
Privacy-Preserving Federated Learning With
Backdoor Resilience

Bachelor’s Thesis of

Yordan Yordanov

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr. Jörn Müller-Quade

Second examiner: Prof. Dr. Thorsten Strufe

First advisor: Yufan Jiang, M.Sc.

22. July 2025 – 08. December 2025

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

Privacy-Preserving Federated Learning With Backdoor Resilience (Bachelor’s Thesis)

I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

Karlsruhe, 08. December 2025

. .

(Yordan Yordanov)

Abstract

Federated learning (FL) has the ability to train a global model across many different clients

with diverse datasets while also preserving privacy. However, federated learning is by design

vulnerable to privacy inference attacks and poisoning attacks, allowing compromised clients

to infer private information about the clients or negatively influence the global model,

respectively. FLAME [26], a state-of-the-art framework, is designed to statistically remove

the influence of poisoning attacks, while being applicable to many attacker models and

keeping the model’s benign performance. To ensure these objectives, the FLAME protocol

introduces a defense framework that estimates the minimum sufficient amount of noise

to be injected into the global model after aggregation, so that backdoors are eliminated

but the benign performance does not deteriorate. To further reduce the amount of noise

and enhance the desired goals, FLAME utilizes adaptive clustering and weight clipping.

However, federated learning systems that implement FLAME still face significant privacy

risks from inference attacks, where malicious aggregators can exploit access to model

updates to extract sensitive information about client data. Therefore, it is imperative to also

achieve malicious security.

In this thesis, we propose an implementation of FLAME in combination with secure Multi-

Party Computation (MPC), which provides the primitives to protect federated learning

against inference attacks. We propose two implementations of this combination: private

FLAME- a full-MPC implementation, running the entire FLAME protocol in MPC; and

leaky FLAME, which selectively reveals intermediate statistics to gain efficiency while still

constraining attack surface. The implementation takes advantage of FLAME’s backdoor

resilience and MPC’s secret shared processing, also achieving malicious security. To achieve

this combination, we use MP-SPDZ [20], a framework with 30 variants of MPC protocols

and a Python-based programming interface, which simplifies the comparison of different

protocols and security models.

Building on these designs, our evaluation quantifies the computational and communication

overheads of both modes with varying client counts and model sizes. We find that the

dominant cost arises from the pairwise cosine-similarity in the clustering step, whereas

clipping and noising are comparatively lightweight. Although leaky FLAME’s savings are

noticeable even more so in the bigger cases, they are dominated by the cosine similarity

computation, thus in our opinion not worth the security-efficiency trade-off. Despite this,

our implementation achieves practical runtimes for moderate scales, keeping in mind that

it provides enforcement of FLAME’s defenses under malicious-security settings. Taken

together, our results demonstrate that integrating MPC with FLAME is feasible to an extent

and effective for privacy-preserving, backdoor-resilient FL.

i

Zusammenfassung

Federated Learning (FL) ermöglicht es, ein globales Modell über viele verschiedene Cli-

ents mit heterogenen Datensätzen zu trainieren und dabei die Privatsphäre zu wahren.

Allerdings ist Federated Learning von Natur aus anfällig für Privacy-Inference-Angriffe

und Poisoning-Angriffe, die es kompromittierten Clients ermöglichen, einerseits private

Informationen über andere Clients zu inferieren bzw. andererseits das globale Modell ne-

gativ zu beeinflussen. FLAME [26], ein State-of-the-Art-Framework, ist darauf ausgelegt,

den Einfluss von Poisoning-Angriffen statistisch zu entfernen, dabei für viele Angreifer-

modelle anwendbar zu sein und die gutartige Modellleistung zu erhalten. Um diese Ziele

sicherzustellen, führt das FLAME-Protokoll ein Abwehr-Framework ein, das die minimal

hinreichende Menge an Rauschen abschätzt, die nach der Aggregation in das globale Modell

injiziert werden muss, sodass Backdoors eliminiert werden, ohne dass die gutartige Leistung

verschlechtert wird. Um die Rauschmenge weiter zu reduzieren und die gewünschten Ziele

zu stärken, verwendet FLAME adaptives Clustering und Weight Clipping. Dennoch sehen

sich Federated-Learning-Systeme, die FLAME implementieren, weiterhin erheblichen Pri-

vatsphärenrisiken durch Inference-Angriffe ausgesetzt, bei denen bösartige Aggregatoren

den Zugriff auf Modellupdates ausnutzen können, um sensible Informationen über die

Client-Daten zu extrahieren. Daher ist es zwingend erforderlich, auch böswillige Sicherheit

(malicious security) zu erreichen.

In dieser Arbeit schlagen wir eine Implementierung von FLAME in Kombination mit si-

cherer Mehrparteienberechnung (Secure Multi-Party Computation, MPC) vor, die die Pri-

mitiven bereitstellt, um Federated Learning gegen Inference-Angriffe zu schützen. Wir

schlagen zwei Implementierungen dieser Kombination vor: Private FLAME- eine reine

MPC-Implementierung, die das gesamte FLAME-Protokoll in MPC ausführt; und Leaky

FLAME, das ausgewählte Zwischenstatistiken gezielt offenlegt, um Effizienz zu gewin-

nen, während die Angriffsfläche weiterhin begrenzt wird. Die Implementierung nutzt die

Backdoor-Resilienz von FLAME und die geheimgeteilte Verarbeitung (secret-shared pro-

cessing) von MPC und erreicht damit ebenfalls böswillige Sicherheit. Zur Realisierung

verwenden wir MP-SPDZ [20], ein Framework mit 30 Varianten von MPC-Protokollen

und einer Python-basierten Programmierschnittstelle, das den Vergleich verschiedener

Protokolle und Sicherheitsmodelle vereinfacht.

Aufbauend auf diesenDesigns quantifiziert unsere Evaluation die Rechen- undKommunikations-

Overheads beider Modi bei variierender Anzahl von Clients und Modellgrößen. Wir stellen

fest, dass die dominanten Kosten aus der paarweisen Cosine-Ähnlichkeit im Clustering-

Schritt entstehen, wohingegen Clipping und Noising vergleichsweise leichtgewichtig sind.

Obwohl die Einsparungen von Leaky FLAME- insbesondere in größeren Fällen- spürbar

iii

sind, werden sie von der Berechnung der Cosine-Ähnlichkeit dominiert und sind daher

unseres Erachtens den Trade-off zwischen Sicherheit und Effizienz nicht wert. Dennoch

erreicht unsere Implementierung praxistaugliche Laufzeiten für moderate Skalen, wobei zu

beachten ist, dass sie die Durchsetzung der FLAME-Abwehrmechanismen unter böswilli-

gen Sicherheitsannahmen gewährleistet. Zusammengenommen zeigen unsere Ergebnisse,

dass die Integration von MPC mit FLAME in gewissem Umfang machbar und wirksam für

privatsphärenschonendes, gegen Backdoors resilienteres Federated Learning ist.

iv

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Existing Defenses . 2

1.2. Motivation . 2

2. Related Work 5

3. FLAME Protocol Analysis 7
3.1. Protocol Architecture and Threat Model 7

3.2. Core Components . 10

4. MPC implementation of FLAME 13
4.1. MPC Architecture . 13

4.2. Bounded Noise Generation for MPC Differential Privacy 15

4.3. FLAME Implementation in MP-SPDZ . 17

4.4. Security and Privacy Analysis of MPC FLAME 18

5. Evaluation 23
5.1. Experimental Setup . 23

5.2. Performance Evaluation . 24

6. Discussion 29
6.1. Performance and System . 29

6.2. Practical Feasibility . 29

6.3. Future Work . 30

7. Conclusion 31

Bibliography 33

A. Appendix 37
A.1. DBSCAN and HDBSCAN . 37

v

1. Introduction

Machine learning (ML) lets computers learn patterns from example data instead of being

explicitly programmed. An ML model (e.g., a neural network) is trained by repeatedly

adjusting its internal parameters (weights) so that its predictions accurately match the

labeled examples. Traditional (centralized) training gathers all data on one server, which can

be impractical or undesirable when data is sensitive and/or legally restricted (e.g., health,

finance, personal devices).

Federated learning (FL) addresses this issue by allowing clients to locally train the global

model on their data and keep the data private by only sharing the updated model back to a

central coordinator (server) which can then aggregate the local client models into a new

global model. The new global model can then be propagated to clients for the next learning

iteration [23, 18, 17]. This standard procedure reduces the risks of direct data sharing and

can better align with privacy or regulatory expectations [38, 2].

On the one hand, federated learning attempts to balance two competing goals: to learn from

diverse, geographically, and organizationally separated data, and to reduce direct exposure

of raw data [38, 2]. On the other hand, in real deployments, different clients typically have

different types of data or so-called non-independent identically distributed data (non-IID)

[26]. This heterogeneity causes updates to vary naturally, making it harder for the central

coordinator to tell the difference between ’unusual but honest’ and ’malicious’ behavior.

In addition, clients differ in processing power, may drop offline and often participate

sporadically, complicating robust learning [35, 18]. In this work, we assume synchronous

rounds without dropouts; a client failing to submit in a round is treated as absent, and the

algorithm applies to the received set only. Therefore, the shift from centralized control

to distributed participation introduces a new vulnerability to so-called poisoning attacks,

where an adversary manipulates its local model or local data so that a malicious update gets

aggregated into the global model. [18, 35].

Poisoning attacks can be untargeted or targeted (or so-called ’backdoor attacks’). Untargeted

poisoning attacks are designed to deteriorate the performance of the global model and can

be prevented by checking the validity of the client updates. The focus of this work therefore

is on backdoor attacks, which, in comparison to simple deterioration, aim to manipulate

the model in such a way that, for specific inputs chosen by the adversary, the global model

outputs incorrect attacker-controlled predictions [27].

1

1. Introduction

1.1. Existing Defenses

Several defenses have been proposed to mitigate the risks of backdoor attacks in federated

learning, which can be broadly classified into four groups. The first group focuses on detect-

ing and filtering out potentially malicious updates by analyzing their statistical properties

or behaviors [22, 30, 26]. Having said that, these defenses rely on specific assumptions

about the adversary’s behavior and the underlying data distributions, which may not hold

in all practical scenarios. The second group can be identified as noise/perturbation defenses,

which aim to dilute the influence of malicious updates by adding noise to the model updates

or clipping weights. However, naïvely chosen noise levels that neutralize strong backdoors

also degrade benign accuracy, the impact is disproportionately greater especially when

the amount of noise required for effective defense is substantial [17]. The third group of

defenses is based on recovery or post-attack mitigation- once attackers are detected, these

defenses implement rollback or retraining strategies to repair the global model [8]. These

defenses however are reactive and presume that the attacker can be identified and that the

data can be restored- an ’irreversible’ payload may complicate the defense [28]. The fourth

group can be identified as secure aggregation and cryptographic frameworks- such systems

focus on delivering confidentiality or integrity but typically support only linear aggregation

and lack poisoning resilience [22, 30, 3, 11, 17].

Advancing beyond these categories, FLAME [26] introduces a principled framework that:

1. Clusters model updates to segregate benign and suspicious groups.

2. Applies weight-clipping to bound sensitivity.

3. Adaptively injects only the minimum necessary noise (derived from cluster structure

and density) to eliminate backdoor effects while preserving benign accuracy.

Empirical results in vision, language and IoT intrusion detection tasks show near-baseline

accuracy with markedly reduced attack success rates [26]. This “minimal effective noise”

perspective refines previous perturbation approaches by tying the magnitude of noise to

measured structural separation rather than fixed privacy budgets. Building on FLAME’s

strengths, we aim to preserve its backdoor resilience while adding malicious-security guar-

antees and update confidentiality during clustering and density estimation by integrating

FLAME with MPC-based aggregation, to prevent scenarios where adversaries may exploit

information leakage during the aggregation process [22, 30, 3].

1.2. Motivation

This thesis aims to address the identified gaps by proposing a novel implementation that

integrates Multi-Party Computation (MPC) with the FLAME framework, with the key

contributions being:

2

1.2. Motivation

• MPC-Secure Implementation of FLAME: This work presents an open-source im-

plementation of FLAME’s defense pipeline in a fully MPC-secure mode, ensuring

that client updates remain confidential throughout the aggregation. This implementa-

tion minimizes the risk of information leakage and improves the overall security of

federated learning systems.

• Hybrid MPC Mode: This work also presents a partially non-private MPC mode for

FLAME, allowing for a balance between performance and privacy. This mode enables

efficient computation of heavier parts of the FLAME algorithm while also revealing

only intermediate data, making it more suitable for real-world applications where

complete privacy may not be feasible.

• MPC-friendly clustering: We replace HDBSCAN with a DBSCAN-based approxima-

tion tailored for MPC, preserving FLAME’s majority-cluster filtering while avoiding

the MST construction costs and reducing complexity in secure settings.

• Bounded, integer-native MPC noise: We design and integrate a finite-precision,

bounded-noise generator (Irwin–Hall “12-trick” over SPDZ
2
𝑘) that approximates Gaus-

sian noise without floating point, aligning with FLAME’s adaptive scale and providing

DP-inspired privacy properties under MPC..

• Performance and Security Analysis: A comprehensive analysis of performance

and security trade-offs is conducted for both full MPC and hybrid MPC modes.

• Minimizing Attack Surface: The implementation of this work minimizes the resid-

ual exploitable structure of federated learning, thereby improving the resilience of

federated learning systems against backdoor attacks.

In summary, this thesis not only advances the state-of-the-art in federated learning defenses,

but also provides practical solutions that can be implemented in real-world scenarios,

thereby contributing to the ongoing efforts to secure sensitive data while leveraging the

benefits of machine learning.

3

2. Related Work

Recent surveys synthesize that federated learning security can be classified based on how

privacy is achieved (e.g., cryptographic MPC, Trusted Execution Environments (TEEs))

and what robustness primitive is applied (e.g., norm constraints, clustering, and post-hoc

recovery) [33, 38, 27]. These surveys emphasize a tension: mechanisms that maximize

confidentiality (MPC, secure aggregation) restrict the ability to run structure-aware defenses,

whereas defenses that inspect plaintext updates may leak information. This tension frames

our goal of retaining FLAME’s structure-aware defenses under secrecy.

Baseline protocols encrypt individual updates and reveal only their sum. A typical example

of this group, SecAgg [5] uses masking, secret sharing, and symmetric encryption to

protect local models, while SecAgg+ attempts to further optimize the approach. e-SeaFL [3]

uses masking, homorphic commitments, and proofs to give verifiable aggregation. While

these schemes ensure confidentiality and verifiable linear aggregation, they do not support

clustering or adaptive noising, limiting their effectiveness against targeted backdoors.

Other protocols further focus on backdoor protection: RoFL [22] validates masked per-

update 𝐿2 bounds via cryptographic proofs before releasing the sum. RoFL proves per-update

𝐿2 bounds under masks, aligning with clipping-based robustness; however, it does not

discriminate between benign and backdoor directions. Reactive rollback (e.g. FedRecover

[8]) confirms that norm clipping alone is insufficient against adaptive or irreversible attacks;

robustness remains magnitude-centric. FedRecover illustrates that rollback can mitigate

damage post hoc but assumes detectability and incurs retraining costs; it does not prevent

backdoor insertion in the first place.

More recent approaches aim to mitigate backdoors while also incorporating privacy pro-

tection using MPC and TEEs. Some MPC examples among them are: MUDGUARD [34],

FLock [11], and AlphaFL [17]. MUDGUARD [34] privately executes DBSCAN-like cluster-

ing to eliminate anomalous groups, but its distance-heavy pipelines dominate the cost in

MPC. FLock [11] uses secret sharing with Hamming-distance aggregation to resist outliers,

targeting discrete feature spaces rather than dense neural updates. AlphaFL [17] enforces

adaptive 𝐿2/𝐿∞ checks in a two-server model, improving robustness under secrecy, yet it

still relies on norm-thresholding rather than cluster-structure-aware defenses like FLAME.

MPC-based systems such as MUDGUARD, FLock, and AlphaFL demonstrate feasibility of

private robustness checks, yet they either target different distance metrics/spaces or forego

cluster-density-driven noising central to FLAME. TEE-assissted systems like SRFL [10] and

FLAIRS [21] enable richer inspection with near-plaintext runtime but reintroduce the single

privileged trust base and thus potential exposure.

5

2. Related Work

Our work complements these lines by bringing FLAME’s cluster-driven clipping and min-

imal effective noising into an MPC setting, preserving update confidentiality while still

performing the necessary structure-aware operations. We quantify the MPC cost of pairwise

similarities and show that clipping and calibrated noising are comparatively lightweight,

providing a path to malicious-secure, backdoor-resilient FL.

6

3. FLAME Protocol Analysis

3.1. Protocol Architecture and Threat Model

System Model. Federated Learning proceeds in rounds (iterations) 𝑡 = 1, . . . ,𝑇 over 𝑛

clients and a central aggregating entity to construct a global model 𝐺 . Following common

practice in FL-related papers, Nguyen et al. represent Neural Networks (NNs) using their

weight vectors, in which the order of weights is identically done by flattening the weight

matrices in a predefined order. Let 𝐺𝑡 ∈ R𝑝 denote the global model after round t (with 𝐺0

being the initial model). In each round 𝑡 , the aggregator selects a subset of participating

clients (for simplicity, we assume all 𝑛 participate). A training iteration 𝑡 ∈ 1, . . . ,𝑇 consists

of each client 𝑖 ∈ 1, . . . , 𝑛 locally training a local model𝑊𝑖 with 𝑝 parameters 𝑤1

𝑖 , . . . ,𝑤
𝑝

𝑖

based on the previous global model 𝐺𝑡−1 and on a local data set 𝐷𝑖 . The local models

𝑊1, . . . ,𝑊𝑛 are then aggregated by the aggregator into a new global model 𝐺𝑡 .

Although the effectiveness of FLAME is originally evaluated using several aggregation

mechanisms [4, 36, 25], the general focus of Nguyen et al [26]. is on Federated Averaging

(FedAvg) [23] due to its common application in Federated Learning. In this aggregation

mechanism, the global model is the average of the client models, received using the following

formula: 𝐺𝑡 =
∑𝑛
𝑖=1 𝑠𝑖 ×𝑊𝑖/𝑠 , where 𝑠𝑖 = ∥𝐷𝑖 ∥ and 𝑠 =

∑𝑛
𝑖=1 𝑠𝑖 . However, since these

aggregation rules do not consider the sizes of client training sets by design, Nguyen et al.

employ equal weights (𝑠𝑖 = 1/𝑛) for the contributions of all clients, resulting in the global

model 𝐺𝑡 =
∑𝑛
𝑖=1𝑊𝑖/𝑛.

FLAME interposes three transformation layers before finalizing 𝐺𝑡 , which are visualized by

Figure 3.1:

1. Dynamic Clustering (Filtering): removes high-impact anomalous updates with a large

angular deviation. Only the largest density cluster is retained; outliers are removed.

2. Adaptive Clipping: any admitted update exceeding the median L2 distance 𝑆𝑡 to 𝐺𝑡−1
is proportionally scaled back toward 𝐺𝑡−1, equalizing magnitude influence without

over-shrinking benign updates.

3. Adaptive Gaussian Noising: injects calibrated Gaussian noise 𝑁 (0, (𝜆𝑆𝑡)2) into the

post-clipping aggregate to diffuse any residual backdoor signal while preserving model

correctness; 𝜆 is derived from predetermined parameters (𝜀, 𝛿); 𝜀 denotes the privacy
bound and 𝛿- the probability of breaking this bound, so smaller values indicate better

privacy [15].

7

3. FLAME Protocol Analysis

Global Model 𝐺∗𝑡−1

Client 1 Client i Client n· · · · · ·

Clients

Dynamic Clustering

Adaptive Clipping

Adaptive Noising

Aggregator

Aggregated Global Model 𝐺∗𝑡

𝑊1 𝑊𝑖 𝑊𝑛

𝑊𝑏1, . . . ,𝑊𝑏𝐿

𝐺𝑡

Figure 3.1.: Illustration of FLAME’s workflow in round 𝑡 .

Backdoor Attacks. In the considered setting, an adversary may corrupt a subset of clients

so that the updated models submitted bias the new global model 𝐺 towards the attacker-

chosen behavior on a small set of input patterns defined by the attacker. There can be

distinguished two complementary ways the attacker can construct the poisoned local models

𝑊 ′𝑖 (red) from benign ones𝑊𝑖 (blue), as can be seen in figure 3.2:

• Data Poisoning: A Compromised client alters its local data set before training the

local model. Following the previous notation 𝐷𝑖 for the data set 𝐷 of client 𝑖 , let 𝐷A
𝑖

be

the portion of the data set modified by label flipping (replacing the original labels with

attacker-chosen ones) or by adding triggers to data samples (e.g., a specific pattern

added to images). The effective poisoned training set is then denoted as 𝐷′𝑖 = 𝐷𝑖 ∪𝐷A𝑖 .

Nguyen et al. further denote the fraction of injected data 𝐷A
𝑖

in the overall data set

𝐷′𝑖 of the client 𝑖 as Poisoned Data Rate (PDR), that is, 𝑃𝐷𝑅𝑖 =
|𝐷A

𝑖
|

|𝐷 ′
𝑖
|

• Model Poisoning: Instead of changing the data set, the attacker perturbs the opti-

mization trajectory or directly changes the post-training weights of the clients before

submission, however this attack technique requires that the attacker can fully control

a number of clients. Typical model poisoning methods include:

– Scaling: Multiply the update (𝑊𝑖−𝐺𝑡−1) by a factor to either magnify its influence

(e.g., model-replacement attack [1]) or shrink it to avoid deviation-based filtering.

8

3.1. Protocol Architecture and Threat Model

– Constrained Optimization- Constraining the model training so that the malicious

models do not deviate too much from the original global model.

Adversary Model. Nguyen et al. intentionally make no assumptions about the behavior

of the adversary- they assume the adversary A fully controls 𝑘 < 𝑛
2
, denoting the frac-

tion of compromised clients as Poisoned Model Rate 𝑃𝑀𝑅 = 𝑘
𝑛
. This means that for each

compromised client 𝑖 ∈ 𝐾 (K being the set of compromised clients), A can alter data, train-

ing dynamics, and/or the reported model and can coordinate across its controlled clients.

Additionally, A has complete knowledge of the aggregator’s operations and defenses, but

cannot tamper with benign clients or the honest aggregator’s internal process (integrity)

and cannot subvert cryptographic channels.

Formally, let 𝐼A denote the so-called trigger set and 𝑥 ∈ 𝐼A the attacker-chosen inputs

for which the attacker-chosen predictions should be output. Nguyen et al. identify the

following two objectives of the adversary:

• Impact: Maximize the probability that all trigger inputs 𝑥 ∈ 𝐼A are assigned to the

target outputs 𝑓 (𝐺′, 𝑥) = 𝑐′ ≠ 𝑓 (𝐺, 𝑥).

• Stealthiness: Keep poisoned updates hard to detect between the benign ones so that

they are not flagged as outliers and not disproportionately clipped, i.e.:

𝑓 (𝐺′, 𝑥) =
{
𝑐′ ≠ 𝑓 (𝐺, 𝑥), ∀𝑥 ∈ 𝐼A
𝑓 (𝐺, 𝑐), ∀𝑥 ∉ 𝐼A

(3.1)

Furthermore, to make poisoned models more indistinguishable, Nguyen et al. enforce

that, for some (defense-dependent) detectability threshold 𝜂 and suitable distance

function 𝑑𝑖𝑠𝑡 (·, ·), each crafted update aims to satisfy 𝑑𝑖𝑠𝑡 (𝑊 ′𝑖 ,𝑊𝑖) < 𝜂, while still

embedding the trigger mapping.

Attack Surface on Parameter Space. Considering Neural Networks (NNs) are represented
using their weight vectors, benign and compromised models can be classified using the

direction (angle) and magnitude (length) of their weight vectors (𝑤1

𝑖 , . . . ,𝑤
𝑝

𝑖
). Therefore,

the adversary can shape each backdoored local model𝑊 ′ via two controllable geometric

aspects relative to the benign update distribution and / or previous global model 𝐺𝑡−1:

• Directional (angular) deviation measured via the cosine distance between𝑊𝑖 and𝑊𝑗

(𝑊 ′
1
):

𝑐𝑖 𝑗 = 1 −
𝑊𝑖𝑊𝑗

∥𝑊𝑖 ∥∥𝑊𝑗 ∥
= 1 −

∑𝑝

𝑘=1
𝑤𝑘
𝑖 𝑤

𝑘
𝑗√︃∑𝑝

𝑘=1
(𝑤𝑘

𝑖
)2
√︃∑𝑝

𝑘=1
(𝑤𝑘

𝑗
)2

(3.2)

• Magnitude deviation measured via Euclidean distances (𝑊 ′
1
and𝑊 ′

3
):

𝑒𝑖 𝑗 = ∥𝑊𝑖 −𝑊𝑗 ∥ =

√√√ 𝑝∑︁
𝑘=1

(𝑤𝑘
𝑖
−𝑤𝑘

𝑗
)2 (3.3)

9

3. FLAME Protocol Analysis

𝐺𝑡−1

𝑊 ′
1

𝑊 ′
2

𝑊 ′
3

𝑊1

𝑊2

𝑊3

𝑊4

outlier

outlier

clipped

clipped

Figure 3.2.: FLAME high level idea.

3.2. Core Components

The three main components of FLAME (filtering, clipping, and noising) are executed se-

quentially each round before publishing the new global model 𝐺𝑡 , following the pipeline

given by Nguyen et al. (Algorithm 1). Conceptually, each of these components narrows the

attack surface available to poisoned updates.

Dynamic Clustering. Having received the set of submitted client models {𝑊 }𝑛𝑖=1 at round 𝑡 ,
the aggregator first examines how these updates are oriented relative to each other. Instead

of relying on raw Euclidean distances, which can be manipulated by the adversary using

simple scaling, the comparison is realized using cosine distances 𝑐𝑖 𝑗 (3.2) for every pair of

updates, which form a symmetrical distance matrix that serves as input to a density-based

clustering algorithm.

To dynamically adapt to client updates and to avoid pre-specifying the number of clusters,

FLAME employs HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications

with Noise) [6]. In brief, HDBSCAN aims to group data points (models) that are located

near each other into a cluster. Compared to its predecessor DBSCAN [15], which uses static

parameters, HDBSCAN dynamically determines the maximal distance between points in a

cluster based on the density of points, resulting in a dynamic number of clusters. Crucially,

it also labels isolated points that do not belong to any sufficiently dense region as outliers

[6].

10

3.2. Core Components

Algorithm 1 FLAME

Require: 𝑛,𝐺0,𝑇 ⊲ 𝑛 is the number of clients, 𝐺0 is the initial global model, 𝑇 is the

number of training iterations

Ensure: Final global model 𝐺∗
𝑇

1: for each training iteration 𝑡 in [1,𝑇] do
2: for each client 𝑖 in [1, 𝑛] do
3: 𝑊𝑖 ← ClientUpdate(𝐺∗𝑡−1) ⊲ The aggregator sends 𝐺∗𝑡−1 to Client 𝑖 who

trains 𝐺∗𝑡−1 using its data 𝐷𝑖 locally to achieve local modal𝑊𝑖 and sends𝑊𝑖 back to the

aggregator.

4: end for
5: (𝑐11, ..., 𝑐𝑛𝑛) ← CosineDistance(𝑊1, ...,𝑊𝑛) ⊲ ∀𝑖, 𝑗 ∈ (1, ..., 𝑛), 𝑐𝑖 𝑗 is the cosine

distance between𝑊𝑖 and𝑊𝑗

6: (𝑏1, ..., 𝑏𝐿) ← Clustering(𝑐11, ..., 𝑐𝑛𝑛) ⊲ 𝐿 is the number of admitted models, 𝑏𝑙 is

the index of the 𝑙𝑡ℎ model

7: (𝑒1, ..., 𝑒𝑛) ← EuclideanDistances(𝐺∗𝑡−1, (𝑊1, ...,𝑊𝑛)) ⊲ 𝑒𝑖 is the Euclidean

distance between 𝐺∗𝑡−1 and𝑊𝑖

8: 𝑆𝑡 ← Median(𝑒1, ..., 𝑒𝑛) ⊲ 𝑆𝑡 is the adaptive clipping bound at round 𝑡

9: for each client 𝑙 in [1, 𝐿] do
10: 𝑊 𝑐

𝑏𝑙
← 𝐺𝑡−1 + (𝑊𝑏𝑙 − 𝐺𝑡−1) · Min(1, 𝛾) ⊲ Where 𝛾 (= 𝑆𝑡/𝑒𝑏𝑙) is the clipping

parameter,𝑊 𝑐
𝑏𝑙
is the admitted model after clipped by the adaptive clipping bound 𝑆𝑡

11: end for
12: 𝐺𝑡 ←

∑𝐿
𝑙=1
𝑊 𝑐
𝑏𝑙
/𝐿 ⊲ Aggregating, 𝐺𝑡 is the plain global model before adding noise

13: 𝜎 ← 𝜆 · 𝑆𝑡 where 𝜆 = 1

𝜀
·
√︃
2 ln

1.25
𝛿

⊲ Adaptive noising level

14: 𝐺∗𝑡 ← 𝐺𝑡 + 𝑁 (0, 𝜎2) ⊲ Adaptive noising

15: end for

Nguyen et al. configure the minimum allowed cluster size to ⌊𝑛/2⌋ + 1 so that, under

the standing assumption, that compromised clients are less than half (𝑃𝑀𝑅 < 1/2), the
resulting cluster should contain the majority of updates, which FLAME assumes to be

benign. Let B𝑡 denote the index set of the unique largest retained cluster; all models with

index 𝑏𝑙 ∉ B𝑡 are discarded. The clustering does not aim to eliminate every poisoned update

or necessarily only poisoned updates, but to remove those updates with anomalous angular

displacement, which could give them disproportionate steering power. Stealthy poisoned

updates that remain must, by construction, mimic benign directions and therefore sacrifice

strong targeted influence. The dynamic clustering step is shown in lines 5-6 of Algorithm 1

where (𝑏1, . . . , 𝑏𝐿) are the cluster indices of all models after clustering, as well as in figure

3.2, where𝑊 ′
1
and𝑊1 are labeled as outliers (orange) because they are not in the main

vector cluster.

Adaptive Clipping. After the filtering, the aggregator computes the Euclidean distances

𝑒𝑖 = ∥𝑊𝑖 −𝐺𝑡−1∥2 (3.3) for all submitted models 𝑖 = 1, . . . , 𝑛, not only the filtered ones. The

clipping bound 𝑆𝑡 is defined as the median of all Euclidean distances 𝑒1, . . . , 𝑒𝑛 . This ensures

robustness: with fewer than half of the clients compromised, 𝑆𝑡 remains anchored to benign

scale even if several large-magnitude adversarial updates were included or some benign

11

3. FLAME Protocol Analysis

updates were filtered. Furthermore, Nguyen et al. recognize that as training progresses,

benign updates naturally contract, so they design 𝑆𝑡 to automatically adapt, tightening

leverage bounds without manual retuning.

The admitted update𝑊𝑏𝑙 (𝑏𝑙 ∈ B𝑡) is then scaled toward 𝐺𝑡−1 by a factor of 𝛾𝑖 = min(1, 𝑆𝑡
𝑒𝑖
)

if its deviation exceeds 𝑆𝑡 , which caps the per-update leverage that could arise from norm

inflation, thus balancing it out, while keeping directional information. The adaptive clipping

step is shown in lines 7-11 of Algorithm 1 where {𝑊 𝑐
𝑏𝑙
}𝑏𝑙∈B𝑡 are the models admitted after

being clipped, and is also depicted in figure 3.2 with purple, where𝑊2 and𝑊
′
3
are clipped to

the median or in this case𝑊1 even though its marked as an outlier by the clustering step.

Adaptive Gaussian Noising. Even a set of stealthily poisoned clients can embed a low-

magnitude, directionally aligned residual backdoor signal within the benign norm, bypassing

the first two stages. To prevent this, Nguyen et al. recognize noising as a practical way to

mitigate outlier samples, although the noise has to strike a balance between eliminating

backdoors and not deteriorating the benign performance of the model. After aggregating

the global model, FLAME injects Gaussian noise scaled to the current benign radius 𝑆𝑡 .

Given the parameters (𝜀, 𝛿), FLAME computes 𝜆 = 1

𝜀

√︃
2 ln(1.25

𝛿
) and 𝜎𝑡 = 𝜆 · 𝑆𝑡 . The new

global model published is then 𝐺∗𝑡 = 𝐺𝑡 + 𝑁 (0, 𝜎2𝑡 𝐼).

Because any surviving adversarial displacement has been forced within radius 𝑆𝑡 , scaling the

noise proportionally ensures (with a high probability governed by (𝜀, 𝛿)) that the stochastic
perturbation dominates the residual malicious component while still preserving task utility

as 𝑆𝑡 shrinks across rounds. The last steps described correspond to lines 12-14 of Algorithm

1.

12

4. MPC implementation of FLAME

Despite FLAME’s strong resilience to backdoors, baseline FLAME still operates in a semi-

honest transparency model that leaves residual privacy gaps: namely the presumed plaintext

exposure of all admitted client updates to the single aggregation authority, which becomes

a single trust point of failure. FLAME is designed for backdoor neutralization, not for

cryptographic secrecy, which enables powerful server-sided data inference attacks (member-
ship inference attacks[24], property inference attacks[24], distribution inference attacks[26])
because, although the global update anonymizes the individual contributions, the whole

protocol is computed directly on raw weight vectors and can link information to the local

models [26]. This motivates the replacement of the "trusted-but-curious" central aggregator

with a secure Multi-Party Computation realization.

4.1. MPC Architecture

This section will go over the concept of MPC and some of its important features, then over

MP-SPDZ [20] and the SPDZ
2
𝑘 protocol- the MPC framework and protocol this work uses

for the implementation and benchmarking of the FLAME protocol in MPC.

MPC Concept. As mentioned in the beginning of this chapter, sensitive information can

be derived from the analysis of raw data. That is why Secure Multi-Party Computation

(MPC) has gathered significant interest as a solution to data privacy concerns [39]. MPC

allows multiple parties 𝑃1, . . . , 𝑃𝑛 , each party having a single input 𝑥𝑖 , to jointly compute a

function (𝑦1, . . . , 𝑦𝑛) ← 𝑓 (𝑥1, . . . , 𝑥𝑛) and obtain an output 𝑦𝑖 , meanwhile learning nothing

except for (𝑥𝑖, 𝑦𝑖, 𝑓) [16, 39, 12]. Typical security requirements that a correct functioning

MPC framework should ensure are the following [39, 16]:

• Privacy: The protocol should reveal nothing except the output.

• Correctness: Operations computed inside the protocol should output the same result

as the same operations computed in plaintext.

• Fairness: If one party receives output then all parties should receive output.

• Guarantee of Output: All parties should always receive output.

• Independence of Input: The input of a corrupted party should be independent of the

inputs of honest parties.

13

4. MPC implementation of FLAME

• Probability to Catch Deviation: Honest parties should have a probability to catch any

violations of the protocol.

In MPC are usually considered two main types of adversaries. The first type are semi-honest

adversaries (passive), which follow the protocol but try to infer private information. The

second type are malicious adversaries (active)- they use any attack strategy in order to

break the protocol. MPC protocols can be further categorized depending on the number of

compromised parties: dishonest majority (𝑃𝑀𝑅 ≥ 1

2
) and honest majority (𝑃𝑀𝑅 < 1

2
).

MP-SPDZ Framework. The current work will be using MP-SPDZ [20]- a state-of-the-art

MPC framework developed by Marcel Keller. MP-SPDZ has over 30 MPC protocol variants,

which can be used with its Python-based high-level programming interface, simplifying the

comparison of different protocols and security models. These 30 protocol variants cover the

possible combinations of adversary types (malicious and semi-honest) and compromised

party ratios (dishonest and honest majority), as well as different underlying primitives (secret

sharing, oblivious transfer, homomorphic encryption, and garbled circuits). Furthermore,

MP-SPDZ supports rich math and real machine learning out of the box, with frequently

maintained code and documentation. Keller also reports that the variety of options does

not hinder the performance of the framework, which is competitive to or faster than other

state-of-the-art frameworks under the same conditions.

Secret Sharing Strategy and SPDZ
2
𝑘 . The key challenge in MPC is to handle dishonest

majority scenarios (𝑃𝑀𝑅 ≥ 1

2
). A core building block for solving this problem is additive

secret sharing: to share a secret value 𝑥 , it is split as 𝑥 =
∑𝑛
𝑖=1 𝑥𝑖 where party 𝑖 holds the

share 𝑥𝑖 [16]. Compromised parties can, however, lie about their shares. To obtain active

security over fields, Message Authentication Codes (MAC) appear: for each shared value 𝑥 ,

a secret key 𝛼 is also generated, to maintain a MAC𝑚 = 𝛼𝑥 . The adversary knows 𝑥 but

not 𝛼 or 𝛼𝑥 . Therefore, any attempt to forge a share 𝑥 requires guessing a 𝑥′ = 𝑥 for which

𝑚 = 𝛼𝑥′ holds, which has a probability of 1/|F| [13, 12]. This is naturally homomorphic,

so adding shared values requires only local computation, which is very cheap in MPC

environment and heavily utilized by the SPDZ protcol.

The SPDZ protocol [13] revolutionizes dishonest majority MPC by introducing a prepro-

cessing model consisting of two phases:

1. Offline Phase: Clients generate random multiplication triples (𝑎, 𝑏, 𝑐) with 𝑎 = 𝑏𝑐 and

input masks with MACs.

2. Online phase: Preprocessed material is used to efficiently compute any arithmetic

circuit.

The key insight is that expensive operations happen offline, while the online phase uses

only cheap information-theoretic techniques.

Although SPDZ works well over finite fields F𝑝 , many applications naturally use integers

modulo 2
𝑘
rather than prime fields, and SPDZ does not work anymore over rings Z

2
𝑘 . The

security proof is based on the fact that any non-zero value in a field F is invertible, and

by replacing the field by a ring 𝑍
2
𝑘 , an adversary can choose 𝑥′ = 𝑥 + 2𝑘−1 and cheat with

probability 1/2 since 2𝑘−1 · 2 = 0 mod 2 [12].

14

4.2. Bounded Noise Generation for MPC Differential Privacy

SPDZ
2
𝑘 [12] presents an elegant solution to this problem by making the ring larger, so

that MACs maintain entropy. The value 𝑥 is represented as 𝑥′ ∈ Z
2
𝑘+𝑠 with 𝑥′ = 𝑥 mod 2

𝑘

where 𝑠 is the statistical security parameter (e.g. 64). The MAC is represented as𝑚 = 𝛼𝑥

mod 2
𝑘+𝑠

with the key 𝛼 ∈ Z2
𝑠 . Only the least significant 𝑘 bits are relevant for the acutal

computation, but since the ring is larger, an adversary, who wants to introduce error into 𝑥 ,

will also need to guess 𝛼 mod 2
𝑠
, which has only 2

−𝑠
success probability. In comparison

to SPDZ, SPDZ
2
𝑘 natively supports 2

𝑘
arithmetic that CPUs use, making it very suitable

for the implementation of FLAME in MP-SPDZ, at the cost of roughly twice as much

communication overhead.

4.2. Bounded Noise Generation for MPC Differential Privacy

Most textbook differential privacy (DP) mechanisms assume draws from continuous, un-

bounded distributions (Laplace or Gaussian) in real arithmetic and analyze privacy in

(𝜀, 𝛿)-DP through sensitivity scaling and composition [7, 19]. In contrast, our MPC im-

plementation operates in finite-precision arithmetic over rings, where unbounded reals

are not representable and naïve floating-point sampling can violate DP due to precision

artifacts [19]. This creates a gap in our current work: how do we realize DP-style noise in

an MPC-setting without relying on continuous distributions with infinite precision, and

without opening vulnerabilities due to truncation or floating-point quirks.

We propose a bounded-noise mechanism tailored to MP-SPDZ in SPDZ
2
𝑘 64-bit ring. The

mechanism is integer-native, avoids floating-point arithmetic, and cooperates well with

secret-sharing. It consists of three steps:

1. Bounded symmetric integer sampling: we generate (32 + 𝑙𝑜𝑔(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠))-bit uniform
integers and sign-extend them to 64 bits in two’s complement to embed them into the

SPDZ
2
𝑘 ring;

2. Discrete Irwin–Hall composition (“12-trick”): we then approximate the zero-mean

Gaussian noise by summing 12 independent bounded uniforms and centering their

sum;

3. Per-coordinate addition: finally, a random noise sample scaled dynamically according

to the FLAME protocol (1) is added to each parameter of the aggregated client updates,

which in total requires 𝑛_𝑖𝑛𝑝𝑢𝑡𝑠 × 12 random draws of (32 + 𝑙𝑜𝑔(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠)) bits each.

This produces bounded, symmetric, integer noise with controllable variance that is amenable

to MPC. We design this mechanism to approximate DP properties, drawing inspiration

from discrete-Gaussian insights and concentrated/approximate DP conversions from the

provided literature, though formal DP analysis is left for future work.

Bounded symmetric integer sampling in a ring. In our implementation, the clients

share their parameters as 32-bit integers, thus each entry of the final aggregated result be-

fore clipping lies within [−232+log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠), 232+log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠)] or is bounded by 2
32+log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠)

.

15

4. MPC implementation of FLAME

Therefore, we choose the size of the random integers for noising to be (32+ log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠))-
bits. Since the number of the clients in our test cases is not bigger than 2

6
, then a sum of

12 such integers would never wrap around the 64-bit ring in SPDZ
2
𝑘 . We interpret these

integers as signed (32 + log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠))-bit two’s complement integers and sign-extend

them to 64 bits by copying the MSB into the higher bits. This standard sign extension

preserves the integer value in Z, and the resulting 64-bit value is represented in the SPDZ2k

ring.

Irwin-Hall distribution. The Irwin-Hall distribution is the sum of 𝑛 independent and

identically distributed (i.i.d.) random variables𝑈𝑘 ∼ 𝑈 (0, 1):

𝑋 =

𝑛∑︁
𝑘=1

𝑈𝑘 (4.1)

By the central limit theorem, as the number of samples 𝑛 increases, then 𝑋 approximates a

normal distribution with mean 𝜇 = 𝑛
2
and variance 𝜎2 = 𝑛

12
. Then the distribution can be

centered by shifting it by its mean and scaling the result by the square root of its variance,

in order to approximate the standard normal distribution 𝜙 (𝑥) = N(𝜇 = 0, 𝜎2 = 1):

𝜙 (𝑥) 𝑛≫0≈
√︂
𝑛

12

𝑓𝑋

(
𝑥

√︂
𝑛

12

+ 𝑛
2

;𝑛

)
(4.2)

This leads to a computationally efficient MPC heuristic that removes the square root, when

we use 12 uniform numbers𝑈𝑘 ∼ 𝑈 (0, 1):

12∑︁
𝑘=1

𝑈𝑘 − 6 ∼ 𝑓𝑋 (𝑥 + 6; 12) ¤∼ 𝜙 (𝑥) (4.3)

Bounded differential privacy analysis. In our implementation, model parameters and

noisy results are confined to a fixed bounded numeric domain by construction: values are

represented in 64-bit integers, while inputs are at most 32-bit signed, and we bound the

added noise so that the final 64-bit representation always safely contains the result (effective

bound ≈ 32 + log(𝑛_𝑐𝑙𝑖𝑒𝑛𝑡𝑠) bits, even tighter for inputs). The per-parameter perturbation

we apply is symmetric around the current value 𝐶𝑝 (zero-mean, CLT-based), hence the

noisy result has expectation of exactly 𝐶𝑝 . This directly satisfies the unbiasedness criterion

in Zhang et al.’s Composite Differential Privacy framework [37], where the perturbation

function must be symmetric with respect to𝐶𝑝 and yield 𝐸 [𝑥] = 𝐶𝑝 on a bounded domain.

To approximate the bounded 𝜀-DP approach from Zhang et al., we align our mechanism with

their bounded-case construction in a compact domain 𝐿. Concretely, we operate directly on

our bounded integer interval (no explicit remapping is needed since our 64-bit domain is

already bounded); our perturbation is symmetric and bounded; and we can easily introduce

an arbitrarily small uniform base floor𝑦 over 𝐿 (a tiny mixture weight) so that the composite

density has a strictly positive infimum and a finite maximum 𝑦 + 𝑘 . By choosing 𝑦 and 𝑘 to

satisfy (𝑦 +𝑘)/𝑦 ≤ 𝑒𝜀 , our perturbation becomes an instance of their A1B1 case, meeting the

Section 3.2 criteria: bounded support, symmetry/unbiasedness around 𝐶𝑝 , and a pointwise

16

4.3. FLAME Implementation in MP-SPDZ

density-ratio bound. Therefore, our noisy result follows the structure of their Composite

DP mechanism and is designed to provide similar privacy properties while preserving

our existing symmetry and boundedness properties, though formal DP verification would

require additional analysis.

4.3. FLAME Implementation in MP-SPDZ

The protocol is based on the "banker’s bonus" example provided by MP-SPDZ and is

implemented as a fork of the AlphaFL repository [17], which itself is a fork of the MP-SPDZ

repository [20]. The workflow of the described implementation is visualized by Figure

4.1. Firstly, the needed components are generated via a setup script, which also creates

the certificates needed for MPC communication, as well as preprocessing materials. The

protocol is then launched from a shell script that prepares the environment and runs the

desired FLAME variant with the MPC parties MP-SPDZ provides, similar to the way AlphaFL

is run. The same script is used to benchmark the input commitment separately, which is

inherited from AlphaFL.

In the input-commitment, each client is passed its own unique 𝑐𝑙𝑖𝑒𝑛𝑡_𝑖𝑑 (𝑖 ∈ {0, . . . , 𝑛 − 1}),
the number of aggregating parties𝑛_𝑝𝑎𝑟𝑡𝑖𝑒𝑠 , the number of inputs𝑛_𝑖𝑛𝑝𝑢𝑡𝑠 . The clients also

have the parameters 𝑛_𝑏𝑖𝑡𝑠 and a 𝑓 𝑖𝑛𝑖𝑠ℎ bit corresponding to if the client is the last. After

that, each client proceeds to connect to all MPC parties, while the MPC parties iteratively

wait for all clients to connect. The clients then proceed to send model update shares of size

𝑛_𝑖𝑛𝑝𝑢𝑡𝑠 ∗𝑛_𝑏𝑖𝑡𝑠 to each aggregating party bitwise. Lastly, all client sockets are closed, and

the protocol terminates

In the second part of the protocol, parties inherit the bitwise-to-arithmetic (B2A) protocol

from AlphaFL to reconstruct the arithmetic shares of all client inputs. After collecting all

client updates, the aggregators compute pairwise Euclidean (L2) distances to the (implicit

zero) global update 3.3 and pairwise cosine distances between all client vectors 3.2. The

clustering step follows FLAME’s first core component, but uses a DBSCAN approximation

of HDBSCAN for benchmarking purposes: The minimum cluster size𝑀𝐼𝑁_𝑃𝑇𝑆 is fixed to

𝑛/2+1, allowing at most one admissible dense cluster. Updates in that cluster are labeled with

1, while all others are treated as outliers and labeled with 0. Since the DBSCAN algorithm

is one of the runtime heavier components of the protocol, it is computed non-privately

in the leaky-MPC implementation of FLAME for comparison, revealing the intermediate

cosine distances of the client updates, and privately in the full-MPC implementation. The

clipping bound 𝑆𝑡 is also computed differently in both versions of the algorithm. Leaky

FLAME computes the median non-privately by revealing client 𝐿2 norms and sorting them

using bubble sort in𝑂 (𝑛 log(𝑛)). Private FLAME computes the median by using the built in

MP-SPDZ 𝑠𝑜𝑟𝑡 () function, which privately uses radix sort in 𝑂 (𝑛 log(𝑛)) time. All updates

are then scaled by min(1, 𝑆𝑡/∥𝑊𝑖 ∥) and aggregated into a single update. For noise, the code

derives 𝜆 = 1

𝜀
·
√︃
2 ln

1.25
𝛿

from public 𝜀, 𝛿 and then 𝜎 = 𝜆𝑆𝑡 , which is essentially done offline.

Gaussian samples are then generated using the described "12-trick" using the Irwin-Hall

distribution independently for each dimension of the aggregated update and then scaled

17

4. MPC implementation of FLAME

Global Model 𝐺𝑡−1

Client i · · ·· · ·

Clients

Dynamic Clustering

Adaptive Clipping

Adaptive Noising

Dynamic Clustering

Adaptive Clipping

Adaptive Noising

Party 1 Party 2

Aggregated Global Model 𝐺∗𝑡

⟨𝑊 ⟩1𝑖 ⟨𝑊 ⟩2𝑖

⟨𝑊 ⟩𝐴
𝑏1,...,𝑏𝐿

⟨𝐺𝑡 ⟩𝐴

⟨𝑊 ⟩𝐵
𝑏1,...,𝑏𝐿

⟨𝐺𝑡 ⟩𝐵

MPC

MPC

MPC

Figure 4.1.: FLAME workflow with MPC using two aggregating parties.

using 𝜎 , approximating the paper’s N(0, 𝜎2) noise. The random numbers needed for our

approach can also be generated offline since they do not depend on client input; therefore,

we will include them in the preprocessing phase. For these numbers, we generate random

bits and again use B2A to convert them to 𝑛_𝑏𝑖𝑡𝑠 integers.

4.4. Security and Privacy Analysis of MPC FLAME

Each of the three stages of FLAME relies only on robust, round-local statistics- pairwise

cosine geometry, the median norm, and a noise scale tied to that median- thereby avoiding

assumptions about data distributions or specific backdoor crafting strategies beyond the

necessary majority condition 𝑘 < 𝑛/2. A successful targeted backdoor attack needs: (i)

angular steering; (ii) large enough magnitude; (iii) temporal persistence. FLAME’s stages

are deliberately matched to these three levers. This section first covers how the three

components constrain adversarial influence, following the structure and proof strategy

given by Nguyen et al., as well as their reported efficiency against backdoors. Then, it

18

4.4. Security and Privacy Analysis of MPC FLAME

analyzes the trade-off between security and performance, achieved by revealing the norms

and cosine similarities in the leaky-MPC implementation.

Backdoor resilience proof idea. Nguyen et al. reinterpret a sufficiently noised aggregate

as (𝜀, 𝛿)-differentially private with respect to small deviations that encode a backdoor

signal. Following their approach, we design our noise mechanism to approximate similar

indistinguishability properties, aiming to prevent attackers from reliably enforcing trigger-

specific behavior without also perturbing benign behavior, thus eliminating the ’stealth’

requirement of a successful backdoor:

Definition 1 ((𝜀, 𝛿)-differential privacy) A randomized algorithmM is (𝜀, 𝛿)-differentially
private if for any datasets 𝐷1 and 𝐷2 that differ on a single element, and any subset of outputs
S ∈ 𝑅𝑎𝑛𝑔𝑒 (M), the following inequality holds:

𝑃𝑟 [M(𝐷1) ∈ S] ≤ 𝑒𝜀 · 𝑃𝑟 [M(𝐷2) ∈ S] + 𝛿

Their central backdoor elimination claim which applies to their continuous Gaussian noise

mechanism is expressed as Theorem 1:

Theorem 1 A (𝜀, 𝛿)-differentially private model with parameters𝐺 and clipping bound 𝑆𝑡 is
backdoor-free if random Gaussian noise is added to the model parameters yielding a noised
version 𝐺∗ of the model: 𝐺∗ ← 𝐺 + 𝑁 (0, 𝜎2

𝐺
) where the noise scale 𝜎𝐺 is determined by the

clipping bound 𝑆𝑡 and a noise level factor 𝜆: 𝜎 ← 𝜆 · 𝑆𝑡 and 𝜆 = 1

𝜀
·
√︃
2 ln

1.25
𝛿

While our bounded integer noise mechanism is designed to approximate these properties,

formal verification that Theorem 1 holds for our specific implementation would require

additional theoretical analysis.

The magnitude of Gaussian noise required is governed by the 𝐿2-sensitivity of the aggrega-

tion mapping, which FLAME inherits from Dwork et al. [14]:

Definition 2 (Sensitivity) Given the function 𝑓 : D → R𝑑 where D is the data domain
and 𝑑 is the dimension of the function output, the sensitivity of the function 𝑓 is defined as:

Δ = max

𝐷1,𝐷2∈D
∥ 𝑓 (𝐷1) − 𝑓 (𝐷2)∥2

where 𝐷1 and 𝐷2 differ on a single element ∥𝐷1 − 𝐷2∥1 = 1

The second structural component of their proof points out that large angular and large

norm poisoned updates inflate the sensitivity bound Δ. Filtering and clipping thus reduce

the minimal noise needed:

Theorem 2 Backdoor models with large angular deviation from benign ones or with large
parameter magnitudes have high sensitivity values Δ.

19

4. MPC implementation of FLAME

Backdoor Elimination Effectiveness. Nguyen et al, use four metrics to measure the

effectiveness of FLAME, namely:

• Backdoor Accuracy (BA) denotes the accuracy of the model in the backdoor task.

• Main Task Accuracy (MA) indicates the accuracy of the model in the main task.

• True Positive Rate (TPR) indicates the ratio between the models correctly identified

as poisoned (True Positives - TP) and the total number of identified poisoned models:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

• True Negative Rate (TNR) indicates the ratio between the models correctly identified

as benign (True Negatives - TN) and the total number of identified benign models:

𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁+𝐹𝑁

Against various backdoor attacks, FLAME reportedly drives Backdoor Accuracy (BA) to less

than 5% (often 0%) while maintaining Main Task Accuracy (MA) near the benign baseline.

Furthermore, FLAME’s effectiveness is compared to other state-of-the-art defenses like

Krum [4], as well as to a simple differencial privacy approach [14] (among other defenses) on

three datasets (Reddit, CIFAR-10, IoT-Traffic) in terms of Backdoor Accuracy (BA) and Main

Task Accuracy (MA). Other defenses frequently have high Backdoor Accuracy or severely

cut Main Task Accuracy, whereas FLAME uniquely achieves BA 0% with minimal or no

MA degradation. Additionally, Nguyen et al. take into account the impact of the number

of clients and the degree of non-IID data: once attackers are the majority, the clustering

cannot effectively exclude them and the defense degrades, hence the requirement 𝑃𝑀𝑅 < 1

2
;

FLAME is effective across IID to highly non-IID, but may detect fewer poisoned models at

extreme non-IID, although adaptive noise still suppresses backdoors with a slight MA dip

at the most skewed distributions.

On the other hand, FLAME can suffer from mis-tuned (𝜀, 𝛿): the noise scale 𝜎 =
𝑆𝑡
𝜀

√︃
2 ln

1/25
𝛿

is directly tied to the median 𝑆𝑡 and (𝜀, 𝛿). While 𝑆𝑡 is adaptively determined from the

received updates {𝑊𝑖}𝑛𝑖=1, if 𝜀 and 𝛿 are set too small, noise swamps the signal and the

main task accuracy (MA) drops, and a too large 𝜀 can leave residual backdoor influence.

In addition, once 𝑃𝑀𝑅 ≥ 1

2
attackers can dominate the main cluster, making the defense

all attacker-biased, thus the necessary condition 𝑃𝑀𝑅 < 1

2
. Third, FLAME treats each

round independently, so it cannot accumulate anomaly evidence across rounds to detect

multi-round poisoning. Such a lack of reputational memory may waste benign trust signals

that could further adaptively tighten clipping/noise.

Leaked Intermediate Statistics As mentioned previously, our leaky implementation

reveals the 𝐿2 norms (euclidean distances in the algorithm (𝑒1, . . . , 𝑒𝑛)) of all clients, as
well as the cosine distance matrix (𝑐11, . . . , 𝑐𝑛𝑛) used for DBSCAN clustering. The cur-

rent section analyzes the trade-off between security and performance, comparing the two

implementations.

The client update norms contain coarse but still meaningful information about the opti-

mization state and client heterogeneity. Previous work points out that gradient magnitudes

20

4.4. Security and Privacy Analysis of MPC FLAME

shrink with training progress (near convergence) and are used by robust defense mech-

anisms as indicators for outliers and misfit behavior. In particular, FLTrust [9] combines

norm control with cosine similarity to restrict anomalous clients, implying that unusually

large or small norms are detectable by a curious server [29]. More broadly, collaborative

learning research demonstrates that even aggregate update statistics can carry unintended

information about client data distributions; adversaries have inferred properties and mem-

bership using gradients or their summaries in synchronized and federated settings [24].

Label-leakage studies further highlight that per-round update energy is coupled to batch

composition and loss landscape, contributing to attacks in early training where gradients

are larger and more informative [32]. Together, these works motivate that the client norms

correlate with the client state and enable outlier identification across rounds [24, 29, 32].

Revealing cosine similarities (𝑐11, . . . , 𝑐𝑛𝑛) discloses the directional alignment between

clients and thus the heterogeneity structure. Sattler et al. [31] show, that clients drawn from

congruent distributions exhibit aligned gradients, whereas incongruent groups anti-align,

making cosine similarity a sufficient statistic to recover clusters without modifying the

FL protocol. Defense mechanisms adopt the same premise. From a privacy perspective,

collaborative-learning leakage occurs because models form separate internal representations

for features unrelated to the main task; directional signals provide a handle to separate

participants whose data shares such properties [24]. Empirical label-leakage results also

show that early-round gradients are particularly revealing, making pairwise alignment

over those rounds especially informative about label or class composition, even if exact

coordinates are hidden [32].

Providing both norms and cosine distances enables reconstruction of the Gram matrix 𝐾𝑖 𝑗 =

∥𝑔𝑖 ∥∥𝑔 𝑗 ∥𝑐𝑖 𝑗 , where ∥𝑔𝑖 𝑗 ∥ is the norm of client 𝑖 . This matrix determines all pairwise Euclidean

distances (3.3) and enables recovery of the centered update matrix via eigen-decomposition,

which reveals clustering, outlier and principal directions. Exposing these values reduces

the MPC cost, allowing cheaper sorting and clustering, but leaks client-level structural

information that supports property inference and adaptive attacks. Because the leaky

implementation reveals useful geometry, exposing norms and the cosine matrix enlarges the

attack surface in concrete ways: a curious or malicious aggregator can correlate per-round

norms and alignments across time to profile clients, infer heterogeneous subgroups, and

adapt backdoor attempts toward specific directions. Moreover, if we consider server-client

collusion, then revealing 𝐶𝑖 𝑗 directly links client 𝑗 ’s direction to the corrupted client 𝑖’s

known update, enabling stronger property inference or targeted poisoning attacks against

𝑗 . To address this, our design provides two modes and a privacy-efficiency trade-off may be

made: private FLAME keeps both norms and pairwise similarities secret and is preferable

under strict confidentiality or potential server–client collusion; and leaky FLAME reveals

these intermediate statistics to reduce cost, which is acceptable only when the deployment

allows such leakage and does not consider server–client collusion in its threat model. In the

remainder, we adopt the non-collusion setting for leaky-MPC results and emphasize that

deployments requiring stronger guarantees should use the full-MPC version.

21

5. Evaluation

In this chapter, we benchmark the communicational and computational overhead of MPC

FLAME, but not its robustness against poisoning attacks, as it is already evaluated in the

original FLAME paper [26]. The focus of this thesis is on input recosntruction and secure

aggregation; therefore, local training and preprocessing are omitted. The code of this work

is open-source and can be found at https://github.com/yo-yordanov/AlphaFL-FLAME.

5.1. Experimental Setup

The experiments are designed to quantify how the number of federated clients and the

model parameter size influence the computational and communication runtime of both the

full and the leaky MPC FLAME implementation. Therefore, this work varies two primary

independent variables:

• The number of clients: {10, 20, 30, 40, 50}

• The number of parameters: {100 000, 300 000}

Not all combinations between clients and parameters have been tested, because of insuffi-

cient processing power- for 100 000 parameters all combinations have been benchmarked,

but for 300 000 parameters only the 10-clients benchmark was computed successfully. We

also include benchmarks for two micro-configurations with 4 clients and 62,006 and 274,442

parameters, respectively, used for direct comparison against AlphaFL.

All tests are carried out for malicious security under SPDZ
2
𝑘 (𝑘 = 64, 𝑠 = 64) [12].

Furthermore, we use Linux traffic control (tc) to limit traffic with a round-trip latency of

1 ms (≈ 0,5 ms one-way delay) and a bandwidth cap of 10Gbps. This controlled setting

removes network variability while still imposing latency that affects round-heavy MPC

protocols.

All tests are conducted on a single workstation with the following specifications:

• Model: Lenovo Legion Slim 5 16ARP9

• CPU: AMD Ryzen 7 7435HS (8 physical cores, 16 logical threads, base 3.10𝐺𝐻𝑧)

• Memory: 32 GB DDR5 (4800MT/s, CL40)

• Storage: WD PC SN740 (NVMe SSD, 512 GB)

23

https://github.com/yo-yordanov/AlphaFL-FLAME

5. Evaluation

• Operating System: Ubuntu 24.04.3 LTS (Noble Numbat)

5.2. Performance Evaluation

This section contains and briefly describes the main results of this work. Tables 5.1 and

5.2 display the total and online runtimes and data sent of both leaky and private FLAME

implementations, including the same values for the state-of-the-art AlphaFL [17] imple-

mentation, run on the same machine for comparison. Afterwards, we have summarized

the same results per component in five more tables, table 5.3 describes the costs of input

reconstruction and noise generation, tables 5.4 and 5.5 representing the component-wise

runtimes of the two approaches, and 5.6 and 5.7- the component-wise data sent.

Across total and online runtimes, leaky and private FLAME track each other closely and

are only moderately above Alpha-SA at small scales (with less than 35% overhead); the

gap widens heavily as either clients or inputs grow. This similarity in smaller cases is

expected because several components are the same or equally cheap in both variants: input

commitment, aggregation, and L2 norms are inherited from the AlphaFL repository; noising

is implemented with inexpensive MPC-friendly operations so it doesn’t impact performance

hard. That’s also why the per-component runtimes show clipping and noising as consistently

small compared to clustering.

Where AlphaFL and MPC-FLAME diverge is the clustering: computing pairwise cosine

similarities dominates with it’s 𝑂 (𝑛2𝑘) cost, where 𝑛 is the number of clients and 𝑘 is

the number of inputs. This cost drives both the runtime overhead and the data volume,

and it scales quadratically with n while growing linearly with k. This can be clearly

distinguished in the per-component breakdowns: clustering time grows from sub-second

in small configurations to tens of seconds in 30–50 clients, resulting in more than 75% of

the runtime; and the “Clustering” data sent column explodes into the multi-gigabyte range,

totaling more than 95% of the data sent. This effect is similar for both leaky and private

modes because both must essentially process the same cosine geometry; any savings from

revealing statistics are dwarfed by the quadratic pairwise computation itself.

Table 5.1.: Runtime comparison (seconds)

Clients Inputs AlphaFL Total Leaky Online Leaky Total Private Online Private

4 62 006 0.58 2.30 0.77 2.51 0.98

4 274 442 3.62 14.25 4.25 14.70 4.68

10 100 000 2.24 6.00 3.53 6.40 3.93

10 300 000 6.66 18.52 11.22 19.36 12.07

20 100 000 4.40 12.89 10.34 13.94 11.41

30 100 000 6.58 23.37 20.83 24.25 21.73

40 100 000 8.76 36.08 33.48 38.71 36.14

50 100 000 5.81 53.10 50.49 55.01 52.45

24

5.2. Performance Evaluation

Table 5.2.: Data sent comparison (MB)

Clients Inputs AlphaFL Total Leaky Online Leaky Total Private Online Private

4 62 006 9.93 41.11 37.71 51.38 47.98

4 274 442 43.92 181.72 166.87 225.98 211.13

10 100 000 37.64 347.11 341.64 384.95 379.48

10 300 000 112.92 1041.30 1024.93 1149.54 1133.17

20 100 000 73.68 1327.31 1321.70 1401.20 1395.59

30 100 000 109.72 2947.37 2941.76 3054.01 3048.40

40 100 000 145.76 5207.58 5201.82 5355.38 5349.62

50 100 000 181.80 8107.65 8101.89 8288.51 8282.75

Input reconstruction and preprocessing are common to both variants; we therefore do

not compare them across modes. Both scale approximately linearly with model size and

client count, and the input commitment matches AlphaFL exactly. Per every 10 clients at

100k inputs, input time increases by about 1.7 s with an additional 4.04 MB transmitted.

Preprocessing (random-noise generation) is dominated by input dimensionality. A minor

increase with more clients stems from the bounded-noise parameterization, which adapts

to the value range and to log-scaled client counts- specifically, input size plus 4 bits for 10

clients, 5 bits for 20–30 clients, and 6 bits for 40–50 clients.

Table 5.3.: Input and preprocessing performance

Clients Inputs Input (s) Input (MB) Preprocessing (s) Preprocessing (MB)

4 62 006 0.43 1.00 1.53 3.40

4 274 442 2.86 4.40 10.00 14.85

10 100 000 1.70 4.04 2.47 5.46

10 300 000 5.12 12.12 7.29 16.37

20 100 000 3.38 8.08 2.55 5.61

30 100 000 5.11 12.12 2.54 5.61

40 100 000 6.75 16.15 2.60 5.76

50 100 000 8.42 20.19 2.61 5.76

Under both Private-FLAME and Leaky-FLAME, the runtime per component is shaped

almost entirely by the clustering step. The preprocessing step indicates the random noise

generation, hence its strict relation to input size, and the input phase grows roughly linearly

with inputs and clients as expected from I/O and fixed MPC setup costs. Clipping and

noising remain small and relatively flat, because both use cheap operations in MPC to scale

the updates of every client and add noise to the aggregated update, respectively. The key

difference between the two tables is that leaky clipping becomes even smaller due to the

revealed L2 norms and cosine distances, but the overall profile barely changes due to the

dominant 𝑂 (𝑛2𝑘) clustering step: it rises from sub-second with ∼ 0.25s in the smallest

setting to 15–42s for 30–50 clients, directly mirroring the quadratic growth with 𝑛 and linear

growth with 𝑘 . In short, both variants look similar because the same expensive cosine phase

dwarfs the other phases; the leaky gains show up in a modestly lower clipping time, but

they are negligible compared to the cost of clustering.

25

5. Evaluation

Table 5.4.: Private-FLAME runtime per component (seconds)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise

4 62 006 0.08 0.23 0.01 0.09 0.05 0.01 0.06

4 274 442 0.26 0.82 0.01 0.09 0.24 0.06 0.29

10 100 000 0.27 1.45 0.01 0.16 0.17 0.06 0.10

10 300 000 0.65 5.01 0.01 0.16 0.57 0.20 0.34

20 100 000 0.56 6.68 0.01 0.20 0.34 0.11 0.11

30 100 000 0.84 14.80 0.02 0.20 0.50 0.15 0.11

40 100 000 1.11 27.03 0.03 0.27 0.67 0.18 0.11

50 100 000 1.44 41.09 0.05 0.27 0.86 0.20 0.11

Table 5.5.: Leaky-FLAME runtime per component (seconds)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise

4 62 006 0.05 0.21 0.00 0.00 0.01 0.01 0.05

4 274 442 0.22 0.80 0.00 0.00 0.03 0.07 0.25

10 100 000 0.18 1.46 0.00 0.00 0.03 0.06 0.09

10 300 000 0.57 4.92 0.00 0.00 0.09 0.21 0.29

20 100 000 0.35 6.37 0.00 0.00 0.06 0.11 0.09

30 100 000 0.55 14.84 0.00 0.00 0.09 0.15 0.09

40 100 000 0.72 25.62 0.00 0.00 0.11 0.18 0.09

50 100 000 0.96 40.71 0.00 0.00 0.13 0.21 0.09

Since we reveal the L2 norms and the cosine distance matrix, the median and scaling factors

can be computed without additional private communication, hence the leaky variant’s

component-wise “0” column for the MPC traffic in the clipping stage. However, this does

not translate into a major end-to-end reduction because the total is still dominated by the

cosine similarity stage. We must still consider that without the expensive cosine similarity

computation, revealing the intermediate L2 distances and cosine similarities reduces a

noticeable chunk of the remaining MPC communication (up to around 85% of the remaining

communication).

Table 5.6.: Private-FLAME data sent per component (MB)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise

4 62 006 4.08 31.76 0.00 0.21 7.94 0.00 2.98

4 274 442 17.68 140.53 0.00 0.21 35.14 0.00 13.17

10 100 000 16.29 320.08 0.01 2.26 32.01 0.00 4.80

10 300 000 48.29 960.08 0.01 2.26 96.01 0.00 14.40

20 100 000 32.57 1280.30 0.03 5.77 64.03 0.00 4.80

30 100 000 48.86 2880.67 0.07 5.83 96.03 0.00 4.80

40 100 000 65.15 5121.19 0.13 14.15 128.04 0.00 4.80

50 100 000 81.43 8001.86 0.20 14.21 160.05 0.00 4.80

26

5.2. Performance Evaluation

Table 5.7.: Leaky-FLAME data sent per component (MB)

Clients Inputs L2 Cos DBSCAN Bound Clip Aggregation Noise

4 62 006 3.97 31.75 0.00 0.00 0.00 0.00 0.99

4 274 442 17.56 140.52 0.00 0.00 0.00 0.00 4.39

10 100 000 16.00 320.00 0.00 0.00 0.00 0.00 1.60

10 300 000 48.00 960.01 0.00 0.00 0.00 0.00 4.80

20 100 000 32.00 1280.01 0.00 0.00 0.00 0.00 1.60

30 100 000 48.00 2880.03 0.00 0.00 0.00 0.00 1.60

40 100 000 64.00 5120.06 0.00 0.00 0.00 0.00 1.60

50 100 000 80.00 8000.09 0.00 0.00 0.00 0.00 1.60

In summary, the common cheap pieces (commitment, aggregation, noising) explain why

FLAME-Leaky and FLAME-Private are similar in smaller test cases, while the expensive

𝑂 (𝑛2𝑘) cosine phase explains the large absolute differences vs. Alpha-SA.

27

6. Discussion

6.1. Performance and System

Our evaluation shows the cosine-similarity phase dominates both runtime and traffic due

to its quadratic behavior in the number of clients and linear dependence on model dimen-

sionality 𝑂 (𝑛2𝑘), where 𝑛 is the number of clients and 𝑘 is the number of parameters. In

simple terms, computing all pairwise cosine similarities scales poorly when many clients

participate. Practical solutions to this could include sub-sampling client pairs to estimate

the majority direction cluster, or restricting the similarity computations to selected layers

or a low-rank representation. These ideas align with clustered FL observations that gra-

dient alignment captures client heterogeneity, suggesting lower-dimensional proxies can

retain useful structure while cutting cost [31]. On the system side, predefined batching,

vectorization and exploiting pre-processing, fixed-point quantization and overlapping com-

munication with computation could also be promising extensions to our implementation.

We also want to emphasize the network sensitivity- our fixed 10Gbps and 1ms RTT masks

WAN effects; under tens of milliseconds RTT, round-heavy MPC protocols incur additional

overhead, similar to the sensitivy noted by secure aggregation systems when interaction

rounds increase [5, 17].

In our results, both modes are close because the cosine stage dominates; revealing norms

and the cosine matrix reduces clipping costs, but those are only a small fraction of total

runtime. Leaky mode can be more viable if the cosine phase is made sub-quadratic, thus

making its savings more dominant, or in environments where revealing such intermediate

statistics is acceptable under the environments policy. In contrast, full-MPC mode better fits

regulated domains and threat models with strict confidentiality requirements. This trade-off

mirrors broader secure aggregation work where stronger adversary models entail higher

costs but are justified when servers or parties cannot be fully trusted [30].

6.2. Practical Feasibility

AlphaFL provides malicious-security secure aggregation under dishonest majority and norm-

bound checks; our work builds on that baseline to add FLAME’s structure-aware filtering,

adaptive clipping, and minimal effective noise for backdoor suppression [17, 26]. Compared

to secure aggregation frameworks such as ELSA [30] and e-SeaFL [3], our approach offers

richer robustness via clustering and adaptive noising, at the cost of the expensive cosine

phase. RoFL [22] focuses on robustness analyses and cryptographic checks around norms;

29

6. Discussion

MUDGUARD [34] privately clusters to tolerate malicious majorities, which is conceptually

aligned with our clustering-based defense but with different robustness-privacy trade-

offs and threat assumptions. TEE-assisted systems (like SRFL [10], FLAIRS [21]) achieve

lower overhead for richer inspection but shift trust to hardware and attestation; FLAIRS

further targets inference resistance and acceleration. FLAME itself has TEE-assisted variant,

indicating that heavy clustering can be offloaded to trusted hardware while keeping MPC

for malicious security [10, 21]. In practical deployment terms, our MPC-FLAME is suitable

for moderate client counts and mid-sized models on servers with low-latency networks,

offering strong confidentiality; for large-scale or WAN settings, TEE-s or hybrid designs

such as TEE for the cosine similarities step and MPC for the aggregation and evidence

may be more operationally feasible, with caveats around trust, attestation, and regulatory

acceptance [2, 38, 35].

6.3. Future Work

Two directions for future work are immediate: first, algorithmic reductions for the cosine

similarities under MPC can be tested for more stable robustness. Second, formalizing

bounded-noice privacy under finite-precision MPC, leveraging discrete Gaussian/RDP

accounting and integrating multi round differential privacy [7, 19]. Specifically, we could

not find peer-reviewed MPC implementations of FLAME: open-sourcing and evaluating

across distributed settings and WANs, adding client churn handling and reputation actoss

rounds (like in FedRecover [8]), and exploring hybrid TEE-MPC realizations could be

promising next steps.

30

7. Conclusion

This thesis set out to reconcile two aims that often pull in opposite directions in federated

learning: preserving client confidentiality and resisting targeted backdoor attacks. While

FLAME cannot be directly transferred into an MPC setting, we showed that with some

adjustments- replacing HDBSCAN with DBSCAN approximation and introducing bounded

MPC noise calibrated to FLAME’s adaptive scale- it is feasible to extend FLAME’s backdoor

resilience under malicious-security guarantees, keeping client updates private throughout

aggregation.

Our design preserves FLAME’s structure: cosine-similarity clustering filters angular outliers,

median-based adaptive clipping caps per-update leverage, and calibrated noising suppresses

residual backdoor signal. Implemented over MP-SPDZ with SPDZ2k, the protocol runs

end-to-end under active security and dishonest majority. Empirically, the dominant cost

is pairwise cosine similarity in clustering; clipping and noising remain comparatively

lightweight. We also evaluated a leaky variant that reveals norms and pairwise cosine

similarities to accelerate median computation and clustering. Although this reduces some

MPC overhead, the quadratic cosine step still dominates, so the runtime gains are modest

and, in our view, do not justify the additional leakage of client geometry- especially in

threat models where aggregators or colluding parties are considered curious.

In practice, MPC-FLAME is viable at moderate scales and low-latency settings, delivering

confidentiality with enforced backdoor defenses. For larger federations or WAN deploy-

ments, further engineering and algorithmic refinements may be necessary- such as sub-

sampling pairs, low-rank similarity proxies, or hybrid designs that offload the cosine-heavy

phase to trusted hardware.

Overall, this work demonstrates that FLAME’s core idea can be carried into a malicious-

secure MPC setting. It meaningfully narrows the gap between privacy-preserving aggrega-

tion and backdoor resilience, providing a concrete, open-source step toward secure federated

learning.

31

Bibliography

[1] Eugene Bagdasaryan et al. How To Backdoor Federated Learning. arXiv:1807.00459 [cs].
Aug. 2019. doi: 10.48550/arXiv.1807.00459. url: http://arxiv.org/abs/1807.

00459.

[2] Sebastian Becker et al. Multi-Party Computation in Corporate Data Processing: Legal
and Technical Insights. Publication info: Preprint. 2025. url: https://eprint.iacr.

org/2025/463.

[3] Rouzbeh Behnia et al. Efficient Secure Aggregation for Privacy-Preserving Federated
Machine Learning. arXiv:2304.03841 [cs]. Nov. 2024. doi: 10.48550/arXiv.2304.03841.
url: http://arxiv.org/abs/2304.03841.

[4] Peva Blanchard et al. “Machine learning with adversaries: byzantine tolerant gradient

descent”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017,

pp. 118–128. isbn: 978-1-5108-6096-4.

[5] Keith Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine

Learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. New York, NY, USA: Association for Computing

Machinery, Oct. 2017, pp. 1175–1191. isbn: 978-1-4503-4946-8. doi: 10.1145/3133956.

3133982. url: https://dl.acm.org/doi/10.1145/3133956.3133982.

[6] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based Cluster-

ing Based on Hierarchical Density Estimates”. en. In: Advances in Knowledge Discovery
and Data Mining. Ed. by Jian Pei et al. Berlin, Heidelberg: Springer, 2013, pp. 160–172.

isbn: 978-3-642-37456-2. doi: 10.1007/978-3-642-37456-2_14.

[7] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. “The Discrete Gaussian

for Differential Privacy”. In: Journal of Privacy and Confidentiality 12.1 (July 2022).

arXiv:2004.00010 [cs]. issn: 2575-8527. doi: 10.29012/jpc.784. url: http://arxiv.

org/abs/2004.00010.

[8] Xiaoyu Cao et al. “FedRecover: Recovering from Poisoning Attacks in Federated

Learning using Historical Information”. In: 2023 IEEE Symposium on Security and
Privacy (SP). ISSN: 2375-1207. May 2023, pp. 1366–1383. doi: 10.1109/SP46215.2023.

10179336. url: https://ieeexplore.ieee.org/abstract/document/10179336.

[9] Xiaoyu Cao et al. FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping.
arXiv:2012.13995 [cs]. Apr. 2022. doi: 10 . 48550 / arXiv . 2012 . 13995. url: http :

//arxiv.org/abs/2012.13995.

33

https://doi.org/10.48550/arXiv.1807.00459
http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1807.00459
https://eprint.iacr.org/2025/463
https://eprint.iacr.org/2025/463
https://doi.org/10.48550/arXiv.2304.03841
http://arxiv.org/abs/2304.03841
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://dl.acm.org/doi/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.29012/jpc.784
http://arxiv.org/abs/2004.00010
http://arxiv.org/abs/2004.00010
https://doi.org/10.1109/SP46215.2023.10179336
https://doi.org/10.1109/SP46215.2023.10179336
https://ieeexplore.ieee.org/abstract/document/10179336
https://doi.org/10.48550/arXiv.2012.13995
http://arxiv.org/abs/2012.13995
http://arxiv.org/abs/2012.13995

Bibliography

[10] Yihao Cao et al. “SRFL: A Secure & Robust Federated Learning framework for IoT

with trusted execution environments”. In: Expert Systems with Applications 239 (Apr.
2024), p. 122410. issn: 0957-4174. doi: 10.1016/j.eswa.2023.122410. url: https:

//www.sciencedirect.com/science/article/pii/S0957417423029123.

[11] Ruonan Chen et al. “FLock: Robust and Privacy-Preserving Federated Learning based

on Practical Blockchain State Channels”. In: Proceedings of the ACM onWeb Conference
2025. WWW ’25. New York, NY, USA: Association for Computing Machinery, Apr.

2025, pp. 884–895. isbn: 979-8-4007-1274-6. doi: 10.1145/3696410.3714666. url:

https://dl.acm.org/doi/10.1145/3696410.3714666.

[12] Ronald Cramer et al. SPDZ2k: Efficient MPCmod 2^k for Dishonest Majority. Publication
info: A minor revision of an IACR publication in CRYPTO 2018. 2018. url: https:

//eprint.iacr.org/2018/482.

[13] Ivan Damgård et al. “Practical Covertly Secure MPC for Dishonest Majority – Or:

Breaking the SPDZ Limits”. en. In: Computer Security – ESORICS 2013. Ed. by David

Hutchison et al. Vol. 8134. Series Title: Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–18. isbn: 978-3-642-40202-9 978-

3-642-40203-6. doi: 10.1007/978-3-642-40203-6_1. url: http://link.springer.

com/10.1007/978-3-642-40203-6_1.

[14] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Pri-

vacy”. English. In: Foundations and Trends® in Theoretical Computer Science 9.3–4 (Aug.
2014). Publisher: Now Publishers, Inc., pp. 211–407. issn: 1551-305X, 1551-3068. doi:

10.1561/0400000042. url: https://www.nowpublishers.com/article/Details/TCS-

042.

[15] Martin Ester et al. “A density-based algorithm for discovering clusters in large spa-

tial databases with noise”. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI Press, Aug.
1996, pp. 226–231.

[16] Dengguo Feng and Kang Yang. “Concretely efficient secure multi-party computation

protocols: survey and more”. en. In: Security and Safety 1 (2022), p. 2021001. issn:

2826-1275. doi: 10.1051/sands/2021001. url: https://sands.edpsciences.org/10.

1051/sands/2021001.

[17] Yufan Jiang et al.AlphaFL: Secure Aggregation withMalicious2 Security for Federated
Learning against Dishonest Majority. Publication info: Published elsewhere. Minor

revision. PETS 2025. 2025. url: https://eprint.iacr.org/2025/1289.

[18] Peter Kairouz et al.Advances andOpen Problems in Federated Learning. arXiv:1912.04977
[cs]. Mar. 2021. doi: 10.48550/arXiv.1912.04977. url: http://arxiv.org/abs/1912.

04977.

[19] Hannah Keller et al. “Secure Noise Sampling for DP in MPC with Finite Precision”.

en. In: Proceedings of the 19th International Conference on Availability, Reliability and
Security. Vienna Austria: ACM, July 2024, pp. 1–12. isbn: 979-8-4007-1718-5. doi: 10.

1145/3664476.3664490. url: https://dl.acm.org/doi/10.1145/3664476.3664490.

34

https://doi.org/10.1016/j.eswa.2023.122410
https://www.sciencedirect.com/science/article/pii/S0957417423029123
https://www.sciencedirect.com/science/article/pii/S0957417423029123
https://doi.org/10.1145/3696410.3714666
https://dl.acm.org/doi/10.1145/3696410.3714666
https://eprint.iacr.org/2018/482
https://eprint.iacr.org/2018/482
https://doi.org/10.1007/978-3-642-40203-6_1
http://link.springer.com/10.1007/978-3-642-40203-6_1
http://link.springer.com/10.1007/978-3-642-40203-6_1
https://doi.org/10.1561/0400000042
https://www.nowpublishers.com/article/Details/TCS-042
https://www.nowpublishers.com/article/Details/TCS-042
https://doi.org/10.1051/sands/2021001
https://sands.edpsciences.org/10.1051/sands/2021001
https://sands.edpsciences.org/10.1051/sands/2021001
https://eprint.iacr.org/2025/1289
https://doi.org/10.48550/arXiv.1912.04977
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
https://doi.org/10.1145/3664476.3664490
https://doi.org/10.1145/3664476.3664490
https://dl.acm.org/doi/10.1145/3664476.3664490

[20] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In:

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’20. New York, NY, USA: Association for Computing Machinery, Nov.

2020, pp. 1575–1590. isbn: 978-1-4503-7089-9. doi: 10.1145/3372297.3417872. url:

https://dl.acm.org/doi/10.1145/3372297.3417872.

[21] Huimin Li et al. “FLAIRS: FPGA-Accelerated Inference-Resistant & Secure Federated

Learning”. In: 2023 33rd International Conference on Field-Programmable Logic and
Applications (FPL). ISSN: 1946-1488. Sept. 2023, pp. 271–276. doi: 10.1109/FPL60245.
2023.00046. url: https://ieeexplore.ieee.org/abstract/document/10296389.

[22] Hidde Lycklama et al. RoFL: Robustness of Secure Federated Learning. arXiv:2107.03311
[cs]. Jan. 2023. doi: 10.48550/arXiv.2107.03311. url: http://arxiv.org/abs/2107.

03311.

[23] H. Brendan McMahan et al. Communication-Efficient Learning of Deep Networks from
Decentralized Data. arXiv:1602.05629 [cs]. Jan. 2023. doi: 10.48550/arXiv.1602.05629.
url: http://arxiv.org/abs/1602.05629.

[24] Luca Melis et al. Exploiting Unintended Feature Leakage in Collaborative Learning.
arXiv:1805.04049 [cs]. Nov. 2018. doi: 10.48550/arXiv.1805.04049. url: http:

//arxiv.org/abs/1805.04049.

[25] Luis Muñoz-González, Kenneth T. Co, and Emil C. Lupu. Byzantine-Robust Federated
Machine Learning through Adaptive Model Averaging. arXiv:1909.05125 [stat]. Sept.
2019. doi: 10.48550/arXiv.1909.05125. url: http://arxiv.org/abs/1909.05125.

[26] Thien Duc Nguyen et al. FLAME: Taming Backdoors in Federated Learning (Extended
Version 1). arXiv:2101.02281 [cs]. Aug. 2023. doi: 10.48550/arXiv.2101.02281. url:
http://arxiv.org/abs/2101.02281.

[27] Thuy Dung Nguyen et al. “Backdoor attacks and defenses in federated learning:

Survey, challenges and future research directions”. In: Engineering Applications of
Artificial Intelligence 127 (Jan. 2024), p. 107166. issn: 0952-1976. doi: 10.1016/j.

engappai.2023.107166. url: https://www.sciencedirect.com/science/article/

pii/S0952197623013507.

[28] Thuy Dung Nguyen et al. “IBA: Towards Irreversible Backdoor Attacks in Federated

Learning”. en. In: Advances in Neural Information Processing Systems 36 (Dec. 2023),
pp. 66364–66376. url: https://proceedings.neurips.cc/paper_files/paper/

2023/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html.

[29] Xian Qin, Xue Yang, and Xiaohu Tang. Efficient Byzantine-Robust Privacy-Preserving
Federated Learning via Dimension Compression. arXiv:2509.11870 [cs]. Sept. 2025. doi:
10.48550/arXiv.2509.11870. url: http://arxiv.org/abs/2509.11870.

[30] Mayank Rathee et al. ELSA: Secure Aggregation for Federated Learning with Malicious
Actors. Publication info: Published elsewhere. IEEE Security and Privacy (S&P) 2023.

2022. url: https://eprint.iacr.org/2022/1695.

35

https://doi.org/10.1145/3372297.3417872
https://dl.acm.org/doi/10.1145/3372297.3417872
https://doi.org/10.1109/FPL60245.2023.00046
https://doi.org/10.1109/FPL60245.2023.00046
https://ieeexplore.ieee.org/abstract/document/10296389
https://doi.org/10.48550/arXiv.2107.03311
http://arxiv.org/abs/2107.03311
http://arxiv.org/abs/2107.03311
https://doi.org/10.48550/arXiv.1602.05629
http://arxiv.org/abs/1602.05629
https://doi.org/10.48550/arXiv.1805.04049
http://arxiv.org/abs/1805.04049
http://arxiv.org/abs/1805.04049
https://doi.org/10.48550/arXiv.1909.05125
http://arxiv.org/abs/1909.05125
https://doi.org/10.48550/arXiv.2101.02281
http://arxiv.org/abs/2101.02281
https://doi.org/10.1016/j.engappai.2023.107166
https://doi.org/10.1016/j.engappai.2023.107166
https://www.sciencedirect.com/science/article/pii/S0952197623013507
https://www.sciencedirect.com/science/article/pii/S0952197623013507
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/d0c6bc641a56bebee9d985b937307367-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2509.11870
http://arxiv.org/abs/2509.11870
https://eprint.iacr.org/2022/1695

Bibliography

[31] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered Federated Learn-
ing: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints.
arXiv:1910.01991 [cs]. Oct. 2019. doi: 10 . 48550 / arXiv . 1910 . 01991. url: http :

//arxiv.org/abs/1910.01991.

[32] Aidmar Wainakh et al. User-Level Label Leakage from Gradients in Federated Learning.
arXiv:2105.09369 [cs]. Jan. 2022. doi: 10 . 48550 / arXiv . 2105 . 09369. url: http :

//arxiv.org/abs/2105.09369.

[33] Yichen Wan et al. “Data and Model Poisoning Backdoor Attacks on Wireless Fed-

erated Learning, and the Defense Mechanisms: A Comprehensive Survey”. In: IEEE
Communications Surveys & Tutorials 26.3 (2024), pp. 1861–1897. issn: 1553-877X. doi:
10.1109/COMST.2024.3361451. url: https://ieeexplore.ieee.org/abstract/

document/10423783.

[34] Rui Wang et al. “MUDGUARD: Taming Malicious Majorities in Federated Learning

using Privacy-preserving Byzantine-robust Clustering”. In: Proc. ACM Meas. Anal.
Comput. Syst. 8.3 (Dec. 2024), 40:1–40:41. doi: 10.1145/3700422. url: https://dl.
acm.org/doi/10.1145/3700422.

[35] Mang Ye et al. “Heterogeneous Federated Learning: State-of-the-art and Research

Challenges”. In: ACM Comput. Surv. 56.3 (Oct. 2023), 79:1–79:44. issn: 0360-0300. doi:
10.1145/3625558. url: https://dl.acm.org/doi/10.1145/3625558.

[36] Dong Yin et al. Byzantine-Robust Distributed Learning: Towards Optimal Statistical
Rates. arXiv:1803.01498 [cs]. Feb. 2021. doi: 10 . 48550 / arXiv . 1803 . 01498. url:

http://arxiv.org/abs/1803.01498.

[37] Kai Zhang et al. Bounded and Unbiased Composite Differential Privacy. arXiv:2311.02324
[cs]. Nov. 2023. doi: 10.48550/arXiv.2311.02324. url: http://arxiv.org/abs/2311.

02324.

[38] Yifei Zhang et al. “A Survey of Trustworthy Federated Learning: Issues, Solutions, and

Challenges”. In: ACM Trans. Intell. Syst. Technol. 15.6 (Oct. 2024), 112:1–112:47. issn:
2157-6904. doi: 10.1145/3678181. url: https://dl.acm.org/doi/10.1145/3678181.

[39] Ian Zhou et al. “Secure Multi-Party Computation for Machine Learning: A Survey”.

In: IEEE Access 12 (2024), pp. 53881–53899. issn: 2169-3536. doi: 10.1109/ACCESS.
2024.3388992. url: https://ieeexplore.ieee.org/document/10498135.

36

https://doi.org/10.48550/arXiv.1910.01991
http://arxiv.org/abs/1910.01991
http://arxiv.org/abs/1910.01991
https://doi.org/10.48550/arXiv.2105.09369
http://arxiv.org/abs/2105.09369
http://arxiv.org/abs/2105.09369
https://doi.org/10.1109/COMST.2024.3361451
https://ieeexplore.ieee.org/abstract/document/10423783
https://ieeexplore.ieee.org/abstract/document/10423783
https://doi.org/10.1145/3700422
https://dl.acm.org/doi/10.1145/3700422
https://dl.acm.org/doi/10.1145/3700422
https://doi.org/10.1145/3625558
https://dl.acm.org/doi/10.1145/3625558
https://doi.org/10.48550/arXiv.1803.01498
http://arxiv.org/abs/1803.01498
https://doi.org/10.48550/arXiv.2311.02324
http://arxiv.org/abs/2311.02324
http://arxiv.org/abs/2311.02324
https://doi.org/10.1145/3678181
https://dl.acm.org/doi/10.1145/3678181
https://doi.org/10.1109/ACCESS.2024.3388992
https://doi.org/10.1109/ACCESS.2024.3388992
https://ieeexplore.ieee.org/document/10498135

A. Appendix

A.1. DBSCAN and HDBSCAN

Similar to Nguyen et al. [26], we chose to approximate HDBSCAN with DBSCAN in the

MPC setting. This is justified both algorithmically and practically, and it preserves the

intended filtering behavior of FLAME while enabling an efficient secure implementation.

FLAME itself explicitly adopts this substitution for its "private FLAME" realization: the

authors replaceHDBSCANwithDBSCAN to avoid the expensive construction of theminimal

spanning tree in HDBSCAN, while keeping the rest of the workflow intact. Conceptually,

this is acceptable because both methods are density-based and aim to separate a dense

majority cluster from sparse outliers: HDBSCAN generalizes DBSCAN’s fixed 𝜀 by building

a hierarchy over mutual-reachability distances, but FLAME ultimately needs a single-round

admission step that labels the majority cluster and treats the rest as outliers, which DBSCAN

can provide with a well chosen 𝜀 [26]. To be more specific, FLAME measures pairwise cosine

distances and retains only the majority cluster, marking all remaining models as outliers, so

DBSCAN with𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 = ⌊𝑛
2
⌋ + 1 similarly excludes sparse points and small groups,

aligning with FLAME’s intention of removing high-impact deviating updates.

Regarding complexity, our naive DBSCAN implementation underMPC computes all pairwise

neighborhood relations, incurring𝑂 (𝑛2) work, which matches the worst-case bounds and is

consistent with the methods cited. Classical DBSCAN can be O(n log n) on spatial indexes,

but without such structures-or when replaced by secure pairwise checks-it degenerates to

𝑂 (𝑛2) due to computing all 𝜀-neighborhoods [15]. HDBSCAN’s reference implementation

also relies on building an MST over a complete graph of mutual reachability distances and

then processing it to extract the hierarchy [6], which is impractical under MPC as stated

by Nguyen et al. Therefore, implementing DBSCAN by checking 𝜀-neighborhoods from

the precomputed cosine distance matrix is straightforward and quadratic, thus yielding the

same 𝑂 (𝑛2) asymptotic runtime that we assume for worst-case MPC, while preserving the

majority-cluster decision that FLAME requires.

37

	Abstract
	Zusammenfassung
	Introduction
	Existing Defenses
	Motivation

	Related Work
	FLAME Protocol Analysis
	Protocol Architecture and Threat Model
	Core Components

	MPC implementation of FLAME
	MPC Architecture
	Bounded Noise Generation for MPC Differential Privacy
	FLAME Implementation in MP-SPDZ
	Security and Privacy Analysis of MPC FLAME

	Evaluation
	Experimental Setup
	Performance Evaluation

	Discussion
	Performance and System
	Practical Feasibility
	Future Work

	Conclusion
	Bibliography
	Appendix
	DBSCAN and HDBSCAN

