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Abstract

A numerical model is investigated representing counter-current spontaneous imbibition of
water to displace oil or gas from a core plug. The model is based on mass and momentum
conservation equations in the framework of the theory of mixtures. We extend a previous
imbibition model that included fluid—rock friction and fluid—fluid drag interaction (viscous
coupling) by including fluid compressibility and Brinkman viscous terms. Gas compress-
ibility accelerated recovery due to gas expansion from high initial non-wetting pressure
to ambient pressure at typical lab conditions. Gas compressibility gave a recovery profile
with two characteristic linear sections against square root of time which could match tight
rock literature experiments. Brinkman terms decelerated recovery and delayed onset of
imbibition. Experiments where this was prominent were successfully matched. Both com-
pressibility and Brinkman terms caused recovery deviation from classical linearity with the
square root of time. Scaling yielded dimensionless numbers when Brinkman term effects
were significant.

Article Highlights

Spontaneous imbibition with viscous coupling, compressibility and Brinkman terms.
Viscous coupling reduces spontaneous imbibition rate by fluid—fluid friction.
Brinkman terms delay early recovery and explain seen delayed onset of imbibition.
Gas compressibility accelerates recovery and can be significant at lab conditions.
Gas compressibility gives recovery with two root of time lines as seen for shale.
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List of Symbols

1 Latin

b External force term in Brinkman’s equation (m/s?)

C Coefficient relating counter-current and co-current relative perme-
abilities (—)

Ch Cy Non-wetting/wetting phase inverse compressibility [Pa/(kg/m3)]

i Phase index

I, Wetting fluid—solid interaction coefficient (—)

I Non-wetting fluid—solid interaction coefficient (—)

1 Fluid—fluid interaction coefficient (Pa s)~!

J Grid number index

J Scaled capillary pressure (—)

Ji,Jy,J3, ki, ky,n,n, Dimensionless capillary pressure correlation parameters (—)

K Absolute permeability (m?)

k Time step index

k., Non-wetting fluid—solid interaction term (Pa-s/m?)

IAcw Wetting fluid—solid interaction term (Pa-s/m?)

k Fluid-fluid interaction term (Pa-s/m?)

Kenws Kew Relative permeability of non-wetting/wetting fluid (—)

L Length of block (m)

P, Capillary pressure (Pa)

P.,.P, Non-wetting and wetting phase pressure (Pa)

dwo Volume flux at a boundary (m*/m?%s)

RF Volume recovery factor of mobile oil/gas (—)

Spw Sw Non-wetting/wetting fluid saturation (—)

Sows Sw Normalized non-wetting/wetting fluid saturation (—)

t Time (s)

Upy> Uy Non-wetting/wetting interstitial velocities (m/s)

U, Uy, Non-wetting/wetting Darcy velocities (m/s)

X Distance from inlet (m)

Greek

o Exponent for wetting phase (—)

p Exponent for non-wetting phase (—)

Enw, Ew Non-wetting/wetting phase Brinkman term coefficients (m%/s)

Anw, A, Non-wetting/wetting phase mobilities [m%(Pa-s)]

Hows My Non-wetting/wetting fluid viscosity (Pa-s)

c Interfacial tension (N/m)

Pows Pw Non-wetting/wetting fluid density (kg/m>)

Prow0s Pwo Non-wetting/wetting reference densities (kg/m?)
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1 Introduction

Naturally fractured reservoirs contribute to around 20% of the hydrocarbon reserves dis-
covered worldwide. These reservoirs are usually considered to have dual porosity as given
by disconnected matrix blocks and connected fractures. The fractures have high perme-
ability compared to the matrix, but much less volume (Warren and Root 1963). Oil or gas
recovery depends on matrix transfer which can occur through fluid expansion, gravity
drainage and capillary imbibition. Water injection has been applied successfully in natu-
rally fractured reservoirs, but is most effective when the matrix is water-wet and capil-
lary forces can take up the injected water spontaneously (from the fractures). This process
is referred as spontaneous imbibition and can recover as much oil or gas at matrix level
as by forced imbibition if the matrix is strongly water-wet, but less under other wetting
conditions (Zhou et al. 2000). Imbibition of fluids carrying wettability alternating chemi-
cals can further improve recovery (Zhang et al. 2006; Mamonov et al. 2019; Andersen and
Ahmed 2021). Spontaneous imbibition can occur counter-currently, where the wetting and
non-wetting fluids flow in opposite direction. This usually happens when all open sides
of the matrix are exposed to wetting phase and gravity is negligible (Morrow and Mason
2001). If wetting and non-wetting phases cover different parts of the matrix, the non-wet-
ting phase will be produced predominantly out of the sides covered by non-wetting phase,
while wetting phase enters at the sides open to wetting phase (Bourbiaux and Kalaydjian
1990; Andersen et al. 2019a, b). Spontaneous imbibition is regarded as a crucial driving
mechanism for oil recovery from naturally fractured reservoirs (Morrow and Mason 2001;
Andersen et al. 2014; Abd et al. 2019). Numerous works have modeled this phenomenon
with analytical and numerical approaches (Mattax and Kyte 1962; Ma et al. 1997; Mason
et al. 2012; Schmid and Geiger 2012).

An established assumption in modeling of single and multiphase flow in porous media
is the Darcy equation (Darcy 1856) and its extension with relative permeabilities. This
equation states that the flux of a fluid is proportional to only its own pressure gradient and
accounts for the presence of other fluids via the saturation dependent relative permeabil-
ity factor. However, there are restrictions on the validity of the Darcy equation for mod-
eling some porous medium flows; that is, in closely packed media, saturated fluid flows at
slow velocity but with relatively large Reynolds numbers. The flows in such closely packed
medium behave nonlinearly and cannot be modeled accurately by the linear Darcy equation
(Skrzypacz and Wei 2017).

A more general approach is the theory of mixtures where both the solid and fluid mate-
rials are considered continua and each spatial point can be occupied by a fraction of fluid
and solid particles (Munaf et al. 1993). The flux relations of each phase are described by
momentum equations accounting for more mechanisms. A full hierarchy of flow mod-
els for porous media can be derived, with Darcy’s equation as a special case. Different
assumptions of which mechanisms are significant lead to equations of flow through solids
which can be permitted to interact with the flow process. Examples of such interactions
include deformation, swelling due to fluid adsorption, diffusion of solvents through poly-
meric solids and diffusion of biological fluids through biological solids (Rajagopal 2007).

Some advantages of generalizing the conventional Darcy’s law are the ability to
capture experimental observations which may contradict its assumptions or predic-
tions. Some works have argued that during multiphase flow the flux of a phase depends
on both its own pressure gradient and that of the other phase as well. The importance
of these so-called cross-mobilities has been studied in several works (Bourbiaux and
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Kalaydjian 1990; Bentsen and Manai 1993; Avraam and Payatakes 1995; Standnes et al.
2017) and can explain why measured relative permeabilities should be reduced during
counter-current flow compared to co-current flow. This phenomenon has been studied in
the context of spontaneous and forced imbibition by Qiao et al. (2018), Andersen et al.
(2019a, 2020) and demonstrates that such mechanisms should be accounted for in order
to not predict too optimistic imbibition rates. Mathematical analysis on the behavior
of two phase flow equations with viscous coupling and compressibility and associated
numerical schemes were studied by Qiao et al. (2019b).

In addition, it is well-known that, there is difficulty when applying Darcy’s law for a
viscous fluid (Deng and Martinez 2005), especially when the internally frictional resist-
ance in the fluid is greater than the frictional force between the fluid and the solid sur-
face at the porous boundaries of the solid. An easy way to resolve this difficulty is to
modify the Darcy equation by including a second-order viscous term. Brinkman firstly
proposed this modification (Brinkman, 1949) and the corresponding equation is called
as the Brinkman—Darcy equation. There are many investigations related to this formula-
tion. For example, Coclite et al. (2014) mathematically analyzed the Brinkman regulari-
zation of the two-phase flow equations and proved existence of weak solutions for such
equations. Qiao et al. (2019a) considered the effects of both Brinkman terms and fluid
compressibility in a two-phase flow model and found that the injected fluid through a
horizontal core has a slow displacement speed when it is compressible and that a high
front saturation of injected fluid can be formed when the fluids have an extremely large
viscous effect or Brinkman terms. Varsakelis and Papalexandris (2020) dealt with the
derivation of tortuosity estimates based on the Darcy—Brinkman for a polymer-filled
system.

In this work we consider a system with 1D counter-current spontaneous imbibition of
two immiscible fluids, water (wetting fluid) and oil or gas (non-wetting fluid). The flux
relations account for viscous coupling and Brinkman terms and fluid compressibility is
included. We study the influence of these mechanisms on recovery of non-wetting phase,
fluid distributions and deviations from behavior under standard assumptions (relative per-
meability formulations). Some research questions we wish to address are:

e Can compressibility influence spontaneous imbibition experiments at typical lab condi-
tions and what is their impact?

e Can viscous coupling, compressibility or Brinkman terms explain the delayed onset of
imbibition sometimes seen experimentally or lead to changes in the shape of the recov-
ery profile?

Regarding the first question we note that many works measure spontaneous imbibition
of water displacing air, but model the system assuming the fluids are incompressible (Akin
et al. 2000; Rangel-German and Kovscek 2002; Li and Horne 2006; Le Guen and Kovscek
2006). Many of these experiments are conducted at ambient conditions, but in systems with
high capillary pressure which can allow significant gas expansion. Andersen et al. (2019b)
noted a better fit of co-current imbibition experiments accounting for gas compressibility.
For the second question we note that counter-current spontaneous imbibition in 1D linear
systems theoretically should follow a square root of time profile (McWhorter and Sunada
1990). Several imbibition experiments, however, show that the expected flow regime is not
established until after a certain delay time (Akin et al. 2000; Fgyen et al. 2019). Uncon-
ventional porous media can also deviate from the square root of time profile and be better
described by other exponents.
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The model based on mixture theory describing 1D spontaneous imbibition with relevant
mechanisms and boundary conditions is presented in Sect. 2. Results follow in Sect. 3 with
sensitivity analysis and interpretation of how the mechanisms fit into experimental setups
and observations. Finally, we summarize the paper with conclusions in Sect. 4.

2 Theory
2.1 Theory of Mixtures—Key Points

The model utilized in the present paper is based on the theory of mixtures and a general
formulation is hence first presented. In the theory of mixtures, both solid (s) and fluid (f)
materials are idealized as continua. A fundamental assumption is that each spatial point
can be occupied by particles of both fluid and solid continua that, regarded as resulting
from a local averaging process (Munaf et al. 1993). The mass conservation equation for
each species is given by:

(p:), + V- (o)) = g, (i = 5.f) 0

where p; is the bulk density, u; is the velocity vector and g; is the mass source term. The
equation of momentum balance for solid and fluid has the form:

V. (Tl) + Hi + p,—bi = piai’ (l = S,f) (2)

where T, is the partial stress tensor, I1; interaction body force, b; external body force and
a; acceleration. Note that this is a vector equation to account for momentum balance in 3
directions. Studies show that each partial stress T¢, T/ can depend on both densities p,, Prs
deformation gradient of the solid that is elastic or swells due to fluid absorption, etc., and
the rate of deformation of the fluid. This allows the effects of viscosity, e.g., shear thicken-
ing, shear thinning (Munaf et al. 1993; Rajagopal 2007). The interaction body force II, can
depend on the densities and their gradients, the solid deformation measure and its gradient,
the fluid—solid relative velocity and a measure of a relative acceleration. This allows for
effects due to difference in particles acceleration of the constituents (Munaf et al. 1993).

2.2 System and Geometry

We consider two immiscible fluids (wetting and non-wetting) that flow inside porous rock
in 1D linear horizontal direction due to spontaneous imbibition, see Fig. 1. The wetting
fluid (w) is water, while the non-wetting (nw) fluid is either oil or gas. Oil, water and the

Fig. 1 Schematic representation Open
of the counter-current spontane- boundary
ous imbibition system
Non-wetting =
phase Closed
i boundary

Wetting

phase == Sw (%, £)

P.=0

P;=10°Pa
x=0 x=1L
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matrix are assumed incompressible, while gas is assumed compressible. The left end of the
matrix x = 0 is open, while the right end x = L is closed. The matrix is initially filled with
non-wetting phase.

2.3 Formulation of the Two-Phase Flow Model Based on the Theory of Mixtures

We now formulate our flow model based on the above formulations of mixture theory. The
following assumptions are made:

(i) The solid is a rigid porous body and thus the mass conservation and momentum
balance equations of the solid can be ignored.
(i) Two immiscible fluids i = w, nw each occupies part of the porous space.

(iii) The interaction forces that come into play include the frictional forces that fluids
encounter at the boundaries of the pores as well as the viscous coupling forces that
one fluid exerts on another. This can be captured by a “drag like” term that is pro-
portional to the difference in the velocity between the two constituents. The drag
coefficients being a constant.

(iv) The frictional effects within the fluid due to its viscosity are reflected in the expres-
sion for the partial stress tensor for the fluid phase.

(v) The flow is sufficiently slow that inertial nonlinearities can be neglected.

(vi) All fluids can be modeled compressible, but in our examples only gas is compress-

ible, while oil and water are incompressible.

2.3.1 Transport Equations

Since motion and compressibility of the solid are ignored, only the mass and momentum
conservation equations for the fluids are considered. We replace the subscript f with the
relevant phase considered (w, nw). The pore space is fully occupied by fluids; therefore, the
total saturation equals unity:

SW + Ser = 1 (3)

where s,,, s, are wetting and non-wetting fluid saturations, respectively. We will have two
mass balance equations, one for each fluid:

(pm), + (pmu,,) =0 (4)

(pn), + (pnu,,) =0 )

Source terms are not included (g; = 0). ¢ is the rock porosity, and m and n are the mass
per pore volume of wetting and non-wetting fluids, respectively, given by:

M =8Py "= SpPrw- (6)

u,, and u,,, are wetting and non-wetting fluids interstitial velocities. Compared to the
general theory of mixtures, we have made the following transformation:

pi - ¢Sipiui’ (l =Ww, I’lW), (7)
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where the phase density p; now is per volume phase rather than per bulk volume. Also,
Qiao et al. (2018) introduced an effective porosity ¢, which combines rock porosity and

the phase residual saturations s,,,., s,,,,. (Where the respective phases do not flow) as follows:

¢e = ¢(1 = Syr — snwr) (8)

‘We can then make the transformations:

¢—>¢e,sw—>5w=ﬁ )

(where S,, is normalized water saturation between 0 and 1) to account for residual satura-
tions in a way consistent with traditional modeling of porous media flow. In the following
we will thus consider effective porosities and normalized saturations.

2.3.2 Momentum Equations

For the momentum balance equations, see (2), the inertia of the fluids is neglected, and we
assume no external body forces (such as gravity) and negligible acceleration of fluids:
a;=b; =0, =nw,w). (10)
Equation (2) reduces to:

V- (T;) +1I; = 0, (i = nw,w). (1)

The interaction body force II; depends on the relative velocity between solid and fluid
and on the relative velocity between fluids, which in 1D can be expressed as (Qiao et al.
2018; Qiao and Evje 2020):

I, = P,VS, — ku, — k(u; — w;), (i = nw, wii # ), (12)

where lAcl- and k are the fluid—solid and fluid—fluid interaction coefficients respectively. The
term P;VS, is related to interfacial force imposed by other phase on phase i, arising from
averaging the mathematical equations (Drew and Segel 1971). The partial stress has the
form:

T, = =S;P1+¢€,S;p;Vu;, (i = nw, w). (13)

p; is the fluid pressure, I is the identity tensor, and ¢, is the coefficient of the Brinkman
term and has unit m?/s. Taking (11) and (13) to 1D and combining with (12), we obtain the
momentum balance equations for both fluids:

SW(PW)X = _Izwuw - lz(uw - unw) + gw(m(uw)x)xv (14)

Snw (P"W)x = _lznwunw + IA((MW - unw) + ‘gnw(n(unw)x)x' (15)

Thus, we get modified Darcy—Brinkman equations which are able to account for
fluid—fluid interaction (viscous coupling). The Darcy-Brinkman equation is a govern-
ing equation for flow through a porous medium with an extra Laplacian (viscous) term
(Brinkman term) added to the classical Darcy equation. The equation has been widely
used to analyze flows in highly porous media (Deng and Martinez 2005). There has been
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some literature discussion on what values are representative of the Brinkman coeffi-
cients. Although in bulk phase it can be compared to a kinematic fluid viscosity, research
suggests that it can be greater than that in porous media flow. Valdes-Parada et al.
(2007) showed that the Brinkman coefficient, being greater than the fluid viscosity, should
be a decreasing function of the porous medium porosity. Several authors have also pointed
out the deviation from a kinematic viscosity value and we refer to Kim and Russel (1985),
Kolodziej (1988) and Martys et al. (1994).

2.3.3 Final Set of Equations

The capillary pressure is defined as a difference between the non-wetting phase pressure
P,,, and wetting phase pressure P,

P.=P, —P,. (16)

c nw w

For fixed rock and fluid properties, capillary pressure is considered a function of
saturation only as long as the saturation changes monotonously. Variations in rock and
fluid properties are accounted for by assuming an invariant J-function (Bear 2013):

P, = a\/%J(SW), (17)

where o is oil-water or water—gas interfacial tension. The fluid compressibility is accounted
for by letting the densities to vary according to the relations (Qiao et al. 2019a; Qiao and
Evje 2020):

~ Pw
pw_pW0= C_Ws (18)
in
Prw — Puwd = c (19)

nw

For weakly compressible fluids (such as liquids), ?— < pjp and p;, correspond to the
density at a low pressure. C; can then be considered the inverse compressibility. Incom-
pressible fluids are obtained by letting C; — oo. For highly compressible fluids (such as
gas) we have % > p,o- In fact, setting j,, = O results in the ideal gas law for the appropri-
ate choice of C;. In our examples involving gas, we set C,,, = IOSPaLL; to obtain a gas
density of 1 kg/m” at standard conditions. For dir§ct comparison with an incompressible
case we will set p;, = 1 kg/m® and C,,, = IOIOPa%.

We make use of the two mass equations, (4) and (5), and the above-defined relations,
(16), (18) and (19), to eliminate non-wetting phase pressure. A wetting phase pressure
evolution equation can be obtained by summing up the two mass equations, (4) and (5),
after pre-multiplying them with p,,, and p,,, respectively:

(Pw)t + ﬁpw(m’lnw)x + ﬁﬁnw(muw)x =0 (20)

where we have introduced the dynamic coefficients:
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C,C

! 8o+ S Co @D
~ San /L
Puw = Puw — C (22)

To summarize, the model consists of 4 equations that should be solved:

¢ 1 mass conservation Eq. (23),

e | pressure evolution Eq. (24),

e 2 momentum balance Eqs. (25) and (26) which include viscous coupling terms and
Brinkman terms.

(m), + (mu,,) =0, (23)

(P, + fip, (1t ), + 7By, (mu,,) = 0, (24)

Sp(Py + Py = =kt +k(u, —w,,) +£,,(n(uy,) ) (25)
Su(P), = =k, +k(u,, —u,) +e,(m(u,) ) . (26)

2.3.4 Alternative Formulation of the Water Mass BALANCE

In this section we make an alternative representation of the water mass balance (23) using
capillary pressure, fractional flow function and total Darcy velocity. We may express the inter-

stitial phase velocities u,,, u,,, by solving the two momentum Eqs. (14) and (15)

@n
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(28)

By introducing the notations of cross-term mobilities:

82 (ky, + k)

A = 77—, (29)

A = b. (30)

——— b, 31

the Darcy phase velocities U; = u;S;¢,, (i = nw, w) are given as:

~ ~

: : A,
Uy = =hsP )= APy, + 6,72 (1)) + e (n(w),), (32)

w

0 0 j’nn 2
Unw = _Ann(in)x - A(Pw)x + gan— (n(unw)x)x + £WS_ (m(uw)x)x (33)

Based on total Darcy phase velocity Uy = U,,, + U,, and phase pressure difference defined
in (16), we have the water phase Darcy velocity in terms of advection, diffusion and Brinkman
effects:

s 3 w SVV
Uw =waT+W(Pc)x_WSn (n<uﬂw)x)x_ ?Ww(m<uw)x)x (34)
where the following relations are used:
A=A +Ado=i 44 35)
N | aaa A
AT = Anw + A’w’ fw = j,_’ w :fwlnw -4 Ww =Jwhw — ﬁww' (36)
T

w2 nw

total generalized mobility. f;, is the water fractional flow function and W and W,, are mobility

Here 1, A, and l\r are called generalized mobilities for water and non-wetting phase and
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coefficients. The water transport equation is then obtained by combining (4) and (34) and
using (¢p,mu,,) = (p,U,,) andm =S, p, such that:

(d’eswpw)t = _(pwwaT)x - [pr(Pc)x]X - <pr§Lw:(n(unW)x)X + pwz_viww(m(uw)x)x) °
(37

We can observe from (37) that the water mass evolves with changes from an advection
term, capillary diffusion term as well as the Brinkman terms. This expression will be useful
for understanding the mechanisms driving the transport.

2.4 Boundary Conditions

On the left boundary of the domain x = 0 we assume a zero capillary pressure and water
phase pressure equal to atmospheric pressure, 1 bar:

PC |X=0 = 0’ Pw |x=0 = IOSPa' (38)

Boundary values of saturation and densities follow directly from the fixed capillary pres-
sure and absolute pressure in (38):

Sw|x=0 = Pc_l (Pc |x=0)’ Pw |x=0 = Py (PW |x=0)’ Puw |x:0 = Puw (in |x:0)’ (39)

mlx:() = pw'x:() : Swlx:(]?”lx:() = pnwlx:() : Snwlx:()' (40)

We assume m(u,,) and n(u,,) in the viscous terms on the left open boundary equal to 0
in the momentum Egs. (25) and (26):

m(uw)xlx=0 = n(”nw)x|x=0 =0. (41)
On the right (closed) boundary a zero-flux condition is applied for both phases:

uwlx:L = unwlx:L =0. (42)

2.5 Initial Conditions

The initial state is given by full saturation of non-wetting phase:
Sw(x) |t:0 = 0 (43)

The initial pressure of the wetting phase is that at the boundary, while that of the non-
wetting phase is that of the wetting phase plus the initial capillary pressure:

Po(X)|,o = 10° Pa, (44)
That also determines the initial phase densities:

P |izo = £,,(10° Pa), p (¥) l,cg = Py, (P, = 10° Pa+ P (S, =0))  (45)
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2.6 Functional Relations

The dimensionless capillary pressure function J (SW) takes the form (Andersen et al. 2017):

J(Sw) = d n % n +J3 (46)
(1+k5S,)"  (1+k(1-S,))"

Ji,J5. I3,k ky,ny,n, are nonnegative curve fitting parameters. The fluid—solid and
fluid—fluid interaction coefficients are defined as (Standnes et al. 2017; Qiao et al. 2018):

. Py o ca

ky = 1, == .S, @7
. How
ko = L2 (1-5,)" (48)
k=1 MW;;”W #.S,(1-35,) (49)

Here I, I, and I are the wetting fluid—solid, non-wetting fluid—solid and wetting—non-
wetting fluids interaction parameters that characterize the strength of resistance forces. a
and f are exponents that characterize how the interaction terms depend on saturation.

2.7 Co- and Counter-Current Relative Permeabilities

Under the assumption of incompressible co-current flow (both phases have equal pressure
gradients) and negligible viscous terms, it was shown in Qiao et al. (2018) that co-current
relative permeabilities could be formulated as:

S‘zv_a (I’lW + ISlllv_vﬁMW)

co __
krw -

o 1-p (50)
L1, + I<IananW Hpy T Ianw Sw#w)
co __ Si»_»ﬂ (IW + IS:v_a'unW)
mw 51
el 4 (LSSt + LSS 1, ) Gh

where the Egs. (47), (48) and (49) have been used and we omit the details of derivation
here. It was later shown in Andersen et al. (2020) that for incompressible counter-current
flow (where the Darcy fluxes are opposite) without viscous terms, counter-current relative
permeabilities were related to the co-current relative permeabilities by a saturation depend-
ent coefficient C (which is the same for both phases):
_ Inwlw + I(InWSanylv_aan + IwSerT;ﬂSw#w)
- _ 52
(Inw +18,.7 MW) (I, + IS u,,) G2

Taking the co-current relative permeability expressions (50) or (51) factored by C in
(52) results in the following counter-current relative permeability expressions:
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2 S2-5
cou __ w cou __ nw
ket = ot = (53)

L,+IS\ou,, L, +1S5"u,

nw

which can be implemented in a standard porous media simulator for comparison with our
momentum equation system under the counter-current flow setup. For the special case
where there is no fluid—fluid interaction, the co- and counter-current expressions become
identical and equivalent to Corey relative permeabilities:

SZ—a SZ—[}
_ Tnw
w I rnw Inw

(54)

where the end points are 1//; and the Corey exponents are 2 — a and 2 — f for wetting and
non-wetting phase, respectively.

2.8 Discretization and Grid

The main equations are solved by the finite difference method. The mass balance Eq. (23)
is solved by explicit upwind scheme. The system consisting of pressure evolution (24) and
two momentum balance Eqgs. (25) and (26) is solved implicitly. The physical domain is
discretized with uniform step size. Staggered grid is used for discretization of the equa-
tions with S, , P,, P, in the center of the nodes and u,,,, u, in the cell interfaces. To achieve
numerical stability, upwind scheme and a reasonable time interval are utilized, see “Appen-
dix A”. 200 grid cells were used for the simulations, which was found to give sufficient con-
vergence for our purposes. See “Appendix B” for a grid sensitivity analysis and “Appendix
C” for analysis of the global mass error evolution of the numerical scheme.@ @ @

2.9 Recovery Factor

The recovery factor RF is computed as the volume fraction of imbibed wetting phase to
displaceable initial volume of non-wetting fluid. This reduces to the average normalized
wetting saturation:

RF = — [ S, dx (55)

=
O~~~

Given sufficient time, RF will reach S,,,, (the normalized saturation where P, = 0),
which is equal to 1 for strongly water-wet media and less than one otherwise.

2.10 Simulation Result Format

We illustrate our results inspired by classical spontaneous imbibition behavior. McWhorter
and Sunada (1990) derived exact integral solutions for 1D linear spontaneous imbibition
flow of two incompressible fluids. They showed that cumulative water imbibed Q,, (from
a unit area), and equivalently volume oil produced from that area, was given by a constant
inflow parameter A and the square root of time:
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0, = g Guo(D)dt = 24N/t (56)

where g, is the water volumetric flux at the inlet. Self-similar solutions were obtained in
the sense that the position of each saturation was proportional to the square root of time
and the saturation derivative of a function F'; hence, profiles at different times could be
compressed or expanded to completely overlap. The linear dependence with square root of
time for position and recovery is valid until the no-flow boundary is reached.

Based on how some parameters appear linearly in the diffusion equation for a 1D system
describing linear spontaneous imbibition under standard mechanisms (when using relative
permeabilities and incompressible fluids); recovery and saturation profiles appear identi-
cally when compared at identical scaled times 7},

L2
_ e [P (57)

t
th=-,7
b= o K

where p,, is a representative viscosity either based on the imbibing fluid or the mean of
both fluids. We will use u,,; = p,, resulting in a similar scaling as Mattax and Kyte (1962).
Scaling with (57) assumes that the capillary diffusion coefficient does not change with vari-
ation of the considered parameters; hence, changes of viscosity ratio or saturation functions
violates the scaling, but still gives square root of time behavior. Andersen et al. (2020)
showed that a model for spontaneous imbibition in terms of momentum equations with vis-
cous coupling could be expressed with effective relative permeabilities and therefore still
result in square root of time recovery. Standnes and Andersen (2017) used viscous coupling
as a parameter to better explain time scales of recovery during variation of fluid viscosities.
Ma et al. (1997) proposed how to include variation in geometry in the scaling by replacing
L with a characteristic length L, but the change in geometry from linear causes recovery to
generally not follow a root of time trend. We will present:

e Recovery factor RF against the square root of scaled or unscaled time
e Saturation profiles at identical scaled or unscaled times.

Scaling recovery allows us to distinguish nonstandard mechanisms by recovery follow-

ing other trends than the square root of time and saturation profiles to not overlap at identi-
cal scaled times.

2.10.1 Scaling Numbers for Relative Importance of Brinkman Terms

We here aim to understand when the Brinkman terms affect the spontaneous imbibition
process. We introduce the following scaling:

X t u; U,
p =700 = Jolhip = ( B >’UiD 6»
(22 T (58)
W,
szﬂ’nD_ n’WD=%W 3
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and use our assumption of constant water density in (37) which yields the following scaled
water mass balance equation:

¢e(Sw)T = _(waTD)X - ¢[WD(J)X]X
EnprnwO WD
ll'tref(beL2 S_o

szpw WwD
Mref¢eL2 SW

(nD(”nwD)X)X + (mD(”wD)x)X

X
(59)
The first term on the RHS may be nonzero due to compressibility (in gas cases) but will

be zero otherwise. The capillary diffusion term is considered the main driving force during

counter-current spontaneous imbibition. By dividing the fluxes in the Brinkman terms to
the flux in the capillary diffusion term, we obtain:

E - EnprnwO (nD(u"WD)X)X ngpw WWD (mD(uWD)X)X
Ca Hrqfd)d)el‘z Sy ”rgf¢¢gL2 S, Wp(x

(60)

All the saturation and gradient-dependent terms are normalized such that the coeffi-
cients with constant parameters are dimensionless scaling numbers that reflect the relative
magnitude of the two mechanisms. For given input functions we can thus expect the Brink-
man terms to become more important by increasing the magnitude of these numbers. Also,
by varying the parameters within them in such a way that the numbers remain constant, we
can expect the impact to be similar.

Table 1 The model reference input parameters based on matching experimental data from Bourbiaux and
Kalaydjian (1990) in the work by Qiao et al. (2018) not considering fluid compressibility or Brinkman
terms

Rock and fluid Momentum equa- Capillary pressure
parameters tion parameters parameters
L 0.1 m I, 23.26 Ji 0.6
¢ 0.233 L, 2.15 J, 8
oo 1090 kg/m? I, 172,500 (Pa-s)™! A -0.1
P00 760 kg/m® 1, 2300 (Pa-s)™! ky 1.3
Pao 0 kg/m?3 a -0.2 k, 5000
C, 10" Pa/(kg/m®) B 15 n, 1
C, 1010 Pa/(kg/m®) €, 0 m%/s ny 1
C, 10° Pa/(kg/m?) £, 0m?/s
Sy 0.4
Spr 0.425
u, 1.5¢cP
H, 1.2cP
Hg 0.02 cP

118 mD
G 72 mN/m
o 15.8 mN/m

ow

When the same reference value is assumed for oil and gas, the phase index is denoted ‘nw’
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Fig.2 Experimental validation
of the model, modified from

Qiao et al (2018), assuming - - - - Reduced mobilities
incompressible fluids and zero by viscous coupling

viscous terms. The model cap- w 08 Co-current mobilities /
tures the delay caused by viscous 24 O Experimental (B & K, 1990) ¢
coupling on the effective relative > 06 /
permeabilities as multiphase flow g
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ventional’) to counter-current X g4
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Kalaydjian (1990) 0.2
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107" 10° 10" 10?
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3 Results and Discussions
3.1 Input Parameters

The model reference input parameters are given in Table 1. The porous medium is
assumed homogeneous in all the examples. The saturation function parameters and oil,
water and rock parameters are based on experimental measurements from Bourbiaux
and Kalaydjian (1990). The J-function parameters in (46) were fitted directly to their
measured capillary pressure curve, while fluid—fluid and rock—fluid interaction coeffi-
cients and exponents were set to consistently match their co-current relative permeabili-
ties using (50) and (51) and counter-current spontaneous imbibition data. Especially,
explaining their imbibition measurements required lower mobilities during counter-
current imbibition than the ones measured under steady-state relative permeability
tests which was achieved by a nonzero fluid—fluid interaction coefficient /. Parameters
obtained from those data related to our presented model were obtained in Qiao et al.
(2018), where the experimental data were reproduced with a consistent set of param-
eters, as listed in the table. Their match of the imbibition data is shown in Fig. 2 for
demonstration. Brinkman terms were then not accounted for (g; = 0) and the fluids were
assumed incompressible. Water and oil are also here modeled as incompressible, while
gas is modeled compressible according to the ideal gas law with a density of 1 kg/m® at
atmospheric pressure. Our base assumption will also be that €; = 0 since the experimen-
tal data would not allow direct estimation of this parameter and to provide a reference
behavior before adding the role of the Brinkman terms. Gas—water capillary pressure is
obtained from oil-water capillary pressure by scaling with the IFT according to (17),
both shown in Fig. 3 left. Higher initial capillary pressures lead to higher non-wetting
phase initial pressures and densities. The pressure—gas density relation is shown with
initial density marked for different permeabilities K in Fig. 3 right.

The interaction coefficients applied in the momentum equations for the oil-water ref-
erence case are shown in Fig. 4. Note that they are proportional to viscosity divided
by permeability, see Egs. (47), (48) and (49), and will change from case to case. This
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60 Capillary pressure function 28 Density-pressure relation for gas
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Fig.3 Left—Capillary pressure curves for oil-water (based on Bourbiaux and Kalaydjian 1990) and water—
gas (based on scaling with IFT); Right—Pressure—density relation for gas, IFT =72 mN/m. The maximum
gas pressure and its corresponding gas density at initial condition are plotted with two different absolute
permeabilities

ensures consistent behavior with Darcy’s law if the fluid—fluid interaction terms and vis-
cous terms are zero. For example, setting / = 0 in Egs. (50) and (51) produces Corey
relative permeabilities. To preserve the same amount of viscous coupling and identical
counter-current relative permeabilities when defining parameters for the gas—water case
the product Iu,,, was kept the same as for the oil-water case; hence, the low gas viscos-
ity requires a higher values of I, see Eq. (49).

11 Interaction coefficients

Fig.4 Water-rock (I/Ew), oil-rock

e . 10 T .
(lc\u) and water—oil interaction g
(k) coefficients. These curves are 5
proportional to viscosity divided 107F
by permeability and are thus case
dependent 10% F E
g 108¢ 3
Q
&
=
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Fig.5 Simulation of water—oil displacement for different choices of the fluid—fluid interaction coefficient I
(in Pa~! s!) with comparison against the core scale simulator IORCoreSim (Lohne 2013) using counter-
current relative permeability functions

3.2 Oil-Water Simulations (Incompressible Fluids)
3.2.1 Variation of the Viscous Coupling Coefficient /

In Fig. 5 we have varied the viscous coupling coefficient / for the oil-water reference
case. As mentioned, oil and water have been assumed incompressible and we assume
the Brinkman term is zero. Higher values of the coefficient I increases the viscous cou-
pling and reduces the effective relative permeabilities of both fluids, see Eq. (53). The

’ 1h ; 4h ; Oil Recovery
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Fig.6 Variation of the Brinkman coefficient of water €,,. Left—wetting fluid saturation profiles at different
times. Right—oil recovery profiles
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imbibition rate is therefore reduced at greater /. In all cases, the recovery follows a
square root of time profile at early time, as derived by Andersen et al. (2020) under these
conditions. By implementing the effective relative permeabilities into a porous media
simulator, in this case IORCoreSim (Lohne 2013), the same results were obtained (cir-
cles) as with our model (lines), thus validating our numerical model. The comparison
was made for / = 0 (with no viscous coupling) and 7 = 2300 (the reference case). Note
that the reference case demonstrates a significant reduction of imbibition rate caused
by the viscous coupling effect. The saturation profiles, presented at equal times, display
less water imbibed with higher viscous coupling since the imbibition rate is reduced.

3.2.2 Variation of Viscous Terms

First, we want to estimate the effect of the viscous forces within the wetting fluid by
comparing the numerical results obtained by varying the magnitude of the wetting flu-
id’s effective viscosity. The relevant results are shown in Fig. 6. We can see that the
water front is slower and the saturation profile is steeper when its viscosity effect is
strong. The reason is that high viscosity coefficient €,, can reduce the water front veloc-
ity gradient since it requires more energy to break the front shape of displacing water.
We may understand it as a gel if water has a high viscosity coefficient. A close look at
the saturation profiles shows that the profiles with high viscous coefficient obtain differ-
ent shapes with time: the black curves obtain lower front saturations with time (~0.99
at 1 h, 0.95 at 4 h, 0.9 at 8 h and 0.85 at 15 h). On the other hand, theory predicts that
saturation profiles should be invariant in shape before encountering the no-flow bound-
ary if the viscous terms and compressibility are ignored (Andersen et al. 2020). In other
words, each saturation’s distance increases proportionally with the square root of time
but their relative position is fixed. We also see that the curves with large viscous coef-
ficients deviate from linear recovery profiles against square root of time, most notice-
able for the black curve. Based on our simulations, the viscosity coefficient does not

Oil Recovery

Ews€o =0

ew = 0,&, = 103
w =0,€, = 10*
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Fig.7 Variation of the Brinkman coefficient of oil €,. Left—wetting fluid saturation profiles at different
times. Right—oil recovery profiles
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have strong effect on the oil recovery rate before the viscosity coefficient increases to
g, > 10* m?/s.

In Fig. 7, we investigate the viscous effect from the non-wetting fluid (oil) by varying
€,. Higher values reduce the recovery rate and delays the saturation profiles. In this case,
oil moves like a gel for high oil viscosity coefficients; therefore, it is difficult to deform
the front shape of displaced oil. This also will make the oil recovery process very slow
and the viscous effect significant. Note that water takes significant time to accumulate
at the inlet side and maintains a low saturation there until water has managed to spread
across the system. The increasing saturation at the inlet is again demonstrating that the
profile is not invariant and changes with time. Varying the oil coefficient has a profound
impact on the recovery rate and reduces it already at £, > 10* m%/s. For moderate values
of £, a delay (very low imbibition rates) is seen at early times and then followed by lin-
ear recovery against square root of time. That can explain the observed induction times
sometimes reported experimentally before theoretical imbibition behavior is established
(Akin et al. 2000; Tang and Firoozabadi 2000; Zhou et al. 2000; Fgyen et al. 2019). We
see especially that the recovery lines of €, = 10* and 10* m%/s are parallel to the one
without viscous terms. For even larger values, that does not seem to be the case. Water
seems to displace oil in a less efficient way at a given value of €, compared to if that
value was set for ¢,,: see the recovery profiles in Fig. 7 compared with those at the same
times in Fig. 6 Note also that the saturation profiles are affected in opposite ways, by
becoming flatter for high oil coefficients and steeper for high water coefficients.

The previous dominance of the oil viscous coefficient was further investigated in
Fig. 8 where we vary the viscosity coefficients of both water and oil with equal values.
We see a strong reduction of the recovery rate when both coefficients are increased.
Lower coefficient values are required to get similar recovery response as for only vary-
ing the oil coefficient (one order of magnitude) or only the water coefficient (two orders
of magnitude). The water saturation profiles at different times are similar to those in
Fig. 7 where we only increase the oil viscosity effect and have low saturations near the
inlet, but are steeper inside the core which may be due to the water coefficient.
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Fig.8 Variation of the Brinkman coefficients of both oil and water (with same value). Left—wetting fluid
saturation profiles at different times. Right—oil recovery profiles
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Fig.9 Demonstration of scaling the relative importance of Brinkman terms over capillary diffusion. The
blue curve has zero Brinkman terms, while the red curve has significant delay by the Brinkman terms. The
remaining cases have increased the ratio # by a factor 4 by either changing length, permeability or Brink-
man coefficients which has given the same result as predicted by the scaling

3.2.3 Importance of Brinkman Terms Based on Dimensionless Numbers

In this section we explore scaling based on the dimensionless numbers presented in (60)
used to indicate the relative importance of the Brinkman terms compared to capillary
diffusion. The numbers specifically state that if we increase the Brinkman coefficients,
permeability or density or reduce viscosity, porosity or length, that will increase the
impact of the Brinkman terms over the capillary diffusion term (for the same saturation
functions). Note that this is based on the assumption that the Brinkman coefficients are
constant.

In Fig. 9 we show the reference case with zero Brinkman terms (blue curve) and with
Brinkman coefficients 10* m?/s for oil and water (red curve) which has caused some
delay in recovery. Compared to this case we make three new cases where either the
Brinkman coefficients are increased by a factor 4 (black ‘4’ markers), the length is
halved (green curve) or permeability is increased by a factor 4 (purple ‘*’ points). This
results in the same increased ratio of S{—f of 4 compared to the red curve case and all
three cases fall on the same line as predicted by the scaling where keeping the dimen-
sionless numbers same should give same behavior.

3.2.4 Match of Experiments with Induction Time

Inspired by the previous observations, we here apply the developed model to explain some
experiments from the literature that display nonstandard behavior. Zhou et al. (2000) con-
ducted forced and spontaneous imbibition experiments on cores with different wetting
states, as determined by how long they had been aged with a crude oil. Behbahani and
Blunt (2005) matched the experiments based on core scale simulation and consistent satu-
ration functions from pore scale. The experimental data did, however, display induction
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Table 2 Experimental rock and fluid parameters from Zhou et al. (2000) and momentum equation and cap-
illary pressure parameters used to match two of their experiments

Rock and Momentum 48 h 72h Capillary 48 h 72h
fluid param- equation param- pressure

eters eters parameters

H 7.1cm I, 10 10 Ji 0.557 1.16
D 3.81cm L, 1 1 J, 0.959  0.621
L. 1.26 cm 1, 0 0 A 0.0582 0.0813
¢ 0.214 a -4 -5 ky 15 50

M, 39.25 cP p =75 0.5 ky 3 3

u, 0.967cP ¢, 10,000 m¥s 23,000 m%s n, 3 3

Puo 1012 kg/m® €, 0 m%s 0 m%s ny

Poo 895 kg/m?

K 350 mD

Oy 24.2 mN/m

i 0.165

s, 0.345

nwr

time in some cases, where the imbibition rate stayed low for an early period before devel-
oping into more significant magnitudes. Our goal was to improve the match of two sponta-
neous imbibition experiments by using Brinkman terms to account for the induction time,
i.e., the period with low rates.

To model the experiments, the known fluid and rock parameters were input to the
model such as oil and water viscosities, IFT, porosity, permeability, core dimensions and
initial saturations, see Table 2. Gravity and fluid compressibility effects were ignored. As
our model was 1D and the experiments were conducted with all faces open on cylindrical
cores, we used the Ma et al. (1997) characteristic length, which for a cylinder with height
H and diameter D is:

Fig. 10 Experimental counter- Oil Recovery
. R 0.5 T T T -
current imbibition data from « °
Zhou et al. (2000) where two 045 - . 1

cores were aged in crude oil with
different aging time (indicated).
Linear trends in the data were
identified (dashed/dotted lines)
between recovery and the square
root of time, which did not start
at zero time. Shifting the lines to
zero time (full lines) indicate the
amount of induction time

Recovery factor, [-]

80 100 120 140 160 180
\/?. vVmin
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DH

L=—2"
©o(p2+2m2)"

(61)

This length is the effective distance to the no-flow boundary. As input parameters for
the J-function and the momentum equations, we respectively tuned the correlation (46)
to the capillary pressure data obtained by Behbahani and Blunt (2005) and also tuned
the momentum equation parameters in the counter-current relative permeabilities (53) to
their relative permeabilities. As they had used the same relative permeabilities to model
co- and counter-current imbibition and not captured the induction time (as is not possible
with standard assumptions), these data were just treated as initial guesses. As we focused
only on the spontaneous imbibition experiments, there was no information to determine the
fluid—fluid interaction parameter / and it was set to 0.

The experimental recovery data were first plotted against the square root of time and a
linear trend was identified, see dashed/dotted lines in Fig. 10. As this linear trend did not
start at zero recovery at zero time, but after a delay (induction time), the slope of the line
was first matched to produce a recovery trend that was parallel to the experimental line
(i.e., the shifted full lines in Fig. 10). In other words, during the main imbibition process
the imbibition rate was matched by the model. This was done by tuning the magnitude
of the J-function, but not its shape (especially the point where capillary pressure crosses
zero determines end recovery during spontaneous imbibition). This resulted in a recov-
ery curve with identical shape as the experimental one, but shifted on the time axis (full
lines in Fig. 11). To match the time shift, the oil Brinkman term coefficient was increased
from zero. This shifted the data sufficiently and continuously to provide a successful match
of the experiments (see the dashed-dotted lines in Fig. 11). The final parameters used to
match the data are listed in Table 2. It could be possible to improve the match of the late
time recovery of the 48-h test by modifying the relative permeabilities; however, our main
goal was to demonstrate the usefulness of the Brinkman terms to model induction time
data.

Spontaneous imbibition has been studied during the induction time with in-situ images
(Fgyen et al. 2019). They indicate a period where local fronts form and develop before
merging to more symmetrical profiles. Induction time has been associated with more

Fig. 11 Simulation of the experi- 05 ‘ ‘ OiI‘Recovery ‘ ‘ '
mental counter-current imbibi- ’ U Lot
tion data from Zhou et al. (2000) 0.45 J
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crude oil with different aging 0.4 o 1
time (indicated). First the slopes 0i35 * ,/ |
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assuming zero Brinkman terms 5 03 A J
. . 5 4
(full lines), then the original § 7
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capture the induction time g
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= T72h aging data
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oil-wet state or low initial water saturation (Tang and Firoozabadi 2000; Zhou et al. 2000),
non-uniform wetting or interaction with epoxy used to seal core surfaces (Fgyen et al.
2019); conditions that complicate the development of a continuous water film. As there are
many reservoirs with mixed- or oil-wet state and low water saturation, this mechanism can
increase the imbibition time. By tracing the straight lines in Fig. 10 to the end of the linear
data period we see that in the 72-h test the induction time caused the duration of the imbi-

2
bition to increase by a factor of ~ (%) = 2.9, while for the 48-h test it increased by

2
~ (%) = 1.44, which both are significant. In many of Tang and Firoozabadi (2000)’s

tests the induction time lasted 25-30% of the full imbibition time, i.e., the time increased
by a factor~ 1.3. Although a standard model could capture a longer time scale, it would not
capture the variation in imbibition rate from low to high and then low again. How this
effect upscales and depends on different parameters is not much explored.

We note that so-called non-equilibrium models (Barenblatt et al. 2002; Silin and Patzek
2004) exist as modifications of classical models which also could offer better adaption to
experimental observations. In those models, the relative permeability and capillary pres-
sure functions are expressed using effective saturations as defined by the saturation plus
a relaxation time coefficient multiplied by the saturation time derivative. By selecting a
proper saturation dependent relaxation time coefficient Silin and Patzek (2004) obtained
a recovery solution with a power function relation at early time and square root of time at
later time. They were able to match experimental data, but did not demonstrate how signifi-
cant the improvement was compared to classical approaches. The motivation of these mod-
els has been experimental findings where imbibition does not display self-similar behavior,
i.e., where recovery does not follow the square root of time and saturation profiles do not
overlap when plotted against a similarity variable. We point out that several of these exper-
iments were conducted using air as non-wetting fluid in low permeability media, e.g., by
Le Guen and Kovscek (2006). As we will see in the following section, gas compressibility
can explain deviation from self-similarity.

3.3 Gas-Water Simulations (Compressible Non-Wetting Fluid)
3.3.1 Impact of Gas Compressibility (by Variation of K) Without Viscous Terms

The effect of gas compressibility is investigated in this section, The gas is modeled as
ideal, which is realistic at lab conditions, by setting C, = 10° and Pqo = 0. The gas then has
an initial density proportional to the initial non-wetting pressure, which increases with cap-
illary pressure, see (45). By considering a system with lower permeability, high water-wet-
ness, or high IFT the initial gas density will be high. The boundary pressure (1 bar), and
gas density at that pressure (1 kg/m?), is the same in all cases. As the system approaches
zero capillary pressure where both phases reach ambient pressure, the gas density in the
system will approach the one at the boundary (1 kg/m®). We expect gas compressibility
to be more significant when the initial density is high compared to the end density, i.e.,
there is a significant gas expansion from start to finish. We test cases at different absolute
permeabilities to obtain different initial densities. As seen in Fig. 3 right, where density
is plotted against pressure, the reference permeability of 118 mD gives an initial density
almost identical to 1 kg/m® at which we expect negligible compressibility effects. Reducing
the permeability by factors of 10 to 11.8 and 1.18 mD gives an initial density of~1.6 kg/
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Fig. 12 Effect of gas compressibility on imbibition front and recovery factor shown in regular time; interfa-
cial tension is 72 mN/m
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Fig. 13 Effect of gas compressibility on imbibition front and recovery factor shown in scaled time; the
interfacial tension is 72 mN/m

m? and ~ 5 kg/ m?, respectively. In the latter case the gas thus expands fivefold from its ini-
tial state to its end state. For contrast, the examples are also generated where the gas phase
is made incompressible case with a constant density of 1 kg/ m?; characterized by setting
P =1lkg/m’and C, = 10",

In Fig. 12 the results of the three cases (compressible and incompressible) are shown
as water saturation profiles at equal times and recovery against square root of time. We
note that reducing permeability has two effects: (1) it reduces the imbibition rate and
delays imbibition profiles, and (2) gives greater separation between the ‘compressible’ and
‘incompressible’ cases with same permeability. For the reference permeability there is no
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real difference, as expected by the negligible density change. For the cases with 10 and 100
times lower permeability, the separation becomes more significant.

To eliminate the effect of permeability on the time scale, the saturation profiles are
shown at same scaled times and recovery is plotted against the square root of scaled time
in Fig. 13. The scaling causes all incompressible cases and the reference compressible
case (118 mD) to overlap. This is expected since when only the rock—fluid and fluid—fluid
effects are significant the imbibition rate is proportional to the square root of permeability.
The only difference between the curves is then related to the gas compressibility. Inspect-
ing the figures, one can see that the compressibility accelerates the imbibition process.
The ‘compressible’ recovery profiles are always higher than the ‘incompressible’ recovery
profiles, and the ‘compressible’ saturation profiles have advanced farther than the ‘incom-
pressible’ ones. The effect is most significant at early time when gas has the highest den-
sity, but small saturation changes can give large capillary pressure changes and cause gas
expansion which contributes to drive gas out. At t = 107 (\/t/_r = 3.2) water saturations
have increased over the entire core, reducing capillary pressure and non-wetting pressure.
Most of the gas expansion has then occurred. There is a visible decline in imbibition rate
even earlier, already at \/t/_r = 2 for the 1.18 mD case with fast water front movement.
This case has a recovery factor which is 0.20 higher for the compressible cases compared
to the incompressible case for a significant period of time. The imbibition processes, how-
ever, appear to end at similar times.

3.3.2 Matching Experimental Data
Counter-current 1D spontaneous imbibition experiments were conducted by Roychaudhuri
et al. (2013) where deionized water imbibed into cubic shale samples with only one side

open for flow, and gas was displaced. Shales have very low permeability and are developed
by hydraulic fracturing with mainly water-based fluids. Shales can consequently develop

Table 3 Input parameters to match the experimental data from Roychaudhuri et al. (2013)

Rock and fluid Momentum equa- Capillary pres-
parameters tion parameters sure parameters

'L 0.0l m I, 4.88 - 10° Jy 0.81
) 0.0246 L. 4.52 - 107 J, 10.8
Po 1000 kg/m® Iy, 3.62-107(Pas)™ T4 -0.135
Peo 0 kg/m? a -02 k, 1.3
c, 100 Pa/(kg/m®) B 15 ky 5000
C, 10° Pa/(kg/m?) £y 0 m?/s n, 1

Sy 0.2 £, 0 m%s n, 1
Snwr 03

M, 1.0cP

Hy 0.02 cP

'K 0.4 mD

O 72 mN/m

gw

The fluid parameters were assumed based on typical values of deionized water and gas at standard condi-
tions. End saturations were arbitrary. No saturation function data were available, and the reference param-
eters based on the data from Bourbiaux and Kalaydjian (1990) were therefore used
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large capillary pressures, which we predict to cause significant gas compression. Imbibition
in shale has demonstrated unexpected imbibition behaviors and particularly Roychaudhuri
et al. (2013) observed that their imbibition data obtained two linear trends when recovery
was plotted against the square root of time. Standard modeling should only display one
linear trend, but as seen from our sensitivity analysis in Fig. 13, significant gas compress-
ibility causes two apparent linear slopes. We thus expected the inclusion of compressibility
to better match their experiments and did so for their test #17.

Without measured saturation functions for those samples, we tuned the reference satu-
ration functions and compared recovery data scaled from O to 1. The time scale of the
test depends on the magnitude of the capillary diffusion coefficient, which combines
fluid mobilities, permeability, J-function, porosity and interfacial tension. The impact of
compressibility depends on the initial capillary pressure, which depends on permeabil-
ity, porosity, interfacial tension and J-function, but not fluid mobilities. Representative
parameters were assumed for air and deionized water, while arbitrary end saturations were
assumed. Porosity, permeability and length were from the experimental measurements.
The magnitude of the J-function, as well as the magnitude of the relative permeabilities
were tuned to match the experiments. The applied parameters are listed in Table 3. Nota-
bly, the relative permeabilities required lower magnitudes than the base functions (as seen
by the high /,,1,,,1), while the J-function had a similar magnitude as the base function.
The best match of the data indicated that the initial gas density was 4.6 kg/m> which sug-
gests significant expansion toward 1 kg/m? during the recovery process.

The experimental data are shown in Fig. 14 as recovery against square root of time.
Two straight lines are plotted to indicate the two distinct linear sections. It is seen that
the model captures very well the two linear slopes drawn through the experimental data
when gas compressibility is accounted for. Treating the gas as an incompressible fluid
results in a straight line. Our model hence explains the untraditional observation of two
linear slopes of recovery vs square root of time during counter-current imbibition in
shale. It is well documented that shales can display nonstandard flow and storage mech-
anisms such as slip, adsorption, Knudsen diffusion, confinement of nanopores, etc. (Sun
et al. 2015; Pitakbunkate et al. 2016; Zhang et al. 2019; Klewiah et al. 2020). How-
ever, their importance and to what extent effective Darcy properties can capture them is

Fig. 14 Experimental data (trian- Gas Recovery

gles) from test #17 in Roychaud- ‘ ' Z
huri et al. (2013) of water—gas 0.9
counter-current imbibition in
shale. Recovery vs square root of 0.8 1
time displays two linear slopes — 07
which could be matched with -
our model by accounting for gas % 0.6
compressibility. Treating the gas 8
as incompressible results in a g‘ D& J 1
classical straight line 3 04
3
T 03r 1
& data
02 =-==2 lines fit 1
01+ '('Olll])l'(‘SS”)llﬁ‘ 1
e inICOMIPTeESSible
0 ‘ ‘ . : ‘ ‘
0 1 2 3 4 5 6 7 8
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10 7 Gas Recovery

Recovery factor, [-]
o
(4]

compr incompr

0 0.05 0.1 0 0.05 0.1
X, m X, m

Fig. 15 Effect of Brinkman coefficient (same value is used for both fluids) during gas—water imbibition.
The effect of compressible and incompressible gas is also shown. The absolute permeability and interfacial
tension are 1.18 mD and 72 mN/m respectively

debated. We here find that the main nonstandard behavior was captured by accounting
for the compressibility of the gas, which our model predicts has more impact in tight
media with high capillarity.

3.3.3 Combined Impact of Compressibility and Viscous Terms

Finally, we are interested in estimating the combined effect of Brinkman viscous terms
and gas compressibility. The Brinkman coefficient for both fluids was varied with equal
values for both fluids and the absolute permeability was set at 1.18 mD to get a pro-
nounced compressibility effect. Corresponding incompressible cases were also gener-
ated. The results are shown with scaled time in Fig. 15. For compressible or incom-
pressible cases, an increase in the Brinkman coefficients € reduces recovery rate.
Compressible cases have higher recovery than their corresponding incompressible case.
It also seems that compressibility plays a dominating role on recovery over the Brink-
man coefficient at early times. For £ < 10* m?/s the recovery profiles of the compress-
ible cases are close to identical up to a recovery of RF = 0.5, but differ at higher recov-
eries (later times), with high Brinkman coefficients yielding lower recovery.

4 Conclusions

In this paper we have studied counter-current spontaneous imbibition driven by cap-
illary forces. The model was formulated based on mass balance and momentum bal-
ance equations which account for fluid—rock interactions, fluid—fluid interaction, fluid
compressibility and Brinkman terms. The model was parameterized based on a previous
match of literature experimental data and validated against a commercial software for
conditions where that was possible. Sensitivity analyses were carried out for a water—oil
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Fig. 16 Staggered grid used for B, P, P, P; Py, Py
discretization my m, m, m; my_, my
0 4w 1y 2 “u I u N-1,, N Ug

W A :
2 2 172 1% N=3

and a water—gas system and used to assess the potential role and importance of the dif-
ferent mechanisms.

(1) Based on water—oil flow simulations, we observe that the impact of increasing the
Brinkman term of the displaced fluid (oil) has more impact on the fluid flow than the
Brinkman term of the displacing fluid (water). For both terms, a larger value can delay
the recovery process.

(2) With a significant Brinkman term for an incompressible non-wetting phase the recovery
curve was delayed at early times, but displayed linear behavior against the square root
of time at later times. This could explain and match oil-water spontaneous imbibition
experiments with induction time reported in the literature.

(3) Using scaling a dimensionless number was derived to indicate when Brinkman terms
were important relative to capillary diffusion. For other parameters constant, same
impact was seen when Brinkman coefficient times permeability divided by length
squared was fixed. Stronger impact was seen by increasing this ratio.

(4) We found that recovery of displaced fluid was affected by its compressibility behavior,
here defined as an ideal gas. Incompressible displaced fluid was displaced slower than
if it was compressible, but the difference was only significant when the initial non-
wetting pressure was so much greater than the external ambient pressure that the gas
could expand significantly.

(5) Conditions where gas compressibility is significant could be typical and our results
demonstrated that strongly water-wet media with permeability less than 10 mD will
have higher imbibition rates than if the fluids were incompressible, which affects simu-
lation of the experiments. The recovery process seemed to end at comparable times.

(6) Gas compressibility could explain why water—gas imbibition in shale shows two linear
slopes of recovery in a square root of time plot. It is mainly because compressibility is
more significant than higher permeabilities. Literature experiments could be explained
with this mechanism included. The two-slope observation should be expected for any
porous media with high capillarity during water—gas counter-current imbibition.

(7) Combining the effects from both fluid compressibility and Brinkman viscous terms, the
compressibility effect could overcome the recovery delay resulting from the Brinkman
viscous terms, leading to a fast gas recovery process.

Appendix A

Discretization

The length scale is normalized by introducing dimensionless coordinate:

Xp =

(62)

~I=

The Eqgs. (23) to (26) become:
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(m), + (mu,,) /L=0 (63)

Su(P /L = =k, + k(i —u,) +e,(m(u,) ) /L (64)
$o(Py + Po)o/L = =kt + k(1 = 10,,,) + 3, (n (1) ) /L (65)
(P,); +7ip,, (nttyy,) /L + 71y, (mut,,) /L =0 (66)

where we skipped notation “D” for x;, for reading simplicity. The spatial domain [0,1] is
divided uniformly into M computational cells. A staggered grid (Fig. 16) is used where the
values for masses m;, n; and pressures P,, P, , P, are located in the center of the cell and
velocities u,,, u,,, on the interfaces.

On the left boundary we set water pressure and capillary pressure as:

P,liep = 10°Pa, P |;y =0 67)
The boundary water saturation is calculated by inverting the capillary pressure function:
Suli=o = P (Pcljzo) (68)
Since the right end is closed we set the fluids velocities there to zero:
Uy lns1y2 = Uolys1p =0 (69)

A time domain [0, 7] is discretized using a logarithmic scale in order to provide suffi-
cient accuracy at the initial stage of the imbibition process which is characterized by large
velocity gradients. First the mass conservation equation is discretized:

k+1 k
SR _L([mu 11 = fmu ]k+1> (70)
Ar AL\ w3

2

where the upwind scheme is used to discretize the flux:

kb ek .
[ ] = mj w1 /2 ifu w}g+1/2 2 0; 71
Wil T mk u ifut >0 71
2 JHL w1727 w,]+1/2 =

In order to get coefficients in the next step, we need to update the water saturation:

k+1
sk+1 /2 _ mj 72)
w,j k
()
non-wetting fluid pressure:
K+l
P = PP, <st> (73)

and the non-wetting fluid mass:
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k+1/2 ket 3 kt3
n; 2= (1—stz>p0<P0J“>

(74)

The next step is simultaneous computation of wetting fluid pressure and wetting and
non-wetting fluid velocities with pressure evolution and momentum conservation equations

discretized as follows:
k+1
At

1

k+5 1 (e k1) _
Pl i) =

()J+ AX wJj+ wyJ

SR | Akl Akt L
s 1_(Pﬁ:lr1 _P];,rjl> =—L-k 2o —Lek Pt —dt
W‘H'z Ax W‘H'z m]+z _]+2 wj+ (1,/+2
1
PR Sy (e Y SS SU R
VAL [Twis wieg J
Pk+] _Pk 1
Wi wi =kl k+L okt K+t kel
L———— +[ijp, I — [n 2y ] [n 2uU
At I Ax ¢ s o
ket 1 k1 et k+1 k+l
+[np”] A ( W ]J+f [m ]j—f _O
where
k+1/2 .
SWJ ’lf w,1+1/2 > O
172 2 k+3 k+* _ N
w,/+f (sWJ WJ+1 /2. lfu =0

k+1/2 .
Sw1+1 ’ lf wy+1/2 < 0

Values for sk+ir/ 2, kkfl/ ,2 and, kk+1/ * follow the same logic.
wj ,

2 S
121’.‘“/21, | i, > 0)&qu+l P
N kL jas
k;:;/z = kj+2 k:12>/2’ if ”va,j+1/2 ) ”ﬁ,,'+1/2 <0
]%;:11/2’ 1f w,/+l/2 < 0’&u0,/+l/2

There are 3(N — 1) equations for 3(N — 1) unknowns.

0.

<0

(75)

(79)

(80)

On the left boundary we set the non-wetting fluid pressure: P, |,_, = 10° Pa
We also set the mass flux derivatives for both fluids on the boundary block to be zero:
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0 0
a(muw) lp =0, a(muo)lo =0 81D
sk+5 1 (Pk+11 0> _sk-l-]% 1 k-ll—% 0
0.3 Ax\ W 0,5 Ax 6
At L At L
—L-k Jrlzuk“fl L+ lir2 <u"+ll - ukﬁl> (82)
0,5 ()J+§ 3 W,3 0,5
K+l
AT <n1 : [ukﬂ - uij—l])
K+t k Akt L
sw+f é(Plv(:ll 0) = -L kw+f u]:rll L k;z (u]:r]l - u];+,1>
2 2 2 ) 1 2 2 2 (83)
: m1+2 uk+§1 _ k+ll
AXZL w,3 3
On the right boundary node (no-flux boundary), u,,|y1 /2 4| n4+1/2 = 0 we have
k+1 k
my —my 1 k1
A _Ec(o — [mMW]N_l/Z) @4

k11 M+ ikl kL kL
sN A (Pﬁfrl\l,—Pﬁfl\lll)=—S 2 —<P_ 2—p 2 )—k 211/‘“ |tk yktl gkl
oN-5 AXx b S b g

1

k+5 1 Akt Akt .
R _(Pk+1 pr+l >__k,2 luk+1_l_k 2 uk.+1 e
2

wN-1 Ax w.N-1
1 K+ k+1
+¢, > m, o= uk+l - mN_z] uk+1 - Mk+l |
Ax w.N=3 wN=3 wN=11

(86)
P+l _ ph 1
w.N w.N k+1 k3 ket + fet skl —
s etint' g (0= [rrte] ) el g (0- [ ) =0
87)
Finally, we update the wetting fluid saturation:
i
Sl i (88)
" k1
pW<Pw:;' )

Appendix B
Grid and Temporal Sensitivity Analysis

A grid sensitivity analysis was performed to check that the numerical solutions were not
sensitive to the number of cells. The results are shown in Fig. 17 for the reference case with
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Fig. 17 Oil recovery profiles 4 ‘ Oil Recovery
produced by the script in the
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two values of / and indicate little change once 200 grid cells have been used. Temporal
convergence analysis was also performed by time step variation for the case with I = 2300
and 200 grid cells. 0.5 s was approximately the stability limit for that case and two cases
with half and a quarter of that time step were simulated. It is indicated that time step size
did not affect the solution as long as it was small enough for the simulation to be stable.

Appendix C

Global mass error analysis

Consider the water mass balance Eq. (23) repeated below:
(m), + (mu,) =0, (89)

We integrate it over the core from x = 0 to L and divide by L.

1 _ 1k
m) — —(mu _0=0,m= = [ mdx.
(71), = £ (s, ) imo ek (90)
In the above, m is the spatially averaged value of m across the system at a given time.
Further, integrate over time to obtain:

t
[t — o) =+ [ (mu, ) |,—gdt = 0. o1)
L2
This equation tells us that the change in the average conserved variable m is due to
transport across the open boundary. If the numerical scheme introduces any error, the dif-
ference between the two terms might be nonzero. We can therefore define a relative global
mass error as follows:
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9 x10712

Relative error, %

1 L L 1
0 2 4 6 8 10 12 14 16 18 20
t,h

Fig. 18 Relative global water mass error of the reference case as a function of time

E= [ﬁ(t) - ﬁo] - % Iy (m”W) limodt ©2)
= [(e) — | ’

To evaluate the magnitude of this error, we ran the reference case (with 200 nodes) and
plotted the relative error E in Fig. 18. We clearly see that the water mass is conserved with
a rather low value of relative error E defined in (92), more than 12 orders of magnitude
lower than one percent of the total mass change.
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