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Abstract

Taylor’s hypothesis of frozen turbulence is applied to many experimental use cases to
convert time series into spatial field data. To do so, the concept of a convection velocity
is needed, which characterises the velocity at which coherent turbulent structures move
within the considered flow. This thesis uses a definition of convection velocity from the
literature to analyse the convection behaviour of different quantities in wall-bounded
turbulence. Therefore, a deeper understanding of the underlying physical mechanisms is
gained, which can be used to apply Taylor’s hypothesis more sophisticated. The considered
quantities are structures of all three velocity components as well as passive scalar structures
at three different Prandtl numbers. Direct numerical simulations of periodic channels
at three different Reynolds numbers are conducted to generate data. To validate these
data, typical turbulence statistics are retraced, which show good agreement with results
from the literature. Next, a transport equation analysis is conducted, revealing where
and why Taylor’s hypothesis might not be applicable. The results of this analysis are in
good agreement with data from the literature in the case of turbulent velocity structures.
Therefore, trustworthy insights can be gained from the remaining analyses on the behaviour
of passive scalar structures. In the following step, the convection velocities of all structures
considered are inspected regarding their dependency on the wall distance. To validate
these results, known statistics from the literature are used. In addition, new findings
regarding the influence of the Prandtl and Reynolds numbers, different-sized structures,
and physical driving mechanisms are made. Finally, a spectral analysis of the convection
velocity distribution in the Fourier space is performed. The insights resulting from this
provide fundamental information on the physical behaviour, which was shown by the
previous analyses.
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Zusammenfassung

Taylors Hypothese der eingefrorenen Turbulenz kommt in vielen experimentellen Anwen-
dungsfällen zum Einsatz, um Informationen aus Zeitreihen in räumliche Felddaten zu
überführen. Dazu wird das Konzept der Konvektionsgeschwindigkeit benötigt, mit welcher
sich kohärente turbulente Strukturen durch die betrachtete Strömung bewegen. In dieser Ar-
beit wird eine in der Literatur bekannte Definition der Konvektionsgeschwindigkeit genutzt,
anhand welcher das Konvektionsverhalten verschiedener Größen in wandgebundener Tur-
bulenz analysiert wird. Damit wird ein tieferes Verständinis über die zugrundeligenden
physikalischen Prozesse gewonnen, welches zur besseren Anwendung von Taylors hypothese
genutzt werden kann. Es werden Geschwindigkeitsstrukturen aller drei Raumrichtungen
sowie Strukturen von passiven Skalaren bei drei verschiedenen Prandtl-Zahlen betrachtet.
Zur Datenerzeugung werden direkte numerische Simulationen von periodischen Kanalströ-
mungen bei drei unterschiedlichen Reynolds-Zahlen durchgeführt. Zur Validierung werden
zunächst typische Turbulenzstatistiken reproduziert, die in guter Übereinstimmung mit den
Ergebnissen aus der Literatur stehen. Anschließend wird eine Transportgleichungsanalyse
durchgeführt, die Aufschluss darüber gibt, wo und warum Taylors Hypothese möglicher-
weise nicht anzuwenden ist. Im Falle turbulenter Geschwindigkeitsstrukturen stimmen die
Resultate dieser Analyse gut mit Ergebnissen aus der Literatur überein. Aus den weiteren
Analysen lassen sich demnach vertrauenswürdige Rückschlüsse über das Verhalten von
passiven Skalar-Strukturen ziehen. Anschließend werden die Konvektionsgeschwindigkeiten
aller betrachteten Strukturen in Bezug auf ihre Wandabstandsabhängigkeit untersucht.
Zur Validierung werden bekannte Statistiken aus der Literatur herangezogen. Außerdem
werden neue Erkenntnisse bezüglich der Einflüsse von Reynolds- und Prandtl-Zahl sowie
von Strukturen unterschiedlicher Größe und physikalischer Triebkräfte gewonnen. Ab-
schließend wird eine spektrale Betrachtung der Konvektionsgeschwindigkeitsverteilung im
Fourier-Raum durchgeführt. Die dadurch ermöglichten Einblicke geben grundlegenden
Aufschluss über das physikalische Verhalten, das durch die vorangegangenen Analysen
aufgezeigt wurde.
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1. Introduction

Wall-bounded turbulent flows are present in a wide range of technical applications, and
their behaviour is thus of great interest to numerical and experimental research. Since
gaining full-field data from experimental setups is particularly difficult, Taylor’s hypothesis
is often used to relate time series at a constant point in space to instantaneous snapshots
of the physical domain using convection velocities. Therefore, suitable definitions of these
convection velocities are important for the applicability of Taylor’s hypothesis. Ever since
Taylor 1938 formulated his hypothesis, many convection velocity definitions have been
published in the literature (e.g. Wills 1964 and Hussain and Clark 1980), all focussing on
slightly different aspects of the actual physical flow behaviour. In the scope of this thesis,
the formulation introduced by Del Álamo and Jiménez 2009 is of special interest since it
allows for an individual analysis of the convection of different turbulent scales and offers the
possibility of a simple numerical implementation. Additionally, their definition considers
the convection velocities’ dependency on the transported quantities and the wall distance.
In their publication, Del Álamo and Jiménez consider fluctuating velocity structures
as the convected properties of interest. This thesis aims to extend their findings with
respect to passive scalar structures at different Prandtl and Reynolds numbers. A better
understanding of the physical behaviour of the convection velocities of these structures is
gained from a detailed statistical analysis of turbulent plane channel flow simulated during
this work.
Following this introduction, the basic concepts of turbulence, plane channel flow, and
Taylor’s hypothesis are introduced in chapter 2. Subsequently, in chapter 3, the code
used for conducting the simulations is briefly explained. In addition, an overview of all
simulated cases with their characterising parameters is given, and some selected aspects
of the implementations used during post-processing are described. The results of these
investigations are discussed in chapter 4. They are organised into basic channel flow
statistics, used to validate the simulation and averaging setups; a transport equation
analysis, used to categorise the results of this thesis in the overall context of Taylor’s
hypothesis; and, lastly, the statistics on the convection velocity behaviour themselves. In
chapter 5, the results are summarised, a conclusion is drawn, and an outlook to further
research is given.
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2. Theory

2.1. Equations of turbulent flow

2.1.1. General description

The behaviour of fluids is mathematically described by balance equations (also called
transport equations), as stated, for example, by Pope 2000, Ferziger et al. 2019 and Zierep
and Bühler 2023. They also mention the need for initial and boundary conditions, as well
as material models, to solve a fluid-mechanical problem. While the former are dependent
on the flow geometry and external influences, the latter are inherent properties of the
analysed fluid. In addition, specific flow properties can simplify the formulation of the
most general mathematical problems.
Ferziger et al. 2019 mention the simplifications resulting from the analysis of the incom-
pressible and isothermal flow of a Newtonian fluid, which will be the case considered in the
scope of this thesis. A flow is called incompressible if the material derivative of the density
ρ vanishes at every point of the analysed domain, as

∂tρ+ u · ∇ρ = 0. (2.1)

Here ∂(·) denotes a partial derivative with respect to ( · ), and ∇ ( · ) is the gradient-
operator. Equation 2.1 therefore consists of a partial derivative with respect to time t and
the so-called “convective derivative”, which is the scalar product of the density gradient
∇ρ with the velocity tensor u. The material class of Newtonian fluids, as mentioned by
Zierep and Bühler 2023, is defined by the viscous shear stress τ being proportional to the
shear rate γ̇, as

τ = µγ̇. (2.2)

The proportionality factor µ is the fluid’s dynamic viscosity, which is a property of the
material itself. Note that the shear rate is defined as twice the symmetric velocity-gradient

γ̇ ≡ ∇u + (∇u)⊤ , (2.3)

which will later lead to simplifications due to Equation 2.1. Here, ( · )⊤ denotes the
transpose of a second-order tensor. What makes a flow isothermal is the fact that its
properties, here the viscosity in particular, are independent of temperature and therefore
constant, as mentioned by Ferziger et al. 2019.
Balance equations, which are generally postulated in an integral form, can be transformed
into an equivalent differential form, as explained in detail, for example, by Liu 2002
and Hirsch 2007. They formulate the most general balance equation for an arbitrary
flow-property ϕ (x, t) as

∂tϕ+ ∇ · (ϕu) = Pϕ + Sϕ + ∇ · qϕ. (2.4)

Here, ∇ · ( · ) denotes the divergence-operator and ϕ is in general a function of the spatial
position x and time t. Pϕ, Sϕ and qϕ are the production, supply, and non-convective
flux terms, respectively. These terms are balanced with the temporal evolution and the
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2. Theory

convective flux of ϕ, as seen on the left-hand side of Equation 2.4.
Since statistical tools are often applied to study the behaviour of turbulence, as stated
by Pope 2000, the mean field balance equation, as well as the fluctuation field balance
equation, are of additional interest. The former balance equation for ⟨ϕ⟩ can be derived
by taking the mean of Equation 2.4. In general, ⟨ · ⟩ is the ensemble average of a given
quantity, which can still be a function of space and time. The latter balance equation
for ϕ′ can be derived by subtracting the mean field balance equation from Equation 2.4.
Here, ( · )′ denotes a value’s fluctuation around its statistical mean. Pope 2000 derives
this using the linearity of derivation and averaging. The balance equations of the mean
and fluctuating fields of quantities, which are products of random variables, can be derived
from the respective equations of the separate variables. Note that averages might also
be taken over quantities other than an ensemble of values. The average ⟨ · ⟩( · ) over an
arbitrary quantity ( · ) is indicated by a subscript. Such arbitrary quantities could range
from statistically homogeneous directions in space or time to combinations of these.

2.1.2. Balance equations

Pope 2000 and Ferziger et al. 2019 show that for an incompressible flow the mass balance,
also called “continuity equation” or just “conti equation”, degenerates to the condition for
the velocity field to be divergence-free, as

∇ · u = 0. (2.5)

By taking the average of Equation 2.5, the mean conti equation is again given as a
divergence-free condition, but this time for the mean velocity field, like

∇ · ⟨u⟩ = 0. (2.6)

Something similar follows for the fluctuating velocity-field, since the Reynolds decomposition
u = ⟨u⟩ + u′ holds. The fluctuating conti equation

∇ · u′ = 0, (2.7)

is obtained by subtracting Equation 2.6 from Equation 2.5, as done by Pope 2000.
Ferziger et al. 2019 derive the momentum balance equation for an isothermal incompressible
flow of a Newtonian fluid (and fulfilled mass balance) as

∂tu + u · ∇u = −1
ρ

∇p+ ν∆u + f , (2.8)

with the Laplace-operator ∆ ( · ), the pressure-field p, the volume force density tensor f
and the kinematic viscosity

ν ≡ µ

ρ
. (2.9)

Equation 2.8 is also referred to as the “Navier-Stokes equation” (NSE). As for the mean
conti equation, Pope 2000 obtains the mean NSE by taking the statistical average of the
original formulation, resulting in

∂t⟨u⟩ + ⟨u⟩ · ∇⟨u⟩ = −1
ρ

∇⟨p⟩ + ν∆⟨u⟩ − ∇ · ⟨u′ ⊗ u′⟩ + ⟨f⟩, (2.10)

where ⊗ denotes the dyadic product. Equation 2.10 is called “Reynolds averaged Navier-
Stokes equation” (RANS equation). Note that due to the non-linearity of the convective
term in Equation 2.8, the RANS equation contains an additional term (third on the
right-hand side of Equation 2.10), called the “Reynolds stresses”. Pope 2000 points out
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2.1. Equations of turbulent flow

the importance of the Reynolds stresses for the analysis and modelling of turbulent flows.
They naturally also appear in the balance equation for the momentum fluctuations

∂tu
′ + u′ · ∇u′ + ⟨u⟩ · ∇u′ + u′ · ∇⟨u⟩ = −1

ρ
∇p′ + ν∆u′ + ∇ · ⟨u′ ⊗ u′⟩ + f ′, (2.11)

as well as other non-linear terms, containing the mean and fluctuating velocity fields.
A balance equation for a passive scalar θ is derived by Pope 2000 and Ferziger et al. 2019. If
again, the mass balance is fulfilled and the flow is considered incompressible with constant
material properties, as for the NSE, the passive scalar balance equation takes the form

∂tθ + u · ∇θ = a∆θ +Q, (2.12)

with the scalar diffusivity a and the passive scalar source-term Q. Note that Q could
also take negative values, in which case it would be understood as a sink term. Pope
2000 explains the designation “passive” to be contributed to the fact that θ has, by
assumption, no effect on the material properties and, in extension, no influence on the flow
itself. As mentioned by Ferziger et al. 2019, passive scalars can be all kinds of quantities,
such as temperature distributions or concentrations of immersed particles. An important
characteristic of Equation 2.12 is its similarity to Equation 2.8, as referred to by Pope 2000.
The passive scalar balance equation obeys a similar behaviour as the NSE, only without
the non-linear feedback effects due to the convection term and the redistributive behaviour
of the pressure term. However, Equation 2.12 still contains a non-linear convection term,
that again yields an additional term in the mean passive scalar balance equation

∂t⟨θ⟩ + ⟨u⟩ · ∇⟨θ⟩ = a∆⟨θ⟩ − ∇ · ⟨u′θ′⟩ + ⟨Q⟩, (2.13)

which Pope 2000 mentions to take an analogous role to the Reynolds stresses of the
RANS equations. Like for Equation 2.11, the additional non-linear term from the mean
passive scalar balance equation carries over to the balance equation for the passive scalar
fluctuations

∂tθ
′ + u′ · ∇θ′ + ⟨u⟩ · ∇θ′ + u′ · ∇⟨θ⟩ = a∆θ′ + ∇ · ⟨u′θ′⟩ +Q′, (2.14)

in addition to the mixed terms, containing averaged and fluctuating values.
Pope 2000 and Ferziger et al. 2019 state the importance of the non-dimensionalised form of
the balance equations. A balance equation can be non-dimensionalised by first expressing
all of its quantities as products of a dimensionally afflicted constant and a dimensionless
variable and then dividing every term of the equation by the dimensionally afflicted prefactor
of one of its terms. When considering a flow without the volume forces density f and no
relevant characteristic time, pressure or scalar source scale, as is done in the scope of this
thesis, the dimensionless form of equations 2.5, 2.8 and 2.12 result in

∇ · u = 0, (2.15)

∂tu + u · ∇u = −1
ρ

∇p+ 1
Re

∆u, (2.16)

∂tθ + u · ∇θ = 1
Re Pr

∆θ +Q. (2.17)

As mentioned by Ferziger et al. 2019, the problem of a passive scalar being transported by
a turbulent flow is then characterised by the two dimensionless numbers

Re ≡ UL
ν

, (2.18)
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2. Theory

Pr ≡ ν

a
, (2.19)

which are the “Reynolds number” and “Prandtl number”, respectively. U is the charac-
teristic velocity scale and L is the characteristic length scale of the flow. Note that all
quantities in equations 2.15, 2.16, and 2.17 are non-dimensionalised by suitable characteris-
tic scales. However, for the sake of simplicity, the notation is kept the same as for their
dimensionally afflicted counterparts. The dimensionless forms of the mean and fluctuating
balance equations can be derived in a similar manner.

2.2. Plane channel flow

2.2.1. Geometry

Pope 2000 states that since the canonical plane channel flow is a fairly simple geometric
configuration, it is often used to study the physics of turbulent flows. Its simplicity can
be used in particular, since the near-wall behaviour of turbulence is known to be quite
similar for all kinds of wall-bounded flows. For this reason, all direct numerical simulations
(DNSs) performed during the term of this thesis were simulations of plane channel flow.
The geometry of an exemplary plane channel is sketched in Figure 2.1, with a length of
L1, a width of 2h and a depth of L3. The Cartesian coordinate system is located in the
middle of the lower wall, where x1, x2 and x3 are the streamwise, wall-normal and spanwise
components of the coordinate system, respectively. The two channel walls are therefore
located at x2 = 0 and x2 = 2h, while the channel centreline is located at x2 = h and x3 = 0.
The main flow is directed parallel to the x1-axis.

x1

x2

x3

main flow

L1

2h

L3

Figure 2.1.: Plane channel flow configuration

The channel is long and has a large aspect ratio, which Pope 2000 mathematically describes
as L1/h ≫ 1 and L3/h ≫ 1, respectively. In the case of a simulation, such a geometry is
realised by periodic boundary conditions in the streamwise and spanwise directions, as
stated by Ferziger et al. 2019. In doing so, the channel would have an “infinite” length
and depth. For the velocity field, the boundary conditions in the wall-normal direction
are those of no-slip and impermeability. For the scalar field, another Dirichlet boundary
condition is considered in the scope of this thesis, setting the value of the scalar to zero at
the walls of the channel. Pope 2000 explains that therefore the mean values as well as the
fluctuations of all velocity components are zero at the walls of the channel.
This geometry strongly impacts the properties of a turbulent flow contained within, as is
described, for example, by Pope 2000, Schlichting and Gersten 2006, Durbin and Reif 2010,
Spurk and Aksel 2019 and Aliabadi 2022. They conclude the following:
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2.2. Plane channel flow

First, because of the geometric symmetry of the channel and its large aspect ratio, the
contained flow must be statistically homogeneous in the spanwise direction. This can be
expressed as all averaged quantities being independent of the homogeneous direction x3, as

∂x3 ⟨ · ⟩ = 0. (2.20)

Additionally, the mean velocity field experiences no cross-flows in the spanwise direction,
resulting in its averaged x3-component to be zero, as

⟨u3⟩ = 0. (2.21)

Note that this is only true for either the channel geometry with “infinite” depth or, in real
channels, for positions remote from the side walls.
Second, when neglecting the flow-development region, the flow must be statistically fully
developed in the streamwise direction. This is mathematically equivalent to all velocity
statistics being independent of x1.
Third, in general, plane channel flows are considered to be statistically stationary, which
is also true for all cases considered in the scope of this thesis. All mean quantities must,
therefore, be independent of time, as

∂t ⟨ · ⟩ = 0. (2.22)

Considering the mean continuity Equation 2.6 and the no-slip boundary condition yields
the averaged wall-normal velocity-component to be zero, as

⟨u2⟩ = 0. (2.23)

Pope 2000 notes that all velocity statistics are only dependent on the wall-normal coordinate
x2, and additionally, all statistics are symmetric about the channel mid-plane at x2 = h.

2.2.2. Basic statistics

As mentioned in subsection 2.1.1, statistics are an important tool in the study of turbulent
flows. Pope 2000 explains this to be the case since the statistics of turbulence are
reproducible, while its instantaneous behaviour is chaotic and therefore strongly sensible to
changes in initial and boundary conditions. For turbulent plane channel flow, the behaviour
of some statistical quantities is known a priori from analytical consideration, as shown, for
example, by Pope 2000, Schlichting and Gersten 2006 and Aliabadi 2022. By analysing the
wall-normal RANS equation 2.10, they show the average axial pressure gradient

∂x1 ⟨p⟩ = ∂x1pw (2.24)

to be uniform across the flow and therefore equal to its respective value at the wall. Here
( · )w denotes the value of a quantity at the channels coordinate x2 = 0 (resp. x2 = 2h).
As demonstrated by Pope 2000, this results in the total shear stress

τtot ≡ ⟨τ12⟩ = µ∂x2⟨u1⟩ − ρ
〈
u′

1u
′
2
〉

, (2.25)

to be linear across the channel width when examining the axial RANS equation 2.10.
Equation 2.25 also shows that the total shear is composed of two parts: On the one hand,
the viscous stresses

τvisc ≡ µ∂x2⟨u1⟩, (2.26)

containing the mean wall-normal velocity gradient, which would be the only part contribut-
ing to the stress profile of a laminar flow; on the other hand, the turbulent stresses

τturb ≡ −ρ
〈
u′

1u
′
2
〉

, (2.27)
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containing the off-diagonal component of the Reynolds stresses. Furthermore, Pope 2000
and Schlichting and Gersten 2006 refer to the analogy of shear stress with respect to the
flux of a passive scalar q. They show the total scalar flux

qtot ≡ ρa∂x2⟨θ⟩ − ρ
〈
θ′u′

2
〉

, (2.28)

to be composed of two terms, similar to Equation 2.25. In general, a passive scalar flux
can result from different phenomena. The first of these phenomena is the inhomogeneous
distribution of the mean field, resulting in the molecular scalar flux

qmolec ≡ ρa∂x2⟨θ⟩. (2.29)

The second phenomenon is the flow rate due to the turbulent behaviour of the fluctuating
velocity field, resulting in the turbulent scalar flux

qturb ≡ −ρ
〈
θ′u′

2
〉

. (2.30)

Aliabadi 2022 points out that, since there are no velocity fluctuations at the wall due to
the no-slip boundary condition, the wall shear stress

τw ≡ µ (∂x2⟨u1⟩)
∣∣∣
w

(2.31)

is exclusively caused by the mean wall-normal velocity gradient. As a result of the same
argument, the wall scalar flux

qw ≡ ρa (∂x2⟨θ⟩)
∣∣∣
w

(2.32)

is only contributed by the molecular scalar flux.
Another important statistical quantity, used for example in the study of turbulent plane
channel flow by Kim et al. 1987, is the space-time covariance

Rϕψ(x, r, t,△t) ≡
〈
ϕ′(x, t)ψ′(x + r, t+ △t)

〉
, (2.33)

where r is the spatial separation from x, △t is the time delay with respect to t and ψ is a
second arbitrary flow property, just as ϕ. In the special case of ϕ = ψ, Equation 2.33 is also
referred to as the “space-time auto-covariance”. The space-time covariance’s connection
to the behaviour of fluid motion becomes evident when considering its form for ϕ = ui,
ψ = uj and vanishing spatial as well as temporal separations, as

Ruiuj (x, r = 0, t,△t = 0) =
〈
u′
i(x, t)u′

j(x, t)
〉

. (2.34)

This expression is obviously another representation of the Reynolds stresses appearing in
Equation 2.10, as stated by Pope 2000. For the case of plane channel flow, Pope further
notes the typical behaviour of ⟨u′

1u
′
2⟩ vanishing at the channel centre. In addition, ⟨u′

1u
′
3⟩

and ⟨u′
2u

′
3⟩ are zero throughout the whole channel, which can be attributed to the statistical

symmetry with respect to u3-fluctuations.
Wills 1964 demonstrates that Fourier-transforming the space-time auto-covariance in time
and space yields the wavenumber-frequency spectrum

Φ̃ϕϕ(x,k, t, ω) ≡ 1
(2π)4

∞∫
−∞

∞∫∫∫
−∞

Rϕϕ(x, r, t,△t) exp [−i (k · r + ω△t)] drd△t. (2.35)

Here, exp( · ) is the exponential-function, i is the imaginary unit, k is the wavenumber
tensor, and ω is the frequency of a given Fourier mode. Aliabadi 2022 shows similarly that
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2.2. Plane channel flow

by only Fourier-transforming the space-time auto-covariance in space, while regarding the
time delay to be zero, the wavenumber spectrum

Φϕϕ(x,k, t) ≡ 1
(2π)3

∞∫∫∫
−∞

Rϕϕ(x, r, t,△t = 0) exp [−i (k · r)] dr (2.36)

can be constructed. Note that the spatial directions in which Equation 2.35 and Equa-
tion 2.36 are transformed can vary depending on the flow configuration considered. In
the case of plane channel flow, Kim et al. 1987 consider only spatial separations in the
streamwise and spanwise directions since the insights resulting from the analysis of wall-
normal correlations are limited by the influence of the channel walls. The simplifications
introduced in subsection 2.2.1 further reduce the variables of Equation 2.33 and all its
related quantities, resulting in their statistics being independent of x1, x3, t, r2 and k2.
Pope 2000 introduces the one-dimensional energy spectra Eϕϕ, which depend only on one
wavenumber, for example k1. In this case, the one-dimensional energy spectrum is defined
as twice the Fourier-transformed space-time auto-covariance with respect to the “wanted”
separation and vanishing “unwanted” separations, as

Eϕϕ(x, k1, t) ≡ 2
2π

∞∫
−∞

Rϕϕ(x, r1, r2 = 0, r3 = 0, t,△t = 0) exp [−ik1r1] dr1. (2.37)

One-dimensional energy spectra for spatial separations other than r1 can be constructed
in a similar manner. However, Kim et al. 1987 again show that only the energy spectra
with respect to k3 are of additional interest in the case of turbulent plane channel flow.
As further shown by Pope 2000, the energy spectra defined via Equation 2.37 can also be
calculated using the “full” wavenumber spectrum. This is done by calculating twice the
integral over the “unwanted” wavenumbers, leaving a dependency on only the “wanted”
wavenumber. The one-dimensional energy spectrum with respect to k1 can, therefore, be
calculated as

Eϕϕ(x, k1, t) = 2
∞∫∫

−∞

Φϕϕ(x,k, t) dk2dk3. (2.38)

2.2.3. Scaling

Aliabadi 2022 mentions the importance of wall shear stress τw, density ρ, and kinematic
viscosity ν as parameters in the study of turbulent flows. The variables mentioned are
especially useful for defining the so-called “viscous scales”, as is done, for example, by Pope
2000, Schlichting and Gersten 2006 and Aliabadi 2022. These scales contain the friction
velocity

uτ ≡
√
τw
ρ

(2.39)

as a velocity-scale based on the wall shear stress, and the density and the viscous length-scale

δν ≡ ν

uτ
(2.40)

as a length-scale based on the kinematic viscosity and the newly defined friction velocity.
Kader 1981 and Saha et al. 2014 further introduce the friction scalar

θτ ≡ qw
ρcpuτ

(2.41)
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as a passive scalar-scale based on the wall scalar flux, the density, the friction velocity and
the specific heat capacity at constant pressure cp. By using Equation 2.39 and the channel
half-width h, the friction Reynolds number

Reτ ≡ uτh

ν
, (2.42)

can be defined. uτ and δν are the appropriate quantities for scaling the behaviour of the
turbulent near-wall velocity field, as mentioned by Aliabadi 2022. Saha et al. 2014 note the
difficulties of finding an appropriate scaling for the scalar field since its behaviour is not
only dependent on the Reynolds number (as for the velocity field) but also on the Prandtl
number. However, for the sake of simplicity in the scope of this thesis, equations 2.40 and
2.41 are used as “viscous scaling” for all scalar statistics if not mentioned otherwise. Values
normalised by the viscous scales, are denoted by the superscript ( · )+. Another way of
scaling the variables of plane channel flow is by using the “outer scales”, as is done, for
example, by Pope 2000. These scales contain the bulk values of ⟨u1⟩ and ⟨θ⟩

Ub ≡ 1
2h

2h∫
0

⟨u1⟩ dx2 (2.43)

Θb ≡ 1
2h

2h∫
0

⟨θ⟩ dx2 (2.44)

as the velocity and passive scalar scale, respectively. The channel half-width h is used as
the length scale. The bulk Reynolds number

Reb ≡ Ub2h
ν

(2.45)

follows as a natural definition from the outer scales. Results obtained by experiments or
simulations can be nicely compared if they are scaled in viscous or outer units. This is
done, for example, within the scope of this thesis (chapter 4), to validate new simulation
results by comparison with existing data. The typical resulting mean profiles of one such
simulation (p180 from Table 3.1) are shown in Figure 2.2 and Figure 2.3.

100 101 102

x+
2

0

5

10

15

〈u
1
〉+

Figure 2.2.: Mean streamwise velocity profile of a turbulent channel flow (Reτ = 180)
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Figure 2.3.: Mean scalar profiles of a turbulent channel flow (Reτ = 180)

Figure 2.2 shows the mean streamwise velocity component normalised by the friction
velocity ⟨u1⟩+ = ⟨u1⟩/uτ with respect to the wall distance normalised by the viscous length
scale x+

2 = x2/δν . Figure 2.3 shows the mean scalar profiles at different Prandtl numbers
with respect to wall distance, again normalised by the viscous scales.
Another important characteristic of wall-bounded turbulence is the formation of distinct
wall regions and layers (depending on the Reynolds number), as can be seen in part in
Figure 2.2 for the velocity field and in Figure 2.3 for the scalar field. Pope 2000, Spurk
and Aksel 2019 and Aliabadi 2022 mention the mean streamwise velocity growing linearly
with respect to the wall-distance (in viscous units) as

⟨u1⟩+ = x+
2 (2.46)

within the so-called “viscous sublayer” closest to the wall. Near the channel centre, in the
“log layer”, the profile takes on a logarithmic shape as

⟨u1⟩+ = 1
κ

ln
(
x+

2

)
+B (2.47)

called the log-law. Here, ln ( · ) denotes the natural logarithm. The von Kármán constant
κ, as well as the second constant B, are dependent on the flow physics. These two domains
are connected via the “buffer layer”. The locations and defining properties of these layers,
as well as other regions of the velocity field in a plane channel flow, are explained in detail
by Pope 2000. A brief overview of his explanations can be seen in Table 2.1.
Note that the locations of some domains in Table 2.1 are given with respect to x2/h, while
others are defined by means of x+

2 . This is relevant, since the viscous wall distance scales
with the friction velocity. In other words, the relative size of some wall regions and layers
with respect to others changes depending on the characteristics of the flow. To visualise
this, Pope 2000 sketches the different regions, mentioned in Table 2.1, in dependence on
the bulk Reynolds number. This dependency can also be seen in Figure 2.4, where the
wall distance in outer units is plotted against the friction Reynolds number. Kader 1981,
Saha et al. 2014 and Aliabadi 2022 explain that like the velocity field, the scalar field
forms regions and layers with distinct defining properties. However, since the scalar field is
dependent on the Prandtl number, the span of these regions and layers cannot simply be
defined by the values x+

2 and x2/h. Traditionally, a four-layer structure results from the
analysis of the mean scalar profile (Figure 2.3), as mentioned by Saha et al. 2014. The
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Region Location Defining property

Outer layer x+
2 > 50 The direct effects of viscosity on ⟨u1⟩

are negligible.

Overlap region x+
2 > 50 and x2/h < 0.1 The inner and outer layers are overlap-

ping.

Log layer x+
2 > 30 and x2/h < 0.3 The log-law holds.

Inner layer x2/h < 0.1 ⟨u1⟩ is determined by uτ and x+
2 , in-

dependent of ⟨u1⟩|x2=h and h.

Viscous wall region x+
2 < 50 The viscous contribution to the shear

stress is significant.

Buffer layer 5 < x+
2 < 30 Laying between the viscous sublayer

and log layer.

Viscous sublayer x+
2 < 5 The turbulent stresses are negligible

compared with the viscous stresses.

Table 2.1.: Defining properties of wall regions and layers in plane channel flow (Adapted
from Pope 2000)

region closest to the wall is governed by the “molecular sublayer”. Here, Kader 1981 finds
the mean scalar profile in viscous units to be linearly dependent on the Prandtl number as

⟨θ⟩+ = Pr x+
2 . (2.48)

Like the mean streamwise velocity profile, the mean scalar field is a logarithmic function
of the wall distance, in close vicinity of the channel centre. Considering viscous scaling,

x2/h

Reτ102 103 104
10−4

10−3

10−2

10−1

100

x+
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x+
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x+
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x2/h = 0.1

x2/h = 0.3

Viscous
sublayer

Buffer
layer

Log
layer

Outer
layer

Inner
layer

Overlap
region

Viscous
wall

region

Figure 2.4.: Wall regions and layers in plane channel flow as functions of the friction
Reynolds number (Adapted from Pope 2000)
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Aliabadi 2022 describes this “scalar log layer” by

⟨θ⟩+ = C1ln
(
x+

2

)
+ C2, (2.49)

with the two flow specific constants C1 and C2. The last two layers considered by Saha
et al. 2014 are the “scalar buffer layer”, which connects the molecular sublayer and the
scalar log layer, as well as the “outer scalar layer”, which bridges the gap between the
channel centreline and the other layers.

2.3. Taylor’s hypothesis of frozen turbulence

2.3.1. Original formulation

As stated by Moin 2009, experimental measurements of turbulent flows have an inherent
problem with the simultaneous resolution of spatial and temporal data. Most of the
experimental methods used to analyse flows, many of which were explained in detail, for
example, by Nitsche and Brunn 2006, can be divided into two general groups. The first type
of methods are able to take velocity measurements in a large physical domain for discrete
points in time (e.g. Particle-Image-Velocimetry), while the other type of methods can
collect time series of the velocity at discrete points in space (e.g. Hot-Wire-Anemometry).
While the temporal resolution of the former is limited by laser and/or camera technology,
the spatial resolution of the latter is limited by the measuring probes themselves interfering
with the flow field.
To bridge this problem, thereby introducing an approach to connect spatial and temporal
flow behaviour, Taylor 1938 formulated his hypothesis of frozen turbulence. In his paper,
Taylor considered the turbulent flow in a wind tunnel as a theoretical example, stating:

“If the velocity of the air stream which carries the eddies is very much
greater than the turbulent velocity, one may assume that the sequence
of changes in u at the fixed point are simply due to the passage of an
unchanging pattern of turbulent motion over the point [...].”

Where the streamwise velocity component u, which Taylor called turbulent velocity, is
the transported quantity of interest. Taylor’s hypothesis is, however, not limited to the
description of u-transport, but can be applied to all kinds of flow-properties such as other
velocity components (e.g. Quadrio and Luchini 2003 and Del Álamo and Jiménez 2009),
pressure (e.g. Choi and Moin 1990), wall shear-stress (e.g. Jeon et al. 1999), enstrophy
(e.g. Liu et al. 2023) or temperature (e.g. Hetsroni et al. 2004).
In general, Taylor’s hypothesis can be used to link the real-time evolution of the arbitrary
flow-property ϕ to the spatial evolution of the ϕ-field “frozen” in time as

ϕ(x, t) ≈ ϕ(x − tuc,ϕ, t0), (2.50)

by means of a suitable convection-velocity uc,ϕ, as done by Del Álamo and Jiménez 2009.
Where x is the spatial position and t is the time since t0, when the field was “frozen”.
Taylor 1938 already stated in his paper that Equation 2.50 is only certainly true in the
limit case of u/∥uc,ϕ∥ → 0. Here ∥ · ∥ is a tensor norm. This can again be generalised
for an arbitrary flow property as the statement that Equation 2.50, and thereby Taylor’s
hypothesis, is certainly true if the “frozen” ϕ-field is convected infinitely faster through
space than it can change in time, as expressed by Del Álamo and Jiménez 2009. However,
in a general flow configuration, Equation 2.50 is only an estimate whose accuracy can
vary. In flows containing high levels of shear, Lin 1953 found Taylor’s hypothesis to be a
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poor approximation, while Lee et al. 1992 evaluated the hypothesis to be applicable for
vorticity-transport, even though they found it to be invalid for purely compressible motion.
Geng et al. 2015 proposed an analytical/numerical approach to examine the applicability
of Taylor’s hypothesis by means of a transport equation analysis, which will be further
discussed in section 4.2 for the flow configurations considered in the scope of this thesis.

2.3.2. Convection velocities

Even if Taylor’s hypothesis is found to be applicable to a given fluid-mechanical problem,
its accuracy is highly dependent on a suitable definition of the convection velocity (uc,ϕ in
Equation 2.50), which is why Del Álamo and Jiménez 2009 mentioned regular warnings
against the uncritical use of Taylor’s hypothesis in the literature.
The original definition of the convection velocity is simply that of the local mean velocity

u
(1)
c,ϕ(x, t) ≡ ⟨u(x, t)⟩, (2.51)

as stated by Moin 2009. This is, however, an insufficient definition since it fails to represent
the dependency of the convection velocity on material and flow properties. A suitable
definition should certainly reflect these dependencies, since the convection velocity is found
to be unlike for different transported quantities, as shown, for example, by Quadrio and
Luchini 2003 and Del Álamo and Jiménez 2009. Hetsroni et al. 2004 showed its dependency
on the Prandtl number in the case where the transported quantity is a passive scalar. The
dependency of the convection velocity on the wavenumber tensor k and the frequency
ω of different modes in turbulent flows is another important characteristic, which has
therefore been researched for example by Wills 1964, Choi and Moin 1990 and Del Álamo
and Jiménez 2009. And even though Equation 2.51 takes the effects of possible changes in
Reynolds number or wall-distance somewhat into account, the convection velocity behaves
differently than the mean velocity in these regards, which was shown for example by Wills
1964, Hetsroni et al. 2004, Del Álamo and Jiménez 2009 and Liu et al. 2023.
To take more of these dependencies into account when constructing a convection velocity,
many definitions rely on the space-time auto-covariance Rϕϕ (Equation 2.33 with ψ = ϕ)
as mentioned by Hussain and Clark 1980 and Goldschmidt et al. 1981. In these papers,
the most commonly used convection velocities, all based on isolines of the space-time
auto-covariance, are presented.
Considering a plane channel flow, as described in section 2.2, and only evaluating the
convection velocity in x1-direction uc,ϕ, since flow-structures are mainly convected stream-
wise, the convection velocity for a given x2-position can be calculated by different methods
using isolines of Rϕϕ(x2, r1,△t). Here, the space-time auto-covariance is only dependent
on r1 and △t, since r2 = 0 and r3 = 0 for the evaluation of convection in x1-direction.
Where r1, r2 and r3 are the spatial separations in x1, x2 and x3-direction, respectively.
For an exemplary isoline of this space-time auto-covariance, as sketched in Figure 2.5, the
convection velocity in x1-direction can be calculated as

u
(2)
c,ϕ(x2, r1) ≡ r1

△tp
, (2.52)

where △tp is the corresponding time delay of the peak Rϕϕ-value depending on r1. Another
common way of defining the convection velocity is by

u
(3)
c,ϕ(x2,△t) ≡ r1,p

△t
, (2.53)

with the corresponding spatial separation r1,p of the peak Rϕϕ-value depending on △t. In
the former definition △tp is chosen such that ∂△tRϕϕ(x2, r1,△t) = 0 holds true, while in
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2.3. Taylor’s hypothesis of frozen turbulence

the latter definition r1,p is given as the parameter fulfilling ∂r1Rϕϕ(x2, r1,△t) = 0. The
convection velocity can also be defined by

u
(4)
c,ϕ(x2, r1,△t) ≡ r1,i

△ti
, (2.54)

with (r1,i,△ti) being the point in the (r1,△t)-plane where the Rϕϕ-isoline intersects its
major axis. Other definitions include values of the derivative

u
(5)
c,ϕ(x2, r1,△t) ≡ ∂△tr1 (2.55)

on the Rϕϕ-isoline at either the point, where Equation 2.52 is constructed, or the point,
where Equation 2.53 is constructed. Some of the convection velocities listed by Hussain
and Clark 1980 are depicted in Figure 2.5. A simplified example for a better interpretation
of these definitions can be found in subsection A.1.
These definitions capture more of the mentioned dependencies. However, they still lack
distinction between the different scales of turbulent structures, which is an especially
important characteristic of turbulence. Hussain and Clark argued in their paper that
convection velocities based on the space-time auto-covariance represent a weighted average
of the velocities at which each turbulent scale is convected.

r1

△t

Rϕϕ
= const.

Rϕϕ
= const.

Rϕϕ
= const.r1 (△tp)

r1,i

r1,p

△t (r1,p)△ti△tp

1

u
(2)
c,ϕ

1

u
(4)
c,ϕ

1
u

(3)
c,ϕ

Figure 2.5.: Convection velocities and isolines of the space-time auto-covariance in a sta-
tistically steady and statistically homogeneous (x1- and x3-direction) channel
flow with r2 = 0, r3 = 0 and at a constant x2-position (Adapted from Hussain
and Clark 1980)

Since larger scales tend to be long-lived in comparison to small ones, their behaviour has a
greater influence on the calculated convection velocity with increasing time delay, thereby
skewing the “real value”.
To solve this problem, Wills 1964 introduced the idea of defining a convection velocity
using the wavenumber-frequency spectrum Φ̃ϕϕ (Equation 2.35). Wills argued that by
supposing the flow-field to be a superposition of elemental waves, the frequency which
these waves generate at a distinct spatial position can be expressed as

ω = −k1uk1 . (2.56)
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In this simplified case, each wave corresponds only to a wavenumber k1 in x1-direction.
uk1 is a range of velocities at which the waves of wavenumber k1 move downstream.
Substituting Equation 2.56 in Equation 2.35 and again considering the plane channel flow
from section 2.2 yield a modified wavenumber-frequency spectrum

Φ̃mod
ϕϕ (x2, k1, uk1) = Φ̃ϕϕ(x2, k1,−k1uk1) = Φ̃ϕϕ(x2, k1, ω). (2.57)

With this, the dominant convection velocity for a given wavenumber is defined as the
velocity uk1 , which maximizes the modified wavenumber-frequency spectrum as

∂uk1
Φ̃mod
ϕϕ (x2, k1, uk1)

∣∣∣
uk1 ≡u(6)

c,ϕ
(x2,k1)

= 0. (2.58)

The convection velocity defined by Equation 2.58 fulfils the wanted requirements, especially
regarding the desired turbulent scale-dependency. It can also be extended simply to
take different wavenumbers k3 in x3-direction into account. However, its applicability is
limited by the need for full spatial and temporal spectral information. Del Álamo and
Jiménez 2009 addressed this problem by proposing a definition that is also based on the
wavenumber-frequency spectrum, but only requires spectral information in either spatial or
temporal direction while utilising local derivatives in the other. This is done by determining
the convection velocity, not by the value maximising Equation 2.57, but by the position
of the centre of gravity of the wavenumber-frequency spectrum for a given wavenumber.
For the flow-configurations considered in their paper, they showed this definition to be in
good agreement with the definition based on Equation 2.58. In the case of using spectral
information for the spatial direction and local time derivatives, the convection velocity for
the plane channel flow described in section 2.2 is defined as

uc,ϕ(x2, k1, k3) ≡ − 1
k1

∫ ∞

−∞
ωΦ̃ϕϕ(x2, k1, k3, ω) dω∫ ∞

−∞
Φ̃ϕϕ(x2, k1, k3, ω) dω

. (2.59)

Del Álamo and Jiménez further explained in their paper that by twice using Parseval’s
theorem

〈
ϕ̂′∗ϕ̂′

〉
(t)

=
∞∫

−∞

Φ̃ϕϕ(x2, k1, k3, ω) dω, (2.60)

〈
ϕ̂′∗∂tϕ̂′

〉
(t)

= i

∞∫
−∞

ωΦ̃ϕϕ(x2, k1, k3, ω) dω, (2.61)

where (̂ · ) is the spatial Fourier-coefficient with respect to the streamwise and spanwise
directions, while ( · )∗ marks the complex-conjugate of a value, Equation 2.59 can be
rewritten as

uc,ϕ(x2, k1, k3) = −
I

[〈
ϕ̂′∗∂tϕ̂′

〉
(t)

]
k1

〈
ϕ̂′∗ϕ̂′

〉
(t)

, (2.62)

with I( · ) being the imaginary part of a complex number. This formulation clearly shows
that, instead of spectral information in the temporal direction, only local time derivatives
of ϕ̂′ are needed to evaluate the convection velocity. Note that in contrast to the previous
convection velocities, Equation 2.62 (resp. Equation 2.59) is not superscripted with a
number. This is to simplify the notation, since Equation 2.62 is going to be the only
definition of uc,ϕ used further on.
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2.3. Taylor’s hypothesis of frozen turbulence

Calculating a weighted average of these particular convection velocities yields a “natural”
definition for the overall convection velocity

Uc,ϕ(x2) ≡

∫
K
uc,ϕ(x2, k1, k3)k2

1ϕ̂
′∗ϕ̂′ dk1dk3∫

K
k2

1ϕ̂
′∗ϕ̂′ dk1dk3

, (2.63)

as stated by Del Álamo and Jiménez. K is the space of wavenumbers that contributes to
the overall convection velocity. Here, the wavenumber-dependent convection velocities are
weighted by the energy contained within each respective scale. What makes this definition
“natural” is the fact that it is equivalent to finding the overall convection velocity, which
minimises the difference between the temporal evolutions of ϕ(x, t) and ϕ(x − tUc,ϕ, t0),
thereby best-approximating Taylor’s hypothesis (Equation 2.50).
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3. Simulations and post-processing

3.1. DNS solver

As mentioned in section 2.2, the behaviour of plane channel flow, analysed within this
thesis, is simulated through DNSs. To do so, an in-house solver from the Institute of
Fluid Mechanics (ISTM) of the Karlsruhe Institute of Technology (KIT) is used. The
solver is based on the algorithms described by Luchini and Quadrio 2005. For the sake of
computational efficiency, the velocity field is not calculated by solving the dimensionless
mass balance (Equation 2.15) and the dimensionless NSE (Equation 2.16), but rather by
solving two scalar equations. This equivalent formulation of a fluid mechanical problem
was first introduced by Kim et al. 1987. The two scalar equations consist of a fourth-order
equation for the wall-normal velocity component

∂t∆u2 = −∂x2 (∂x1H1 + ∂x3H3) + ∂2
x1x1H2 + ∂2

x3x3H2 + 1
Re

∆2u2, (3.1)

as well as an additional second-order equation for the wall-normal vorticity component

∂tω2 = ∂x3H1 − ∂x1H3 + 1
Re

∆ω2. (3.2)

Here, ∆2( · ) is the biharmonic operator and H is a tensor containing the non-linear
convection and the forcing terms of the original formulation. The streamwise and the
spanwise velocity components are recovered by solving a system of equations

−∂x2u2 = ∂x1u1 + ∂x3u3, (3.3)

ω2 ≡ ∂x3u1 − ∂x1u3, (3.4)

comprised of the continuity equation and the definition of the wall-normal vorticity compo-
nent, respectively. As mentioned by Kim et al. 1987, pressure computation is not required
during run-time, since no information from p is needed for time advancement. If needed,
the pressure fields can be reconstructed from the velocity fields in any suitable way after
the simulation has run.
Luchini and Quadrio 2005 explain the use of a spectral discretisation in the two statistically
homogeneous directions. This is a natural choice, since periodic boundary conditions
are employed in the streamwise and the spanwise directions, as mentioned in section 2.2.
They further note the important advantage of Equation 3.3 and Equation 3.4 becoming an
algebraic system of equations after being Fourier-transformed, as

−∂x2 û2 = ik1û1 + ik3û3, (3.5)

ω̂2 = ik3û1 − ik1û3. (3.6)

The Fourier-representation of Equation 3.1, Equation 3.2 and the dimensionless transport
equation of a passive scalar (Equation 2.17) are
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∂t
(
− k2

1û2 + ∂2
x2x2 û2 − k2

3û2
)

= −∂x2

(
ik1Ĥ1 + ik3Ĥ3

)
−

(
k2

1 + k2
3

)
Ĥ2 (3.7)

+ 1
Re

(
k4

1û2 − 2k2
1∂

2
x2x2 û2 + ∂4

x2x2x2x2 û2 − 2k2
3∂

2
x2x2 û2 + 2k2

1k
2
3û2 + k4

3û2
)

,

∂tω̂2 = ik3Ĥ1 − ik1Ĥ3 + 1
Re

(
−k2

1ω̂2 + ∂2
x2x2ω̂2 − k2

3ω̂2
)

, (3.8)

∂tθ̂ = −ik1(̂u1θ) − ∂x2 (̂u2θ) − ik3(̂u3θ) + 1
Re Pr

(
−k2

1 θ̂ + ∂2
x2x2 θ̂ − k2

3 θ̂
)

+ Q̂, (3.9)

respectively. Note that the Fourier coefficients of H in Equation 3.7 and Equation 3.8, as
well as the Fourier coefficients of the non-linear terms contained within Equation 3.9, are
calculated by inverse Fourier-transforming their parts into physical space, calculating the
products there, and Fourier-transforming them back into wavenumber-space afterwards.
This is done using Fast-Fourier-Transformation (FFT) algorithms, as mentioned by Luchini
and Quadrio 2005. Luchini and Quadrio also explain that, by expanding the number of
collocation points in physical space by a factor of 1.5 or more, the non-linear products are
calculated with identical accuracy as if they were calculated in wavenumber-space. This
expansion of the number of collocation points is called “de-aliasing”. It is important to
mention that the system of equations 3.5 to 3.8 becomes singular when considering the zero
modes (k1 = k3 = 0), representative of the spatial mean values. Therefore, only non-zero
modes are calculated by this procedure, while another set of equations is implemented for
the averaged velocity components. These equations are analogous to the RANS equations,
although the averages of Equation 2.10 are taken over the physical domain instead of an
ensemble. This set of equations can then be solved since the non-linear terms of fluctuating
values are known a priori from the solution of equations 3.5 to 3.8.
For discretisation of the wall-normal derivatives, Luchini and Quadrio 2005 employ a
high-accuracy compact finite difference scheme, based on the formulation introduced by
Lele 1992. However, because the third wall-normal derivative is absent in the governing
equations, Luchini and Quadrio can explicitly determine the compact finite difference
coefficients without solving a linear system of equations. In their implementation, they use a
stencil of five adjacent grid points. This is adopted in the present work. An inhomogeneous
grid is used for the spacing of the wall-normal collocation points. The position of each
point (of index j ∈ N ∩ [0, n2]) inside the channel, normalised by the channel half-width, is
given by

x2(j)
h

=
tanh

(
s

(
2j
n2

− 1
))

tanh (s) + 1 (3.10)

with the spacing parameter s and the number of wall-normal nodes n2. Here, tanh( · )
denotes the hyperbolic tangent and N is the set of natural numbers. The grid is additionally
extended by a plane of ghost-nodes “inside” each wall of the channel for better application of
the wall-normal boundary conditions. The boundary conditions for û2 and ω̂2 originate from
the no-slip and impermeability conditions, introduced in subsection 2.2.1. By additionally
considering the continuity equation as well as the definition of the wall-normal vorticity
component, the boundary conditions for the flow field are given by

û2
∣∣∣
w

= 0, (3.11)

∂x2 û2
∣∣∣
w

= 0, (3.12)

ω̂2
∣∣∣
w

= 0. (3.13)

Since the equations 3.11, 3.12 and 3.13 apply to both walls of the channel, they represent
six individual conditions (for each non-zero Fourier-mode), thereby closing the system
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of equations 3.5 to 3.8. The equations used to calculate the mean velocity components
(zero modes) are closed directly by the no-slip and impermeability boundary conditions,
mentioned in subsection 2.2.1. The boundary conditions for θ̂ likewise originate from the
conditions introduced in subsection 2.2.1. This results in the relationship

θ̂
∣∣∣
w

= 0, (3.14)

for each Fourier-mode at both channel walls, closing Equation 3.9. Note that even
though not physically needed, additional boundary conditions for the wall-normal vorticity
component and the passive scalars are employed, due to these fields being enlarged by the
planes of ghost-nodes as well. As additional conditions, the strongest possible constraints
on the smoothness of the respective fields are chosen by forcing their fourth wall-normal
derivatives to vanish at the wall, as

∂4
x2x2x2x2ω̂2

∣∣∣
w

= 0, (3.15)

∂4
x2x2x2x2 θ̂

∣∣∣
w

= 0. (3.16)

Luchini and Quadrio 2005 use a partially implicit memory-optimised method for time
integration. This method consists of an explicit third-order low-storage Runge-Kutta
method for discretising the non-linear and forcing terms combined with an implicit second-
order Crank-Nicolson scheme for discretising the viscous terms. The governing equations
are therefore integrated in time by two consecutive steps, as described by Luchini and
Quadrio. First, the explicit terms on the right-hand side are assembled. This is done per
wall-parallel plane, since Fourier-transformations of the non-linear terms need information
of the whole (k1-k3)-space per wall-normal position x2. Second, the viscous terms are
implicitly time-integrated with the (at this point known) rest of the right-hand side. This
is done per wall-normal line, since the finite differences discretisation of the wall-normal
derivatives require information over all wall-normal positions x2 for each wavenumber-pair
of the (k1-k3)-space.

3.2. Simulation setups

In the scope of this thesis, four DNSs of turbulent plane channel flow are conducted.
They can be classified into two groups. One “preliminary” (pre.) simulation and three
“main” simulations at different Reynolds numbers. The latter are conducted after analysing
the results of the former. This analysis is further described in section 4.1. Note that
the Reynolds number for each simulation is set by choice of the dimensionless kinematic
viscosity ν. In addition to solving for the velocity and pressure fields (p is reconstructed
during post-processing, as mentioned in section 3.1), each simulation also evaluates the
behaviour of three passive scalars of ranging Prandtl numbers. The resolution of the grid
in x2-direction (physical space) is controlled by the number of wall-normal nodes n2. The
spectral resolution in the statistically homogeneous directions (wavenumber-space) is set by
the numbers m1 and m3 of modes in the k1 and the k3 “directions”, respectively. Note that
the numbers of modes, as stated here, also consider negative wavenumbers. The spacing
of the wall-normal nodes is given by Equation 3.10, as explained in section 3.1, and is
thereby controlled by the spacing parameter s. The last parameters characterising each
simulation setup are the dimensions of the periodic box. When normalised by the channel
half-width h, the channel width becomes 2 in all cases, trivially. The periodic lengths L1
and L3 of the respective streamwise and spanwise directions are however controlled by the
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3. Simulations and post-processing

base wavenumbers α0 and β0, as

L1
h

= 2π
α0

, (3.17)

L3
h

= 2π
β0

. (3.18)

The base wavenumbers additionally determine the spectral-bins governed by every dis-
crete mode and their corresponding wavenumbers. Note that the latter are mirrored
at zero, so that the wavenumber-ranges are k1 ∈ [−α0(m1 − 1)/2, α0(m1 − 1)/2] and
k3 ∈ [−β0(m3 − 1)/2, β0(m3 − 1)/2], respectively.
A summary of all simulations and their characterising parameters is shown in Table 3.1.
Forcing of the flow is controlled by adjusting the bulk velocity after each time step to
equal unity. This is important to note, since by this approach, the friction velocity uτ is
not forced to a specific value at each time step. As a result, the desired friction Reynolds
numbers (seen in Table 3.1) might only be reached approximately. The passive scalars are
forced similarly by setting their bulk value to unity after each time step. The forcing is
thereby already integrated into the respective field values, and no volume force or scalar
source term is present, respectively. However, this has a negligible impact on the resulting
data, since the forcing is about four orders of magnitude smaller than the respective field
values in every case considered.

Case Type Reτ Reb Pr n2 m1 m3 s L1/h L3/h

p180 pre. 180 5600 [0.025, 0.71, 1] 161 191 193 1.5 4π 2π

m180 main 180 5600 [0.025, 0.4, 1] 161 383 193 1.5 8π 2π

m500 main 500 18170 [0.025, 0.4, 1] 251 1023 257 1.66 8π 2π

m1000 main 1000 40000 [0.025, 0.4, 1] 501 2047 1025 1.66 8π 2π

Table 3.1.: Simulation cases and variable parameters

Other parameters used in the simulations are the (dimensionless) density ρ = 1, the
(dimensionless) specific heat capacity at constant pressure cp = 1 and the upper limit for
the Courant-Friedrichs-Lewy number CFLmax = 1. The latter dynamically adjusts the
time-step size to maintain numerical stability during the simulation run-time. In contrast to
most parameters in Table 3.1, these values are set once and remain unchanged throughout
all simulations.

3.3. Selected aspects of implementation

There are important aspects to consider when working with discretely distributed values,
as is done in the simulations and post-processing conducted throughout this thesis.
This is of particular relevance when integrating with respect to the wall-normal direction,
since the wall-normal nodes are not distributed homogeneously along the channel width. For
these integrals, which are used, for example, when calculating the bulk values Equation 2.43
and Equation 2.44, a quadrature scheme based on the Simpson rule is implemented.
In addition to the discrete distribution of the wall-normal nodes, the “spacing” of the
Fourier modes must be considered. This is the case since the spectral solver exactly
evaluates the energy contained within each wavenumber-bin. However, since the sizes of
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these bins are controlled by the values of α0 and β0, their energy is also dependent on this
spectral resolution. It is, therefore, useful to calculate the respective energy density of each
wavenumber-bin by dividing its energy by the respective base wavenumber. The resulting
energy density of each mode, represented by the wavenumber spectrum (Equation 2.36), is
a quantity independent of the spectral resolution employed in the solver.
Since the analysis of turbulence requires the averages of quantities to be computed, as
mentioned in subsection 2.1.1, these calculations need to be evaluated on discrete data
as well. There are three general averaging operators applied in the following evaluations.
First, arithmetic averaging in time, where the mean of each data point in the discrete
(x1-x2-x3)-space is calculated via all its corresponding values per time step, or at least over
those fields saved for post-processing, as

⟨ϕ⟩(t) (x1, x2, x3) ≡ 1
nts

nts∑
n=1

ϕ(x1, x2, x3, t(n)), (3.19)

where nts is the number of time steps considered. The second and third averaging operators
are the arithmetic means in the statistically homogeneous directions. If a flow variable is
considered in the physical (x1-x2-x3)-space, spatial means of each point in this domain are
calculated via all their corresponding points in the streamwise or spanwise directions, as

⟨ϕ⟩(x1) (x2, x3, t) ≡ 1
n1

n1∑
n=1

ϕ(x1(n), x2, x3, t), (3.20)

⟨ϕ⟩(x3) (x1, x2, t) ≡ 1
n3

n3∑
n=1

ϕ(x1, x2, x3(n), t), (3.21)

respectively. Here, n1 and n3 are the corresponding numbers of collocation points in the
statistically homogeneous directions of the physical space. Note that Equation 3.20 and
Equation 3.21 do not necessarily have to be evaluated in physical space. A spatial average
in, for example, the x1-direction can also be “calculated” by only considering the respective
modes corresponding to k1 = 0. A similar approach is possible for spatial means in the
x3-direction. In addition to these three general operators, other symmetries in the data
might be used for averaging. However, these depend on the individual quantity considered
and will be introduced when applied. It is also possible to average in more than one way
simultaneously.
As mentioned in section 3.1, the pressure field is not calculated during run-time but a
posteriori, when it is needed for post-processing. In that case, p is calculated by solving the
pressure Poisson equation using the saved velocity fields. This is done using an in-house
code which utilises the same spectral (k1 and k3) and spatial (x2) resolutions, as well as
the same derivation schemes, as the main DNS solver. Since the wall-normal pressure
gradient is needed as well during post-processing, it is also calculated by solving a Poisson
equation, this time for ∂x2p directly. Note that this is done to avoid deriving the pressure
field in the wall-normal direction for reasons of computational precision, as explained in
detail in subsection A.2.
To implement the previously selected convection velocity definition, an approximation of the
local time derivative, present in the numerator of Equation 2.62, is needed. Del Álamo and
Jiménez 2009 state that every appropriate approximation is valid. They further recommend
reconstructing the time derivative terms of each quantity from the respective equation
of motion. This approach is used in the scope of this thesis. Therefore, to calculate the
convection velocity of turbulent u1-structures, the first component of Equation 2.11 is
considered. This equation is then Fourier-transformed, multiplied by û′

1
∗

and averaged in
time. Some of the non-linear terms still present in Equation 2.11 vanish due to the linearity
of Fourier-transforming and averaging. Due to the setup, explained in section 3.2, the
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volume force term vanishes as well (which is also the case for the other velocity components
and the passive scalars). Taking the negative imaginary part of the resulting equation and
dividing by the denominator of Equation 2.62 then yields the convection velocity

uc,u1(x2, k1, k3) = ⟨u1⟩(t,x1,x3) +
k1R

[
1
ρ

〈
û′

1
∗
p̂′

〉
(t,x1,x3)

+
〈
û′

1
∗
(̂u′

1u
′
1)

〉
(t,x1,x3)

]
k1

〈
û′

1
∗
û′

1

〉
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+
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1u
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]
+ I
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(3.22)

+
I

[
−ν
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û′
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x2x2 û
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〉
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,

as it is implemented in the post-processing script used throughout this thesis. Here, R( · )
is the real part of a complex number. A Reynolds decomposition is applied, isolating
the mean streamwise velocity profile (first term on the right-hand side of Equation 3.22).
A similar procedure is used to derive the implemented convection velocity of turbulent
u2-structures

uc,u2(x2, k1, k3) = ⟨u1⟩(t,x1,x3) +
k1R
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′
2

〉
(t,x1,x3)

]
k1

〈
û′
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(3.23)

+
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Note that, in contrast to Equation 3.22, Equation 3.23 contains no wall-normal gradient
of the mean field, since only the streamwise velocity component has a non-vanishing
contribution to the averaged flow field of turbulent plane channel flow, as stated by Del
Álamo and Jiménez 2009. However, Equation 3.23 also contains the mean streamwise
velocity profile, resulting from the applied Reynolds decomposition. The convection velocity
of turbulent u3-structures, as it is implemented in the scope of this thesis, takes the form

uc,u3(x2, k1, k3) = ⟨u1⟩(t,x1,x3) +
k1R
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As it is the case for Equation 3.23, there is again no mean wall-normal gradient term in
Equation 3.24. Nevertheless, because of the Reynolds decomposition, there is once again a
contribution of the mean streamwise velocity profile. The implemented equation for the
convection velocity of turbulent θ-structures

uc,θ(x2, k1, k3) = ⟨u1⟩(t,x1,x3) +
k1R
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,

shows some resemblances to Equation 3.22, due to the similarity of passive scalar and
streamwise momentum transport. Since the mean passive scalar field does not vanish for
turbulent plane channel flow, Equation 3.25 contains a mean wall-normal gradient term, as
it is also the case for Equation 3.22. However, the convection velocity implementation of
passive scalar structures differs from the equations 3.22 to 3.24 in terms of the pressure
term. It is absent in the former since the pressure field has no direct influence on the
transport of a passive scalar. Like for the convection velocities of velocity-structures,
Equation 3.25 contains the mean streamwise velocity component. This emphasises again
that the considered convection velocities are all oriented in the streamwise direction. Note
the importance of this, when working with equations 3.22 to 3.24, since these are streamwise
convection velocities of turbulent structures characterised by the components of the velocity
tensor and not individual components of a “convection velocity tensor”. Implementing the
convection velocities using the respective equations of motion has the additional advantage
of allowing for selective interpretations of individual terms contributing to the convection
velocities, as mentioned by Del Álamo and Jiménez 2009. A detailed analysis of this is
conducted in section 4.3. However, equations 3.22 to 3.25 already show the influence of
pressure, convection and diffusion/conduction to a certain extent. This analysis is made
possible by individually calculating every average seen in the convection velocity equations
and summing them up afterwards. To do so, the individual fields are taken from the DNS
time steps, which were saved for post-processing, and assembled into the terms of equations
3.22 to 3.25 in wavenumber-space. Only the Fourier-coefficients of the non-linear terms are
calculated by inverse Fourier-transforming their parts, calculating the products in physical
space and Fourier-transforming their products back into wavenumber-space. This is done
using FFT algorithms, like in the DNS-solver itself, as is described in section 3.1.
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4. Results

4.1. Preliminary investigation and validation

The preliminary simulation “p180” is carried out as a first step of data generation. The
parameters characterising p180 are listed in Table 3.1. The purpose of a preliminary
investigation, based on the data obtained from p180, is to analyse whether certain simulation
parameters need to be adjusted before running the main simulations “m180”, “m500”,
and “m1000” (also listed in Table 3.1). This is done by evaluating typical statistics of
turbulent plane channel flow, presented, for example, by Kim et al. 1987, Kim and Moin
1990, Kawamura et al. 1998, Kong et al. 2000, Piller 2005, Ould-Rouiss et al. 2013 and
Pirozzoli et al. 2016. In addition to the information taken from the statistics, comparisons
to literature data are used for further validation. This validation is later repeated for the
data obtained from m180, m500 and m1000. However, in this chapter, only the validation
of p180 is discussed in detail since the procedure is equivalent for all simulations. The
typical statistics of turbulent plane channel flow for the three main simulations are depicted
in section B. All time averages (Equation 3.19) applied throughout this thesis are taken
over a number of nts = 100 fields, unless otherwise specified.
Figure 4.1 shows the mean profiles of the velocity components (4.1a) and passive scalars
(4.1b) over the wall distance in viscous units. Only half of the channel width is represented,
as the statistics are symmetric with respect to the channel mid-plane, as mentioned by Kim
et al. 1987 and Kim and Moin 1990. The data show the typical behaviour expected from
the analytical considerations of turbulent plane channel flow, introduced in subsection 2.2.1
and subsection 2.2.3. The mean wall-normal and mean spanwise velocity components
vanish over the whole channel width, while the mean streamwise velocity component
exhibits the characteristic separation into different wall layers. In the case of the log-law
(Equation 2.47), a dashed grey line with κ = 0.4 and B = 5.6 is also plotted in Figure 4.1a.
For comparison, the mean streamwise velocity profile of a similar simulation, executed by
Abe et al. 2004, is additionally shown. This curve is in good agreement with the data
obtained from p180, even though the actual friction Reynolds numbers of both simulations
are not a perfect match due to the type of forcing employed in this thesis, as explained in
section 3.2. The mean scalar fields follow the expected analytical behaviour as well. For
all Prandtl numbers, a linear trend is seen in the respective molecular sublayer. The two
scalars with Pr = 0.71 and Pr = 1 also show a scalar log layer close to the centre of the
channel. Two logarithmic curves (defined by Equation 2.49) are plotted for comparison
with (C1, C2) = (2.46, 2.8) and (C1, C2) = (2.5, 5.6) for the medium and large Prandtl
numbers, respectively. For the mean passive scalar field with Pr = 0.71, literature data is
used for further validation. The dotted line in Figure 4.1b shows the results of a simulation
conducted by Horiuti 1992. Both curves are in good agreement with each other. The slight
divergence between the literature data and the results obtained from p180 near the channel
centre could be attributed to the fact that Horiuti 1992 simulated a passive scalar with
Pr = 0.7, which is slightly less than the Prandtl number considered in the present case.
Figure 4.2 depicts the independent components of the Reynolds stress tensor over the wall
distance in viscous units. Again, only half the channel width is plotted due to the present
symmetry, mentioned by Kim et al. 1987. The data shown depict the expected behaviour.
Especially ⟨u′

1u
′
2⟩ exhibiting a zero crossing in the centre of the channel, as well as ⟨u′

1u
′
3⟩
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Figure 4.1.: Mean quantities in turbulent plane channel flow (case p180)

and ⟨u′
2u

′
3⟩ vanishing altogether, agree well with the theory introduced in subsection 2.2.2.

The results of Abe et al. 2004 are again used for comparison. The literature data are
in good agreement with the results obtained from p180, as it is the case for the mean
streamwise velocity field. The minimal differences in the curves, plotted in Figure 4.2,
might result from slightly different friction Reynolds numbers, as mentioned before. In
Figure 4.3, one-point correlations of the scalar fields with themselves as well as the velocity
components are shown for each Prandtl number individually. The respective values are
plotted with respect to the wall distance in viscous units. Therefore, these quantities are
somewhat analogous to the Reynolds stresses shown in Figure 4.2. When comparing the
graphs for Pr = 0.025, Pr = 0.71 and Pr = 1 in Figure 4.3a, 4.3b and 4.3c, respectively, it
is evident that larger Prandtl numbers correspond to larger correlation values. This is also
shown by Kim and Moin 1990. Additionally, the peak of all non-zero components moves
closer to the channel wall with increasing Pr, which is mentioned by Kim and Moin 1990
as well. The Reynolds analogy of momentum and scalar transport can be observed in the
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Figure 4.2.: Reynolds stress profiles (case p180)

similarity of Figure 4.3 and Figure 4.2, especially in the case of Pr = 1. Regarding this, it
is interesting to note that for the medium and lower Prandtl numbers, ⟨θ′u′

1⟩ shows the
highest peak value of all components. Only for the largest Prandtl number, ⟨θ′θ′⟩ is the
component of most influence. The simulation of a passive scalar with Pr = 0.7 by Horiuti
1992 was again considered for comparison. Close similarities between these data and the
results obtained from p180 can be seen in Figure 4.3b. The small differences between the
respective curves can again be attributed to the difference in the Prandtl numbers of both
cases.
The good agreement of Figure 4.1, Figure 4.2 and Figure 4.3 with analytical derivations,
as well as data from the literature, indicate that the simulation and averaging setups used
are capable of reproducing low-order turbulence statistics.
Figure 4.4 shows the mean total, viscous and turbulent shear stresses, as defined by
Equation 2.25, 2.26 and 2.27, respectively. The shear stress contributions are plotted with
respect to the wall distance, normalised by the channel half-width. The stresses themselves
are normalised by the wall shear stress (Equation 2.31) at x2 = 0. The averages entailed
within the definitions 2.25, 2.26 and 2.27 are only taken with respect to the statistically
homogeneous spatial directions and not with respect to time. As a result, the curves, seen
in Figure 4.4, still exhibit a significant amount of statistical noise. This is especially visible
when considering x2/h = 2, where τ/τw = −1 should hold, due to the geometric symmetry
of the channel, mentioned by Kim et al. 1987 and Kim and Moin 1990. However, the
reason for considering only one time step at once is to determine whether the flow field
is statistically fully developed, in the way it is explained, for example, by Straub et al.
2019. As mentioned in subsection 2.2.2, analytical consideration of a statistically fully
developed turbulent plane channel flow leads to the mean total shear stress being linear
across the channel. This behaviour is approximately reached at the time step depicted in
Figure 4.4. Therefore, the time step shown is considered statistically fully developed and
thus chosen as a “starting point” for all time averages taken in the statistical analysis of the
quantities obtained from p180. In analogy to the figure of the shear stress contributions,
Figure 4.5 depicts the mean total, molecular and turbulent fluxes of each passive scalar,
individually. The flux values, defined by Equation 2.28, 2.29 and 2.30, are normalised
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Figure 4.4.: Shear stress contributions (case p180)

by the respective wall scalar fluxes (Equation 2.32) at x2 = 0. The wall distance, over
which the individual flux contributions are plotted, is normalised by the channel half-width.
Again, all quantities are only averaged in space, while just one single time step is considered.
This is done to analyse whether the scalar fields are statistically fully developed as well.
The time step depicted is the same as for the velocity field. Figure 4.5a, Figure 4.5b, and
Figure 4.5c show close to linear behaviour in their mean total passive scalar fluxes. The
scalar fields can therefore be considered statistically fully developed from this point out as
well. Note that the contributions of the passive scalar flux for Pr = 0.025 in Figure 4.5a
show no visible statistical noise. This can be attributed to the fact that the transport of
low Prandtl number scalars exhibits “laminar-like” behaviour and therefore less turbulent
fluctuations in general, as indicated by Kawamura et al. 1998. This is also apparent when
considering the absolute values of qturb for the case with the lowest Prandtl number. The
contribution of the turbulent flux to the mean total flux is significantly smaller than in
the cases with higher Prandtl numbers. Another interesting behaviour is evident when
comparing Figure 4.5b and Figure 4.5c. The statistics of the scalars with Pr = 0.71 and
Pr = 1 are nearly equal.
Figure 4.6 shows the streamwise (space-time) auto-covariance of the velocity components
as well as the passive scalars in 4.6a and 4.6b, respectively. The values of Rϕϕ, defined
by Equation 2.33, are plotted with respect to the streamwise separation, normalised by
the channel half-width, r1/h. The streamwise auto-covariances are normalised by their
respective values at vanishing separations r1 = 0. Note that the auto-covariance is a
special case of the general space-time covariance, where the correlation of a quantity with
itself is analysed. According to this, no summation is applied with respect to the index
α in Figure 4.6a, as is conventionally the case for Greek indices. The average within the
definition of the auto-covariance is taken with respect to both statistically homogeneous
spatial directions as well as with respect to time (over 100 statistically fully developed
time steps), in these cases. By analysing the behaviour of auto-covariances, it is possible
to determine if the periodic box sizes used are large enough to capture the largest scales
of turbulent motion, as it is done by Kim et al. 1987 and Piller 2005. In that case, the
value of Rϕϕ would approach zero at a separation of half the channel box size, indicating
that no structures larger than the total channel box size are present in the flow. Due to
the periodic boundary conditions, the auto-covariance is symmetrical with respect to half
the streamwise periodic box size, which is why a maximum streamwise separation of only
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Figure 4.5.: Passive scalar flux contributions (case p180)
32



4.1. Preliminary investigation and validation

L1/2h is depicted, like in the case of Kim et al. 1987. All auto-covariances depicted in the
following figures are evaluated in the channel centre (x+

2 ≈ 180), since the largest turbulent
structures are expected to form far away from the channel walls, as mentioned by Jiménez
and Simens 2001. The idea is that if no scales are curtailed at the centre line, no scales
are cut off at all in the channel. Considering Ru2u2 and Ru3u3 in Figure 4.6a, it is obvious
that the streamwise expansion of turbulent u2-structures as well as turbulent u3-structures
are fully captured by the chosen size of the periodic box since their auto-covariance values
vanish for large spatial separations. However, no such behaviour is evident when considering
Ru1u1 . Similar results are shown by the literature data, taken from Moser et al. 1999,
also depicted in Figure 4.6a. Moser et al. also simulated turbulent plane channel flow
at Reτ ≈ 180. However, the statistics of their results are not as well-converged as in the
present case, which is why the lines obtained from p180 do not match exactly with the
data taken from the literature. In the case of the passive scalars, Figure 4.6b shows the
auto-covariances of θ for the medium and high Prandtl numbers to vanish at half the
channels periodic box size. Note that a similar statistical behaviour of these two scalars
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Figure 4.6.: Streamwise auto-covariance profiles at x+
2 ≈ 180 (case p180)
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can be observed again. However, the auto-covariance of the passive scalar with Pr = 0.025
is significantly larger than zero at a maximum streamwise separation, indicating that the
periodic box is too small in the streamwise direction to capture all turbulent scales. This
observation is in agreement with the expected behaviour that passive scalars of low Prandtl
numbers form larger scales than their high Pr counterparts, as indicated by Kawamura
et al. 1998 and Abe et al. 2004.
Since p180 shows that the streamwise length of the periodic box is too small to capture
all turbulent structures of both the velocity and the scalar fields, L1 is elongated for the
main simulations, as listed in Table 3.1. The resulting channel lengths do not curtail the
respective scale spectra as can be seen in figures B.13, B.14 and B.15.
Figure 4.7 shows the (space-time) auto-covariance of the velocity components as well as the
passive scalars, this time with respect to the spanwise separation. As for Figure 4.6, the
individual quantities are normalised by the channel half-width and the auto-covariance for
vanishing separation (r3 = 0), respectively. All mean quantities are calculated with respect
to the two statistically homogeneous spatial directions and with respect to time, as before.
To evaluate whether the periodic box is large enough to capture the spanwise expansions
of the largest turbulent structures, the spanwise auto-covariance at the channel centre is
considered up to a maximum dimensionless spanwise separation of L3/2h. The results for
the velocity components and the passive scalars in Figure 4.7a and Figure 4.7b, respectively,
show vanishing auto-covariance values. This indicates that L3 is large enough and does
not need to be elongated with respect to further simulations. As before, data from Moser
et al. 1999 are used for comparison. In their setup, they simulated a periodic channel of
only L3/h = 4/3 π, which is evident from the reference curves depicted in Figure 4.7a.
Therefore, and due to the less converged statistics, these results do not perfectly align
with the data obtained from p180. However, they show a similar trend. Regarding the
auto-covariances of the scalar fields, note that for Pr = 0.025 the largest correlations are
present, and the two scalars of larger Prandtl numbers exhibit similar statistical behaviours,
again.
Figure 4.8 shows the skewness distributions (Skew( · )) of the velocity components
(Figure 4.8a) and the passive scalars (Figure 4.8b), with respect to the wall distance,
normalised by the channel half-width. To calculate the skewness, as well as the therefore
needed standard deviations, averages in both statistically homogeneous directions and
in time are used. The total channel width is presented, since by analysing whether the
profiles are symmetric around x2/h = 1, it can be assessed if enough time steps are used in
the calculation of the mean values, as mentioned by Kim et al. 1987. All curves in figures
4.8a and 4.8b have a strong symmetry, showing that 100 (statistically fully developed)
time steps are a reasonable amount for statistical averaging. Another indicator of this
is the skewness distribution of the spanwise velocity component in Figure 4.8a. For a
fully converged statistic, Kim et al. 1987 mention Skew(u3) to vanish, over the whole
width of the channel. This is approximately true for the statistics obtained from p180. In
contrast, the results taken from Moser et al. 1999 do not show this behaviour, thereby
demonstrating that their statistics are not well-converged. However, there is still some
overlap visible between the literature data and the results of p180. In Figure 4.8b, the
statistical behaviours of the scalar with Pr = 0.71 and the scalar with Pr = 1 are once
again nearly identical.
Figure 4.9 shows the flatness distributions (Flat( · )) of the velocity components and
the passive scalars in Figure 4.9a and Figure 4.9b, respectively. Their values are plotted
with respect to the wall distance in outer units. As before, all averages are calculated
with respect to x1, x3 and t. With the temporal means being taken over 100 statistically
fully developed fields. The information of interest extracted from Figure 4.9 is once again
whether enough time steps are used in averaging. This can be analysed by considering the
symmetry of the flatness distributions with respect to the mid-plane of the channel, as in
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Figure 4.7.: Spanwise auto-covariance profiles at x+
2 ≈ 180 (case p180)

the case of Kim et al. 1987. All curves of the velocity components, as well as the passive
scalars, show strong symmetries, reassuring the results made by analysing Figure 4.8.
Furthermore, Figure 4.9a shows the results from Moser et al. 1999. They are, in part, in
good agreement with the data obtained by p180. However, the deviation between this
case and the literature data could again be attributed to the marginal sample size, used in
averaging by Moser et al. 1999. Considering Figure 4.9b, the statistical behaviour of the
medium and large Prandtl number scalars is once again found to be similar.
In general, the strong statistical symmetries of Figure 4.8 and Figure 4.9, as well as the
vanishing of Skew(u3), indicate the ability of the simulation and averaging setups used to
reproduce high-order turbulence statistics.
The final typical statistics of turbulent plane channels, used for validation, are one-
dimensional energy spectra. In the case considered, Equation 2.37 is evaluated for the
velocity components and the passive scalars. This is done in the streamwise and spanwise
directions, as well as at two different wall distances. Figure 4.10 shows the streamwise
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Figure 4.8.: Skewness distributions in turbulent plane channel flow (case p180)

energy spectra at x+
2 ≈ 5, Figure 4.11 shows the streamwise energy spectra at x+

2 ≈ 180,
Figure 4.12 shows the spanwise energy spectra at x+

2 ≈ 5 and Figure 4.13 shows the
spanwise energy spectra at x+

2 ≈ 180. All spectra are depicted in viscous units and plotted
over their respective wavenumbers. The used averages are taken with respect to both
statistically homogeneous spatial directions and with respect to 100 statistically fully
developed fields in time. The goal of considering one-dimensional energy spectra, for
validation, is to check whether energy pileups occur at large wavenumbers. Kim et al. 1987
mention that this would indicate that the solver resolution is not fine enough to resolve the
dissipation range of the turbulent energy cascade. However, this is not the case for any of
the curves in the figures 4.10 to 4.13. It can, therefore, be assumed that the Fourier modes,
in the streamwise and the spanwise directions, are large enough to capture the turbulent
behaviour of the smallest occurring structures. Again, results from Moser et al. 1999 are
additionally depicted as a reference. They are in reasonably good agreement with the data
obtained from p180. Slight deviations can be attributed to the marginal convergence of
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Figure 4.9.: Flatness distributions in turbulent plane channel flow (case p180)

the statistics given by Moser et al. and to the fact that the compared results are only
approximately taken at the same wall distance. The latter might vary between this case
and the literature, resulting in slightly different energy spectra. When considering the
energy spectra of the passive scalars, shown in the figures 4.10b, 4.11b, 4.12b and 4.13b,
it is evident that turbulent structures of the scalar with Pr = 0.025 carry significantly
less energy than the structures of scalars associated with larger Prandtl numbers. This
behaviour is well known (e.g. Abe et al. 2004) and further validates the simulation and
averaging setups used. As was already shown in previous statistics, the behaviours of
the scalars with Pr = 0.71 and Pr = 1 are similar, also for the one-dimensional energy
spectra. As a result, a passive scalar with a medium Prandtl number of Pr = 0.4 (instead
of Pr = 0.71) is chosen to be simulated in m180, m500 and m1000, which can be seen in
Table 3.1. Therefore, the variable-space of the results is better distributed, leading to more
reliable interpretations.
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Figure 4.10.: Streamwise one-dimensional energy spectra at x+
2 ≈ 5 (case p180)
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Figure 4.11.: Streamwise one-dimensional energy spectra at x+
2 ≈ 180 (case p180)
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Figure 4.12.: Spanwise one-dimensional energy spectra at x+
2 ≈ 5 (case p180)
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Figure 4.13.: Spanwise one-dimensional energy spectra at x+
2 ≈ 180 (case p180)
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In addition to the validation of the simulation and the averaging setups, the preliminary
investigation is also used to identify symmetries of the convection velocity distributions.
When considering uc,ϕ, defined in the (x2-k1-k3)-space, it is reasonable to expect the
convection velocity to be symmetrical with respect to the mid-plane of the channel, as it
is a statistical quantity constructed from mean values, partially known to be symmetric
around x2 = h. To show that this symmetry holds for convection velocities in general, uc,u1

is depicted with respect to the wall distance in outer units, at three different wavenumber
pairs, in Figure 4.14. In this figure, the curves are shown to be symmetrical with respect to
the channel centre, when disregarding statistical noise. Here, the focus should not yet be
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Figure 4.14.: uc,u1 symmetry behaviour with respect to wall distance (case p180)

on the actual distribution of the convection velocity or its convergence behaviour, but only
on its symmetry. The former will be discussed in detail in section 4.3. Averages are taken
with respect to the statistically homogeneous spatial directions, as well as with respect to
100 statistically fully developed time steps. In Figure 4.14, one pair of “small”, “medium”,
and “large” wavenumbers are depicted, each. This is to show that the symmetry behaviour
holds over the whole range of turbulent scales, exemplary. Equivalent figures for the other
velocity components and the passive scalars, for all simulations carried out within the
scope of this thesis, can be found in subsection D.1.
Other possible symmetries to consider are those with respect to positive/negative wavenum-
bers. For a given wall distance, the (k1-k3)-space can be divided into four quadrants.
One where k1 and k3 are both positive, one where k1 and k3 are both negative, and two
where k1 or k3 is positive, while the other is negative. To analyse whether convection
velocities behave differently depending on the quadrant, Figure 4.15 is plotted. The
figure shows uc,u1 with respect to the wall distance in viscous units, at three different
absolute wavenumber-pairs. The values of the convection velocity in each quadrant are
depicted separately. Averages are again taken with respect to the statistically homogeneous
spatial directions, as well as with respect to 100 statistically fully developed time steps.
The “small”, “medium” and “large” wavenumbers are chosen to show that the symmetry
behaviour is equivalent for different scales, as done for Figure 4.14. Figure 4.15 verifies
the symmetry of uc,u1 with respect to the four quadrants of the (k1-k3)-space, since the
depicted curves seem to converge to the same values with increasing statistical accuracy.
Again, equivalent figures for the other velocity components and the passive scalars, for
all simulations carried out within the scope of this thesis, can be found in subsection D.2.
Note that the lines in both (k3 < 0)-cases as well as both (k3 > 0)-cases (partially not
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visible in Figure 4.15) are already perfectly aligned, respectively. This is due to the fact
that the Hermitian symmetry of k1 is used in the DNS solver. The generated data are
therefore inherently symmetric with respect to positive/negative values of k1. However, by
showing that this symmetry holds for the convection velocities as well, the implementation
of their definitions is validated to some extent.
To provide better converged statistics, both symmetries (with respect to wall distance and
wavenumber-space) of the convection velocities are used in all future averages. However,
this is not specifically indicated by the notation, for the sake of simplicity.

4.2. Transport equation analysis

When working with the concept of convection velocities, it is important to keep in mind
that Taylor’s hypothesis is limited in its applicability, as mentioned in subsection 2.3.1.
These limitations are the topic of publications by, for example, Lin 1953, Piomelli et al.
1989, Renard and Deck 2015 or Hilland and Christen 2024, and are shown to depend on
the flow case analysed. In order to critically categorise the results of this thesis in the
overall context, the applicability of Taylor’s hypothesis with the implemented convection
velocities in the case of turbulent plane channel flow is evaluated by means of a transport
equation analysis. This procedure is introduced and explained in detail by Geng et al. 2015.
They consider the same flow configuration as in this thesis, as well as the same definition
for the convection velocity, based on the research of Del Álamo and Jiménez 2009.
The starting points for the transport equation analysis are the balance equations of the
respective flow quantities. Here, the velocity components and passive scalars are analysed.
Regarding u, Geng et al. 2015 derive

∂x1u′︸ ︷︷ ︸
1⃝

= 1
Uc,u

[
− ∂tu

′︸ ︷︷ ︸
2⃝

+ ν∆u′︸ ︷︷ ︸
3⃝

− ∇ ·
(
u ⊗ u′) + ∇ ·

〈
u′ ⊗ u′〉︸ ︷︷ ︸

4⃝

+ △Uc,u ∂x1u′︸ ︷︷ ︸
5⃝

− 1
ρ

∇p′︸ ︷︷ ︸
6⃝

]

(4.1)
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4. Results

by considering the balance equation for the momentum fluctuations (Equation 2.11) and
applying ⟨u2⟩ = ⟨u3⟩ = 0, which holds for the case of turbulent plane channel flow as
described in subsection 2.2.1. The function

△Uc,ϕ ≡ Uc,ϕ − ⟨u1⟩ (4.2)

with the overall convection velocity (Equation 2.63) is introduced to isolate the terms 1⃝
and 2⃝, which represent Taylor’s hypothesis (Equation 2.50). Here, the quotient on the
right-hand side of Equation 4.1 is considered to be a part of all terms 2⃝ to 6⃝. Taylor’s
hypothesis (for u-structures with the overall convection velocity Uc,u) is thereby fulfilled
instantaneously if 1⃝ ≈ 2⃝, that is, when either the sum of all other terms is sufficiently small
or when every other term vanishes independently. By considering the balance equation for
the passive scalar fluctuations (Equation 2.14), the same procedure as before can be used
to derive

∂x1θ
′︸ ︷︷ ︸

1⃝

= 1
Uc,θ

[
− ∂tθ

′︸ ︷︷ ︸
2⃝

+ a∆θ′︸ ︷︷ ︸
3⃝

− ∇ ·
(
θu′) + ∇ ·

〈
θ′u′〉︸ ︷︷ ︸

4⃝

+ △Uc,θ ∂x1θ
′︸ ︷︷ ︸

5⃝

]
. (4.3)

The quotient on the right-hand side is considered to be a part of all terms 2⃝ to 5⃝, as
before. Again, Taylor’s hypothesis (for θ-structures with the overall convection velocity
Uc,θ) is instantaneously fulfilled if 1⃝ ≈ 2⃝, which is the case when either the sum of all
other terms is sufficiently small or when every other term vanishes independently.
To analyse at which points of the channel Taylor’s hypothesis holds and which physical
reason might cause it to break for the transport of turbulent velocity or scalar structures,
each term of the equations 4.1 and 4.3 is calculated during post-processing. All averages
contained within these equations are taken with respect to the statistically homogeneous
spatial directions of the channel, as well as with respect to 100 statistically fully developed
time steps. Since the considered terms contain fluctuating quantities, simply averaging the
entire equations would not allow for a useful statistical interpretation. Therefore, the root
mean square (rms) is applied to analyse the behaviour of the transport equations, where
the mean is again taken with respect to the same dependencies as for the averages contained
within equations 4.1 and 4.3. Figure 4.16 and Figure 4.17 show the rms values with respect
to the wall distance for the velocity components and the passive scalars, respectively. All
quantities are depicted in viscous units. In addition to showing every term of the equations
4.1 and 4.3 separately, the plots also contain the rms values of the instantaneous sums of
3⃝– 6⃝ and 3⃝– 5⃝ for the velocity components and the passive scalars, respectively. The only
case depicted is m500, while the corresponding figures for the other main simulations can
be found in subsection C.1. Geng et al. 2015 note that the results of simulations at different
Reynolds numbers do not show qualitatively different behaviours. This is also evident in
the results of this thesis when comparing the figures 4.16 and 4.17 with the corresponding
plots of other simulations shown in subsection C.1. The only outcome of an increase in
Reynolds number is the effect of “pushing” the region closer to the wall in which Taylor’s
hypothesis breaks. The regions, with respect to wall distance, in which Taylor’s hypothesis,
based on the overall convection velocity, is a suitable approximation for the transport of
velocity or scalar structures, are indicated by the curves of rms( 1⃝) and rms( 2⃝) being
closely aligned in 4.16 and 4.17, respectively. However, since events of similar 1⃝ and 2⃝
magnitudes would yield similar rms( 1⃝) and rms( 2⃝) values regardless of the fact that the
respective events might not show the same sign, this approach is somewhat flawed when
analysing the applicability of Taylor’s hypothesis. A better measure for this applicability
is therefore given by the rms values of the sum of the remaining terms, since they have to
vanish for Taylor’s hypothesis to hold, which is independent of their instantaneous sign.
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(a) Transport equation analysis of the streamwise velocity component
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(b) Transport equation analysis of the wall-normal velocity component
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(c) Transport equation analysis of the spanwise velocity component

Figure 4.16.: Transport equation analysis rms of the velocity field (case m500)
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4. Results

The results obtained for the convection of velocity structures are in good agreement with
those presented by Geng et al. 2015. The transport equation analysis rms values of the
streamwise, wall-normal, and spanwise velocity components are all of the same order
of magnitude, as can be seen in figures 4.16a, 4.16b, and 4.16c, respectively. Outside
the viscous sublayer, rms( 1⃝) and rms( 2⃝), representing Taylor’s hypothesis, are the
dominant terms. They reach a maximum just around the border between the buffer
layer and the log layer. This peak is ever so slightly closer to the channel wall in the
case of the streamwise velocity component, and the subsequent drop towards the channel
centre reaches a lower local minimum than for the other velocity components. Regarding
rms( 3⃝– 6⃝), which represents the instantaneous sum of all terms contributing to the
breaking of Taylor’s hypothesis for the transport of velocity structures, a similar behaviour
is recognised. Its value reaches a maximum at the edge of the buffer layer (closer to the wall
for the streamwise velocity component), while approaching zero towards the wall as well
as towards the channel centre. The viscous term rms( 3⃝) vanishes at the channel centre
for all the velocity components. Its influence is negligible in the log layer, but increases
towards the channel wall. In very close vicinity of the wall, rms( 3⃝) is one of the dominant
terms, overpowering rms( 1⃝) and rms( 2⃝). In contrast to this stands the behaviour of
the non-linear term rms( 4⃝). Its impact close to the wall is vanishingly small, while it
is the dominant contributor to the breaking of Taylor’s hypothesis in the buffer layer, as
well as in the log layer, for all velocity components. Towards the channel centre, however,
rms( 4⃝) decreases again. The term rms( 5⃝), representative of the difference between the
mean velocity and the overall convection velocity of the respective velocity component,
reaches a global maximum at the boundary between the viscous sublayer and the buffer
layer. Additionally, the term exhibits another (local) maximum at the transition between
the buffer layer and the log layer (depending on the component), while decreasing towards
the channel wall and centre. Between these two maxima, rms( 5⃝) drops to zero in the
buffer layer, which is an effect of a change in sign of Equation 4.2. This behaviour is
discussed in detail in subsection 4.3.1. The contribution of this term to the breaking of
Taylor’s hypothesis is small almost everywhere, except in the centre of the viscous sublayer
for the transport of the streamwise velocity component, where rms( 5⃝) is the largest of
the terms rms( 3⃝) to rms( 6⃝). Finally, the pressure term rms( 6⃝) plays a major role in
the breaking of Taylor’s hypothesis across the whole channel, except at the channel centre,
where it approaches zero. In close proximity to the wall, it is dominant, like the viscous
term rms( 3⃝). Furthermore, rms( 6⃝) is nearly as large as the non-linear term in the log
layer for the wall-normal and spanwise velocity component. In case of the streamwise
velocity component, the pressure term is smaller than for the other components in the log
layer, but does not decrease when approaching the wall. It instead takes on a constant
value across the buffer layer and viscous sublayer before increasing slightly in the very
close vicinity to the wall.
For the scalar transport equation analyses, an increase in the rms values of nearly all
terms can be observed along with an increase in Prandtl number. Especially rms( 1⃝)
and rms( 2⃝), representing Taylor’s hypothesis, show their lowest values for Pr = 0.025,
medium values for Pr = 0.4, and their highest values for Pr = 1, in figures 4.17a, 4.17b,
and 4.17c, respectively. Starting from zero at the wall, both terms increase monotonously
until they reach their peaks in the log layer. The positions of these peaks move towards
the channel wall with an increase in Prandtl number. After peaking, both terms decrease
again, approaching the channel centre, but they do not vanish at x2 = h. In contrast to the
transport equation analyses of the velocity components, for the transport of passive scalar
structures, rms( 1⃝) and rms( 2⃝) are not only the dominant terms outside the viscous
sublayer, but also at all positions close to the wall. The term rms( 3⃝– 5⃝), representative of
the instantaneous sum of all terms contributing to the breaking of Taylor’s hypothesis for
the scalar transport equation analyses, shows again a similar behaviour as the dominant
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(a) Scalar transport equation analysis with Pr = 0.025

100 101 102

x+
2

0.00

0.02

0.04

0.06

rm
s+

1○
2○
3○

4○
5○
3○– 5○

(b) Scalar transport equation analysis with Pr = 0.4
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(c) Scalar transport equation analysis with Pr = 1

Figure 4.17.: Transport equation analysis rms of the passive scalars (case m500)
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4. Results

terms. The term vanishes at the wall, independently of the Prandtl number. From there
on out it increases towards the channel centre, before reaching its peak at the transition
between the buffer layer and the log layer. The position of this peak is again shifted towards
the wall with an increase in Prandtl number. Following the global maximum, rms( 3⃝– 5⃝)
decreases again, approaching zero at the centre of the channel. In case of the conduction
term rms( 3⃝), a strong dependence on the Prandtl number can be observed. However,
independent of Pr, the term vanishes at the wall and approaches zero at the channel
centre with a single maximum in between. The position of this maximum lies within the
buffer layer, close to the log layer, for the lowest Prandtl number and shifts towards the
wall with larger values of Pr, reaching the viscous sublayer at Pr = 1. In case of the
lowest Prandtl number, rms( 3⃝) is one of the terms mostly contributing to the breaking
of Taylor’s hypothesis over the whole range of the channel. However, for Pr = 0.4 and
Pr = 1, its influence drops significantly. The non-linear term rms( 4⃝) behaves similarly,
vanishing at the wall as well as at the channel centre and peaking in the buffer layer. Its
peak also moves towards the channel wall with higher values of Pr. For the lowest Prandtl
number, the profiles of rms( 3⃝) and rms( 4⃝) are nearly identical, while the non-linear term
keeps its dominance regarding the breaking of Taylor’s hypothesis in the buffer layer and
log layer also for higher Prandtl numbers. In the viscous sublayer, however, rms( 4⃝) falls
more rapidly with decreasing distance to the wall, causing its influence to disappear in the
close vicinity of the wall for all values of Pr. Lastly, rms( 5⃝), representing the difference
between the mean velocity and the overall convection velocity for a passive scalar structure
with a certain Prandtl number, shows the same qualitative behaviour as its respective
counterparts for the transport of any given velocity component. The term again features
two peaks. The global maximum is located at the transition between the viscous sublayer
and the buffer layer, while the other (smaller) local maximum lies closer to the channel
centre. Outwards from both sides of these two peaks, rms( 5⃝) is decreasing, approaching
zero at x2 = 0 and x2 = h. Between the peaks, a minimum is reached where the term
vanishes completely. This is again due to a change in the sign of Equation 4.2, which is
explained further in subsection 4.3.1. However, this minimum is not always positioned
in the same layer. Its location is affected by the Prandtl number. With increasing Pr,
the minimum of rms( 5⃝) shifts towards the channel wall, starting in the log layer for
Pr = 0.025. While in close vicinity to the wall, rms( 5⃝) is one of the dominant terms,
whose relative influence decreases with increasing wall distance.
Note that small values of rms( 3⃝– 6⃝) for the transport of velocity structures and small
values of rms( 3⃝– 5⃝) for the transport of scalar structures do not necessarily imply Taylor’s
hypothesis to hold, since the respective values of rms( 1⃝) and rms( 2⃝) could be small as
well, as it is the case close to the channel walls. To quantify whether the terms representing
Taylor’s hypothesis are overpowered by the remaining terms in the case of all terms being
of small magnitude, Geng et al. 2015 propose normalising all curves seen in figures 4.16
and 4.17 by the respective value of rms( 2⃝). Such normalised representations can be seen
in figures 4.18 and 4.19 for the transport of velocity and scalar structures, respectively.
Again, m500 is the only case depicted for the same reasons as before. Figures of the
normalised transport equation analysis rms values for the other main simulations are
provided in subsection C.2. The distance from the channel wall is shown in viscous units.
In these representations of the terms contained within Equation 4.1 and Equation 4.3, the
applicability of Taylor’s hypothesis is indicated by the ratio rms( 1⃝)/rms( 2⃝) becoming
unity. However, this approach again exhibits flaws, since rms( 1⃝)/rms( 2⃝) can become
unity for events where 1⃝ and 2⃝ have similar magnitudes even though their signs might
differ. Therefore, better measures to consider are given by the ratios rms( 3⃝– 6⃝)/rms( 2⃝)
for the convection of velocity structures and rms( 3⃝– 5⃝)/rms( 2⃝) for the convection of
passive scalar structures, since these terms need to vanish altogether for Taylor’s hypothesis
to hold.
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(a) Normalised transport equation analysis of the streamwise velocity component
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(b) Normalised transport equation analysis of the wall-normal velocity component
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(c) Normalised transport equation analysis of the spanwise velocity component

Figure 4.18.: Normalised transport equation analysis rms of the velocity field (case m500)
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Considering the normalised transport equation analysis, the respective rms values of the
streamwise, wall-normal, and spanwise velocity components are all of the same order of
magnitude. This can be seen in figures 4.18a, 4.18b, and 4.18c, respectively. Regarding
rms( 3⃝– 6⃝)/rms( 2⃝), which represents the relative sum of all terms contributing to the
breaking of Taylor’s hypothesis, it is shown that this term increases monotonously with
a decrease in wall distance for the wall-normal and spanwise velocity component in Fig-
ure 4.18b and Figure 4.18c, respectively. However, for the streamwise velocity components
in Figure 4.18a, a maximum is reached in the viscous sublayer, before the term decreases
again in close proximity to the wall. Note that in general, rms( 3⃝– 6⃝)/rms( 2⃝) does not
vanish at any point of the channel, while rms( 1⃝)/rms( 2⃝) reaches unity somewhere in
the log layer for all velocity components. This proves the expected behaviour, resulting
in the importance of using the latter measure with care when testing the applicability of
Taylor’s hypothesis. The viscous term rms( 3⃝)/rms( 2⃝) is again seen to be one of the
dominant terms in close vicinity of the wall. However, in this relative representation, it
exhibits a monotonous decay towards the channel centre for all velocity components. The
non-linear term rms( 4⃝)/rms( 2⃝) does not exhibit such monotonous behaviour. As for
the non-relative depiction, it is small at the wall and rises to a peak in the buffer layer.
After that, it decays towards the channel centre, while still being the dominant contributor
to the breaking of Taylor’s hypothesis in the case of all velocity components. The term
rms( 5⃝)/rms( 2⃝), representing the difference between the overall convection velocity and
the mean velocity, has its highest value closest to the wall in the normalised depiction.
However, this maximum is never as large as the ratio representing the terms of Taylor’s
hypothesis. For all velocity components, rms( 5⃝)/rms( 2⃝) decays rapidly towards its
minimum in the buffer layer. Going on from there, the term increases again but stays small
compared to most of the others. The pressure term rms( 6⃝)/rms( 2⃝) for the wall-normal
and spanwise velocity components behaves much like the viscous term. However, for the
transport of streamwise velocity structures, the pressure term does dominate directly at
the wall but decreases more rapidly than for the other velocity components in this relative
representation. In the buffer layer and parts of the log layer, it has a nearly constant value.
The relative sum of all terms contributing to the breaking of Taylor’s hypothesis rms( 3⃝–
5⃝)/rms( 2⃝) can be seen in figures 4.19a, 4.19b and 4.19c for the transport of scalar
structures at low, medium, and high Prandtl numbers, respectively. The term takes its
maximum directly at the wall and decreases monotonously towards the channel centre,
independent of the Prandtl number. Like for the transport of velocity structures, the
term never fully vanishes over the whole width of the channel. The normalised figures
show that the conduction term rms( 3⃝)/rms( 2⃝) is dominant at the wall for all values
of Pr. It decreases monotonously towards the channel centre, reaching the lowest value
of all terms contributing to the breaking of Taylor’s hypothesis for the medium and high
Prandtl numbers. However, for Pr = 0.025, the viscous term first increases in the buffer
layer before decreasing again, while still being one of the larger terms across the entire
channel. The non-linear term rms( 4⃝)/rms( 2⃝) shows a similar behaviour, just with a
steeper decay towards the wall of the channel. However, this relative term peaking in the
buffer layer and decreasing towards the channel centre is also the case for the other Prandtl
numbers. Lastly, the term rms( 5⃝)/rms( 2⃝), representative of the difference between the
mean velocity and the overall convection velocity, follows a similar course for all values of
Pr. By reaching its maximum relative value directly at the wall, it is one of the dominant
contributors to the breaking of Taylor’s hypothesis. With an increase in wall distance, it
drops to zero in a position that moves close to the channel wall with larger values of Pr.
From there, it increases again but stays small in comparison to the other terms for all
Prandtl numbers alike.
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(a) Normalised scalar transport equation analysis with Pr = 0.025
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(b) Normalised scalar transport equation analysis with Pr = 0.4
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(c) Normalised scalar transport equation analysis with Pr = 1

Figure 4.19.: Normalised transport equation analysis rms of the passive scalars (case m500)
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Since the dependence of the validity of Taylor’s hypothesis on the Prandtl number is of
special interest for the transport of turbulent passive scalar structures, rms( 3⃝– 5⃝)/rms( 2⃝)
is shown again for all investigated values of Pr in Figure 4.20. The figure contains the same
curves as in Figure 4.19 and additionally the corresponding graphs for m180 and m1000.
All means are again calculated with respect to the same quantities as before, except for the
time-averages of m1000, which are taken with respect to only 2 statistically fully developed
time steps.
With the log scale depicted, it can be observed that rms( 3⃝– 5⃝)/rms( 2⃝) take on a
nearly constant value close to the wall. The size of this region is independent of the
Reynolds number, but decreases with an increase in the Prandtl number. It seems to
be contained within the molecular sublayer, which is an effect that could be attributed
to the constant wall-normal passive scalar gradient in this area. The reason for not
observing such a dependency on Reτ lies in the use of viscous units, which already scale the
depicted quantities with their respective Reynolds number. Towards the channel centre, the
“hypothesis breaking”-terms decrease until they reach a minimum, which is slightly larger
for lower Reτ -cases. This might be explained by the wall losing its influence on the outer
flow with larger Reynolds numbers. With respect to different values of Pr at a constant
value of Reτ , the same minimum can be observed at the channel centre. However, in terms
of the maximum value at the wall, a clear dependence can be seen on the Reynolds and
Prandtl numbers. Here, an increase in either one of the dimensionless numbers yields an
increase in rms( 3⃝– 5⃝)/rms( 2⃝). Therefore, Taylor’s hypothesis becomes less applicable
in general with an increase in turbulent motion. This behaviour could be attributed
to larger wall-normal gradients, which skew possible near-wall structures and interfere
with their coherent convection. It is interesting to note, that figures 4.19a, 4.19b, and
4.19c show significant differences in rms( 3⃝)/rms( 2⃝) and rms( 4⃝)/rms( 2⃝), respectively.
However, the curves in Figure 4.20 of the associated Prandtl numbers do not show an
equivalent difference in rms( 3⃝– 5⃝)/rms( 2⃝). It is therefore possible to assume some
kind of counteracting effects between the viscous and non-linear terms with regard to the
breaking of Taylor’s hypothesis.
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Figure 4.20.: Error terms of transport equation analysis of passive scalars

50



4.3. Convection velocity behaviour

4.3. Convection velocity behaviour

4.3.1. Wall distance dependency

Studies investigating the behaviour of convection velocities in wall-bounded turbulence
often analyse their dependence on the wall distance. Considering the velocity components
as the transported properties of interest, this is done in publications of, for example, Kim
and Hussain 1993, Romano 1995, Khoo et al. 2001, Renard and Deck 2015, or Atkinson et al.
2015. In the case of the convection of passive scalar structures, less information is present
in the literature. However, if they are considered (e.g. Kowalewski et al. 2003, Hetsroni
et al. 2004 or Liu et al. 2023), it is again their dependence on the wall distance that is
analysed. Therefore, as a first step in investigating the convection velocity behaviour, these
analyses are retraced. Figure 4.21 shows the overall convection velocities of velocity and
scalar structures with respect to the wall distance. For these visualisations, the integrals of
Equation 2.63 are taken with respect to the whole space of wavenumbers present in the
simulation results. In addition to the overall convection velocities, the mean streamwise
velocity profile as well as the bulk velocity are shown for comparison. All quantities are
depicted in viscous units. The results shown are calculated from the data of the simulation
case m500, while the respective results of m180 and m1000 can be seen in subsection D.3.
This is sufficient for the initial analyses of the overall convection velocities, as their qualita-
tive behaviour does not change significantly with varying Reynolds number, as can be seen
when comparing Figure 4.21 with the results listed in subsection D.3. However, Del Álamo
and Jiménez 2009 mention some low respectively high Reynolds number effects that might
occur. These effects, as well as the general dependencies of the convection velocities on the
Reynolds number, are examined in subsection 4.3.3. All averages included in the definitions
of the depicted quantities are taken with respect to the two statistically homogeneous
spatial directions, 100 statistically fully developed time steps, and the symmetries of the
convection velocity distributions mentioned in section 4.1.
The quantitative behaviour of the overall convection velocities for turbulent velocity struc-
tures, depicted in Figure 4.21a, is in good agreement with the data provided by Del Álamo
and Jiménez 2009. The figure shows similar slopes for Uc,u1 , Uc,u2 , and Uc,u3 , all three
being exactly the same in close vicinity of the channel centre. All overall convection
velocities demonstrate a slope similar to the mean streamwise velocity profile in the log
layer close to x2 = h. However, their values are slightly smaller than that of ⟨u1⟩. This
trend changes closer to the buffer layer, where the decrease in the overall convection
velocities is less prominent than that of the mean streamwise velocity component. The
overall convection velocities are therefore larger than the mean velocity in the viscous
sublayer, with a “cross-over” in the buffer layer. This cross-over is located closer to the
channel wall for the convection of streamwise velocity structures, whereas it appears at
the same wall distance for the other velocity components. Note that this is the reason for
the minimum of 5⃝ in the transport equation analyses, discussed in section 4.2. Inside the
viscous sublayer, the decrease in the overall convection velocities stops, leaving them at
a constant value. In close vicinity to the wall, the overall convection velocities seem to
decrease again. However, this behaviour is not evident in the literature and might be an
artefact of numerical inaccuracy. The use of ghost-nodes and the associated compact finite
difference scheme could negatively affect all calculated quantities near the wall, since not
all applied boundary conditions are physically motivated, as mentioned in section 3.1.
Similar shapes are taken by the plots of the overall convection velocities for passive scalar
structures at different Prandtl numbers, as can be seen in Figure 4.21b. A dependency on
the Prandtl number is evident in the fact that the overall convection velocity increases
with a decrease in Pr, in the viscous sublayer, the buffer layer, and parts of the log layer.
However, the opposite effect can be observed in close proximity to the channel centre.
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4. Results

Here, the overall convection velocity of a passive scalar structure decreases together with a
decrease in Pr. As a result, the cross-over between the mean streamwise velocity profile
and the overall convection velocity shifts towards smaller velocities and wall distances with
larger values of the respective Prandtl number. This again explains the behaviour of 5⃝,
as mentioned in section 4.2. The change in Uc,θ with respect to Pr could be attributed
to the tendency of the flow to form larger passive scalar structures with a decrease in
the Prandtl number. Del Álamo and Jiménez 2009 mention longer wavelengths (their
respective structures occupy larger regions of the channel) to propagate at a speed closer
to the bulk velocity, while shorter wavelengths (they are related to structures which are
contained within a limited local area) tend to move with the local value of the streamwise
mean velocity. This explanation is further supported by the fact that the trend change
mentioned regarding the dependence of the overall convection velocity on the Prandtl
number occurs at a velocity very close to Ub, as shown by Figure 4.21b.
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Figure 4.21.: Overall convection velocities (case m500)
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To further analyse the influence of different-sized structures on the overall convection
velocities, the same relationships as before are depicted for partitioned wavelength ranges
of all transport quantities considered separately. Figure 4.22 and Figure 4.23 show these
partitioned overall convection velocities for velocity and scalar structures, respectively. In
addition to the overall convection velocities, which are calculated by integrating Equa-
tion 2.63 over “all” scales, the figures also show curves of overall convection velocities
with respect to only “small” respectively “large” scales, independently. Here, a struc-
ture is considered “small” if its wavelengths λi = 2π/ki are bounded from above by
(λ1, λ3) < (h, h/4), while a structure is considered “large” if its wavelengths are bounded
from below by (λ1, λ3) ≥ (h, h/4). Note that the unification of these small and large
wavelength ranges does not yield the whole space of turbulent structures considered, since
scales which have a large expansion in one of the periodic spatial directions and a small
expansion in the other are not included. The mean streamwise velocity profile and the bulk
velocity are again shown for comparison, and all quantities are depicted in viscous units. As
for Figure 4.21, the only simulation case visualised is m500, while the corresponding figures
of the other main simulations can be found in subsection D.4. The averages needed to
calculate the quantities shown in Figure 4.22 and Figure 4.23 are taken with respect to the
statistically homogeneous spatial directions, 100 statistically fully developed time steps, as
well as the convection velocity symmetries regarding wall distance and wavenumber-space.
A similar behaviour as for passive scalar structures at different Prandtl numbers (Fig-
ure 4.21b) can now also be observed in the depiction of the overall convection velocities of
turbulent velocity structures at different wavelength ranges, shown in Figure 4.22. Close to
the channel wall, in the viscous sublayer, a tendency of larger turbulent structures to move
with a velocity closer to that of Ub is equally visible for all velocity components. However,
the difference between large, small, and all scales is not strongly prominent. Close to the
channel centre, where large structures are generally convected more slowly than small
ones, this behaviour is only reasonably evident for turbulent structures of the wall-normal
velocity component and not for the other velocity components. This might be due to
the spectral distribution of uc,u2 and the energy contained within wall-normal velocity
structures, as will be explained in subsection 4.3.2. For the chosen values (λ1, λ3) = (h, h/4),
which divide the wavenumber-space into small and large structures, the smaller scales
are dominant in their contribution to the overall convection velocities. This is evident by
the partitioned overall convection velocities of the small scales being closely aligned with
those of all scales for the convection of streamwise, wall-normal, and spanwise velocity
structures in figures 4.22a, 4.22b, and 4.22c, respectively. This could be attributed to
most of the respective energy being contained within the smaller scales, as will later be
shown in figures 4.26 to 4.28, causing these scales to dominate the weighted integral in
Equation 2.63. In addition, all structures not considered in the “small” or “large” scales
might also be convected at velocities closer to those of the small scales. This could be
relevant, since they do contribute to the overall convection velocity of “all” scales. However,
in the case of streamwise velocity structures, a slight deviation from this alignment can
be observed in the viscous sublayer. Here, the overall convection velocity for all scales
has marginally larger values than that of the partitioned overall convection velocity for
small scales, therefore approaching the convection behaviour of the large scales. The
reason for this might again lie in the spectral distribution of the convection velocity for
streamwise velocity structures in combination with the respective energy spectra. As will
be shown in subsection 4.3.2, large u1-structures penetrate the near-wall layers, transferring
their (larger) energy and (faster) convection velocity to the largest local scales. Another
interesting behaviour is shown by the convection of large u2-structures. In contrast to
the corresponding plots for the other velocity components, the curve of the partitioned
overall convection velocity for large wall-normal velocity scales deviates only from the other
quantities depicted in the viscous sublayer and buffer layer. In the log layer, it is more
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Figure 4.22.: Partitioned overall convection velocities of velocity structures (case m500)
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closely aligned with the partitioned overall convection velocities of both small and all scales.
Again, this could be attributed to the distribution of convection velocity and energy over
the range of turbulent u2 scales. As will be shown in subsection 4.3.2, the special shape
of the wall-normal distributions yield a “fast” deceleration of the large scales as well as
an equally “fast” acceleration of the small scales with an increase in wall distance. This
results in all partitioned overall convection velocities approaching similar values at the
start of the log layer, independent of the structure sizes considered.
The previously established behaviour of larger scales being convected at a velocity closer
to Ub, while smaller scales are more influenced by ⟨u1⟩, is again visible for the parti-
tioned overall convection velocities of scalar structures in Figure 4.23. The influence of
the bulk velocity on the large scales decreases with an increase in Pr. For the values
(λ1, λ3) = (h, h/4), which are chosen to characterise “small” and “large” scales in the
shown representation, this is strongly visible when comparing the data for Pr = 0.025 in
Figure 4.23a with their counterparts for Pr = 1 in Figure 4.23c. The reason for this might
be the property of lower Prandtl number flows to carry more respective (passive scalar)
energy at larger wavelengths. This would result in a greater influence of these structures,
and in extension the bulk velocity, on the overall convection velocity calculations, since in
Equation 2.63 each scale is weighted by the respective energy it carries. Another interesting
effect of a change in the Prandtl number is that the overall convection velocity of all scales
approaches the partitioned overall convection velocity of the small scales with an increase
in Pr. This could be attributed to the same energy-related property of lower respectively
high Prandtl number flows mentioned before. In general, the difference in the partitioned
overall convection velocity of small and large scales decreases with larger Prandtl number
values. Regarding the (potentially numerically-induced) deviation of the overall convection
velocities from their constant values in close vicinity to the wall, this behaviour can again
be observed for all Prandtl numbers and partitioned wavelength ranges alike. However,
the region where the respective partitioned overall convection velocity is constant extends
deeper into the buffer layer for smaller values of Pr and larger turbulent scales. This might
be attributed to the extended molecular sublayer of low Prandtl number flows. Since most
turbulent passive scalar structures form in the scalar buffer layer, their influence is carried
towards the wall by means of conduction. The area, in which the local overall convection
velocity is only a footprint of effects closer to the channel centre, extends therefore further
into the channel for smaller values of Pr. As a result, an equilibrium state between this
footprint and potential local effects is also reached at higher wall distances, leading to a
larger area of constant overall convection velocity.
Besides the analyses of different wavelength ranges, the consideration of individual physical
contributions to the overall convection velocities is of additional interest. As explained in
section 3.3, the chosen implementations offer the possibility of calculating each term of the
definitions of the convection velocities independently. Taking only these contributions into
account instead of the “whole” convection velocities when evaluating Equation 2.63, the
respective contributions to the overall convection velocities can be calculated. Visualisations
of the overall convection velocity contributions can be seen in Figure 4.24 and Figure 4.25
for the transport of velocity and scalar structures, respectively. In addition, the overall
convection velocities are shown again as dashed lines. Hence, it is clear that the sums of
all contributions again yield the corresponding overall convection velocities. Note that the
profiles in Figure 4.24 and Figure 4.25 do not necessarily show the quantities listed in their
legends, but rather those parts of equations 3.22 to 3.25 corresponding to each entry of
the respective legend. All quantities are depicted in viscous units. Since the qualitative
behaviours of the overall convection velocity contributions do not differ for a change in
Reynolds number, only the simulation case m500 is listed here. The results of m180 and
m1000 can be seen in subsection D.5. All the averages needed in the calculations of the
quantities shown in Figure 4.24 and Figure 4.25 are taken again with respect to the two
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Figure 4.23.: Partitioned overall convection velocities of scalar structures (case m500)
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statistically homogeneous spatial directions, 100 statistically fully developed time steps,
and the symmetries of the convection velocity distributions.
For the overall convection velocity contributions of velocity structures seen in Figure 4.24
a clear dominance of the streamwise mean velocity can be observed in the log layer. In
this region, all other contributing terms are comparatively small. This is especially the
case for the convection of spanwise velocity structures, while it is the least prominent in
case of streamwise velocity structures. Closer to the channel wall, the dominance of ⟨u1⟩
decreases for the overall convection velocities of all velocity structures alike. In the viscous
sublayer and the buffer layer, other contributions than the streamwise mean velocity have
a non-negligible influence on Uc,u. It is interesting to note that there is a trend change
for the other contributors in the buffer layer (at x+

2 ≈ 12 for m500) for some velocity
structures. Here, terms that have a negative influence on the overall convection velocity
close to the channel centre become positive with a further decrease in wall distance and
vice versa. This behaviour is clearly visible for the convection of u1-structures and can
also marginally be seen in the case of u2-structures. A reason for this could not be found
in the scope of the presented thesis. However, this trend change appears at a channel
height where significant amounts of turbulent structures are created. From there, these
structures are transported towards the channel wall and the channel centre. Since the
relationship between the mean streamwise velocity and the overall convection velocity also
differs in sign in the area closer to the channel wall in comparison to the area closer to
the channel centre, it can be reasoned that the created structures also introduce opposing
effects in either direction. In the viscous sublayer, where the mean streamwise velocity
drops significantly but the overall convection velocities take on a nearly constant value,
other contributions must play a dominant role. In case of the overall convection velocity
contribution of streamwise velocity structures, this role is taken by the viscous term. Its
influence increases in the viscous sublayer with decreasing wall distance before becoming
constant in close proximity to the wall. The viscous term not vanishing at the wall, in
contrast to most other terms, is an expected behaviour, since the value of this term is not
damped by the boundary conditions, which force all quantities that are directly influenced
by any velocity component to vanish. However, a physical explanation for the positive sign
of the viscous term can only be assumed to originate from the faster convected scales at
larger wall distances. Streamwise velocity structures which arise further from the wall could
carry their influence via the viscous term into the near-wall layers. For the streamwise
velocity component, the only other contribution which does not approach zero at x2 = 0 is
the pressure term. It also increases towards the wall in the viscous sublayer, but with less
intensity than the viscous term. Again, the fact that the pressure term does not vanish
is connected to it not being influenced by the no-slip or impermeability conditions at
the wall. An explanation for the positive sign as well as its small magnitude compared
to the viscous term remains an open question in the scope of this thesis. In accordance
with the previously made argument, it could be suspected that pressure fluctuations are
not as dominant in the transport of streamwise velocity structures towards the channel
wall. Thereby, no significant increase in the overall convection velocity is visible due to
their effects. A different behaviour can be observed for the convection of wall-normal and
spanwise velocity structures. Here, the viscous term sharply decreases with a decrease in
wall distance in the viscous sublayer. This decrease is substantial enough that the viscous
term takes on negative values, even slowing down the overall convection velocities. However,
its influence is balanced by the pressure term, which increases (even more) steeply towards
the channel wall in the viscous sublayer. Therefore, the driving physical mechanisms
vary for the overall convection velocities of different velocity structures in the vicinity
of the wall. This could be due to the redistributive character of pressure fluctuations
often seen in turbulent shear flows. However, how this redistributive character is to be
interpreted in the context of convection velocities is hardly intuitive and therefore still
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Figure 4.24.: Overall convection velocity contributions of velocity structures (case m500)
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unclear. Like in the case of streamwise velocity structures, the interpretation of the viscous
term is difficult, especially since in the case of the other velocity components, it shows an
opposite behaviour as before. Note that the quantities in close vicinity to the wall might be
error-prone due to numerical inaccuracies, as mentioned before. Considering the behaviour
of the viscous term for the convection of spanwise velocity structures in particular, the
depicted near-wall behaviour could be non-physical. When the data point closest to the
wall is ignored, no sharp decrease in the viscous term is seen. It could therefore be possible
that the viscous term actually further decreases in magnitude towards the channel wall
for the convection of turbulent u3-structures. As a result, the pressure term would be
the only dominant contributor near the channel wall. Note that the behaviour of the
viscous term would be more intuitive to explain in this case. As mentioned before, the
influence of fast u1-structures is transferred into regions close to the wall by this term.
For spanwise velocity structures, no such behaviour might be taking effect. However, for
wall-normal velocity structures, the viscous transfer of outer-flow influences could lead to
the deceleration or destruction of near-wall structures, causing the viscous term to slow
down the overall convection velocity of u2-structures.
The influence of the different terms that contribute to the overall convection velocity of
passive scalar structures depicted in Figure 4.25 is closely related to that of the streamwise
velocity component. In the case of Uc,θ, the mean streamwise velocity has a dominant
influence in the log layer, whereas the conduction term takes on this role close to the
channel wall. However, the position at which the conduction term takes on non-negligible
values moves closer to the wall with an increase in the Prandtl number. The same shift
towards the wall can be observed for the wall distance at which the mean streamwise
velocity is overpowered by the conduction term. For the given simulation case (m500),
this point lies in the buffer layer for Pr = 0.025 and in the viscous sublayer for Pr = 1,
while it is located at the border of both layers in the case of Pr = 0.4. Additionally, a
decrease in the maximum value, which the conduction term reaches in close vicinity of
the wall, can be observed with an increase in the Prandtl number. This is consistent with
the previous results of the overall convection velocity taking the largest wall-values for
the smallest Prandtl number, since the conduction term is the only term that does not
approach zero at the wall. The reason for this is again due to the fact that the conduction
term is not damped by the boundary conditions. The increasing influence with decreasing
Prandtl number could trivially be explained by the increase in conductivity with lower
values of Pr, which is visible in its definition (Equation 2.19). The influence of all other
physical mechanisms on the overall convection velocity of passive scalar structures is small
in comparison. Still, there is an area which overlaps with the viscous sublayer and the
buffer layer, where the other terms increase slightly. This increase is more significant (but
still small) for larger values of Pr while less visible for smaller Prandtl numbers. This
behaviour could be attributed to the tendency of lower Prandtl number flows to behave
somewhat “laminar” with regard to the passive scalars. As was shown in Figure 4.5, the
turbulent scalar flux is small for Pr = 0.025. Since the other non-linear components do
not carry much energy either, their respective terms in Figure 4.25 are small as well for
smaller Prandtl numbers. Note that this area also moves closer to the channel wall with
increasing Prandtl numbers. Lastly, in Figure 4.25, the same trend change in the values
of most of the contribution terms is visible as in Figure 4.24a. Those terms that have an
accelerating effect on the overall convection velocity close to the channel centre become
negative in closer vicinity to the wall, while the previously decelerating terms take positive
values. The reason for this is again unclear but could be attributed to the same effects
mentioned before, since the trend change appears to be located at a wall distance where a
significant amount of passive scalar structures arises.
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(a) Overall convection velocity contributions with Pr = 0.025
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Figure 4.25.: Overall convection velocity contributions of scalar structures (case m500)
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4.3.2. Wavenumber dependency

As mentioned in subsection 2.3.2, the convection velocities depend not only on the wall
distance but also on other parameters such as the scales of turbulence and their respective
wavenumbers. To analyse this dependency, the spectral distributions of the convection
velocities, defined by equations 3.22 to 3.25, are considered. Figures 4.26, 4.27, and 4.28
(adapted from Del Álamo and Jiménez 2009) depict the behaviour of turbulent velocity
structures, while figures 4.29, 4.30, and 4.31 consider passive scalars at different Prandtl
numbers as the transported quantities of interest. All figures show the same two different
wall distances, one at the edge of the viscous sublayer (x+

2 ≈ 5) and another in the log
layer (x+

2 ≈ 265). Two quantities are visualised in each subplot, on the one hand a heat
map of the respective wavenumber spectrum (Equation 2.36) pre-multiplied with the two
wavenumbers k1 and k3, and on the other hand isolines of the corresponding convection
velocities. Note that only a finite range of isoline values is depicted in all figures. All
shown behaviours might therefore be interpolated respectively extrapolated to the oth-
erwise “empty” parts of each plot. Both quantities are shown in viscous units over the
wavelengths in the streamwise and spanwise directions. The latter are normalised by the
channel half-width. Note the difference from a depiction in the (k1-k3)-space. Here, the
largest scales are located at the top right corner of each figure, while the smallest scales
correspond to the bottom left corner. The only simulation results depicted in this chapter
are those of case m500. Spectral distributions evaluated from the other main simulations
are shown in subsection D.6, while specific differences between these cases at different
Reynolds numbers are addressed separately in subsection 4.3.3. All averages applied in
the calculations of the depicted quantities are taken with respect to both statistically
homogeneous spatial directions and 100 statistically fully developed time steps. In case of
the convection velocities, averages are also taken with respect to their symmetries. Since
their isolines still show a considerable amount of statistical noise, the data are additionally
smoothed by means of a simple moving average. For this purpose a rolling (3,3)-window
is applied to the discrete (k1,k3)-space. Note that in all figures 4.26 to 4.31, the scales of
the premultiplied energy spectra and convection velocities differ for the individual wall
distances. Direct comparisons between the two should therefore be made with care.
Regarding the spectral convection velocity distribution of streamwise velocity structures
close to the channel wall (Figure 4.26a), the highest speeds can be observed at the largest
wavelengths. This is consistent with the previously found behaviour that larger scales
tend to move with speeds closer to the bulk velocity. In the viscous sublayer and the
buffer layer, Ub is larger than the local mean velocity. With a decrease in λ1 or λ3, the
convection velocity decreases as well, in general. However, for large spanwise structures,
there is again an increase in uc,u1 for very small values of λ1. This (secondary) area of high
convection velocities could be attributed to some kind of fast coherent structures with small
streamwise and large spanwise expansion, forming in close vicinity of the wall. However,
which physical mechanisms would form such structures remains unclear at this point and
should be investigated further in upcoming projects. For the represented simulation case
and wall distance, the convection velocities span over a range of 2.5 uτ . This is again due
to the influence of ⟨u1⟩ on the small scales and Ub on the large scales. At the considered
wall distance, there is a significant difference between the values of the local mean velocity
and the bulk velocity. As can be seen in the premultiplied energy spectrum, most energy
is contained within the medium wavelengths. For the given case, they are convected at
velocities around u+

c,u1 ≈ 9.5. Considering the overall convection velocity (Equation 2.63)
to be a weighted average of the shown distribution, the behaviour seen in Figure 4.21a is
explained in the sense that the overall convection velocity of streamwise velocity structures
moves at around U+

c,u1 ≈ 9.5 for x+
2 ≈ 5. The same argument can be made when considering

the spectral convection velocity distribution closer to the channel centre in Figure 4.26b.

61



4. Results

Here, most of the energy resides within medium to large structures, which are convected at
velocities of around u+

c,u1 ≈ 19. This is again consistent with the overall convection velocity
of streamwise velocity structures at x+

2 ≈ 265, seen in Figure 4.21a. It is interesting to
note that at this wall distance, the fastest structures are not necessarily the largest ones
but rather those of medium size. The convection velocity decreases from the centre of the
spectral plane outwards. This could be attributed to the behaviour, that the (respectively
slower) bulk velocity decelerates the large scales, while the (respectively faster) mean
velocity accelerates the small scales at x+

2 ≈ 265. Additionally, ⟨u1⟩ and Ub take almost
similar values at the given wall distance, which could lead to the shrinking of the span of
values taken by the convection velocity. Here, uc,u1 ranges over 1.5 uτ . In general, both wall
distance figures 4.26a and 4.26b still show some strong effects of statistical noise. This is
especially the case for structures of large streamwise and small spanwise dimensions (at the
bottom right of the respective depiction). Based on statements of Del Álamo and Jiménez
2009, this could be explained by the noisy-scales losing their coherence in less time than it
would take them to travel along the streamwise length of the channel. Since structures with
λ3 < λ1 have lifetimes proportional to their spanwise extension, they do not consistently
exist long enough to be detected by the mathematical framework defining a streamwise
convection velocity. According to Del Álamo and Jiménez, this effect further worsens with
an increase in wall distance. Regarding the general behaviour of the convection velocity
being noisier for smaller structures, this could be attributed to the difficulty of detecting
such scales. In a turbulent flow, random fluctuations can be misinterpreted as the coherent
convection of very small scales. An additional (probably dominant) reason lies in the use
of a logarithmic plot in combination with the wavelength-distribution of the considered
data. The chosen representation “squeezes” more points into the bottom left corner of
each figure, resulting in a noisier appearance.
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Figure 4.26.: Spectral distributions of uc,u1 (case m500)

The spectral convection velocity distribution of wall-normal velocity structures close to
the channel wall (Figure 4.27a) shows a slightly different behaviour than in the case of
uc,u1 . Here, the highest convection velocities are not those of the largest scales but rather
those of medium spanwise wavelengths. However, regarding the streamwise dimension of
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4.3. Convection velocity behaviour

turbulent u2-structures, the convection velocity still increases with an increase in λ1, in
general. An explanation for this L-shaped distribution could lie in the influence of the wall
on wall-normal velocity structures. Large u2-structures close to the wall could be more
likely to be slowed down or die out due to the impermeability condition and an increased
probability of “collision” with the solid surface. The range of values taken by the convection
velocity spans over 3 uτ for the shown simulation case and wall distance. As before, this can
be attributed to the difference in values of ⟨u1⟩ and Ub, which each dominantly influence
convected structures of different scales. In the depicted case, the most energy resides within
structures of small to medium size. Like in the case of uc,u1 , these high-energy scales are
convected at a speed around u+

c,u2 ≈ 9.5. This leads to the overall convection velocity of
wall-normal velocity structures also having a value close to U+

c,u2 ≈ 9.5 at a wall distance
of x+

2 ≈ 5, as can be seen in Figure 4.21a. For a spatial position closer to the channel
centre, as depicted in Figure 4.27b, larger values of uc,u2 can be observed. The largest
values are again connected to medium-sized structures, disregarding statistical noise. Note
that some resemblance to the L-shaped distribution, observed closer to the channel wall,
can be seen again in the convection velocity isolines extending towards large spanwise
wavelengths. The reason for the shift in peak convection velocity with respect to the wall
distance is again given by the connection of the small and large scales to the mean and
bulk velocity, respectively. At a wall distance of x+

2 ≈ 265, ⟨u1⟩ accelerates the small scales,
while Ub decelerates the large scales, leading to the depicted distribution. The span of
values taken by the convection velocity close to the channel centre ranges only around
1 uτ , since the local mean velocity and the bulk velocity are similar in magnitude at this
position. Regarding the premultiplied energy spectrum, a shift of the energy peak towards
larger structures can be observed with an increase in wall distance. For x+

2 ≈ 265, the
most energetic structures are convected with a velocity of u+

c,u2 ≈ 19, which again explains
the overall convection velocity seen in Figure 4.21a. However, the largest structures are
convected at a particularly slow velocity due to the special shape of the shown distribution.
This results in the visible drop in the large-scale partitioned overall convection velocity
of wall-normal velocity structures, mentioned in subsection 4.3.1. Similarly to the case of
streamwise velocity structures, a non-negligible amount of statistical noise can be observed
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Figure 4.27.: Spectral distributions of uc,u2 (case m500)
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in some parts of figures 4.27a and 4.27b. This can again be attributed to structures with
λ3 < λ1 losing their coherence, to random fluctuations being misinterpreted as small-scale
convection and to the chosen type of representation.
The spectral distribution of the convection velocity of spanwise velocity structures at
x+

2 ≈ 5 can be seen in Figure 4.28a. Similarly to the case of streamwise velocity structures,
close to the wall, the highest values of uc,u3 can be found at the largest values of both
streamwise and spanwise wavelengths. This is due to the accelerating influence of the bulk
velocity on the larger scales. Towards smaller scales (regarding both depicted wavelengths),
the convection velocity uc,u3 decreases. The span of values taken by the convection velocity
of spanwise velocity structures close to the channel wall ranges over 2.5 uτ , due to the
large difference between ⟨u1⟩ and Ub. Regarding the premultiplied energy spectrum, the
most energy is contained within scales that are convected at around u+

c,u3 ≈ 10. This is a
slightly larger velocity than in the cases of the other two velocity components. Therefore,
an equally larger overall convection velocity of U+

c,u3 ≈ 10 can also be observed for the
spanwise velocity structures in Figure 4.21a as well. For a wall distance closer to the channel
centre, at x+

2 ≈ 265, there is again a shift in the spectral position of the highest convection
velocity. As can be seen in Figure 4.28b, the structures of medium spanwise expansion
and medium-high streamwise expansion are convected with the highest velocity. Here,
areas of the wavenumber-space which are overpowered by statistical noise are disregarded.
This behaviour differs from the results of the other velocity components in the sense
that the fastest turbulent u3-structures tend towards a larger spanwise expansion, rather
than keeping a more balanced shape. A reason for this could be the formation of fast
u3-structures with large spanwise dimensions. These structures seem to carry a non-
negligible amount of energy, which can be seen in the distribution of the premultiplied
energy spectrum. However, what exactly these structures are and why they form in the
case of plane channel flow is not clearly evident at this point. The range of values which
the convection velocity takes over the spectral distribution is again smaller for a spatial
position further from the channel wall. For the depicted case, the span is as broad as
1.5 uτ , since Ub and ⟨u1⟩ are of similar magnitude. The most energetic scales again travel
at a speed of u+

c,u3 ≈ 19. Since they are the dominant factor in the definition of the overall
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Figure 4.28.: Spectral distributions of uc,u3 (case m500)
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4.3. Convection velocity behaviour

convection velocity, it is not surprising that the latter takes a similar velocity of U+
c,u3 ≈ 19.

Regarding structures with λ3 < λ1, a great deal of statistical noise can be observed for
Figure 4.28a and Figure 4.28b. In addition, some noise can also be observed for the isolines
of the small-scale convection velocities. This behaviour might be due to the same reasons
as in the case of the other two velocity components.
Finally, considering the spectral distributed convection velocities of passive scalars close to
the channel wall, a clear dependence on the Prandtl number can be observed in figures
4.29a, 4.30a, and 4.31a. The highest convection velocities reside within the largest scales
with regard to both wavelengths, as these scales are mostly influenced by the fast-moving
bulk velocity. For the lowest value of Pr = 0.025, the area of highest convection velocity
spreads over proportionally more streamwise wavelengths, while the respective area for
Pr = 1 takes a wider range of spanwise than streamwise wavelengths into account. For
the medium value of Pr = 0.4, the area of maximum convection velocity at x+

2 ≈ 5 is
almost of quadratic shape (in the depicted representation). Leading to this behaviour
might be the formation of additional structures with large spanwise expansion at higher
Prandtl numbers. This could also be the reason for the shift of the energy peak with an
increase in Pr at close wall distances towards smaller values of λ3. However, what exactly
these structures are is unclear. Nevertheless, the change in Prandtl number could also be
interpreted as a change in wall layer when considering passive scalar structures. As it was
introduced in subsection 2.2.3, the molecular sublayer grows with Pr ·x+

2 , which in this case
results in Figure 4.31a depicting the scalar buffer layer rather than the molecular sublayer.
Therefore, different spectral distributions at changing values of Pr could be attributed to
similar mechanisms as due to varying wall distances. In addition, the isolines of uc,θ are
more sophisticated in the case of the lower Prandtl numbers, where a clear decrease in their
value towards smaller scales is visible. With an increase in Pr, the convection velocity
distributions become noisier. Moreover, with larger Prandtl numbers, a secondary area of
high convection velocity emerges at the smallest streamwise wavelengths. This is especially
the case for Pr = 1 and can be compared to the behaviour of uc,u1 in Figure 4.26a. An
explanation for this second high-speed area could again be the formation of fast coherent
structures with small streamwise and large spanwise expansions. However, their origin
cannot be explained in the scope of this thesis and should be investigated by further
research. A special focus should thereby lie on the effects of the Prandtl number on this
behaviour. Due to the difference in bulk and mean velocities near the channel wall, there
is a large range of values over which the convection velocities of scalar structures span.
This range decreases from 5.5 uτ , over 2.5 uτ , to 2 uτ with an increase in Prandtl number.
The reason for these larger ranges at lower values of Pr could lie in the property of such
flows to form larger passive scalar structures than their counterparts at higher Prandtl
numbers. Del Álamo and Jiménez 2009 explain that the bulk velocity influences the near
wall convection velocity distributions by large-scale structures of the outer flow, which
penetrate into the layers closer to x2 = 0. This influence might therefore be stronger if larger
structures exist in the outer flow, as it is the case for lower values of Pr. The tendency of
low Prandtl number flows to contain larger passive scalar structures can also be seen in the
premultiplied energy spectra. A clear shift of the energy peak towards larger scales can be
observed with a decrease in Pr. However, it is also shown that the total energy contained
within these scales decreases with a decrease in Prandtl number. Still, more respective
energy combined with, in general, faster convected large-scale structures strongly influence
the behaviour of the overall convection velocity (Equation 2.63) at low values of Pr. This
effect is visible in Figure 4.21b, where close to the wall Uc,θ increases significantly with a
decrease in Prandtl number. Regarding x+

2 ≈ 265 closer to the channel centre, the effects
of a change in Prandtl number are less substantial. The respective data for Pr = 0.025,
Pr = 0.4, and Pr = 1 are shown in figures 4.29b, 4.30b, and 4.31b. The structures which
are convected with the highest velocity are located at the centre of the spectral plane,
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independent of Pr. However, the depicted distributions show some resemblance to the
L-shaped spectra also seen for wall-normal velocity structures in Figure 4.27, at least in
the case of the convection velocity uc,θ. Since passive scalars are known to behave similarly
to the streamwise velocity components and not to the wall-normal one, this behaviour
is somewhat unexpected and not explainable at this point. For the depicted case and
wall distance, there seems to be no difference between the different Prandtl numbers in
the accelerating effects ⟨u1⟩ has on the small scales and the decelerating effect Ub has
on the large scales. This is also evident when considering the range of values taken by
the respective convection velocities. For all given Prandtl numbers, uc,θ ranges over the
same span of 1 uτ at the depicted wall distance. This can also be observed in Figure 4.23,
where the small and large scale partitioned overall convection velocities align in the case of
x+

2 ≈ 265 for all Prandtl numbers alike. A different behaviour might be observed even closer
to the centre-line of the channel or at larger Reynolds numbers. However, the premultiplied
energy spectrum is more substantially affected by a change in Pr. Due to the previously
mentioned nature of smaller Prandtl numbers to form larger scales, the energy peaks are
located closer to the largest wavelengths for the smaller values of Pr. Since structures of
these wavelengths are convected more slowly, independently of the Prandtl number, an
equally slower overall convection velocity is obtained. This is again due to the definition
of Uc,θ as a weighted (with the respective energies) integral over the wavenumber-space.
Figure 4.21b shows this behaviour slightly. The statistical noise, in general seen in the
isolines of slow convection velocities, could once more be attributed to the misinterpretation
of random fluctuations as the convection of tiny turbulent structures and the nature of the
chosen visualisation. In addition, the previously mentioned explanation for the noisy area at
λ3 < λ1 should also be applicable for the convection of passive scalar structures. However,
this area of high statistical noise increases in size together with an increase in Pr, possibly
due to all structures being convected slower at higher Prandtl numbers. This is at least the
case close to the wall, where a slower convection worsens the problem of the noisy-scales
dying, before being recognised as coherently convected structures. However, close to the
channel centre no increase in uc,θ is seen for an increase in Pr. Therefore, another possible
explanation could be that passive scalar structures at lower Prandtl numbers are generally
long-living compared to their high-Pr counterparts.
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Figure 4.29.: Spectral distributions of uc,θ with Pr = 0.025 (case m500)
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Figure 4.30.: Spectral distributions of uc,θ with Pr = 0.4 (case m500)
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Figure 4.31.: Spectral distributions of uc,θ with Pr = 1 (case m500)

67



4. Results

4.3.3. Reynolds number dependency

In a final consideration of the behaviour of the convection velocities, their dependence
on a change in Reynolds number is analysed. Therefore, previously discussed results (of
simulation case m500) are shown again, this time in comparison with their respective
counterparts of simulations m180 and m1000. Note that in general, all the averages
calculated from the data of m180 and m1000 are taken with respect to both statistically
homogeneous spatial directions and the symmetries of the convection velocity distributions.
In case of m180, means are also taken with respect to 100 statistically fully developed time
steps, while only 16 such fields are used in the case of m1000. Since viscous units are used
in the following comparisons, it is important to note that some effects of a change in the
Reynolds number might not be obvious. Such effects are already considered in this scaling,
but will additionally be mentioned if necessary.
Figure 4.32 shows the (partitioned) overall convection velocities of passive scalar structures,
on the basis of Figure 4.23. The cut-off, which characterises “small” and “large” scales
is again (λ1, λ3) = (h, h/4), for all simulated cases alike. Figure 4.32a depicts the overall
convection velocities of each Prandtl and Reynolds number. In contrast to previously shown
plots, the partitioned overall convection velocities of the corresponding small-scale and
large-scale structures are shown in individual representations. They can be seen in figures
4.32b and 4.32c, respectively. Since the dependence of the quantities depicted on Reτ is
the focus at this point, no other velocities (⟨u1⟩ or Ub) are shown for comparison. Similar
results for the partitioned overall convection velocities of velocity structures can be found in
subsection E.1. It is not necessary to show them here as well, because of their resemblance
in behaviour to the presented data of passive scalar structures with respect to the Reynolds
number. This similarity is especially strong when considering the convection of streamwise
velocity structures in comparison to passive scalars at Pr = 1. Del Álamo and Jiménez
2009 considered the Reτ -dependence of partitioned overall convection velocities of velocity
structures as well. Their quantitative results are in good agreement with the data obtained
within this work. Regarding the cases of different Reynolds numbers in Figure 4.32, it can
be observed that not all simulations cover the same range of x+

2 values. Note that this is a
result of the scaling with viscous units.
When considering the overall convection velocities of all passive scalar scales in Figure 4.32a,
an acceleration can be observed for the smallest Prandtl number with an increase in Reτ ,
while the overall convection velocities of both other passive scalars decrease for larger
Reynolds numbers. This effect is slightly stronger closer to the wall than at the channel
centre. A reason for this behaviour might lie in the spectral distributions of both energy
and convection velocity. As will later be shown in comparisons of these distributions,
the spectral areas of high convection velocities as well as high premultiplied energies
shift towards smaller structures with an increase in Reynolds number. However, these
shifts are not equally “fast”. This results in different effects on the overall convection
velocities of passive scalars at different values of Pr, since they already form different-sized
structures to begin with. What strengthens this conjecture, is the consideration of only
small respectively large scales in the form of the partitioned overall convection velocities
seen in figures 4.32b and 4.32c. For most of the channel width, there is a clear tendency of
large-scale structures to be convected faster at higher Reynolds numbers, while a decrease
in partitioned overall convection velocity is visible for small-scale structures at larger
values of Reτ . The only exceptions from this are passive scalars with Pr = 0.025, whose
(partitioned) overall convection velocities are accelerated with increasing Reynolds number,
regardless of the wavelength subspace considered. This might again be attributed to
these flows’ tendency to form respectively larger passive scalar structures, regardless of
the intensity of turbulent motion. The observed behaviour for the small and large scales
also results from the chosen wavelength cut-off, classifying these two wavelength spaces,

68



4.3. Convection velocity behaviour

100 101 102

x+
2

10

15

20

25

U
+ c
,θ

Reτ ≈ 180

Reτ ≈ 500

Reτ ≈ 1000

Pr = 0.025

Pr = 0.4

Pr = 1

(a) Comparison of all-scale structures

100 101 102

x+
2

10

15

20

25

U
+ c
,θ

Reτ ≈ 180

Reτ ≈ 500

Reτ ≈ 1000

Pr = 0.025

Pr = 0.4

Pr = 1

(b) Comparison of small-scale structures

100 101 102

x+
2

10

15

20

25

U
+ c
,θ

Reτ ≈ 180

Reτ ≈ 500

Reτ ≈ 1000

Pr = 0.025

Pr = 0.4

Pr = 1

(c) Comparison of large-scale structures

Figure 4.32.: Comparison of overall convection velocities of scalar structures
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staying unchanged. Regarding structures with (λ1, λ3) ≥ (h, h/4), the same spectral shifts
of convection velocities and energies occur, as mentioned before. This results in larger
partitioned overall convection velocities for an increase in Reynolds number. However,
for structures with (λ1, λ3) < (h, h/4), an additional effect becomes relevant. Higher-Reτ
flows form smaller structures and, in general, more of them. Because these structures are
convected at relatively slow speeds due to their strong relation to the local streamwise
mean velocity, they decelerate the partitioned overall convection velocities.
In Figure 4.33, contributions to the overall convection velocities of velocity structures are
depicted, in accordance to Figure 4.24. Each subfigure 4.33a to 4.33c shows the data
of an individual velocity component for all simulation cases m180, m500, and m1000,
respectively. No overall convection velocities are shown for comparison, since the focus of
these representations should lie on the Reynolds number dependencies of the contribution
terms. In subsection E.2, the corresponding figures of contributions to the overall convection
velocities of passive scalar structures are provided. Here, it is, however, sufficient to show
only the figures of the velocity components, as their qualitative behaviour with respect to
a change in Reτ does not differ from the results shown in Figure E.80. Note that due to
the used scaling in viscous units, there are again some values of x+

2 only reached by the
simulation results of higher Reynolds numbers.
For every contribution shown in figures 4.33a, 4.33b, and 4.33c, small differences in their
respective influences can be observed with an increase in Reτ . Note that these differences
are partially small because all quantities are depicted in viscous units, which are already
dependent on the Reynolds number. However, these minor changes in magnitude due
to an increase in Reynolds number do influence the overall convection velocities. This
is evident from the previously shown Figure 4.32 resp. the corresponding Figure E.79
for the convection of velocity structures. Especially the viscous term in Figure 4.33a as
well as the pressure term in Figure 4.33b and Figure 4.33c decrease with an increase in
Reτ . This explains the drop in the overall convection velocities, since these terms are
the dominant contributors for the respective velocity components in the close vicinity to
the wall. Regarding the other contributing terms, already minor in general, the influence
of a change in Reynolds number is vanishingly small. In the layers close to the channel
wall, most of these terms become slightly larger in magnitude with an increase of Reτ ,
while past the previously introduced trend change, the opposite effect can be observed.
The only exception to this behaviour is the mean wall-normal gradient term in the overall
convection velocity for streamwise velocity structures, seen in Figure 4.33a. All terms
containing one-point correlations like the Reynolds stresses might be enhanced close to
the wall because of the increase in turbulent kinetic energy resulting from an increase in
Reynolds number. Regarding the opposing effect, seen in the mean wall-normal gradient
term, this could result from a combination of Reτ -effects influencing the respective term
of Equation 3.22. Note that the wall distance at which the trend change in values, as
well as in the influence of the Reynolds number, occurs, does not differ for all simulation
cases considered. This leads to the assumption that the trend change is connected to other
effects present in the viscous sublayer and buffer layer of the channel, since it remains
located at the same wall distance in the case of viscous scaling.
In order to analyse the effects of a change in Reynolds number on the spectral convection
velocity distributions, the figures 4.34 to 4.39 are considered. These representations show
the spectral distributions of the convection velocities of each transport quantity considered,
as well as their respective premultiplied energy spectra, like in subsection 4.3.2. Here,
only the wall distance at the boundary between the viscous sublayer and the buffer layer
(x+

2 ≈ 5) is depicted in each figure. Analyses of a position in the log layer are more difficult
to compare since the flow behaviour is less universal further away from the wall in the case
of different Reynolds numbers. In addition, most interesting phenomena previously shown
are located close to the wall, further motivating the focus on these values of x+

2 . However,
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û′3u
′
3

ν

p̂′

(c) Comparison of spanwise velocity structures

Figure 4.33.: Comparison of Uc,ui contributions
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corresponding figures for comparisons of the spectral convection velocity distributions
at positions closer to the centre of the channel can be found in subsection E.3. The
most notable effect they show is a general acceleration in all convection velocities with
an increase in Reτ . However, this is because each simulation’s result are not plotted at
the same viscous wall distance, but instead at x+

2 ≈ (Reτ/2 + 15). In this case, higher
Reynolds number flows having higher convection velocities can already be expected from
Figure 4.32. In figures 4.34 to 4.39, data from the simulation cases m180 and m1000 are
shown for comparison, in addition to the previously presented results of m500. Note that
the wavenumber-spaces are enlarged for simulations at higher Reτ , since these flows form
smaller turbulent scales. However, each distribution shown is cropped to the spectral
dimensions of m180 for better comparability. In case of any relevant small-scale behaviour
being concealed by this representation, a respective comment will be made.
Figure 4.34 shows the spectral convection velocity distributions of streamwise velocity
structures at x+

2 ≈ 5. With an increase in Reynolds number, slightly larger convection
velocities arise within the largest structures. This is visible by the “fastest” isoline enclosing
a larger area of turbulent scales for higher values of Reτ . This could be due to larger-
scale structures penetrating the near-wall layers, carrying their high energies and large
convection velocities with them. The range of convection velocity values taken by any
turbulent structure is enlarged in general. Not only are the largest structures convected
faster for larger Reynolds numbers, but the smallest scales are additionally convected more
slowly. This second effect is only partially depicted in the cropped representations of the
convection velocity distributions. With respect to the second high-speed convection velocity
area, which was found to emerge at small streamwise and large spanwise wavelengths, a
shift towards even smaller streamwise structures can be observed with rising values of
Reτ . Therefore, the area seems to remain contained within structures of low respective
energies. This could hint at the responsible structures being destroyed by large energy-
containing eddies, which more prominently influence the near-wall layers for higher values
of Reτ . In general, more energy is contained within the spectral plane for higher Reynolds
numbers, with the peak of the distribution shifting towards smaller wavelengths. This
happens because the flow forms smaller and more energetic structures at larger values
of Reτ . Together with the change in convection velocities, this explains the Reynolds
number dependency of the overall convection velocity of streamwise velocity structures,
since Equation 2.63 takes both spectral distributions into account. It is interesting to note
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Figure 4.34.: Comparison of spectral distributions of uc,u1 at x+
2 ≈ 5
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that the convection velocity isolines become less skewed towards larger values of λ1 at
high values of λ3,- when increasing the Reynolds number. This could be attributed to
more structures of high convection velocity and large spanwise expansion penetrating the
near-wall layer from positions closer to the channel centre. What supports this hypothesis
is the increase in energy of such structures for higher values of Reτ , which must result
from outside influences, since at x+

2 ≈ 5 most behaviour is only a footprint of effects
occurring at larger wall distances. Note that no significant change in the spectral area of
high statistical noise can be observed. This could be attributed to the convection velocities
of the respective structures not changing either for an increase in Reynolds number.
In Figure 4.35, the spectral convection velocity distributions of wall-normal velocity
structures are shown at a wall distance of x+

2 ≈ 5. Like in the case of uc,u1 , slightly larger
convection velocities can be observed with an increase in Reynolds number. This is visible
by the fastest-velocity isoline reaching deeper into the wavelength-space, thereby enclosing
more (even faster convected) turbulent structures. This might again be explained by
structures of higher convection velocity penetrating into the near-wall region from layers
closer to the channel centre. Such phenomena intensify with an increase in Reτ . The span
of values taken by the convection velocities of wall-normal velocity structures increases
in general. In addition to the higher maximum values of uc,u2 , the distributions at larger
Reynolds numbers show lower minima. This is visible in the emerging slow-speed area at
the largest scales of the wavelength plane. This behaviour of extremely slow large-scale
structures can be attributed to the increasing influence of the wall on higher-Reτ flows at
a wall distance of x+

2 ≈ 5. Another effect of the growth of this spectral area is that the
largest convection velocities are shifted towards structures with smaller spanwise expansions.
Likewise, the peak of the premultiplied energy distribution shifts towards smaller structures
in general. This is due to the fact that flows at larger values of Reτ form smaller scales,
which contain more respective energy. Both shifts, in peak convection velocity and peak
premultiplied energy, contribute to the behaviour of the overall convection velocities of
wall-normal velocity structures. Regarding the spectral area of high statistical noise, no
dependence on the Reynolds number can be observed. As for the case of streamwise velocity
structures, this can be attributed to those scales being convected at similar velocities in all
cases considered. The effect of eddies with λ3 < λ1 vanishing before they can be recognised
as coherently convected is therefore equally present in every simulation.
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Figure 4.35.: Comparison of spectral distributions of uc,u2 at x+
2 ≈ 5
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4. Results

The spectral convection velocity distributions of spanwise velocity structures at x+
2 ≈ 5 are

depicted in Figure 4.36. Together with an increase in Reynolds number, an increase in
the peak convection velocities can be observed. The fastest convected structures remain
located at the largest streamwise and spanwise wavelengths. However, their convection
velocities are larger for the higher-Reτ cases, which is visible by the “fastest” isolines
being located closer to the medium-sized structures. As in the cases of the other velocity
components, this is due to the influence of large scales present in the flow close to the
channel centre. The influence of these scales, regarding high energies and large convection
velocities, increasingly reaches into the near-wall layers with larger Reynolds numbers. In
addition to this, the smallest structures, which decrease in size for an increase in Reτ , are
convected at slower speeds. As a result, the overall range of convection velocities broadens
with increasing values of the Reynolds number. Note that the smallest scales are only visible
in the depiction of m180 (Figure 4.36a). In addition to the general formation of smaller
structures, higher-Reτ flows also carry more energy at shorter wavelengths. This leads to a
shift in the depicted premultiplied energy spectrum towards minor structures. Considering
the spectral area at λ3 < λ1, a lot of statistical noise can be observed independent of
the simulation case. This again shows the previously made observations that short-lived
structures stay undetected by the convection velocity framework, independent of their
Reynolds number.
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Figure 4.36.: Comparison of spectral distributions of uc,u3 at x+
2 ≈ 5

Figure 4.37, Figure 4.38, and Figure 4.39 show the spectral convection velocity distributions
of passive scalar structures at a wall distance of x+

2 ≈ 5 for the low, medium and high
Prandtl numbers, respectively. For all Prandtl numbers, an increase in the maximum
convection velocity can be observed, resulting from an increase in the Reynolds number.
This is evident by the fact that the “fastest” isolines of each representation enclose a
larger spectral area at higher values of Reτ . In case of Pr = 0.025, the figures of the
larger Reynolds numbers even contain convection velocity isolines so fast, that they are
not present in the other cases. Like in the case of any velocity structure, this change in
maximum convection velocity can be attributed to the rising influence of structures, which
exist closer to the channel centre. The footprints of these structures extend further into
the near-wall layers, with increasing values of Reτ . Their energies and high convection
velocities are therefore visible in the largest scales, even close to the wall. In addition,
higher Reynolds number flows form smaller passive scalar scales for all Prandtl numbers.
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4.3. Convection velocity behaviour

These smallest structures are even more influenced by the local mean velocity, leading to
slower minimal convection velocities at higher values of Reτ . Note that this is not visible
in the figures shown, since only the spectral distributions of the simulation case m180
are fully depicted. However, this behaviour leads to larger convection velocity ranges at
x+

2 ≈ 5 for an increase in Reynolds number. An interesting observation made previously is
the growth of a second spectral area of high convection velocities with an increase in the
Prandtl number. This area is located in the wavelength-space at small streamwise and large
spanwise expansions. Regarding the effect of an increase in Reynolds number on this area,
a shift towards smaller streamwise structures can be seen, similar to the corresponding
area of convection velocities in the case of streamwise velocity structures (Figure 4.34).
For the passive scalar with Pr = 0.025, only the simulation case m180 marginally shows
this behaviour. Therefore, the additional high convection velocities stay contained within
the wavelengths of lowest energy. An explanation for this dependency on Reτ can again be
suspected in the influence of outer-flow structures. These outer structures, increasingly
penetrating into the near-wall layers with larger Reynolds numbers, seem to interfere with
the formation of those additional scales convected at high velocities in close vicinity to
the wall. Another effect of the shift in this second high-speed area with an increase in
Reynolds number is a change in the spectral position of the main area of highest convection
velocities. This occurs in addition to the previously mentioned increase in size of the area.
For the chosen isolines, this behaviour is most prominently visible in the case of Pr = 0.025,
where the fastest convected scales are located at medium streamwise wavelengths in the
case of the lowest Reynolds number. For larger values of Reτ , the spectral position shifts
towards larger wavelengths in general. The spectral position of the premultiplied energy
peak shifts towards smaller structures with an increase in Reynolds number, independent
of the Prandtl number. However, the influence of this shift on quantities like the overall
convection velocities is more substantial for larger Pr values, as is shown by the different
behaviours seen in Figure 4.32a. Note that when comparing this behaviour for the different
passive scalars, it should be considered that figures 4.37 to 4.39 are scaled logarithmically.
As mentioned before, the changes in the premultiplied energy spectra arise because flows
of larger Reynolds numbers form smaller and more energetic structures (with respect
to the scaling in viscous units). Regarding the high statistical noise at structures with
λ3 < λ1, no significant change can be observed with an increase in Reynolds number for
each passive scalar individually. Even if a decrease in this noise could be suspected for the
lowest Prandtl number, this can be attributed to the chosen convection velocity isolines
not capturing the behaviour of the relevant structures.
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Figure 4.37.: Comparison of spectral distributions of uc,θ with Pr = 0.025 at x+
2 ≈ 5
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Figure 4.38.: Comparison of spectral distributions of uc,θ with Pr = 0.4 at x+
2 ≈ 5
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Figure 4.39.: Comparison of spectral distributions of uc,θ with Pr = 1 at x+
2 ≈ 5
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5. Conclusion and outlook

This thesis aimed to gain a deeper insight into the physics of convection velocities of different
turbulent structures in wall-bounded flows. A special focus was directed at the behaviour of
passive scalars. The results of Del Álamo and Jiménez 2009 were chosen as a starting point
for the presented research and their convection velocity definition was adopted. Direct
numerical simulations of plane channel flow were conducted, starting with a preliminary
simulation at a friction Reynolds number of Reτ ≈ 180. In addition to the velocity and
pressure fields, passive scalars at Pr ∈ {0.025, 0.71, 1} were analysed. To validate the
simulation setup, typical turbulence statistics were considered and compared to data from
the literature, which showed good agreement. The mean fields of all transport quantities
agreed well with the expected results. The same outcome was achieved with the analyses
of one-point auto-correlations. In general, all the averages considered were calculated
with respect to both statistically homogeneous spatial directions and 100 statistically fully
developed time steps. To evaluate whether a time step was statistically fully developed,
shear stress and passive scalar flux profiles (only averaged in space) were considered. They
showed a linear dependence on the wall-normal coordinate at a particular time, proving
that the current time step was statistically fully developed. Profiles of the streamwise and
spanwise auto-covariances were evaluated to check whether the channel’s chosen periodic
dimensions were large enough to capture all scales of turbulence. Thus, the streamwise
expansion L1 was found to be insufficient in size. As a consequence, a longer channel was
used in the following simulations. Higher-order statistics were considered to validate the
applied averaging setups. They showed the expected behaviour, ensuring that enough
time steps were used in each mean to capture such statistical effects. One-dimensional
energy spectra were considered to ensure that the spectral resolution is fine enough to
resolve the dissipation range of the turbulent energy cascade. They showed no pile-up of
energy at higher values of k, thus validating the chosen wavenumber-range. In general, the
passive scalars at the medium and large Prandtl numbers behaved similarly in most of
the considered statistics. As a result, the medium Pr value was adjusted (0.71 → 0.4) to
obtain more meaningful results from the following studies. An additional first look at the
convection velocities was made to find possible symmetries in their distributions. They were
observed to be symmetrical with respect to the channel centre-plane as well as with respect
to all four quadrants of the wavenumber-space. These symmetries were later used to refine
all means based on values of the convection velocities. After the preliminary investigation,
three main simulations were performed at Reτ ∈ {180, 500, 1000}. All validation steps
mentioned so far have been retraced for these simulations to ensure reliable data generation.
The resulting fields were then used to analyse the convection velocity behaviour of both
velocity and passive scalar structures. Further research could benefit from additional
simulations at higher values of Re and Pr to make more sophisticated statements about
the dependency of the convection velocities on these dimensionless numbers.
The first analysis of the generated data focused on each respective quantity’s transport
equations. The physical reason why Taylor’s hypothesis might break could be investigated
by formulating the transport equations into representations that contain the terms of the
hypothesis. Since the quantities considered were fluctuating values, their rms values were
considered to gain statistically relevant results. Each term of the transport equations was
analysed separately. However, since the respective terms contributing to the breaking
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5. Conclusion and outlook

of Taylor’s hypothesis can have interfering effects, the best measure to investigate them
showed to be an analysis of their instantaneous sums. In addition, it proved to be good
practice to normalise each considered term by one of the terms that represents Taylor’s
hypothesis. In doing so, the relative influence of the “hypothesis breaking”-terms could be
investigated, even at wall distances where all quantities were small in magnitude. For the
transport of velocity as well as passive scalar structures, an increase in the effects leading
to the breaking of Taylor’s hypothesis was observed with a decrease in wall distance. This
was in good agreement with the data from the literature that considered velocity and
vorticity structures in turbulent plane channel flow. With regard to the physical reasons
behind these effects, all velocity components showed to behave similarly. The influence
of the non-linear terms on the breaking of Taylor’s hypothesis was found to be dominant
in the log layer, while the pressure and viscous terms were strongest in a closer vicinity
of the wall. Near the channel centre, the same behaviour was observed for the transport
of passive scalar structures. However, at the channel wall, the term representative of the
difference between the overall convection velocity and the streamwise mean velocity was
shown to dominate, along with the conductive term. For the lowest Prandtl number, a
strong influence of the non-linear terms was observed in the close vicinity of the wall as
well. This effect was found to decrease with increasing values of Pr. Based on this, future
projects could conduct respective analyses for the individual contributions to the convec-
tion velocities, leading to a deeper physical understanding of the underlying mechanisms.
Regarding the behaviour of the “hypothesis breaking”-terms with respect to an increase
in Reynolds and Prandtl numbers, an increase in their magnitude at the channel wall
was observed. This was attributed to the steeper wall-normal gradients corresponding to
the larger dimensionless numbers. In addition, an area in which these terms take their
maximum value was found to be constant inside the molecular sublayer. Future research
might profit from considering a wider range of Re and Pr, since being limited to only
three values of each dimensionless number resulted in difficulties extrapolating the findings
made throughout this thesis. In addition, further investigations of the dependency on the
Reynolds and Prandtl numbers might lead to a scaling parameter that collapses the curves
of the “hypothesis breaking”-terms.
The first analysis directly related to the convection velocities was performed by investi-
gating their dependence on the wall distance. Therefore, the overall convection velocities
of each considered quantity were calculated. These velocities are defined as integrals of
the wavenumber-dependent convection velocities with respect to the spectral plane. The
respective values of every turbulent scale are additionally weighted by the energy they carry.
The overall convection velocities are thereby best-approximations of Taylor’s hypothesis
and closely related to other definitions typically found in the literature. The qualitative
behaviour of the overall convection velocities with respect to wall distance was found to
be similar for all velocity structures, as well as passive scalar structures. Close to the
channel centre, Uc,ϕ showed a slope similar to the mean streamwise velocity, however, with
slightly lesser magnitude. With a decrease in wall distance, the overall convection velocities
could be observed to flatten in the buffer layer, before finally becoming constant in the
viscous sublayer. In closest proximity to the wall, an additional decrease in their values
was depicted. However, this was in disagreement with data from the literature and might
therefore be an artefact of limited numerical accuracy. All main simulation results showed
the same quantitative behaviour. Some Prandtl number effects were observed regarding
a change in Pr in the case of passive scalar structures. With an increase in Pr, faster
overall convection velocities were seen at the channel centre, while slower speeds were
found closer to the wall. This effect was attributed to the physical tendency of larger
Prandtl numbers to form smaller passive scalar structures. This could be connected to
the overall convection velocities in the sense that large structures exist in regions as large
as the channel cross-section, thereby being convected at speeds close to the bulk velocity.
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However, smaller scales occupy only a local region of the channel and are thus mostly
influenced by the mean streamwise velocity. To further analyse this behaviour, additional
simulations with a broader range of Prandtl numbers would again benefit future studies,
since this was a limiting factor in the presented research.
To investigate the behaviour of different-sized structures in general, partitioned overall
convection velocities were evaluated. Therefore, a wavelength cut-off of (λ1, λ3) = (h, h/4)
was chosen. Every structure above this value-pair was considered “large”, while every
structure below was considered “small”. The previously regarded investigations concerning
wall distance were then retraced for these small and large scales individually. As expected,
the partitioned overall convection velocities of large structures proved to be strongly influ-
enced by the bulk velocity, while in the case of small structures, the local streamwise mean
velocity had a dominant influence on the partitioned overall convection velocity. This effect
was visible for all velocity and passive scalar structures, with an increasing impact for
passive scalars of low Prandtl number. This dependency on Pr was argued to arise from
the larger structures in low Prandtl number flows. The overall convection velocities of all
scales were shown to be convected at velocities close to those of the partitioned overall
convection velocities of the small scales. This was argued to be either an effect of the
chosen wavelength cut-off or the spectral distribution of energy and convection velocity.
The latter was therefore analysed in the following parts of this thesis. Regarding the former,
future research might consider different cut-offs to ensure that such limiting factors are not
included in the analysis of partitioned overall convection velocities.
In a final consideration of the convection velocities’ wall distance dependence, the indi-
vidual terms of their definitions were investigated. For every transported quantity, each
contributing term was calculated in accordance with the way in which its overall convection
velocity was calculated. The results of this showed that the streamwise mean velocity is
the dominant contributor to all overall convection velocities considered in the log layer.
Another effect, observed to hold for velocity and passive scalar structures alike, is the
influence of the boundary conditions close to the wall, damping all terms directly including
one of the transport quantities. In the viscous sublayer, different terms were found to be
dominant for different velocity components. Although u1-structures are mostly convected
due to a positive influence of the viscous term, this term decreases the convection velocities
of both u2-structures and u3-structures. In contrast, the pressure term showed to be
significantly larger for the wall-normal and streamwise velocity components, overpowering
the negative effect of the viscous term. However, this behaviour could not be explained
during the presented work and might arise from numerical problems of the finite difference
scheme used. Due to limitations in the wall-normal resolution, a proper investigation of
these terms’ limit behaviour as they approach the wall could not be performed. For passive
scalar structures, the conductive term dominated the overall convection velocity near the
wall. With an increase in the Prandtl number, a decrease in this dominance was observed.
This was attributed to the decrease in conductivity at higher values of Pr. The influence of
all other terms was shown to be small in comparison. However, an increase in these terms
towards the channel wall was detected for all transported quantities alike. In the case of
the passive scalars, the magnitude of these other terms was observed to increase with an
increase in the Prandtl number. This was explained by the rising influence of turbulent
scalar fluxes for larger values of Pr. Future research could investigate the fundamental
physics behind the overall convection velocity contributions by considering the effects of
simple elemental structures in an otherwise homogeneous flow.
To extend the convection velocity analyses, their spectral distributions were consid-
ered. Therefore, plots of premultiplied energy spectra were analysed together with the
wavenumber-dependent convection velocities. This was done at two distances from the
wall, to gain deeper insights into the behaviour near the wall and the channel centre.
However, limiting the investigation to only two values of x2 resulted in equally limited
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interpretation possibilities and should be extended in further projects. The reason for
considering both the convection velocities and the energy spectra was that both quantities
contribute to the overall convection velocities analysed before. In general, it was found that
large scales are convected fastest close to the wall, while this peak in convection velocity
shifts towards more minor scales with an increase in wall distance. Nevertheless, slightly
different behaviours could be seen for every component of the velocity tensor as well as
for the convection of passive scalars. The convection velocity distribution of u1-structures
showed a second region of high-speed convection at small streamwise wavelengths. This
could also be observed in the case of passive scalar structures, where the effect intensified
with an increase in the Prandtl number. However, the insights into the relevant flow
physics gathered within this work were insufficient to explain the origin of this behaviour.
With respect to the distribution of the convection velocities related to wall-normal velocity
structures, a special shape was observed in the wavenumber-space. Especially close to the
wall, the largest scales showed to be relatively slow, while scales of medium streamwise
and large spanwise dimensions were convected at high velocities. This unexpected effect
was later also seen in the near-centre distribution of uc,θ. With regard to the u2-structures,
this was attributed to the effects of the wall, while no explanation was found regarding the
convection of passive scalar structures. In the case of the spanwise velocity structures, peak
convection velocities far from the channel wall were found to reside within larger spanwise
structures than expected. This could have been the contribution of special u3-structures
forming close to the channel centre. An analogues change in which kind of scales are fastest
was also observed close to the channel wall in the case of passive scalar structures. With an
increase in Pr, the percentage of spanwise wavelengths contained within the same area of
convection velocity magnitude also increased. An explanation for this could not be found.
However, arguments were made that a change in the Prandtl number is equivalent to a
change in wall layer when regarding the scaling of passive scalars in wall-bounded flows.
All convection velocity distributions showed a considerable amount of statistical noise.
Some of it was attributed to the chosen type of representation and the misinterpretation of
random fluctuations as the convection of tiny structures. However, another significant area
of noise was explained to occur due to scales with λ3 < λ1 not living long enough to be
reliably noticed as coherently convected structures. This effect worsened with an increase
in Pr for the convection of passive scalar structures. Reasons for this were suspected in
either slower convection velocities or shorter lifespans of these scalar structures at higher
Prandtl numbers. More sufficient statistical results could not be gained due to limitations
in the used averaging setups as well as smoothing-algorithms. In future research, more
elaborate investigations could be conducted considering normalised convection velocity
distributions. Special overall convection velocities, obtained by integrating semicircles of
constant absolute magnitude in the (k1-k3)-plane, could be used as normalisation factors.
To combine some of the individual analyses made throughout this thesis, further work
might also consider spectral distributions of the individual contributions, which influence
the convection velocities.
To conclusively investigate the dependency of previously found results on the Reynolds
number, data from all simulation cases were compared for some selected analyses. In
the case of partitioned overall convection velocities, large structures were found to be
accelerated, while small structures decelerated with an increase in Reτ . This was argued
to be an effect of the in general faster convection velocities in combination with shifting
premultiplied energy peaks, for larger Reynolds numbers. Regarding the overall convection
velocity contributions, no significant Reynolds number effects which were not already
captured by the viscous scaling used were observed. Comparisons between the spectral
distributions of convection velocities and energy spectra were made for ranging values of
Reτ . Some Reynolds number effects could be seen at positions close to the channel wall.
Most of these were assumed to arise from outer-flow structures increasingly penetrating
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layers closer to the wall. Future investigations could evaluate this behaviour by considering
simple turbulent structures in an otherwise homogeneous flow.
Furthermore, future research could apply all averages concerning even more statistically
fully developed time steps, leading to higher statistical convergence. Additionally, spe-
cial statistical schemes could be used to distinguish between errors resulting from the
averaging setups and those originating from incorrectly implemented code. Simulations
with temperature-dependent material properties could be conducted to compare numerical
results with possible experimental data of turbulent heat transfer. In view of this, consid-
ering different thermal boundary conditions than the one used in this thesis might yield
additional information.

81





List of Figures

2.1. Plane channel flow configuration . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Mean streamwise velocity profile of a turbulent channel flow (Reτ = 180) . 10
2.3. Mean scalar profiles of a turbulent channel flow (Reτ = 180) . . . . . . . . . 11
2.4. Wall regions and layers in plane channel flow . . . . . . . . . . . . . . . . . 12
2.5. Convection velocities and isolines of the space-time auto-covariance . . . . . 15

4.1. Mean quantities in turbulent plane channel flow (case p180) . . . . . . . . . 28
4.2. Reynolds stress profiles (case p180) . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. One-point correlations of passive scalars (case p180) . . . . . . . . . . . . . 30
4.4. Shear stress contributions (case p180) . . . . . . . . . . . . . . . . . . . . . 31
4.5. Passive scalar flux contributions (case p180) . . . . . . . . . . . . . . . . . . 32
4.6. Streamwise auto-covariance profiles at x+

2 ≈ 180 (case p180) . . . . . . . . . 33
4.7. Spanwise auto-covariance profiles at x+

2 ≈ 180 (case p180) . . . . . . . . . . 35
4.8. Skewness distributions in turbulent plane channel flow (case p180) . . . . . 36
4.9. Flatness distributions in turbulent plane channel flow (case p180) . . . . . . 37
4.10. Streamwise one-dimensional energy spectra at x+

2 ≈ 5 (case p180) . . . . . . 38
4.11. Streamwise one-dimensional energy spectra at x+

2 ≈ 180 (case p180) . . . . 38
4.12. Spanwise one-dimensional energy spectra at x+

2 ≈ 5 (case p180) . . . . . . . 39
4.13. Spanwise one-dimensional energy spectra at x+

2 ≈ 180 (case p180) . . . . . 39
4.14. uc,u1 symmetry behaviour with respect to wall distance (case p180) . . . . . 40
4.15. uc,u1 symmetry behaviour with respect to wavenumber-space (case p180) . . 41
4.16. Transport equation analysis rms of the velocity field (case m500) . . . . . . 43
4.17. Transport equation analysis rms of the passive scalars (case m500) . . . . . 45
4.18. Normalised transport equation analysis rms of the velocity field (case m500) 47
4.19. Normalised transport equation analysis rms of the passive scalars (case m500) 49
4.20. Error terms of transport equation analysis of passive scalars . . . . . . . . . 50
4.21. Overall convection velocities (case m500) . . . . . . . . . . . . . . . . . . . . 52
4.22. Partitioned overall convection velocities of velocity structures (case m500) . 54
4.23. Partitioned overall convection velocities of scalar structures (case m500) . . 56
4.24. Overall convection velocity contributions of velocity structures (case m500) 58
4.25. Overall convection velocity contributions of scalar structures (case m500) . 60
4.26. Spectral distributions of uc,u1 (case m500) . . . . . . . . . . . . . . . . . . . 62
4.27. Spectral distributions of uc,u2 (case m500) . . . . . . . . . . . . . . . . . . . 63
4.28. Spectral distributions of uc,u3 (case m500) . . . . . . . . . . . . . . . . . . . 64
4.29. Spectral distributions of uc,θ with Pr = 0.025 (case m500) . . . . . . . . . . 66
4.30. Spectral distributions of uc,θ with Pr = 0.4 (case m500) . . . . . . . . . . . 67
4.31. Spectral distributions of uc,θ with Pr = 1 (case m500) . . . . . . . . . . . . 67
4.32. Comparison of overall convection velocities of scalar structures . . . . . . . 69
4.33. Comparison of Uc,ui contributions . . . . . . . . . . . . . . . . . . . . . . . . 71
4.34. Comparison of spectral distributions of uc,u1 at x+

2 ≈ 5 . . . . . . . . . . . . 72
4.35. Comparison of spectral distributions of uc,u2 at x+

2 ≈ 5 . . . . . . . . . . . . 73
4.36. Comparison of spectral distributions of uc,u3 at x+

2 ≈ 5 . . . . . . . . . . . . 74
4.37. Comparison of spectral distributions of uc,θ with Pr = 0.025 at x+

2 ≈ 5 . . . 76
4.38. Comparison of spectral distributions of uc,θ with Pr = 0.4 at x+

2 ≈ 5 . . . . 76

83



List of Figures

4.39. Comparison of spectral distributions of uc,θ with Pr = 1 at x+
2 ≈ 5 . . . . . 76

A.1. Simplified convection behaviour of turbulent structures . . . . . . . . . . . . 93
A.2. Near-wall behaviour of individual Equation 3.23 terms (smallest structures) 95
A.3. Dependence of Uc,θ on Pr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
B.4. Mean quantities in turbulent plane channel flow (case m180) . . . . . . . . 97
B.5. Mean quantities in turbulent plane channel flow (case m500) . . . . . . . . 98
B.6. Mean quantities in turbulent plane channel flow (case m1000) . . . . . . . . 99
B.7. Reynold stresses and one-point correlations of passive scalars (case m180) . 100
B.8. Reynold stresses and one-point correlations of passive scalars (case m500) . 101
B.9. Reynold stresses and one-point correlations of passive scalars (case m1000) 102
B.10.Shear stress and passive scalar flux contributions (case m180) . . . . . . . . 103
B.11.Shear stress and passive scalar flux contributions (case m500) . . . . . . . . 104
B.12.Shear stress and passive scalar flux contributions (case m1000) . . . . . . . 105
B.13.Streamwise auto-covariance profiles at x+

2 ≈ 180 (case m180) . . . . . . . . 106
B.14.Streamwise auto-covariance profiles at x+

2 ≈ 500 (case m500) . . . . . . . . 107
B.15.Streamwise auto-covariance profiles at x+

2 ≈ 1000 (case m1000) . . . . . . . 108
B.16.Spanwise auto-covariance profiles at x+

2 ≈ 180 (case m180) . . . . . . . . . . 109
B.17.Spanwise auto-covariance profiles at x+

2 ≈ 500 (case m500) . . . . . . . . . . 110
B.18.Spanwise auto-covariance profiles at x+

2 ≈ 1000 (case m1000) . . . . . . . . 111
B.19.Skewness distributions in turbulent plane channel flow (case m180) . . . . . 112
B.20.Skewness distributions in turbulent plane channel flow (case m500) . . . . . 113
B.21.Skewness distributions in turbulent plane channel flow (case m1000) . . . . 114
B.22.Flatness distributions in turbulent plane channel flow (case m180) . . . . . 115
B.23.Flatness distributions in turbulent plane channel flow (case m500) . . . . . 116
B.24.Flatness distributions in turbulent plane channel flow (case m1000) . . . . . 117
B.25.Streamwise one-dimensional energy spectra at x+

2 ≈ 5 (case m180) . . . . . 118
B.26.Streamwise one-dimensional energy spectra at x+

2 ≈ 180 (case m180) . . . . 118
B.27.Spanwise one-dimensional energy spectra at x+

2 ≈ 5 (case m180) . . . . . . 119
B.28.Spanwise one-dimensional energy spectra at x+

2 ≈ 180 (case m180) . . . . . 119
B.29.Streamwise one-dimensional energy spectra at x+

2 ≈ 5 (case m500) . . . . . 120
B.30.Streamwise one-dimensional energy spectra at x+

2 ≈ 500 (case m500) . . . . 120
B.31.Spanwise one-dimensional energy spectra at x+

2 ≈ 5 (case m500) . . . . . . 121
B.32.Spanwise one-dimensional energy spectra at x+

2 ≈ 500 (case m500) . . . . . 121
B.33.Streamwise one-dimensional energy spectra at x+

2 ≈ 5 (case m1000) . . . . . 122
B.34.Streamwise one-dimensional energy spectra at x+

2 ≈ 1000 (case m1000) . . . 122
B.35.Spanwise one-dimensional energy spectra at x+

2 ≈ 5 (case m1000) . . . . . . 123
B.36.Spanwise one-dimensional energy spectra at x+

2 ≈ 1000 (case m1000) . . . . 123
C.37.Transport equation analysis rms of the velocity field (case m180) . . . . . . 125
C.38.Transport equation analysis rms of passive scalars (case m180) . . . . . . . 126
C.39.Transport equation analysis rms of the velocity field (case m1000) . . . . . 127
C.40.Transport equation analysis rms of passive scalars (case m1000) . . . . . . 128
C.41.Normalised transport equation analysis rms of the velocity field (case m180)129
C.42.Normalised transport equation analysis rms of passive scalars (case m180) . 130
C.43.Normalised transport equation analysis rms of the velocity field (case m1000)131
C.44.Normalised transport equation analysis rms of passive scalars (case m1000) 132
D.45.uc,u1 symmetry behaviour with respect to wall distance . . . . . . . . . . . 133
D.46.uc,u2 symmetry behaviour with respect to wall distance . . . . . . . . . . . 134
D.47.uc,u3 symmetry behaviour with respect to wall distance . . . . . . . . . . . 135
D.48.uc,θ symmetry behaviour with respect to wall distance for small Pr . . . . . 136
D.49.uc,θ symmetry behaviour with respect to wall distance for medium Pr . . . 137
D.50.uc,θ symmetry behaviour with respect to wall distance for large Pr . . . . . 138

84



List of Figures

D.51.uc,u1 symmetry behaviour with respect to wavenumber-space . . . . . . . . 139
D.52.uc,u2 symmetry behaviour with respect to wavenumber-space . . . . . . . . 140
D.53.uc,u3 symmetry behaviour with respect to wavenumber-space . . . . . . . . 141
D.54.uc,θ symmetry behaviour with respect to wavenumber-space for small Pr . . 142
D.55.uc,θ symmetry behaviour with respect to wavenumber-space for medium Pr 143
D.56.uc,θ symmetry behaviour with respect to wavenumber-space for large Pr . . 144
D.57.Overall convection velocities (case m180) . . . . . . . . . . . . . . . . . . . . 145
D.58.Overall convection velocities (case m1000) . . . . . . . . . . . . . . . . . . . 146
D.59.Partitioned overall convection velocities of velocity structures (case m180) . 147
D.60.Partitioned overall convection velocities of scalar structures (case m180) . . 148
D.61.Partitioned overall convection velocities of velocity structures (case m1000) 149
D.62.Partitioned overall convection velocities of scalar structures (case m1000) . 150
D.63.Overall convection velocity contributions of velocity structures (case m180) 151
D.64.Overall convection velocity contributions of scalar structures (case m180) . 152
D.65.Overall convection velocity contributions of velocity structures (case m1000) 153
D.66.Overall convection velocity contributions of scalar structures (case m1000) . 154
D.67.Spectral distributions of uc,u1 (case m180) . . . . . . . . . . . . . . . . . . . 155
D.68.Spectral distributions of uc,u2 (case m180) . . . . . . . . . . . . . . . . . . . 155
D.69.Spectral distributions of uc,u3 (case m180) . . . . . . . . . . . . . . . . . . . 156
D.70.Spectral distributions of uc,θ with Pr = 0.025 (case m180) . . . . . . . . . . 156
D.71.Spectral distributions of uc,θ with Pr = 0.4 (case m180) . . . . . . . . . . . 157
D.72.Spectral distributions of uc,θ with Pr = 1 (case m180) . . . . . . . . . . . . 157
D.73.Spectral distributions of uc,u1 (case m1000) . . . . . . . . . . . . . . . . . . 158
D.74.Spectral distributions of uc,u2 (case m1000) . . . . . . . . . . . . . . . . . . 158
D.75.Spectral distributions of uc,u3 (case m1000) . . . . . . . . . . . . . . . . . . 159
D.76.Spectral distributions of uc,θ with Pr = 0.025 (case m1000) . . . . . . . . . 159
D.77.Spectral distributions of uc,θ with Pr = 0.4 (case m1000) . . . . . . . . . . 160
D.78.Spectral distributions of uc,θ with Pr = 1 (case m1000) . . . . . . . . . . . 160
E.79.Comparison of overall convection velocities of velocity structures . . . . . . 161
E.80.Comparison of Uc,θ contributions . . . . . . . . . . . . . . . . . . . . . . . . 162
E.81.Comparison of spectral distributions of uc,u1 in the log layer . . . . . . . . . 163
E.82.Comparison of spectral distributions of uc,u2 in the log layer . . . . . . . . . 163
E.83.Comparison of spectral distributions of uc,u3 in the log layer . . . . . . . . . 164
E.84.Comparison of spectral distributions of uc,θ with Pr = 0.025 in the log layer 164
E.85.Comparison of spectral distributions of uc,θ with Pr = 0.4 in the log layer . 165
E.86.Comparison of spectral distributions of uc,θ with Pr = 1 in the log layer . . 165

85





List of Tables

2.1. Defining properties of wall regions and layers in plane channel flow . . . . . 12

3.1. Simulation cases and variable parameters . . . . . . . . . . . . . . . . . . . 22

87





Bibliography

Abe, H., H. Kawamura, and Y. Matsuo (May 2004). Surface heat-flux fluctuations in a
turbulent channel flow up to Re=1020 with Pr=0.025 and 0.71. In: International Journal
of Heat and Fluid Flow 25, pp. 404–419. doi: 10.1016/j.ijheatfluidflow.2004.02.0
10.

Alcántara-Ávila, F. and S. Hoyas (Sept. 2021). Direct numerical simulation of thermal
channel flow for medium–high Prandtl numbers up to Re=2000. In: International Journal
of Heat and Mass Transfer 176, p. 121412. doi: 10.1016/j.ijheatmasstransfer.2021
.121412.

Aliabadi, A. A. (Oct. 2022). Turbulence. Cham, Switzerland: Springer. doi: 10.1007/978-
3-030-95411-6.

Atkinson, C., N. Buchmann, and J. Soria (Dec. 2015). An Experimental Investigation of
Turbulent Convection Velocities in a Turbulent Boundary Layer. In: Flow, Turbulence
and Combustion 94, pp. 79–95. doi: 10.1007/s10494-014-9582-0.

Choi, H. and P. Moin (Sept. 1990). On the Space-Time Characteristics of Wall-Pressure
Fluctuations. In: Physics of Fluids A 2, pp. 1450–1460. doi: 10.1063/1.857593.

Del Álamo, J. C. and J. Jiménez (Dec. 2009). Estimation of turbulent convection velocities
and corrections to Taylor’s approximation. In: Journal of Fluid Mechanics 640, pp. 5–26.
doi: 10.1017/S0022112009991029.

Durbin, P. A. and B. A. P. Reif (Aug. 2010). Statistical Theory and Modeling for Turbulent
Flows. Hoboken, United States of America: John Wiley & Sons, Ltd. doi: 10.1002/978
0470972076.

Ferziger, J. H., M. Perić, and R. L. Street (Aug. 2019). Computational Methods for Fluid
Dynamics. Cham, Switzerland: Springer. doi: 10.1007/978-3-319-99693-6.

Geng, C. et al. (Feb. 2015). Taylor’s hypothesis in turbulent channel flow considered using a
transport equation analysis. In: Physics of Fluids 27, p. 025111. doi: 10.1063/1.4908070.

Goldschmidt, V., M. Young, and E. Ott (Apr. 1981). Turbulent convective velocities
(broadband and wavenumber dependent) in a plane jet. In: Journal of Fluid Mechanics
105, pp. 327–345. doi: 10.1017/S0022112081003236.

Hetsroni, G. et al. (Oct. 2004). Convection Velocity of Temperature Fluctuations in a
Turbulent Flume. In: Journal of Heat Transfer 126, pp. 843–848. doi: 10.1115/1.1797
032.

Hilland, R. and A. Christen (Apr. 2024). A Systematic Investigation of the Applicability
of Taylor’s Hypothesis in an Idealized Surface Layer. In: Boundary-Layer Meteorology
190. doi: 10.1007/s10546-024-00861-1.

Hirsch, C. (June 2007). Numerical computation of internal and external flows. Amsterdam,
Netherlands: Elsevier. doi: 10.1016/B978-0-7506-6594-0.X5037-1.

Horiuti, K. (Apr. 1992). Assessment of two-equation models of turbulent passive-scalar
diffusion in channel flow. In: Journal of Fluid Mechanics 238, pp. 405–433. doi: 10.101
7/S0022112092001769.

Hussain, F. and R. Clark (Dec. 1980). Measurements of wavenumber-celerity spectrum in
plane and axisymmetric jets. In: AIAA Journal 19, pp. 51–55. doi: 10.2514/3.7747.

Jeon, S. et al. (Oct. 1999). Space-time characteristics of the wall shear-stress fluctuations
in a low-Reynolds-number channel flow. In: Physics of Fluids 11, pp. 3084–3094. doi:
10.1063/1.870166.

89

https://doi.org/10.1016/j.ijheatfluidflow.2004.02.010
https://doi.org/10.1016/j.ijheatfluidflow.2004.02.010
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121412
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121412
https://doi.org/10.1007/978-3-030-95411-6
https://doi.org/10.1007/978-3-030-95411-6
https://doi.org/10.1007/s10494-014-9582-0
https://doi.org/10.1063/1.857593
https://doi.org/10.1017/S0022112009991029
https://doi.org/10.1002/9780470972076
https://doi.org/10.1002/9780470972076
https://doi.org/10.1007/978-3-319-99693-6
https://doi.org/10.1063/1.4908070
https://doi.org/10.1017/S0022112081003236
https://doi.org/10.1115/1.1797032
https://doi.org/10.1115/1.1797032
https://doi.org/10.1007/s10546-024-00861-1
https://doi.org/10.1016/B978-0-7506-6594-0.X5037-1
https://doi.org/10.1017/S0022112092001769
https://doi.org/10.1017/S0022112092001769
https://doi.org/10.2514/3.7747
https://doi.org/10.1063/1.870166


Bibliography

Jiménez, J. and M. Simens (May 2001). The Largest Scales in Turbulent Flow: The
Structures of the Wall Layer. In: Berlin, Germany: Springer, pp. 39–57. doi: 10.1007/3
-540-44698-2_3.

Kader, B. (Sept. 1981). Temperature and concentration profiles in fully turbulent boundary
layers. In: International Journal of Heat and Mass Transfer 24, pp. 1541–1544. doi:
10.1016/0017-9310(81)90220-9.

Kawamura, H. et al. (Oct. 1998). DNS of Turbulent Heat Transfer in Channel Flow with
Low to Medium-High Prandtl Number Fluid. In: International Journal of Heat and
Fluid Flow 19, pp. 482–491. doi: 10.1016/S0142-727X(98)10026-7.

Khoo, B., Y. Chew, and C. Teo (Nov. 2001). Near-wall hot-wire measurements . Part
II: Turbulence time scale, convective velocity and spectra in the viscous sublayer. In:
Experiments in Fluids 31, pp. 494–505. doi: 10.1007/s003480100304.

Kim, J. and F. Hussain (Mar. 1993). Propagation velocity of perturbations in turbulent
channel flow. In: Physics of Fluids 5, pp. 695–706. doi: 10.1063/1.858653.

Kim, J. and P. Moin (May 1990). Transport Of Passive Scalars In A Turbulent Channel
Flow. In: Turbulent Shear Flows 6, pp. 85–96. doi: 10.1007/978-3-642-73948-4_9.

Kim, J., P. Moin, and R. Moser (May 1987). The Turbulence Statistics in Fully Developed
Channel Flow at Low Reynolds Number. In: Journal of Fluid Mechanics 177, pp. 133–166.
doi: 10.1017/S0022112087000892.

Kong, H., H. Choi, and J. Lee (Oct. 2000). Direct numerical simulation of turbulent thermal
boundary layers. In: Physics of Fluids 12, p. 2555. doi: 10.1063/1.1287912.

Kowalewski, T., A. Mosyak, and G. Hetsroni (May 2003). Tracking of Coherent Thermal
Structures on a Heated Wall. In: Experiments in Fluids 34, pp. 390–396. doi: 10.1007
/s00348-002-0574-9.

Lee, S., S. Lele, and P. Moin (Aug. 1992). Simulation of spatially evolving compressible
turbulence and the application of Taylors hypothesis. In: Physics of Fluids A Fluid
Dynamics 4, pp. 1521–1530. doi: 10.1063/1.858425.

Lele, S. K. (Nov. 1992). Compact finite difference schemes with spectral-like resolution. In:
Journal of Computational Physics 103, pp. 16–42. doi: 10.1016/0021-9991(92)90324-
R.

Lin, C. (Jan. 1953). On Taylor’s hypothesis and the acceleration terms in the Navier-Stokes
equations. In: Quarterly of Applied Mathematics 10, pp. 154–165. doi: 10.1142/978981
4415651_0011.

Liu, I.-S. (May 2002). Continuum Mechanics. Berlin, Germany: Springer. doi: 10.1007/9
78-3-662-05056-9.

Liu, T., T. Chen, and M. Miozzi (Dec. 2023). Correlation between skin friction and
enstrophy convection velocity in near-wall turbulence. In: European Journal of Mechanics
- B/Fluids 104, pp. 224–230. doi: 10.1016/j.euromechflu.2023.12.009.

Luchini, P. and M. Quadrio (June 2005). A low-cost parallel implementation of direct
numerical simulation of wall turbulence. In: Journal of Computational Physics 211,
pp. 551–571. doi: 10.1016/j.jcp.2005.06.003.

Moin, P. (Dec. 2009). Revisiting Taylor’s hypothesis. In: Journal of Fluid Mechanics 640,
pp. 1–4. doi: 10.1017/S0022112009992126.

Moser, R. D., J. Kim, and N. N. Mansour (Apr. 1999). Direct numerical simulation
of turbulent channel flow up to Re=590. In: Physics of Fluids 11, pp. 943–945. doi:
10.1063/1.869966.

Nitsche, W. and A. Brunn (Jan. 2006). Strömungsmesstechnik. Berlin, Germany: Springer.
doi: 10.1007/3-540-32487-9.

Ould-Rouiss, M., M. Bousbai, and A. Mazouz (May 2013). Large-Eddy simulation of
turbulent heat transfer in pipe flows with respect to Reynolds and Prandtl number
effects. In: Acta Mechanica 224, pp. 1133–1155. doi: 10.1007/s00707-012-0796-8.

90

https://doi.org/10.1007/3-540-44698-2_3
https://doi.org/10.1007/3-540-44698-2_3
https://doi.org/10.1016/0017-9310(81)90220-9
https://doi.org/10.1016/S0142-727X(98)10026-7
https://doi.org/10.1007/s003480100304
https://doi.org/10.1063/1.858653
https://doi.org/10.1007/978-3-642-73948-4_9
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1063/1.1287912
https://doi.org/10.1007/s00348-002-0574-9
https://doi.org/10.1007/s00348-002-0574-9
https://doi.org/10.1063/1.858425
https://doi.org/10.1016/0021-9991(92)90324-R
https://doi.org/10.1016/0021-9991(92)90324-R
https://doi.org/10.1142/9789814415651_0011
https://doi.org/10.1142/9789814415651_0011
https://doi.org/10.1007/978-3-662-05056-9
https://doi.org/10.1007/978-3-662-05056-9
https://doi.org/10.1016/j.euromechflu.2023.12.009
https://doi.org/10.1016/j.jcp.2005.06.003
https://doi.org/10.1017/S0022112009992126
https://doi.org/10.1063/1.869966
https://doi.org/10.1007/3-540-32487-9
https://doi.org/10.1007/s00707-012-0796-8


Bibliography

Piller, M. (Oct. 2005). Direct numerical simulation of turbulent forced convection in a
pipe. In: International Journal for Numerical Methods in Fluids 49, pp. 583–602. doi:
10.1002/fld.994.

Piomelli, U., J.-L. Balint, and J. Wallace (Mar. 1989). On the validity of Taylor’s hypothesis
for wall-bounded flows. In: Physics of Fluids 1, pp. 609–611. doi: 10.1063/1.857432.

Pirozzoli, S., M. Bernardini, and P. Orlandi (Feb. 2016). Passive scalars in turbulent
channel flow at high Reynolds number. In: Journal of Fluid Mechanics 788, pp. 614–639.
doi: 10.1017/jfm.2015.711.

Pope, S. B. (Aug. 2000). Turbulent Flows. Cambridge, United Kingdom: Cambridge
University Press. doi: 10.1017/CBO9781316179475.

Quadrio, M. and P. Luchini (Aug. 2003). Integral space–time scales in turbulent wall flows.
In: Physics of Fluids 15, pp. 2219–2227. doi: 10.1063/1.1586273.

Renard, N. and S. Deck (June 2015). On the scale-dependent turbulent convection velocity
in a spatially developing flat plate turbulent boundary layer at Reynolds number ReTheta
= 13 000. In: Journal of Fluid Mechanics 775, pp. 105–148. doi: 10.1017/jfm.2015.290.

Romano, G. (Jan. 1995). Analysis of two-point velocity measurements in near-wall flows.
In: Experiments in Fluids 20, pp. 68–83. doi: 10.1007/BF01061584.

Saha, S. et al. (Mar. 2014). Scaling properties of the equation for passive scalar transport
in wall-bounded turbulent flows. In: International Journal of Heat and Mass Transfer
70, pp. 779–792. doi: 10.1016/j.ijheatmasstransfer.2013.11.057.

Schlichting, H. and K. Gersten (May 2006). Grenzschicht-Theorie. Berlin, Germany:
Springer. doi: 10.1007/3-540-32985-4.

Spurk, J. and N. Aksel (Feb. 2019). Strömungslehre. Berlin, Germany: Springer. doi:
10.1007/978-3-662-58764-5.

Straub, S. et al. (Dec. 2019). The influence of thermal boundary conditions on turbulent
forced convection pipe flow at two Prandtl numbers. In: International Journal of Heat and
Mass Transfer 144, p. 118601. doi: 10.1016/j.ijheatmasstransfer.2019.118601.

Taylor, G. (Feb. 1938). The Spectrum of Turbulence. In: Proceedings of The Royal Society
A: Mathematical, Physical and Engineering Sciences 164, pp. 476–490. doi: 10.1098/rs
pa.1938.0032.

Wills, J. (Nov. 1964). On convection velocities in turbulent shear flows. In: Journal of
Fluid Mechanics 20, pp. 417–432. doi: 10.1017/S002211206400132X.

Zierep, J. and K. Bühler (Oct. 2023). Grundzüge der Strömungslehre. Berlin, Germany:
Springer. doi: 10.1007/978-3-658-42223-3.

91

https://doi.org/10.1002/fld.994
https://doi.org/10.1063/1.857432
https://doi.org/10.1017/jfm.2015.711
https://doi.org/10.1017/CBO9781316179475
https://doi.org/10.1063/1.1586273
https://doi.org/10.1017/jfm.2015.290
https://doi.org/10.1007/BF01061584
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.057
https://doi.org/10.1007/3-540-32985-4
https://doi.org/10.1007/978-3-662-58764-5
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118601
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1017/S002211206400132X
https://doi.org/10.1007/978-3-658-42223-3




Appendix

A. Additional examples and explanations

A.1. Historical convection velocity definitions

The historical convection velocity definitions u(2)
c,ϕ and u

(3)
c,ϕ carry some physical meaning.

For interpretation purposes, a simplified example is considered, depicted in Figure A.1. The
figure shows the space of the spatial (r1) and temporal (△t) separations, such as Figure 2.5,
divided into discrete intervals. The convection behaviour of a turbulent structure, starting
at r1 = 0 and △t = 0 is analysed. The considered structure is idealised as a superposition of
two modes. The blue mode moves fast through space and dissipates quickly in time, while
the orange mode has a slower velocity but is also long-lived. The dissipative characteristics
of each mode are visualised by their opacity. To keep the example as simple as possible,
the actual size of each mode is considered to remain unchanged.
The definitions u(2)

c,ϕ and u
(3)
c,ϕ construct convection velocities at points of maximum space-

time auto-covariance at either a constant spatial or a constant temporal separation,
respectively. By considering, for example, a constant temporal separation of △t = 4, the
orange mode with a spatial separation of r1 = 1 has the largest similarity to the original
structure and, therefore, the maximum space-time auto-covariance. However, when a
constant spatial separation of r1 = 1 is fixed, the blue mode with a temporal separation of
△t = 1 shows to be the most similar to the original structure. The convection velocity
defined by u(2)

c,ϕ would therefore more accurately depict the actual velocity of the blue mode,
while the definition u

(3)
c,ϕ rather belongs to the orange mode.

r1

△t0 1 2 3 4 5 6 7 8

0

1

2

3

4

Figure A.1.: Simplified convection behaviour of turbulent structures

Since the complexity of a real turbulent structure exceeds this example by far, it is obvious
that the historical convection velocity definitions cannot capture the whole behaviour of
turbulent phenomena. Choosing one definition over the other is always a trade-off between

93



5. Appendix

which characteristics should be reflected best by the convection velocity. Hussain and Clark
1980 mention, for example, u(2)

c,ϕ being the preferred definition for the study of aerodynamic
noise and other wave phenomena, since in these cases optimising the time scale has a higher
priority over optimising the length scale.

A.2. Wall-normal pressure gradient calculation

In the scope of this thesis, the pressure field p and the wall-normal pressure gradient field
∂x2p are calculated via individual Poisson solvers, rather than calculating the latter by taking
the wall-normal derivative of the former. The reason for this is numerical accuracy. When
considering Equation 3.23, where (the fluctuation of) the wall-normal pressure gradient is
needed, the individual terms of the quotients reach very small numerical values near the
channel walls. This behaviour is depicted in Figure A.2, where all terms (the denominator
of Equation 3.23 is shown separately) of the convection velocity implementations of the
smallest turbulent u2 structures are plotted over the wall distance. Note that the curves in
this figure do not show the quantities listed in its legends, but rather the corresponding
terms of Equation 3.23. The very small orders of magnitude depicted in Figure A.2 show
the need for high numerical accuracy because the error-prone terms would otherwise lead
to incorrectly calculated convection velocities. Since the compact finite difference scheme
used for numerical derivation in the wall-normal direction is not exact, its use should be
avoided when possible. However, its use is necessary when solving the Poisson equation,
but applying it again to calculate ∂x2p from p can be omitted by solving a Poisson equation
for the wall-normal pressure gradient itself. Note that the need for numerical accuracy
goes so far that the compact finite difference scheme used for solving the Poisson equation
needs to be implemented with great care. A satisfying solution is only reached by using the
continuity equation ∂x2u2 = −∂x1u1 − ∂x3u3 to eliminate all wall-normal derivatives within
products on the right-hand side (of the Poisson equation), and grouping the remaining
terms with respect to the order of their wall-normal derivatives, to avoid applying the
derivation matrices of the compact finite difference scheme more often than necessary. As
a result, the implemented Poisson equation for the wall-normal pressure gradient takes the
form:

∆ (∂x2p) = − 2∂x2

[
∂x1u1∂x1u1 + ∂x3u3∂x3u3 + ∂x1u1∂x3u3 + ∂x1u3∂x3u1

+ u1∂
2
x1x1u1 + u1∂

2
x1x3u3 + u3∂

2
x1x3u1 + u3∂

2
x3x3u3

]
(5.1)

− 2∂2
x2x2

[
u1∂x1u2 + u3∂x3u2

]
.

94



A. Additional examples and explanations

100 4× 100

x+
2

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

u
c
,u

2
im

p
le

m
en

ta
ti

on
te

rm
s

×10−12
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(a) Near-wall behaviour for case p180
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(b) Near-wall behaviour for case m180
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(c) Near-wall behaviour for case m500
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(d) Near-wall behaviour for case m1000

Figure A.2.: Near-wall behaviour of individual Equation 3.23 terms (smallest structures)
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A.3. Overall convection velocity scaling for passive scalar structures

Hetsroni et al. 2004 investigated the overall convection velocities of passive scalar structures
in a turbulent boundary layer at Reτ = 171. In agreement with this thesis, they found that
Uc,θ becomes constant near the wall, while this constant value decreases with an increase
in the Prandtl number. They analysed passive scalars with Pr ∈ {1, 5.4, 54} and found
a possible dependence of the corresponding overall convection velocities on the Prandtl
number. In close vicinity to the wall, where the overall convection velocities are constant,
their data could be expressed (approximately) by the relationship

Uc,θ = Uc,u1

Pr
1
3

, (5.2)

with the overall convection velocity of streamwise velocity structures Uc,u1 . To investigate
whether Equation 5.2 holds for lower values of Pr, which are considered in this work,
Figure A.3 is depicted. The figure shows the relationship between a quotient of the
respective overall convection velocities at x+

2 < 2 and the Prandtl number. In addition to
the results of Hetsroni et al. 2004, data from m180, m500, and m1000 are shown.
As is evident from Figure A.3, the values of the lower Prandtl number scalars do not follow
the proposed trend. For all the cases considered, Uc,θ/Uc,u1 deviates from 1/Pr

1
3 towards

smaller values. This behaviour seems to be amplified for smaller Reynolds numbers. For
the overall convection velocities of passive scalar structures at Prandtl numbers smaller
than unity, the relationship

Uc,θ = Uc,u1

Pr
1

29Re
0.19
τ

(5.3)

might be a better fit. The corresponding lines of Equation 5.2 and Equation 5.3 are also
shown in Figure A.3. The general reason for the trend change at Pr = 1 could lie in the
ratio between the sizes of the viscous and molecular sublayers. Although the molecular
sublayer is fully contained within the viscous sublayer for Pr > 1, the opposite is the case
for smaller Prandtl numbers. Therefore, the influence of passive scalar structures from the
outer flow suddenly becomes more dominant for Pr < 1.
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Reτ ≈ 180
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Figure A.3.: Dependence of Uc,θ on Pr (Partially adapted from Hetsroni et al. 2004)
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B. Additional standard turbulence statistics

B.1. Mean fields
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(a) Mean velocity profiles (reference: Abe et al. 2004)

100 101 102

x+
2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

〈θ
〉+ (t
,x

1
,x

3
)

Pr x+
2

log-law

Pr = 0.025

Pr = 0.4

Pr = 1.0

Kawamura

(b) Mean scalar profiles (reference: Kawamura et al. 1998)

Figure B.4.: Mean quantities in turbulent plane channel flow (case m180)
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Alcántara-Ávila and Hoyas

(a) Mean velocity profiles (reference: Alcántara-Ávila and Hoyas 2021)
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Figure B.5.: Mean quantities in turbulent plane channel flow (case m500)
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Figure B.6.: Mean quantities in turbulent plane channel flow (case m1000)
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B.2. Reynolds stress and scalar correlation

0
2
5

5
0

75
10

0
125

150
175

x
+2

0 2 4 6
〈u′iu′j〉+(t,x1,x3)

〈u
′1 u
′1 〉

+(t,x
1
,x

3
)

〈u
′2 u
′2 〉

+(t,x
1
,x

3
)

〈u
′3 u
′3 〉

+(t,x
1
,x

3
)

〈u
′1 u
′2 〉

+(t,x
1
,x

3
)

〈u
′1 u
′3 〉

+(t,x
1
,x

3
)

〈u
′2 u
′3 〉

+(t,x
1
,x

3
)

A
b

e
et

al.

(a)
R

eynolds
stress

profiles
(reference:

A
be

et
al.2004)

0
2
5

50
75

100
125

1
50

1
75

x
+2

−
0.05

0.00

0.05

0.10

〈φ′ψ′〉+(t,x1,x3)

〈θ ′θ ′〉
+(t,x

1
,x

3
)

〈θ ′u
′1 〉

+(t,x
1
,x

3
)

〈θ ′u
′2 〉

+(t,x
1
,x

3
)

〈θ ′u
′3 〉

+(t,x
1
,x

3
)

(b)
C

orrelations
ofpassive

scalar
w

ith
P
r

=
0.025

0
2
5

50
75

1
00

1
25

150
175

x
+2

0 1 2 3

〈φ′ψ′〉+(t,x1,x3)

〈θ ′θ ′〉
+(t,x

1
,x

3
)

〈θ ′u
′1 〉

+(t,x
1
,x

3
)

〈θ ′u
′2 〉

+(t,x
1
,x

3
)

〈θ ′u
′3 〉

+(t,x
1
,x

3
)

(c)
C

orrelations
ofpassive

scalar
w

ith
P
r

=
0
.4

0
2
5

5
0

75
10

0
125

150
1
75

x
+2

0 2 4 6 8

〈φ′ψ′〉+(t,x1,x3)

〈θ ′θ ′〉
+(t,x

1
,x

3
)

〈θ ′u
′1 〉

+(t,x
1
,x

3
)

〈θ ′u
′2 〉

+(t,x
1
,x

3
)

〈θ ′u
′3 〉

+(t,x
1
,x

3
)

(d)
C

orrelations
ofpassive

scalar
w

ith
P
r

=
1

Figure
B

.7.:R
eynold

stresses
and

one-point
correlations

ofpassive
scalars

(case
m

180)

100



B. Additional standard turbulence statistics

0
10

0
20

0
30

0
40

0

x
+ 2

02468

〈u′iu′j〉+(t,x
1,x3)

〈u
′ 1
u
′ 1
〉+ (t
,x

1
,x

3
)

〈u
′ 2
u
′ 2
〉+ (t
,x

1
,x

3
)

〈u
′ 3
u
′ 3
〉+ (t
,x

1
,x

3
)

〈u
′ 1
u
′ 2
〉+ (t
,x

1
,x

3
)

〈u
′ 1
u
′ 3
〉+ (t
,x

1
,x

3
)

〈u
′ 2
u
′ 3
〉+ (t
,x

1
,x

3
)

A
lc

án
ta

ra
-Á
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B.3. Shear stress and scalar flux
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B.4. Streamwise auto-covariance
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(a) Auto-covariance of velocity components (reference: Moser et al. 1999)
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Figure B.13.: Streamwise auto-covariance profiles at x+
2 ≈ 180 (case m180)
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(a) Auto-covariance of velocity components (reference: Moser et al. 1999)
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Figure B.14.: Streamwise auto-covariance profiles at x+
2 ≈ 500 (case m500)
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Figure B.15.: Streamwise auto-covariance profiles at x+
2 ≈ 1000 (case m1000)
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B.5. Spanwise auto-covariance
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(a) Auto-covariance of velocity components (reference: Moser et al. 1999)
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Figure B.16.: Spanwise auto-covariance profiles at x+
2 ≈ 180 (case m180)
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(a) Auto-covariance of velocity components (reference: Moser et al. 1999)
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Figure B.17.: Spanwise auto-covariance profiles at x+
2 ≈ 500 (case m500)
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Figure B.18.: Spanwise auto-covariance profiles at x+
2 ≈ 1000 (case m1000)
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B.6. Skewness
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(a) Skewness of velocity components (reference: Moser et al. 1999)
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Figure B.19.: Skewness distributions in turbulent plane channel flow (case m180)
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(a) Skewness of velocity components (reference: Moser et al. 1999)
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Figure B.20.: Skewness distributions in turbulent plane channel flow (case m500)
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Figure B.21.: Skewness distributions in turbulent plane channel flow (case m1000)
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B.7. Flatness
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(a) Flatness of velocity components (reference: Moser et al. 1999)
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Figure B.22.: Flatness distributions in turbulent plane channel flow (case m180)
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(a) Flatness of velocity components (reference: Moser et al. 1999)
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Figure B.23.: Flatness distributions in turbulent plane channel flow (case m500)
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Figure B.24.: Flatness distributions in turbulent plane channel flow (case m1000)
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B.8. One-dimensional energy spectra
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(a) Spectra of velocity components
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Figure B.25.: Streamwise one-dimensional energy spectra at x+
2 ≈ 5 (case m180, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.26.: Streamwise one-dimensional energy spectra at x+
2 ≈ 180 (case m180, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components

100 101 102

k3

10−11

10−9

10−7

10−5

10−3

10−1

E
+ θ
θ

Pr = 0.025

Pr = 0.4

Pr = 1.0

(b) Spectra of passive scalars

Figure B.27.: Spanwise one-dimensional energy spectra at x+
2 ≈ 5 (case m180, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.28.: Spanwise one-dimensional energy spectra at x+
2 ≈ 180 (case m180, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.29.: Streamwise one-dimensional energy spectra at x+
2 ≈ 5 (case m500, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.30.: Streamwise one-dimensional energy spectra at x+
2 ≈ 500 (case m500, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.31.: Spanwise one-dimensional energy spectra at x+
2 ≈ 5 (case m500, velocity

reference: Moser et al. 1999)
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(a) Spectra of velocity components
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Figure B.32.: Spanwise one-dimensional energy spectra at x+
2 ≈ 500 (case m500, velocity

reference: Moser et al. 1999)
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Figure B.33.: Streamwise one-dimensional energy spectra at x+
2 ≈ 5 (case m1000)
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Figure B.34.: Streamwise one-dimensional energy spectra at x+
2 ≈ 1000 (case m1000)
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Figure B.35.: Spanwise one-dimensional energy spectra at x+
2 ≈ 5 (case m1000)
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Figure B.36.: Spanwise one-dimensional energy spectra at x+
2 ≈ 1000 (case m1000)
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C. Additional transport equation analyses

C.1. Root-mean-square distributions
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(a) Transport equation analysis of the streamwise velocity component
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(b) Transport equation analysis of the wall-normal velocity component
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(c) Transport equation analysis of the spanwise velocity component

Figure C.37.: Transport equation analysis rms of the velocity field (case m180) 125
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(a) Scalar transport equation analysis with Pr = 0.025
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(b) Scalar transport equation analysis with Pr = 0.4
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(c) Scalar transport equation analysis with Pr = 1

Figure C.38.: Transport equation analysis rms of passive scalars (case m180)
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(b) Transport equation analysis of the wall-normal velocity component
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Figure C.39.: Transport equation analysis rms of the velocity field (case m1000)
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Figure C.40.: Transport equation analysis rms of passive scalars (case m1000)
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C.2. Normalised root-mean-square distributions
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(a) Normalised transport equation analysis of the streamwise velocity component
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(b) Normalised transport equation analysis of the wall-normal velocity component
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Figure C.41.: Normalised transport equation analysis rms of the velocity field (case m180)
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(a) Normalised scalar transport equation analysis with Pr = 0.025
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(b) Normalised scalar transport equation analysis with Pr = 0.4
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Figure C.42.: Normalised transport equation analysis rms of passive scalars (case m180)
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(a) Normalised transport equation analysis of the streamwise velocity component
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(b) Normalised transport equation analysis of the wall-normal velocity component
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(c) Normalised transport equation analysis of the spanwise velocity component

Figure C.43.: Normalised transport equation analysis rms of the velocity field (case m1000)
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(b) Normalised scalar transport equation analysis with Pr = 0.4
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(c) Normalised scalar transport equation analysis with Pr = 1

Figure C.44.: Normalised transport equation analysis rms of passive scalars (case m1000)
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D. Additional convection velocity statistics

D. Additional convection velocity statistics

D.1. Wall distance symmetry
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D. Additional convection velocity statistics

0
.0

0
0
.2

5
0
.5

0
0.

7
5

1.
00

1.
25

1.
50

1.
75

2.
00

x
2
/
h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,u3/Ub

k
1

=
9.

0
,
k

3
=

18
.0

k
1

=
20

.0
,
k

3
=

40
.0

k
1

=
39

.0
,
k

3
=

90
.0

(a
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

p1
80

0.
00

0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1
.5

0
1
.7

5
2
.0

0

x
2
/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,u3/Ub

k
1

=
9.

0
,
k

3
=

18
.0

k
1

=
22

.0
,
k

3
=

40
.0

k
1

=
39

.0
,
k

3
=

90
.0

(b
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
18

0

0
.0

0
0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1.

50
1.

75
2.

00

x
2
/h

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

uc,u3/Ub

k
1

=
49

.0
,
k

3
=

98
.0

k
1

=
62

.0
,
k

3
=

12
0.

0

k
1

=
79

.0
,
k

3
=

25
0.

0

(c
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
50

0

0.
00

0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1
.5

0
1
.7

5
2
.0

0

x
2
/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,u3/Ub

k
1

=
11

3.
0
,
k

3
=

22
6.

0

k
1

=
12

6.
0
,
k

3
=

24
8.

0

k
1

=
14

3.
0
,
k

3
=

50
6.

0

(d
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
10

00

Fi
gu

re
D

.4
7.

:u
c,
u

3
sy

m
m

et
ry

be
ha

vi
ou

r
w

ith
re

sp
ec

t
to

w
al

ld
ist

an
ce

135



5. Appendix

0
.00

0.2
5

0
.5

0
0.75

1.00
1
.25

1.50
1.75

2.00

x
2 /
h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
9
.0
,
k

3
=

18.0

k
1

=
2
0.0
,
k

3
=

40
.0

k
1

=
3
9.0
,
k

3
=

90
.0

(a)
Sym

m
etry

behaviour
for

case
p180

0.00
0.25

0
.50

0
.75

1.0
0

1.2
5

1.50
1.75

2
.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
9.0
,
k

3
=

18.0

k
1

=
22.0

,
k

3
=

40.0

k
1

=
39.0

,
k

3
=

90.0

(b)
Sym

m
etry

behaviour
for

case
m

180

0
.00

0.25
0
.5

0
0
.75

1.0
0

1.2
5

1.50
1.75

2.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
49.0

,
k

3
=

98.0

k
1

=
62.0

,
k

3
=

120
.0

k
1

=
79.0

,
k

3
=

250
.0

(c)
Sym

m
etry

behaviour
for

case
m

500

0.00
0.25

0
.50

0
.75

1.0
0

1.2
5

1.50
1.75

2
.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
113

.0
,
k

3
=

226
.0

k
1

=
126

.0
,
k

3
=

248
.0

k
1

=
143

.0
,
k

3
=

506
.0

(d)
Sym

m
etry

behaviour
for

case
m

1000

Figure
D

.48.:
u

c,θ
sym

m
etry

behaviour
w

ith
respect

to
w

alldistance
for

sm
all

P
r

136



D. Additional convection velocity statistics

0
.0

0
0
.2

5
0
.5

0
0.

7
5

1.
00

1.
25

1.
50

1.
75

2.
00

x
2
/
h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,θ/Ub

k
1

=
9.

0
,
k

3
=

18
.0

k
1

=
20

.0
,
k

3
=

40
.0

k
1

=
39

.0
,
k

3
=

90
.0

(a
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

p1
80

0.
00

0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1
.5

0
1
.7

5
2
.0

0

x
2
/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,θ/Ub

k
1

=
9.

0
,
k

3
=

18
.0

k
1

=
22

.0
,
k

3
=

40
.0

k
1

=
39

.0
,
k

3
=

90
.0

(b
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
18

0

0
.0

0
0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1.

50
1.

75
2.

00

x
2
/h

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

uc,θ/Ub

k
1

=
49

.0
,
k

3
=

98
.0

k
1

=
62

.0
,
k

3
=

12
0.

0

k
1

=
79

.0
,
k

3
=

25
0.

0

(c
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
50

0

0.
00

0
.2

5
0
.5

0
0.

7
5

1
.0

0
1.

25
1
.5

0
1
.7

5
2
.0

0

x
2
/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

uc,θ/Ub

k
1

=
11

3.
0
,
k

3
=

22
6.

0

k
1

=
12

6.
0
,
k

3
=

24
8.

0

k
1

=
14

3.
0
,
k

3
=

50
6.

0

(d
)

Sy
m

m
et

ry
be

ha
vi

ou
r

fo
r

ca
se

m
10

00

Fi
gu

re
D

.4
9.

:u
c,
θ

sy
m

m
et

ry
be

ha
vi

ou
r

w
ith

re
sp

ec
t

to
w

al
ld

ist
an

ce
fo

r
m

ed
iu

m
P
r

137



5. Appendix

0
.00

0.2
5

0
.5

0
0.75

1.00
1
.25

1.50
1.75

2.00

x
2 /
h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
9
.0
,
k

3
=

18.0

k
1

=
2
0.0
,
k

3
=

40
.0

k
1

=
3
9.0
,
k

3
=

90
.0

(a)
Sym

m
etry

behaviour
for

case
p180

0.00
0.25

0
.50

0
.75

1.0
0

1.2
5

1.50
1.75

2
.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
9.0
,
k

3
=

18.0

k
1

=
22.0

,
k

3
=

40.0

k
1

=
39.0

,
k

3
=

90.0

(b)
Sym

m
etry

behaviour
for

case
m

180

0
.00

0.25
0
.5

0
0
.75

1.0
0

1.2
5

1.50
1.75

2.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
49.0

,
k

3
=

98.0

k
1

=
62.0

,
k

3
=

120
.0

k
1

=
79.0

,
k

3
=

250
.0

(c)
Sym

m
etry

behaviour
for

case
m

500

0.00
0.25

0
.50

0
.75

1.0
0

1.2
5

1.50
1.75

2
.00

x
2 /h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

uc,θ/Ub

k
1

=
113

.0
,
k

3
=

226
.0

k
1

=
126

.0
,
k

3
=

248
.0

k
1

=
143

.0
,
k

3
=

506
.0

(d)
Sym

m
etry

behaviour
for

case
m

1000

Figure
D

.50.:
u

c,θ
sym

m
etry

behaviour
w

ith
respect

to
w

alldistance
for

large
P
r

138



D. Additional convection velocity statistics

D.2. Wavenumber-space symmetry
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D. Additional convection velocity statistics

D.3. Overall convection velocities
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(a) Overall convection velocities of velocity structures
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Figure D.57.: Overall convection velocities (case m180)
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Figure D.58.: Overall convection velocities (case m1000)

146



D. Additional convection velocity statistics

D.4. Partitioned overall convection velocities
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(a) Partitioned overall convection velocities of streamwise velocity structures
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(c) Partitioned overall convection velocities of spanwise velocity structures

Figure D.59.: Partitioned overall convection velocities of velocity structures (case m180,
cut-off at (λ1, λ3) = (h, h/4))
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(a) Partitioned overall convection velocities with Pr = 0.025
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(c) Partitioned overall convection velocities with Pr = 1

Figure D.60.: Partitioned overall convection velocities of scalar structures (case m180,
cut-off at (λ1, λ3) = (h, h/4))
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(a) Partitioned overall convection velocities of streamwise velocity structures
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Figure D.61.: Partitioned overall convection velocities of velocity structures (case m1000,
cut-off at (λ1, λ3) = (h/2, h/8))
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(a) Partitioned overall convection velocities with Pr = 0.025
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Figure D.62.: Partitioned overall convection velocities of scalar structures (case m1000,
cut-off at (λ1, λ3) = (h/2, h/8))

150



D. Additional convection velocity statistics

D.5. Convection velocity contributions
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Figure D.63.: Overall convection velocity contributions of velocity structures (case m180)
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Figure D.64.: Overall convection velocity contributions of scalar structures (case m180)
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Figure D.65.: Overall convection velocity contributions of velocity structures (case m1000)
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Figure D.66.: Overall convection velocity contributions of scalar structures (case m1000)
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D.6. Spectral distributions
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Figure D.67.: Spectral distributions of uc,u1 (case m180)
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Figure D.68.: Spectral distributions of uc,u2 (case m180)
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Figure D.69.: Spectral distributions of uc,u3 (case m180)
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Figure D.70.: Spectral distributions of uc,θ with Pr = 0.025 (case m180)
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Figure D.71.: Spectral distributions of uc,θ with Pr = 0.4 (case m180)
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Figure D.72.: Spectral distributions of uc,θ with Pr = 1 (case m180)
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Figure D.73.: Spectral distributions of uc,u1 (case m1000)
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Figure D.74.: Spectral distributions of uc,u2 (case m1000)
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Figure D.75.: Spectral distributions of uc,u3 (case m1000)
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Figure D.76.: Spectral distributions of uc,θ with Pr = 0.025 (case m1000)
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Figure D.77.: Spectral distributions of uc,θ with Pr = 0.4 (case m1000)
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Figure D.78.: Spectral distributions of uc,θ with Pr = 1 (case m1000)
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E. Additional Reynolds number dependencies

E.1. Partitioned overall convection velocity comparisons
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Figure E.79.: Comparison of overall convection velocities of velocity structures
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E.2. Convection velocity contributions comparison
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Figure E.80.: Comparison of Uc,θ contributions
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E.3. Spectral distributions comparison
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Figure E.81.: Comparison of spectral distributions of uc,u1 in the log layer
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Figure E.82.: Comparison of spectral distributions of uc,u2 in the log layer
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Figure E.83.: Comparison of spectral distributions of uc,u3 in the log layer
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Figure E.84.: Comparison of spectral distributions of uc,θ with Pr = 0.025 in the log layer
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Figure E.85.: Comparison of spectral distributions of uc,θ with Pr = 0.4 in the log layer
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Figure E.86.: Comparison of spectral distributions of uc,θ with Pr = 1 in the log layer
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