·

∫
X
hm(x)µ(dx),

with m ∈ N and h1, . . . , hm ∈ Cb(X). Since {G(ζ) : G ∈ S0} is dense in L2(ζ) (cf. Lemma 2 in Peccati
(2008)), there exists G̃ ∈ S0 such that

E
[
(F0 − G̃(ζ))2

]
≤ ε

c
,

where c := 1+(θ+k−1)k. Let G be the orthogonal projection of G̃(ζ) onto F0 ⊕ . . .⊕Fk. By orthogonality,
we then have

E[(F0 − G̃(ζ))2] = E[((F0 −G(ζ)) + (G(ζ) − G̃(ζ)))2] = E[(F0 −G(ζ))2] + E[(G(ζ) − G̃(ζ))2]
≥ E[(F0 −G(ζ))2].

Let gn, n ∈ N, denote the kernel functions of G. By Proposition 4.15 (cf. (4.16)), it holds

gn(x1, . . . , xn) = θ + 2n− 1
n!

n∑
j=0

(−1)n−j(θ + j)(n−1)
∑

1≤i1<...<ij≤n

E
[
G̃(ζρ+δxi1

+...+δxij
)
]
, n ∈ [k],

and gn ≡ 0, n > k. Since G̃ ∈ S0, Corollary 3.12 yields that G = G0(ζ) P-a.s. for some G0 ∈ S0. Moreover,

E1(F −G,F −G) = E
[
(F (ζ) −G(ζ))2]+

∞∑
n=1

n! + (θ + n− 1)nn!
θ(2n)

∫
Xn

(fn(x) − gn(x))2 ρ[n](dx)
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≤ E
[
(F (ζ) −G(ζ))2]+

k∑
n=1

n! + (θ + n− 1)nn!
θ(2n)

∫
Xn

(fn(x) − gn(x))2 ρ[n](dx) + ε

≤ c

(
E
[
(F (ζ) −G(ζ))2]+

k∑
n=1

n!
θ(2n)

∫
Xn

(fn(x) − gn(x))2 ρ[n](dx)
)

+ ε

= cE[(F0 −G(ζ))2] + ε ≤ 2ε.

6.4. The generator
In this section, the name Fleming–Viot operator is justified by establishing that the operator L from
Chapter 5 is indeed the generator of the Fleming–Viot process with parent-independent mutation.

In Stannat (2000), a calculation on p. 678 shows that Lρ from (2.6) with the mutation operator A given
by (2.7) satisfies

E [(−Lρ(ζ)(F ))G] = 1
2E [Covζ(∇∗F,∇∗G)] , F,G ∈ S.

For completeness, we recall the computation using our shorthand notation µ(f) =
∫
X f(x)µ(dx) for a

measure µ on X and an integrable function f (cf. Section 2.4). Let F,G ∈ S with representations

F (µ) = φ (µ(f1), . . . , µ(fd)) and G(µ) = ψ (µ(g1), . . . , µ(ge)) , µ ∈ M1(X),

where d, e ∈ N, φ ∈ C∞(Rd), ψ ∈ C∞(Re) and fi, gj : X → R are assumed to be measurable and bounded
for i ∈ [d], j ∈ [e]. Given that with F and G the product FG also belongs to S, we may exploit the explicit
definition of Lρ in order to derive

2Lρ(µ)(FG) =
d∑

i,j=1
(∂i∂jφ)(µ(f1), . . . , µ(fd)) Covµ(fi, fj)G+

e∑
i,j=1

(∂i∂jψ)(µ(g1), . . . , µ(ge)) Covµ(gi, gj)F

+ 2
d∑

i=1

e∑
j=1

(∂iφ)(µ(f1), . . . , µ(fd))(∂jψ)(µ(g1), . . . , µ(ge)) Covµ(fi, gj)

+
d∑

i=1
(∂iφ)(µ(f1), . . . , µ(fd))µ(Afi)G+

e∑
i=1

(∂iψ)(µ(g1), . . . , µ(ge))µ(Agi)F, µ ∈ M1(X).

Given µ ∈ M1(X), this simplifies to the following expression upon collecting terms

2(Lρ(µ)(F ))G+ 2(Lρ(µ)(G))F + 2
d∑

i=1

e∑
j=1

(∂iφ)(µ(f1), . . . , µ(fd))(∂jψ)(µ(g1), . . . , µ(ge)) Covµ(fi, gj).

Recalling the definition of ∇∗ in (6.1), taking expectations and using that Lρ(ζ) is symmetric, we infer

E [(−Lρ(ζ)(F ))G] = 1
2E [(−Lρ(ζ)(F ))G] + 1

2E [(−Lρ(ζ)(G))F ]

= 1
2E [(−Lρ(ζ)(FG))] + 1

2E [Covζ(∇∗F,∇∗G)] .

As the distribution of ζ is the stationary distribution of the corresponding Fleming–Viot process, i.e. it
holds E[Lρ(ζ)(H)] = 0 for every H ∈ S, we thus have

E [(−Lρ(ζ)(F ))G] = 1
2E [Covζ(∇∗F,∇∗G)] .

Since E[Varζ(∇∗F )] = E[Varζ(∇F )], F ∈ S by Lemma 6.2, we obtain

E [(−Lρ(ζ)(F ))G] = 1
2E(F,G) = 1

2E [(−L(F ))G] , F,G ∈ S.

The generator L̃ associated with the bilinear form E from (6.10) is a linear mapping from a subset of
dom(∇) into L2(ζ) which is defined as follows. The domain dom(L̃) of L̃ is the set of all F ∈ dom(∇) such
that there exists H ∈ L2(ζ) satisfying

E(F,G) = E[H(ζ)G(ζ)], G ∈ dom(∇).

In this case, one defines L̃F = H. It turns out that L̃ is the Fleming–Viot operator L from Chapter 5.
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Theorem 6.6. It holds dom(L) = dom(L̃) and

L̃F = LF, P-a.s., F ∈ dom(L).

Proof. The inclusion dom(L) ⊆ dom(L̃) and L̃F = LF , P-a.s. for F ∈ dom(L) follow from (6.13).
Conversely, let F ∈ dom(L̃), G ∈ dom(∇) and let H ∈ L2(ζ) be such that E(F,G) = E[H(ζ)G(ζ)] holds.

Choosing G ≡ 1 shows E[H(ζ)] = 0. Let hn, n ∈ N, denote the kernel functions in the chaos expansion of H.
We can proceed exactly as in the proof of Theorem 5.20 (cf. (5.21) and (5.22)) to show hn = (θ + n− 1)fn,
n ∈ N: By (6.12), we have

E(F,G) =
∞∑

n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)gn(x) ρ[n](dx),

where the kernel functions of F and G are denoted by fn and gn, n ∈ N, respectively. Since this expression
is equal to

E[H(ζ)G(ζ)] =
∞∑

n=1

n!
θ[2n]

∫
Xn

hn(x)gn(x) ρ[n](dx)

and this equality holds for every G ∈ dom(∇), we can choose G ∈ dom(∇) such that its kernel functions
satisfy gn ≡ 0 for all except one n ∈ N to obtain hn = (θ + n − 1)fn, n ∈ N. Because of H ∈ L2(ζ)
and (4.23), the series

∞∑
n=1

n!n2(θ + n− 1)2

θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) =
∞∑

n=1

n!
θ(2n)

∫
Xn

hn(x)2 ρ[n](dx) = E[H(ζ)2]

converges. Thus, F ∈ dom(L).

Since there is a one-to-one correspondence between the family of closed symmetric forms and the family
of non-positive definite self-adjoint operators (cf. Theorem 1.3.1 in Fukushima, Oshima and Takeda (1994))
and E is generated by L, we obtain that L is the closure of 2Lρ(ζ).

The semigroup generated by L can be described in terms of the chaos expansion.

Definition 6.7. Let t ≥ 0 and define

Tt(F ) :=
∞∑

n=0
e−n(θ+n−1)t

∫
Xn

fn(x) ζn(dx),

for F ∈ L2(ζ) with chaos expansion (4.22) and f0 = E[F (ζ)].

We note that the convergence of the series is guaranteed since for F ∈ L2(ζ) with chaos expansion (4.22)
and m0, n0 ∈ N with m0 ≤ n0 it holds

E

( n0∑
n=m0

e−n(θ+n−1)t

∫
Xn

fn(x)ζn(dx)
)2
 =

n0∑
n=m0

e−2n(θ+n−1)tn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx), t ≥ 0.

For every t ≥ 0, an upper bound on this is given by E[F (ζ)2], which, according to (4.23), equals

E[F (ζ)]2 +
∞∑

n=1

n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

The subsequent lemma shows that the operator L generates the family {Tt, t ≥ 0}, where we follow the
definition of a strongly continuous semigroup from Fukushima, Oshima and Takeda (1994).

Lemma 6.8. The family {Tt, t ≥ 0} forms a strongly continuous semigroup with generator L.

Proof. Let F,G ∈ L2(ζ) with kernel functions fn and gn, n ∈ N, respectively. For ease of notation, we set
f0 = E[F (ζ)] and g0 = E[G(ζ)]. Let m0, n0 ∈ N and s, t ≥ 0. By Corollary 4.11, we obtain

E

[(
m0∑

m=0

∫
Xm

fm(x) ζm(dx)
)(

n0∑
n=0

e−n(θ+n−1)t

∫
Xn

gn(x) ζn(dx)
)]
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=
n0∑

n=0

e−n(θ+n−1)tn!
θ(2n)

∫
Xn

fn(x)gn(x) ρ[n](dx)

= E

[(
m0∑

m=0
e−m(θ+m−1)t

∫
Xm

fm(x) ζm(dx)
)(

n0∑
n=0

∫
Xn

gn(x) ζn(dx)
)]

,

establishing the symmetry of Tt, t ≥ 0. Moreover, by definition, it holds T0(F ) = F . Concerning the
semigroup property, we note that Tt(F ) is given in its chaos expansion. Hence, we obtain

Tt(Ts(F )) = Tt+s(F ), F ∈ L2(ζ), s, t ≥ 0.

Another consequence of the fact that Tt(F ) is expressed in terms of its chaos expansion is the contraction
property

E[(Tt(F ))2] =
∞∑

n=0

e−2n(θ+n−1)tn!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) ≤ E[F (ζ)2]

following from (4.23). In order to show the strong continuity, we consider

E
[
(Tt(F ) − F )2] = E

( ∞∑
n=0

(e−n(θ+n−1)s − 1)
∫
Xn

fn(x) ζn(dx)
)2


=
∞∑

n=0

(e−n(θ+n−1)t − 1)2n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

Since the series
∑∞

n=0
n!

θ(2n)

∫
Xn fn(x)2 ρ[n](dx) is convergent, we can apply dominated convergence and infer

E
[
(Tt(F ) − F )2] → 0, t ↓ 0.

Finally, we first assume F ∈ dom(L). Using orthogonality and dominated convergence again, which is
applicable because of | 1

t (e−n(θ+n−1)t − 1)| ≤ n(θ + n− 1) for all n ∈ N, t ≥ 0, we compute

E

[(
1
t
(Tt(F ) − F ) − L(F )

)2
]

= E

( ∞∑
n=0

(
1
t

(
e−n(θ+n−1)t − 1

)
+ n(θ + n− 1)

)∫
Xn

fn(x) ζn(dx)
)2


=
∞∑

n=0

(
e−n(θ+n−1)t − 1

t
+ n(θ + n− 1)

)2
n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) → 0, t ↓ 0.

On the other hand, suppose F ∈ L2(ζ) with chaos expansions (4.22) satisfies

1
t
(Tt(F ) − F ) → H, t ↓ 0,

in L2(ζ) for some H ∈ L2(ζ). We set f0 = E[F (ζ)] as well as h0 = E[H(ζ)] and denote the kernel functions
of H by hn, n ∈ N. The isometry (4.23) gives

E
[(

1
t
(Tt(F ) − F ) −H

)
G

]
=

∞∑
n=0

n!
θ(2n)

∫
Xn

(
e−n(θ+n−1)t − 1

t
fn(x) − hn(x)

)
gn(x)ρ[n](dx), t ≥ 0,

for every G ∈ L2(ζ) with kernel functions gn, n ∈ N, and g0 = E[G(ζ)]. We conclude that F is an element
of dom(L) and H = L(F ).





CHAPTER 7

Variance bounds

In this chapter, we apply the concepts developed in this work to establish both a Poincaré inequality and a
reverse Poincaré inequality in the spirit of Schulte and Trapp (2024). We note that the Poincaré inequality
for Dirichlet processes is proven in Stannat (2000) by an approximation from the corresponding Poincaré
inequality for the Dirichlet distribution from Shimakura (1977).

Let (X,X ) be a measurable space carrying a finite measure ρ with θ := ρ(X) > 0 and let ζ be a Dirichlet
process with parameter measure ρ.

7.1. Poincaré inequality
We can state the result directly.

Theorem 7.1. Let F ∈ dom(∇). Then

Var(F ) ≤ 1
θ
E
[∫

X
(∇xF )2 ζ(dx)

]
. (7.1)

Equality holds if and only if there exists a function g ∈ L2(ρ) such that F (ζ) =
∫
X g(y) ζ(dy), P-a.s.

Proof. Let the chaos expansion of F be given by (4.22). According to (6.12), the right-hand side of (7.1) is

1
θ

∞∑
n=1

nn!
θ(2n) (θ + n− 1)

∫
Xn

fn(x)2 ρ[n](dx).

From (4.23), we obtain that the left-hand side of (7.1) equals

E
[
(F (ζ) − E[F (ζ)])2

]
=

∞∑
n=1

n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

Because of
1 ≤ n(θ + n− 1)

θ

for all n ∈ N, the first part of the claim follows. Note that the inequality 1 ≤ n(θ+n−1)
θ with n ∈ N is strict

for n ≥ 2 and equality holds if and only if n = 1. (This can be seen, for example, by rewriting the inequality
in the equivalent form 0 ≤ n2 + nθ − n− θ = (n+ θ)(n− 1).)

If equality in (7.1) holds, ∫
Xn

fn(x)2 ρ[n](dx)

has to vanish for n ≥ 2. Hence, F is an element of F0 ⊕ F1.
Conversely, let g ∈ L2(ρ) and F ∈ dom(∇) with F (ζ) =

∫
X g(y) ζ(dy), P-a.s. In this case, F ∈ F0 ⊕ F1,

as shown in Example 4.17. Consequently, equality holds in (7.1).

7.2. Reverse Poincaré inequality
In this section, we derive a reverse Poincaré inequality in the spirit of Schulte and Trapp (2024). We begin
by defining a suitable higher-order derivative.

Definition 7.2. Let k ∈ N. The set dom(∇k) is the set of all F ∈ L2(ζ) with chaos expansion (4.22) such
that

∞∑
n=k

n!(n− k + 1)(k)

θ(2n)

(
(θ + 2n− k)(k) − (n− k + 1)(k)

)∫
Xn

fn(x)2 ρ[n](dx) < ∞. (7.2)
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In the case k = 1, we obtain dom(∇1) = dom(∇).
Following the same line of reasoning as in Lemma 5.2, we establish the convergence of a series that will

serve to define a higher-order gradient. Of course, Lemma 5.2 is subsumed by the more general statement
given below. The choice to defer the general formulation to this section was made to maintain clarity and
readability in the earlier part of the thesis (as we have so far only worked with ∇1 = ∇).

Let k ∈ N and Cζk be the Campbell measure of ζk, i.e. the probability measure on Ω × Xk defined by

Cζk (A) :=
∫

Ω

∫
Xk

1A(ω, x) ζk(ω,dx)P(dω), A ∈ A ⊗ X ⊗k.

If k = 1, we have Cζ1 = Cζ , the Campbell measure of ζ, which has already been frequently used in this
thesis.

Lemma 7.3. Let k ∈ N and F ∈ dom(∇k) with chaos expansion (4.22). Then

(ω, x1, . . . , xk) 7→
∞∑

n=k

(n− k + 1)(k)
(∫

Xn−k

fn(x1, . . . , xk, y1, . . . , yn−k) ζn−k(ω,d(y1, . . . , yn−k))

−
∫
Xn

fn(y) ζn(ω,dy)
)

converges in L2(Cζk ).

Proof. For n ∈ N with n ≥ k, we define Hn : Ω × Xk → R by

Hn(ω,xk) :=
∫
Xn−k

fn(xk,yn−k) ζn−k(ω, dyn−k) −
∫
Xn

fn(y) ζn(ω, dy), n > k,

Hk(ω,xk) := fk(xk) −
∫
Xk

fk(y) ζk(ω,dy).

Let m,n ∈ N with m,n ≥ k. By Jensen’s inequality and Corollary 3.8, we have∫
Ω×Xk

(∫
Xn−k

fn(xk,yn−k) ζn−k(ω,dyn−k)
)2

Cζk (d(ω,xk))

= E

[∫
Xk

(∫
Xn−k

fn(xk,yn−k) ζn−k(dyn−k)
)2

ζk(dxk)
]

≤ E
[∫

Xk

∫
Xn−k

fn(xk,yn−k)2 ζn−k(dyn−k) ζk(dxk)
]

= E
[∫

Xn

fn(y)2 ζn(dy)
]

= n!
θ(2n)

∫
Xn

fn(y)2 ρ[n](dy).

As the second term in the definition of Hn is also an element of L2(Cζk ), we obtain that Hn belongs to
L2(Cζk ). Furthermore, it holds∫

Ω×Xk

Hm(ω, x)Hn(ω, x)Cζk (d(ω, x))

= E
[∫

X

(∫
Xm−k

fm(xk,ym−k) ζm−k(dym−k) −
∫
Xm

fm(y) ζm(dy)
)

(∫
Xn−k

fn(xk, zn−k) ζn−k(dzn−k) −
∫
Xn

fn(z) ζ(dz)
)
ζk(dxk)

]
.

An application of Corollary 3.8 shows that this equals

1
θ(m+n−k)

∫
Xm+n−k

fm(xk,ym−k)fn(xk, zn−k) ρ[m+n−k](d(xk,ym−k, zn−k))

− 1
θ(m+n)

∫
Xm+n

fm(ym)fn(zn) ρ[m+n](d(ym, zn)).
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By Corollary 4.5, this becomes

1{m=n}

(
(n− k)!
θ(2n−k)

∫
Xn

fn(x)2 ρ[n](dx) − n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)
)

= 1{m=n}
(n− k)!
θ(2n)

(
(θ + 2n− k)(k) − (n− k + 1)(k)

)∫
Xn

fn(x)2 ρ[n](dx).

Hence, for n0 ∈ N, n0 ≥ k, we obtain

∫
Ω×Xk

(
n0∑

n=k

(n− k + 1)(k)Hn(ω, x)
)2

Cζk (d(ω, x))

=
n0∑

n=k

n0∑
m=k

E
[∫

Xk

(n− k + 1)(k)(m− k + 1)(k)Hn(ω, x)Hm(ω, x) ζk(dx)
]

(7.3)

=
n0∑

n=k

(
(n− k + 1)(k))2 (n− k)!

θ(2n)

(
(θ + 2n− k)(k) − (n− k + 1)(k)

)∫
Xn

fn(x)2 ρ[n](dx).

Because of (7.2), the sequence under consideration is a Cauchy sequence in L2(Cζk ).

Building on the previous Lemma, we define a higher-order derivative. The gradient from Chapter 5 is
included in this framework as the case k = 1.

Definition 7.4. Let k ∈ N and let ∇k : dom(∇k) → L2(Cζk ) be defined by

(∇kF )(ω, x1, . . . , xk) :=
∞∑

n=k

(n− k + 1)(k)
(∫

Xn−k

fn(x1, . . . , xk, y1, . . . , yn−k)ζn−k(ω,d(y1, . . . , yn−k)

−
∫
Xn

fn(x) ζn(ω,dx)
)
, (ω, x1, . . . , xk) ∈ Ω × Xk,

for F ∈ dom(∇k) with chaos expansion (4.22).

Note that for k, n ∈ N with k ≥ n, we have

(n− k + 1)(k) = n(n− 1) . . . (n− k + 1) = (n)(k),

where (n)(k) denotes the falling factorial, defined by (n)(k) := n(n− 1) . . . (n− k + 1).
Again, we consider a measurable version and obtain the norm of the gradient directly.

Remark 7.5. Let k ∈ N and F ∈ dom(∇k) with chaos expansion (4.22). Equation (7.3) yields

E
[∫

Xk

(
(∇kF )(xk)

)2
ζk(d(xk))

]
=

∞∑
n=k

n!(n− k + 1)(k)

θ(2n)

(
(θ + 2n− k)(k) − (n− k + 1)(k)

)∫
Xn

fn(x)2 ρ[n](dx).

Furthermore, as in the case of ∇ (cf. Corollary 5.4), we obtain

E
[∫

Xk

(∇kF )2 ζk(dx)
]

=
∞∑

n=k

n!(n− k + 1)(k)

θ(2n)

(
(θ + 2n− k)(k) − (n− k + 1)(k)

)∫
Xn

fn(x)2 ρ[n](dx)

(7.4)
and, as with the lower-order gradient, the higher-order gradient is centred (with respect to ζk), meaning
that ∫

Xk

(∇k
xF ) ζk(dx) = 0, P-a.s. ⋄

We can now follow the approach of Schulte and Trapp (2024) and derive a reverse Poincaré inequality.
Schulte and Trapp (2024) prove a lower variance bound for square-integrable functionals of a Poisson



86 Chapter 7. Variance bounds

process. As noted in their Remark 2.1, their proof relies solely on the Fock space representation of the
functional under consideration and the first two difference operators. Therefore, their approach is applicable
to any setting where a Fock space representation for the functional and the first two difference operators
(or gradients, in our terminology) is available. Since our formulas for the chaos expansions of F , ∇F and
∇2F for F ∈ dom(∇2) are more complicated than the corresponding ones (for F , DF and D2F , where
D denotes the difference operator, cf. Chapter 18 in Last and Penrose (2017)) in the Poisson case, the
calculations here become more involved, although the underlying approach remains the same.

Theorem 7.6. Let F ∈ dom(∇2). If the inequality

E
[∫

X2
(∇2

xF ) ζ2(dx)
]

≤ CE
[∫

X
(∇xF ) ζ(dx)

]
(7.5)

holds for some constant C > 0, then there exists c ≥ 1
256 (9 + 7θ + C + θ2 + θC)4 such that

Var(F ) ≥ 1
c
E
[∫

X
(∇xF ) ζ(dx)

]
. (7.6)

Proof. Take F ∈ dom(∇2) with chaos expansion (4.22) that satisfies (7.5) for a constant C > 0. By (7.4),
we have

E
[∫

X
(∇xF ) ζ(dx)

]
=

∞∑
n=1

n!n(θ + n− 1)
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx)

and

E
[∫

X2
(∇2

xF ) ζ2(dx)
]

=
∞∑

n=2

n!(n− 1)n
θ(2n) ((θ + 2n− 2)(θ + 2n− 1) − n(n− 1))

∫
Xn

fn(x)2 ρ[n](dx).

Using the absolute convergence of the series, we obtain from the assumption that
∞∑

n=1

nn!
θ(2n) [C(θ + n− 1) − (n− 1)((θ + 2n− 2)(θ + 2n− 1) − n(n− 1))]

∫
Xn

fn(x)2 ρ[n](dx) ≥ 0.

On the other hand, for every c > 0, we have

cVar(F ) − E
[∫

X
(∇xF ) ζ(dx)

]
= c

∞∑
n=1

n!
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx) −
∞∑

n=1

nn!(θ + n− 1)
θ(2n)

∫
Xn

fn(x)2 ρ[n](dx).

Hence, if we can choose a constant c > 0 satisfying

c− n(θ + n− 1) ≥ n(C(θ + n− 1) − (n− 1)((θ + 2n− 2)(θ + 2n− 1) − n(n− 1))) (7.7)

for all n ∈ N, it follows that

cVar(F ) − E
[∫

X
(∇xF ) ζ(dx)

]
≥ CE

[∫
X
(∇xF ) ζ(dx)

]
− E

[∫
X2

(∇2
xF ) ζ2(dx)

]
≥ 0.

The inequality (7.7) can equivalently be written as

c ≥ −3n4 + (8 − 4θ)n3 + (7θ − θ2 + C − 6)n2 + (θ2 + θ(C − 2) − C + 1)n, n ∈ N.

An upper bound for the right-hand side is −3n4 + (9 + 7θ +C + θ2 + θC)n3, n ∈ N. We will now derive an
upper bound for this expression. Let α := (9 + 7θ + C + θ2 + θC) > 0 and f : R → R be defined by

f(x) := −3x4 + αx3.

As a polynomial, f is a smooth function and its first three derivatives are given by

f ′(x) = −12x3 + 3αx2 = x2(3α− 12x), f ′′(x) = −36x2 + 6αx and f ′′(x) = −72x+ 6α, x ∈ R.

Thus, f has a saddle point in 0 and a local maximum in α
4 . Since f(x) → −∞, x → ±∞, this maximum is

global and we obtain

f(x) ≤ f
(α

4

)
= −3

(α
4

)4
+ α

(α
4

)3
= α4

256 , x ∈ R.



APPENDIX A

Simple summation formulas

The following section contains two summation identities used in various arguments in this thesis. We begin
with a simple identity that is used in Example 4.17.
Lemma A.1. For θ > 0 and m ∈ N it holds

m∑
k=1

θ + 2k − 1
k! (−1)kθ(k−1) = (−1)m

m! θ(m) − 1.

Proof. We proceed by induction on m ∈ N. In the base case m = 1, both expressions evaluate to −θ − 1.
Assuming the inductive hypothesis for some m ∈ N, we obtain

m+1∑
k=1

θ + 2k − 1
k! (−1)kθ(k−1) = (−1)m

m! θ(m) − 1 + θ + 2m+ 1
(m+ 1)! (−1)m+1θ(m)

= (−1)m

m! θ(m)
(

1 − θ + 2m− 1
m+ 1

)
− 1 = (−1)m

m! θ(m)
(

−θ +m

m+ 1

)
− 1 = (−1)m+1

(m+ 1)! θ
(m+1) − 1.

The subsequent lemma deals with a finite hypergeometric series.
Lemma A.2. Let θ > 0 and m ∈ N, m ≥ 2. For each j ∈ [m− 1] it holds

m∑
n=j

(−1)n−j θ + 2n− 1
(n− j)! (θ + j)(n−1) = (−1)m−j (θ + j)(m)

(m− j)! .

Proof. The sum can be evaluated directly. In a first step, we obtain
m∑

n=j

(−1)n−j θ + 2n− 1
(n− j)! (θ + j)(n−1)

= (θ + 2j − 1)(θ + j)(j−1) − (θ + 2j + 1)(θ + j)(j) +
m∑

n=j+2
(−1)n−j θ + 2n− 1

(n− j)! (θ + j)(n−1).

Using (θ + 2j − 1)(θ + j)(j−1) = (θ + j)(j), this is equal to

(θ + j)(j)

−(θ + 2j) +
m∑

n=j+2
(−1)n−j θ + 2n− 1

(n− j)!

n−2∏
k=j

(θ + k + j)

 .

If j ≥ m− 2, the remaining sum contains at least one additional term and the expression thus simplifies to

(θ + j)(j+1)

−1 + θ + 2j + 3
2! +

m∑
n=j+3

(−1)n−j θ + 2n− 1
(n− j)!

n−2∏
k=j+1

(θ + k + j)

 .

This, in turn, is equal to

(θ + j)(j+2)

2

1 + 2
m∑

n=j+3
(−1)n−j θ + 2n− 1

(n− j)!

n−2∏
k=j+2

(θ + k + j)

 .

Iterating this procedure leads to

(θ + j)(m−2)

(m− j − 2)! (−1)m−j

(
1 − θ + 2m− 3

m− 1 − j
+ (θ + 2m− 1)(θ +m− 2 + j)

(m− j − 1)(m− j)

)
= (θ + j)(m−1)

(m− j − 1)! (−1)m−j

(
−1 + θ + 2m− 1

m− j

)
= (θ + j)(m)

(m− j)! (−1)m−j .





Bibliography

Aldous, D. J. (1985). Exchangeability and related topics, in P. L. Hennequin (ed.), École d’Été de Probabilités
de Saint-Flour XIII - 1983, Springer, Berlin, Heidelberg, pp. 1–198.

Bakry, D., Gentil, I. and Ledoux, M. (2014). Markov Semigroups, Springer International Publishing, Cham.

Billingsley, P. (1972). On the distribution of large prime divisors, Periodica Mathematica Hungarica
2: 283–289.

Blackwell, D. and MacQueen, J. B. (1973). Ferguson Distributions Via Pólya Urn Schemes, The Annals of
Statistics 1(2): 353–355.

Burden, C. J. and Griffiths, R. C. (2019). The stationary distribution of a sample from the Wright–Fisher
diffusion model with general small mutation rates, Journal of Mathematical Biology 78(4): 1211–1224.

Crane, H. (2016). The Ubiquitous Ewens Sampling Formula, Statistical Science 31(1): 1–19.

Dawson, D. A. (1993). Measure-valued Markov processes, in P.-L. Hennequin (ed.), Ecole d’Eté de
Probabilités de Saint-Flour XXI - 1991, Springer, Berlin, Heidelberg, pp. 1–260.

Dello Schiavo, L. (2019). Characteristic functionals of Dirichlet measures, Electronic Journal of Probability
24: 1–38.

Dello Schiavo, L. (2022). The Dirichlet–Ferguson diffusion on the space of probability measures over a
closed Riemannian manifold, The Annals of Probability 50(2): 591–648.

Dello Schiavo, L. and Lytvynov, E. (2023). A Mecke-type characterization of the Dirichlet–Ferguson
measure, Electronic Communications in Probability 28: 1–12.

Dello Schiavo, L. and Quattrocchi, F. (2023). Multivariate Dirichlet Moments and a Polychromatic Ewens
Sampling Formula, arXiv preprint:2309.11292 .

Di Nunno, G., Øksendal, B. and Proske, F. (2009). Malliavin Calculus for Lévy Processes with Applications
to Finance, Springer, Berlin, Heidelberg.

Döring, M. and Stannat, W. (2009). The logarithmic Sobolev inequality for the Wasserstein diffusion,
Probability Theory and Related Fields 145(1–2): 189–209.

Engen, S. (1975). A Note on the Geometric Series as a Species Frequency Model, Biometrika 62(3): 697–699.

Etheridge, A. (2011). Some Mathematical Models from Population Genetics, Vol. 2012 of Lecture Notes in
Mathematics, Springer, Berlin, Heidelberg. École d’Été de Probabilités de Saint-Flour XXXIX - 2009.

Ethier, S. N. (1990). The infinitely-many-neutral-alleles diffusion model by ages, Advances in Applied
Probability 22(1): 1–24.

Ethier, S. N. and Griffiths, R. C. (1993). The Transition Function of a Fleming-Viot Process, The Annals
of Probability 21(3): 1571–1590.

Ethier, S. N. and Kurtz, T. G. (1981). The Infinitely-Many-Neutral-Alleles Diffusion Model, Advances in
Applied Probability 13(3): 429–452.

Ethier, S. N. and Kurtz, T. G. (1993). Fleming–Viot Processes in Population Genetics, SIAM Journal on
Control and Optimization 31(2): 345–386.

Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes: Characterization and Convergence, Wiley Series
in Probability and Statistics, reprint edn, John Wiley & Sons, Hoboken, NJ.

Ewens, W. J. (2004). Mathematical population genetics 1: Theoretical introduction, 2nd edn, Springer, New
York.

Feng, S. (2010). The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors,
Springer, Berlin, Heidelberg.



90 Bibliography

Feng, S., Miclo, L. and Wang, F.-Y. (2017). Poincaré inequality for Dirichlet distributions and infinite-
dimensional generalizations, ALEA. Latin American Journal of Probability and Mathematical Statistics
14(1): 361–380.

Feng, S. and Sun, W. (2010). Some diffusion processes associated with two parameter poisson–dirichlet
distribution and dirichlet process, Probability Theory and Related Fields 148(3–4): 501–525.

Feng, S., Sun, W., Wang, F.-Y. and Xu, F. (2011). Functional inequalities for the two-parameter extension
of the infinitely-many-neutral-alleles diffusion, Journal of Functional Analysis 260(2): 399–413.

Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems, The Annals of Statistics
1(2): 209–230.

Ferreira da Silva, A. R. (2007). A Dirichlet process mixture model for brain MRI tissue classification,
Medical Image Analysis 11(2): 169–182.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

Fleming, W. H. and Viot, M. (1979). Some Measure-Valued Markov Processes in Population Genetics
Theory, Indiana University Mathematics Journal 28(5): 817–843.

Flint, I. and Torrisi, G. L. (2023). An Integration by Parts Formula for Functionals of the Dirichlet–Ferguson
Measure, and Applications, Potential Analysis 58(4): 703–730.

Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes, De
Gruyter, Berlin, New York.

Griffiths, R. C. (1980). unpublished notes.

Hofrichter, J., Jost, J. and Tran, T. D. (2017). Information Geometry and Population Genetics: The Math-
ematical Structure of the Wright–Fisher Model, Understanding Complex Systems, Springer International
Publishing, Cham.

Hogg, R., McKean, J. and Craig, A. (2019). Introduction to Mathematical Statistics, 8th edn, Pearson,
Boston.

Itô, K. (1951). Multiple Wiener Integral, Journal of the Mathematical Society of Japan 3(1): 157–169.

Jost, J. (2013). Partial Differential Equations, Springer, New York.

Kallenberg, O. (2017). Random Measures, Theory and Applications, Springer International Publishing,
Cham.

Kingman, J. F. C. (1975). Random Discrete Distributions, Journal of the Royal Statistical Society. Series
B (Methodological) 37(1): 1–22.

Kingman, J. F. C. (1993). Poisson processes, Oxford studies in probability, Clarendon Press, Oxford.

Last, G. (2016). Stochastic analysis for poisson processes, in G. Peccati and M. Reitzner (eds), Stochastic
Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Itô Chaos Expansions and Stochastic
Geometry, Springer International Publishing, Cham, pp. 1–36.

Last, G. (2020). An Integral Characterization of the Dirichlet Process, Journal of Theoretical Probability
33: 918–930.

Last, G. and Penrose, M. D. (2011). Poisson process Fock space representation, chaos expansion and
covariance inequalities, Probability Theory and Related Fields 150(3-4): 663–690.

Last, G. and Penrose, M. D. (2017). Lectures on the Poisson Process, Cambridge University Press.

Ma, Z.-M. and Röckner, M. (1992). Introduction to the Theory of (Non-Symmetric) Dirichlet Forms,
Springer, Berlin, Heidelberg.

Mahmoud, H. M. (2008). Polya urn models, Chapman and Hall texts in statistical science series, CRC
Press, Boca Raton [u.a.].



Bibliography 91

Malliavin, P. (1976). Stochastic calculus of variation and hypoelliptic operators, Proceedings of the
International Symposium on Stochastic Differential Equations, Wiley, Research Institute for Mathematical
Sciences, Kyoto University, Kyoto, pp. 195–263.

McCloskey, J. W. (1965). A model for the distribution of individuals by species in an environment, Ph. d.
thesis, Michigan State University.

Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 9: 36–58.

Narasimhan, R. (1985). Analysis on real and complex manifolds, North Holland mathematical library; 35,
3rd edn, North-Holland, Amsterdam.

Ng, K. W., Tian, G.-L. and Tang, M.-L. (2011). Dirichlet and Related Distributions: Theory, Methods and
Applications, Wiley Series in Probability and Statistics, Wiley.

Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd edn, Springer, Berlin, Heidelberg.

Ohta, T. and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoret-
ically detectable alleles in a finite population, Genetical Research 22(2): 201 – 204.

Overbeck, L., Röckner, M. and Schmuland, B. (1995). An Analytic Approach to Fleming-Viot Processes
with Interactive Selection, The Annals of Probability 23(1): 1–36.

Patil, G. P. and Taillie, C. (1977). Diversity as a Concept and its Implications for Random Communities,
Bulletin of the International Statistical Institute 41: 497–515.

Peccati, G. (2008). Multiple Integral Representation for Functionals of Dirichlet Processes, Bernoulli
14(1): 91–124.

Petrov, L. A. (2009). Two-parameter family of infinite-dimensional diffusions on the Kingman simplex,
Functional Analysis and Its Applications 43(4): 279–296.

Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme, in T. S. Ferguson, L. S.
Shapley and J. B. MacQueen (eds), Statistics, probability and game theory. Papers in honor of David
Blackwell, Vol. 30, Institute of Mathematical Statistics Lecture Notes-Monograph Series, Hayward,
California, p. 245–267.

Pitman, J. (2006). Combinatorial stochastic processes, in J. Picard (ed.), Ecole d’Eté de Probabilités de
Saint-Flour XXXII - 2002, Springer, Berlin, Heidelberg.

Pitman, J. and Yor, M. (1997). The Two-Parameter Poisson-Dirichlet Distribution Derived from a Stable
Subordinator, The Annals of Probability 25(2): 855–900.

Privault, N. and Schoutens, W. (2002). Discrete chaotic calculus and covariance identities, Stochastics and
Stochastic Reports 72(3-4): 289–316.

Ren, P. and Wang, F.-Y. (2020). Spectral gap for measure-valued diffusion processes, Journal of Mathematical
Analysis and Applications 483(2): 123624.

Rodríguez-Álvarez, M. X., Inácio, V. and Klein, N. (2025). Density regression via Dirichlet process mixtures
of normal structured additive regression models, Statistics and Computing 35(2).

Schulte, M. and Trapp, V. (2024). Lower bounds for variances of Poisson functionals, Electronic Journal of
Probability 29: 1–43.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica 4(2): 639–650.

Shao, J. (2011). A New Probability Measure-Valued Stochastic Process with Ferguson-Dirichlet Process as
Reversible Measure, Electronic Journal of Probability 16: 271–292.

Shiga, T. (1990). A stochastic equation based on a poisson system for a class of measure-valued diffusion
processes, Journal of Mathematics of Kyoto University 30(2): 245–279.



92 Bibliography

Shimakura, N. (1977). Équations différentielles provenant de la génétique des populations, Tohoku
Mathematical Journal 29(2): 287–318.

Stannat, W. (2000). On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators,
The Annals of Probability 28(2): 667–684.

Teh, Y. W. (2010). Dirichlet process, in C. Sammut and G. I. Webb (eds), Encyclopedia of Machine
Learning, Springer US, Boston, pp. 280–287.

Topkaya, I. S., Erdogan, H. and Porikli, F. (2013). Detecting and tracking unknown number of objects with
dirichlet process mixture models and markov random fields, in G. Bebis, R. Boyle, B. Parvin, D. Koracin,
B. Li, F. Porikli, V. Zordan, J. Klosowski, S. Coquillart, X. Luo, M. Chen and D. Gotz (eds), Advances
in Visual Computing, Springer, Berlin, Heidelberg, pp. 178–188.

Tsilevich, N. V. and Vershik, A. M. (1999). Quasi-invariance of the gamma process and multiplicative
properties of the Poisson–Dirichlet measures, Comptes Rendus de l’Académie des Sciences. Série I.
Mathématique 329(2): 163–168.

von Renesse, M.-K. and Sturm, K.-T. (2009). Entropic Measure and Wasserstein Diffusion, The Annals of
Probability 37(3): 1114–1191.

Watterson, G. A. (1976). The Stationary Distribution of the Infinitely-Many Neutral Alleles Diffusion
Model, Journal of Applied Probability 13(4): 639–651.

Wiener, N. (1938). The homogeneous chaos, American Journal of Mathematics 60(4): 897–936.

Wright, S. (1931). Evolution in mendelian populations, Genetics 16(2): 97–159.


	Introduction
	Dirichlet processes
	Construction
	Mecke-type equation
	Survey of related literature
	General notation

	A multivariate perspective on the Mecke-type equation
	A multivariate Mecke-type equation
	Integral formula for subsequent applications

	Chaos expansion
	The spaces Hn
	The spaces Fn
	Projections onto the spaces Fn
	The chaos expansion

	Malliavin operators
	The gradient
	The divergence
	The generator
	The uncentred gradient

	Connection to Markov processes from population genetics
	Relevant concepts
	The gradient
	The Dirichlet form
	The generator

	Variance bounds
	Poincaré inequality
	Reverse Poincaré inequality

	Simple summation formulas
	Bibliography

