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Abstract

The transition to a net-zero energy system requires large-scale integration of variable
renewables, increasing demand for flexibility beyond short-term batteries and seasonal
hydrogen. Emerging storage technologies feature cost structures that position them
between these options, offering discharge durations of several hours to a few days,
here referred to as mid-term storage. However, their economic feasibility depends
strongly on their techno-economic parameters and evolving market dynamics.
Identifying profitable and robust storage configurations under uncertain future market
conditions is therefore crucial to bridge the perspectives of technology developers and
investors. We employ the agent-based electricity market model PowerACE, which
explicitly represents market participants as interacting decision-making agents. Using
mean-reverting stochastic representations of fuel prices and renewable generation, we
capture the impact of uncertainties on storage profitability from an individual investor’'s
perspective. The analysis determines the maximum capital expenditure that still yields
economically viable storage configurations across relevant combinations of techno-
economic parameters. The results reveal that profitability is limited under current cost
conditions, as the marginal contribution of storage capacity declines sharply with higher
storage durations. At the same time, higher round-trip efficiency not only improves
returns but also reduces market risk. Balancing efficiency, costs, and duration is
essential for mid-term storage competitiveness, while risk-based assessments can
guide robust technology and investment decisions.
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Abstract

The transition to a net-zero energy system requires large-scale integration
of variable renewables, increasing demand for flexibility beyond short-term
batteries and seasonal hydrogen. Emerging storage technologies feature cost
structures that position them between these options, offering discharge du-
rations of several hours to a few days, here referred to as mid-term stor-
age. However, their economic feasibility depends strongly on their techno-
economic parameters and evolving market dynamics. Identifying profitable
and robust storage configurations under uncertain future market conditions
is therefore crucial to bridge the perspectives of technology developers and
investors. We employ the agent-based electricity market model Power ACE,
which explicitly represents market participants as interacting decision-making
agents. Using mean-reverting stochastic representations of fuel prices and re-
newable generation, we capture the impact of uncertainties on storage prof-
itability from an individual investor’s perspective. The analysis determines
the maximum capital expenditure that still yields economically viable storage
configurations across relevant combinations of techno-economic parameters.
The results reveal that profitability is limited under current cost conditions,
as the marginal contribution of storage capacity declines sharply with higher
storage durations. At the same time, higher round-trip efficiency not only im-
proves returns but also reduces market risk. Balancing efficiency, costs, and
duration is essential for mid-term storage competitiveness, while risk-based
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assessments can guide robust technology and investment decisions.

Keywords: Energy storage, Electricity markets, Investment risk, Capital
expenditure, Storage technology design, Mean-reverting processes

1. Introduction

To achieve the Paris Agreement’s objective of limiting global warming to
1.5 °C above pre-industrial levels, global greenhouse gas emissions must reach
net zero by mid-century [I 2]. In the electricity sector, this led to a rapid
expansion of variable renewable energy sources, which already induced pro-
found structural changes [3, 4, [5]. Increasing renewable shares complicate the
challenge of balancing supply and demand, thereby requiring enhanced sys-
tem flexibility. Besides flexible conventional generation (e.g., hydrogen-ready
gas turbines), additional flexibility can be provided by electricity storage,
demand-side response, sector coupling, such as the integration of electroly-
sers, which enable load shifting and enhance grid stability [0, [7, 8]. While
battery storage provides short-term flexibility by mitigating imbalances be-
tween surplus and deficit renewable generation, hydrogen-fired power plants
and electrolysers are projected to offer seasonal storage solutions, comple-
menting established resources such as hydropower |9, 10l [IT]. However, both
technologies face constraints: lithium-ion batteries remain costly for long
storage durations and rely on critical raw materials [12] [13], while hydro-
gen costs and quantities are uncertain and electrolyser deployment is still in
early stages [14], 15]. In this context, we refer to storage technologies de-
signed to continuously discharge energy from several hours up to a week as
mid-term storage, positioning them between battery systems and seasonal
storage solutions.

This creates an opportunity for emerging storage technologies to bridge
the gap between short-duration and seasonal storage solutions and provide
advantageous alternatives to established options in terms of, e.g. geographi-
cal independence and material usage [12} 16}, 17, [I8]. Evaluating the technical
design parameters of emerging energy storage technologies is therefore cru-
cial to assess their suitability and potential. However, metrics such as the
Levelized Cost of Storage (LCOS) offer only limited guidance. Being cost-
based, LCOS does not adequately capture the revenue potential of storage
technologies and is highly sensitive to assumptions regarding their utilisa-
tion |19 20], 21]. To address these limitations, inverse methods are required,



aimed at determining the maximum capital expenditure (CAPEX) of stor-
age technologies across different combinations of technical design parameters
that still allow economically viable investments [22].

At the same time, investors face significant uncertainties when considering
emerging technologies, which strongly influence investment decisions 23] 24]
25]. Key parameters such as renewable generation profiles and short-term
price dynamics are inherently stochastic and often exhibit mean reverting
behaviour, fluctuating around long-term equilibrium values [26], 27, 28|, 29].
Focusing on these mean reverting uncertainties enables a systematic assess-
ment of investment risk and the identification of storage configurations that
remain robust under realistic variations in market conditions. Assessing fac-
tors such as storage capacity, charging and discharging power, round-trip
efficiency (RTE), and CAPEX allows technology developers to design the
required system configurations, thereby creating conditions for economically
viable investments in future technologies. Against this background, this work
aims at:

e systematically assessing mid-term storage configurations by considering
storage capacity and RTE as key technical design parameters,

e using mean reverting stochastic processes for fuel prices and renewable
generation profiles to assess their impact on electricity prices and the
resulting profitability of storage configurations, and

e ultimately, and as the main contribution, identifying economically vi-
able and more robust investment options under varying future market
conditions.

By considering mean reverting stochastic processes in fuel prices and re-
newable generation profiles within the Power ACE market model, this study
quantifies how these inherent uncertainties influence the profitability of stor-
age technologies. An inverse method is applied, systematically exploring
all combinations of technical design parameters to determine the maximum
CAPEX for profitability. By assessing both technical parameters and varying
future market conditions, the findings underline a key gap in current research:
the lack of integrated methodologies that inform storage technology design
based on future investment viability.

The remainder of this paper is organised as follows. Section [2] provides a
literature review and identifies the existing research gap in the assessment of



techno-economic storage parameters under uncertainty arising from weather
variability and fuel prices. Section |3| presents the methodological framework,
including the modelling of mean reverting stochastic processes, the agent-
based power market model PowerACEﬂ, the assessment of risk preferences,
and the assumed input data underlying each of these methods. Section [
presents the results, including an analysis of the impact of mean reverting
processes on electricity price trajectories and storage profitability. Section
discusses the implications and limitations of the findings for technology de-
velopers and investors and Section [6] concludes with key insights and recom-
mendations for future research.

2. Literature review and research gap

This section critically reviews the literature on energy storage assess-
ment, focusing on cost-based and market-revenue-oriented methods. It high-
lights the limitations of conventional metrics, the partial advances of techno-
economic approaches, and the remaining gap in linking technical design pa-
rameters with investment risk and economic viability under uncertainty. This
gap motivates the integrated, risk-informed approach presented in this study.

To assess and compare energy storage technologies, the literature often
relies on techno-economic metrics such as the LCOS, which has been widely
applied to evaluate the cost performance of different storage options under
assumed technical and economic parameters. Various studies have applied
LCOS calculations to a broad range of technologies. The relative cost com-
petitiveness of these technologies is investigated, including lithium-ion bat-
teries, pumped hydro storage, and compressed air storage [31], with redox
flow batteries and hydrogen storage additionally considered [19, 20], as well
as emerging systems with gravity- or heat-based storage [32] such as Carnot
batteriesﬂ [33]. The reviewed studies identify battery storage as most suit-
able for short-duration applications and hydrogen or power-to-gas systems
for seasonal storage, while assessments of compressed air energy storage and
pumped hydro differ, with some studies classifying them as short- and others
as mid - or long-duration options.

LA description and overview can be found in Fraunholz (2021) [30]
2Carnot battery also is referred to as pumped heat energy storage or, less specifically,
power-to-heat-to-power energy storage.



Further studies provide more detailed technical analyses primarily for
compressed air and thermal energy storage systems, where the respective
models are optimised with respect to the LCOS [34, 35, 36]. As most studies
assume fixed storage durations between 6 hours - 10 hours, Tassenoy et al.
[37] show that Carnot batteries maximise the net present value at a 14.5 hours
charge and 21.8 hours discharge, while McTigue et al. [38] find financial po-
tential of Carnot batteries to compete with Li-ion batteries at charge dura-
tions above 6 hours. The sensitivity analyses presented across these studies
reveal that the LCOS is highly sensitive to the discharged energy volume and
the electricity purchase price. Therefore, as a purely cost-based indicator, the
LCOS offers only limited explanatory power for informing technology devel-
opment and investment strategies. It does not adequately reflect the revenue
potential that storage technologies can realise in electricity markets [21].
Consequently, additional research increasingly emphasises techno-economic
modelling approaches that combine technical performance parameters with
market-based revenue assessments.

These approaches enable a more comprehensive assessment of storage
profitability by considering key financial indicators, including contribution
margins, the net present value or the internal rate of return. Taponen et
al. [39] evaluate mid-term energy storage options based on day-ahead and
intraday market prices for Finland in 2023. They find that, while day-ahead
trading alone is not economically viable, intraday operations can improve
profitability. With a focus on the investor perspective, Spodniak et al. [40]
investigate key factors influencing the economic viability of large-scale, cen-
tralised electricity storage in the day-ahead markets in Germany, the UK
and Scandinavia during the period 2006-2016 for different Energy-to-Power
(EtP) ratios. The find that for the markets and time-frame considered, the
marginal increase in contribution margins decreases quickly as the EtP ratio
is increased, where the highest specific contributions margins (per MWh of
storage capacity) are observed for an EtP ratio of 1. By analysing lithium-
ion battery performance in day-ahead markets in 22 countries (2016-2022),
Komorowska et al. [41] find that batteries yield a negative net present value
under their capital costs assumptions for 2022. Poli et al. [42] came to
the same conclusion for redox-flow batteries, evaluating them in the Ital-
ian market. Cetegen et al. [43] find that a liquid air energy storage in the
Texas electricity market with a 16 hours charge and 8 hours discharge can
cover both CAPEX and operational expenditure, whereas Vecchi et al. [44]
show in a UK case how simultaneous participation in reserve markets can



further increase revenues. Similarly, Nitsch et al. [45] simulate the German
day-ahead and automatic frequency restoration reserves markets to evaluate
revenue potentials of battery storages using an agent-based electricity market
model. For a 2030 market with high shares of renewable energies, they find
that compared to 2019, the economic potential will increase and so will the
importance of the day-ahead market.

Nevertheless, even within more market-based modelling frameworks, most
studies still rely on predefined cost assumptions and focus on specific storage
technologies. While such analyses can indicate whether a given technology
may be economically viable under certain conditions, they do not provide in-
sights into how storage systems should be designed or which techno-economic
parameter combinations (i.e., investment cost, storage capacity, or round-
trip efficiency) would enable profitability. Consequently, there is a need for
approaches that explicitly link technical design parameters to economic feasi-
bility. Esser et al. [22] develop a multi-objective inverse modelling approach
that links technical design parameters directly to generation expansion plan-
ning. They demonstrate their approach for Carnot batteries using a model
setup that includes five European countries in the target year 2050 under full
decarbonisation conditions, and find that the maximum allowable CAPEX
at which these systems remain endogenously deployed is low, at around 140
€ /kW (12 € /kW /a). However, higher EtP ratios effectively improves allow-
able CAPEX. For the same target year under a full decarbonisation scenario,
Nitsch et al. [46] combine generation expansion with market modelling to
show that Carnot batteries become economical at annualised CAPEX lev-
els of 25-27 € /kW /a for EtP ratios of 7-8 h and 3.7-35.8 GW of installed
capacity. Sorknaes et al. [47] investigate the system cost reduction poten-
tial of Carnot batteries in a 100 % renewable Danish energy system for the
target year 2045. They identify an economic threshold of 60-66 € /MWh
for discharging costs, corresponding to annualised CAPEX of roughly 165
€ /kW/a. By integrating Carnot batteries exogenously into the German
electricity market for the years 2030-2040, Stelzer et al. [48] conclude that
higher EtP ratios of Carnot batteries lead to lower profitability, as the addi-
tional revenue does not fully compensate for the increased costs associated
with the larger EtP ratio. Together, these studies advance storage analysis
toward integrated generation expansion and competitiveness perspectives,
revealing thresholds of emerging storage technologies to enter and sustain
market relevance. However, these techno-economic assessments do not cap-
ture the full extent of inherent risks and uncertainties in future energy market



conditions, including fluctuating electricity prices and renewable generation
variability.

Studies that combine investment risk and uncertainty with storage valu-
ation tend to move away from identifying maximum cost thresholds or ap-
plying inverse modelling approaches. Instead, they focus again on predefined
technology configurations and parameter sets, thereby limiting insights into
how design choices influence economic feasibility under uncertainty. Geske
et al. [49] use a Markov decision model to optimise storage capacity un-
der uncertain residual load (from demand and wind/solar variability), find-
ing that these uncertainties increase effective storage costs by 27 % from
4.1 € /kWh to the perfect-foresight value of 5.6 € /kWh. In addition, Ham-
mann et al. [50] apply a real options approach to evaluate the option value
of adiabatic compressed air energy storage, where uncertainties such as vary-
ing natural gas prices lead to a high option value. Bakke et al. [25] have
analysed the profitability of lithium-ion battery investments under variable
spot and balancing prices, showing that high uncertainty in future battery
costs leads investors to postpone investment decisions until additional infor-
mation becomes available. While such approaches provide valuable insights
into investment risk, they fall short of linking the underlying techno-economic
parameters to the resulting investment feasibility.

Therefore, to bridge technical design optimisation with risk-informed in-
vestment assessment, we assess mid-term storage options by considering stor-
age capacity and round-trip efficiency as key technical design parameters.
By using mean reverting stochastic processes in fuel prices and renewable
generation profiles to evaluate their impact on electricity prices and storage
profitability, we identify economically viable investment options that remain
robust under varying future market conditions.

3. Methods

To evaluate the performance and investment risk of mid-term storage
technologies, we explicitly consider uncertainty in the electricity system.
Variability in renewable generation and electricity demand profiles is repre-
sented by the set Z = {1, ..., I'} of weather scenarios, each weighted according
to its probability of occurrence, while fuel price uncertainty is represented by
the set J = {1, ..., J} of fuel price scenarios and modelled using an Ornstein-
Uhlenbeck (OU) process to capture its mean reverting properties. The re-
sulting N = I - J scenarios, combining weather scenario ¢« € Z and fuel price



path j € J as scenario (i, j), serve as input for the agent-based power market
model Power ACE to generate N electricity price paths. In the model, a fixed
energy system trajectory is assumed, i.e., there is no endogenous generation
expansion or any structural change to the power plant fleet across scenarios.
These price paths are subsequently used in a linear storage-dispatch program
outside of the Power ACE simulation. In this step, the storage operation is
optimised with respect to the maximisation of the contribution margin for
each individual price path, determining the economically optimal charging
and discharging schedule for the respective storage configuration. The result-
ing optimal dispatch decisions are then used to compute the distribution of
contribution margins ka for each parameter combination k € X =1,..., K,
providing a systematic risk assessment for investors and allowing the identifi-
cation of storage configurations that remain economically robust under both
weather and fuel price uncertainty. The described methodological framework
is illustrated in Figure [1]

Mean reverting processes Fixed en_ergy
system trajectory

(Weather scenario i
V(i,j) eI x T Power market model (" Performance and risk |
" PowerACE | metrics for investors
A
Guel price scenario j LTxg/=n I
Linear storage Fm.: Distribution of
dispatch-programm L contribution margin

Figure 1: Overview of the methodological process from data input to investment risk
assessment.

3.1. Representation of mean reverting processes
3.1.1. Weather scenarios

To account for uncertainties associated with the future patterns of gener-
ation and demand profiles, 36 distinct weather scenarios were considered.
A weather scenario represents a full year of hourly data, including 8760
hourly capacity factors for renewable generation and corresponding electric-
ity demand profiles. The scenarios were taken from the European Resource
Adequacy Assessment (ERAA) Executive Report 2024 [51], which provides
datasets for renewable generation and demand profiles under varying future



weather and climate conditions. To quantify the probability of occurrence for
a given weather scenario 2 € Z, we apply a weighted aggregation approach
that accounts for spatial, technological and temporal heterogeneity. The
probability weight w;" of scenario ¢ is defined as:

A
w o comp | bin
w; = E ,§ : wa,c wa,c,m (1>

where:

e w,%"" represents the relative share of contribution of component c in
area a with respect to the total contribution across all areas. Here, ¢
refers to the installed capacity of solar power, onshore wind or offshore
wind power or the total demand in area a.

e wy®, denotes the fraction of weather scenarios in area a, for component
¢ and month m that fall within a predefined bin. The bins are defined
based on the standard deviation of the corresponding time series of a
component. Specifically, for each month, the mean of the time series
(e.g., hourly capacity factors) is calculated for each scenario. Then, the
overall mean across all scenarios for that month is determined. The
deviation of each scenario’s monthly mean from the overall monthly
mean is computed and assigned to a bin, such that all scenarios within
the same bin are assigned the same probability. Bins are defined such
that the probability of each bin is given by the fraction of scenarios that
fall within it. Deviations are categorized into bins corresponding to
the ranges between —2, —1,0, 1, 2 standard deviations, with any values
below or above these limits assigned to the outermost bins.

By summing over all areas, components, and months, we obtain a weight
for each weather scenario for a given year. A more detailed mathematical for-
mulation of the approach can be found in[Appendix B.2] For the components,
we use the same values from the fixed energy pathway trajectory described in
Section and presented in [Appendix A.1l The resulting weather scenario
weights are presented in [Appendix A.2|

3.1.2. Fuel price scenarios

Modelling of fuel prices often requires stochastic processes. A widely
applied framework is the OU process [52} [53] 54, [55], which is defined by the
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stochastic differential equation

where ;1 denotes the long-term equilibrium level, 6 is the speed of mean
reversion, o the volatility parameter, and W; a standard Wiener process
[56, 57]. Here, t represents time steps, corresponding to the daily fuel prices.
The process is particularly suitable for commodities in energy markets, since
empirical price dynamics often revert to a long-term average while still ex-
hibiting short-term noise [58,59]. Our processes follow the Ten-Year Network
Development Plan (TYNDP) scenarios over the period from 2030 to 2050,
using initial values X for 2030 from the TYNDP 2024 [60] and setting the
long-term mean p according to the projected 2050 fuel and CO, prices. mean
reversion speed and volatility of the OU process are estimated from historical
time series using a discrete-time approximation [61] [62] 63]. Specifically, an
autoregressive regression of order one is performed on the observed price dif-
ferences, from which the OU parameters 6 and o are derived: the slope of the
regression corresponds to —f#At and the standard deviation of the residuals
provides o. As historical data, front-month price data from the respective
exchanges over 2023 and 2024 are used for calibration. The analysis consid-
ers gas, oil, and hard coal, while hydrogen is included under the assumption
that its price dynamics will evolve in a manner similar to natural gas. This
assumption is justified by the expectation that emerging hydrogen markets
remain closely tied to gas price developments [64], 65, 66]. Since carbon prices
are intrinsically linked to fossil fuel consumption, a joint modelling approach
is required. Therefore, for each fuel price series, the corresponding emission
factor [60] is combined with the COy price, such that the resulting time se-
ries already incorporates the cost of associated carbon emissions. To account
for the dependence of fuel prices, we introduce correlations using a Cholesky
decomposition of the empirical covariance matrix. The univariate process in
Equation [2] is then extended to a multivariate process, after discretisation:

Xt+At :Xt+0 ([L—Xt) At+LZV At, (3)

where z is a vector of standard normal draws and L is the lower-triangular
matrix obtained from the Cholesky decomposition of the empirical covari-
ance matrix ¥, such that ¥ = LLT. The parameters Xy, u, 6 and o of
the multivariate OU process and the empirical covariance matrix is given in

|[Appendix A.3|
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We simulate 1,000 fuel price paths of the multivariate OU process. To
incorporate such a large set of trajectories directly into the analysis would,
however, be computationally prohibitive. Therefore, a clustering procedure is
applied to reduce the dataset. First, the simulated paths are reduced to their
two principal components via principal component analysis. Subsequently,
the resulting components are grouped into ten clusters using K-Means clus-
tering. For each cluster, the time series closest to the cluster centroid (i.e.,
minimising the Euclidean distance) is selected as the representative fuel price
path, denoted by j € J, and assigned a weight wjf proportional to the frac-
tion of total paths contained in that cluster. The resulting ten representative
fuel price paths with their weights are presented in [Appendix A.4l All prices
are reported in nominal € for each year, using inflation rates from the World
Economic Outlook 2024 [67].

3.2. Power market model PowerACE: electricity price path imulation

The mean reverting processes described in Section are used to sim-
ulate varying day-ahead electricity price paths for the years 2035, 2040 and
2045. By assuming a fixed energy pathway trajectory, the variability in
weather years and fuel prices allows for representing the uncertainties in
these underlying mean reverting processes for future day-ahead electricity
price developments.

The simulations are carried out using the agent-based power market
model Power ACE. Power ACE is a simulation framework based on individual
market participants, designed for the analysis of European electricity mar-
kets. Its primary purpose is to enable long-term assessments of the day-ahead
market. Depending on the input data resolution, the model simulates 8760
hours of a year across extended time horizons. Over the past years, Power-
ACE has been applied in a variety of research contexts, such as studies about
electricity prices [68], capacity remuneration mechanisms [69], the analysis of
electric vehicle market impacts [70] and for assessing the role of risk aversion
in capacity expansion planning [24].

Within the model, market participants are equipped with internal decision
making strategies that define their individual objectives, such as the maximi-
sation of profits. These participants continuously interact with their environ-
ment and, on each simulated day, submit demand or supply bids according
to their respective strategies. The day-ahead market outcome is then deter-
mined by a welfare-maximising market-clearing algorithm, which accounts

11
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Figure 2: Simplified overview of the power market model Power ACE.

for all submitted bids as well as the available cross-border transmission ca-
pacities. A comprehensive and authoritative description of the structure and
individual modules of the Power ACE model can be found in [30]. Since then,
the model has undergone minor refinements. Figure [2| provides a simplified
representation of the modelling approach used in this study. Consistent with
the assumptions above, the energy system trajectory of the TYNDP 2024
Global Ambition Scenario is applied. In the energy system trajectory, the
installed capacity is expanded by additional gas turbine power plants to fulfil
the required system reliability in each bidding zone. The simulations cover
16 bidding zones, each with its respective day-ahead wholesale market prices.
By combining ten representative fuel price trajectories with 36 weather sce-
narios, a total of N = 360 day-ahead price paths are generated for each year
and each bidding zone.

3.3. Linear storage dispatch-programm

A commonly studied application of energy storage is electricity price ar-
bitrage, where electricity is purchased at low prices and sold at higher prices.
Assuming that the storage system is small enough that its charging and dis-
charging do not affect market prices, analyses of this price-taker scenario
often assume perfect optimisation of the device when faced with known elec-
tricity prices.

The simulated day-ahead wholesale electricity price paths obtained from
the Power ACE model are used as input for such a simplified storage dispatch

12



optimisation problem, with the objective of maximising the contribution mar-
gin given the technical design parameters such as storage capacity, charging
and discharging power, and RTE.

Let T denote the number of time steps in the considered price path. The
decision variables are the charging power P&, discharging power P3S, and
state-of-charge SOC} at each time step ¢t € {1,...,T}.

The optimisation problem is formulated as follows:

T
Pfh,]r:%g,}éOCt ;( t Dt t pt) ( )
s.t. SOCy; = SOC;
+ nChPtCh
1 is

—ndiSPtd Vt=1,...,T (5)
0<50C, <C Vi ©)
0 S PtCh S Pch,max Vt (7)
0 S Hdis S Pdis,max Vit (8)
SOC, = 05-C (9)

Here, p; denotes the simulated day-ahead electricity price at time t, C'
is the storage capacity, P"™* and P45 are the maximum charging and
discharging powers, and 7" and n®* are the charging and discharging efficien-
cies. The initial state-of-charge is set to 50 % of the storage capacity, with
self-discharge as well as variable operation and maintenance costs neglected.

The problem is solved sequentially across multiple price paths, but si-
multaneously for different storage parameter combinations, with a warm-
start procedure applied to accelerate convergence across price paths. In
this study, the discharge and charge powers are fixed to 1 MW, efficien-
cies are varied from 10 % to 100 % in in 1l-percentage-point increments,
and 168 different storage capacities are considered, resulting in a total of
91 - 168 - 360 = 5,503,680 linear program evaluations for a single bidding zone
and year with T" = 8760. Using this approach, solving the optimisation for
all scenarios for one year and bidding zone takes on average approximately
440 minutes on an AMD Ryzen Threadripper 3970X 32-core processor using
the simplex algorithm.
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The objective value of the optimisation can be interpreted as the an-
nual contribution margin per MW generated by the storage in a given year,
which can be used to cover the equivalent annualised investment and fixed
operation and maintenance costs. Conducted independently of Power ACE;,
this approach facilitates the systematic evaluation of diverse system config-
urations and allows for the adjustment of key parameters, such as the EtP
ratio, while simultaneously determining the maximum CAPEX that ensures
economically viable operation for a 1 MW system with a given RTE and
capacity.

3.4. Performance and risk metrics for investors

Investment decisions under uncertainty can be systematically evaluated
using the empirical distribution of profitability across different scenarios. In
the context of this study, each simulated day-ahead price path is assigned
a weight corresponding to its probability wﬁ ;» defined as the product of the
weight of the weather scenario w;” and the fuel price trajectory wjf , which in
turn induces a probability distribution for the annual contribution margin,
derived in Section [3.3] which determines the maximum economically viable
CAPEX. According to [24], the empirical distribution function and the cor-
responding empirical cumulative distribution function of the contribution
margin for a given storage configuration can then be used to derive various
decision metrics, allowing consideration of both expected profitability and
risk exposure.

Formally, let 7, (; ;) denote the contribution margin of parameter combi-
nation k € K under the price path scenario defined by weather year ¢ and
fuel price path j, with associated scenario probability wfi ;- The expected
contribution margin E(7;) of a parameter combination k is then defined as
the weighted average over all scenarios:

E(mg) = Z Z WY T i) - (10)
T J

To account for risk aversion in investment decisions, risk measures are applied
to the empirical distribution ff}k. Based on the empirical cumulative distri-
bution function, a well-established and widely used risk measure is the value
at risk (VaR, ), which indicates the threshold of the contribution margin that
will be achieved or exceeded with a given confidence level. Specifically, the
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VaR,, at confidence level « is given by

VaR, (7;) = max {q : Pr (Wk,(m) < q) <1- a},
Va € (0,1). (11)

and the conditional value at risk (CVaR,), which is a coherent and widely
used risk measure, is defined as the contribution margin conditional on falling
below the VaR,:

CVaRq (k) = E |7, 15) | i) < VaRa(m)|,
Va € (0,1). (12)

To jointly account for expected profitability and risk, a linear combination
of the expected value and the CVaR is applied, following the approach of
Fraunholz et al. [24]:

7 = (1 — N) E(mg) + A CVaRq (mg),
Ae0,1], a € (0,1), (13)

where A represents the investor’s degree of risk aversion, with A = 0 corre-
sponding to risk-neutral and A = 1 to highly risk-averse preferences. Follow-
ing this approach, 7} provides a single metric that quantifies the maximum
contribution margin achievable for each storage parameter combination, and
therefore the maximum CAPEX under which economically viable operation
is maintained. To determine the relative competitiveness of each storage con-
figuration compared to another, the deviation of the maximum annualized
CAPEX is calculated as

A = — gt (14)

where 77 denotes the maximum annualized CAPEX of the reference con-
figuration for the same . A positive value of A7} indicates that configura-
tion k can sustain higher annualized CAPEX than the reference system while
maintaining economic viability, whereas a negative value indicates lower al-
lowable CAPEX. Additionally, for A = 0 and A = 1, the percentage change

of the maximum annualized CAPEX can be expressed as

Tr(A=0)—7m(A=1)

A risk — k
i (A= 0)

x 100%, (15)
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where

mh(A = 0) = E(m),
7'(';;()\ = 1) = CV&RQ(TUC),

which can be interpreted as the risk premium of a highly risk-averse investor
relative to a risk-neutral investor.

Equations [13], [14] and [I5] quantify the economic competitiveness and im-
pact of risk preferences on the maximum achievable contribution margin and
the corresponding maximum annualized CAPEX for each storage configura-
tion, taking into account both expected performance and downside risk.

4. Results

4.1. Comparison of electricity price paths

In Figure [3a] the distribution of mean prices is shown for the years 2035,
2040, and 2045E| across different European countries under varying weather
scenarios, i.e. wind and solar generation profiles. Figure illustrates the
corresponding distributions under varying fuel price assumption:ﬁ The sce-
narios capture structurally diverse energy systems: Germany is characterised
by high renewable penetration combined with increasing demand, France re-
mains strongly reliant on nuclear power, Denmark is dominated by wind
generation, Spain benefits from abundant solar resources, and Switzerland
reflects its characteristic hydro-based system, while also being strongly in-
fluenced by neighbouring countries. The comparison between weather-year
and fuel price scenarios reveals distinct sensitivities across the analysed coun-
tries. Due to its reliance on nuclear power, France shows only minor vari-
ation across different weather years, but is strongly affected by changes in
fuel prices. Switzerland exhibits a similar pattern: weather-year variations
have little impact, while fuel price assumptions significantly influence the
mean price distribution. In Germany, fuel price assumptions dominate the
distribution of mean prices, reflecting the role of flexible thermal generation
(e.g., gas turbines or hydrogen-based plants), while variations across weather
years also have a significant impact. Denmark has a large wind generation

3The exogenous energy system trajectory and the corresponding demand for each year

can be found in
4The fuel price scenarios and their variability can be found in [Appendix A.4
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(b) Distribution across varying fuel price scenarios, with weather scenarios averaged per fuel price scenario.
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(c) Distribution across all weather and fuel price scenarios.

Figure 3: Boxplots of mean wholesale prices for different European countries across sce-
narios.
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capacity, which allows it to cover a substantial share of its electricity demand
from domestic wind resources. However, its system is strongly influenced by
Germany, resulting in similar sensitivities to changing conditions. In Spain’s
solar-dominated system, solar variability has a relatively minor effect on the
price distribution, whereas fluctuations in fuel prices of flexible thermal power
plants drive changes in mean values.

Figure presents the distribution of mean prices when both weather
year and fuel price variations are considered simultaneously. The combina-
tion of these two sources of uncertainty introduces differences in all analysed
countries. Comparing across years, it becomes apparent that the variance
of the mean price distributions tends to increase in 2040 and 2045. The im-
pact of fuel price variations is relatively high compared to weather scenario
variations, as the mean prices diverge further due to the dynamics of the
OU process (cf. |[Appendix A.4). Moreover, in systems where weather sce-
nario variations have a significant impact (e.g., Germany), the overall spread
of mean price distributions becomes notably larger compared to countries
where weather sensitivity is low (e.g., France). Consequently, the combina-
tion of sensitivity to both weather scenarios and fuel price variations drives
the overall variation to the greatest extent.

For storage profitability, price spreads are particularly relevant. There-
fore, in addition to the mean prices, Figure [4] presents the distribution of
the averages of the second-, fourth-, and eighth-highest daily price spreadﬂ.
As the fourth-highest daily spread remains relatively close to the second-
highest, an increase in storage capacity could be beneficial within this range.
In contrast, the eighth-highest spread is considerably lower, implying that
increasing capacity or using low-efficiency storage would yield only limited
contribution margins when exploiting these spreads. Comparing countries,
price spreads are consistently highest in Germany, indicating favourable con-
ditions for storage profitability. Spain also exhibits relatively large spreads,
suggesting similarly favourable opportunities. In contrast, France, domi-
nated by nuclear generation, and Denmark, with a high share of wind power,
exhibit lower spreads, implying less attractive conditions for storage deploy-
ment. The absolute variation in average spreads across different fuel price
and weather scenarios is highest for the 2-hour spreads, while it decreases for
the 8-hour spreads (cf. Germany 2045: 49.21 €/MWh vs. 19.05 €/MWh).

5The calculation of daily spreads is detailed in Section [Appendix B.1
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Figure 4: Boxplots of mean wholesale price spreads for different European countries across
scenarios.
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Accordingly, the potential exploitation of these spreads by storage systems
results in more consistent contribution margins between scenarios.

4.2. Competitiveness of different storage parameter combinations

In the following subsections, when we refer to a risk-neutral or risk-averse
investor, we consider the contribution margin 7*, as defined in Equation [13|
A risk-neutral investor corresponds to A = 0, while a risk-averse investor
corresponds to A = 1. Accordingly, for a risk-neutral investor, the figures
depict the expected value of the contribution margin, whereas for a risk-
averse investor, the CVaR,, of the contribution margin is shown. We assume
that the maximum annualised CAPEX shown in the following subsections
equals the contribution margin 7 for a year that can be achieved with the
respective combination of storage parameters k. Since the values represent
the maximum allowable annualised costs to ensure profitability, any fixed
operation and maintenance costs, if considered, would need to be deducted
accordingly to obtain the maximum admissible CAPEX.

As described in Section discharge and charge powers are fixed to
1 MW, while storage capacities are varied between 1 MWh and 168 MWh.
The round-trip efficiency (RTE) is modelled via input efficiency, such that
all storage capacities are expressed in electrical terms. Accordingly, the stor-
age capacity can be described by the Energy-to-Power (EtP) ratio, which
denotes the discharge duration, i.e., the time a storage system can continu-
ously release energy at its rated power from full charge to full discharge in
hours.

Round-trip Efficiency
I
o
Maximum Annualised
CAPEX [€/kW/a]

8 24 72
Energy-to-Power Ratio [h]

Figure 5: Maximum annualised CAPEX 7* (cf. Equation in Germany (2035) for a
risk-neutral investor (A = 0) .
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Figure [f|shows the maximum annualised CAPEX 7* for Germany in 2035
required to achieve an annuity of zero, as a function of EtP ratio and RTE,
assuming a risk-neutral investor. The contour lines in Figure |5 represent
equal maximum annualised CAPEX values, which allow to identify combina-
tions of EtP ratio and RTE that are economically equivalent. For example,
a technology with lower RTE can achieve comparable economic performance
if the EtP ratio is sufficiently increased. It can be observed that, particularly
for low EtP ratios, an increase in RTE yields comparatively little economic
benefit, as lines of equal maximum annualised CAPEX are predominantly
vertical in this region. In contrast, an increase in EtP ratio proves to be
more advantageous. With higher EtP ratios, this pattern changes: the con-
tour lines shift towards a more horizontal orientation. Consequently, further
increases in the EtP ratio become less beneficial, while improvements in RTE
gain relative importance. From this, it becomes evident that the marginal
value of additional capacity declines rapidly and remains at low levels from
around 8 hours of storage duration onward, depending on the RTE, as this
turning point appears to shift to higher EtP ratios as RTE increases. The
same qualitative observations apply to the years 2040 and 2045, as well as
to the other analysed countries. While the absolute levels of the maximum
annualised CAPEX differ due to variations in price spreads across different
years and countries, the qualitative relationships between EtP ratio and RTE
remain unchanged. The corresponding figures are provided in [Appendix A.5|
and [Appendix A.6l

Round-trip Efficiency
S

Maximum Annualised
CAPEX Deviation [€/kW/a]

—
(= (e
(=]

168
Energy-to-Power Ratio [h]

Figure 6: Maximum annualised CAPEX deviation Aw,rff according to Equation for
A = 0 in Germany (2035) required to achieve the same annuity relative to a 4 hour EtP
ratio and 92 % RTE storage system with a contribution margin 7**f of 101.04 € /kW /a.

21



Figure [6] shows a similar graph for Germany in 2035 for a risk-neutral in-
vestor. The maximum annualized CAPEX deviation A} is shown relative
storage system representing a lithium-ion battery. The resulting deviation
shows how much more or less annualised CAPEX is allowed for each stor-
age configuration compared to the lithium-ion battery to achieve the same
annuity. Therefore, the contour along the zero line represents combinations
of parameters that yield the same annuity as the reference lithium-ion bat-
tery, if the annualised CAPEX between them are equal. It can similarly
be inferred that higher (lower) techno-economic parameters allow for cor-
respondingly greater (smaller) CAPEX deviations to be competitive. This
relationship exhibits the same quantitative trend as the maximum allowable

CAPEX shown in Figure [5

100% ; ;

\ Switzerland —4— Spain
> —=— Germany —e— France |
% 90% ‘:‘— Denmark
'S
aﬁ” 80% =
£ AN
3 70% \§.\‘\‘
=]

5 \\
g .
50%

2 4 8 12 24
Energy-to-Power Ratio [h]

Figure 7: Extracted zero-contour lines (cf. Figure @ for different countries averaged over
the years 2035, 2040, 2045, showing combinations of RTE and EtP that yield the same
annuity as the reference 4 hour lithium-ion battery system.

For Figure[7], contours along the zero line are extracted for different coun-
tries. At a low EtP ratio, the curves show little variation. They decline
sharply, meaning that an increase in the EtP ratio allows for a large reduc-
tion in RTE while maintaining the same profitability. The differences emerge
at the points where the curves transition from a rather vertical to a more
horizontal profile. This occurs at different RTE values. For EtP ratios up
to 8 hours, increasing the EtP ratio can still allow substantial reductions in
RTE, averaging 18.5 % across all countries when moving from a 4 hour to
an 8 hour EtP ratio. In most countries and years, these benefits level off
around this point. Beyond 8 hours, further increases in the EtP ratio yield
diminishing gains, averaging 8.3 % across all countries when moving from an
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8 hour to a 24 hour EtP ratio. However, in some cases, such as Germany,
appreciable reductions persist for EtP ratios up to 24 hours. Notably, the
location of this transition varies across countries and years: in the cases of
Switzerland and France, the transition starts for higher RTE, resulting in
a more rapid diminishing benefit of higher EtP ratios, while in Germany,
Spain, and Denmark, the transition starts at a lower RTE, indicating that
lower a RTE benefits from higher EtP ratios for competitiveness. The com-
parison of this reference lithium-ion system indicates that competitiveness
can be maintained even at lower efficiencies, provided that the EtP ratio is
sufficiently high. As can be inferred from Figure [5] this observation can be
generalised to energy storage technologies more broadly, suggesting that eco-
nomic competitiveness at lower efficiencies can be achieved through a higher
EtP ratio. However, this requires that the marginal costs of additional ca-
pacity remain low enough to keep the overall CAPEX at a level comparable
to the lithium-ion reference. At the same time, total CAPEX must be low
enough to ensure that the achievable contribution margin still results in a
profitable investment.

4.8. Investors risk

Figure [§ shows the percentage deviation in maximum allowed CAPEX
between a risk-neutral and a risk-averse investor in Germany for 2035, cal-
culated as Arfsk with risk aversion incorporated via CVaR, at a = 95%.
The percentage change can be interpreted as the risk premium of a highly
risk-averse investor relative to a risk-neutral investor. It can be observed that
for higher RTE values, an initial increase in the EtP ratio can still reduce
risk, but the effect diminishes as the EtP ratio continues to rise. For values
around 50 % RTE, the effect is already relatively flat from the beginning,
whereas for lower RTE values, an initial increase in the EtP ratio reduces
risk at first, but later on the risk starts to increase again. By varying the
RTE, it can be observed that for lower EtP ratios, the effect on the risk
premium is rather inconsistent. However, for higher EtP ratios, it becomes
evident that an increase in RTE leads to the strongest reduction in the risk
premium, especially when compared to the influence of the EtP ratio itself.
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Figure 8: Percentage change in maximum annualised CAPEX Aniisk (cf. Equation
for a risk-averse investor (A = 1) relative to a risk-neutral investor (A = 0) for Germany
in 2035.

Figure @ illustrates the change in the risk premium A7}*¥ with increas-
ing RTE, averaged over all years for each country and across all EtP ratios
corresponding to that RTE. It can be observed that, for all countries except
France, the risk premium decreases as RTE increases, although the rate of de-
crease varies between countries. Figure [0b]shows a similar analysis, but with
increasing EtP ratio. Here, notable differences between countries emerge:
while Germany exhibits hardly any effect, France experiences a substantial
decrease in the risk premium as EtP increases. In contrast, Denmark’s risk
premium increases with higher EtP ratios. For risk-averse investors, higher
RTE can thus be desirable. Although the magnitude of this effect clearly
depends on the country-specific market conditions, it can reduce the risk pre-
mium in some cases, making investments relatively less risky. Consequently,
technologies that achieve elevated RTE may be particularly attractive to
conservative investors, as they mitigate perceived uncertainties and stabilise
expected returns.
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(b) Average change in the risk premium with increasing EtP ratio for each country, averaged over all years
and across all RTE values corresponding to that EtP.

Figure 9: Average risk premium change A7tk (cf. Equation [15)) for a risk-averse investor

(A =1) relative to a risk-neutral investor (A = 0). Lower values indicate a smaller differ-
ence between a risk-averse and risk-neutral investor, reflecting more robust contribution
margins

5. Discussion

The primary contribution of this paper lies in assessing storage profitabil-
ity from an investor’s perspective, while simultaneously providing valuable
insights for the design of storage technologies. In particular, the findings
highlight which technical characteristics are most critical for achieving stable
revenues under uncertain future market conditions. This, in turn, provides
an important foundation for developing storage technologies that can offer
economically viable investment options and align technical design choices
with the requirements of future electricity markets.
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5.1. Implications for the design of emerging storage technologies

One of the central findings of this work concerns the role of emerging
storage technologies in bridging the mid-term storage gap between short-
duration and seasonal storage systems. Whether this mid-term segment can
be effectively established is primarily determined by the underlying CAPEX
structure, i.e., by the cost of adding additional storage capacity. As shown
in Figure |5, for increasing EtP ratios beyond 24h, the contour lines exhibit
an almost constant slope. This indicates minor changes of the maximum
CAPEX for a given efficiency with increasing EtP ratios, as the marginal
contribution margin decreases rapidly with increasing storage capacity, a
finding, which is in line with [40]. On the other hand, for a constant EtP
ratio, increasing RTE lead to significant improvements in maximum allow-
able CAPEX, demonstrating how improvements in RTE strongly enhance
the economic margin for storage technologies, aligning with the findings of
Sioshansi et al. [7I]. This implies that if seasonal storage technologies are
already economically viable considering their total CAPEX, they will remain
profitable in the mid-term range. For short-duration technologies, however,
CAPEX levels must already be sufficiently low to realise economically viable
systems. If the marginal CAPEX per additional unit of capacity is too high,
these technologies cannot profitably extend into the mid-term range. Hence,
the emergence of a mid-term storage segment in the market is less subject
to the EtP ratio itself, but a function of cost structure. The CAPEX char-
acteristics of technologies aimed at serving this segment must enable them
to outperform short-duration storage systems at higher storage durations
while remaining competitive against seasonal solutions. This outperforming
effect, where total CAPEX of mid-term systems becomes lower than that of
short-duration systems, must occur at sufficiently small capacities to prevent
seasonal storage from dominating the same range through more favourable
cost scaling. For technology development and design, this implies that min-
imising CAPEX per unit of capacity should be a key design objective, as it
enables the technology to reach economically viable operation at relatively
low EtP ratios. Figure[0] further illustrates that technologies with lower RTE
can match the performance of lithium-ion batteries by increasing their EtP
ratio, but this requires careful optimisation of component sizing and material
utilisation to keep the specific CAPEX per unit of energy low.

The RTE represents an additional design lever, highlighting the impor-
tance of improving conversion efficiency to enhance the overall competitive-
ness of mid-term storage technologies compared to short- and long-duration
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systems. Enhancing these design aspects can thus enable technology develop-
ers to offer attractive and competitive incentives for investors. Nevertheless,
the relevance of these design implications depends strongly on the underly-
ing market context and temporal framework. For instance, Esser et al. [22]
report contrasting results, suggesting different design priorities for emerging
storage technologies. For the example of Carnot batteries, they find that an
increase in the EtP ratio more efficiently increases the maximum allowable
CAPEX than the RTE. Thus, for the design of emerging technologies, they
suggest favouring an increase in the EtP ratio over the RTE. We explain these
disparities by the fundamental differences between the underlying modelling
approaches. As opposed to the agent-based Power ACE model, their energy
systems optimisation represents a central planner’s long-term perspective on
the system’s capacity expansion under perfect foresight. In their model,
an optimal system is determined for predefined input parameters so that a
higher EtP can help reduce system costs (one of the optimisation objectives).
This is in contrast to the agent-based approach used in this paper, where a
change in the EtP mainly affects the storage technology’s own profitabil-
ity. Moreover, in the optimisation model by Esser et al., system marginal
costs (often interpreted as a proxy for prices in linear models) are determined
endogenously. In this work, however, prices are obtained from running the
Power ACE model for a predetermined power system, which is not necessarily
in its optimal state. These prices are then assumed as exogenous inputs to
the contribution margin maximisation of the energy storage. Furthermore,
from an agent’s perspective, short-term market mechanisms can optimally be
utilised for low EtP ratios (cf. Figure[]), fully exploiting daily price arbitrage
for profit maximisation. Thereby, the RTE directly impacts the losses per
cycle and the revenues from each arbitrage action.

For technology design, these insights highlight the importance of consid-
ering both modelling perspectives to support robust product development
and guide design strategies for emerging storage technologies. In particu-
lar, technology developers should account for two key requirements. First,
designs must address system-level needs from a central-planner perspective,
ensuring adequate energy provision, for example through higher EtP ratios.
Second, technologies must also be economically viable from an individual
view, meaning that storage systems should exhibit performance character-
istics that support positive investment returns, such as a sufficiently high
round-trip efficiency.
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5.2. Implications for investors

Based on the implications for technology design, several conclusions can
be drawn for potential investors. Given Table [1| which presents the annu-
alised CAPEX for various storage technologies, it becomes evident that the
maximum CAPEX required to reach economic break-even, as illustrated in
Figures [f] lies far below the investment levels associated with storage tech-
nologies indicated in the Danish Energy Agency Technology Data Report
[72]. L.e., the marginal cost of additional capacity exceeds the marginal con-
tribution margin attainable through market operations, implying that further
capacity expansion does not yield a positive annuity. Moreover, as shown
in Table , lithium-ion batteriesﬁ become more expensive in annuity terms
than alternative technologies beyond a certain EtP threshold. However, at
these thresholds, the marginal contribution margins are already significantly
reduced, such that further investment is not economically justified. A com-
parison of Table [T with Figure [5] demonstrates that the points at which the
annuity would reach parity are already located beyond the economically at-
tractive region for additional capacity investments. Consequently, mid-term
storage investments are not profitable under these scenario assumptions and
market conditions if relying solely on arbitrage opportunities in the day-
ahead market. This suggests that for storage technologies to become viable,
additional revenue streams or market mechanisms (e.g., capacity payments
or ancillary services) will be required, or a behind-the-meter application may
be more favourable. Similar conclusions have been made by Taponen et al.
[39] and Drury et al. [73].

6Under the assumptions results in Table 1, lithium-ion batteries would not constitute a
profitable investment. This contrasts with their currently (2025) high attractiveness and
grid-connection requests in Germany, which is largely driven by revenues from multiple
value streams across different markets, whereas our analysis considers arbitrage income
from a single wholesale market only.
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Table 1: Maximum annualised CAPEX for Germany in 2035 (risk-neutral) and annualised
CAPEX derived from the reference with discount factor of 7 % for different technologies
in € /kW /a, considering different EtP ratios. If the maximum allowed annualised CAPEX
exceeds the option’s annualised CAPEX, the corresponding RTE/EtP combination is con-
sidered a profitable investment under the given assumptions.

RTE EtP
4h 8h 24h

Lithium-ion battery 92 %
Maximum allowed annualised CAPEX 101.04 143.04 182.97
Annualised CAPEX @ 138.30 265.80 775.79
Vanadium redox flow battery 80 %
Maximum allowed annualised CAPEX 88.34 11948 152.09
Annualised CAPEX ¢ 195.01 353.13 985.60
Compressed air energy storage 70 %
Maximum allowed annualised CAPEX 76.48  98.64 125.30
Annualised CAPEX ¢ 181.85 246.32 504.23
Carnot battery (low RTE) 30 %
Maximum allowed annualised CAPEX 31.78 3796 45.52
Annualised CAPEX ° 165.37 292.59 801.43
Carnot battery (high RTE) 73 %
Maximum allowed annualised CAPEX 80.01 104.88 133.44
Annualised CAPEX °? 155.61 245.56 605.36
All CAPEX values in nominal €
¢ [72]
b 74

From a risk perspective, technologies with a higher RTE exhibit reduced
sensitivity to investors’ risk preferences, resulting in more stable investment
incentives under uncertainty, as illustrated in Figure [9a] In contrast, an
increase in the EtP ratio itself only marginally affects the robustness of
investment attractiveness under risk considerations for most countries (cf.
Figure . Beyond an EtP of 72 hours, further increases in the EtP ra-
tio do not significantly alter the risk structure. This can be explained by
the following reasoning. A high RTE enables the storage system to prof-
itably exploit even smaller price spreads and, thus, is less dependent on large
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spreads. Conversely, a higher EtP ratio primarily increases the number, but
not the magnitude, of spreads that can be utilised. These additional spreads
must be large enough to ensure profitability given the corresponding RTE.
Moreover, as a higher EtP ratio allows for the exploitation of a larger num-
ber of price spreads, the variation among these additional spreads decreases
(cf. Figure , resulting in less variation of the contribution margin between
scenarios. Thus, RTE acts as a double-positive driver: it enhances abso-
lute profitability while simultaneously minimising the exposure to market
uncertainties from mean reverting processes. RTE can therefore not only
be interpreted as an economic advantage but also as a risk-mitigating factor
in energy storage investments. From a financial perspective, this allows for
reducing the risk premium or discount rate adjustment that investors apply
to uncertain revenue streams. This highlights RTE as a central parameter in
evaluating the profitability and risk profile of storage investments.

5.83. Limitations and outlook

This study relies on scenario data from the TYNDP 2024 Global Ambi-
tion Scenario [60] as well as weather years from the ERAA 2024 framework
[51]. Therefore, our results represent estimates of potential future develop-
ments, based on current trends and technologies, but are naturally subject
to uncertainty. Future technological innovations or alternative development
pathways could lead to different outcomes. Additionally, as is often done in
the literature, fuel prices are modelled and assumed to exhibit mean reverting
behaviour. Since there are arguments both for and against this behavioulﬂ
it remains uncertain whether past patterns will persist in the future. Fur-
thermore, the Power ACE simulation model used in this study focuses exclu-
sively on the day-ahead spot market for electricity. Although this market
plays a central role in price formation and trading decisions, other markets,
such as intraday trading, capacity markets, and balancing services, may of-
fer additional economically relevant opportunities for storage systems. The
multiplicity of markets and revenue streams and the consideration thereof in
market models is an important area of future research (for a discussion, see
[76]). As the consideration of these markets is beyond the scope of this study,
the results may be regarded as a conservative estimate. Another aspect of
future electricity markets that is not considered here, is the impact of sector

"For a discussion, see Pindyck (1999) [75]
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coupling on price formation through the opportunity costs of a cross-sectoral
demand, which can become price-setting [77].

Concerning the linear energy storage optimisation model, it is important
to acknowledge that it operates under the assumption of perfect foresight
over an entire year. As it runs outside of the PowerACE simulation and
uses only the resulting price paths, this approach does not take into ac-
count the potential feedback effects on market outcomes. The results should
therefore be interpreted as indicative of potential first-mover advantages or
market entry opportunities under static market conditions. With regard to
the techno-economic parameters of storage systems, it is important to note
that neglecting fixed and variable costs, as well as technical characteristics
such as ramp rates or self-discharge losses, can have a significant impact on
the robustness and accuracy of the results. In addition, this study primarily
focuses on uncertainties arising from mean reverting processes for fuel prices
and renewable generation time series. It should be emphasised that addi-
tional sources of uncertainty, for example, those related to future expansion
pathways of generation or storage infrastructure, could also have a signifi-
cant impact on investment outcomes. Incorporating these factors might alter
both the timing and scale of optimal investment decisions, highlighting the
inherent complexity and unpredictability of long-term energy system plan-
ning.

Future research could improve the assessment of storage investment op-
portunities by modelling endogenous investments that directly compete with
other technologies, rather than assuming static market conditions. Addition-
ally, incorporating a broader range of uncertainties, such as path-dependency
from uncertain capacity expansion, would provide a more comprehensive view
of potential investment risks and timing. Finally, examining behind-the-
meter applications and other alternative use cases, as well as exogenous in-
vestment incentives such as capacity remuneration mechanisms, could reveal
additional pathways for achieving profitable mid-term storage investments.

6. Conclusion

Focusing on electricity storage in future energy systems, we assess the im-
pact of storage capacity and round-trip efficiency on investment profitability
under uncertainties in fuel prices and weather conditions. By integrating
mean reverting stochastic processes for fuel prices and renewable generation
profiles within the Power ACE market model, we systematically evaluate how
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these inherent uncertainties affect the economic performance of storage tech-
nologies. Using an inverse approach, we explore all combinations of technical
design parameters, identifying the maximum capital expenditure that allows
storage configurations to remain profitable under future system conditions.

From our assessment, we identify the following design limits and invest-
ment risk insights regarding the profitability of mid-term storage technolo-
gies:

e The economic viability of technologies designed to bridge mid-term
storage gaps depends primarily on their cost structure, specifically, the
capital expenditure per additional unit of capacity. Technologies with
lower round-trip efficiency can remain competitive if they achieve suffi-
ciently high energy-to-power ratios while maintaining low specific cap-
ital expenditure, highlighting the critical interplay between efficiency,
storage duration, and investment costs in the design of mid-term stor-
age solutions.

e Under the examined market conditions, mid-term storage investments
are not economically viable, as the marginal contribution of additional
capacity is outweighed by the associated costs. To achieve financial
feasibility for these technologies, alternative revenue streams are re-
quired, or additional use cases could be explored. Potential options
include participation in ancillary service markets, the utilization of po-
litical instruments such as capacity remuneration mechanisms, or other
applications, for example, behind-the-meter deployment.

e mean reverting uncertainties in fuel prices and renewable generation
profiles significantly influence the profitability of storage technologies,
making the identification of robust configurations essential. Efficiency
plays a dual role by both increasing absolute profitability and reducing
market risks. Higher round-trip efficiency decreases sensitivity to in-
vestor risk aversion, thereby stabilising the economic attractiveness of
storage under uncertainty. In contrast, the energy-to-power ratio has a
comparatively smaller impact on risk profiles. Beyond approximately
72 hours of storage duration, further increases provide no additional
benefits in terms of risk mitigation.

Overall, our results enable the identification of storage configurations that
remain economically viable and robust across a range of realistic system
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conditions, providing actionable guidance for technology developers and in-
vestors when designing storage systems for future electricity markets.
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Appendix A. Input assumptions and additional results

Appendiz A.1. Capacities of energy system trajectory

Table A.2: Capacities and total demand in the fixed energy system path for each country.

2035 2040 2045 Unit

Germany

Total electricity demand 892.84 1021.25 1145.83 [TWHh]
Natural gas turbine 79.41  67.16 33.58 [GW]
Hydrogen turbine 17.13  25.44 45.01 [GW]
Wind 19227 225.75  243.92  |GW]
Solar 299.47 383.95 420.17 |GW]
Other renewable / thermal 13.24  9.76 8.2 [GW]
Reservoir 0.81 0.81 0.81 [GW]|
Lithium-ion batteries 50.17  78.53 99.80 [GW]
Pumped Hydro Storage 9.37 10.73 10.73 [GW]|
Electric vehicles 26.23 48.74 48.74 [GW]|
Demand Side Response 20.10 20.94  21.67 [GW]
Electrolyser 22.71  36.79 60.24 [GW]|
France

Total electricity demand 559.57 636.56  701.80 [TWh]|
Natural gas turbine 6.5 6.02 491 [GW]|
Hydrogen turbine 0.78 1.56 4,28 [GW]
Nuclear 64.50 66.00  58.06  |[GW]
Wind 67.98 87.37 10587 |GW]
Solar 03.7 12257 15808 |GW]
Other renewable / thermal 16.01  16.01 16.01 [GW]|
Reservoir 9.84 9.84 9.84 [GW]
Lithium-ion batteries 3.35 6.66 10.23 [GW]|
Pumped Hydro Storage 4.24 4.84 5.46 [GW]|
Electric vehicles 22.43 3491 41.09 [GW]
Demand Side Response 6.50 6.50 6.50 [GW]|
Electrolyser 4.18 10.42 19.80 [GW]|
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2035 2040 2045 Unit
Switzerland
Total electricity demand 65.55 7278  73.09 [TWh]
Wind 073 115 169  [GW]
Solar 90.77 101 1171  |GW]
Other renewable / thermal 4.71 4.93 5.21 [GW]|
Reservoir 8.73 8.93 9.05 [GW]
Lithium-ion batteries 0.67 1.11 1.56 [GW]|
Pumped Hydro Storage 5.19 6.02 6.14 [GW]|
Electrolyser 0.26 0.26 0.26 |GW]|
Denmark
Total electricity demand 104.48 131.64 150.75 [TWHh]
Natural gas turbine 1.52 1.11 1.11 [GW]|
Hard coal 1.24 1.17 1.17 [GW]|
Wind 308 378 4455 [GW]
Solar 2171  22.32 2338 |GW]
Other renewable / thermal 0.75 0.75 0.75 [GW]|
Lithium-ion batteries 0.53 0.53 0.55 [GW]|
Electric vehicles 0.55 0.91 1.93 [GW]|
Electrolyser 19.60 29.12  35.07 |[GW]
Spain
Total electricity demand 403.38 474.05 501.07 [TWh]|
Natural gas turbine 20.51  20.51 1771 [GW]
Wind 7966 8583 91.99 [GW]
Solar 103.09 13473 144.74 [GW]
Other renewable / thermal 5.15 5.15 5.15 [GW]|
Reservoir 1141 1141 1141 [GW]
Lithium-ion batteries 4.60 7.4 8.3 [GW]|
Pumped Hydro Storage 11.13  11.73 12713  |GW]
Electric vehicles 15.29 24.06 2835 |GW]
Demand Side Response 2.70 3.50 3.75 |GW]
Electrolyser 29.00 3275  39.15 |GW]
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Appendiz A.2. Weather scenario weights

Table A.3: Weather scenario weights for ERAA 2024 weather scenario capacity factor
profiles

Scenario 2035 2040 2045

WS1 0.025655 0.028575 0.028580
WS2 0.027332 0.028470 0.028476
WS3 0.028940 0.030704 0.030719
W54 0.027652 0.027183 0.027151
WSH 0.031591 0.028482 0.028501
WS6 0.030094 0.027443 0.027461
WS7 0.033703  0.029007 0.028981
WS8 0.028069 0.028446 0.028392
WS9 0.027828 0.029552 0.029479
WS10 0.031980 0.030164 0.030222
WS11 0.028304 0.026438 0.026453
WS12 0.032032  0.029264 0.029239
WS13 0.030445 0.028291 0.028295
WS14 0.028848 0.028318 0.028255
WS15 0.018540 0.024816 0.024843
WS16 0.020470 0.026941 0.026933
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Scenario 2035 2040 2045

WS17 0.028312 0.025594 0.025608
WS18 0.027452 0.027076 0.027079
WS19 0.017281 0.023767 0.023791
WS20 0.030023 0.029914 0.029914
WS21 0.032243 0.028905 0.028915
WS22 0.023606 0.025715 0.025765
WS23 0.029310 0.028105 0.028108
WS24 0.023566 0.024748 0.024810
WS25 0.028857 0.027420 0.027428
WS26 0.027353 0.027433 0.027451
WS27 0.026537 0.026931 0.026914
WS28 0.029302 0.029757 0.029767
WS29 0.030190 0.027404 0.027374
WS30 0.029525 0.030467 0.030469
WS31 0.018973 0.021817 0.021843
WS32 0.028389 0.026216 0.026162
WS33 0.029915 0.027962 0.028012
WS34 0.031944 0.031927 0.031882
WS35 0.026139 0.027577 0.027563
WS36 0.029597 0.029172 0.029167
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Appendiz A.3. Empirical covariance matriz of historical fuel prices and pa-
rameters of the multivariate OU process

Table A.4: Parameters of the multivariate OU process.

Parameter Hard coal Natural gas Crude Oil Hydrogen

Xo ® 78.55 56.48 57.76 78.50

we 134.54 95.65 119.36 112.20

0 0.04 0.03 0.03 0.03
0.60 1.29 0.50 1.29

% in nominal €

Table A.5: Covariance matrix for multivariate OU process

Crude Oil Natural Gas Hard Coal Hydrogen

Crude Oil 0.23 0.49 0.23 0.49
Natural Gas 0.49 1.67 0.49 1.67
Hard Coal 0.23 0.49 0.25 0.49
Hydrogen 0.49 1.67 0.49 1.67

39



Appendiz A.4. Representative fuel price paths
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Figure A.10: Cluster representative fuel price paths for each fuel type over the full time
horizon, with legend indicating the weight of each path.
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Appendiz A.5. Contribution Margins for Storage Parameter Combinations

for A=0
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Figure A.11: Maximum annualised CAPEX for all analysed countries (rows) and years

(columns) with A = 0.
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Appendiz A.6. Contribution margins for storage parameter combinations for
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Figure A.12: Maximum annualised CAPEX for all analysed countries (rows) and years

(columns) with A = 1.
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Appendix B. Additional methods

Appendixz B.1. Average daily spreads
The average daily spreads, shown in Figure [4] are calculated as follows:
For each day d, let Py1, Pyo, ..., Py24 denote the set of hourly prices. We de-

fine the n-th largest and n-th smallest prices as Pj (n) and PdT (n)’ respectively.
The daily n-spread is computed as

_pt

n) _ pl
Sa = Pd, dy(n) *

(n)

The mean daily n-spread over all days D is

<) 1 (n)
S = — S5
| D| Z d

deD

Sc(l") represents the difference between the n-th largest and n-th smallest

hourly price within a single day, and g(n) summarizes this measure across
the entire dataset.

Appendiz B.2. Mathematical representation of weather scenario weights

We consider I weather scenarios i € Z = {1, ..., I}, each with hourly val-
ues for renewable generation capacity factors and electricity demand as com-
ponent ¢ € C. The scenario probability w;" is computed through a weighted

aggregation over areas a = 1,..., A, components ¢ = 1,...,C, and months
m =1,...,12. For each component ¢ in area a and month m, the monthly
mean over hours h is calculated as:
_ 1
Tia,ecom = n_h Z Ti.a,c,h (B1>
™ he month m

where ;.5 denotes the hourly value of scenario i, component ¢, and area
a, and n" is the number of hours in month m. The monthly mean across all
scenarios is

1 _
Ha,com = T Z Lia,c,m (B2)
2l <=

The deviation of a scenario from the mean is

Az’,a,c,m - ji,a,c,m — Ha,c,m (B3>
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The standard deviation across scenarios is

1
a,c,m — == Tiacm — Macm 2 B4
- \/m@@w foeen) (B.4)

The deviation is assigned to bins as follows:

(-
Bin 1, Ajgem < —204.cm
Bin 27 _20a,c,m S Ai,a707m < —0Oa,c;m
Bin 37 —Oa,c,m S Az',a,c,m <0

Bin; = B.5
e Bin 47 0 S Ai,a,c,m < Oa,c;m ( )
Bin 57 Oa,com S Ai,a,c,m < 20a,c,m
\Bin 67 Ai,a,c,m Z 20a,c,m
The probability per bin is
b Number of scenarios in the same bin B.6
wi,a,c,m - |I| ( . )

The component weight is

comp Capacity or demand of component ¢ in area a
Wae = HA . : (B.7)
> ¢, Capacity or demand of component ¢ in all areas

The total scenario probability is computed by summing over all areas, com-
ponents, and months:

c 12

A
w o comp _, bin
w; = E : § : E :wa,c wi,a,c,m (B8)

a=1 c=1 m=1

w _
E w;” =1
i€

with
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