KIT | KIT-Bibliothek | Impressum | Datenschutz

Diffusion-Based Hierarchical Graph Neural Networks for Simulating Nonlinear Solid Mechanics

Würth, Tobias ORCID iD icon 1; Freymuth, Niklas 2; Neumann, Gerhard 2; Kärger, Luise ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Graph-based learned simulators have emerged as a promising approach for simulating physical systems on unstructured meshes, offering speed and generalization across diverse geometries. However, they often struggle with capturing global phenomena, such as bending or long-range correlations usually occurring in solid mechanics, and suffer from error accumulation over long rollouts due to their reliance on local message passing and direct next-step prediction. We address these limitations by introducing the Rolling Diffusion-Batched Inference Network (ROBIN), a novel learned simulator that integrates two key innovations: (i) Rolling Diffusion-Batched Inference (ROBI), a parallelized inference scheme that amortizes the cost of diffusion-based refinement across physical time steps by overlapping denoising steps across a temporal window. (ii) A Hierarchical Graph Neural Network built on algebraic multigrid coarsening, enabling multiscale message passing across different mesh resolutions. This architecture, implemented via Algebraic-hierarchical Message Passing Networks, captures both fine-scale local dynamics and global structural effects critical for phenomena like beam bending or multi-body contact. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000190074
Veröffentlicht am 30.01.2026
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2025
Sprache Englisch
Identifikator KITopen-ID: 1000190074
Erschienen in The 39th Annual Conference on Neural Information Processing Systems (NeurlPS 2025)
Veranstaltung 39th Annual Conference on Neural Information Processing Systems (NeurlPS 2025), San Diego, CA, USA, 02.12.2025 – 07.12.2025
Verlag Neural information processing systems foundation
Seiten 30 S.
Vorab online veröffentlicht am 18.11.2025
Externe Relationen Siehe auch
Schlagwörter Machine Learning (cs.LG), Computational Physics (physics.comp-ph)
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page