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Abstract

Foundation Models (FMS) have shown impressive performance on various text
and image processing tasks. They can generalize across domains and datasets
in a zero-shot setting. This could make them suitable for automated quality
inspection during series manufacturing, where various types of images are being
evaluated for many different products. Replacing tedious labeling tasks with a
simple text prompt to describe anomalies and utilizing the same models across
many products would save significant efforts during model setup and imple-
mentation. This is a strong advantage over supervised Artificial Intelligence
(ATI) models, which are trained for individual applications and require labeled
training data. We test multiple recent FMS on both custom real-world industrial
image data and public image data. We show that all of those models fail on our
real-world data, while the very same models perform well on public benchmark
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datasets.

1 Introduction

Defect pattern recognition is carried out during quality inspection in automotive
series manufacturing. During image-based quality inspection, images are
recorded for a very wide range of manufacturing processes. Beyond color
images, advanced inspection technologies yield, e.g., depth images, x-ray im-
ages or Scanning Acoustic Tomography (SAT) images. The recording procedure
is set up to capture defects that are specific to the respective manufacturing
process. This ensures high product quality and prevents defective products
from being delivered to customers. Sometimes, further expensive processing
steps of a defective product can also be saved. Due to the high volume of
manufactured parts, an automated defect recognition procedure can significantly
reduce manual inspection efforts. Here, Artificial Neural Networks (ANNS) are
increasingly used besides classic image processing techniques [1,2]. However,
a significant drawback of ANN-based classifiers is their reliance on large
amounts of manually labeled training data. While this effort can be mitigated by
unsupervised Al approaches [3], it remains a considerable hurdle. At the same
time, simpler methods, such as a direct comparison to a reference image, are
often insufficient. Real-world challenges like manufacturing tolerances, image
registration errors, or varying brightness prevent such an approach from reliably
detecting defects.

These limitations of both supervised models and simple heuristics motivate the
exploration of a new class of powerful, pre-trained models. On various text and
image processing tasks in other domains, FMS have recently shown impressive
performance [4-6]. For example, the Segment Anything Model (SAM) and
Contrastive Language-Image Pre-training (CLIP) generalize very well across
many domains and datasets in a zero-shot setting, significantly reducing labeling
efforts. While CLIP accepts small text inputs, Large Vision and Language Mod-
els (LVLMS) like Gemini [11] are more powerful at the simultaneous processing
of image and text input. Domain experts can formulate text prompts without
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significant effort. Promising ideas for prompting during quality inspection are,
e.g., a description of the normal state of the product or a description of the
visual or physical properties of the defects. These reduced labeling efforts,
combined with the additional opportunity to integrate domain expert knowledge
via text input, would enable easier scaling across several products, i.e., with
significantly lower efforts for each product. The seemingly clear advantages
over State Of The Art (SOTA) approaches motivate the question of how suitable
FMs are for image-based quality inspection tasks. To close these gaps for
industrial use cases, we analyze the applicability of various recent FMS on
real-world industrial data in this work. The achieved performance is compared
to the performance of the same models on a public dataset.

The main objective during quality inspection is the distinction of defective and
defect-free products. A classification model can perform such an inspection
task with minimal setup. However, it might not cover all desired functionalities
fully: In some cases, the classification of an AI model is re-checked by a human
operator. Furthermore, a high level of explainability is preferred during model
monitoring. A model that outputs a full segmentation mask as opposed to only
a single class makes both manual re-checking and model monitoring easier. As
such, we include both classification and segmentation models in our study.

The remainder of this work is structured as follows: The following section
contains an overview of related work regarding e.g. FMs and SOTA pipelines
for image segmentation. The datasets that we use for benchmarking are intro-
duced in Section 3. The setup of our experiments is described in Section 4 and
respective results are shown in Section 5. Section 6 contains our interpretation
of results and potential implications.

2 Related Work

Several studies have investigated FMS for computer vision. This section
contains an overview of the most relevant models and studies in related ap-
plications.
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Radford et al. [6] propose the CLIP approach, which jointly trains an image
encoder and a text encoder. It is trained on a dataset, which consists of 400
million pairs of images and corresponding text descriptions. CLIP can perform
zero-shot inference on unseen objects, i.e., it can be applied to new datasets
without any finetuning. It outperforms a SOTA supervised approach on multiple
datasets [6].

The SAM [5] consists of an image encoder, a prompt encoder and a mask
decoder. The image encoder uses a Vision Transformer (VIT) [7], which is
pre-trained using the Masked Autoencoder approach [8]. The prompt encoder
encodes prompts like points, boxes, text or masks, whereas the prompt encoder
for text uses the text encoder from CLIP. The mask decoder creates masks
based on the image embeddings and the prompt embeddings. The SAM model
is trained on the SA-1B dataset, which contains over one billion annotated
masks on 11 million images. This covers a wide range of different objects,
locations and scenarios. Images of people, buildings, vehicles, animals, and
other elements from everyday life around the world are well represented.

Li et al. [9] propose CLIPSurgery, which introduces small adaptations to the
CLIP architecture. They remove redundant features and modify the attention
mechanism to link semantically similar regions better. This significantly
improves the model’s explainability.

Liu et al. [10] introduce GroundingDINO, which can detect objects based on
text input. The feature enhancer includes cross-attention between text and image
information. The language-guided query selection selects features that match
the input text. The cross-modality decoder fuses the text modality with the
image modality for the generation of the output regions. It is pretrained on
large datasets. The prediction head outputs multiple object bounding boxes
along with a text and a similarity score. A box threshold can be set to only
include bounding boxes with a minimum score. A text threshold can be set to
additionally filter for bounding boxes that match the given input text prompt
well.

LVLMSs are models that accept multiple modalities such as text, images, audio
and/or video as input. They can be utilized in a wide range of applications.
Gemini 2.5 Pro [11] can be directly applied to defect classification tasks, since
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it can process a text prompt along with an image. It has furthermore shown
strong reasoning capabilities.

Zhang et al. [12] propose different pipelines of multiple foundation models, e.g.,
GroundingDINO + SAM, SAM + CLIP or CLIPSurgery + SAM. Ground-
ingDINO and CLIP can effectively capture semantic features and provide visual
prompts for subsequent instance segmentation by SAM. Zhang et al. analyze
the different pipelines on aerial images as taken by, e.g., an Unmanned Aerial
Vehicle.

Cao et al. [13] propose the framework Segment Any Anomaly + (SAA+) for
zero-shot anomaly segmentation. This includes GroundingDINO to propose
abnormal regions which are then fed into a second model, such as SAM to
refine the abnormal regions. They specifically study defect detection and analyze
performance on the public industrial dataset MVTec AD.

Xu et al. [14] combine human expert knowledge with the capabilities of Visual-
Language-Foundation Models. They study different prompts for the task of
anomaly detection in images. This includes simple prompts that only query
for any defect or anomaly and more advanced prompts that provide, e.g., more
detailed information about the shown object or the expected defects.

The Text2Seg approach contains multiple of the most relevant FM models. They
have been successfully tested on an image segmentation task. SAA+ follows
a similar approach to Text2Seg and its authors even include the task of defect
recognition into their study. As outlined above, the Gemini model is widely
applicable and has shown promising capabilities. This raises high expectations
towards the application of those models during industrial defect recognition.
While there is a wide range of further models that would also be interesting in
this context, we limit the scope of our study to these models.

3 Datasets

During this research, we utilized three different image datasets: our custom
real-world industrial dataset IndustrialSAT, the public industrial dataset MVTec
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AD and the general public image dataset Oxford-IIIT-Pet. The main focus of our
study is the real-world data. The public datasets serve as a reference.

3.1  Oxford-llIT-Pet

Oxford-1IIT-Pet
Dog ("OK")

Oxford-1IIT-Pet
Cat ("NOK") Z

Figure 1: Exemplary images from the dataset Oxford-IIIT-Pet [15]

The dataset Oxford-1IIT-Pet [15] contains images of various pet animals in
different everyday scenarios. The animals are recorded both outdoors and
indoors in different scales, pose and lighting. Such animal images are found
across the internet and are well-represented in the SA-1B dataset. During this
work, only cats and dogs are utilized. The dog images are treated as defect-free
images ("OK"), whereas cat images are treated as defective ("NOK"). During
testing, we utilize 140 dog images and 60 cat images. Examples are shown in
Figure 1.

3.2 MVTec AD

The MVTec AD dataset [16] is utilized during the benchmarking of various
models for industrial anomaly detection [17, 18]. In this work, we analyze only
object categories that are visually related to our domain of electronic packaging.
This includes the categories carpet, grid, leather, tile and wood with a resulting
test dataset of 253 defect-free images ("OK") and 76 defective images ("NOK").
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Figure 2: Exemplary images from the dataset MV7Tec AD [16] from the classes carpet (left), tile
(center) and grid (right). Top row: defect-free images. Bottom row: defective images.

No distinction is made between different defect types. Examples from the
categories carpet, tile and grid are shown in Figure 2.

3.3 IndustrialSAT

IndustrtalSAT

o . u
3

Figure 3: Exemplary images from the dataset IndustrialSAT. Crop of defective images (bottom row)
and corresponding regions without defect (top row).

Our custom real-world industrial dataset IndustrialSAT is a dataset of greyscale
images. They are recorded with SAT [19,20] as follows. The electronic package
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is submerged in water. A toolhead with an ultrasonic sender and receiver is
moved to a position above the package. An ultrasonic wave is sent out and
the signal reflection is recorded. This yields a time-series of data points for
this position. From the time-series, the signal value at a certain time value is
extracted with special postprocessing methods. This outputs a single value for
this position of the toolhead. The procedure is repeated for multiple toolhead
positions. The toolhead positions correspond to the pixels of the resulting image.
The extracted signal values correspond to the grey values of the resulting image.
SAT is used for quality inspection during electronic packaging of products in
the field of, e.g., sensors, electronic control units or power electronics. These
products are highly relevant for electric and autonomous vehicles. Examples of
defect types that could occur during electronic packaging are cracks, voids or
delaminations between or within the different layers of an electronic package.
Our test dataset, IndustrialSAT, contains 231 defect-free images and 32 images
with one of the defect types: void, crack or delamination. Exemplary defects on
SAT images are shown in the bottom row of Figure 3. The shown images are
cropped down to the immediate area around the defects. The top row of Figure 3
shows the same crop position of a non-defective product. To evaluate our model,
we assigned the defective label to images with defects of any size. No distinction
is made with respect to different defect types during model evaluation.

During a preliminary study, we trained a classification model on the dataset
IndustrialSAT. This was built by concatenating a pre-trained feature extractor
based on a ResNet model [21] with a multi-layer perceptron. This classifier
reached an F2-score of 0.82 on a stratified five-fold cross-validation dataset
split. This proves that the defects on this dataset (such as visualized in Figure 3)
can be recognized by a Machine Learning (ML) model.

The SAT images during manufacturing look similar to each other at first sight.
During another preliminary study, we tested a simple approach: we aligned all
images with respect to a predefined reference image. Then, we calculated the
difference on the pixel level with respect to the reference image. However, this
was not sufficient to detect defects such as voids or delaminations. The variation
during the SAT recording, along with the variation in mechanical tolerances,
was too large.
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4 Methodology

We test multiple FMS both on the task of segmentation and the task of classifi-
cation on the above datasets. Our experiments are set up as follows.

4.1 Segmentation

For the task of segmentation, we use the Intersection over Union (IOU) as a
metric to assess the segmentation output:

IANB|

IoU =
oY = AUBl’

ey

with A being the set of pixels predicted positive by the model and B being the
set of pixels marked positive in the ground-truth. The IoU metric yields values
between zero and one, whereas one corresponds to an optimum result. This
metric penalizes especially the slip of small defects (=false negatives): The
correctly detected defective area (intersection of defective prediction and ground
truth) is divided by the union of the defective prediction and the ground truth.
A miss of a small defect, such as a void, will thus return low metric values.
Such false negatives are especially critical since defective products would be
delivered to customers.

Three pipelines are chosen from Text2Seg for evaluation: GroundingDINO +
SAM, SAM + CLIP and CLIPSurgery + SAM. The Git repository of the
CLIPSurgery paper is used both for the CLIP Surgery model and the CLIP
model. The original Git repository by IDEA research [24] is used for the
GroundingDINO model. All of our Text2Seg pipelines use the huge backbone
of SAM. The base VIT is used for both CLIP and CLIP Surgery with weights
CS-ViT-B/16 [22] for CLIP Surgery and weights ViT-B/16 [23] for CLIP. The
checkpoint groundingdino swint ogc [24] is used for the GroundingDINO model,
along with a box threshold of 0.35 and a text threshold of 0.25. Minor issues
such as the handling of empty segmentation masks, are resolved to enable an
automated end-to-end evaluation in all cases. The utilized text prompts are short
and simple, e.g., “defect” or “cat”.
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For SAA+, we use GroundingDINO with weights groundingdino swint ogc as
the region proposal network and a SAM model with the huge backbone as region
refiner. The box threshold is set to 0.1 and the text threshold to 0.1. While the au-
thors of Text2Seg evaluate their approach on the task of semantic segmentation
in remote sensing images as taken, e.g., by an Unmanned Aerial Vehicle (UAV),
the authors of SA A+ focus specifically on the segmentation of anomalies and
also utilize the MVTec AD dataset during evaluation.

Since initial tests for the segmentation models have shown insufficient perfor-
mance on both the real-world IndustrialSAT dataset and the public industrial
MVTec AD dataset, we extend the evaluation for those models to include the
more general public dataset Oxford-IIIT-Pet. This is done to validate the correct
setup of our software pipelines and to gain additional insights.

The chosen model pipelines represent a diverse setup of multiple prominent
SOTA FMs. The models are all executed in their inference mode and are tested
on the defective images of all three datasets that were introduced in the previous
section. The reported IOU metric values are averaged over all defective images.
This yields an insight into how well defects can be recognized in the different
datasets.

4.2 Classification

For the task of classification, we analyze the LVLM model Gemini 2.5 Pro.
It features a high token limit, which enables long prompts. Furthermore, it
can process multi-modal input, i.e., it can receive prompts consisting of both
written text and images. The model’s output includes a single class label and a
corresponding reasoning string. The reasoning string is more verbose and gives
a deeper insight into how the model has made a decision, whereas the class label
can be used during automated postprocessing. For each dataset, a reference
image is defined. This reference is used to automatically align all images,
ensuring the same position and orientation of the product in all images.

The testing is carried out using the Google Cloud Platform, which offers a
convenient access to the model via an Application Programming Interface
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(API). It is carried out using both defect-free and defective images from the
industrial datasets IndustrialSAT and MVTec AD. Initial experiments have shown
promising performance on industrial data. Thus, an assessment on the general
public dataset Oxford-IIIT-Pet is omitted, since the aim of this paper is to assess
model performance on real-world industrial data.

The F2-score is used as a metric during evaluation:

_ 5-precision - recall
4 -precision + recall

B @)
Precision is the ratio of true positives (defects detected as defects) divided by
the sum of true and false positives. Recall is the ratio of true positives divided
by the sum of true positives and false negatives. As compared to F1-score,
the F2-score puts a higher weight on recall than on precision. This penalizes
false negatives (slips of defective products) more heavily compared to false
positives (wrong alerts for defect-free products) [26]. This is desired, since it is
better to re-check a suspicious product then to deliver a defective product to the
customer.

When querying the Gemini model, a test image with an unknown state is sent to
the model along with a prompt as described below. The prompt may include a
predefined reference image. Two types of prompts were defined for the Gemini
model. The basic prompt consists of a) a simple text prompt that queries for
any anomalies or defects and b) an exemplary defect-free image. The refined
prompt additionally includes specific information about the physical structure of
e.g. the electronic package in IndustrialSAT or the object properties in MVTec
AD and information about the visual appearance of the respective defects. This
follows the conceptual approach of varying information depth in prompts by
Xu et al. [14]. On MVTec AD, the prompts are as follows. The basic prompt
for MVTec AD is “Please determine whether the image contains anomalies or
defects. If yes, give a specific reason” - similar to the naive prompt studied
by Xu et al. [14]. The refined prompt for MVTec AD is “Please determine
whether the last image given about object contains anomalies or defects. If so,
please provide a specific reason. Normally, the image given should depict a
clear and identifiable object. It may have defects such as broken/bented parts,
contaminations, threads, color stains, cuts, holes, scratches, liquids, glue, folds,
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pokes, oil or glue strips.”. The formulation of the prompts for IndustrialSAT
is made in a close alignment with process engineers, who are responsible for
the respective packaging processes. These prompts include specifics of the
respective product and thus may not be published in full detail.

5 Results

This section contains the benchmarking results of both the segmentation and
classification models on the different datasets as introduced before.

5.1 Segmentation

The IoU metric values for the segmentation models are reported in Table 1.
Essentially, the defects in the SAT images cannot be detected in any of the
tested pipelines. Visual examples are shown in Figure 4 for each model to
give deeper insights. The pipeline based on GroundingDINO + SAM seems
to be very sensitive and segments large defect-free regions of the image. For
the other pipelines, the defects are missed entirely. In some cases, the pipeline
CLIPSurgery + SAM segments geometric features of sub-components instead
of defective regions. For the MVTec AD dataset, metric values are rather low. A
visual depiction of results in Figure 5 shows that some defects can be detected
accurately. For the public dataset Oxford-IIIT-Pet, the IOU metric results are
promising, with IOoU scores ranging from 0.65 to 0.80. A visual depiction
of results in Figure 6 shows that the cat can be segmented very well by all
models. We conducted a thorough inspection of various images and report that
the model’s segmentation results align with the depicted cat even more closely
than the ground truth masks. Since the cat is configured to represent defective
regions, this validates the correct setup of all pipelines for the segmentation task.
Furthermore, we report a correct segmentation of other animals (e.g. dogs).
Only IoU scores larger than 0.60 are considered for a comparison between
models (indicated in Table 1 by bold print), since lower values are too low to
offer practical value.
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Table 1: IoU scores on all datasets for various FMS pipelines. None of the methods can detect
defects on our internal dataset IndustrialSAT. Only SA A+ works somehow reasonable on
the public MVTec AD dataset. All segmentation models work well on the public dataset

Oxford-IIIT-Pet.
GroundingDINO | SAM | CLIPSurgery
Classes and datasets + + + SAA+
SAM CLIP SAM
Defect types void, 0.00 0.00 0.00 0.00
crack and
delamination in
dataset
IndustrialSAT
Various defects such 0.13 0.05 0.19 0.52
as cracks, holes,
scratches in dataset
MViec AD
Animal cat in dataset 0.80 0.65 0.78 0.77
Oxford-1IIT-Pet
(irnil‘iig:l Ground-truth GroundiﬂgDINO S/}_M CLIP%_urgery SAA+
o SAM CLIP SAM
3 .
= - b -

Figure 4: Exemplary segmentation results on dataset IndustrialSAT. A yellow color overlay is
used to indicate defective regions as defined in ground-truth data or as predicted by the
respective model. All models fail to detect the defects in most images.

ioi GroundingDINO SAM CLIPSurgery
OI;%; : ! Ground-truth + + + SAA+
SAM CLIP SAM

MVTec AD

Figure 5: Exemplary segmentation results on dataset MV7Tec AD [16]. A yellow color overlay is
used to indicate defective regions as defined in ground-truth data or as predicted by the
respective model. In some cases, defects can be accurately recognized. In other cases, the
models fail to recognize the defects.
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ioi GroundingDINO SAM CLIPSurgery
Original Ground-truth + + + SAA+

Image SAM CLIP SAM

Oxford-IIIT-Pet

Figure 6: Exemplary segmentation results on dataset Oxford-IIIT-Pet [15]. A yellow color overlay
is used to indicate defective regions as defined in ground-truth data or as predicted by the
respective model. Animals such as the cat shown in this image can be segmented very
accurately by all tested models.

5.2 Classification

Results for the classification use case are shown in Table 2. The F2-score values
are far too low to be suitable for industrial applications during quality inspection.
However, the model can recognize some defects accurately, both with the basic
and refined prompt strategy. Also, we report that the reasoning string output
looks promising and shows that the LVLM model was able to recognize the
package build-up to a certain extent.

The Gemini model performs significantly better on the public industrial dataset
MVTec AD as compared to our internal industrial dataset IndustrialSAT. Inter-
estingly, the highest metric results were achieved with simple prompts, which
consist of a naive text prompt for defects along with a defect-free reference
image. The maximum F2-score of 0.37 achieved by the Gemini model on
IndustrialSAT is far below the F2-score of 0.82 reached with a supervised Al
model in a preliminary study.

In analogy to the Oxford-IIIT-Pet dataset on the segmentation task, the good
performance on the MVTec AD dataset validates the correct setup of our
evaluation pipeline for the classification task.

6 Discussion

The three tested datasets can be ordered according to their visual similarity to
datasets like SA-1B that are used to train the FMS: Oxford-IIIT-Pet is in a very
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Table 2: Classification results (F2-score) on both industrial datasets for the Gemini 2.5 Pro LVLM
model. While the model performs well on the MVTec AD dataset, its performance on SAT
imaging data is insufficient for industrial-quality inspection.

Dataset Gemini Gemini
atase (basic prompt) | (refined prompt)

IndustrialSAT 0.37 0.31

MVTec AD 0.99 0.92

similar visual domain as SA-1B. MVTec AD is more focused on defects and
includes industrially relevant parts, but some of its object categories, such as
carpets and wood, are likely to be found in, e.g., SA-1B. However, our real-
world dataset, IndustrialSAT, differs significantly from datasets like SA-1 B. It is
not a color image, but rather a greyscale image. The geometric features that are
shown resemble mostly geometric primitives, such as rectangular areas and line
features. The performance of all the FMS is decreasing along with the visual
similarity of the test dataset to training datasets such as SA-1B. The domain
gap seems to be significant, especially for the real-world dataset IndustrialSAT.
This is likely to be the cause of the insufficient performance on our real-world
industrial data.

Furthermore, the performance difference on the datasets MVTec AD and Indus-
trialS AT motivates the question of how well MVTec AD can represent advanced
imaging procedures such as SAT. The MVTec AD dataset contains industrially
relevant defects, but it is in a similar visual domain as public datasets. For
example, screws and fabric-like materials can be found in everyday items,
which are likely to be included in the training datasets of FMS to a certain
extent. Defect patterns such as voids and cracks in SAT imaging are not well
represented.

The reasoning strings of the Gemini model show a deeper understanding of
the product build-up. This may not be fully correct, but it gives an interesting
starting point for further studies. If this knowledge is available at least partially
for the model, more advanced prompt strategies could leverage this knowledge
better. The Gemini model was the only model that could detect some of the
defects and a more refined prompting strategy seems to be a promising way to
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improve performance.

7 Conclusion and outlook

Industrial quality inspection regularly involves advanced imaging procedures
such SAT. In this work, we investigate the use of FMS to improve industrial
defect recognition. None of the tested FMS were able to detect defects in
our real-world SAT images. The results on other public datasets validate the
correct setup of our models. While an application of FMS to such data could
be scaled across many manufacturing stations, currently available FMS are not
ready for practical application in series manufacturing for advanced inspection
technologies such as SAT imaging.

The low performance in IndustrialSAT may be due to a large domain gap
between the training data of FMS. Future work could thus involve fine-tuning
FMS on image data that better matches the real-world industrial domain.
Furthermore, more advanced prompt strategies for LVLMS seem to be a
promising direction for an in-depth follow-up study.
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