A\‘(IT A2E KASTEL

Karlsruhe Institute of Technology

Privacy-Preserving Federated Learning With
Backdoor Resilience

Bachelor’s Thesis of

Yordan Yordanov

At the KIT Department of Informatics
KASTEL - Institute of Information Security and Dependability

First examiner: Prof. Dr. Jorn Miiller-Quade
Second examiner: Prof. Dr. Thorsten Strufe

First advisor: Yufan Jiang, M.Sc.

22. July 2025 - 08. December 2025




Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe



Privacy-Preserving Federated Learning With Backdoor Resilience (Bachelor’s Thesis)

I declare that I have developed and written the enclosed thesis completely by myself. I
have not used any other than the aids that [ have mentioned. I have marked all parts of the
thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity
at KIT.

Karlsruhe, 08. December 2025

(Yordan Yordanov)






Abstract

Federated learning (FL) has the ability to train a global model across many different clients
with diverse datasets while also preserving privacy. However, federated learning is by design
vulnerable to privacy inference attacks and poisoning attacks, allowing compromised clients
to infer private information about the clients or negatively influence the global model,
respectively. FLAME [26], a state-of-the-art framework, is designed to statistically remove
the influence of poisoning attacks, while being applicable to many attacker models and
keeping the model’s benign performance. To ensure these objectives, the FLAME protocol
introduces a defense framework that estimates the minimum sufficient amount of noise
to be injected into the global model after aggregation, so that backdoors are eliminated
but the benign performance does not deteriorate. To further reduce the amount of noise
and enhance the desired goals, FLAME utilizes adaptive clustering and weight clipping.
However, federated learning systems that implement FLAME still face significant privacy
risks from inference attacks, where malicious aggregators can exploit access to model
updates to extract sensitive information about client data. Therefore, it is imperative to also
achieve malicious security.

In this thesis, we propose an implementation of FLAME in combination with secure Multi-
Party Computation (MPC), which provides the primitives to protect federated learning
against inference attacks. We propose two implementations of this combination: private
FLAME- a full-MPC implementation, running the entire FLAME protocol in MPC; and
leaky FLAME, which selectively reveals intermediate statistics to gain efficiency while still
constraining attack surface. The implementation takes advantage of FLAME'’s backdoor
resilience and MPC’s secret shared processing, also achieving malicious security. To achieve
this combination, we use MP-SPDZ [20], a framework with 30 variants of MPC protocols
and a Python-based programming interface, which simplifies the comparison of different
protocols and security models.

Building on these designs, our evaluation quantifies the computational and communication
overheads of both modes with varying client counts and model sizes. We find that the
dominant cost arises from the pairwise cosine-similarity in the clustering step, whereas
clipping and noising are comparatively lightweight. Although leaky FLAME’s savings are
noticeable even more so in the bigger cases, they are dominated by the cosine similarity
computation, thus in our opinion not worth the security-efficiency trade-off. Despite this,
our implementation achieves practical runtimes for moderate scales, keeping in mind that
it provides enforcement of FLAME’s defenses under malicious-security settings. Taken
together, our results demonstrate that integrating MPC with FLAME is feasible to an extent
and effective for privacy-preserving, backdoor-resilient FL.






Zusammenfassung

Federated Learning (FL) ermdglicht es, ein globales Modell iiber viele verschiedene Cli-
ents mit heterogenen Datensétzen zu trainieren und dabei die Privatsphére zu wahren.
Allerdings ist Federated Learning von Natur aus anfallig fir Privacy-Inference-Angriffe
und Poisoning-Angriffe, die es kompromittierten Clients ermoglichen, einerseits private
Informationen iiber andere Clients zu inferieren bzw. andererseits das globale Modell ne-
gativ zu beeinflussen. FLAME [26], ein State-of-the-Art-Framework, ist darauf ausgelegt,
den Einfluss von Poisoning-Angriffen statistisch zu entfernen, dabei fiir viele Angreifer-
modelle anwendbar zu sein und die gutartige Modellleistung zu erhalten. Um diese Ziele
sicherzustellen, fithrt das FLAME-Protokoll ein Abwehr-Framework ein, das die minimal
hinreichende Menge an Rauschen abschétzt, die nach der Aggregation in das globale Modell
injiziert werden muss, sodass Backdoors eliminiert werden, ohne dass die gutartige Leistung
verschlechtert wird. Um die Rauschmenge weiter zu reduzieren und die gewiinschten Ziele
zu starken, verwendet FLAME adaptives Clustering und Weight Clipping. Dennoch sehen
sich Federated-Learning-Systeme, die FLAME implementieren, weiterhin erheblichen Pri-
vatsphérenrisiken durch Inference-Angriffe ausgesetzt, bei denen bosartige Aggregatoren
den Zugriff auf Modellupdates ausnutzen konnen, um sensible Informationen tiber die
Client-Daten zu extrahieren. Daher ist es zwingend erforderlich, auch boswillige Sicherheit
(malicious security) zu erreichen.

In dieser Arbeit schlagen wir eine Implementierung von FLAME in Kombination mit si-
cherer Mehrparteienberechnung (Secure Multi-Party Computation, MPC) vor, die die Pri-
mitiven bereitstellt, um Federated Learning gegen Inference-Angriffe zu schiitzen. Wir
schlagen zwei Implementierungen dieser Kombination vor: Private FLAME- eine reine
MPC-Implementierung, die das gesamte FLAME-Protokoll in MPC ausfiihrt; und Leaky
FLAME, das ausgewéhlte Zwischenstatistiken gezielt offenlegt, um Effizienz zu gewin-
nen, wiahrend die Angriffsfliche weiterhin begrenzt wird. Die Implementierung nutzt die
Backdoor-Resilienz von FLAME und die geheimgeteilte Verarbeitung (secret-shared pro-
cessing) von MPC und erreicht damit ebenfalls boswillige Sicherheit. Zur Realisierung
verwenden wir MP-SPDZ [20], ein Framework mit 30 Varianten von MPC-Protokollen
und einer Python-basierten Programmierschnittstelle, das den Vergleich verschiedener
Protokolle und Sicherheitsmodelle vereinfacht.

Aufbauend auf diesen Designs quantifiziert unsere Evaluation die Rechen- und Kommunikations-
Overheads beider Modi bei variierender Anzahl von Clients und Modellgrofien. Wir stellen
fest, dass die dominanten Kosten aus der paarweisen Cosine-Ahnlichkeit im Clustering-
Schritt entstehen, wohingegen Clipping und Noising vergleichsweise leichtgewichtig sind.
Obwohl die Einsparungen von Leaky FLAME- insbesondere in grofleren Fallen- spiirbar

iii



sind, werden sie von der Berechnung der Cosine-Ahnlichkeit dominiert und sind daher
unseres Erachtens den Trade-off zwischen Sicherheit und Effizienz nicht wert. Dennoch
erreicht unsere Implementierung praxistaugliche Laufzeiten fiir moderate Skalen, wobei zu
beachten ist, dass sie die Durchsetzung der FLAME-Abwehrmechanismen unter boswilli-
gen Sicherheitsannahmen gewahrleistet. Zusammengenommen zeigen unsere Ergebnisse,
dass die Integration von MPC mit FLAME in gewissem Umfang machbar und wirksam fiir
privatsphéarenschonendes, gegen Backdoors resilienteres Federated Learning ist.

iv



Contents

Abstract

Zusammenfassung

1.

Introduction
1.1. Existing Defenses . . . . . ... .. ... ... ...
1.2. Motivation . . . . . . . . . e

2. Related Work
3. FLAME Protocol Analysis
3.1. Protocol Architecture and Threat Model . . . . .. ... ... .......
3.2. CoreComponents . . . . . .. ... ...
4. MPCimplementation of FLAME
4.1. MPC Architecture . . . . . . . . . . .. e
4.2. Bounded Noise Generation for MPC Differential Privacy . . ... ... ..
4.3. FLAME Implementation in MP-SPDZ . . . . . .. ... ... ... .....
4.4. Security and Privacy Analysis of MPCFLAME . . . . ... ... ......
5. Evaluation
5.1. Experimental Setup . . . . ... .. ... ...
5.2. Performance Evaluation. . . . . . ... ... ... ..............
6. Discussion
6.1. Performanceand System . . . .. ... ... ... .. ... ... ... ...
6.2. Practical Feasibility . . . ... ... ... ... ... .. ..
6.3. Future Work . . . . . .. . .
7. Conclusion
Bibliography

A. Appendix

A.l. DBSCANand HDBSCAN . . . . . .. ... . ... i

13
13
15
17
18

23
23
24

29
29
29
30

31

33

37






1. Introduction

Machine learning (ML) lets computers learn patterns from example data instead of being
explicitly programmed. An ML model (e.g., a neural network) is trained by repeatedly
adjusting its internal parameters (weights) so that its predictions accurately match the
labeled examples. Traditional (centralized) training gathers all data on one server, which can
be impractical or undesirable when data is sensitive and/or legally restricted (e.g., health,
finance, personal devices).

Federated learning (FL) addresses this issue by allowing clients to locally train the global
model on their data and keep the data private by only sharing the updated model back to a
central coordinator (server) which can then aggregate the local client models into a new
global model. The new global model can then be propagated to clients for the next learning
iteration [23, 18, 17]. This standard procedure reduces the risks of direct data sharing and
can better align with privacy or regulatory expectations [38, 2].

On the one hand, federated learning attempts to balance two competing goals: to learn from
diverse, geographically, and organizationally separated data, and to reduce direct exposure
of raw data [38, 2]. On the other hand, in real deployments, different clients typically have
different types of data or so-called non-independent identically distributed data (non-IID)
[26]. This heterogeneity causes updates to vary naturally, making it harder for the central
coordinator to tell the difference between “unusual but honest” and *malicious’ behavior.
In addition, clients differ in processing power, may drop offline and often participate
sporadically, complicating robust learning [35, 18]. In this work, we assume synchronous
rounds without dropouts; a client failing to submit in a round is treated as absent, and the
algorithm applies to the received set only. Therefore, the shift from centralized control
to distributed participation introduces a new vulnerability to so-called poisoning attacks,
where an adversary manipulates its local model or local data so that a malicious update gets
aggregated into the global model. [18, 35].

Poisoning attacks can be untargeted or targeted (or so-called 'backdoor attacks’). Untargeted
poisoning attacks are designed to deteriorate the performance of the global model and can
be prevented by checking the validity of the client updates. The focus of this work therefore
is on backdoor attacks, which, in comparison to simple deterioration, aim to manipulate
the model in such a way that, for specific inputs chosen by the adversary, the global model
outputs incorrect attacker-controlled predictions [27].



1. Introduction

1.1. Existing Defenses

Several defenses have been proposed to mitigate the risks of backdoor attacks in federated
learning, which can be broadly classified into four groups. The first group focuses on detect-
ing and filtering out potentially malicious updates by analyzing their statistical properties
or behaviors [22, 30, 26]. Having said that, these defenses rely on specific assumptions
about the adversary’s behavior and the underlying data distributions, which may not hold
in all practical scenarios. The second group can be identified as noise/perturbation defenses,
which aim to dilute the influence of malicious updates by adding noise to the model updates
or clipping weights. However, naively chosen noise levels that neutralize strong backdoors
also degrade benign accuracy, the impact is disproportionately greater especially when
the amount of noise required for effective defense is substantial [17]. The third group of
defenses is based on recovery or post-attack mitigation- once attackers are detected, these
defenses implement rollback or retraining strategies to repair the global model [8]. These
defenses however are reactive and presume that the attacker can be identified and that the
data can be restored- an ’irreversible’ payload may complicate the defense [28]. The fourth
group can be identified as secure aggregation and cryptographic frameworks- such systems
focus on delivering confidentiality or integrity but typically support only linear aggregation
and lack poisoning resilience [22, 30, 3, 11, 17].

Advancing beyond these categories, FLAME [26] introduces a principled framework that:
1. Clusters model updates to segregate benign and suspicious groups.
2. Applies weight-clipping to bound sensitivity.

3. Adaptively injects only the minimum necessary noise (derived from cluster structure
and density) to eliminate backdoor effects while preserving benign accuracy.

Empirical results in vision, language and IoT intrusion detection tasks show near-baseline
accuracy with markedly reduced attack success rates [26]. This “minimal effective noise”
perspective refines previous perturbation approaches by tying the magnitude of noise to
measured structural separation rather than fixed privacy budgets. Building on FLAME’s
strengths, we aim to preserve its backdoor resilience while adding malicious-security guar-
antees and update confidentiality during clustering and density estimation by integrating
FLAME with MPC-based aggregation, to prevent scenarios where adversaries may exploit
information leakage during the aggregation process [22, 30, 3].

1.2. Motivation

This thesis aims to address the identified gaps by proposing a novel implementation that
integrates Multi-Party Computation (MPC) with the FLAME framework, with the key
contributions being:



1.2. Motivation

« MPC-Secure Implementation of FLAME: This work presents an open-source im-
plementation of FLAME’s defense pipeline in a fully MPC-secure mode, ensuring
that client updates remain confidential throughout the aggregation. This implementa-
tion minimizes the risk of information leakage and improves the overall security of
federated learning systems.

« Hybrid MPC Mode: This work also presents a partially non-private MPC mode for
FLAME, allowing for a balance between performance and privacy. This mode enables
efficient computation of heavier parts of the FLAME algorithm while also revealing
only intermediate data, making it more suitable for real-world applications where
complete privacy may not be feasible.

« MPC-friendly clustering: We replace HDBSCAN with a DBSCAN-based approxima-
tion tailored for MPC, preserving FLAME’s majority-cluster filtering while avoiding
the MST construction costs and reducing complexity in secure settings.

« Bounded, integer-native MPC noise: We design and integrate a finite-precision,
bounded-noise generator (Irwin-Hall “12-trick” over SPDZ,x) that approximates Gaus-
sian noise without floating point, aligning with FLAME’s adaptive scale and providing
DP-inspired privacy properties under MPC..

« Performance and Security Analysis: A comprehensive analysis of performance
and security trade-offs is conducted for both full MPC and hybrid MPC modes.

« Minimizing Attack Surface: The implementation of this work minimizes the resid-
ual exploitable structure of federated learning, thereby improving the resilience of
federated learning systems against backdoor attacks.

In summary, this thesis not only advances the state-of-the-art in federated learning defenses,
but also provides practical solutions that can be implemented in real-world scenarios,
thereby contributing to the ongoing efforts to secure sensitive data while leveraging the
benefits of machine learning.






2. Related Work

Recent surveys synthesize that federated learning security can be classified based on how
privacy is achieved (e.g., cryptographic MPC, Trusted Execution Environments (TEEs))
and what robustness primitive is applied (e.g., norm constraints, clustering, and post-hoc
recovery) [33, 38, 27]. These surveys emphasize a tension: mechanisms that maximize
confidentiality (MPC, secure aggregation) restrict the ability to run structure-aware defenses,
whereas defenses that inspect plaintext updates may leak information. This tension frames
our goal of retaining FLAME’s structure-aware defenses under secrecy.

Baseline protocols encrypt individual updates and reveal only their sum. A typical example
of this group, SecAgg [5] uses masking, secret sharing, and symmetric encryption to
protect local models, while SecAgg+ attempts to further optimize the approach. e-SeaFL [3]
uses masking, homorphic commitments, and proofs to give verifiable aggregation. While
these schemes ensure confidentiality and verifiable linear aggregation, they do not support
clustering or adaptive noising, limiting their effectiveness against targeted backdoors.

Other protocols further focus on backdoor protection: RoFL [22] validates masked per-
update L, bounds via cryptographic proofs before releasing the sum. RoFL proves per-update
L, bounds under masks, aligning with clipping-based robustness; however, it does not
discriminate between benign and backdoor directions. Reactive rollback (e.g. FedRecover
[8]) confirms that norm clipping alone is insufficient against adaptive or irreversible attacks;
robustness remains magnitude-centric. FedRecover illustrates that rollback can mitigate
damage post hoc but assumes detectability and incurs retraining costs; it does not prevent
backdoor insertion in the first place.

More recent approaches aim to mitigate backdoors while also incorporating privacy pro-
tection using MPC and TEEs. Some MPC examples among them are: MUDGUARD [34],
FLock [11], and AlphaFL [17]. MUDGUARD [34] privately executes DBSCAN-like cluster-
ing to eliminate anomalous groups, but its distance-heavy pipelines dominate the cost in
MPC. FLock [11] uses secret sharing with Hamming-distance aggregation to resist outliers,
targeting discrete feature spaces rather than dense neural updates. AlphaFL [17] enforces
adaptive Ly /L checks in a two-server model, improving robustness under secrecy, yet it
still relies on norm-thresholding rather than cluster-structure-aware defenses like FLAME.
MPC-based systems such as MUDGUARD, FLock, and AlphaFL demonstrate feasibility of
private robustness checks, yet they either target different distance metrics/spaces or forego
cluster-density-driven noising central to FLAME. TEE-assissted systems like SRFL [10] and
FLAIRS [21] enable richer inspection with near-plaintext runtime but reintroduce the single
privileged trust base and thus potential exposure.



2. Related Work

Our work complements these lines by bringing FLAME’s cluster-driven clipping and min-
imal effective noising into an MPC setting, preserving update confidentiality while still
performing the necessary structure-aware operations. We quantify the MPC cost of pairwise
similarities and show that clipping and calibrated noising are comparatively lightweight,
providing a path to malicious-secure, backdoor-resilient FL.



3. FLAME Protocol Analysis

3.1. Protocol Architecture and Threat Model

System Model. Federated Learning proceeds in rounds (iterations) t = 1,...,T over n
clients and a central aggregating entity to construct a global model G. Following common
practice in FL-related papers, Nguyen et al. represent Neural Networks (NNs) using their
weight vectors, in which the order of weights is identically done by flattening the weight
matrices in a predefined order. Let G; € R? denote the global model after round t (with G
being the initial model). In each round ¢, the aggregator selects a subset of participating
clients (for simplicity, we assume all n participate). A training iteration t € 1,...,T consists
of each client i € 1,...,n locally training a local model W; with p parameters wl.l, .. .,wf
based on the previous global model G;_; and on a local data set D;. The local models

Wy, ..., W, are then aggregated by the aggregator into a new global model G;.

Although the effectiveness of FLAME is originally evaluated using several aggregation
mechanisms [4, 36, 25], the general focus of Nguyen et al [26]. is on Federated Averaging
(FedAvg) [23] due to its common application in Federated Learning. In this aggregation
mechanism, the global model is the average of the client models, received using the following
formula: G, = ). si X Wj/s, where s; = ||D;|| and s = }I_; s;. However, since these
aggregation rules do not consider the sizes of client training sets by design, Nguyen et al.
employ equal weights (s; = 1/n) for the contributions of all clients, resulting in the global
model G; = ), Wi/n.

FLAME interposes three transformation layers before finalizing G;, which are visualized by
Figure 3.1:

1. Dynamic Clustering (Filtering): removes high-impact anomalous updates with a large
angular deviation. Only the largest density cluster is retained; outliers are removed.

2. Adaptive Clipping: any admitted update exceeding the median L2 distance S; to G;_4
is proportionally scaled back toward G;_;, equalizing magnitude influence without
over-shrinking benign updates.

3. Adaptive Gaussian Noising: injects calibrated Gaussian noise N (0, (AS;)?) into the
post-clipping aggregate to diffuse any residual backdoor signal while preserving model
correctness; A is derived from predetermined parameters (¢, §); € denotes the privacy
bound and §- the probability of breaking this bound, so smaller values indicate better
privacy [15].



3. FLAME Protocol Analysis

[Global Model G;"_J

T R

Client 1 e Client i e Client n

Wi W; Wh
Y

Dynamic Clustering

Wpys oo s W

L

Y
Adaptive Clipping

Gy

Y
Adaptive Noising

l

[Aggregated Global Model G;‘j

Figure 3.1.: Illustration of FLAME’s workflow in round ¢.

Backdoor Attacks. In the considered setting, an adversary may corrupt a subset of clients
so that the updated models submitted bias the new global model G towards the attacker-
chosen behavior on a small set of input patterns defined by the attacker. There can be
distinguished two complementary ways the attacker can construct the poisoned local models
W/ (red) from benign ones W; (blue), as can be seen in figure 3.2:

» Data Poisoning: A Compromised client alters its local data set before training the
local model. Following the previous notation D; for the data set D of client i, let D" be
the portion of the data set modified by label flipping (replacing the original labels with
attacker-chosen ones) or by adding triggers to data samples (e.g., a specific pattern
added to images). The effective poisoned training set is then denoted as D] = D; U Diﬂ.

Nguyen et al. further denote the fraction of injected data D;ﬂ in the overall data set
A
D of the client i as Poisoned Data Rate (PDR), that is, PDR; = %

« Model Poisoning: Instead of changing the data set, the attacker perturbs the opti-
mization trajectory or directly changes the post-training weights of the clients before
submission, however this attack technique requires that the attacker can fully control
a number of clients. Typical model poisoning methods include:

— Scaling: Multiply the update (W; —G;_;) by a factor to either magnify its influence
(e.g., model-replacement attack [1]) or shrink it to avoid deviation-based filtering.



3.1. Protocol Architecture and Threat Model

— Constrained Optimization- Constraining the model training so that the malicious
models do not deviate too much from the original global model.

Adversary Model. Nguyen et al. intentionally make no assumptions about the behavior
n

of the adversary- they assume the adversary A fully controls k < 7, denoting the frac-
tion of compromised clients as Poisoned Model Rate PMR = % This means that for each
compromised client i € K (K being the set of compromised clients), A can alter data, train-
ing dynamics, and/or the reported model and can coordinate across its controlled clients.
Additionally, A has complete knowledge of the aggregator’s operations and defenses, but
cannot tamper with benign clients or the honest aggregator’s internal process (integrity)

and cannot subvert cryptographic channels.

Formally, let I denote the so-called trigger set and x € I# the attacker-chosen inputs
for which the attacker-chosen predictions should be output. Nguyen et al. identify the
following two objectives of the adversary:

+ Impact: Maximize the probability that all trigger inputs x € I4 are assigned to the
target outputs f(G’,x) = ¢’ # f(G, x).

« Stealthiness: Keep poisoned updates hard to detect between the benign ones so that
they are not flagged as outliers and not disproportionately clipped, i.e.:

¢ # f(G,x), Vxelg

(3.1)
f(G,c), Vx ¢ I4

f(Gx) = {

Furthermore, to make poisoned models more indistinguishable, Nguyen et al. enforce
that, for some (defense-dependent) detectability threshold 1 and suitable distance
function dist(-, ), each crafted update aims to satisfy dist(W;, W;) < 5, while still
embedding the trigger mapping.

Attack Surface on Parameter Space. Considering Neural Networks (NNs) are represented
using their weight vectors, benign and compromised models can be classified using the
direction (angle) and magnitude (length) of their weight vectors (w}, .. .,wf’ ). Therefore,
the adversary can shape each backdoored local model W’ via two controllable geometric
aspects relative to the benign update distribution and / or previous global model G;_;:

« Directional (angular) deviation measured via the cosine distance between W; and W;

(W)):
Wi, St WiW)

N AT 2

A e w2 [Bp (w2

+ Magnitude deviation measured via Euclidean distances (W] and W;):

P
eij = Wi = Wjll = y| D (wk = wh)? (33)
k=1



3. FLAME Protocol Analysis

Figure 3.2.: FLAME high level idea.

3.2. Core Components

The three main components of FLAME (filtering, clipping, and noising) are executed se-
quentially each round before publishing the new global model G, following the pipeline
given by Nguyen et al. (Algorithm 1). Conceptually, each of these components narrows the
attack surface available to poisoned updates.

Dynamic Clustering. Having received the set of submitted client models {W}! | at round ¢,
the aggregator first examines how these updates are oriented relative to each other. Instead
of relying on raw Euclidean distances, which can be manipulated by the adversary using
simple scaling, the comparison is realized using cosine distances c;; (3.2) for every pair of
updates, which form a symmetrical distance matrix that serves as input to a density-based
clustering algorithm.

To dynamically adapt to client updates and to avoid pre-specifying the number of clusters,
FLAME employs HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise) [6]. In brief, HDBSCAN aims to group data points (models) that are located
near each other into a cluster. Compared to its predecessor DBSCAN [15], which uses static
parameters, HDBSCAN dynamically determines the maximal distance between points in a
cluster based on the density of points, resulting in a dynamic number of clusters. Crucially,
it also labels isolated points that do not belong to any sufficiently dense region as outliers

[6].

10



3.2. Core Components

Algorithm 1 FLAME
Require: n,G,, T > n is the number of clients, Gy is the initial global model, T is the
number of training iterations
Ensure: Final global model G},
1: for each training iteration ¢ in [1,T] do

2: for each client i in [1,n] do
3: W; < CLIENTUPDATE(G;_,) > The aggregator sends G;_, to Client i who
trains G;_, using its data D; locally to achieve local modal W; and sends W; back to the
aggregator.
4: end for
5: (115 .- Cnn) < COSINEDISTANCE(W, ..., W) > Vi, j € (1,...,n),cj is the cosine
distance between W; and W,
6: (b1, ...,br) « CLUSTERING(C11, ..., Cnp) > L is the number of admitted models, b; is
the index of the ['" model
7: (e1, ..., en) < EUCLIDEANDISTANCES(G]_;, (W1, .., W,)) > ¢; is the Euclidean
distance between G;_, and W;
Sy < MEDIAN(ey, ..., €y) > S; is the adaptive clipping bound at round ¢
: for each client [ in [1,L] do
10: Wbc, — Gi—1 + (Wp, = Gi—1) - MIN(1,y) » Where y (= S;/ep,) is the clipping

parameter, Wbc, is the admitted model after clipped by the adaptive clipping bound S;
11: end for
12: Gy «— Zlel Wbc, /L > Aggregating, G; is the plain global model before adding noise

13: o« A-S; where A = % - 4/21n % > Adaptive noising level
14: G « G;+N(0,0?) > Adaptive noising
15: end for

Nguyen et al. configure the minimum allowed cluster size to |n/2] + 1 so that, under
the standing assumption, that compromised clients are less than half (PMR < 1/2), the
resulting cluster should contain the majority of updates, which FLAME assumes to be
benign. Let B; denote the index set of the unique largest retained cluster; all models with
index b; ¢ B; are discarded. The clustering does not aim to eliminate every poisoned update
or necessarily only poisoned updates, but to remove those updates with anomalous angular
displacement, which could give them disproportionate steering power. Stealthy poisoned
updates that remain must, by construction, mimic benign directions and therefore sacrifice
strong targeted influence. The dynamic clustering step is shown in lines 5-6 of Algorithm 1
where (b1, ..., br) are the cluster indices of all models after clustering, as well as in figure
3.2, where W[ and W; are labeled as outliers (orange) because they are not in the main
vector cluster.

Adaptive Clipping. After the filtering, the aggregator computes the Euclidean distances
e; = ||W; — Gs—1||2 (3.3) for all submitted models i = 1,..., n, not only the filtered ones. The
clipping bound S; is defined as the median of all Euclidean distances e, . .., e,. This ensures
robustness: with fewer than half of the clients compromised, S; remains anchored to benign
scale even if several large-magnitude adversarial updates were included or some benign

11



3. FLAME Protocol Analysis

updates were filtered. Furthermore, Nguyen et al. recognize that as training progresses,
benign updates naturally contract, so they design S; to automatically adapt, tightening
leverage bounds without manual retuning.

The admitted update Wy, (b; € B;) is then scaled toward G;_; by a factor of y; = min(1, Se—z)
if its deviation exceeds S;, which caps the per-update leverage that could arise from norm
inflation, thus balancing it out, while keeping directional information. The adaptive clipping
step is shown in lines 7-11 of Algorithm 1 where {Wbcl }b,e8, are the models admitted after
being clipped, and is also depicted in figure 3.2 with purple, where W, and W; are clipped to
the median or in this case W) even though its marked as an outlier by the clustering step.

Adaptive Gaussian Noising. Even a set of stealthily poisoned clients can embed a low-
magnitude, directionally aligned residual backdoor signal within the benign norm, bypassing
the first two stages. To prevent this, Nguyen et al. recognize noising as a practical way to
mitigate outlier samples, although the noise has to strike a balance between eliminating
backdoors and not deteriorating the benign performance of the model. After aggregating
the global model, FLAME injects Gaussian noise scaled to the current benign radius S;.

Given the parameters (¢, §), FLAME computes A = %, [2 ln(%) and 0; = A - S;. The new
global model published is then G} = G; + N (0, 62I).

Because any surviving adversarial displacement has been forced within radius S;, scaling the
noise proportionally ensures (with a high probability governed by (¢, §)) that the stochastic
perturbation dominates the residual malicious component while still preserving task utility

as S; shrinks across rounds. The last steps described correspond to lines 12-14 of Algorithm
1.

12



4. MPC implementation of FLAME

Despite FLAME's strong resilience to backdoors, baseline FLAME still operates in a semi-
honest transparency model that leaves residual privacy gaps: namely the presumed plaintext
exposure of all admitted client updates to the single aggregation authority, which becomes
a single trust point of failure. FLAME is designed for backdoor neutralization, not for
cryptographic secrecy, which enables powerful server-sided data inference attacks (member-
ship inference attacks[24], property inference attacks[24], distribution inference attacks[26])
because, although the global update anonymizes the individual contributions, the whole
protocol is computed directly on raw weight vectors and can link information to the local
models [26]. This motivates the replacement of the "trusted-but-curious" central aggregator
with a secure Multi-Party Computation realization.

4.1. MPC Architecture

This section will go over the concept of MPC and some of its important features, then over
MP-SPDZ [20] and the SPDZ,« protocol- the MPC framework and protocol this work uses
for the implementation and benchmarking of the FLAME protocol in MPC.

MPC Concept. As mentioned in the beginning of this chapter, sensitive information can
be derived from the analysis of raw data. That is why Secure Multi-Party Computation
(MPC) has gathered significant interest as a solution to data privacy concerns [39]. MPC
allows multiple parties Py, ..., P,, each party having a single input x;, to jointly compute a
function (y,...,yn) < f(x1,...,x,) and obtain an output y;, meanwhile learning nothing
except for (x;,y;, f) [16, 39, 12]. Typical security requirements that a correct functioning
MPC framework should ensure are the following [39, 16]:

« Privacy: The protocol should reveal nothing except the output.

« Correctness: Operations computed inside the protocol should output the same result
as the same operations computed in plaintext.

« Fairness: If one party receives output then all parties should receive output.
+ Guarantee of Output: All parties should always receive output.

+ Independence of Input: The input of a corrupted party should be independent of the
inputs of honest parties.

13



4. MPC implementation of FLAME

« Probability to Catch Deviation: Honest parties should have a probability to catch any
violations of the protocol.

In MPC are usually considered two main types of adversaries. The first type are semi-honest
adversaries (passive), which follow the protocol but try to infer private information. The
second type are malicious adversaries (active)- they use any attack strategy in order to
break the protocol. MPC protocols can be further categorized depending on the number of
compromised parties: dishonest majority (PMR > %) and honest majority (PMR < %)

MP-SPDZ Framework. The current work will be using MP-SPDZ [20]- a state-of-the-art
MPC framework developed by Marcel Keller. MP-SPDZ has over 30 MPC protocol variants,
which can be used with its Python-based high-level programming interface, simplifying the
comparison of different protocols and security models. These 30 protocol variants cover the
possible combinations of adversary types (malicious and semi-honest) and compromised
party ratios (dishonest and honest majority), as well as different underlying primitives (secret
sharing, oblivious transfer, homomorphic encryption, and garbled circuits). Furthermore,
MP-SPDZ supports rich math and real machine learning out of the box, with frequently
maintained code and documentation. Keller also reports that the variety of options does
not hinder the performance of the framework, which is competitive to or faster than other
state-of-the-art frameworks under the same conditions.

Secret Sharing Strategy and SPDZ,.. The key challenge in MPC is to handle dishonest
majority scenarios (PMR > %) A core building block for solving this problem is additive
secret sharing: to share a secret value x, it is split as x = ), ; x; where party i holds the
share x; [16]. Compromised parties can, however, lie about their shares. To obtain active
security over fields, Message Authentication Codes (MAC) appear: for each shared value x,
a secret key « is also generated, to maintain a MAC m = ax. The adversary knows x but
not a or ax. Therefore, any attempt to forge a share x requires guessing a x” = x for which
m = ax’ holds, which has a probability of 1/|F| [13, 12]. This is naturally homomorphic,
so adding shared values requires only local computation, which is very cheap in MPC
environment and heavily utilized by the SPDZ protcol.

The SPDZ protocol [13] revolutionizes dishonest majority MPC by introducing a prepro-
cessing model consisting of two phases:

1. Offline Phase: Clients generate random multiplication triples (a, b, ¢) with a = bc and
input masks with MACs.

2. Online phase: Preprocessed material is used to efficiently compute any arithmetic
circuit.

The key insight is that expensive operations happen offline, while the online phase uses
only cheap information-theoretic techniques.

Although SPDZ works well over finite fields I, many applications naturally use integers
modulo 2F rather than prime fields, and SPDZ does not work anymore over rings Z... The
security proof is based on the fact that any non-zero value in a field F is invertible, and
by replacing the field by a ring Z,«, an adversary can choose x’" = x + 25! and cheat with
probability 1/2 since 2571 -2 =0 mod 2 [12].

14



4.2. Bounded Noise Generation for MPC Differential Privacy

SPDZ,« [12] presents an elegant solution to this problem by making the ring larger, so
that MACs maintain entropy. The value x is represented as x” € Z,s with x’ = x mod 2F
where s is the statistical security parameter (e.g. 64). The MAC is represented as m = ax
mod 2** with the key a € Zys. Only the least significant k bits are relevant for the acutal
computation, but since the ring is larger, an adversary, who wants to introduce error into x,
will also need to guess @ mod 2°, which has only 27° success probability. In comparison
to SPDZ, SPDZ, natively supports 2% arithmetic that CPUs use, making it very suitable
for the implementation of FLAME in MP-SPDZ, at the cost of roughly twice as much
communication overhead.

4.2. Bounded Noise Generation for MPC Differential Privacy

Most textbook differential privacy (DP) mechanisms assume draws from continuous, un-
bounded distributions (Laplace or Gaussian) in real arithmetic and analyze privacy in
(¢,6)-DP through sensitivity scaling and composition [7, 19]. In contrast, our MPC im-
plementation operates in finite-precision arithmetic over rings, where unbounded reals
are not representable and naive floating-point sampling can violate DP due to precision
artifacts [19]. This creates a gap in our current work: how do we realize DP-style noise in
an MPC-setting without relying on continuous distributions with infinite precision, and
without opening vulnerabilities due to truncation or floating-point quirks.

We propose a bounded-noise mechanism tailored to MP-SPDZ in SPDZ,« 64-bit ring. The
mechanism is integer-native, avoids floating-point arithmetic, and cooperates well with
secret-sharing. It consists of three steps:

1. Bounded symmetric integer sampling: we generate (32 + log(n_clients))-bit uniform
integers and sign-extend them to 64 bits in two’s complement to embed them into the
SPDZ« ring;

2. Discrete Irwin—Hall composition (“12-trick”): we then approximate the zero-mean
Gaussian noise by summing 12 independent bounded uniforms and centering their
sum;

3. Per-coordinate addition: finally, a random noise sample scaled dynamically according
to the FLAME protocol (1) is added to each parameter of the aggregated client updates,
which in total requires n_inputs x 12 random draws of (32 + log(n_clients)) bits each.

This produces bounded, symmetric, integer noise with controllable variance that is amenable
to MPC. We design this mechanism to approximate DP properties, drawing inspiration
from discrete-Gaussian insights and concentrated/approximate DP conversions from the
provided literature, though formal DP analysis is left for future work.

Bounded symmetric integer sampling in a ring. In our implementation, the clients
share their parameters as 32-bit integers, thus each entry of the final aggregated result be-
fore clipping lies within [_232+10g(n_clients), 232+10g(n_clients)] or is bounded by 232+10g(n_clients).

15



4. MPC implementation of FLAME

Therefore, we choose the size of the random integers for noising to be (32 + log(n_clients))-
bits. Since the number of the clients in our test cases is not bigger than 2°, then a sum of
12 such integers would never wrap around the 64-bit ring in SPDZ,r. We interpret these
integers as signed (32 + log(n_clients))-bit two’s complement integers and sign-extend
them to 64 bits by copying the MSB into the higher bits. This standard sign extension
preserves the integer value in Z, and the resulting 64-bit value is represented in the SPDZ2k
ring.

Irwin-Hall distribution. The Irwin-Hall distribution is the sum of n independent and
identically distributed (i.i.d.) random variables Uy ~ U(0, 1):

X = Z Uy (4.1)
k=1

By the central limit theorem, as the number of samples n increases, then X approximates a
normal distribution with mean p = 5 and variance ol = 15- Then the distribution can be
centered by shifting it by its mean and scaling the result by the square root of its variance,
in order to approximate the standard normal distribution ¢(x) = N (i = 0,0 = 1):

(x) "%’ \/ng (x\/; + g; ) (4.2)

This leads to a computationally efficient MPC heuristic that removes the square root, when
we use 12 uniform numbers U ~ U(0, 1):

12
ZUk—6 ~ fi(x +6;12) ~ $(x) (4.3)
k=1

Bounded differential privacy analysis. In our implementation, model parameters and
noisy results are confined to a fixed bounded numeric domain by construction: values are
represented in 64-bit integers, while inputs are at most 32-bit signed, and we bound the
added noise so that the final 64-bit representation always safely contains the result (effective
bound ~ 32 + log(n_clients) bits, even tighter for inputs). The per-parameter perturbation
we apply is symmetric around the current value C, (zero-mean, CLT-based), hence the
noisy result has expectation of exactly C,,. This directly satisfies the unbiasedness criterion
in Zhang et al’s Composite Differential Privacy framework [37], where the perturbation
function must be symmetric with respect to C,, and yield E[x] = C, on a bounded domain.

To approximate the bounded e-DP approach from Zhang et al., we align our mechanism with
their bounded-case construction in a compact domain L. Concretely, we operate directly on
our bounded integer interval (no explicit remapping is needed since our 64-bit domain is
already bounded); our perturbation is symmetric and bounded; and we can easily introduce
an arbitrarily small uniform base floor y over L (a tiny mixture weight) so that the composite
density has a strictly positive infimum and a finite maximum y + k. By choosing y and k to
satisfy (y+k)/y < €, our perturbation becomes an instance of their A1B1 case, meeting the
Section 3.2 criteria: bounded support, symmetry/unbiasedness around C,, and a pointwise

16



4.3. FLAME Implementation in MP-SPDZ

density-ratio bound. Therefore, our noisy result follows the structure of their Composite
DP mechanism and is designed to provide similar privacy properties while preserving
our existing symmetry and boundedness properties, though formal DP verification would
require additional analysis.

4.3. FLAME Implementation in MP-SPDZ

The protocol is based on the "banker’s bonus" example provided by MP-SPDZ and is
implemented as a fork of the AlphaFL repository [17], which itself is a fork of the MP-SPDZ
repository [20]. The workflow of the described implementation is visualized by Figure
4.1. Firstly, the needed components are generated via a setup script, which also creates
the certificates needed for MPC communication, as well as preprocessing materials. The
protocol is then launched from a shell script that prepares the environment and runs the
desired FLAME variant with the MPC parties MP-SPDZ provides, similar to the way AlphaFL
is run. The same script is used to benchmark the input commitment separately, which is
inherited from AlphaFL.

In the input-commitment, each client is passed its own unique client_id (i € {0,...,n —1}),
the number of aggregating parties n_parties, the number of inputs n_inputs. The clients also
have the parameters n_bits and a finish bit corresponding to if the client is the last. After
that, each client proceeds to connect to all MPC parties, while the MPC parties iteratively
wait for all clients to connect. The clients then proceed to send model update shares of size
n_inputs = n_bits to each aggregating party bitwise. Lastly, all client sockets are closed, and
the protocol terminates

In the second part of the protocol, parties inherit the bitwise-to-arithmetic (B2A) protocol
from AlphaFL to reconstruct the arithmetic shares of all client inputs. After collecting all
client updates, the aggregators compute pairwise Euclidean (L2) distances to the (implicit
zero) global update 3.3 and pairwise cosine distances between all client vectors 3.2. The
clustering step follows FLAME'’s first core component, but uses a DBSCAN approximation
of HDBSCAN for benchmarking purposes: The minimum cluster size MIN_PTS is fixed to
n/2+1, allowing at most one admissible dense cluster. Updates in that cluster are labeled with
1, while all others are treated as outliers and labeled with 0. Since the DBSCAN algorithm
is one of the runtime heavier components of the protocol, it is computed non-privately
in the leaky-MPC implementation of FLAME for comparison, revealing the intermediate
cosine distances of the client updates, and privately in the full-MPC implementation. The
clipping bound S; is also computed differently in both versions of the algorithm. Leaky
FLAME computes the median non-privately by revealing client L, norms and sorting them
using bubble sort in O(nlog(n)). Private FLAME computes the median by using the built in
MP-SPDZ sort() function, which privately uses radix sort in O(nlog(n)) time. All updates
are then scaled by min(1, S;/||W;||) and aggregated into a single update. For noise, the code

derives A = % 4/2In % from public ¢, § and then o = AS;, which is essentially done offline.

Gaussian samples are then generated using the described "12-trick" using the Irwin-Hall
distribution independently for each dimension of the aggregated update and then scaled

17



4. MPC implementation of FLAME

[Global Model Gt_l]

Client i

: : MPC : :
Dynamic Clustering )( > Dynamic Clustering
A B
Wb Wy,
Y MPC Y
[Adaptive Clipping} < > Adaptive Clippingj
(Gn* (Gr)P
Y A

\
) MPC (
e Noising |« > Adaptive Noising

Adaptiv

[Aggregated Global Model G;‘j

Figure 4.1.: FLAME workflow with MPC using two aggregating parties.

using o, approximating the paper’s N(0, %) noise. The random numbers needed for our
approach can also be generated offline since they do not depend on client input; therefore,
we will include them in the preprocessing phase. For these numbers, we generate random
bits and again use B2A to convert them to n_bits integers.

4.4. Security and Privacy Analysis of MPC FLAME

Each of the three stages of FLAME relies only on robust, round-local statistics- pairwise
cosine geometry, the median norm, and a noise scale tied to that median- thereby avoiding
assumptions about data distributions or specific backdoor crafting strategies beyond the
necessary majority condition k < n/2. A successful targeted backdoor attack needs: (i)
angular steering; (ii) large enough magnitude; (iii) temporal persistence. FLAME’s stages
are deliberately matched to these three levers. This section first covers how the three
components constrain adversarial influence, following the structure and proof strategy
given by Nguyen et al., as well as their reported efficiency against backdoors. Then, it

18



4.4. Security and Privacy Analysis of MPC FLAME

analyzes the trade-off between security and performance, achieved by revealing the norms
and cosine similarities in the leaky-MPC implementation.

Backdoor resilience proof idea. Nguyen et al. reinterpret a sufficiently noised aggregate
as (¢ 0)-differentially private with respect to small deviations that encode a backdoor
signal. Following their approach, we design our noise mechanism to approximate similar
indistinguishability properties, aiming to prevent attackers from reliably enforcing trigger-
specific behavior without also perturbing benign behavior, thus eliminating the ’stealth’
requirement of a successful backdoor:

Definition 1 ((¢, §)-differential privacy) A randomized algorithm M is (¢, §)-differentially
private if for any datasets D1 and D, that differ on a single element, and any subset of outputs
S € Range(M), the following inequality holds:

Pr{M(D;) € 8] < ef-PrIM(D,) € S] +6

Their central backdoor elimination claim which applies to their continuous Gaussian noise
mechanism is expressed as Theorem 1:

Theorem 1 A (¢, §)-differentially private model with parameters G and clipping bound S; is
backdoor-free if random Gaussian noise is added to the model parameters yielding a noised
version G* of the model: G* « G + N(0, 0%) where the noise scale o is determined by the

clipping bound S; and a noise level factor A: 0 «— A - S; and A = % 4/2In %

While our bounded integer noise mechanism is designed to approximate these properties,
formal verification that Theorem 1 holds for our specific implementation would require
additional theoretical analysis.

The magnitude of Gaussian noise required is governed by the L,-sensitivity of the aggrega-
tion mapping, which FLAME inherits from Dwork et al. [14]:

Definition 2 (Sensitivity) Given the function f : D — R where D is the data domain
and d is the dimension of the function output, the sensitivity of the function f is defined as:

A= piax |f(D1) — f(D2)ll2

where Dy and D, differ on a single element ||D; — D,||; = 1

The second structural component of their proof points out that large angular and large
norm poisoned updates inflate the sensitivity bound A. Filtering and clipping thus reduce
the minimal noise needed:

Theorem 2 Backdoor models with large angular deviation from benign ones or with large
parameter magnitudes have high sensitivity values A.

19



4. MPC implementation of FLAME

Backdoor Elimination Effectiveness. Nguyen et al, use four metrics to measure the
effectiveness of FLAME, namely:

« Backdoor Accuracy (BA) denotes the accuracy of the model in the backdoor task.
« Main Task Accuracy (MA) indicates the accuracy of the model in the main task.

« True Positive Rate (TPR) indicates the ratio between the models correctly identified
as poisoned (True Positives - TP) and the total number of identified poisoned models:

_ _TP
TPR = 15,75

+ True Negative Rate (TNR) indicates the ratio between the models correctly identified
as benign (True Negatives - TN) and the total number of identified benign models:

_ _IN
TNR = TN+FN

Against various backdoor attacks, FLAME reportedly drives Backdoor Accuracy (BA) to less
than 5% (often 0%) while maintaining Main Task Accuracy (MA) near the benign baseline.
Furthermore, FLAME’s effectiveness is compared to other state-of-the-art defenses like
Krum [4], as well as to a simple differencial privacy approach [14] (among other defenses) on
three datasets (Reddit, CIFAR-10, IoT-Traffic) in terms of Backdoor Accuracy (BA) and Main
Task Accuracy (MA). Other defenses frequently have high Backdoor Accuracy or severely
cut Main Task Accuracy, whereas FLAME uniquely achieves BA 0% with minimal or no
MA degradation. Additionally, Nguyen et al. take into account the impact of the number
of clients and the degree of non-IID data: once attackers are the majority, the clustering
cannot effectively exclude them and the defense degrades, hence the requirement PMR < L
FLAME is effective across IID to highly non-IID, but may detect fewer poisoned models at
extreme non-IID, although adaptive noise still suppresses backdoors with a slight MA dip
at the most skewed distributions.

On the other hand, FLAME can suffer from mis-tuned (¢, §): the noise scale o = %\/2 In %

is directly tied to the median S; and (¢, ). While S; is adaptively determined from the
received updates {W;},, if ¢ and § are set too small, noise swamps the signal and the
main task accuracy (MA) drops, and a too large ¢ can leave residual backdoor influence.
In addition, once PMR > % attackers can dominate the main cluster, making the defense
all attacker-biased, thus the necessary condition PMR < % Third, FLAME treats each
round independently, so it cannot accumulate anomaly evidence across rounds to detect
multi-round poisoning. Such a lack of reputational memory may waste benign trust signals

that could further adaptively tighten clipping/noise.

Leaked Intermediate Statistics As mentioned previously, our leaky implementation
reveals the L, norms (euclidean distances in the algorithm (ey,...,e,)) of all clients, as
well as the cosine distance matrix (cy3,...,cn,) used for DBSCAN clustering. The cur-
rent section analyzes the trade-off between security and performance, comparing the two
implementations.

The client update norms contain coarse but still meaningful information about the opti-
mization state and client heterogeneity. Previous work points out that gradient magnitudes

20



4.4. Security and Privacy Analysis of MPC FLAME

shrink with training progress (near convergence) and are used by robust defense mech-
anisms as indicators for outliers and misfit behavior. In particular, FLTrust [9] combines
norm control with cosine similarity to restrict anomalous clients, implying that unusually
large or small norms are detectable by a curious server [29]. More broadly, collaborative
learning research demonstrates that even aggregate update statistics can carry unintended
information about client data distributions; adversaries have inferred properties and mem-
bership using gradients or their summaries in synchronized and federated settings [24].
Label-leakage studies further highlight that per-round update energy is coupled to batch
composition and loss landscape, contributing to attacks in early training where gradients
are larger and more informative [32]. Together, these works motivate that the client norms
correlate with the client state and enable outlier identification across rounds [24, 29, 32].

Revealing cosine similarities (cy3, ..., cp,) discloses the directional alignment between
clients and thus the heterogeneity structure. Sattler et al. [31] show, that clients drawn from
congruent distributions exhibit aligned gradients, whereas incongruent groups anti-align,
making cosine similarity a sufficient statistic to recover clusters without modifying the
FL protocol. Defense mechanisms adopt the same premise. From a privacy perspective,
collaborative-learning leakage occurs because models form separate internal representations
for features unrelated to the main task; directional signals provide a handle to separate
participants whose data shares such properties [24]. Empirical label-leakage results also
show that early-round gradients are particularly revealing, making pairwise alignment
over those rounds especially informative about label or class composition, even if exact
coordinates are hidden [32].

Providing both norms and cosine distances enables reconstruction of the Gram matrix K;; =
llgillllg;llcij, where ||g;;|| is the norm of client i. This matrix determines all pairwise Euclidean
distances (3.3) and enables recovery of the centered update matrix via eigen-decomposition,
which reveals clustering, outlier and principal directions. Exposing these values reduces
the MPC cost, allowing cheaper sorting and clustering, but leaks client-level structural
information that supports property inference and adaptive attacks. Because the leaky
implementation reveals useful geometry, exposing norms and the cosine matrix enlarges the
attack surface in concrete ways: a curious or malicious aggregator can correlate per-round
norms and alignments across time to profile clients, infer heterogeneous subgroups, and
adapt backdoor attempts toward specific directions. Moreover, if we consider server-client
collusion, then revealing C;; directly links client j’s direction to the corrupted client i’s
known update, enabling stronger property inference or targeted poisoning attacks against
j. To address this, our design provides two modes and a privacy-efficiency trade-off may be
made: private FLAME keeps both norms and pairwise similarities secret and is preferable
under strict confidentiality or potential server—client collusion; and leaky FLAME reveals
these intermediate statistics to reduce cost, which is acceptable only when the deployment
allows such leakage and does not consider server—client collusion in its threat model. In the
remainder, we adopt the non-collusion setting for leaky-MPC results and emphasize that
deployments requiring stronger guarantees should use the full-MPC version.

21






5. Evaluation

In this chapter, we benchmark the communicational and computational overhead of MPC
FLAME, but not its robustness against poisoning attacks, as it is already evaluated in the
original FLAME paper [26]. The focus of this thesis is on input recosntruction and secure
aggregation; therefore, local training and preprocessing are omitted. The code of this work
is open-source and can be found at https://github.com/yo-yordanov/AlphaFL-FLAME.

5.1. Experimental Setup

The experiments are designed to quantify how the number of federated clients and the
model parameter size influence the computational and communication runtime of both the
full and the leaky MPC FLAME implementation. Therefore, this work varies two primary
independent variables:

« The number of clients: {10, 20, 30, 40, 50}
« The number of parameters: {100 000, 300 000}

Not all combinations between clients and parameters have been tested, because of insuffi-
cient processing power- for 100 000 parameters all combinations have been benchmarked,
but for 300 000 parameters only the 10-clients benchmark was computed successfully. We
also include benchmarks for two micro-configurations with 4 clients and 62,006 and 274,442
parameters, respectively, used for direct comparison against AlphaFL.

All tests are carried out for malicious security under SPDZ.«(k = 64, s = 64) [12].

Furthermore, we use Linux traffic control (tc) to limit traffic with a round-trip latency of
1 ms (= 0,5 ms one-way delay) and a bandwidth cap of 10Gbps. This controlled setting
removes network variability while still imposing latency that affects round-heavy MPC
protocols.

All tests are conducted on a single workstation with the following specifications:
+ Model: Lenovo Legion Slim 5 16 ARP9
« CPU: AMD Ryzen 7 7435HS (8 physical cores, 16 logical threads, base 3.10GHz)
« Memory: 32 GB DDR5 (4800MT/s, CL40)
« Storage: WD PC SN740 (NVMe SSD, 512 GB)

23


https://github.com/yo-yordanov/AlphaFL-FLAME

5. Evaluation

« Operating System: Ubuntu 24.04.3 LTS (Noble Numbat)

5.2. Performance Evaluation

This section contains and briefly describes the main results of this work. Tables 5.1 and
5.2 display the total and online runtimes and data sent of both leaky and private FLAME
implementations, including the same values for the state-of-the-art AlphaFL [17] imple-
mentation, run on the same machine for comparison. Afterwards, we have summarized
the same results per component in five more tables, table 5.3 describes the costs of input
reconstruction and noise generation, tables 5.4 and 5.5 representing the component-wise
runtimes of the two approaches, and 5.6 and 5.7- the component-wise data sent.

Across total and online runtimes, leaky and private FLAME track each other closely and
are only moderately above Alpha-SA at small scales (with less than 35% overhead); the
gap widens heavily as either clients or inputs grow. This similarity in smaller cases is
expected because several components are the same or equally cheap in both variants: input
commitment, aggregation, and L2 norms are inherited from the AlphaFL repository; noising
is implemented with inexpensive MPC-friendly operations so it doesn’t impact performance
hard. That’s also why the per-component runtimes show clipping and noising as consistently
small compared to clustering.

Where AlphaFL and MPC-FLAME diverge is the clustering: computing pairwise cosine
similarities dominates with it’s O(n%k) cost, where n is the number of clients and k is
the number of inputs. This cost drives both the runtime overhead and the data volume,
and it scales quadratically with n while growing linearly with k. This can be clearly
distinguished in the per-component breakdowns: clustering time grows from sub-second
in small configurations to tens of seconds in 30-50 clients, resulting in more than 75% of
the runtime; and the “Clustering” data sent column explodes into the multi-gigabyte range,
totaling more than 95% of the data sent. This effect is similar for both leaky and private
modes because both must essentially process the same cosine geometry; any savings from
revealing statistics are dwarfed by the quadratic pairwise computation itself.

Table 5.1.: Runtime comparison (seconds)

Clients Inputs AlphaFL Total Leaky Online Leaky Total Private Online Private

4 62006 0.58 2.30 0.77 2.51 0.98

4 274442 3.62 14.25 4.25 14.70 4.68
10 100 000 2.24 6.00 3.53 6.40 3.93
10 300000 6.66 18.52 11.22 19.36 12.07
20 100000 4.40 12.89 10.34 13.94 11.41
30 100000 6.58 23.37 20.83 24.25 21.73
40 100 000 8.76 36.08 33.48 38.71 36.14
50 100000 5.81 53.10 50.49 55.01 52.45

24



5.2. Performance Evaluation

Table 5.2.: Data sent comparison (MB)

Clients Inputs AlphaFL Total Leaky Online Leaky Total Private Online Private

4 62006 9.93 41.11 37.71 51.38 47.98

4 274442 43.92 181.72 166.87 225.98 211.13
10 100 000 37.64 347.11 341.64 384.95 379.48
10 300000 112.92 1041.30 1024.93 1149.54 1133.17
20 100 000 73.68 1327.31 1321.70 1401.20 1395.59
30 100 000 109.72 2947.37 2941.76 3054.01 3048.40
40 100 000 145.76 5207.58 5201.82 5355.38 5349.62
50 100 000 181.80 8107.65 8101.89 8288.51 8282.75

Input reconstruction and preprocessing are common to both variants; we therefore do
not compare them across modes. Both scale approximately linearly with model size and
client count, and the input commitment matches AlphaFL exactly. Per every 10 clients at
100k inputs, input time increases by about 1.7 s with an additional 4.04 MB transmitted.
Preprocessing (random-noise generation) is dominated by input dimensionality. A minor
increase with more clients stems from the bounded-noise parameterization, which adapts
to the value range and to log-scaled client counts- specifically, input size plus 4 bits for 10
clients, 5 bits for 20-30 clients, and 6 bits for 40-50 clients.

Table 5.3.: Input and preprocessing performance

Clients Inputs Input(s) Input(MB) Preprocessing(s) Preprocessing (MB)

4 62006 0.43 1.00 1.53 3.40

4 274442 2.86 4.40 10.00 14.85
10 100 000 1.70 4.04 2.47 5.46
10 300000 5.12 12.12 7.29 16.37
20 100 000 3.38 8.08 2.55 5.61
30 100 000 5.11 12.12 2.54 5.61
40 100 000 6.75 16.15 2.60 5.76
50 100 000 8.42 20.19 2.61 5.76

Under both Private-FLAME and Leaky-FLAME, the runtime per component is shaped
almost entirely by the clustering step. The preprocessing step indicates the random noise
generation, hence its strict relation to input size, and the input phase grows roughly linearly
with inputs and clients as expected from I/O and fixed MPC setup costs. Clipping and
noising remain small and relatively flat, because both use cheap operations in MPC to scale
the updates of every client and add noise to the aggregated update, respectively. The key
difference between the two tables is that leaky clipping becomes even smaller due to the
revealed L, norms and cosine distances, but the overall profile barely changes due to the
dominant O(n%k) clustering step: it rises from sub-second with ~ 0.25s in the smallest
setting to 15-42s for 30-50 clients, directly mirroring the quadratic growth with n and linear
growth with k. In short, both variants look similar because the same expensive cosine phase
dwarfs the other phases; the leaky gains show up in a modestly lower clipping time, but
they are negligible compared to the cost of clustering.

25



5. Evaluation

Table 5.4.: Private-FLAME runtime per component (seconds)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise
4 62006 0.08 0.23 0.01 0.09 0.05 0.01 0.06

4 274442  0.26 0.82 0.01 0.09 0.24 0.06 0.29

10 100000  0.27 1.45 0.01 0.16 0.17 0.06 0.10
10 300000  0.65 5.01 0.01 0.16 0.57 0.20 0.34
20 100000  0.56 6.68 0.01 0.20 0.34 0.11 0.11
30 100000 0.84 14.80 0.02 0.20 0.50 0.15 0.11
40 100000 1.11 27.03 0.03 0.27 0.67 0.18 0.11
50 100000 1.44 41.09 0.05 0.27 0.86 0.20 0.11

Table 5.5.: Leaky-FLAME runtime per component (seconds)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise
4 62006  0.05 0.21 0.00 0.00 0.01 0.01 0.05

4 274442  0.22 0.80 0.00 0.00 0.03 0.07 0.25

10 100000  0.18 1.46 0.00 0.00 0.03 0.06 0.09
10 300000  0.57 4.92 0.00 0.00 0.09 0.21 0.29
20 100000  0.35 6.37 0.00 0.00 0.06 0.11 0.09
30 100000  0.55 14.84 0.00 0.00 0.09 0.15 0.09
40 100000  0.72 25.62 0.00 0.00 0.11 0.18 0.09
50 100000  0.96 40.71 0.00 0.00 0.13 0.21 0.09

Since we reveal the L2 norms and the cosine distance matrix, the median and scaling factors
can be computed without additional private communication, hence the leaky variant’s
component-wise “0” column for the MPC traffic in the clipping stage. However, this does
not translate into a major end-to-end reduction because the total is still dominated by the
cosine similarity stage. We must still consider that without the expensive cosine similarity
computation, revealing the intermediate L, distances and cosine similarities reduces a
noticeable chunk of the remaining MPC communication (up to around 85% of the remaining

communication).
Table 5.6.: Private-FLAME data sent per component (MB)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise
4 62006 4.08 31.76 0.00 0.21 7.94 0.00 2.98

4 274442 17.68 140.53 0.00 0.21 35.14 0.00 13.17

10 100000 16.29  320.08 0.01 2.26 32.01 0.00 4.80

10 300000 48.29  960.08 0.01 2.26 96.01 0.00 14.40
20 100000 32.57 1280.30 0.03 5.77 64.03 0.00 4.80
30 100000 48.86 2880.67 0.07 5.83 96.03 0.00 4.80
40 100000 65.15 5121.19 0.13 14.15  128.04 0.00 4.80
50 100000 81.43 8001.86 0.20 14.21 160.05 0.00 4.80

26



5.2. Performance Evaluation

Table 5.7.: Leaky-FLAME data sent per component (MB)
Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise

4 62006  3.97 31.75 0.00 0.00 0.00 0.00 0.99

4 274442 17.56  140.52 0.00 0.00 0.00 0.00 4.39
10 100000 16.00  320.00 0.00 0.00 0.00 0.00 1.60
10 300000 48.00 960.01 0.00 0.00 0.00 0.00 4.80
20 100000 32.00 1280.01 0.00 0.00 0.00 0.00 1.60
30 100000 48.00 2880.03 0.00 0.00 0.00 0.00 1.60
40 100000 64.00 5120.06 0.00 0.00 0.00 0.00 1.60
50 100000 80.00 8000.09 0.00 0.00 0.00 0.00 1.60

In summary, the common cheap pieces (commitment, aggregation, noising) explain why
FLAME-Leaky and FLAME-Private are similar in smaller test cases, while the expensive
O(n?k) cosine phase explains the large absolute differences vs. Alpha-SA.

27






6. Discussion

6.1. Performance and System

Our evaluation shows the cosine-similarity phase dominates both runtime and traffic due
to its quadratic behavior in the number of clients and linear dependence on model dimen-
sionality O(n?k), where n is the number of clients and k is the number of parameters. In
simple terms, computing all pairwise cosine similarities scales poorly when many clients
participate. Practical solutions to this could include sub-sampling client pairs to estimate
the majority direction cluster, or restricting the similarity computations to selected layers
or a low-rank representation. These ideas align with clustered FL observations that gra-
dient alignment captures client heterogeneity, suggesting lower-dimensional proxies can
retain useful structure while cutting cost [31]. On the system side, predefined batching,
vectorization and exploiting pre-processing, fixed-point quantization and overlapping com-
munication with computation could also be promising extensions to our implementation.
We also want to emphasize the network sensitivity- our fixed 10Gbps and 1ms RTT masks
WAN effects; under tens of milliseconds RTT, round-heavy MPC protocols incur additional
overhead, similar to the sensitivy noted by secure aggregation systems when interaction
rounds increase [5, 17].

In our results, both modes are close because the cosine stage dominates; revealing norms
and the cosine matrix reduces clipping costs, but those are only a small fraction of total
runtime. Leaky mode can be more viable if the cosine phase is made sub-quadratic, thus
making its savings more dominant, or in environments where revealing such intermediate
statistics is acceptable under the environments policy. In contrast, full-MPC mode better fits
regulated domains and threat models with strict confidentiality requirements. This trade-off
mirrors broader secure aggregation work where stronger adversary models entail higher
costs but are justified when servers or parties cannot be fully trusted [30].

6.2. Practical Feasibility

AlphaFL provides malicious-security secure aggregation under dishonest majority and norm-
bound checks; our work builds on that baseline to add FLAME’s structure-aware filtering,
adaptive clipping, and minimal effective noise for backdoor suppression [17, 26]. Compared
to secure aggregation frameworks such as ELSA [30] and e-SeaFL [3], our approach offers
richer robustness via clustering and adaptive noising, at the cost of the expensive cosine
phase. RoFL [22] focuses on robustness analyses and cryptographic checks around norms;

29



6. Discussion

MUDGUARD [34] privately clusters to tolerate malicious majorities, which is conceptually
aligned with our clustering-based defense but with different robustness-privacy trade-
offs and threat assumptions. TEE-assisted systems (like SRFL [10], FLAIRS [21]) achieve
lower overhead for richer inspection but shift trust to hardware and attestation; FLAIRS
further targets inference resistance and acceleration. FLAME itself has TEE-assisted variant,
indicating that heavy clustering can be offloaded to trusted hardware while keeping MPC
for malicious security [10, 21]. In practical deployment terms, our MPC-FLAME is suitable
for moderate client counts and mid-sized models on servers with low-latency networks,
offering strong confidentiality; for large-scale or WAN settings, TEE-s or hybrid designs
such as TEE for the cosine similarities step and MPC for the aggregation and evidence
may be more operationally feasible, with caveats around trust, attestation, and regulatory
acceptance [2, 38, 35].

6.3. Future Work

Two directions for future work are immediate: first, algorithmic reductions for the cosine
similarities under MPC can be tested for more stable robustness. Second, formalizing
bounded-noice privacy under finite-precision MPC, leveraging discrete Gaussian/RDP
accounting and integrating multi round differential privacy [7, 19]. Specifically, we could
not find peer-reviewed MPC implementations of FLAME: open-sourcing and evaluating
across distributed settings and WANSs, adding client churn handling and reputation actoss
rounds (like in FedRecover [8]), and exploring hybrid TEE-MPC realizations could be
promising next steps.

30



7. Conclusion

This thesis set out to reconcile two aims that often pull in opposite directions in federated
learning: preserving client confidentiality and resisting targeted backdoor attacks. While
FLAME cannot be directly transferred into an MPC setting, we showed that with some
adjustments- replacing HDBSCAN with DBSCAN approximation and introducing bounded
MPC noise calibrated to FLAME'’s adaptive scale- it is feasible to extend FLAME’s backdoor
resilience under malicious-security guarantees, keeping client updates private throughout
aggregation.

Our design preserves FLAME's structure: cosine-similarity clustering filters angular outliers,
median-based adaptive clipping caps per-update leverage, and calibrated noising suppresses
residual backdoor signal. Implemented over MP-SPDZ with SPDZ2k, the protocol runs
end-to-end under active security and dishonest majority. Empirically, the dominant cost
is pairwise cosine similarity in clustering; clipping and noising remain comparatively
lightweight. We also evaluated a leaky variant that reveals norms and pairwise cosine
similarities to accelerate median computation and clustering. Although this reduces some
MPC overhead, the quadratic cosine step still dominates, so the runtime gains are modest
and, in our view, do not justify the additional leakage of client geometry- especially in
threat models where aggregators or colluding parties are considered curious.

In practice, MPC-FLAME is viable at moderate scales and low-latency settings, delivering
confidentiality with enforced backdoor defenses. For larger federations or WAN deploy-
ments, further engineering and algorithmic refinements may be necessary- such as sub-
sampling pairs, low-rank similarity proxies, or hybrid designs that offload the cosine-heavy
phase to trusted hardware.

Overall, this work demonstrates that FLAME’s core idea can be carried into a malicious-
secure MPC setting. It meaningfully narrows the gap between privacy-preserving aggrega-
tion and backdoor resilience, providing a concrete, open-source step toward secure federated
learning.

31






Bibliography

[1]

[2]

[3]

[4]

Eugene Bagdasaryan et al. How To Backdoor Federated Learning. arXiv:1807.00459 [cs].
Aug. 2019. DOI: 10.48550/arXiv.1807.00459. URL: http://arxiv.org/abs/1807.
00459.

Sebastian Becker et al. Multi-Party Computation in Corporate Data Processing: Legal
and Technical Insights. Publication info: Preprint. 2025. URL: https://eprint.iacr.
org/2025/463.

Rouzbeh Behnia et al. Efficient Secure Aggregation for Privacy-Preserving Federated
Machine Learning. arXiv:2304.03841 [cs]. Nov. 2024. DoI: 10.48550/arXiv.2304.03841.
URL: http://arxiv.org/abs/2304.03841.

Peva Blanchard et al. “Machine learning with adversaries: byzantine tolerant gradient
descent”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017,
pp- 118—-128. 1sBN: 978-1-5108-6096-4.

Keith Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine
Learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. New York, NY, USA: Association for Computing
Machinery, Oct. 2017, pp. 1175-1191. 1SBN: 978-1-4503-4946-8. DOI: 10.1145/3133956.
3133982. URL: https://dl.acm.org/doi/10.1145/3133956.3133982.

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based Cluster-
ing Based on Hierarchical Density Estimates”. en. In: Advances in Knowledge Discovery
and Data Mining. Ed. by Jian Pei et al. Berlin, Heidelberg: Springer, 2013, pp. 160-172.
ISBN: 978-3-642-37456-2. DOI: 10.1007/978-3-642-37456-2_14.

Clément L. Canonne, Gautam Kamath, and Thomas Steinke. “The Discrete Gaussian
for Differential Privacy”. In: Journal of Privacy and Confidentiality 12.1 (July 2022).
arXiv:2004.00010 [cs]. 1ssN: 2575-8527. DOI: 10.29012/jpc.784. URL: http://arxiv.
org/abs/2004.00010.

Xiaoyu Cao et al. “FedRecover: Recovering from Poisoning Attacks in Federated
Learning using Historical Information”. In: 2023 IEEE Symposium on Security and
Privacy (SP). ISSN: 2375-1207. May 2023, pp. 1366—-1383. DOI: 10.1109/SP46215.2023.
10179336. URL: https://ieeexplore.ieee.org/abstract/document/10179336.

Xiaoyu Cao et al. FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping.
arXiv:2012.13995 [cs]. Apr. 2022. pOI: 10 . 48550 / arXiv . 2012 . 13995. URL: http:
//arxiv.org/abs/2012.13995.

33


https://doi.org/10.48550/arXiv.1807.00459
http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://eprint.iacr.org/2025/463
https://eprint.iacr.org/2025/463
https://doi.org/10.48550/arXiv.2304.03841
http://arxiv.org/abs/2304.03841
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://dl.acm.org/doi/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.29012/jpc.784
http://arxiv.org/abs/2004.00010
http://arxiv.org/abs/2004.00010
https://doi.org/10.1109/SP46215.2023.10179336
https://doi.org/10.1109/SP46215.2023.10179336
https://ieeexplore.ieee.org/abstract/document/10179336
https://doi.org/10.48550/arXiv.2012.13995
http://arxiv.org/abs/2012.13995
http://arxiv.org/abs/2012.13995

Bibliography

[10]

[14]

[15]

[16]

34

Yihao Cao et al. “SRFL: A Secure & Robust Federated Learning framework for IoT
with trusted execution environments”. In: Expert Systems with Applications 239 (Apr.
2024), p- 122410. 1ssN: 0957-4174. DoI: 10.1016/j .eswa.2023.122410. URL: https:
//www.sciencedirect.com/science/article/pii/S0957417423029123.

Ruonan Chen et al. “FLock: Robust and Privacy-Preserving Federated Learning based
on Practical Blockchain State Channels”. In: Proceedings of the ACM on Web Conference
2025. WWW °25. New York, NY, USA: Association for Computing Machinery, Apr.
2025, pp. 884-895. 1SBN: 979-8-4007-1274-6. DOI: 10 .1145/3696410 . 3714666. URL:
https://dl.acm.org/doi/10.1145/3696410.3714666.

Ronald Cramer et al. SPDZ2k: Efficient MPC mod 2"k for Dishonest Majority. Publication
info: A minor revision of an IACR publication in CRYPTO 2018. 2018. URL: https:
//eprint.iacr.org/2018/482.

Ivan Damgard et al. “Practical Covertly Secure MPC for Dishonest Majority — Or:
Breaking the SPDZ Limits”. en. In: Computer Security — ESORICS 2013. Ed. by David
Hutchison et al. Vol. 8134. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1-18. 1SBN: 978-3-642-40202-9 978-
3-642-40203-6. DO1: 10.1007/978-3-642-40203-6_1. URL: http://link.springer.
com/10.1007/978-3-642-40203-6_1.

Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Pri-
vacy”. English. In: Foundations and Trends® in Theoretical Computer Science 9.3—-4 (Aug.
2014). Publisher: Now Publishers, Inc., pp. 211-407. 1ssN: 1551-305X, 1551-3068. DOI:
10.1561/0400000042. URL: https://www.nowpublishers.com/article/Details/TCS-
042.

Martin Ester et al. “A density-based algorithm for discovering clusters in large spa-
tial databases with noise”. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI Press, Aug.
1996, pp. 226-231.

Dengguo Feng and Kang Yang. “Concretely efficient secure multi-party computation
protocols: survey and more”. en. In: Security and Safety 1 (2022), p. 2021001. 1SSN:
2826-1275. DOI: 10.1051/sands/2021001. URL: https://sands.edpsciences.org/10.
1051/sands/2021001.

Yufan Jiang et al. AlphaFL: Secure Aggregation with Malicious$"2$ Security for Federated
Learning against Dishonest Majority. Publication info: Published elsewhere. Minor
revision. PETS 2025. 2025. URL: https://eprint.iacr.org/2025/1289.

Peter Kairouz et al. Advances and Open Problems in Federated Learning. arXiv:1912.04977
[cs]. Mar. 2021. DOI: 10.48550/arXiv.1912.04977. URL: http://arxiv.org/abs/1912.
04977.

Hannah Keller et al. “Secure Noise Sampling for DP in MPC with Finite Precision”.
en. In: Proceedings of the 19th International Conference on Availability, Reliability and
Security. Vienna Austria: ACM, July 2024, pp. 1-12. 1SBN: 979-8-4007-1718-5. DOTI: 10.
1145/3664476.3664490. URL: https://dl.acm.org/doi/10.1145/3664476.3664490.


https://doi.org/10.1016/j.eswa.2023.122410
https://www.sciencedirect.com/science/article/pii/S0957417423029123
https://www.sciencedirect.com/science/article/pii/S0957417423029123
https://doi.org/10.1145/3696410.3714666
https://dl.acm.org/doi/10.1145/3696410.3714666
https://eprint.iacr.org/2018/482
https://eprint.iacr.org/2018/482
https://doi.org/10.1007/978-3-642-40203-6_1
http://link.springer.com/10.1007/978-3-642-40203-6_1
http://link.springer.com/10.1007/978-3-642-40203-6_1
https://doi.org/10.1561/0400000042
https://www.nowpublishers.com/article/Details/TCS-042
https://www.nowpublishers.com/article/Details/TCS-042
https://doi.org/10.1051/sands/2021001
https://sands.edpsciences.org/10.1051/sands/2021001
https://sands.edpsciences.org/10.1051/sands/2021001
https://eprint.iacr.org/2025/1289
https://doi.org/10.48550/arXiv.1912.04977
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1145/3664476.3664490
https://doi.org/10.1145/3664476.3664490
https://dl.acm.org/doi/10.1145/3664476.3664490

[20]

[29]

[30]

Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In:
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’20. New York, NY, USA: Association for Computing Machinery, Nov.
2020, pp. 1575-1590. 1sBN: 978-1-4503-7089-9. DOI: 10.1145/3372297.3417872. URL:
https://dl.acm.org/doi/10.1145/3372297.3417872.

Huimin Li et al. “FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated
Learning”. In: 2023 33rd International Conference on Field-Programmable Logic and
Applications (FPL). ISSN: 1946-1488. Sept. 2023, pp. 271-276. DOI: 10.1109/FPL60245.
2023.00046. URL: https://ieeexplore.ieee.org/abstract/document/10296389.

Hidde Lycklama et al. RoFL: Robustness of Secure Federated Learning. arXiv:2107.03311
[cs]. Jan. 2023. por: 10.48550/arXiv.2107.03311. URL: http://arxiv.org/abs/2107.
03311.

H. Brendan McMahan et al. Communication-Efficient Learning of Deep Networks from
Decentralized Data. arXiv:1602.05629 [cs]. Jan. 2023. DoI: 10.48550/arXiv.1602.05629.
URL: http://arxiv.org/abs/1602.05629.

Luca Melis et al. Exploiting Unintended Feature Leakage in Collaborative Learning.
arXiv:1805.04049 [cs]. Nov. 2018. por: 10 . 48550/ arXiv . 1805 . 04049. URL: http:
//arxiv.org/abs/1805.04049.

Luis Munioz-Gonzalez, Kenneth T. Co, and Emil C. Lupu. Byzantine-Robust Federated
Machine Learning through Adaptive Model Averaging. arXiv:1909.05125 [stat]. Sept.
2019. por: 10.48550/arXiv.1909.05125. URL: http://arxiv.org/abs/1909.05125.

Thien Duc Nguyen et al. FLAME: Taming Backdoors in Federated Learning (Extended
Version 1). arXiv:2101.02281 [cs]. Aug. 2023. DOI: 10.48550/arXiv.2101.02281. URL:
http://arxiv.org/abs/2101.02281.

Thuy Dung Nguyen et al. “Backdoor attacks and defenses in federated learning:
Survey, challenges and future research directions”. In: Engineering Applications of
Artificial Intelligence 127 (Jan. 2024), p. 107166. 1SsN: 0952-1976. DOI: 10.1016/j .
engappai.2023.107166. URL: https://www.sciencedirect.com/science/article/
pii/S0952197623013507.

Thuy Dung Nguyen et al. “IBA: Towards Irreversible Backdoor Attacks in Federated
Learning”. en. In: Advances in Neural Information Processing Systems 36 (Dec. 2023),
pp. 66364-66376. URL: https://proceedings . neurips.cc/paper_files/paper/
2023/hash/d0cbbc641a56bebee9d985b937307367-Abstract-Conference.html.

Xian Qin, Xue Yang, and Xiaohu Tang. Efficient Byzantine-Robust Privacy-Preserving
Federated Learning via Dimension Compression. arXiv:2509.11870 [cs]. Sept. 2025. por:
10.48550/arXiv.2509.11870. URL: http://arxiv.org/abs/2509.11870.

Mayank Rathee et al. ELSA: Secure Aggregation for Federated Learning with Malicious
Actors. Publication info: Published elsewhere. IEEE Security and Privacy (S&P) 2023.
2022. URL: https://eprint.iacr.org/2022/1695.

35


https://doi.org/10.1145/3372297.3417872
https://dl.acm.org/doi/10.1145/3372297.3417872
https://doi.org/10.1109/FPL60245.2023.00046
https://doi.org/10.1109/FPL60245.2023.00046
https://ieeexplore.ieee.org/abstract/document/10296389
https://doi.org/10.48550/arXiv.2107.03311
http://arxiv.org/abs/2107.03311
http://arxiv.org/abs/2107.03311
https://doi.org/10.48550/arXiv.1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.48550/arXiv.1805.04049
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1805.04049
https://doi.org/10.48550/arXiv.1909.05125
http://arxiv.org/abs/1909.05125
https://doi.org/10.48550/arXiv.2101.02281
http://arxiv.org/abs/2101.02281
https://doi.org/10.1016/j.engappai.2023.107166
https://doi.org/10.1016/j.engappai.2023.107166
https://www.sciencedirect.com/science/article/pii/S0952197623013507
https://www.sciencedirect.com/science/article/pii/S0952197623013507
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2509.11870
http://arxiv.org/abs/2509.11870
https://eprint.iacr.org/2022/1695

Bibliography

[31]

[35]

36

Felix Sattler, Klaus-Robert Miiller, and Wojciech Samek. Clustered Federated Learn-
ing: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints.
arXiv:1910.01991 [cs]. Oct. 2019. po1: 10 . 48550 / arXiv . 1910 . 01991. URL: http:
//arxiv.org/abs/1910.01991.

Aidmar Wainakh et al. User-Level Label Leakage from Gradients in Federated Learning.
arXiv:2105.09369 [cs]. Jan. 2022. por: 10 . 48550 / arXiv . 2105 . 09369. URL: http :
//arxiv.org/abs/2105.09369.

Yichen Wan et al. “Data and Model Poisoning Backdoor Attacks on Wireless Fed-
erated Learning, and the Defense Mechanisms: A Comprehensive Survey”. In: IEEE
Communications Surveys & Tutorials 26.3 (2024), pp. 1861-1897. 1ssN: 1553-877X. DoOTI:
10.1109/COMST . 2024 .3361451. URL: https://ieeexplore. ieee.org/abstract/
document/10423783.

Rui Wang et al. “MUDGUARD: Taming Malicious Majorities in Federated Learning
using Privacy-preserving Byzantine-robust Clustering”. In: Proc. ACM Meas. Anal.
Comput. Syst. 8.3 (Dec. 2024), 40:1-40:41. poI: 10.1145/3700422. URL: https://dl.
acm.org/doi/10.1145/3700422.

Mang Ye et al. “Heterogeneous Federated Learning: State-of-the-art and Research
Challenges”. In: ACM Comput. Surv. 56.3 (Oct. 2023), 79:1-79:44. 1ssN: 0360-0300. DOI:
10.1145/3625558. URL: https://dl.acm.org/doi/10.1145/3625558.

Dong Yin et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical
Rates. arXiv:1803.01498 [cs]. Feb. 2021. por: 10 . 48550 / arXiv . 1803 . 01498. URL:
http://arxiv.org/abs/1803.01498.

Kai Zhang et al. Bounded and Unbiased Composite Differential Privacy. arXiv:2311.02324
[cs]. Nov. 2023. DOI: 10.48550/arXiv.2311.02324. URL: http://arxiv.org/abs/2311.
02324.

Yifei Zhang et al. “A Survey of Trustworthy Federated Learning: Issues, Solutions, and
Challenges”. In: ACM Trans. Intell. Syst. Technol. 15.6 (Oct. 2024), 112:1-112:47. 1SSN:
2157-6904. por: 10.1145/3678181. URL: https://dl.acm.org/doi/10.1145/3678181.

Ian Zhou et al. “Secure Multi-Party Computation for Machine Learning: A Survey”.
In: IEEE Access 12 (2024), pp. 53881-53899. 1ssN: 2169-3536. DOI: 10.1109/ACCESS.
2024.3388992. URL: https://ieeexplore.ieee.org/document/10498135.


https://doi.org/10.48550/arXiv.1910.01991
http://arxiv.org/abs/1910.01991
http://arxiv.org/abs/1910.01991
https://doi.org/10.48550/arXiv.2105.09369
http://arxiv.org/abs/2105.09369
http://arxiv.org/abs/2105.09369
https://doi.org/10.1109/COMST.2024.3361451
https://ieeexplore.ieee.org/abstract/document/10423783
https://ieeexplore.ieee.org/abstract/document/10423783
https://doi.org/10.1145/3700422
https://dl.acm.org/doi/10.1145/3700422
https://dl.acm.org/doi/10.1145/3700422
https://doi.org/10.1145/3625558
https://dl.acm.org/doi/10.1145/3625558
https://doi.org/10.48550/arXiv.1803.01498
http://arxiv.org/abs/1803.01498
https://doi.org/10.48550/arXiv.2311.02324
http://arxiv.org/abs/2311.02324
http://arxiv.org/abs/2311.02324
https://doi.org/10.1145/3678181
https://dl.acm.org/doi/10.1145/3678181
https://doi.org/10.1109/ACCESS.2024.3388992
https://doi.org/10.1109/ACCESS.2024.3388992
https://ieeexplore.ieee.org/document/10498135

A. Appendix

A.1. DBSCAN and HDBSCAN

Similar to Nguyen et al. [26], we chose to approximate HDBSCAN with DBSCAN in the
MPC setting. This is justified both algorithmically and practically, and it preserves the
intended filtering behavior of FLAME while enabling an efficient secure implementation.

FLAME itself explicitly adopts this substitution for its "private FLAME" realization: the
authors replace HDBSCAN with DBSCAN to avoid the expensive construction of the minimal
spanning tree in HDBSCAN, while keeping the rest of the workflow intact. Conceptually,
this is acceptable because both methods are density-based and aim to separate a dense
majority cluster from sparse outliers: HDBSCAN generalizes DBSCAN’s fixed ¢ by building
a hierarchy over mutual-reachability distances, but FLAME ultimately needs a single-round
admission step that labels the majority cluster and treats the rest as outliers, which DBSCAN
can provide with a well chosen ¢ [26]. To be more specific, FLAME measures pairwise cosine
distances and retains only the majority cluster, marking all remaining models as outliers, so
DBSCAN with minClusterSize = | 5| + 1 similarly excludes sparse points and small groups,
aligning with FLAME’s intention of removing high-impact deviating updates.

Regarding complexity, our naive DBSCAN implementation under MPC computes all pairwise
neighborhood relations, incurring O(n?) work, which matches the worst-case bounds and is
consistent with the methods cited. Classical DBSCAN can be O(n log n) on spatial indexes,
but without such structures-or when replaced by secure pairwise checks-it degenerates to
O(n®) due to computing all e-neighborhoods [15]. HDBSCAN’s reference implementation
also relies on building an MST over a complete graph of mutual reachability distances and
then processing it to extract the hierarchy [6], which is impractical under MPC as stated
by Nguyen et al. Therefore, implementing DBSCAN by checking e-neighborhoods from
the precomputed cosine distance matrix is straightforward and quadratic, thus yielding the
same O(n?) asymptotic runtime that we assume for worst-case MPC, while preserving the
majority-cluster decision that FLAME requires.

37



	Abstract
	Zusammenfassung
	Introduction
	Existing Defenses
	Motivation

	Related Work
	FLAME Protocol Analysis
	Protocol Architecture and Threat Model
	Core Components

	MPC implementation of FLAME
	MPC Architecture
	Bounded Noise Generation for MPC Differential Privacy
	FLAME Implementation in MP-SPDZ
	Security and Privacy Analysis of MPC FLAME

	Evaluation
	Experimental Setup
	Performance Evaluation

	Discussion
	Performance and System
	Practical Feasibility
	Future Work

	Conclusion
	Bibliography
	Appendix
	DBSCAN and HDBSCAN


