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Abstract
Models based on the coupling of phase-field methods with fluid dynamics are commonly used to
simulate flow in complex geometries or in conjunction with phase transformation. Thereby, dif-
fuse interfaces between fluid and solid are used, which requires the corresponding diffusive applic-
ation of the boundary conditions with regard to the flow. While different approaches to achieving
this are found in literature, a quantitative comparison of these methods is still missing. The present
work aims to establish benchmarks addressing the diffuse fluid–solid transition for interfaces with
and without wall velocity. Furthermore, different models from literature are revisited and compar-
atively discussed in detail. Using the defined benchmark cases, a quantitative assessment of these
models is performed to investigate their accuracy for varying interface widths and different phase-
field profiles. The results show that the best choice of the diffuse model is problem-dependent.

1. Introduction

Diffuse interface approaches, such as the phase-field method, can be used for geometry parametrisa-
tion of complex domains, which are embedded in a larger domain exhibiting a simple geometry, e.g. a
cuboid. This enables large flexibility regarding the numerical discretisation and avoids the necessity of
body-fitted meshes [58], as the surface is implicitly tracked by the phase-field variable. Furthermore, the
absence of a mesh adaptation due to moving surfaces eliminates the requirement for additional compu-
tational power, thus enhancing efficiency and facilitates large-scale simulations [14, 43, 59]. Moreover,
phase-field models can be thermodynamically derived from a free energy functional yielding a descrip-
tion of interfacial energies and interface dynamics [20, 24, 57]. Therefore, phase-field methods have been
applied in a wide range of materials science and engineering processes, demonstrating their versatil-
ity to study fuel cells [27, 36], drying processes of battery electrodes [60], additive manufacturing [19,
41] and martensitic growth [42, 55]. Furthermore, problems including different physically distinguish-
able domains can be addressed as e.g. for problems in fluid-structure interaction [6, 39, 44, 51], mul-
tiphase flow [1, 40, 50] including contact line dynamics [4, 31, 33, 47], or for tracking ferro-electric
domains [10, 22]. This includes problems in which certain governing equations are only defined in sub-
domains. As an example, in context of solidification, the computational domain to account for fluid flow
is restricted to liquid regions, while concentration evolution may be defined both in fluid and solid [5].
This finds application in investigating the influence of melt convection during solidification on the mor-
phology of the resulting material [13, 17] highlighting the relevance of such fluid–solid interactions
in material science. The use of diffuse interface approaches often requires the application of different
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boundary conditions (Dirichlet, Neumann, Robin) across the diffuse transition region between two dis-
tinct regions. Li et al [37] present a general framework to diffusively apply such boundary condition to
a partial differential equation (PDE), which is already used, for example, in the general context of bat-
tery intercalation systems [16]. This approach is based on a whole domain formulation derived from
the corresponding sharp interface problem as well as on the use of diffuse approximations for indic-
ator functions and the surface Dirac distribution. Thereby, a number of different diffuse approxima-
tions is presented in [37], and further higher-order approximations are introduced in [61]. Regarding
fluid–solid interfaces, this approach is adapted, e.g. by Aland et al [3] and Guo et al [25] to formulate
a diffuse domain Navier–Stokes model. Another method to treat diffuse fluid–solid interfaces is given
by Beckermann et al [5] which, in contrast to the aforementioned models, is derived using an ensemble
averaging method similarly to models for porous media cf, e.g., [2]. This procedure gives rise to a dis-
sipative fluid–solid interaction term, which is modelled by Beckermann et al [5] using a Darcy-type
approach and fitted to the Poiseuille flow.

The number of different models and approximations for diffuse fluid–solid interfaces raises the ques-
tion of their comparative accuracy. Since computational cost limits the affordable resolution for large-
scale simulation applications, arbitrarily small diffuse interfaces cannot be employed. Thus, the larger
the diffuse interfaces are, the more important the model accuracy becomes for finite interface widths.
Benchmark setups with a proper reference solution enable the accuracy of different models to be quan-
tified and help to evaluate errors that arise from diffuse approximations at certain interface widths. By
this, benchmarks do not only increase the reliability of results obtained by phase-field simulations, but
also provide information as to which model formulation is most beneficial in specific setups. A prom-
inent benchmark case regarding fluid–solid interactions is the flow past a cylinder at different Reynolds
numbers, which is used e.g. for benchmarking of immersed boundary methods [35] or mesh free solving
methods [12]. The work of Gautier et al [23] provides a reference solution for such a flow, which is also
employed in this work. Recently, benchmarks for various phase-field models were established e.g. with
regards to chemo-mechanics [32], triple junction dynamics [15], or the phase-field crystal method [48].
Furthermore, the bubble rise benchmark of Hysing et al [29] was adapted by Aland et al [3] to com-
pare different phase-field based two-phase flow models. Contributing to this effort of establishing bench-
marks to quantify the accuracy of different phase-field models, the present work aims to provide bench-
marks for diffuse fluid–solid interface modelling which are used to compare different model formula-
tions. While phase-field based models for fluid-structure interaction considering a (visco)-elastic solid
phase are available [39, 44], the present work addresses problems with rigid solids, where no momentum
equations are solved within the solid domain. Thereby, the present work includes studies for both well-
and obstacle-type potential profiles. So far, diffuse model formulations for the fluid–solid transition are
only used with well-type potential equilibrium profiles. Since the obstacle potential is very commonly
used, particularly for modelling solidification processes, see [18], it is also included here. Three bench-
mark cases are considered, including Poiseuille and Couette channel flows, a flow past a cylinder, using
the benchmark from [23], and a boundary layer flow with permeable and impermeable walls. Therefore,
a number of different relevant boundary conditions are investigated, including a fixed wall, a movable
wall and a permeable wall.

The paper is structured as follows. Firstly, the theory behind the different models is introduced,
starting with a derivation from the sharp interface formulation in section 2.1, followed by a detailed dis-
cussion of the diffuse interface approximations in section 2.2 and a general overview of the phase-field
method in sections 2.3 and 2.4. The results of applying the models in the benchmark examples con-
sidered are given in sections 3.1–3.3 for the channel flow, cylinder flow and boundary layer flow.

2. Mathematical formulation

2.1. Sharp interface and whole domain formulation
We consider problems within a computational domain Ω= Ωf ∪Ωs, which comprises the domains Ωf(t)
and Ωs(t) taken by fluid and solid, respectively (see figure 1). Thereby, the subdomains may change over
time t, while the total domain Ω is considered to be constant over time. Furthermore, the fluid solid
interface Γfs is given as Γfs(t) = ∂Ωf ∩ ∂Ωs. Assuming an incompressible flow of a Newtonian fluid with
homogeneous dynamic viscosity µ, the governing Navier–Stokes system may be written as

ρu̇=−∇p+ ρf b +µ∆u, x ∈ Ωf, (1a)

∇· u= 0, x ∈ Ωf. (1b)
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Figure 1. Sketch of the computational domainΩ= Ωf ∪Ωs, the considered subdomains and the corresponding fluid solid inter-
face Γfs = ∂Ωf ∩ ∂Ωs. The outward-pointing normal vector of the fluid domain is denoted as n.

Here, ρ denotes the mass density, u the velocity field, p the pressure and f b a body force, e.g. gravity.
This system of PDEs contains the Navier–Stokes equation (1a) which is yielded by inserting the linear
viscous constitutive law σ =−p1+µ

(
∇u+∇u⊤

)
for the Cauchy stress σ into the local momentum

balance. Thereby, 1 denotes the unit tensor and (·)⊤ a transposition. Furthermore, due to incompress-
ibility, the mass balance reduces to the continuity equation (1b) as a second PDE in the system (1). It
is also noted that due to continuity, ρu̇= ∂t(ρu)+∇· (ρu⊗ u) holds. The present work focuses on the
treatment of the no-slip boundary condition

∀ x ∈ Γfs : u(x, t) = uw (x, t) , (2)

which must be applied to the fluid–solid interface Γfs, with uw denoting the velocity of the solid wall.
Using the indicator function

I =

{
1 x ∈ Ωf

0 otherwise
, (3)

the boundary value problem consisting of (1) and (2) can be transformed to a whole domain formu-
lation, which applies to x ∈ Ω. Following the ansatz from Li et al [37], the whole domain formulation
reads

Iρu̇=−I∇p+ Iρf b +∇· (Iµ∇u)+ (u− uw)∇· (µ∇I) , x ∈ Ω, (4a)

0= I∇· u+(u− uw) ·∇I, x ∈ Ω, (4b)

and contains both the field equations and boundary conditions. The corresponding derivation is shown
in appendix. Note that the gradient ∇I of the indicator function is given by the outward-pointing nor-
mal n of the fluid domain and the surface Dirac distribution δfs via

∇I (x, t) =−δfs (x, t) n (x, t) . (5)

Some of the terms in equation system (4) can be reformulated. Exploiting I∇· u=∇· (Iu)− u ·∇I, the
whole domain continuity equation becomes

0=∇· (Iu)+ δfsuw · n. (6)

An alternative formulation of the right-hand side of equation (4a) is given by

Iρu̇=−I∇p+ Iρf b +∇· [µ∇(Iu)]−µ(∇u)∇I− uw∇· (µ∇I) , (7)

as shown in appendix A.2.2. Additionally, the term Iρu̇ can be reformulated to

∂ (Iρu)

∂t
+∇· (Iρu⊗ u) , (8)

in absence of phase-transformation or molecular diffusion between solid and fluid, and thus, İ =
∂tI+ u ·∇I = 0, cf appendix A.2.1. This is the case, if either the dividing surface between the fluid and
solid domains is transported with the boundary velocity uw, if the wall velocity is purely tangential
uw · n = 0, or if the interface does not move with the wall velocity, e.g. by applying boundary conditions
which mimic uniform blowing or suction.

3
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2.2. Diffuse interface model
Based on the whole domain formulation introduced in section 2.1, a diffuse interface model is derived.
To this end, the phase-field tuple ϕ= {ϕ1, . . . ,ϕN} is introduced for a number of N phases, where for
each phase α, the phase variable ϕα(x, t) is defined. Similar to the indicator function, a phase variable
defines whether the point x is associated to phase α, at a certain time t. However, instead of sharply
jumping from 0 to 1, at the interface between two phases, the phase variable exhibits a smooth trans-
ition over a finite region of width δd, which is called the diffuse interface. Within this diffuse interface,
a mixture of phases occurs, and ϕα can be seen as local volume fraction of phase α. The phase variables
are subjected to the summation constraint

∀ x ∈ Ω, t⩾ 0 :
N∑

α=1

ϕα (x, t) = 1. (9)

Furthermore, the bulk region of phase α is defined as

Ωϕα=1 (t) = {x ∈ Ω : ϕα (x, t) = 1} , (10)

and its region of occurrence as

Ωϕα>0 (t) = {x ∈ Ω : ϕα (x, t)> 0} . (11)

Furthermore, the diffuse interface between the phases α and β ̸= α is

Γd
αβ (t) = Ωϕα>0 ∩Ωϕβ>0. (12)

Note that problems consisting of multiple fluid and solid phases can be considered as pseudo-two-phase
problems of the total fluid phase ϕf and solid phase ϕs, which are the sum of all individual fluid and
solid phases, respectively (cf, e.g., [49]). In such a case, the interpolation of viscosity and density for the
fluid must exclude the solid phases. Thus, e.g. a linear interpolation scheme for the mixture fluid density
of N fluid fluid phases takes the form

ρfluid =
1

ϕf

Nfluid∑
α=1

ϕαρα, ϕf =

Nfluid∑
α=1

ϕα. (13)

This allows to consider multiphase problems by using a two-phase diffuse Navier–Stokes system in terms
of ϕf and ϕs = 1−ϕf without any restrictions. Therefore, for the sake of simplicity, the model equations
in this paper are written in the form of a two-phase problem, i.e. N = 2. Due to the summation con-
straint (9), only one phase variable is independent, and therefore, the abbreviation ϕ := ϕ1 is used for
the phase-field variable related to the fluid, while ϕ2 = 1−ϕ is associated with the solid.

Diffuse approximations of the whole domain equations. The straightforward way of retrieving a dif-
fuse interface formulation for the Navier–Stokes system is to use the whole domain formulation (4) and
replace the indicator function I and its gradient, and thus, the surface Dirac distribution, by suitable dif-
fuse approximations, depending on the phase field ϕ [62]. To this end, the approximations

I ≈ h (ϕ) and δΓ ≈ ∂h

∂ϕ
∥∇ϕ∥ (14)

can be used with a so-called interpolation function h [45]. However, the simplest choice is using h = ϕ
directly, as previously employed in other studies [37, 62]. In this work, such direct approximations for
equation (4a) or (7) are labelled as Li-type direct approximation (LDA) and Beckermann-type dir-
ect approximation (BDA), respectively. The interpolation function h requires to meet the conditions
h(0) = 0, h(1) = 1 and

´ 1
0 h(ϕ) dϕ = 1. A variety of options for this interpolation function are avail-

able and discussed, for example, in [26]. Higher-order polynomials like h = ϕ2(3− 2ϕ) steepen the
transition of h, compared to ϕ, in the vicinity of ϕ = 1/2 and flatten it on the outskirts of the diffuse
interface. Irrespective of the choice made for h, the diffuse approximation converges to the sharp inter-
face equation (4) in the limit of δd → 0. In this work, only h = ϕ is considered, since a steeper trans-
ition can also be achieved by applying smaller interface widths δd. Furthermore, restrictions regarding
steepness usually arise from the requirement to sufficiently resolve the transition with numerical discret-
isation [18]. Various other diffuse approximations of the viscous term M :=∇· (Iµ∇u)+ (u− uw)∇·

4
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(µ∇I) in the sharp interface problem with Dirichlet boundary conditions are given by Li et al [37,
equations (2.21)–(2.24)]. Their approximation 4 corresponds to LDA, and thus, directly uses I ≈ ϕ,
while their approximations 1 to 3 differ and are justified by showing that they converge in the sharp
interface limit δd → 0. Subsequently, they are briefly revised and discussed.

First Li-type approximation. The approximation 1 of Li et al [37], subsequently abbreviated as LA1,
yields the viscous term

M≈∇ · (ϕµ∇u)+µ(u− uw) β̃
(ϕ− 1)

ε3
, (15)

where the interface width parameter ε∝ δd and β̃ is a proportionality factor. The original approximation
from [37] is introduced for β̃ = 1, and thus, omitting the proportionality factor of the distribution func-
tion (ϕ− 1)/ε3. The generalisation of this approximation is introduced by Aland et al [3], where they
show that it converges to in the sharp interface limit for any choices of β̃ ∝ 1 or β̃ ∝ ε. While Aland
et al [3] still use the original distribution function (ϕ− 1)/ε3 with β̃ = 1, Guo et al [25] employ β̃ = ε,
and therefore, the distribution function (ϕ− 1)/ε2. In the present work, we stick to the original for-
mulation β̃ ∝ 1, since the other option β̃ ∝ ε leads to significantly larger error results, compared to the
original choice β̃ = 1 in the basic benchmark cases of Couette and Poiseuille flow. Writing equation (15)
in terms of the interface thickness definition from the present work yields

M≈∇ · (ϕµ∇u)+µ(u− uw)β
(ϕ− 1)

δ3d
. (16)

The work of Li et al [37] employs a tanh-profile (see equation (24)) for the phase field ϕ, and their
definition of the interface length parameter ε corresponds to ε= δd/2. Therefore, β = 8β̃ = 8 recovers
the approximation 1, as used in [3, 37]. For the sin-type phase-field profile additionally investigated in
this work, a pre-factor β = 5.0685 is used.

Second Li-type approximation. Furthermore, the approximation 2 from [37] is considered within this
work under the abbreviation LA2, for which the viscous term is approximated as

M≈∇ · (µ∇u)−µ(u− uw)
B(ϕ)

ε3
(17)

with B(ϕ)∝ ϕ2(1−ϕ)2 used as a distribution function. As shown in [37], the sharp interface limit is
reached for any constant proportionality factor. In this work, B(ϕ) = 30β̃ϕ2(1−ϕ)2 is chosen in order

to meet
´ 1
0 30ϕ

2(1−ϕ)2 dϕ = 1. Formulating it in terms of the present interface thickness definition δd,
This approximation yields

M≈∇ · (µ∇u)−µ(u− uw)
30βϕ2 (1−ϕ)

2

δ3d
. (18)

Beckermann-type approximation. Besides the approximations in [37], the diffuse model by Beckermann
et al [5] is a widely used diffuse interface approximation. It is originally derived based on the volume
averaging approach. However, as shown in this work, it can also be derived from the whole domain for-
mulation using equation (7) and the approximation I ≈ ϕ. As presented in section 2.1, this formulation
is analytically identical to equation (4a). Furthermore, Beckermann et al [5] introduce a model expres-
sion for the term µ(∇u)∇I, instead of directly evaluating it, which yields the approximation

µ(∇u)∇ϕ ≈ hfµ(u− uw)
1−ϕ

δd
∥∇ϕ∥, (19)

with the dimensionless friction coefficient hf. Subsequently, this is referred to as Beckermann friction
approximation (BFA). For more details, especially regarding the choice of hf, we refer to appendix A.2.
This approach yields the viscous term

M≈∇ · [µ∇(ϕu)]− hfµ(u− uw)
1−ϕ

δd
∥∇ϕ∥− uw∇· (µ∇ϕ) . (20)

It should be noted that Beckermann et al [5] derived their model for a wall velocity of zero uw = 0 and
that the slight extension to the more general case is introduced here for the first time.

5
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Table 1. Overview of the different diffuse interface models for the viscous termM. For a well-type tanh-profile, β= 8 and hf = 33.126
are employed, while for an obstacle-type sin-profile, β = 5.0685 and hf = 19.721 are chosen. Details on the fitted values of hf cf can be
found in appendix A.2.

Abbreviation Approximation of M (viscous and boundary term)

LDA ∇· (ϕµ∇u)+ (u− uw)∇· (µ∇ϕ)

LA1 ∇· (ϕµ∇u)−µ(u− uw)β(1−ϕ)

δ3d

LA2 ∇· (µ∇u)−µ(u− uw)
30βϕ2(1−ϕ)2

δ3d

BDA ∇· [µ∇(ϕu)]−µ(∇u)∇ϕ− uw∇· (µ∇ϕ)

BFA ∇· [µ∇(ϕu)]− hfµ(u− uw) 1−ϕ
δd

∥∇ϕ∥− uw∇· (µ∇ϕ)

Overview of the compared models. This section provides an overview of all the different diffuse model
formulations of the whole domain Navier–Stokes equation (4a) from the previous section. It can be
written as

Iρu̇=−I∇p+ Iρf b +M, (21)

with

M=∇· (Iµ∇u)+ (u− uw)∇· (µ∇I)

=∇· [µ∇(Iu)]−µ(∇u)∇I− uw∇· (µ∇I) , (22)

comprising the bulk and the boundary part of the viscous term from the whole domain Navier–Stokes
equation (4a). All diffuse models share the terms Iρu̇, −I∇p and Iρf b and approximate them by using
I ≈ ϕ. For M, the different approximations are summarised in table 1.

2.3. Phase-field profiles and interface width definition
In case of the phase-field method (PFM), which is only used for geometry parametrisation of a known
sharp interface Γ, the values of ϕ can directly be prescribed with the coordinate η in interface normal
direction, which is a signed distance function with respect to Γ, and defined as

η (x, t) = min
x ′∈Γ(t)

∥x− x ′∥. (23)

Any function ϕ(η) varying monotonically between 1 to 0 for −δd/2⩽ η ⩽ δd/2 can be chosen to pre-
scribe the phase-field profile. Alternatively, a PDE that describes the phase-field evolution must be con-
sidered giving rise to the phase-field variable ϕ, as discussed in section 2.4. For prescribing the course
of phase-field variables within the diffuse interface, different options are available. Two very common
phase-field profiles are given as

ϕt (η) =
1

2

[
1− tanh

(
6η

δd

)]
and ϕs (η) =

1

2

[
1− sin

(
πη

δd

)]
(24)

inside the diffuse interface Γd (see equation (12)), which is characterised by −δd/2⩽ η ⩽ δd/2. The cor-
responding normal gradients ∇ϕ · n = ∂ηϕ =−∥∇ϕ∥ can be expressed as

∇ϕt · n =−12

δd
ϕt
(
1−ϕt

)
and ∇ϕs · n =− π

δd

√
ϕs (1−ϕs). (25)

Both the profiles and the normal gradients are visualised in figure 2.
If the signed distance η(x, t) to the interface is known, the phase-field profile is set by the piecewise

definition

ϕ (x, t) =


1 η (x, t)⩽−δd/2
0 η (x, t)⩾ δd/2

ϕt/s (η) otherwise

. (26)

It is noted, that for the tanh-type profile, a cut-off definition is used, since ϕt only asymptotic-
ally approaches 1 and 0 for η→∓∞, respectively. In the present work, the cut-off is considered at
tanh(±3), and thus at the values ϕ− := ϕt(−δd/2)≈ 0.9975 and ϕ+ := ϕt(+δd/2)≈ 0.0025. Instead
of continuing the tanh-profile for |η|⩾ δd/2, the ϕ-values are directly set to the bulk values 1 and 0 in

6
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Figure 2. Equilibrium phase-field profiles for well and obstacle potential, according to equation (24), and the corresponding
normal gradients, according to equation (25), plotted over the interface normal coordinate η.

the numerical implementation giving rise to a small jump of ±0.0025. Different cut-off definitions are
employed in literature, e.g. tanh(±3/2) is used in [5], yielding a cut-off at ϕ− ≈ 0.953 and ϕ+ ≈ 0.047,
respectively. For the sin-type profile, no such cut-off is required, since a finite interface width of δd is
naturally obtained.

2.4. Phase-field potential and equations
Instead of directly prescribing phase-field variables by the signed distance function η to a known inter-
face for a geometry parametrisation, the PFM is often used for implicit tracking of evolving interfaces,
e.g. to model phase evolution and transformation processes. In such a case, the phase-field variables are
determined from a system of PDEs, which are typically derived by a variational principle based on max-
imisation of an entropy or minimisation of a free energy functional [57]. In this way, the PFM is able
to model capillary-driven interface motion [31, 40] or phase transformation processes like solidifica-
tion [45]. Furthermore, elastics boundary effects can be incorporated, as demonstrated in applications,
such as blood vessels [9, 63]. Subsequently, this is briefly introduced for the two-phase case, to show the
connection of PFM and the diffuse whole domain Navier–Stokes formulation. Consider the free energy
functional

F(ϕ,∇ϕ) =
ˆ
Ω

f grad (ϕ,∇ϕ)+ f pot (ϕ)+ f bulk (ϕ) dV+

ˆ
∂Ω

f surf (ϕ) dS (27)

with the corresponding variation

δF=

ˆ
Ω

(
∂
(
f grad + f pot + f bulk

)
∂ϕ

−∇ · ∂f
grad

∂∇ϕ

)
δϕ dV+

ˆ
∂Ω

(
∂f surf

∂ϕ
+
∂f grad

∂∇ϕ
· n
)
δϕ dS. (28)

For equilibrium, the free energy is minimised, and thus, the condition ∀ δϕ : δF= 0 is required. The
energy density contributions f grad + f pot model interfacial energies and vanish for x /∈ Γd, while f bulk

denotes a bulk energy density. The surface energy density f surf of the domain boundary ∂Ω can be used
to model surface wetting cf, e.g., [31]. Neglecting bulk energies, i.e. f bulk = 0, and modelling the gradi-
ent contribution as f grad = γϵ∥∇ϕ∥2 yields the field equation

∂f pot

∂ϕ
− 2γϵ∆ϕ = 0 (29)

at equilibrium. Here, γ is the surface tension between the two phases, ϵ∝ δd is a parameter related
to the interface thickness and the potential term is often chosen as either the well potential f pot =
9γ/ϵ ϕ2(1−ϕ)2 or the obstacle potential ∀ x ∈ Γd : f pot = 16γ/(π2ϵ)ϕ(1−ϕ). For planar interfaces,
the tanh- and sin-type profiles from equation (24) are the solutions of the equation with the well and
obstacle potential contributions, respectively. Therefore, they are the equilibrium profiles of the respect-
ive potential. The relations for the interface width are δd = 4ϵ and δd = π2/4 ϵ for the well and obstacle
potential. For curved interfaces, these profiles correspond to the zero order term of a Taylor series
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expansion of ϕ in ϵ, where the higher order terms are depending on the curvature [26][equation (70)].
In addition, a solution of equation (29) for curved interfaces will cause one of the phases to vanish.
However, if it is augmented with an additional constraint enforcing a certain volume of each phase [8,
34, 46, 53], or if the Cahn-Hilliard-type equation

∆

(
∂f pot

∂ϕ
− 2γϵ∆ϕ

)
= 0 (30)

is used, non-trivial solutions are possible, giving rise to the profiles (24) as lowest-order term in the
Taylor series expansion of ϕ in the interface. This is also the case, if the curvature minimising dynam-
ics of equation (29) is removed by the additional curvature correction term ∥∇ϕ∥∇ · n with n =
−∇ϕ/∥∇ϕ∥ [58]. This yields the equation

0=
∂f pot

∂ϕ
− 2γϵ(∆ϕ+ ∥∇ϕ∥∇ · n) = ∂f pot

∂ϕ
− 2γϵ∇(∇ϕ · n) · n, (31)

with the Laplace term being substituted by the derivative in interface normal direction [55]. This
equation preserves the initial shape of the phase domains and only enforces the equilibrium phase-field
profiles [58]. Using this approach, the phase-field method is a tool for implicit geometry parametrisation
and does not yield any interface dynamics.

To consider phase changes, phase-field evolution equations are considered, instead of the steady-state
equations presented above. As an example, the dynamic version of equation (29) with an Allen-Cahn
approach reads

∂ϕ

∂t
=MAC

(
∂f pot

∂ϕ
− 2γϵ∆ϕ

)
, (32)

with a mobility parameter MAC. Furthermore, multiphase-field approaches like [45, 56] can be
employed. In this case, a quasi two-phase problem for the diffuse Navier–Stokes equation can be
retrieved in terms of ϕf and ϕs, by summing up all fluid phases to ϕf(x, t) =

∑
ϕfα(x, t) and all solid

phases to ϕs(x, t) =
∑
ϕsα(x, t), respectively [49].

3. Numerical examples comparing interface approximations

The subsequent chapter conducts an investigation into the influence of the interface approximations
from table 1 for a range of different benchmarks. These benchmarks involve the Couette and Poiseuille
flow, the flow past a cylinder and the boundary layer problem with and without suction.

3.1. Couette and Poiseuille flow
Analytic solution and benchmark quantities
For a stationary flow, which is unidirectional, fully developed, without body force in flow direction,
and a fluid with constant viscosity, the Navier–Stokes system reduces to the ordinary differential
equation (ODE)

0= µ
d2u

dy2
− ∂p

∂x
, (33)

with respect to the velocity component u := u · ex, while the pressure gradient is a constant. For the
boundary conditions u(y= 0) = 0 and u(y=H) = 0, this yields a Poiseuille flow, whereas ∂xp= 0, and
the upper boundary condition u(y=H) = utop yields a Couette flow. For the Poiseuille flow, the dimen-
sionless quantities ỹ := y/H and ũ := u/uc, using the characteristic velocity uc =−∂xpH2/(12µ) as the
mean velocity, are introduced. The boundary value problem for the Poiseuille flow then becomes

0=
d2ũ

dỹ2
− 12, ũ(ỹ= 0) = 0, ũ(ỹ= 1) = 0. (34)

In the case of the Couette flow, the upper velocity is set to utop = uc, which results in the boundary
value problem

0=
d2ũ

dỹ2
, ũ(ỹ= 0) = 0, ũ(ỹ= 1) = 1. (35)
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Figure 3. Sketch of the channel considered with sharp and diffuse interface and velocity profiles for Poiseuille flow. In case of
Couette flow, the upper wall moves in x-direction, which leads to a linear velocity profile.

For both flows, analytical solutions are available which can be used as benchmark. They read

ũ=−6ỹ(ỹ− 1) and ũ= ỹ (36)

for the boundary value problems (34) and (35), respectively. The whole domain formulation, on the
basis of which the diffuse models are used, is defined as

0=
d

dỹ

(
I
dũ

dỹ

)
+(ũ− ũw)

d2I

dỹ2
+ Ic (37a)

=
d2Iũ

dỹ2
− dũ

dỹ

dI

dỹ
− ũw

d2I

dỹ2
+ Ic, (37b)

with c= 12 and ũw = 0 for Poiseuille flow, and c= 0 and ũw = 1, at the top, for Couette flow,
respectively.

Two benchmark quantities are considered. Firstly, the mean velocity

u=
1

H

ˆ H

0
u dy=

1

H

ˆ ∞

−∞
Iu dy. (38)

Secondly, the relative L2-error of the velocity field in the bulk region Ωϕ=1 = [+δd/2,H− δd/2],
defined as

e2 :=

ˆ
Ωϕ=1

(u− uref)
2 dy

(ˆ
Ωϕ=1

(uref)
2 dy

)−1

, (39)

where uref denotes the respective analytical solution. The e2-error measures the accuracy of the local
velocity field in the bulk region, and the influence the diffuse boundary has on it. In addition, the error
ebulk = (u− uref)/uref regarding the channel mean velocity is investigated since it also covers the solution
inside the diffuse interface and gives rise to the deviation in the global volume flow rate. The setup of
the benchmark problem is shown in figure 3.

Simulation setup for model error
The diffuse approximation of the ODE (37) of the whole domain formulation, using I ≈ ϕ, is solved
numerically for different diffuse models defined in section 2.2. A finite difference method is employed,
and the corresponding code implemented in matlab/GNU octave is provided as supplementary material.
Numerical errors are kept negligibly small by using a very fine grid with 12 000 nodes over [0,H] and the
total number of nodes as 12000(1+ δd/H) for the extended domain Ω= [−δd/2,H+ δd/2], considered
for the simulations, unless otherwise stated. The linear equation system is solved directly to avoid itera-
tion errors. All simulations were executed with the equilibrium profile of both the obstacle and the well
potential.

Discussion of the Poiseuille flow results
Figure 4 shows the two benchmark quantities as a function of the interface thickness, in relation to the
height of the channel H, for two distinct potential terms. The left-hand column shows the relative error
ebulk = (u− uref)/uref, while the right column illustrates the L2-error, according to equation (39). Each
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Figure 4.Model errors of the different diffuse approximations for Poiseuille flow at various interface thicknesses. Left: Relative
error ebulk = (u− uref)/uref regarding the bulk velocity u (cf equation (38)). Right: L2-error regarding the velocity field according
to equation (39).

model is distinguished by specific colour coding, with black, blue, orange, green and yellow assigned to
the models LA1, LDA, LA2, BFA and BDA, respectively.

Obstacle potential. The first row of figure 4 depicts the relative error measures for an obstacle poten-
tial. In the case of the model BFA, the smallest possible relative and L2-errors are demonstrated. These
are generally errors close to zero that show a monotone decrease for decreasing interface thickness,
with errors of ebulk = 0.5% and e2 = 0.0003% at the largest interface width. The reason for these minor
errors is that the approximation parameter hf used has been fitted using Poiseuille flow [5], and thus,
the expected behaviour is a very good agreement for this benchmark case. As seen in figure 4, the two
direct model variants, namely LDA and BDA, yield approximately identical errors which differ by less
than 0.1% for all thicknesses. While overestimating the bulk velocity, the error ebulk decreases approx-
imately linearly with decreasing interface width, and the L2-error decreases with quadratic shape. For
the error ebulk, approximation LA1 shows non-monotone convergence with an error close to zero at a
thickness δd = 0.1H. Subsequently, a local maximum error at δd ≈ 0.05H is observed, before the error
decreases again towards the sharp interface limit. This behaviour is accompanied by a sign change
for ebulk, where the bulk velocity is underestimated for δd < 0.1H and overestimated for δd > 0.1H. For
relatively large interface widths, the LA1 introduces larger errors compared to LDA. All three approx-
imation models yield relatively poor behaviour at large interface widths, leading to deviations of above
10% and 1% for the relative error and the L2-error, respectively. Finally, the LA2 model shows a poor
behaviour for small interface widths, which is even worse than LDA, for a thickness below 0.125H,
before the errors decrease to the sharp interface limit. However, at large interface widths, LA2 performs
better than LDA. In particular, the error seems to be bounded and asymptotically reaches values of
ebulk =−10% and e2 = 0.75 %. However, such large interfaces are of limited practical relevance, since
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diffuse interface widths are typically considered to be significantly smaller, compared to the physical
length scale. For smaller interface widths below 10% of the channel height, the approximations BFA and
LA1 achieve the best results.

Well potential. The results for the well potential, plotted in the second row of figure 4, largely exhibit
behaviour similar in quality to that of the obstacle potential. In contrast to the obstacle potential, the
LDA and BDA models demonstrate minor deviations. These deviations increases with the interface thick-
ness and reaches approximately 1% for the largest interface considered. Even though these models are
analytically identical, a significant difference is introduced in this case, due to the cut-off which becomes
necessary for the tanh-profile. Both direct models generally have fewer errors, compared to the obstacle
potential. A similar observation can be made for LA2. Regarding the LA1 model, the errors are in a very
similar range, compared to the obstacle case. However, the extremum of the errors are shifted a bit more
towards smaller δd.

Conclusion. In summary, all diffuse approximations converge to the analytical solution in the limiting
case δd → 0. However, the quality of the approximations differs significantly. By far, the smallest errors
are introduced by the BFA model. However, the present test case is particularly beneficial, since the para-
meter in the friction term for this model is determined and fitted for exactly this flow scenario. Thus,
limiting the significance of this finding in more general flows.

Threshold for cutting at phase-field values close to zero
The numerical implementation for the application of diffuse boundary conditions requires a treatment
of nodes with ϕ > 0, which have neighbouring nodes with ϕ = 0. The velocity of these neighbouring
nodes will enter the discretisation of velocity gradients or the Laplace operator, although they are not
defined. Additionally, when solving for u, the phase-field function ϕ occurs in the denominator, which
causes numerical problems for very small ϕ-values. Two possibilities to address these issues are found
in literature. The approach used by [37, remark 2.3], and adopted in [25, 61], also considers all PDEs
for Ωϕ=0 and uses ϕ+ 10−6 with an additional threshold value to ensure well-posed-ness for small or
vanishing ϕ. This yields an extension of the solution into Ωϕ=0, where ‘far-field’ boundary conditions
are applied at the boundary ∂Ω of the enlarged domain Ω. According to Yu et al [62] this should be
around 5δd away from the actual fluid solid interface. Alternatively, the approach of [49] can be used,
where the PDE is only solved within Ωϕ>0. To do so, values are linearly extrapolated from Ωϕ>0 to all
nodes with ϕ = 0 and have neighbours with ϕ > 0. Since Dirichlet boundary conditions are considered
for the velocity, this approach can also be adjusted by setting ∀ x ∈ Ωϕ=0 : u= uw, which is used in the
present work. Instead of adding a small threshold value to ϕ everywhere, as done in [25, 37], nodes
with a phase-field value below a certain threshold can be considered non-fluid, and the wall velocity is
applied, preventing division by very small values. Subsequently, the influence of using such a threshold
is demonstrated for the different models and interface resolutions. Furthermore, it is compared to the
method with domain extension using ϕ+ 10−6.

Figure 5 plots the L2−error as a function of the number of cells δd/∆x in the interface for different
models. The model formulations BFA, LA2 and LA1 show an identical behaviour at different thresholds,
depending on the number of cells in the solid-fluid interface. Therefore, only LA1 is shown as an
example. There, it can be seen that the cutting threshold does not impact the error at all. Furthermore,
the linear extrapolation and the domain extension approach differ only slightly. In contrast, the formula-
tions that employ a direct evaluation of the Laplace operator, BDA and LDA, exhibit differences in their
behaviour, in terms of the threshold. For certain interface resolutions δd/∆x, peaks in the L2-error occur
which are particularly observed for low thresholds and the domain extension approach. Increasing the
threshold tends to diminish these peaks. It should be noted that BDA and LDA are relatively sensitive to
the cutting at specific δd/∆x-ratios, which is not the case with the other models.

Discussion of the model and numerical errors
For the previous section, a very high numerical resolution is chosen in order to achieve negligible
numerical errors and isolate the model errors. However, in practical application, such numerical resol-
utions are not affordable. Therefore, the effect of combined numerical and model errors is investigated
subsequently. For different numerical resolutions characterised by the cell count n =H/∆x over the
channel height, simulations with varying interface width are conducted. This leads to different resolu-
tions of the diffuse interface width, by means of the number of cells δd/∆x in the interface. A larger
amount of cells in the interface δd/∆x leads to an increased interface thickness for a fixed overall res-
olution, and therefore, a better interface resolution. Two counteracting effects are expected for varying
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Figure 5. Influence of the cutting threshold ∈ {0,0.1,0.01}, and comparison with the domain extension (extend) method for
selected models and a varying number of cells per interface ratios at a resolution of 5000 cells. The models BFA, LA2 and LA1
show no influence with regard to the choice of the cutting threshold. Therefore, BFA and LA2 are not depicted.

Figure 6. Errors for different interface resolutions, at fixed number of total cells, for the channel flow case. Left: L2-error over the
number of cells in the interface, calculated via δd/∆x, for a fixed number of total cells n = H/∆x= 600. Right: Example of the
error over the whole parameter space of total cells and interface cells, for two models (LA1 and BFA) with obstacle potential.

the number of interface cells. While numerical errors, arising from the discretisation of the phase-field
profiles, decrease with higher resolution of the interface, the increased interface thickness will lead to lar-
ger model errors. Figure 6 shows the results by means of the L2-error. Regarding the error ebulk, similar
patterns are observed. Thus, it is not shown. Due to space limitations, only exemplary results are shown.
The full results are given as supplementary material. Firstly, it should be noted that due to numerical
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errors, the overall accuracy is lower than in the case where only model errors occur. The LA2 approx-
imation at δd = 0.01H, for example, yields an L2-error of 0.2% for 12 000 cells, around 1% for 600 cells
and around 2.5% for 400 cells. From the plots at the right of figure 6, it can be observed, that for most
models, the errors become smaller if the overall resolution is increased. Regarding the variation in inter-
face cells, a smaller number of cells in the interface, leads to a trend of smaller errors. Only for the BFA
approximation, this trend is not observed. Instead, it seems relatively insensitive to the interface resol-
ution. In all models, the overall trend of the slopes is superimposed by a sawtooth pattern, where for
δd/∆x as an integer, the error exhibits a local maximum, while it decreases again until the next integer
is reached. For planar interfaces, and when the interface is grid-aligned, a similar behaviour is observed
with regard to the interface free energy in phase-field models, which is discussed in detail in [52, chapter
6.2.3] for an obstacle potential. This effect can be explained by the discretisation of the ∥∇ϕ∥ slope
depicted in figure 2. The accuracy of a numerical integral of ∥∇ϕ∥ over η depends significantly on
how close the next grid node is to the maximum of this profile, since the difference between this max-
imum and the value at the node next to it is dropped. The direct approximations BDA and LDA are
not depicted in figure 6, but the results may be found in the supplementary material. Compared to the
other models, they exhibit significantly larger errors and produce some outliers for certain δd/∆x-ratios
with errors of over 100%, suggesting that there is no stable solution. This behaviour is already visible in
figure 5, where the influence of the cutting value is discussed. This is consistent with the findings of Li
et al, who conclude from their experience that direct approximation is not robust [37, sec. 2.3.1.].

Discussion of the Couette flow results
Subsequently, the results for the Couette flow for the high-resolution setup with negligible numerical
errors are discussed. The errors of different diffuse approximations over the diffuse interface thickness
are shown in figure 7.

Obstacle potential. For the obstacle potential, the approximations BFA, BDA and LDA, which all
include the term uw∇· (µ∇ϕ), do not converge in the sharp interface limit. In contrast, they exhibit
an increased error at smaller interface widths, which is a result of the upper boundary, where the wall
velocity is imposed. If only the lower boundary is considered to be diffuse, a monotone convergence
is observed. This indicates that imposing the wall velocity via uw∇· (µ∇ϕ) is prone to errors at small
interfaces. In contrast, the approximations LA1 and LA2 yield a convergence and very small errors,
which do not exceed 0.1% even at the largest considered interface width of δd = 0.2H. These two mod-
els have no problems to impose wall velocity and also deliver much higher accuracy than in the case of
Poiseuille flow. This indicates that the linearity of the velocity profile makes the Couette flow a favour-
able problem for these approximations.

Well potential. For the well potential, the behaviour differs significantly from the behaviour of the
obstacle potential. The overall errors for the approximations BFA, BDA, and LDA are for all interface
thicknesses smaller compared to the obstacle case. These models seem to work much better for the
well potential, compared to the obstacle potential. The LDA model seems to converge very well until
it reaches δd = 0.05H or below. This is in contrast to the obstacle case, where the error monotonic-
ally increased with small interface widths. The BFA approximation exhibits an almost constant error
for δd > 0.02H. In the case of smaller interface widths, the error decreases, without vanishing entirely.
Regarding the BDA approximation, a convergence regarding the L2-error is observed, which is very
slow at large interface widths and accelerates at small ones. With respect to ebulk, convergence is only
observed for δd < 0.05H. For all approximations, the L2-error is two orders of magnitude smaller than
the absolute value of ebulk, whereas for the Poiseuille flow, there is only one order of magnitude differ-
ence between the two error measures. This points to the fact that the main part of the errors occurs in
the interface Ωϕ<1, which is included in the ebulk-error (see equation (38)) and not in the region Ωϕ=1

of pure fluid.

Conclusion for the Couette flow. The main finding is that the approximations LA1 and LA2 are the
most convenient for the case of non-vanishing wall velocity. Moreover, the other approximations, which
include the term uw∇· (µ∇ϕ), perform much worse, in particular for the obstacle potential case. In
terms of the well potential, they perform better, with BFA and BDA showing convergence and LDA
diverging only at very small interfaces. With regard to LDA, the author [37] already found that this
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Figure 7.Model errors of the different diffuse approximations for Couette flow at various interface thicknesses. Left: Relative
error ebulk = (u− uref)/uref regarding the bulk velocity u, cf equation (38). Right: L2-error regarding the velocity field, according
to equation (39).

approximation is not particularly robust. In the BFA and BDA approximations, one source of inaccuracy
could be that the analytical term (uw − u)∇· (µ∇I) is split, with the part containing uw being approx-
imated directly with ϕ, while the part containing u is approximated differently. This inconsistency might
be the source of inaccuracies if uw ̸= 0. The fact that these approximations work better with the well
potential suggests that imposing a wall velocity requires a distribution function that is more condensed
around ϕ = 0.5 (see right plot in figure 2).

Interim conclusion for both channel flow cases
The investigations for the Poiseuille and Couette flow reveal that the diffuse approximation formula-
tions exhibit different degrees of accuracy. In both flow scenarios, the direct approximations LDA and
BDA perform relatively poor and are not always robust. Therefore, they are not of great interest for the
application and are not taken into account in the following studies, which are only performed for BFA,
LA1 and LA2. A significant difference is observed with regard to the wall velocity. For vanishing wall
velocity (Poiseuille flow), the BFA model is the most accurate one, while for imposing a wall velocity
(Couette flow), it is significantly inferior to LA1 and LA2. This can be attributed to the fact that BFA
was originally only introduced for uw = 0 and the extension to a wall velocity not equal to zero intro-
duces different approximations for originally identical terms. Regarding these examples, using BFA for
uw = 0 and LA1 or LA2 for uw ̸= 0 is found to be a good choice. In these cases, there is also no signi-
ficant difference between the phase-field profile of the obstacle and that of the well type. The difference
between the obstacle and well profile only seems to be significant when the approach is relatively poor
anyway. In these cases, the well profile yields the more accurate results. Since the subsequent studies
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Figure 8. Sketch of a flow past a cylinder, with the inflow velocity U and the cylinder diameter D.

are restricted to the robust models BFA, LA1 and LA2, no large difference between obstacle and well is
expected. Therefore, only the obstacle results are evaluated in the upcoming sections.

3.2. Flow past a cylinder (Kármán)
Reference solution and benchmark quantities
In order to compare the error of the different phase-field models with regard to the flow around a cyl-
inder, the reference solution of Gautier et al [23] is used in this section. The reference solution qref is
specified by the authors for a Reynolds number of Re= ρUD/µ= 40, where ρ, U, D and µ are the dens-
ity, the inflow velocity, the diameter of the cylinder and the viscosity. Therefore, a low Reynolds num-
ber regime is considered, where no vortex shedding is expected and a stationary flow is established. In
addition, the domain is given by Lx × Ly = 20D× 20D, with D= 1 in the dimensionless case. With the
reference solution qref, the L2-error for a certain scalar field q(x) can be calculated according to

e2 (q) :=

ˆ
Ωϕ=1

(q− qref)
2 dV

(ˆ
Ωϕ=1

(qref)
2 dV

)−1

. (40)

In the following analysis, an evaluation based on the velocity error e2(∥u∥), which is calculated from
the magnitude of the velocity ∥u∥, is performed. Furthermore, an analysis of the pressure error e2(p) is
presented. To obtain the reference solution, it is necessary to apply the interpolation script developed by
Gautier et al [23], which provides the reference solution for a given resolution. In this section, the influ-
ence of the models LA1, LA2 and BFA is investigated with a constant number of 6 cells in the interface
in a grid refinement study. Additionally, the impact of the number of cells in the fluid–solid interface is
analysed for the three distinct models.

Simulation setup
For this benchmark, a cylinder with a diameter of D is placed in a simulation box measuring 20D×
20D. The cylinder is located in the middle of the simulation domain. For this simulation study, a
Cartesian grid with nx × ny cells is employed for discretisation, where nx = ny = n is used in a range of
192 to 608, with n. A Reynolds number of Re= 40 is set in relation to a dimensionless density of ρ= 1
and a dynamic viscosity of µ= 1/40. For the given set of parameters, the inflow velocity is determined
to be U = 1, which is set as a Dirichlet boundary condition on the left side of the simulation domain.
Furthermore, a pressure boundary condition is utilised on the right side, by using the reference solution
from Gautier et al [23]. At the top and bottom wall, slip boundary conditions are used. A sketch of the
simulation setup is shown in figure 8. The obstacle-type sin-profile is used for the simulations. For the
subsequent two-dimensional benchmark cases, the numerical simulations are performed using the solver
PACE3D [28]. For spatial discretisation, a preserving finite difference scheme using second order central
differences on a Cartesian grid is employed. A staggered grid arrangement is used to avoid pressure–
velocity decoupling. Therefore, the velocity components are located at the cell faces in the corresponding
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Figure 9. Velocity error e2(∥u∥) (left) and pressure error e2(p) (right) in % for different resolutions and models according to
equation (40). The different models are shown in black, red and blue for BFA, LA2 and LA1, respectively. A value of 6 cells in the
fluid–solid interface is chosen.

coordinate direction, while the pressure is located at cell centres. The Navier–Stokes system is solved to
stationary equilibrium with a Chorin-type projection method

Discussion of the results for different models
Figure 9 shows the errors of the velocity field e2(∥u∥) and the pressure field e2(p) in % as a function of
the resolution.

The velocity error e2(∥u∥) is illustrated on the left in figure 9. For the three distinct phase-field mod-
els, the same behaviour is evident in the global scenario. As the resolution increases, the error in the
velocity field decreases. As expected, a monotonically decreasing convergence is only observed for the
models BFA and LA1. For the model LA2, it can be seen that this behaviour is valid from a resolution
of n = 256, which suggests that the two smallest resolutions are not within the convergence radius for
the model LA2. Disregarding these two data points of LA2, the BFA model yields the smallest errors
with respect to the velocity. Overall, with a maximum value of 0.1547%, all models show a small relative
error for all given resolutions. The error e2(p) in the pressure field is shown on the right in figure 9. For
the models BFA and LA2, the pressure error shows a monotonically decreasing trend with increasing res-
olution. In contrast, the LA1 model shows a slight increase for the two finest resolutions after a mono-
tonically decreasing error for n < 500. However, the error of the LA1 model is the smallest at all resol-
utions, which is not the case for the velocity error. Compared to the other two models, LA2 produces
smaller errors up to n ≈ 488, while they produce very similar errors, with BFA having a slight advantage
over LA2 at finer resolutions. Notably, the relative errors of the pressure are generally much higher, com-
pared to the velocity errors. Furthermore, considering both errors, no clear trend is observed. While LA1
yields the smallest pressure errors, its velocity errors are larger than the ones for the other models. In
summary, it can be concluded that all three models are capable of representing the flow around a cylin-
der for Re= 40. The evaluation of the error, using the provided reference solution, allows a comparison
of the different models and can be used for future model formulations. Furthermore, the model formu-
lations demonstrate the expected behaviour in the event of an error in the velocity field with acceptable
errors in terms of accuracy, provided that the resolution is not too poor, i.e. above n = 288. As far as
pressure is concerned, the errors in all models are relatively large. Overall, the errors of all models are of
a similar magnitude, and no clear trend can be observed, which means that no model is clearly superior
in terms of the final state.

Discussion of the results for the amount of interface cells
The impact of the number of cells δd/∆x in the fluid–solid interface is subsequently investigated for a
resolution of n = 224. Increasing δd/∆x leads to both a higher resolution of the diffuse interface and, at
the same time, a larger interface width. In figure 10, the corresponding results are shown.

A different behaviour in the velocity error e2(∥u∥), which is presented on the left side of the figure,
can be observed for the different models. The LA1 model exhibits a monotonically increasing error for
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Figure 10. Velocity error e2(∥u∥) (left) and pressure error e2(p) (right) in % for the distinct models in relation to the cells in the
fluid–solid interface. The resolution is set to n=

√
nxny = 224.

an increasing number of cells in the interface. This indicates that modelling errors increase more signi-
ficantly, due to the larger interface, than the error reduction, due to the better resolution of the phase-
field profile. In contrast, for the BFA and LA2 models, the error increases only up to a certain amount
of cells in the fluid–solid interface, after which they fall again. These numbers are 4 and 9 cells for the
LA2 and BFA models, respectively. With regard to the pressure error, all three models show the same
trend, namely that the error increases with a larger interface. For the LA1 model, the lowest values are
an exception, as the error initially decreases before increasing again from a value of 5 cells. Compared
to the results in figure 6, where the influence of δd/∆x is investigated for the channel flow, no sawtooth
pattern is observed. This is due to the fact that a curved interface is considered, which does not align
with the grid. Therefore, the distribution of grid nodes in the normal direction of the interface differs at
different points on the surface of the cylinder.

Interim conclusion for the flow past a cylinder
Regarding this benchmark, various conclusion can be drawn. The velocity errors for the various mod-
els, resolutions and cells in the interface are only minor, which is not the case with the pressure error.
Especially, if we compare the BFA model results from this benchmark case with the results of both chan-
nel flows, it performs significantly poorer. This is due to the fact that the friction coefficient in this
model is particularly fitted to match the channel flow case. However, for the cylinder flow, the regime
of a linear velocity gradient near the wall is very small, and therefore, the assumptions of the BFA model
are not met, as well as for the channel flow case. Furthermore, varying the number of cells in the inter-
face with a fixed overall resolution leads to different results when comparing the cylinder flow with the
channel flow. For the latter, a sawtooth pattern is observed (cf figure 6), which does not occur for the
cylinder flow (figure 10). Additionally, the interface resolution shows that a greater interface thickness at
a fixed resolution tends to lead to an increase in errors. While this trend is clearly visible for the channel
flow, it only partially applies to the flow past a cylinder. It seems that in the case of flow past a cylin-
der, the models respond differently to variations in the number of interface cells, reflecting the increased
complexity of a curved surface, compared to a planar surface.

3.3. Boundary layer flow
Analytic solution and benchmark quantities
The next benchmark case considers boundary layer flow. Let u denote the velocity component tangential
to the wall, x and y the wall tangential and normal coordinate, respectively, U= limy→∞ u the outer flow
velocity and Rex := ρUx/µ. Important measures of the boundary layer are the displacement thickness δ1,
momentum thickness δ2 and energy thickness δ3, defined as

δ1 =

ˆ ∞

0
1− u

U
dy, δ2 =

ˆ ∞

0

(
1− u

U

) u

U
dy, δ3 =

ˆ ∞

0

(
1− u2

U2

)
u

U
dy, (41)
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Figure 11. Sketch of a boundary layer formed by a flow over a flat plate, based on the Blasius solution, shown for a segment of
length L, with the Reynolds number ReL = ρUL/µ= 400. Blue: velocity profiles at x= 0 and x= L/2. Black: boundary layer
thickness δ99, where u(δ99) = 0.99U holds.

respectively. For a flat plate, the well-known Blasius similarity solution [7], based on the Prandtl bound-
ary layer equations, can be used as reference, which yields

δ1 = 1.7208

√
µx

ρU
, δ2 = 0.664

√
µx

ρU
, δ3 = 1.0444

√
µx

ρU
. (42)

From this, the L2−error can be calculated for the three different measurements, according to equation

e2 (q) :=

ˆ L

0
(q− qref)

2 dx

(ˆ L

0
(qref)

2 dx

)−1

. (43)

Simulation setup
A sketch of the simulation setup can be seen in figure 11. A boundary layer with the Reynolds num-
ber ReL = 400 and the domain L× 0.2L is considered. The choice of the Reynolds number ReL = 400
is made to cover a problem with larger Reynolds number compared to the previous benchmark case of
the cylinder flow. The discretisation is done with nx × 2/3nx cells, where different refinements for nx
are considered. As in section 3.1, the domain on the lower side is extended by half the diffuse interface
width to ensure that the 0.5 iso-line of the phase field lies at y= 0, and the obstacle profile of type sin
is used. On the left side, a Dirichlet boundary condition is used with a value of u(x= 0,y) = Uex. At
the top boundary, the velocity is prescribed using a Dirichlet boundary condition of the velocity from
theory, i.e. utop = Uex +Vey, with

V= 1.2165

√
µU

2ρx
. (44)

Details can be found in the appendix A.4.

Discussion of the results
Figure 12 shows the results for the given problem. In the top row, the L2−errors for the different bench-
mark quantities and models are shown as a function of the resolution. Furthermore, the middle row
compares the distinct quantities with the analytical solution, according to the Blasius solution, while in
the last row, the numerical solution for different resolutions is compared with the Blasius solution for
the BFA model.

Displacement thickness. With regard to δ1, a decreasing error for an increasing resolution can be
observed for all models, while the errors are the same for all three models. This can also be seen when
the displacement thickness (δ1/L) is plotted against the length (x/L) of the problem and compared
with the analytical solution. The displacement thickness δ1 is a measure of the loss of volume flow in x-
direction, compared to the free flow. Since the volume flow rate is prescribed at the left and top bound-
ary by velocity boundary conditions, the fact that δ1 coincides with all models indicates that they all
fulfil mass conservation and do not induce an artificial inflow velocity at the bottom. From this, it can
be concluded for this benchmark quantity that the models have no influence on the mass conversion,
according to the displacement thickness δ1. Furthermore, a convergence of the error can be seen both in
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Figure 12. Different L2-errors for the distinct models (top) and the corresponding boundary layers, at a resolution of nx = 240
(vertical dashed lines in the top row), compared to the reference (middle). A grid refinement study with nx = 60r cells and refine-
ment factors r ∈ {1,2,3,4,5} for the BFA model is shown for δ1 (bottom).

the error and in the displacement thickness itself. The latter is plotted in the bottom row of figure 12,
where the numerical solutions for different resolutions are displayed against the Blasius solution. It can
be seen that, for a grid refinement, the numerical solution agrees better with the analytical solution,
while the individual models generally show good agreement with the analytical solution. This is also
indicated by the small L2-errors from the first image, which are below 0.3% for the given resolutions.

Momentum and energy thickness. In contrast to the behaviour for δ1, the errors for the two other
benchmark quantities δ2 and δ3 are different for the three models. As can be seen in the first row and
the second and third column of figure 12, the relative errors for δ2 and δ3 show a decrease with increas-
ing resolution for the models LA1 and LA2. In contrast, the BFA model exhibits nearly constant errors
of around 2% for all resolutions, which is the lowest of all models. Both the LA1 model and the LA2
model exhibit a higher relative error for all resolutions in all cases, with LA1 delivering the highest error
values for all resolutions. At higher resolutions, starting at nx = 240, the relative errors for the LA2 and
BFA models are almost identical. Comparing the two different thicknesses δ2 and δ3 over the length
(x/L), the same behaviour can be observed for all three models. They cut the Blasius solution at a cer-
tain distance from the beginning (x= 0). This distance increases for the models BFA, LA2 and LA1.
Before this distance, all models overestimate the Blasius solution, while they underestimate the solu-
tion after this point. One possible reason for the overestimation may be the singularity at x= 0 due to
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the simulation setup, while the underestimation can be explained by the edge of the far field, as this is
probably not far enough away. Another notable point is the large difference between the distinct errors.
For the δ1-errors, the value is below 0.3%, while the error for δ2 and δ3 is above 1% up to 20% for δ3
at the coarse grid refinement. The reason for this lies in the definition of the different thicknesses. For
the displacement thickness, only the value of the velocity u relative to the inflow velocity is taken into
account, while for the other two errors, the second and third powers of this value occur. Therefore, the
same deviation in the velocity profile u leads to larger errors in momentum thickness and energy thick-
ness, as these are amplified by the squared and cubic velocities. As a concluding remark on boundary
layer flow without suction, it can be said that all models show good agreement with the Blasius solution,
if the resolution is high enough. In particular, the BFA model has the lowest error values.

Boundary layer with uniform suction
Reference solution. For a boundary layer flow employing uniform suction at the lower wall, with a velo-
city vw ⩽ 0, a reference solution is given by [30], based on a similarity solution of the boundary layer
equations. This similarity solution is obtained by adjusting the boundary conditions for suction or blow-
ing cf, e.g., [38]. More details are given in appendix A.4. The reference solution for the thickness meas-
ures is obtained by the similarity solution, which is calculated by the solver script provided as supple-
mentary material. The evaluation equation (43) is used for the error with this reference solution.

Simulation setup. The simulation setup is similar to the one without suction, with two exceptions.
Instead of using equation (44) to prescribe the theoretical boundary conditions at the top, a more com-
plex x-dependence for the displacement velocity results, which can be evaluated using a script provided
as supplementary material. Furthermore, a fixed value for the wall velocity vw =−0.02U is set at the
bottom of the simulation domain. The results of this study are presented in figure 13. The top row
shows the L2−errors for the individual boundary layers at different resolutions. Furthermore, the dashed
black lines in each error plot indicate the resolution (nx = 240) for the second row, which illustrates the
resolution of the boundary layers, denoted by δ1/L, δ2/L and δ3/L, in relation to the length (x/L). The
bottom row of the figure shows the boundary layer thickness δ1 of the BFA model for varying resolu-
tions. For the figures illustrating the various boundary layer thicknesses, the reference solution from the
script is depicted in black.

Global errors at different resolutions. The L2−error for the displacement thickness δ1 is again the same
for all models. From approximately 2.5% upwards, errors decrease monotonically at higher resolutions,
reaching a final value of around 1.4%. This behaviour can also be seen in the bottom row of figure 13,
where the curve of the reference solution is better approximated at higher resolution. It is reasonable
to expect such behaviour, given that numerical inaccuracies are reduced with enhanced resolution. A
comparison with the results without suction reveals that the error values regarding δ1 are approximately
ten times higher for the displacement thickness. A different behaviour is present for the momentum
thickness δ2. In the absence of suction, all three models converge to minor errors, with the BFA model
in particular exhibiting a minimal error across all resolutions. In the case of suction, the magnitude of
the error is approximately 20 times larger. In the BFA model, this error converges from the coarsest
to the finest resolution, from approximately 8.56% to 7.38%. Compared to the other models, the BFA
model demonstrates the poorest performance, with the exception of the lowest resolution (nx = 60).
At this resolution, the LA1 model demonstrates suboptimal results, exhibiting an error rate of 12.02%.
Furthermore, the LA1 does not demonstrate a monotonically decreasing error with increasing resolution.
For the finest resolution the error is 3.05%, which is higher than the minimal error of 2.18% arising at a
resolution of nx = 180 cells. A similar trend is exhibited by the model LA2. Compared to the model LA1,
this model is worse for all cases with a resolution greater than nx = 120. The same overall behaviour is
observed for the error in the energy thickness δ3, although the errors are generally larger than for the
momentum thickness.

Distribution of deviation over the run length. For the boundary displacement thickness, the refer-
ence solution is well matched for smaller run lengths x. With larger run lengths, the deviation from
the reference solution increases, indicating that the suction of the boundary condition is overestim-
ated. Regarding the course of δ2 and δ3 over x, a similar behaviour compared to the case without
suction is observed in even more pronounced fashion. At first, there is an overshoot followed by a
kink in the course of the thickness curves. After an intersection point with the reference solution, an
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Figure 13. Different L2-errors for the distinct models (top) and the corresponding boundary layers at a resolution of nx = 240
(middle), which is indicated by the vertically dashed line in the top-row plots. A study on grid refinement for the BFA model is
shown for δ1 (below). The boundary condition is set to vw =−0.02U.

underestimation further downstream can be observed. This intersection point is first reached for BFA,
then for LA2 and LA1. In all models, this occurs further upstream, compared to the case without suc-
tion. While the reason for the course of δ2 and δ3 is the same as in the case of vw = 0, the amplification
of these trends may be attributed to an overestimation of the suction velocity by the different models.

Conclusion for the suction case. In summary, it can be said that in the case of suction at the lower
boundary of the simulation domain, the errors of all models are significantly larger than in the case
without suction. In particular, it is noticeable that the BFA model performs significantly worse for vw ̸=
0, compared to vw = 0. Since a similar observation is made for the Couette flow, this points towards
BFA being relatively inaccurate in the presence of a non-vanishing wall velocity. A reason may be the
fitting of the wall friction parameter, which is adapted to a flow that does not incorporate a velocity at
the boundary.

4. Concluding remarks

In this work, different existing approaches to apply velocity boundary conditions in the diffuse inter-
face of a phase-field model are reviewed, and a quantitative comparison of the different models is made.
A theoretical discussion of the various models is provided, whereby the BFA model [5] is generalised
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to include a wall velocity unequal to zero. For a quantitative assessment, several benchmarks are intro-
duced, where reference or analytical solutions are provided. The present study uses the benchmark cases
to facilitate a comprehensive discussion of the influence of numerical resolution, model formulations,
interface widths and distinct phase-field profiles. The studies show varying degrees of accuracy and con-
vergence behaviour among the models and demonstrate that the model is most accurate when wall velo-
city changes are taken into account.

The channel flow cases show that both the direct approximations LDA and BDA perform worse than
the other models. In particular, instabilities occur for Poiseuille flow at certain interface resolutions, and
no convergence or only poor convergence is observed for Couette flow. Therefore, these models are not
feasible for practical use. With respect to these two channel flow problems, the BFA model is the optimal
selection in the scenario where no wall velocity is prescribed at the interface, i.e. uw = 0. Conversely, if
uw ̸= 0, BFA is relatively inaccurate, while LA1 and LA2 are the most suitable models. This finding is
confirmed for the boundary layer flow, in presence and absence of suction. For more complicated setups,
the differences between the LA1, BFA and LA2 models become less severe, which is observed by compar-
ing the cylinder and Poiseuille flow benchmark. Furthermore, diffusively prescribing a tangential bound-
ary velocity is more feasible, compared to a normal wall velocity (blowing/suction), where all diffuse
models are relatively inaccurate. A substantial impact of the diverse phase-field profile is only evident
for setups where specific models demonstrate instabilities or lack of convergence, which makes them not
feasible for the given problem. Whenever convergence is observed, the trends for well- and obstacle-type
profiles are identical. The studies in which the interface width is varied at constant numerical resolution
show that, when applying the diffuse boundary condition, a smaller but less resolved diffuse interface
tends to provide higher accuracy, compared to a larger but better resolved interface. This trend is very
clear in the case of the planar interface, whereas there are exceptions to this trend in the case of cyl-
indrical flow. In summary, the findings of this work suggest that the direct approximations LDA and
BDA are not feasible for practically relevant numerical resolutions. The BFA model is the optimal choice
whenever a zero wall velocity is considered, while for a non-zero wall velocity, LA1 or LA2 are prefer-
able choices. In future studies, the combination of the benchmark with solid-fluid interfaces and other
transport equations, such as the transport of temperature, can be investigated.
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Appendix. Derivation of the whole domain formulation

This section shows the derivation of the whole domain Navier–Stokes equation system for the fluid–
solid problem. To this end, the general procedure of Li et al [37] is applied both on mass balance and
the Navier–Stokes equation.

A.1. Whole domain formulation of the mass balance
Considering no mass diffusion and production, the mass balance reads

∂ρ

∂t
+∇· (ρu) = 0. (45)

Multiplication with the scalar test function ψ and integration over the fluid domain Ωf yields

ˆ
Ωf

[
∂ρ

∂t
+∇· (ρu)

]
ψ dV= 0 (46)

which is reformulated to the weak form of the mass balance
ˆ
Ωf

[
ψ
∂ρ

∂t
− ρu ·∇ψ

]
dV+

ˆ
Γfs

[ρψuw · n] dS= 0 (47)

exploiting ψ∇· (ρu) =∇· (ψρu)− ρu ·∇ψ and the Gauss divergence theorem. Using the indicator
function, the volume integral can be extended from Ωf ⊂ Ω to the larger domain Ω. Additionally, the
localisation property of the surface Dirac distribution δΓ can be exploited to extend the surface integral
over the domain. This gives rise to the identities

ˆ
Ωf

(·) dV=

ˆ
Ω

I (·) dV and

ˆ
Γfs

(·) dS=
ˆ
Ω

δΓ (·) dV, (48)

and thus,

ˆ
Ω

[
ψ I
∂ρ

∂t
− Iρu ·∇ψ + δΓρψu

w · n
]
dV= 0. (49)

With the product rule Iρu ·∇ψ =∇· (Iρuψ)−ψ∇· (Iρu) holds. Additionally, the gradient of the indic-
ator function yields ∇I =−δΓn. With this, equation (49) becomes

ˆ
Ω

ψ

[
I
∂ρ

∂t
+∇· (Iρu)− ρuw ·∇I

]
dV+

ˆ
∂Ω

[ρψ Iu · n] dS= 0. (50)

According to the fundamental lemma of variational calculus, equation (50) is only fulfilled for any test
function ψ if

I
∂ρ

∂t
+∇· (Iρu)− ρuw ·∇I = 0, (51)
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which is the whole domain mass balance. For incompressible flow, this reduces to

∇· (Iu)− uw ·∇I = 0. (52)

At the boundary, equation (50) requires ρψ Iu · n = 0, which is fulfilled by I = 0 if no fluid is present.
For the parts of the boundary with ∂Ω∩ ∂Ωf, it requires ρψu · n = 0 which is the same condition
arising also from the weak form (47) of the fluid domain Ωf and, therefore, reflects the same boundary
conditions as the boundary value problem without domain extension for these parts.

A.2. Whole domain formulation of the Navier–Stokes equation
Similarly to the whole domain formulation of the mass balance, the whole domain Navier–Stokes
equation can be derived. A test function w ∈H3

D of the three dimensional Sobolew function space
H3

D = {w ∈H3(Ω) : ∀ x ∈ ∂Ω[D] : w= 0} is introduced, which vanished at parts ∂Ω[D]⊆ ∂Ωf of
the boundary where Dirichlet boundary conditions are applied. A scalar multiplication of this test func-
tion w with the Navier–Stokes equation (1a) and integration over the fluid domain yields the following
for the viscous term: ˆ

Ωf

[∇· (µ∇u) ·w] dV. (53)

To perform a two times partial integration of this term, it is exploited in such a way that the integrant
can be rewritten as

∇· (µ∇u) ·w=∇·
(
µ
(
∇⊤u

)
w
)
−µ∇u ·∇w

=∇·
(
µ
(
∇⊤u

)
w
)
−
[
∇·
(
µ
(
∇⊤w

)
u
)
− u ·∇ · (µ∇w)

]
(54)

and subsequently the Gauss divergence theorem is applied. This yields
ˆ
Ωf

[∇· (µ∇u) ·w] dV=

ˆ
Ωf

[u ·∇ · (µ∇w)] dV

+

ˆ
Γfs

[
µw ·

(
∇⊤u

)
n−µu ·

(
∇⊤w

)
n
]
dS (55)

where u(x, t) = uw(x, t), x ∈ Γfs holds at the walls. An extension of the integrals, according to
equation (48), allows to rewrite the weak form of the viscous term to

ˆ
Ω

[Iu ·∇ · (µ∇w)−µw · (∇u)∇I+ uw ·µ(∇w)∇I] dV. (56)

These terms can be reformulated using the product rule. For the last summand

uw ·µ(∇w)∇I =∇· (µw · uw∇I)− uw ·w∇· (µ∇I)

holds. Regarding the first term of equation (56), intermediate calculations are given in index notation
using Einsteins summation convention for sake of convenience. Thereby, a summation over indices
arising twice is done. This gives rise to

Iu ·∇ · (µ∇w) =Iui
∂

∂xj

(
µ
∂wi

∂xj

)
=
∂

∂xj

(
Iuiµ

∂wi

∂xj

)
− Iµ

∂wi

∂xj

∂ui
∂xj

−µui
∂wi

∂xj

∂I

∂xj

=
∂

∂xj

(
Iuiµ

∂wi

∂xj

)
− ∂

∂xj

(
Iµ
∂ui
∂xj

wi

)
+wi

∂

∂xj

(
Iµ
∂ui
∂xj

)
− ∂

∂xj

(
µuiwi

∂I

∂xj

)
+wi

∂

∂xj

(
µui

∂I

∂xj

)
=∇·

(
Iµ
(
∇⊤w

)
u− Iµ

(
∇⊤u

)
w−µu ·w∇I

)
+w ·∇ · (Iµ∇u)+w ·µ(∇u)∇I+w · u∇· (µ∇I) .

Therefore, equation (56) yields
ˆ
Ω

w · [∇· (Iµ∇u)+ (u− uw)∇· (µ∇I)] dV
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+

ˆ
∂Ω

µw · (uw − u)∇I · n+ I
(
µ
(
∇⊤w

)
u−µ

(
∇⊤u

)
w
)
· n dS. (57)

According to the fundamental lemma of variational calculus, the integrant of the boundary integ-
ral needs two vanish independently from the volumetric term, which is the case if the computational
domain Ω or the boundary conditions on ∂Ω are chosen appropriately. The first term of the bound-
ary integral vanishes if ∂Ω∩ ∂Ωf = ∅ and therefore, ∇I = 0 holds. It also vanishes if Dirichlet boundary
conditions are prescribed at ∂Ω∩ ∂Ωf, leading to w= 0 due to w ∈H3

D. The second term in the bound-
ary integral vanishes if I = 0 at the boundary. Alternatively, if no solid is present at the domain bound-
aries, i.e. I = 1, the term

(
µ(∇⊤w)u−µ(∇⊤u)w

)
· n = 0 is required, which is the same condition com-

pared to the original weak form in equation (55), reflecting the fluid flow boundary conditions of the
corresponding parts of ∂Ωf ⊂ ∂Ω.

Using this result of the viscous term, the whole domain formulation of the Navier–Stokes system (1)
is given by

Iρu̇=−I∇p+∇· (Iµ∇u)+ (u− uw)∇· (µ∇I)+ ρIf b, (58a)

0=∇· (Iu)− uw ·∇I. (58b)

A.2.1. Different formulations for the left-hand side
Note that the left-hand side of equation (58a) can be reformulated according to

Iρu̇= Iρ
∂u

∂t
+ Iρ(∇u)u= ρ

[
∂Iu

∂t
+∇(Iu)u

]
− ρu

[
∂I

∂t
+ u ·∇I

]
= ρ(uI)

_− ρuİ. (59)

In addition, the term can be given in conservation form as

I

[
∂ρu

∂t
+∇· (ρu⊗ u)

]
=
∂ρIu

∂t
+∇· (ρIu⊗ u)− ρuİ. (60)

The gradient and conservation form in equations (59) and (60) can be shown to be identical by using
the mass balance:

∂ρIu

∂t
+∇· (ρIu⊗ u) =

∂Iu

∂t
+ ρ∇(Iu)u+ u

[
I
∂ρ

∂t
+ I∇· (ρu)

]
= ρ(uI)˙ (61)

since I∂tρ+ I∇· (ρu) = 0. In absence of phase transformation processes, İ = 0 holds, and equation (58a)
can be written in the form

∂ρIu

∂t
+∇· (ρIu⊗ u) =−I∇p+∇· (Iµ∇u)+ (u− uw)∇· (µ∇I)+ ρIf b, (62)

which is the formulation used in Aland et al [3]. In contrast, the gradient form ρ(uI)_ is applied by Guo
et al [25]. A special case of vanishing phase-transformation is an interface which exhibits no motion,
i.e. ∂tI = 0 ∧ uw ·∇I = 0. The last condition can be fulfilled by a zero wall velocity u= 0 or a purely
tangential velocity with uw · n = 0 as ∇I =−δΓn. A final special case is a boundary condition for uni-
form blowing or suction. Here, a non-vanishing normal wall velocity uw is considered, but the interface
does not move at this velocity, as the wall velocity mimics fluid being blown out or sucked in through
small holes that are modelled as being smeared over the complete wall, while the no-slip condition still
applies.

A.2.2. Different formulations for the right-hand side
The right-hand side of equation (58a) may be adjusted by using the identity

∇· (Iµ∇u) =∇· [µ∇(Iu)−µu⊗∇I]

=∇· [µ∇(Iu)]− u∇· (µ∇I)−µ(∇u)∇I

which yields

∂ (ρIu)

∂t
+∇· (ρIu⊗ u) =−I∇p+∇· [µ∇(Iu)]−µ(∇u)∇I− uw∇· (µ∇I)+ ρIf b. (63)
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For a vanishing wall velocity uw = 0, this equation is identical to the one given by Beckermann et al [5,
equation (13)], which is obtained by a volume averaging approach. Instead of evaluating µ(∇u)∇I dir-
ectly, the authors in [5] approximate the term using a Darcy model, which is often used in connection
with homogenised models for porous media flows. To this end,

µ(∇u)∇I ≈ hfµ(u− uw)
1−ϕ

δd
∥∇ϕ∥ (64)

is used, where ϕ is the phase-field variable which serves as the approximation of the indicator function
I ≈ ϕ, while the surface Dirac distribution is approximated by δΓ ≈ ∥∇ϕ∥. The parameter hf repres-
ents a dimensionless friction coefficient, which determines the additional dissipation added by the term
within the diffuse interface. Following [5], the actual value of hf is fitted in a linearised flow regime to
match the conditions of linear velocity at the outskirts of the diffuse interface, which are

u(η =−δd/2) = 0 and u(η = δd/2) = uref (η = δd/2) . (65)

Here, η denotes the surface normal coordinate, δd the diffuse interface width and uref the reference
solution of a Couette flow or the linearised regime of a Poiseuille flow. This ensures that in the bulk
region Ωϕ=1, the velocity of the sharp interface theory is restored for these flows. For more general
flows, the value of hf needs to be fitted to the corresponding conditions that require the sharp interface
solution. However, the argument put forward by [5] is that the value varies only slightly (in the range
of a few %) as long as small interface widths are considered, for which a linearised velocity curve is a
good approximation. For the present interface definitions (cf section 2.3), the values of hf are 19.721 and
33.126 for the obstacle and well potential, respectively. Furthermore, the norm of the phase-field gradi-
ent may be obtained by assuming a phase-field equilibrium profile instead of determining it directly.
Thus,

∥∇ϕ∥= π

δd

√
ϕ (1−ϕ) and ∥∇ϕ∥= 12

δd
ϕ (1−ϕ) (66)

can be used for both the obstacle and the well potential.

A.3. Whole domain formulation of the Chorin projectionmethod
A Chorin type [11] projection method is commonly used for a time increment of the incompressible
Navier–Stokes system. Subsequently, the different whole domain formulations for the corresponding
pressure Poisson equation are given. Dividing the whole domain momentum balance (62) by ρ and a
proceeding time integration over the interval [tn, tn+1] yields

(Iu)n+1 − (Iu)n =−
ˆ tn+1

tn

ρ−1I∇p dt+

ˆ tn+1

tn

Φ dt, (67a)

Φ =−∇ · (Iu⊗ u)+ ρ−1∇· (Iµ∇u)+ ρ−1 (u− uw)∇· (µ∇I)+ If b, (67b)

with the abbreviation (·)n = (·)(x, tn). By defining the preliminary velocity field

Inupre := Inun +

ˆ tn+1

tn

Φ dt, (68)

this gives rise to the projection step

(Iu)n+1
= Inupre −

ˆ tn+1

tn

ρ−1I∇p dt. (69)

By taking the divergence of equation (69) and demanding the continuity equation (58b) at the new time
step, i.e. ∇· (Iu)n+1 − (uw ·∇I)n+1 = 0, the pressure Poisson equation

ˆ tn+1

tn

∇·
(
ρ−1I∇p

)
dt=∇· (Inupre)− (uw ·∇I)n+1 (70)

is obtained. Different types of approximations for the time integration can be made. The easiest is to
use an explicit Euler method to determine upre in equation (68) and an implicit Euler method for the
pressure term in equation (69), which gives rise to

Inupre = Inun +∆tΦn (71a)
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In+1un+1 = Inupre −∆t ρ−1In+1∇p, (71b)

∇·
(
ρ−1In+1∇p

)
=

1

∆t

(
∇· (Inupre)− (uw ·∇I)n+1

)
, (71c)

where Φ is determined according to equation (67b) and ∆t := tn+1 − tn is the time step width.

A.4. Self-similar boundary layer solution
Subsequently, the theory used for the reference solution of the boundary layer flow benchmark is briefly
introduced. A self-similar solution for wedge flows with a wedge angle of βπ/2 is given by the Falkner–
Skan equation [21]

f ′ ′ ′ + f f ′ ′ +β
(
1− f ′2

)
= 0, (72)

which is a non-linear ordinary third-order differential equation. Thereby, f(η̃) is a dimensionless stream
function, (·) ′ := d(·)/dη̃, the derivative with respect to the dimensionless coordinate

η̃ =
y

L

√
Re

δ∗
, (73)

with

δ∗ =

√
2

m+ 1
ξ1−m, m=

β

2−β
, ξ = x/L. (74)

The outer flow velocity obeys the power law U(x) = Urefξ
m with the reference velocity Uref = U(ξ = 1).

The overall velocity field u= uex + vey is given via

u= Uf ′, v=−
√

m+ 1

2

µ

ρ

UL

ξ

(
f +

m− 1

m+ 1
η̃f ′
)
. (75)

The boundary conditions for the Falkner–Skan equation (72) are

lim
η̃→∞

f ′ = 1, f ′ (0) = 0, f(0) =−vw

√
2

m+ 1

ρ

µ

ξ

UL
, (76)

with a wall velocity vw that can mimic uniform blowing or suction at the wall. As supplementary
material, a matlab/GNU octave script is provided that solves the boundary value problem consisting
of equations (75) and (76) for a number of x-locations with ξ ∈ [0,1]. A shooting method employ-
ing a fourth-order Runge-Kutta integration method is used to solve up to η̃ = 5, where the far-field
boundary condition is applied. This solution can be used to determine the velocity field according
to equation (75), which is used in this work both for the reference solution and to apply boundary
conditions at the top. For the special case of β =m= 0, the Falkner–Skan equation simplifies to the
Blasius equation for a flat plate with a constant outer velocity U= Uref = const. The displacement velo-
city V can be determined by equation (75) for η̃→∞. In the special case without suction/blowing, i.e.
vw = 0, f(0) = 0, the displacement velocity is independent of the x-coordinate, and

lim
η→∞

f − η̃f ′ =−1.2165 (77)

holds, leading to equation (44) for the displacement velocity employed in this work. For vw ̸= 0, the
boundary conditions (76) depend on the x-coordinate, and thus, equation (75) must be solved with
the corresponding boundary condition for each x-position to obtain the displacement velocity V. This
is done by the provided script of the supplementary material.

For uniform suction, the similarity solution is characterised by a shape ratio of H12 := δ1/δ2, which
decreases asymptotically from H12(x= 0) = 2.59 to limx→∞H12 = 2. Therefore a stationary boundary
layer thickness is established at

−vw
U

√
ρUx̂

µ
= 2,

x̂

L
=

4

Re

U2

v2w
, (78)

and thus, for H12 ⩽ 2.02 cf [54, chapter 11.2.5]. This behaviour is reproduced by the solver script of the
supplementary material.
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