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Abstract

Research on the High-Energy Cosmic-Ray Anisotropies and Their Origins

In recent decades, cosmic-ray physics has encountered several unresolved questions,
particularly about the origin and acceleration mechanisms of high-energy cosmic rays.
Despite improvements in experimental methods, the exact sources of cosmic rays with
energies above the PeV scale remain unclear. The transition between Galactic and ex-
tragalactic cosmic rays, especially around the “knee” and “ankle” regions of the energy
spectrum, continues to be debated. Additionally, the influence of Galactic magnetic fields
on cosmic-ray propagation and anisotropies is not fully understood. Solving these issues
is important for understanding the basic processes behind cosmic-ray acceleration and
propagation throughout the universe.

Cosmic-ray anisotropy is another important aspect of research for understanding cosmic-
ray origins and their movement through space. Anisotropies, observed on both small and
large scales across different energy ranges, provide useful information about cosmic-ray
sources and the magnetic fields they travel through. At lower energies (below a few TeV),
large-scale anisotropies are likely affected by the distribution of nearby sources and the
structure of the local interstellar magnetic field. However, at higher energies, particularly
near the “knee”, the anisotropy becomes more noticeable and harder to explain, suggesting
more complex transport processes and possible nearby sources of Galactic cosmic rays.
Beyond the ankle, anisotropy decreases, hinting at a possible extragalactic origin for cosmic
rays in this range, though this transition is still under study. Additionally, small-scale
anisotropies observed by experiments such as Tibet ASy and IceCube may help identify
localized cosmic-ray sources and shed light on the role of magnetic field turbulence in their
propagation.

In this thesis, the sensitivity of the IceCube-Gen2 surface array to cosmic-ray anisotropy
reconstruction is investigated, and it is demonstrated that IceCube-Gen2 will contribute
important additional data points to the overall picture. In parallel, I then optimize
analytical methods for reconstructing cosmic-ray anisotropies and identifying significant
large- and medium-scale anisotropies above 10 PeV in the Milky Way. The sensitivity of the
data to anisotropy reconstruction is evaluated using traditional methods, after which several
optimized reconstruction techniques are introduced to overcome statistical limitations and
reduce uncertainties in the recovered dipole parameters. A unified picture of cosmic-ray
anisotropy is obtained by combining measurements from major experiments spanning the
TeV domain to beyond EeV energies, ultimately yielding a continuous and global view of
the evolution of dipole anisotropies from Galactic to extragalactic origins, and the global fit
of the dipole amplitude exhibits a characteristic “W”—shaped structure. However, limited
statistics leave the dipole phase between 10'% eV and 10 eV uncertain. In particular, the
1-100 PeV range shows complex phase variations, especially in the KASCADE-Grande data.
The optimized methods are then applied to the KASCADE-Grande data, revealing evidence
of a 30 anisotropy at 33 PeV and suggesting Cygnus OB2 as a potential source region.
Propagation studies from Cygnus OB2 to Earth likewise show consistency with the observed
anisotropy at 33 PeV. In the end, this thesis suggests that pulsar wind nebulae (PWNe)
associated with supernova remnants (SNRs) may act as natural accelerators of Galactic
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cosmic rays in the PeV energy range, and thereby potentially provide an explanation for
the origin of their observed anisotropies on Earth.



Zusammenfassung

Die Erforschung der Anisotropien hochenergetischer kosmischer Strahlung und
ihres Ursprungs

In den letzten Jahrzehnten sind in der kosmischen Strahlungs-Physik mehrere offene
Fragen deutlich geworden, insbesondere hinsichtlich des Ursprungs und der Beschleuni-
gungsmechanismen hochenergetischer kosmischer Strahlung. Trotz verbesserter experi-
menteller Methoden bleiben die genauen Quellen von Teilchen mit Energien oberhalb des
PeV-Bereichs unklar. Die Ubergangsregion zwischen galaktischer und extragalaktischer
kosmischer Strahlung — insbesondere um den Bereich des ,,Knies“ und des ,,Knochels“
des Energiespektrums — wird weiterhin kontrovers diskutiert. Zudem ist der Einfluss
galaktischer Magnetfelder auf die Ausbreitung und Anisotropien kosmischer Strahlung
noch nicht vollstandig verstanden. Die Losung dieser Probleme ist entscheidend, um die
grundlegenden Prozesse der Beschleunigung und Ausbreitung kosmischer Strahlung im
Universum zu verstehen.

Kosmische-Strahlungs- Anisotropie ist ein weiterer wichtiger Aspekt zur Erkldrung des
Ursprungs kosmischer Strahlung und ihrer Bewegung im Raum. Anisotropien, die auf
kleinen wie auch groflen Skalen iiber verschiedene Energiebereiche hinweg beobachtet
werden, liefern wertvolle Informationen iiber die Quellen kosmischer Strahlung und die
Magnetfelder, die sie durchquert. Bei niedrigen Energien (unterhalb weniger TeV) werden
grofiskalige Anisotropien wahrscheinlich durch die Verteilung naher Quellen und die Struktur
des lokalen interstellaren Magnetfelds beeinflusst. Bei hoheren Energien, insbesondere nahe
dem ,, Knie“, werden die Anisotropien hingegen ausgepragter und schwerer erklarbar, was auf
komplexere Transportprozesse und mogliche nahe galaktische Quellen hinweist. Jenseits des
»,Knochels* nimmt die Anisotropie ab, was auf einen méglichen extragalaktischen Ursprung
in diesem Bereich hindeutet, auch wenn dieser Ubergang weiterhin untersucht wird. Zudem
kénnen kleinskalige Anisotropien, wie sie von Experimenten wie Tibet ASy und IceCube
beobachtet wurden, helfen, lokalisierte Quellen kosmischer Strahlung zu identifizieren und
die Rolle der Turbulenz des Magnetfelds bei ihrer Ausbreitung zu beleuchten.

In dieser Dissertation wird zuerst die Empfindlichkeit des zukiinftigen IceCube-Gen2-
Oberflichenarrays fiir die Rekonstruktion der kosmischen Strahlungsanisotropie untersucht,
und es wird gezeigt, dass IceCube-Gen2 wichtigen zusédtzlichen Datenpunkten zum Gesamt-
bild beitragen wird. Anschlieend optimiere ich analytische Methoden zur Rekonstruktion
von Anisotropien der kosmischen Strahlung und zur Identifizierung signifikanter grof3-
und mittelskaliger Anisotropien oberhalb von 10PeV in der Milchstrafle. Die Empfind-
lichkeit der Daten fiir die Anisotropierekonstruktion wird zunédchst mit traditionellen
Methoden bewertet; anschlieBend werden mehrere optimierte Rekonstruktionsverfahren
eingefithrt, um statistische Einschrankungen zu iiberwinden und die Unsicherheiten in
den rekonstruierten Dipolparametern zu verringern. Ein einheitliches Bild der kosmischen
Strahlungsanisotropie wird durch die Kombination von Messungen grofler Experimente
gewonnen, die sich vom TeV-Bereich bis iiber EeV-Energien erstrecken. Dadurch ergibt sich
eine kontinuierliche und globale Sicht auf die Entwicklung der Dipol-Anisotropien von galak-
tischen bis zu extragalaktischen Urspriingen, wobei eine globale funktionale Anpassung der
Dipolamplitude eine charakteristische ,,W-férmige* Struktur zeigt. Aufgrund begrenzter
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Statistik bleibt jedoch die Dipolphase zwischen 10 eV und 10 eV unsicher. Insbesondere
im Bereich von 1 bis 100 PeV zeigen sich komplexe Phasenvariationen, insbesondere in
den KASCADE-Grande-Daten. Die optimierten Methoden werden anschliefend auf die
KASCADE-Grande-Daten angewendet und zeigen Hinweise auf eine 30-Anisotropie bei
33 PeV, was auf Cygnus OB2 als mégliche Quellregion hindeutet. Ausbreitungsstudien von
Cygnus OB2 zur Erde zeigen eine Ubereinstimmung mit der beobachteten Anisotropie
bei 33 PeV. Abschlieflend legt diese Dissertation nahe, dass Pulsarwindnebel (PWNe), die
mit Supernovaiiberresten (SNRs) assoziiert sind, als nattirliche Beschleuniger galaktischer
kosmischer Strahlen im PeV-Energiebereich wirken kénnten und eine Erklarung fiir den
Ursprung sowie die auf der Erde beobachteten Anisotropien liefern kénnten.
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Introduction

In recent decades, cosmic-ray physics has confronted several persistent challenges, par-
ticularly concerning the origin, acceleration mechanisms, and propagation of high-energy
cosmic rays. Despite remarkable progress in experimental observations, the sources capable
of accelerating particles beyond the PeV scale remain uncertain. The transition between
Galactic and extragalactic components, especially near the “knee” and “ankle” features of
the spectrum, remains a topic of debate, as does the role of Galactic magnetic fields in
shaping cosmic-ray propagation and anisotropies. Resolving these questions is essential
for understanding the fundamental processes that govern the production and transport of
cosmic rays throughout the universe.

A central open problem in astroparticle physics is identifying the mechanisms and
sources responsible for accelerating Galactic cosmic rays (GCRs) to PeV energies. The
“knee” of the cosmic-ray spectrum, a steepening near 3 PeV, is generally interpreted as a
limit to the acceleration capability of typical Galactic sources. Supernova remnants (SNRs)
are widely regarded as the primary accelerators of GCRs via diffusive shock acceleration
(DSA) [1]. However, whether SNRs alone can account for the highest-energy GCRs remains
uncertain, as the efficiency of shock acceleration may decrease near PeV energies [2]. This
has led to the hypothesis that additional accelerators, such as pulsar wind nebulae (PWNe)
or other energetic astrophysical systems, might contribute to the Galactic cosmic-ray
population [3, 4]. Sources capable of accelerating particles up to and beyond PeV energies
are known as Pevatrons [5]. Although early gamma-ray observations had revealed promising
PeVatron candidates, including the Galactic Centre region [6] and the Cygnus region [7], no
definitive Galactic PeVatron had been confirmed at that time [4]. But the recent LHAASO
results now provide strong evidence for super—PeV particle acceleration in several Galactic
sources [8, 9]. Another major uncertainty concerns the energy at which the transition
from Galactic to extragalactic cosmic rays occurs. While particles below the “knee” are
generally attributed to Galactic sources, the origin of cosmic rays beyond this energy
remains not fully resolved [3, 4, 10]. The “ankle” feature around 5 x 10'® eV, interpreted
as the transition between Galactic and extragalactic cosmic rays, proven by Auger [11]. In
many transition scenarios, an extragalactic component is already expected to contribute
around the second knee at around (4-8)x10'7 eV, where the Galactic iron component cuts
off, and a lighter, more proton-dominated extragalactic flux begins to emerge [12, 13].
Above the ankle, at around (3-5)x10'® eV, the extragalactic cosmic rays likely dominate
the flux, in the traditional ankle—transition picture, where a flatter extragalactic spectrum
overtakes the steeper Galactic one [12, 13, 14]. Understanding this transition is key to
determining whether PeV and EeV cosmic rays originate from Galactic PeVatrons or from
extragalactic accelerators.

Cosmic-ray anisotropy provides an additional diagnostic of cosmic-ray origins and
propagation. Large- and small-scale anisotropies observed over a broad energy range
reveal the interplay between source distribution and magnetic field structure. At low
energies (below a few TeV), the large-scale anisotropy likely reflects nearby sources and
the configuration of the local interstellar magnetic field [15]. Moreover, small-scale sidereal
anisotropies detected by the HAWC and IceCube experiments provide further insight into
localised sources and the impact of magnetic-field turbulence on cosmic-ray propagation [16]
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in this energy range. At higher energies, especially near the “knee” at 3 PeV, the anisotropy
pattern becomes more complex, possibly indicating non-uniform diffusion or the influence
of nearby Galactic sources [17]. Moreover, the observed large-scale anisotropy above the
“ankle”, at (3-5)x10'® eV, remains at the few-percent level, and its energy dependence and
phase are agreed with a growing extragalactic contribution, although the exact origin and
transition scenario remain model-dependent and not yet fully established [18].

The central objective of this thesis is to develop optimized analytical methods for
reconstructing cosmic-ray anisotropies and to identify significant large- and medium-scale
structures above PeV energies within the Milky Way. These efforts aim to trace the origin
regions of Galactic cosmic rays, investigate their propagation to Earth, and propose a
preliminary conceptual model for their acceleration to PeV energies. In Chapter 1, an
introduction to the physics of cosmic rays will be given. Chapter 2 reviews existing methods
for cosmic-ray anisotropy reconstruction. To address the lack of dipole anisotropy mea-
surements between the PeV and EeV energy ranges, Chapter 3 investigates the sensitivity
of observational data to anisotropy reconstruction, with particular attention to future
observatories such as the IceCube-Gen2 surface array. Chapter 4 introduces optimized
reconstruction methods for dipole anisotropy, designed to overcome statistical limitations
and reduce uncertainties in the recovered parameters. In Chapter 5, results from major
experiments, including IceCube and LHAASO, and so on, are combined to construct a
unified, energy-dependent picture of dipole anisotropies up to 50 EeV. Chapter 6 applies
the optimized approaches to KASCADE-Grande data to search for anisotropy signatures,
investigate their possible origins, and study propagation features from a potential source
region (Cygnus OB2) to Earth using the CRPropa software code. Finally, the chapter
presents a potential proposal for interpreting the results, focusing on PeV particle ac-
celeration in Galactic sources such as supernova remnants and their connection to the
anisotropies observed by KASCADE-Grande.



Chapter 1

Cosmic Rays

Cosmic rays are high-energy charged particles and ionized nuclei, consisting of about
90% protons, 9% alpha particles, as well as the remaining heavier nuclei, and a minor
component of electrons and positrons, with energies up to 102° eV [19], spanning a broad
energy spectrum. Because cosmic rays are charged, they are deflected by magnetic fields,
primarily the Galactic magnetic field (GMF), and, therefore, at most energies, cannot be
directly traced back to their sources. At low energies (GeV-TeV), the geomagnetic field and
the solar wind (a magnetized plasma from the Sun) strongly affect what we observe near
Earth. At higher energies (PeV), the deflections caused by the geomagnetic field or the
solar wind per unit charge become smaller and can often be neglected, but the deflections
due to the Galactic magnetic field remain significant.

Where do cosmic rays come from? Two related open questions remain: (i) what are the
origins of cosmic rays across the full energy range, and (ii) what mechanisms are capable of
accelerating them to very high energies (PeV) or even ultra-high energies (EeV) and above.
The origin of cosmic rays is still not fully understood. Current candidates include the Sun,
with its solar flares (a known source of low-energy cosmic rays); supernova remnants and
pulsar-wind nebulae within our Galaxy (likely contributors up to at least the knee); and
active galactic nuclei along with other extreme extragalactic environments at the highest
energies [19]. The acceleration of cosmic rays occurs within astrophysical sources, while
their subsequent propagation takes place in the surrounding interstellar medium (ISM)
and, at higher energies, in the intergalactic medium (IGM).

The history of cosmic-ray physics is closely linked to the development of our understand-
ing of the cosmos and the relevant high-energy astrophysics. One of the earliest recorded
celestial events was the observation of the Crab Nebula in 1054 by the Chinese astronomer
Weide Yang. This supernova explosion, documented in the section “Treatise on Astronomy”
of the book “History of the Song Dynasty” nearly a thousand years ago, is now considered
a possible source of cosmic rays. However, at that time, the tools for investigating such
phenomena were limited to human sight, and the true nature of these powerful events
remained a mystery for centuries, until the 20th century, with the development of modern
physics, particularly breakthroughs in quantum mechanics, relativity, and particle physics.
From then on, people began to uncover the mechanisms behind such high-energy processes.
In 1912, Victor Hess discovered cosmic rays during a series of balloon flights, where he
measured the ionization rate in the upper atmosphere [20]. Since then, it has been estab-
lished that cosmic rays induce the atmosphere to produce cascades of secondary particles,
known as air showers, which can be detected with modern ground-based instruments.

The detection and measurement of cosmic rays employ various techniques and instru-
ments, including ground-based detectors, balloon-based experiments, and satellite-based
observatories. Ground-based arrays such as the Pierre Auger Observatory [21], KAS-
CADE (KArlsruhe Shower Core and Array DEtector) [22, 23, 24], LHAASO (Large High
Altitude Air Shower Observatory) [25], the IceCube Neutrino Observatory [26], and its
next-generation extension IceCube-Gen2 [27], detect extensive air showers produced when
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high-energy cosmic rays interact with the Earth’s atmosphere. Balloon-based experiments,
such as CREAM (Cosmic Ray Energetics And Mass) [28, 29], have directly measured the
elemental spectra of primary cosmic rays (from protons to iron) up to energies of about
10%5 eV. Satellite-based experiments, such as the Alpha Magnetic Spectrometer (AMS) on
the International Space Station [30] and DAMPE (DArk Matter Particle Explorer) [31],
directly measure cosmic-ray properties in space, free from atmospheric interference, and
provide unprecedented precision for protons, nuclei, electrons, positrons, and antiprotons
up to the TeV range. Future experiments, including the LHAASO extensions [25], GRAND
(Giant Radio Array for Neutrino Detection) [32], HERD (High Energy Cosmic-Radiation
Detection) [33], GCOS (Global Cosmic-Ray Observatory) [34, 35], and SWGO (Southern
Wide-field Gamma-ray Observatory) [36], will provide wider fields of view and extend
the accessible energy range (LHAASO up to 10'8eV and HERD up to 10 eV). These
experiments are expected to improve cosmic-ray studies significantly.

Already now, many physical features of cosmic rays are being studied, including
extensive air showers, the energy spectrum, mass composition, and anisotropies. These
measurements are just the tip of the iceberg, providing deeper insight into the propagation
of cosmic rays through the Galaxy and the mechanisms of their acceleration, which are
closely related to the main topics explored in this thesis.

1.1 Discovery and History

At the beginning of the twentieth century, it was known that electroscopes discharged
spontaneously in air, indicating the presence of an unknown penetrating radiation. The
dominant view was that this radiation came from radioactive substances in the Earth’s
crust. Two scientists, Domenico Pacini and Victor Hess, developed independent experi-
mental approaches that changed this view and led to the recognition of cosmic rays as an
extraterrestrial phenomenon [37].

In 1911, Pacini performed a series of measurements of electroscope discharge rates
over water and underwater (see the left panel of Figure 1.1). Using a sealed electroscope
enclosed in a copper box, he compared measurements at the surface of the sea and at
a depth of three meters in Livorno Bay [37]. Pacini observed that the ionization rate
decreased when the device was immersed in water. He concluded that a significant portion
of the radiation was independent of the direct action of radioactive substances in the
soil, since water effectively shielded radiation coming from above. These measurements
provided the first clear evidence for an origin of penetrating radiation from outside the
Earth [37]. Almost at the same time, Hess performed a different experiment. In 1912,
during a series of balloon flights to measure radiation levels at altitudes of up to about
5km, he observed that the ionization rate increased with height (see the right panel of
Figure 1.1), showing a strong signal. This proved that the radiation could not originate
from the Earth’s surface, but must come from space [20]. This marked the beginning of
cosmic-ray research. For this discovery, Hess was awarded the 1936 Nobel Prize in Physics.
In 1913, Kolhorster’s high-altitude balloon measurements revealed an increase in ionizing
radiation as the balloon climbed higher (altitude) into the atmosphere, thereby confirming
the extraterrestrial origin of cosmic rays, and provided independent confirmation of Victor
Franz Hess’s 1912 discovery of cosmic rays [38, 39].

After these discoveries, many research groups tested how penetrating the new radiation
was. In the 1920s, Millikan and his collaborators carried out a series of experiments
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Figure 1.1: Left: Domenico Pacini performing a measurement in 1912 (image taken from
the CERN webpage). Right: Victor Hess in a hydrogen balloon in 1912, during the
experiments that led to the discovery of cosmic rays.

using sounding balloons and absorption measurements in air, lead, and water to study
the penetrating power of what Millikan named cosmic rays [40, 41, 42, 43, 44]. Their lake
absorption experiments showed that the radiation could even reach the bottom of deep
water [41]. Besides, experiments in mines and tunnels showed that it could pass through
thick layers of rock, much more than ordinary ~-rays [45]. From the depth—ionization curves,
Millikan argued that the radiation had a wide spectrum of penetrating powers, which he
interpreted as evidence for atom-building processes in space, possibly the formation of
helium from hydrogen [40, 44]. They also strongly pointed out that cosmic rays do not
simply come from stars or from the Earth, but from truly deep space regions with very low
densities and high temperatures where atom-building may occur [44].

Further advancements came in the 1930s when people began to understand that
cosmic rays were not merely a single type of radiation but a complex mix of high-energy
particles from different directions. During this period, Bruno Rossi and Pierre Auger
made significant contributions to the study of cosmic rays. Rossi developed the electronic
coincidence method, which made it possible to register time-correlated particles across
separated counters and opened the way to identifying extensive air showers (EAS) studies,
and allowed for the detection of cosmic rays through multiple detectors and larger detection
areas [46]. In the late 1930s, Pierre Auger used arrays of detectors spread over large
areas and observed near-simultaneous signals across kilometre scales, which provided the
first direct evidence of extensive air showers. Auger observed simultaneous signals that
indicated the presence of large-scale particle cascades caused by high-energy primary cosmic
rays interacting with the atmosphere. They concluded that a single high-energy primary
could generate a vast atmospheric cascade of secondary particles, spreading over several
square kilometres. Auger’s pioneering experiments confirmed that extensive air showers
were produced by primary cosmic rays with energies far beyond those achievable by any
man-made accelerators of the time [47].

In the 1950s and 1960s, the development of new detector arrays allowed studies at
higher energies with better statistics. At Volcano Ranch, John Linsley measured the
cosmic-ray spectrum above 107 eV and later reported events close to 10%° eV, opening
the ultra-high-energy regime [48, 49]. Around the same time, studies of the knee in the
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spectrum near 3 PeV, now known as the knee, were first observed with an air-shower array
at Moscow State University [50]. Soon after, Peters suggested that the knee reflects a
change of composition, with lighter nuclei cutting off first and heavier nuclei extending
to higher energies according to their rigidity [51], now known as the Peters cycle. Other
techniques were also developed, such as Cherenkov light measurements of air showers
provided more information on the spectrum and mass composition [52]. During this
time, many new particles were discovered using photographic emulsions and Wilson cloud
chambers [53]. Among these were hyperons, pions, and kaons, forming what became known
as the “particle zoo”. These unexpected findings forced major changes in particle theory
and accelerator-based particle physics. At the same time, studies of the primary cosmic
radiation advanced, and it was shown that cosmic rays include nuclei much heavier than
helium. With further improvements in experimental techniques, the relative abundances of
different nuclei, and even some of their isotopes, were measured with good precision [53].
By the mid-1960s, theory predicted that the very highest-energy cosmic rays would be
attenuated by interactions with the cosmic microwave background, a process now called
the Greisen—Zatsepin—-Kuzmin (GZK) cutoff [54, 55]. These results marked the move from
early cosmic-ray studies to modern high-energy astroparticle physics.

1.2 Detection

In this section, we will review several key detection techniques, including satellite-based
detectors, Cherenkov tanks, scintillator arrays, radio arrays, and digital optical modules
(DOMs). Besides, we will provide an overview of the phenomena associated with extensive
air showers (EAS), the cosmic-ray energy spectrum, the mass composition of cosmic rays,
and the “muon puzzle” in cosmic-ray air shower detections.

1.2.1 Detectors and Experiments

The detection of cosmic rays relies mainly on two approaches: direct measurements of
cosmic-ray particles using the compact multi-detector devices, with a spectrometer or a
calorimeter above the atmosphere in space, and indirect measurements on the ground that
capture the signatures of extensive air showers. Indirect detection, such as that performed
by ground-based arrays, measures secondary air-shower particles (EAS) through Cherenkov
radiation, scintillation, radio emission, or optical detection with photomultiplier tubes
(PMTs), for example, in water tanks or in-ice detectors. Together, these methods cover
the full cosmic-ray energy range, from a few MeV up to beyond 10?° eV. In the following,
we discuss the different types of detectors commonly used in both direct and indirect
cosmic-ray detection.

Direct measurements are usually carried out with detectors on balloons and satellites,
which allow the study of primary particles before they interact in the atmosphere. Such
instruments are composed of multiple subsystems working together. A magnetic spectrom-
eter (as in AMS) measures the momentum or mass-to-charge ratio of charged particles
by tracking their curvature in a magnetic field and using extra tracking layers to improve
magnetic bending and track precision. It is considered the most precise technique for
determining the momentum and the charge sign of cosmic rays under strong magnetic
forces (see the left panel of Figure 1.2). The Alpha Magnetic Spectrometer (AMS-02) on the
International Space Station in space: it uses high-resolution silicon tracking planes inside a
strong magnetic field to measure the curvature of the particle track and thus its rigidity [56,
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Figure 1.2: Left: The AMS-02 spectrometer detector installed on the International Space
Station, illustrating the tracking of a TeV electron [56]. Right: A schematic cross-section
of the CREAM instrument with a simulated proton-induced shower [58].

19]. Particle identification is achieved through several complementary subsystems. The
transition radiation detector (TRD) discriminates between light leptons and hadrons, while
the time-of-flight (TOF) counters measure velocity, direction, and charge via the ionization
dependence on Z? [19]. An additional velocity and charge measurement is provided by the
ring-imaging Cherenkov (RICH) detector. At the bottom of the instrument, the electromag-
netic calorimeter (ECAL) records particle showers, confirming the identification of electrons
and positrons and yielding an independent measurement of their energy [19]. The highest
measurable energy in a spectrometer is limited by the accuracy of the track reconstruction,
which sets the maximum detectable rigidity, and by the geometric acceptance defined by
the size of the magnetic volume. With these capabilities, AMS-02 has extended direct
measurements of protons and helium to above 1TeV per nucleon, and of electrons and
positrons to several hundred GeV. It measures the flux of cosmic rays from about 10° eV
to 10'2eV [57] and also searches for antimatter and dark matter [56].

An alternative approach, which enables measurements at higher energies in direct cosmic-
ray experiments, is to utilise a calorimetric detector without a magnetic spectrometer.
A calorimeter measures the total energy of cosmic rays or their secondary particles by
absorbing their energy, focusing on determining the particles’ energy through energy
deposition, as seen in DAMPE [31]. By removing the magnet, the instrument can achieve
a much larger geometric acceptance, which is crucial for rare, high-energy events. In such
detectors, the energy is determined from the development of the particle shower in the
calorimeter. The energy resolution is less precise than in a spectrometer because of event-
to-event fluctuations in shower development and because some particles escape through
the bottom of the detector [19]. A well-known example is CREAM [28], which has flown
several times on long-duration balloons over Antarctica (see the right panel of Figure 1.2).
CREAM has measured the spectra of protons, helium, and heavier nuclei from above 1 TeV
up to beyond 100 TeV per particle, extending the range of direct observations beyond that
reached by AMS-02 [28, 29]. Besides, CALET on the International Space Station, as well,
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Figure 1.3: Left: Cross-sectional view showing the dimensions of a Water-Cherenkov tank
in IceTop at IceCube. Right: Schematic illustration of a Digital Optical Module (DOM)
used in IceCube. Figures adapted from [66].

reported the cosmic-ray spectrum from 10! eV to 104 eV [59]. Another example is the
PAMELA satellite, which has contributed valuable data on cosmic rays up to the TeV range,
in particular y-rays [60]. Balloon experiments and satellite missions such as GREAM,
DAMPE, AMS-02, CALET, and PAMELA have provided precise measurements of the
fluxes of protons, helium, heavier nuclei, and electrons and positrons. Direct detection
has therefore revealed the detailed energy spectra of individual elements and the ratios of
secondary to primary nuclei (for example, boron-to-carbon). By this ratio, the lifetime
of CR at low energies is Galactic as predicted by the leaky box model, which will be
introduced in Section 1.4.1.

Indirect measurements are needed to study cosmic rays at the highest energies because
the flux becomes very low [19]. The most practical approach is to build large detectors on
the ground that can operate for many years and cover very large areas. These air-shower
arrays extend over hundreds or even thousands of square kilometres [19]. They do not
see the primary cosmic rays directly but instead record the showers of secondary particles
produced when primaries hit the atmosphere, which provide indirect information about
the incoming particle [19]. Surface detector arrays (air-shower arrays) use many particle
detectors arranged in a grid, with spacings from about 13 m in KASCADE [22] and 15 m in
Tibet AS-y (Air-Shower Gamma Ray) [61] to more than 1 km in the Telescope Array [62]
and Pierre Auger Observatory [21], depending on the energy range to be measured. Showers
are identified by fitting the lateral distribution of particle densities in nearby detectors, and
the arrival direction is reconstructed from the relative arrival times of the shower front [19].
The air-shower arrays have contributed to fundamental discoveries, such as the observation
of the knee in 1958 [50] and the first event near 102 eV at Volcano Ranch [49]. In the knee
region, many arrays have provided data on the flux and composition of primary cosmic
rays, including IceCube [63, 26], CASA-MIA [64], EAS-TOP [65], KASCADE [23], and
GRAPES [19].

Air-shower arrays often employ more than one detector type. Water-Cherenkov tanks
are surface detectors that use the Cherenkov effect. When charged shower particles travel
faster than light in water (but not quicker than the speed of light in vacuum), they emit a
cone of Cherenkov light [19]. Photomultiplier tubes (PMTs) inside the tank record this light
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and convert it to electronic signals. Atmospheric Cherenkov techniques detect UV light
(300-400nm) from shower particles and help trace shower development [19]. At the Pierre
Auger Observatory, about 1,600 water-Cherenkov tanks cover ~ 3,000km? [67]. They are
optimized for ultra-high-energy cosmic rays (> 10'® V), and provide precise energy and
arrival-direction estimates with reliable detector responses. Auger combines surface data
with fluorescence measurements to determine composition. Moreover, IceTop at IceCube
Neutrino Observatory is an array of frozen water tanks, each equipped with two DOMs,
placed above the strings of the in-ice array [68]. In addition to surface water-Cherenkov
tanks, deep-ice optical modules (DOMs) can detect Cherenkov light from the high-energy
(around 300 TeV) muon bundles produced by cosmic-ray air showers [69, 70]. IceCube
contains 5,160 DOMSs, each with a PMT, embedded in a cubic kilometre of Antarctic
ice. When an air shower reaches the array, high-energy muons penetrate the ice and emit
Cherenkov light, with the signal dominated at high energies by stochastic energy losses
and energy deposits along the muon tracks [70]. On the surface, operating IceTop and
IceCube together enables a coincident analysis, where the electromagnetic component of
the shower is measured at the surface and the muon content deep in the ice. This combined
method improves the energy reconstruction and provides composition-sensitive observables,
providing new information on the primary cosmic rays [63, 26].

Fluorescence telescopes detect ultraviolet light from nitrogen molecules excited by
charged particles in an air shower, an idea proposed in the 1960s by Greisen, Chudakov,
Suga, and others [19]. The emission lies mainly between 300 and 400 nm, with about
4-5 photons per meter per charged particle at altitudes of 5-10 km [19]. This technique
provides a nearly calorimetric energy measurement: about 90% of the shower energy is
deposited in the atmosphere, while the remaining 10% (the missing energy) is carried
by muons and neutrinos, with only a few percent model uncertainty [71, 19]. Because
the light is emitted isotropically, showers can be observed from 5 to 35km depending
on geometry and energy [19]. Reconstruction requires shower-axis geometry, subtraction
of the Cherenkov component, and atmospheric corrections. The method gives both the
total energy and the depth of maximum development, X,,.x, which is a key composition
indicator [19]. Its main limitation is a low duty cycle of about 10-15% due to the need for
dark, clear nights and careful monitoring of atmospheric conditions [19].

Scintillator arrays that measure charged particles in cosmic ray air showers. When a
particle passes through a scintillator, it excites the material, producing a flash of light [19].
This light is then detected and converted into an electronic signal by photomultiplier
tubes (or SiPM). Scintillators are particularly sensitive to muons, electrons, and gamma
rays produced in air showers as secondary shower particles [22]. Experiments such as
the KASCADE utilize scintillator arrays to study cosmic rays with energies ranging from
10 eV to 1017 eV [22, 23]. Details on the scintillator array of KASCADE can be found
at the website'. The current IceTop has the problem of snow accumulation on the tanks,
which weakens and distorts the measured signals [72]. To fix this and improve composition
studies, the planned upgrade will add an array of plastic scintillator panels above the tanks
and thereby improve the detector response [72]. Other experiments also use scintillators.
For example, the Telescope Array (TA) employs two-layer plastic scintillator stations, which
provide accurate timing and signal density measurements [73]. In general, scintillators
record fast timing and particle densities, which are then used to reconstruct the energy
and arrival direction of the primary cosmic rays [22].

Mhttps:/ /kede.iap.kit.edu/information/about KASCADE/.
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Radio arrays detect radio emissions from extensive air showers (EAS). When the charged
particles in a shower move through the atmosphere, they produce coherent radio waves
mainly through two processes: geomagnetic deflection of electrons and positrons in the
Earth’s magnetic field, and the Askaryan effect from the shower’s negative charge excess [19,
74]. The emission is strongest below 100 MHz, where the signal scales nearly linearly with
shower energy. The radio pulse is forward-beamed, with the field strength at about 100 m
from the core giving the energy, and the lateral slope providing information on the depth
of shower maximum, Xp,ax, which is linked to composition and air-shower geometry [19].
Radio pulses from air showers were first seen by Jelley in 1965 [75]. Early studies in the
1960s—70s confirmed the effect, but the method was not yet reliable [19]. Modern radio
arrays have confirmed these effects and shown that radio detection can be a powerful tool,
which was first shown by LOPES at KASCADE [19]. LOFAR (Low-Frequency Array)
is especially effective in the range 10'6°-10'® eV [76], while the AERA (at Auger) covers
10171018 eV [77]. Compared to optical methods, radio has the advantage of continuous
operation in many weather conditions and can be deployed over large areas at relatively
low cost. This makes radio detection good at measuring shower energy, arrival direction,
and providing additional constraints on composition [74].

1.2.2 Future Experiments

What’s next? Several upcoming projects and upgrades aim to extend the energy and
particle coverage of cosmic-ray studies and introduce new detection techniques. These
efforts will increase exposure, improve mass-composition sensitivity, and strengthen links to
multi-messenger observations. In particular, some projects focus on improving the precision
of measurements at lower energies (MeV), while others will open the PeV-EeV window
with higher accuracy and larger statistics, providing new opportunities to uncover the
origin of cosmic rays and the mechanisms that drive their acceleration.

Direct measurements. There is growing interest in planetary platforms. Recently, it
was proposed to develop medium- and high-energy particle detectors tailored to the lunar
surface radiation environment for Chang’e-7 [78]. The planned energy ranges are: protons
30 keV-300 MeV, electrons 30 keV-12 MeV, and heavy ions 8-300 MeV per nucleon [78]. In
orbit, the HERD (High Energy Cosmic-Radiation Detection) experiment will be installed
on the Chinese Space Station around 2027 [33]. HERD is designed to directly measure
the spectrum and composition of protons, heavy nuclei, electrons, and gamma rays with
high energy resolution and a large geometric acceptance [33, 79]. It will precisely measure
primary cosmic rays from 30 GeV up to the PeV scale, probing the origin of the knee.
Further details are available on the project webpages.'?

Indirect measurements. Several new projects are planned. GRAND (Giant Radio Array
for Neutrino Detection) will deploy large radio arrays totally about 200,000 antennas to
detect air-shower signals from ultra-high-energy cosmic rays and extremely high-energy
(EHE) neutrinos [32]. For cosmic rays, GRAND will measure inclined showers in the range
10'7 to 1019 eV and aims to study the spectrum, large-scale anisotropies, and composition
with unprecedented statistics [32]. In China, LHAASO is already operating, combining
particle detectors, water-Cherenkov detectors, and Cherenkov telescopes. Planned exten-
sions will expand sky coverage and dynamic range, improving composition and anisotropy
studies in the TeV—-PeV region and testing particle acceleration in Galactic sources up to the

Thttp://herd.ihep.ac.cn.
Zhttps:/ /herd.cloud.infn.it /en.
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Figure 1.4: Left: Illustration of the HERD instrument, which will be installed on board the
Chinese Space Station (CSS) around 2027, with a planned lifetime of 5-10 years (image
taken from [86]). Right: Layout of the SWGO array with surface detectors arranged at a
high-altitude site (4770 m) in Chile (credit: Richard White, MPIK).

“PeVatron” scale [25, 8]. In the US, the Telescope Array (TA) is expanding to four times
its current size, providing much higher statistics above 10' eV to confirm and study the
northern-sky hotspot and to measure the highest-energy flux with reduced uncertainty [73].
GRAND, LHAASO, and TA, all located in the Northern Hemisphere, provide extensive
data for cosmic-ray studies.

However, in the Southern Hemisphere, there is no LHAASO-like facility at present.
The SWGO (Southern Wide-field Gamma-ray Observatory) is proposed for a high-altitude
site in South America [80, 36]. SWGO will focus on gamma rays above a few hundred
GeV and will also provide cosmic-ray measurements in the TeV-PeV range, including
spectrum, anisotropy, and composition proxies over the southern sky, complementing
northern arrays [80, 36]. In Argentina, AugerPrime upgrades Auger by adding scintillator
detectors on each surface tank, underground muon detectors at selected sites, and radio
antennas [81, 82]. Compared to Auger, which measured the spectrum and arrival directions
with the largest exposure, but had limited composition sensitivity. These new detectors
separate the electromagnetic and muonic components of each shower, enabling event-by-
event composition tagging [81, 82]. AugerPrime aims to clarify the origin of the flux
suppression above 109 eV (maximum source energy and propagation effects) and to
search for anisotropies with composition information. At the South Pole, IceCube-Gen2
will add a large surface array of scintillators and radio antennas working with the in-ice
detector [83]. It will study showers in the PeV—EeV range with special sensitivity to muon
content, and the surface array will also act as a veto for neutrino searches, while improving
composition studies [83, 84, 27, 85]. Finally, GCOS (Global Cosmic-Ray Observatory) is
a long-term proposal for a next-generation international facility designed to cover a very
large area and collect large exposures above 108 eV [34]. Its goal is to provide precise
measurements of the spectrum, composition, and arrival directions of ultra-high-energy
cosmic rays, ultimately aiming to identify their sources [34, 35].

To conclude, the future indirect experiments will mainly cover the PeV-EeV range,
which is also the focus of this thesis and the key region for studying cosmic-ray anisotropies.
At present, only KASCADE-Grande [87], IceCube [70] and Auger [88, 89] explore this
range, and so far, no significant anisotropies have been observed.
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1.2.3 Extensive Air Showers

The Earth is hit by cosmic-ray primaries every second, most often protons or nuclei
accelerated in astrophysical sources such as the Sun, supernova remnants (SNR), and
active galactic nuclei (AGN) [19], with energies ranging from below 1 GeV up to about
102° eV [90]. When such a high-energy incoming particle enters the atmosphere, it interacts
with a nucleus in the air, mainly nitrogen, oxygen, or argon nucleus at an altitude of about
15-35km above the Earth’s surface or inside, creating an initial collision at the primary
interaction point [90]. This first interaction produces many secondary particles, which
in turn interact and decay. The cascade multiplies and develops into what is called an
extensive air shower (EAS). The shower evolution grows, with shower front expansion,
reaching a maximum number of particles at some depth, and then gradually fades as the
particles lose energy and are absorbed by the atmosphere, influenced by particle scattering
effects, until reaching the final atmospheric depth [47, 19].

In an air shower, the main secondary pions (7% and 7°), kaons (K* and K9), and
other hadrons are produced. Neutral pions (7°) decay almost instantly into two photons,

7T0—>’)/-|—’7, (1.1)

which drives the electromagnetic cascade through pair production (y — eTe™) and e*
bremsstrahlung [19, 90]. The ~-rays then propagate and contribute to the electromagnetic
component of the air shower through pair production and further interactions. The charged
pions (71 and 77) are responsible for generating the muonic component of the air shower.
Charged pions (7%, with ¢r &~ 7.8 m) usually re-interact before they can decay when their
energy is above about E; 2 30 GeV [90]. At lower energies, their decay produces muons

~

and neutrinos, a channel that happens almost every time a charged pion decays,
=ty o+, (~100%), (1.2)

where the muons, being relatively long-lived particles, can travel significant distances
through the atmosphere and often reach the Earth’s surface before decaying [19]. Besides,
neutral kaons (K°) are relatively rare in extensive air showers compared to charged pions
and kaons. Charged kaons (K*, with ¢7 ~ 3.7m) behave in a similar way, but due to their
shorter lifetime, they tend to decay at somewhat higher energies [90], with decay channels
that resemble those of muons and specifically follow:

Kt —sut+v,, K —u +u, (~635%), (1.3)

where this channel occurs only about 63.5% of the time, while the remaining (~ 36.5%)
goes into other decay channels. The left panel in Figure 1.5 illustrates the main decay
channels of pions and kaons in extensive air showers. The decay of muons from the charged
pions and kaons has a similar chain, namely

pt et v+, pT e + et vy, (1.4)

where et and e~ are positrons and electrons, and v, and 7, are electron neutrinos and
antineutrinos. When conditions are such that all particles decay, one therefore expects

(Ve +Tu)/ (Ve +Te) ~ 2, ve/Ve ~ N+/M_- (1.5)

Moreover, in pion—muon decay, the three neutrinos, each carrying a similar share of the
pion’s original energy [19].

A cosmic-ray—induced extensive air shower develops through three principal components:

hadronic, electromagnetic, and muonic. The hadronic core consists primarily of nucleons,
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Figure 1.5: Left: The extensive air shower (EAS) profile with a schematic illustration of
an air shower with various detection channels. Collisions in the atmosphere create many
secondary hadrons, mainly pions and kaons. Charged ones decay into muons and neutrinos,
forming the long-range muon component. Neutral pions decay into photons, which start
the electromagnetic cascade and spread the primary energy into many particles. (taken
from [91]). Right: Longitudinal EAS profile for different particle types, taken from [92].

charged pions, kaons, and other high-energy hadrons that undergo successive inelastic
interactions, thereby sustaining the particle cascade. Neutral pions (7V) decay almost
instantaneously into two photons, which trigger electromagnetic subshowers through
alternating processes of pair production and bremsstrahlung. The evolution of these
electromagnetic cascades can be effectively approximated by the Heitler model [93, 19].
In an air-shower, the longitudinal profile (see the right panel in Figure 1.5) can be
expressed by depth, which is not in meters but in column density, called slant depth.
It is defined as X (1) = fé p(h)dl (unit in gem™2), where p(h) is the atmospheric mass
density at altitude h, and X meaning the mass of air contained in a column of 1cm?
cross section along the trajectory, describing depth development. At all energies, electrons
lose energy by ionization and atomic excitation, which gives an almost constant loss rate
per depth, written as —«a(FE). At higher energies, bremsstrahlung becomes dominant,
tthe radiated power increases with the square of the electron’s energy, leading to a term
—F /Xy, where X is the radiation length of the medium. Since these two processes act
independently, the total mean loss is simply the sum of the two contributions. The critical
energy F. is then defined at the point where ionization and bremsstrahlung losses are
equal, a(E.) = E./X [90]. For air, this condition gives E. ~ 87 MeV, meaning that
electrons above this energy mainly lose energy by bremsstrahlung, while those below it
lose energy mainly through ionization [90]. Thus, the total energy loss of electrons is
obtained as dE/dX = —a(E) — E/Xp. In air, the radiation length is Xy ~ 37gcm 2.
For the case F > E,., the radiative term dominates and energies decrease exponentially
with depth. In a minimal branching picture (Heitler), interactions “split” after a depth
Ae, namely, one particle of energy F yields two particles of energy E/2 [94]. After depth
X = n)., the particle count and typical energy are N(X) = 2X/* and E(X) = Ey/2%/,
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producing secondary particle cascade growth. Multiplication stops when E(X)~ E,, giving
the scalings Npax = Fo/E. and XEM ~ X\ In(Ey/E.) [90, 19]. The size of the cascade at
maximum grows in direct proportion to the primary energy Ej, whereas the position of
the maximum shifts only slowly, increasing like the logarithm of Ejy, which describes the

overall shower evolution. This leads to the well-known result for photon primaries,

max

(XY ~ XoIn(Eo/E.) + % (1.6)

while the scaling of the shower size, Nyax ~ Eo/FE., remains unchanged. The lateral
development is governed by multiple Coulomb scattering, with a characteristic Moliére
radius 1 = (21 MeV/E,) X ~ 9.3 gcm ™2, which translates to about 80m at sea level and
increases with altitude [90].

A hadron entering the atmosphere collides after roughly one interaction length At
and produces many secondaries, predominantly pions. Neutral pions decay promptly to
photons and seed EM sub-showers; charged pions mostly re-interact while energetic, and
later decay to muons and neutrinos once their energy falls below a characteristic decay
energy Fge.. The Heitler—-Matthews model assumes each hadronic interaction yields nqt
pions, with nq, charged and the rest neutral [93]. Because ¥ decay transfers energy to the
EM channel each generation, after n generations, the energies are

FEhag = (g)nEo, Epm = [1 - (g)n} Ey, (L.7)

so about 90% of the primary energy ultimately feeds the EM component after n ~ 6
generations [93, 90, 19]. Assuming that the first hadronic collision transfers its energy only
into electromagnetic sub-showers through neutral pion decay, the position of the hadronic
shower maximum can be estimated as

E
Xhad(EO) ~ )\int+XEM( 0 ) ~ >\int+X01n(

max max 2
Ntot

)
, 1.8
2nior Be ( )

where Ajy represents the length of hadronic interactions. The total number of muons
produced in the air shower at ground level (on average) follows from the number of charged
hadrons that reach FEqe. before decaying:

Ey > @ Inng,
N, ~ < , =
a Edec “

where Egec is the energy below which charged pions prefer to decay rather than re-interact.
So that N, rises faster than linearly in Fy on a log-log scale, with o reflecting hadronic
multiplicities. Laterally, hadrons emerge with nearly energy-independent transverse mo-
menta (p, ) ~ 0.35—0.4 GeV, which makes the hadronic and muonic components broader
on the ground than the EM one [90]. Most ground-level muons come from low-energy pion
decays, making N, sensitive to low-energy interaction modeling.

~ 0.82-0.94, (1.9)

ln Niot

The interactions and decays of charged pions and kaons feed the muonic component,
which provides about 90% of the muons observed at ground [90]. Other photon-induced
processes, such as photoproduction or muon-pair production, add only a small contribu-
tion [90, 19]. Muons lose little energy while traversing the atmosphere, so most survive to
reach the ground; in very inclined showers (6 > 65°) the electromagnetic part is largely
absorbed, leaving mainly muons and their decay electrons [90]. Because they penetrate
deeply, even into underground detectors, muons are a powerful probe of the primary cosmic
ray. The total number of muons grows with energy and also depends on the primary mass.
For air-shower development, a nucleus with mass A and energy Fy can be approximated as
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A independent nucleons of energy Ey/A [19]. This “superposition” approach yields simple
scaling rules for inclusive observables:

N (Ey) ~ ANP). (Eo/A) ~ N©®)  (Ey),

<Xr(néx)x(E0)> = <Xr%[)zzx(E0/A)>7 (110)

Nﬁ(EO) — Al-@ N[LM(EO),

where the superscripts (p) and (A) refer to showers initiated by a proton and by a
nucleus with mass number A, respectively. For a fixed total energy, heavier primaries
produce shallower showers and a larger number of muons, because the primary energy is
distributed among many nucleons, resulting in a lower center-of-mass energy per nucleon and,
consequently, an earlier shower development. Iron showers reach a maximum 80-100 g cm ™2
higher in the atmosphere than proton showers of the same energy and contain ~ 40% more
muons [19]. The superposition picture works well for mean quantities like (Xmax) and Ny,
but it does not capture correlation observables or higher moments that depend on nuclear
breakup details [19]. In the superposition approximation, the number of particles at the
shower maximum depends solely on the primary energy, not on the mass of the nucleus [95].
The position depth of the maximum, however, changes with mass and is expressed as a
mass-dependent development with observable depth differences, i.e.,

Ey
Xmax Al ( > , 1.11
x n AL, ( )

where FE. is the critical energy defined at the point where ionization and bremsstrahlung
losses are equal (as mentioned previously). The expression (1.11) above is a form of the
elongation-rate theorem [19]. As a result, showers from heavy nuclei develop faster and
reach a maximum at a higher altitude in the atmosphere than proton showers of the same
energy, although the dependence is only logarithmic. The first interaction of a heavy
nucleus also happens very early, for iron, Aip; ~ 2.3 gem™2 [19]. With increasing energy,
the nucleon—air cross section rises, so the first interactions take place even higher in the
atmosphere. The longitudinal and lateral development of these air showers is subsequently
used to reconstruct the energy, mass, and arrival direction of the primary cosmic ray.

1.2.4 Muon Puzzle

For extensive air showers (EAS) produced by high-energy cosmic rays, the number of
muons observed at the ground is larger than predicted by simulations. This discrepancy is
known as the “muon puzzle” (see Figure 1.6). It has important consequences for hadronic
interaction models and for systematics in reconstructing the EAS, since it points to missing
physics at energies beyond the reach of accelerators [96, 97]. Underestimating the muon
component leads to an incorrect energy reconstruction and mass composition, especially in
inclined showers where muons dominate the shower structure. Inaccurate muon modeling
may also bias the reconstructed shower core, primary energy, and arrival direction of cosmic
rays, thereby affecting the accuracy of anisotropy studies and the determination of dipole
amplitudes and phases.

Experiments measure N, with ~ 10% uncertainty, yet the N,-based composition
band is 2.5-4 times wider, showing that hadronic model systematics dominate, while
different air-shower codes agree at the ~ 5% level [98, 97]. Even LHC-tuned models
predict fewer muons than observed [99]. The muon deficit was first identified by the Pierre
Auger Observatory through a nearly model-independent hybrid analysis [100, 101], and
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Figure 1.6: Comparison of muon density measurements from different experiments using
the z-scale (see [96]), dependent on the hadronic interaction model. It shows data after
energy-scale cross-calibration, except for KASCADE-Grande and EAS-MSU, which are
included for reference. Also shown are z-values expected for a mixed composition based on
optical measurements (band) and the GSF model (dashed line). Plot taken from [96]

the Telescope Array later reported consistent evidence using a more model-dependent
surface-detector approach [102]. Auger has since extended its study to shower-to-shower
fluctuations [103], while IceCube observed a similar trend at lower energies [104]. A detailed
meta-analysis by the WHISP group further demonstrated a consistent muon excess across
experiments, reaching 8¢ significance above 10 PeV [96]. Comparisons between measured
data and MC simulations are often performed using the z-scale [96, 105],

det det
~In(Nget) — In(Vdety

Z = )
ln<N3,eI<Ee> - 1n<NSS§>

(1.12)

where N 3‘3'3 is the muon density estimate observed in the detector, while NV f}’ept and N;leﬂie
are the simulated muon density estimates for proton and iron showers, respectively, after
full detector simulation, as shown in Figure 1.6. It reveals large discrepancies between

experiments above 10 PeV and up to the highest energy.

Within the LHC energy range, the discrepancy grows smoothly with energy and appears
already at /s ~ 8 TeV [97]. The most natural explanation is a change in secondary particle
production that reduces the neutral pion fraction, increasing the hadronic over electromag-
netic energy and thus raising the muon yield, while leaving X ax consistent [97]. At the
LHC, an enhancement of strangeness production has been observed in high-multiplicity
events [99], which could provide such a mechanism if it also occurs in the forward region
that dominates air-shower development [106, 107]. Dedicated forward measurements and
future p-O collisions at the LHC [108] are crucial to test this. If the puzzle is solved, the
composition uncertainties (the N, bands) will be reduced by factors of 2.5-4 and improve
predictions of atmospheric lepton fluxes, which form the main background for neutrino
observatories, will improve [97].

The discrepancy indicates that present hadronic interaction models (EPOS-LHC,
QGSJET, SIBYLL) may not correctly describe secondary production above accelerator
energies [109, 97]. In particular, current models may channel too much energy into neutral
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pions, while in reality more baryons, kaons, or strange hadrons could be produced [97].
This gap limits accurate modeling of particle production at high energies. These soft-QCD
processes occur in the forward region, which is poorly constrained by existing data [97].
New collider measurements are therefore essential to refine the models. Although exotic
scenarios beyond the Standard Model have been suggested, such as new particles decaying
into muons, current evidence favours incomplete knowledge of soft hadronic interactions
as the main cause [97]. Upcoming upgrades such as AugerPrime [21] and next-generation
observatories like GRAND [32] will enable more accurate measurements of Xy, via radio
techniques for mass-composition studies, while LHC data, particularly from p—O collisions,
will directly test the physics underlying the muon puzzle.

1.2.5 Composition

The composition of cosmic rays can be determined through direct and indirect detection
methods. Direct measurements are performed by satellite or balloon-based detectors, such
as PAMELA [60], AMS-02 [56], or CREAM [28], which can directly measure the charge
(¢) and mass of individual cosmic ray particles (measure the rigidity (R = p/q), where p
is the particle momentum). For high-energy cosmic rays, where direct detection becomes
challenging, ground-based air shower arrays, such as KASCADE-Grande [110], Pierre Auger
Observatory [111, 21], and IceTop [70], infer the mass composition through measurements
of extensive air showers (EAS).

For the direct measurement, typically in lower energies, cosmic-ray abundances and
solar abundances, both show the odd—even pattern: even-Z nuclei are more common
because they are more tightly bound. Two clear differences between them stand out. First,
heavy nuclei (Z > 1) are far more abundant relative to protons in cosmic rays than in
the solar system. This may reflect injection physics (hydrogen is harder to ionize and
inject) or a true source-composition difference; the exact reason is not settled [19]. Second,
several nuclei that are rare in stellar nucleosynthesis, Li, Be, B and the sub-Fe group,
Sc, Ti, V, Cr, and Mn are strongly enhanced in cosmic rays [19]. These are secondaries
made by spallation of heavier primaries (notably C, O, Fe) on interstellar gas. Using
spallation cross sections, one infers the average grammage traversed by most cosmic rays
to be X ~ 5 gecm™2. For a disk density py ~ 1 cm™3, this corresponds to a path length

I~ X/(mppn) ~ 3 x 10** cm ~ 10° kpc, (1.13)

which is obtained based on propagation and extracted using B/C measurements of AMS-02.
Since this greatly exceeds the disk half-thickness (~ 0.1 kpc), cosmic rays cannot move
ballistically. Instead, their trajectories are strongly bent by the turbulent Galactic magnetic
field and effectively follow a random walk. This indicates that cosmic-ray confinement
occurs through diffusion, with particles scattering many times before leaving the Galaxy [19].
Low-energy cosmic rays are more likely to interact with matter because their small Larmor
radius in the Galactic magnetic field leads to longer confinement times and higher column
densities. In contrast, high-energy cosmic rays, with energies from the TeV up to the PeV
range, are less confined and escape the Galaxy more quickly, reducing the effective column
density, as expected from rigidity scaling.

Air-shower experiments cannot measure the mass of each primary directly, but they
can use observables that depend on composition. The most important are the depth of the
shower maximum, X ,,x, and the number of muons at ground. In the superposition picture,
a nucleus of mass A and energy Ej behaves like A nucleons of energy Ey/A. As a result,
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Figure 1.7: Left: measurements of (Xy,x) with non-imaging Cherenkov detectors. The
depth of shower maximum is shown as a function of primary energy, compared to the model
simulation for protons and iron. Right: Mean logarithmic mass as a function of energy from
Xmax data. Both figures are adapted from [98], and the paper demonstrates that (Xpax)
depends on the composition through the mean logarithmic mass, (In A) = >, filn A;.

heavy primaries interact earlier and develop faster, so their showers reach the maximum in
the higher atmosphere. Proton showers, by contrast, penetrate deeper and fluctuate more,
while heavy nuclei show smaller fluctuations because they act like many nucleons together,
and consequently produce narrower profiles [19]. These features lead to the scaling laws of
Eq. (1.11), which predict smaller Xy,,x and more muons for heavier primaries at the same
energy as expected. The average depth (Xp,ax) is measured with fluorescence telescopes
above EeV energies and with air-Cherenkov detectors at lower energies [19], see the left
panel of Figure 1.7. To estimate the mass composition, data are compared with simulations
with different hadronic interaction models for protons and iron, which provide reference
curves. The measured (Xpax) is then interpolated between these two extremes to obtain
the mean logarithmic mass, as follows the relation:

(XBae) — (Xate)

In A) = 2 max max/ |, 56, 1.14
) = ) = (X .
where (XP_ ) and (XFe ) denote the model predictions for proton and iron primaries,

respectively. This relation provides a model-dependent estimate of the mean logarithmic
mass of primary cosmic rays [112, 98], as illustrated in the right panel of Figure 1.7.
Measurements indicate that the average mass of CRs changes with energy. Between
the knee at about 10 eV and the second knee near 10'7 eV, the composition becomes
gradually heavier, consistent with lighter nuclei cutting off first in Galactic sources. From
the second knee to the ankle at around 3 x 10'® eV, the trend reverses and the composition
appears lighter, which may point to the growing contribution of an extragalactic component
dominated by protons and helium. Above the ankle, some data suggest another increase
of mass, but the uncertainties are still large, and the picture is not yet settled [19]. If
confirmed, such a rise of (In A) reflects a Peters cycle of an extragalactic component
exhibiting a rigidity cutoff near 3 x 10*¥V [19].

The mass composition also provides clues about the sources of cosmic rays. For
Galactic cosmic rays up to the knee, the presence of heavy primaries (e.g., Fe) is consistent
with supernova remnants as sources, though injection biases and propagation also shape
abundances [3]. The He/p ratio and element-dependent spectra constrain rigidity-dependent
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acceleration and escape in shocks [3]. At higher energies, the evolution of composition
helps distinguish the fading Galactic component from the emerging extragalactic one. At
ultra-high energies, the observed mix is set by the sources’ maximum rigidity and by
propagation effects, namely, photo-pion production for protons and photo-disintegration of
nuclei on the CMB/EBL [12, 113, 114].

1.2.6 Energy Spectrum

The cosmic-ray energy spectrum describes the flux of cosmic rays as a function of their
energy. It spans a vast range of energies, from 10° eV to beyond (102%) electron volts (eV).
The spectrum is fundamental to cosmic-ray physics, as it provides critical insights into
the origin, acceleration mechanisms, and propagation of cosmic rays through the galaxy
and beyond [3]. The spectrum has been measured by various experiments across a wide
range of energies, consistently demonstrating a steeply falling behavior above the GeV
range [23, 115, 116, 117]. It can be well-approximated by a power-law function over many
decades in energy, reflecting the underlying physical processes governing CR acceleration
and propagation [90]. The differential CR energy spectrum can be obtained by:

dN
T(B) = dE dAdtdQ2
where FE is the energy, N is the total number of cosmic-ray particles at energy F, A is
the effective area of the observatory, €2 is the solid angle covered on the sky, and « is the
spectral index, typically around 2.7 for energies above a few GeV and up to about 4.2 at the
highest energies. The power-law shape of the cosmic-ray spectrum is modified by several
notable features: the “knee”, the “ankle”, and the ultra-high-energy cutoff, as Figure 1.15
shows. The combined fits of the scaled mass-dependent cosmic-ray energy spectrum from
direct and indirect measurements are shown in Figure 1.8.
When Eq. (1.15) is plotted as E?J(E), a break in the power-law curve is seen at
E ~ 3 x 10'% ¢V, and this feature is called the “knee”, which marks a steepening of the
spectrum [118]. At this energy, the index changes from 2.7 to 3.1. The knee was first
observed with an air-shower array by Kulikov and Khristiansen [50]. The KASCADE
experiment provided the first high-precision measurements of the all-particle cosmic-ray
spectrum in the knee region [23] and clarified the spectral behaviour. The results showed
that the knee at E ~ 3 x 10 eV is caused primarily by a steepening of the light components
(protons and helium), while heavier nuclei exhibit knee-like features at proportionally higher
energies, consistent with a rigidity-dependent cutoff [22]. In addition, later measurements by
other air-shower arrays are consistent with a rigidity-dependent behaviour of the knee [98].
Several air-shower experiments have measured the spectrum in the range above the knee
with sufficient precision to reveal additional structure beyond a single power law. Results
from KASCADE-Grande [119], Tunka-133 [120], and IceTop [63] show that the spectrum
deviates from a simple index of v ~ 3.0, indicating further features (additional spectral
breaks) in this transition region [19]. At ~ 107 eV, the steepening of the spectrum was
found [121, 122]. KASCADE-Grande extended the energy range up to 10'8 eV, revealing a
“second knee” in the spectrum at E ~ 107 eV and providing evidence for the transition
from Galactic to extragalactic cosmic rays [116, 119]. At 10'8-10'% eV, which is the start of
ultra-high energy, the spectrum becomes flat, known as the “ankle”, and above 7 x 10!? eV a
suppression of the flux is observed [90]. HiRes Fly’s Eye provided the first clear measurement
of the ankle in the UHECR spectrum at ~ 3 x 10'® eV [123]. In 2020, Auger confirmed the
flattening of the spectrum near 5 x 1018 eV at the “ankle” [117].

x E7, (1.15)
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Figure 1.8: Energy-weighted cosmic ray spectrum above 10 TeV, illustrating the features:
the knee, the second knee, and the ankle. The knee at 3 PeV marks a spectral steepening,
dominated by Galactic cosmic rays. The second knee around EeV causes further steepening,
while the ankle beyond EeV marks a spectral flattening. The diffuse y-ray flux and the
diffuse neutrino background are also included. Figure taken from [118]

Above 109 eV, the spectrum exhibits a suppression, often associated with the GZK
cut-off [54, 55]. In 1963, John Linsley at the Volcano Ranch array reported the detection
of an air shower corresponding to a primary energy of about 10?° eV, which was the first
experimental evidence of an ultra-high-energy cosmic ray (UHECR) at this energy [49].
HiRes was the first experiment to find a sharp suppression in the flux of ultrahigh-energy
cosmic rays at about 6 x 10'? eV, consistent with the expected cutoff, while the ankle of
the spectrum was also seen at about 4 x 10'® eV [115, 67], thereby confirming the expected
high-energy features. Measurements by Auger in 2008 showed that the spectral index
changes from v = 2.69 in the range 4 x 10'®-4 x 10 eV to v = 4.2 above 4 x 109 eV, also
providing clear evidence of flux suppression consistent with the GZK effect [67]. More
recently, in 2020, Auger confirmed the steepening of the spectrum at around 5 x 1019 eV
finally [117], further supporting these observational trends. Moreover, in 1991, Fly’s Eye
(HiRes) recorded an extensive air shower whose primary energy was reconstructed at
3.2 x 1020 eV [124] (far exceeding the threshold expected for the GZK limit), so-called “Oh-
My-God” event, which remains the highest-energy cosmic-ray particle ever reliably detected
and provided the first direct evidence that nature can produce particles with energies far
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Figure 1.9: Combined fit of the scaled cosmic-ray energy spectrum from direct and indirect
measurements. Colored data points and fit curves correspond to different mass groups.
Filled markers show direct observations, while open markers indicate indirect air-shower
observations. Figure adapted from [126].

beyond terrestrial accelerators, demonstrating the end of the cosmic-ray spectrum.

This power-law behavior arises from shock acceleration at the sources and from dif-
fusive escape in turbulent Galactic magnetic fields, which steepens the spectrum during
propagation [3, 19]. The knee is typically associated with a rigidity-dependent limit
of Galactic accelerators (and possibly changes in propagation), where particles are no
longer accelerated efficiently [98]. The ankle is often interpreted as the transition to an
extragalactic population that overtakes the Galactic component [113, 12], as mentioned at
the end of Section 1.2.5, further supporting this interpretation. At the highest energies
(above 5 x 10 eV), energy losses in background radiation shape the spectrum: protons
lose energy by photo-pion production (~ 20%) and Bethe—Heitler pair production on the
CMB/EBL, while nuclei are photo-disintegrated; a contribution from finite source rigidity
limits is also possible [115, 125]. Detailed theoretical models of acceleration mechanisms
and propagation effects can explain the observed features of the cosmic-ray spectrum,
especially across these transitions, which will be discussed in the next sections.

1.3 Anisotropy

The arrival directions of cosmic rays on Earth are almost isotropic, but small anisotropies
exist at the level of about 10741072 from TeV energies up to above 50 EeV, increasing with
energy. These appear as tiny modulations in the otherwise nearly uniform distribution of
arrival directions. Early searches looked in the solar frame and found the Compton—Getting
effect, a small diurnal variation caused by Earth’s orbital motion. This indicated that
cosmic rays are almost isotropic, with modulations at the ~ 1074 level [127, 128, 129].
The first hints of large-scale anisotropy were already reported in the 1930s, when early
experiments found small deviations from an isotropic distribution of arrival directions [130].
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However, the detectors then had limited stability, low statistics, and poor control of
atmospheric and instrumental effects, so the measurements carried large uncertainties and
did not allow firm conclusions about the presence or structure of a genuine cosmic-ray
anisotropy.

With the development of larger ground arrays, systematic studies of small anisotropy
signals became possible in the 1950s through data collected by large underground muon
detectors and extended ground-based arrays [5]. From the 1970s to the 1990s, the focus
shifted to the sidereal frame, since any steady anisotropy observed there should arise from
Galactic transport and sources [131, 132]. Clear evidence of multi-TeV anisotropy was
later reported by the Tibet ASvy experiment, which identified the “tail-in” and “loss-cone’
features of TeV cosmic rays. The “tail-in” region corresponds to a broad excess, likely caused
by cosmic rays streaming along the local interstellar magnetic field, while the “loss-cone’
region represents a deficit resulting from magnetic-field scattering or reflection effects [15].
These results were confirmed by Milagro [133], Super-K [134] and ARGO-YBJ [135] in the
northern hemisphere, revealing large- and medium-scale structures at the 10° level with
amplitudes of 1072. HAWC [136, 16] and LHAASO [25, 137] further improved sensitivity
at multi-TeV to PeV energies, showing the energy dependence of the anisotropy at the
10~4-1073 level. In the southern hemisphere, IceCube and IceTop cover the TeV-PeV
range [138, 139, 140], and have observed anisotropy of about 10~ to 1073 below 1 PeV,
with an approximate dipole pattern [141]. These structures evolve with energy, roughly
consistent with anisotropic diffusion and local magnetic-field effects [5]. Figure 1.10 shows
an example of full-sky anisotropy, which combines HAWC and IceCube data at a median
energy of 10 TeV. In these energy ranges, different experiments have reported dipoles with
large discrepancies in both sidereal amplitudes and phases below the PeV range, which
may arise from differences in hadronic interaction models used for energy and direction
reconstruction, as well as from differences in the energy-sample distributions of the median
energies (excluding the effect of partial-sky coverage). Therefore, a global fit of these
dipoles is presented in Chapter 5. Moreover, in the PeV range, KASCADE-Grande also
reported dipole anisotropies [87], but with amplitudes and phases clearly shifted relative
to those measured by IceTop in the same energy interval [142]. This mismatch indicates
that the observed anisotropy at PeV energies is not yet consistently reproduced across
experiments, and is therefore one of the motivations of Chapter 6. At even higher energies,
above 1EeV, Auger [88] and TA [102] have searched for dipole and large-scale patterns,
and linked anisotropy to the transition from Galactic to extragalactic cosmic rays. Besides,
Auger has reported a significant dipole above 8 EeV at the ~ 6% level, which is consistent
with an extragalactic origin at the highest energies [88, 117, 89].

)

)

To explain the origin of cosmic-ray anisotropies, one has to connect them to the
distribution of sources and their propagation through the Galaxy. At low energies (< 10
GeV), a kinematic dipole appears from the Compton-Getting effect [127], i.e., AI/(I) =
(v+2)(v/c) cos 8§, with y ~ 2.7 the cosmic-ray spectrum index, 6 is the angle between the CR
arrival direction and the solar system motion. For the solar system velocity v ~ 220 km/s,
the expected amplitude is ~ 0.35%, giving an excess near 290°-340° and a deficit near
110°-160° [143]. At sub-PeV energies, the anisotropy is likely dominated by local effects,
such as the heliosphere and nearby supernova remnants (SNRs), which are thought to be
primary accelerators of Galactic cosmic rays [3]. In this regime, cosmic-ray trajectories are
strongly randomized by the Galactic magnetic field, resulting in only a small anisotropy.
The dipole anisotropy is of particular interest in this energy range because it reflects
large-scale directional patterns, often linked to nearby sources or magnetic structures [5].
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Figure 1.10: Combined data of IceCube and HAWC at a median energy of 10 TeV. (A)
Relative intensity of cosmic rays at 10 TeV median energy and (B) corresponding small
angular-scale anisotropy. Figures taken from [16]

In theory, if cosmic rays come from sources that are not uniformly distributed, there
should be a gradient in their density, which, through diffusion, produces a net flux and
a certain dipole amplitude [5]. This flux would appear as a dipole in the sky, pointing
back toward the dominant sources [5]. Several studies have suggested that such a signal
could reveal the location of nearby or major sources [15, 16]. However, observations so far
do not show this clearly, and the dipole seen at TeV—PeV energies is much smaller than
what simple diffusion models predict [5]. This discrepancy is known as the “cosmic-ray
anisotropy problem” [144, 5]. However, at higher energies, particularly for ultra-high-
energy cosmic rays (UHECRs), the deflection by magnetic fields becomes weaker, since
their velocities approach the speed of light ¢, and cosmic rays tend to follow straighter paths
from their sources, thereby improving directional sensitivity, making it easier to detect
anisotropies [145]. The observations of the Pierre Auger Observatory suggest that the
sources of UHECRs are extragalactic, likely associated with nearby large-scale structures
such as AGNs and galaxy clusters within a few hundred megaparsecs [111].

1.4 Propagation

Cosmic-ray propagation involves complex processes that influence their energy, direction,
and composition before they reach Earth. These processes are essential for interpreting
cosmic-ray spectra and anisotropies observed on Earth, as they are shaped by the inter-
actions cosmic rays undergo during their journey through the Galaxy [5, 3]. From the
1960s to the present day, people have developed many methods and models to explain the
abundances, spectra, and anisotropies of cosmic rays on Earth.

1.4.1 Leaky-Box Model

Early work noticed that Li, Be, and B were far more abundant in cosmic rays than in
the general elemental composition of the Universe. These light elements were understood
as spallation products of heavier nuclei like C, N, and O during their passage through
interstellar matter [146]. The first quantitative attempts to explain this were made by
Appa Rao and Kaplon [147] and by Balasubrahmanyan et al. [148], who assumed that
cosmic rays crossed a fixed thickness of matter, similar to a slab, with little spread in path
length. Such models could reproduce either the (Li+Be+B)/(C+N+O) ratio or the CNO
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spectra at low energy, but not both together, because ionization losses at low energies
flattened the spectra too strongly [146].

To resolve this, the leaky-box model was proposed in the mid-1960s [149, 146]. Instead
of assuming a fixed slab thickness, it introduced a distribution of path lengths (often
exponential), allowing one to average over different traversals of matter and obtain realistic
predictions. Two early tests illustrated the model: the effect of the newly discovered ~ 3K
cosmic microwave background on the electron spectrum [149], and the Li, Be, B abundances
relative to C, N and O [150]. In this framework, the Galaxy is treated as a uniform box
where cosmic rays are injected into a uniform gas and radiation field, propagate freely,
and then escape after a mean time 7es(F). Diffusion and convection are not explicitly
included, but are approximated by a single leakage term. The grammage X (E), the column
density traversed, naturally appears in this picture and decreases with rigidity, explaining
secondary-to-primary ratios [150, 151]. Thus, particles inside the box have a constant
probability per unit time to escape, 7. < ¢/h, and follow

V-VN,(E,x) = V- [D(r) VNi(E,x)] = Ni/Tesc, (1.16)

which is valid only when ¢ Tesc > h, that means in the leaky boxr model, cosmic-ray particles
move at nearly the speed of light and have a small probability of escaping each time they
reach and cross the boundary of the Galaxy disk [19]. The survival probability after a time
t is, then exp(—t/7Tesc). In this picture, Tege is the mean residence time and Aesc = p 3¢ Tesc
is the average amount of matter traversed.

A more general treatment, the weighted slab technique, was later introduced to allow
for a broader path-length distribution and to include possible re-acceleration during
propagation [152]. In the equilibrium regime, meaning that the density N(E,x) becomes
time-independent and reaches a steady state, the leaky-box equation (1.16) reduces to

Ni(E) . [Bep 17 Bep
e(B) Qi(E) [ Y %_} Ni(E) + m kZZiaLk Ni(E), (1.17)

where m,, denotes the proton mass, and o; ;. is the spallation cross-section for the reaction
k — i. This form is used for describing primary and secondary nuclei, which keep the same
energy per nucleon during fragmentation [19].

The boron-to-carbon (B/C) ratio can be estimated using Eq. (1.17), assuming that no
boron from the sources, and the decay term is neglected since it is stable [19]. The source
term is mainly from carbon and oxygen and Np ~ Ng, the B/C ratio becomes [19]:

Ngp ~ )\esc(E) ) 0Cc—B + 00=C

2B : 1.18
Ne 14 dese(E)/AB my (1.18)

where the escape length Aesc(F) = p S Tese(F). For boron production, typical values are
oc-B~ T3 mb, 005 ~30 mb and A\g~7.1 gcm™2, but in precision fits one should use
updated cross-section sets [153]. Using modern B/C data from AMS-02 [154], the inferred
escape length decreases with rigidity (R) and is well described at high R by

Aesc(R) =~ 1953<>_5, (1.19)

with § ~ 0.40 at high R (Ztens of GV) [154], Aese ¢ R7%. At low R, with R < 3 GV,
a common form is Aese = 19 4% gem™2. Solar modulation also shifts low-energy spectra
between local interstellar space and near-Earth. For a primary nucleus P, the contributions
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from fragmentation of heavier nuclei can be ignored, Eq. (1.17) reduces to

. QP(E) Tesc(R)
14 Aese(R)/Ap

where (Ap > Aesc), which leads to Np(E) =~ Qp(E) Tesc(R). Thus, if the observed spectrum
follows N(E) E~0*D the source spectrum has to be steeper due to propagation,

Q(F) x B¢, (1.21)

with « =y +1—§ >~ 2.3 when § ~ 0.40 and v+ 1 = 2.7. For heavy nuclei like iron, where
Ap ~ 2.3 gem ™2, the change from interaction-dominated to escape-dominated happens
around 20 GeV /nucleon at low energies. The iron spectrum is observed to be flatter than
protons and helium, in line with this expectation. The AMS-02 data [155, 154] extend B/C
up to the TeV region and give § &~ 0.4 at high rigidity. This value lies between Kolmogorov
(1/3) [156, 157] and Kraichnan (1/2) [158] turbulence predictions, with signs of a break in
rigidity rather than a single slope over the full range.

The leaky-box framework quickly became the main and standard tool to interpret
cosmic-ray propagation and secondary-to-primary ratios [159, 160, 152, 161, 162, 163, 164,
165]. Later, space-based missions such as PAMELA [60], AMS-02 [56], and DAMPE [31]
provided high-precision measurements over a broad energy range. These data made clear
that the simple leaky-box description was no longer sufficient, and motivating the use of
modern transport and diffusion models [146].

Np(E) (1.20)

1.4.2 Transport Model

The Ginzburg—Syrovatskii (G-S) equation, known as the “transport equation”, was formu-
lated by Ginzburg and Syrovatskii in the 1960s [166]. The transport equation describes
the balance between sources, diffusion, convection, energy changes, and losses in the propa-
gation of cosmic rays. However, most studies before the 1980s still employed the simpler
leaky-box model. The reason was that the available data were limited, and simple relations
in terms of escape time and grammage were enough to describe secondary-to-primary
ratios [150, 151]. The leaky-box equations can be solved using basic algebra, whereas the
full transport equation requires solving differential equations in space and momentum,
which need powerful computing. An exception was for electrons, where energy losses and
the discrete nature of sources made diffusion necessary [146], as studied by Shen and
Mao [167], Cowsik and Lee [168].

The Galactic magnetic field is approximately 3 uG, roughly following the local spiral
arm but with large fluctuations. Because the field is frozen into the ionized gas, motions of
the plasma create turbulence and distort the field [19]. Energy input from stellar flares,
pulsar winds, and supernova explosions maintains this turbulence active. As a result,
charged particles scatter on these irregular fields and thus diffuse through the Galaxy [19].
The diffusion equation follows from particle conservation. The continuity equation is
ON/Ot +V -J =0, where N(r,t) is the particle density and J the flux. Assuming Fick’s
law (steady state), that particle flow follows the gradient of density, flux is obtained as
J = —D(r)VN(r,t), where D is the diffusion coefficient. Substituting gives the diffusion
equation in a static medium, ON/0t = V - [D(r), VN ] If the medium has a bulk velocity
field V(r), the time derivative becomes a convective derivative, /0t — 9/0t + V - V, and
the equation generalizes to a more complete form:

ON

—, +V VN =V [D(r)VN] =0, (1.22)
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where N;(x, E) is the density of type i particle at position x and energy E. The equation
includes only diffusion and convection, without energy gains, losses, or explicit sources.

The cosmic-ray transport equation for a given particle species can be written in a
general form. Let 9 (r,p,t) denote the cosmic-ray density of particles with momentum p at
position r and time ¢. Its evolution is then described by [151]

OY(r,p,t)

ot = Q(I’,p,t) +V(DmV1/J—V¢)

+ ;p [pQDpp;p(z;ﬂ - ;p(pw ~Lyvv) - f; - f’

where 1 (r, p,t) related to the phase-space density by ¥(p)dp = 47p?f(p) dp. The source
term Q(r, p,t) accounts for primary injection by supernova remnants and other accelerators,
as well as secondary contributions from spallation and decay. Spatial diffusion is described
by D..(r,p), which reflects scattering on magnetic turbulence, while V represents a
convection velocity that pushes particles away from the disk. Diffusive reacceleration
appears as momentum-space diffusion with coefficient Dy, (r,p), and p = dp/dt gives the
continuous momentum gain or loss from processes such as ionisation and synchrotron
cooling [169, 1, 151]. The last two terms 7 and 7, are the characteristic timescales for
fragmentation and radioactive decay. In general, the source term () can be viewed as a
sum over many discrete injection events in space and time. Since the lifetime and size of
individual accelerators are much shorter than the Galactic propagation scales, each source
can be treated as instantaneous and point-like [167, 168]. This is written as

Q(t, E,r) ZQ] E)&3(r —rs)6(t —ts), (1.24)

(1.23)

where @Q;(E) is the injection spectrum of source j, located at position ry and born at time
ts. The cosmic-ray flux observed at Earth then follows from a convolution of this source
term with the Green’s function G [167, 168]. For a set of burst-like sources, the flux can
be expressed as an integral over the Green’s function:

$(E,ro,t) = i Z/dES G(t, B, re « ts, Es,rs) Qi(Es), (1.25)
J

where G is the propagator, which gives the probability for a particle injected at (rs, Fs, ts)
to be found at Earth (re, F,t). In steady state, the time derivative vanishes, and the
equation is solved either analytically in simple geometries or numerically with codes such
as GALPROP and DRAGON, with free-escape boundary conditions (e.g., ¥(Rp, z,p) =
(R, +zp,p) = 0 for a halo radius Ry, and half-height zp). From the 1980s, diffusion models
with a Galactic halo and reacceleration became standard for nuclei [170, 171]. In the late
1990s, numerical codes such as GALPROP [172, 173, 174] and later DRAGON [175, 176]
made it possible to solve the full transport equation in 2D or 3D with realistic gas and
radiation fields, reproduce secondary-to-primary ratios, and explain the observed spectrum
below the ankle [173, 151]. With data from PAMELA [177], AMS-02 [57, 155, 154], and
DAMPE [31], the transport equation is now the main framework, since it can describe
nuclei, radioactive isotopes, electrons, antiprotons, and diffuse «-rays together.

Diffusion models with spatially varying coefficients are more physically realistic than
the leaky-box picture, although both can yield similar results. In a leaky-box model, the
density is uniform inside the volume, while diffusion produces gradients and anisotropies.
The diffusion coefficient D links the particle flux to the spatial gradient of density. By
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including a source term, the particle conservation becomes N = —V -J + Q(r, 1), i.e.,
ON
o =V (DVN)+Q, (1.26)

where only source and diffusion are included as in the standard transport equation Eq. (1.23).
The solution of Eq. (1.26) takes the form of a Green’s function,

1 r2 )
G(I‘,t) = W exp <_ﬁ s (127)

which gives the probability to find a particle at r at time ¢ if injected at the origin [19].
The mean 3D distance from the source is expressed as (|r|) = v6D ¢, where the diffusion
coefficient D can be estimated from the mean displacement (|r|) if the propagation distances
at time ¢ are known, for example, using the code CRProra [178]. For a 1D diffusion (such
as z, distance from the plane), one has (|z|) = \/4Dt/7 [19].

A detailed description of cosmic-ray 1D diffusion is provided by [179], building on earlier
work by Ginzburg and Syrovatskii [180]. A common picture is that cosmic rays move in a
thin gaseous disk of height A ~ 100 pc, surrounded by a larger diffusive halo with scale H.
Since the ionized ISM extends to about 1kpc, it is reasonable to take H at least of this
size. The time it takes a particle to diffuse out to a height H is ty ~ H?/D, where D is
the diffusion coefficient [19]. At the halo edge (z = H), the particle density is set to zero,
meaning free escape. One can then define an effective escape velocity, vp ~ H/tyg ~ D/H.
To connect with the leaky-box idea, one can average the disk gas density p, over the whole
halo [19]. This gives an effective mean density, pg = pgh/H [19]. A cosmic ray moving at
speed Bc for a time ¢ty then crosses a grammage,

_ hH _ 3< R )5 2
Aesc = pg B e D = 1948 3GV g/cm”. (1.28)

where  =v/c, R is the rigidity in GV. It is comparable to Eq. (1.19) from the leaky-box
model. For the Galaxy, h = 100 pc, gas density in the disk is ng = 1cm™3, one has

D_0.8><106cm/s< R >_5
H B2 3GV ’

which gives an escape speed of order 10 cm/s for relativistic particles. At higher energies,
the diffusion coefficient rises with rigidity as D o< E°, and at a fixed height H [19]. Note
that in the 1D case, the Green’s function must be written in its 1D form, while in 3D,
the diffusion expressions have the same structure but allow escape both vertically and
radially. The cosmic-ray diffusion explains why energetic charged particles are observed
with nearly isotropic distributions and why they remain confined in the Galaxy [151]. The
new AMS-02 fits prefer § ~ 0.43-0.53 and diffusion coefficients at > 10 GV in the range
Dy ~ (8-11) x 10% ecm?s71 [154].

(1.29)

In diffusion theory, cosmic rays are almost isotropic, but small gradients in their density
lead to a dipole anisotropy. The anisotropy from discrete sources can be estimated as the
ratio of the diffusive flux to the isotropic flux [181, 182]. Specifically, we start with the
intensity in a direction 7, which can be written as

I(h) = % N(r) (), (1.30)

where N (r) is the particle density and v = ¢ is the velocity. To describe a nearly isotropic
distribution, the angular dependence is expanded to first order as ®(7) ~ 1 + a - 7, where
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a is the dipole vector. The magnitude of this vector defines the dipole amplitude,

Imax - Imin
— = |lal. 1.31
Imax + Imin |a‘ ( )
The flux of particles is obtained by taking the first angular moment of the intensity. In
this approximation, it becomes J ~ v N a/3, which directly relates the dipole to the ratio
of flux and density, A = 3|J|/(vN). In the diffusion picture, the flux is driven by spatial
gradients according to Fick’s law, J = —D VN, so the anisotropy can be written as:

3D

where the anisotropy amplitude and direction depend on D and the local gradient [5]. In the
anisotropy formula, the relevant scale is set by the gradient length of the cosmic-ray density,
not by the full 3D radius. For the Milky Way, its halo radius is larger (Rj ~ 15-20kpc)
compared to its vertical half-height (H ~ a few kpc), so vertical escape dominates, and
the anisotropy is expressed in terms of H. Thus, for a one-dimensional disk-halo geometry,
the density decreases over the scale of the halo height H. This gives a typical gradient of
order 1/H, and the anisotropy reduces to A ~ 3D/(8c H), where for high-energy cosmic
rays, f = v/c ~ 1. Finally, assuming the diffusion coefficient increases with rigidity (R),
follows D = Dy 5 (R/ Ro)(s. Then the anisotropy is expected as,

3Dy ( R\’
A(R) ~ I (Ro> . (1.33)
which decreases when the distance from the Galactic plane increases. The measured dipole
anisotropy is much smaller than simple diffusion predicts: below (1073) at 10-20 TeV
(Super-K [134], IceCube [140]) and only (~ 0.3%) at 2PeV (IceTop [63]). This discrepancy
has been mentioned in Section 1.3, i.e., the “cosmic-ray anisotropy problem” [144, 5].
One possible reason could be that the basic diffusion model is too simple: the sources
are not uniform, and strong scattering in turbulent fields blurs the link to the dipole.
Two solutions are often discussed. Reacceleration lowers the effective slope to (§ ~ 0.3),
reducing anisotropy [183]. Alternatively, diffusion may be faster in source-rich spiral arms
and slower locally, giving a smaller dipole at Earth [184]. Moreover, one can use the
code CRPropaA [178] to study the anisotropy at Earth by injecting cosmic rays from single
or multiple sources, and then analyzing their propagation. We will apply this later in
Chapter 6 to compare with the 33 PeV cosmic rays observed at KASCADE-Grande.

1.5 Sources

Cosmic-ray particles are accelerated by a range of mechanisms within diverse environments,
both within our Galaxy and beyond. Cosmic rays can only be produced if charged particles
are accelerated; hence, hadronic interactions at the sources are required. Their origins and
the processes responsible for their acceleration have been subjects of extensive scientific
investigation. While cosmic rays are detected from all directions, their sources vary and
depend on factors such as energy levels, cosmic environments, and astrophysical processes.
Within the Galaxy, sources such as supernova remnants, pulsars, and stellar clusters are
thought to accelerate most cosmic rays of lower energies, while extragalactic objects like
gamma-ray bursts (GRBs) and active galactic nuclei (AGN) are likely responsible for the
highest-energy events [3]. Although the detailed acceleration processes of these sources
remain uncertain, cosmic rays are generally modeled as being continuously injected over a
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long period (millions of years) from all sources with an average spectrum and then diffusing
through the Galactic magnetic field.

In 1934, Baade and Zwicky first proposed that supernovae (SNe) could power Galactic
cosmic rays [185, 186]. They noted that, first, the flux of cosmic rays remains nearly
constant over time, implying that they must be continuously produced throughout the
Galaxy rather than originating from the Sun or ordinary stellar radiation [186]. Second,
the lower intensity of cosmic rays near the equator can be explained if some of them are
very energetic charged particles. Such particles must come from outside the Earth, since
only then would their path be long enough for Earth’s magnetic field to cause the observed
dip at the equator [186].

The sources of Galactic cosmic rays are constrained by the energy required to maintain
the observed cosmic-ray density in the Galaxy. The local cosmic-ray energy density has
been measured by Voyager as pcr ~ 0.7 eV /cm? [187]. If cosmic rays are confined for a
time 7 inside a volume V of the Galaxy and containing gas mass M, they cross a grammage
X = c¢7M/V [188]. The corresponding cosmic-ray luminosity is

Lcr = per % ~ 5 x 1070 erg/s, (1.34)
where M =5 x 10°My and X ~ 10 g/cm?. A core-collapse SN ejects about 10 M with
typical velocities of v ~ 5 x 10% cm/s. With a Galactic rate of about one per 30 years, the
average kinetic energy injection is Lgn kin ~ 3 X 10*2 erg/s. If only a few percent of this
energy is converted into cosmic rays, they can explain the observed Galactic cosmic-ray
luminosity in Eq.(1.34), at energy up to 10'7eV [144]. Magnetic-field amplification at
supernova shocks allows particles to be accelerated up to the knee. Cosmic rays may take
about 20-30% of the kinetic energy of the explosion [189, 190], thereby making supernovae
a likely source of Galactic cosmic rays. A well-known example is the Crab Nebula supernova
remnant, illustrated in the left panel of Figure 1.11. The distribution of core-collapse
supernovae in the Milky Way is not uniform, but usually occurs in OB associations [188].
Multiple SNe within a few million years create super bubbles, with turbulence and multiple
shocks that can accelerate CRs up to PeV energies [191]. This scenario also explains the
efficient production of Li, Be, and B in the early Galaxy [192], the anomalous 2?Ne/?°Ne
ratio [193], and the hard spectra of heavy nuclei [194, 195].

Similar to SN expanding, a nova explosion also produces expanding shells but with
smaller energies (10%6-10%7 erg) [188]. Their Galactic rate is about 100 per year, so the
total energy budget is comparable to that of SNe. However, their maximum rigidity is
limited to ~ 200 GV, so they may only contribute a steep, low-energy component [196].
Besides, explosions of massive stars into their winds can drive cosmic rays to energies
above the knee, and possibly up to the ankle, if the explosion energy is above 10°! erg and
the magnetic field is strong [197, 198]. Besides, winds of Wolf-Rayet stars may accelerate
particles up to about 10'® eV, possibly marking the end of the Galactic CR spectrum [199,
200, 201]. The Galactic center (GC) has a supermassive black hole (Sgr A*), which may
also accelerate CRs [188]. Past active episodes, possibly responsible for the Fermi bubbles,
released on average (1-7) x 10*? erg/s [202]. Such outbursts can contribute significantly to
CRs up to the knee if the diffusion halo is large and the diffusion coefficient slope is steep
(6 ~0.5) [188]. Because electrons and positrons lose energy quickly, the GC is expected to
contribute mainly to hadrons [188]. All the sources mentioned above are from the Galactic
region.

For extragalactic sources, a typical candidate is Gamma-ray bursts (GRBs), which
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Figure 1.11: Left: Crab Nebula, an expanding SNR, recorded by a Chinese astronomer
in 1054 CE (Credit: NASA). Right: Composite color image of Centaurus A (an AGN),
showing the jets and lobes powered by the central black hole (Credit: ESO and NASA).

are among the brightest events in the universe, releasing enormous energy in only a few
seconds, but are rare in the Galaxy (< 10™* per year). They are short-lived and thought to
result from the collapse of massive stars or the merger of compact objects such as neutron
stars, producing relativistic jets and strong magnetic fields that can accelerate particles to
ultra-high energies [13]. GRBs have been proposed as sources of cosmic rays above the
knee [203] and even ultra-high-energy cosmic rays (UHECRs) [204, 205, 206, 207]. However,
subsequent studies indicate that their total energy output and acceleration efficiency may
be insufficient to account for the observed UHECR flux [208]. High-luminosity GRBs
roughly meet the energy budget for UHECRs, while low-luminosity GRBs (LLGRBs) occur
more often and have weaker radiation fields, allowing heavy nuclei to survive [209, 210].
Studies of both types [211, 212, 213, 214, 215, 216, 217] show that in certain regimes, GRBs
could reproduce the observed UHECR flux and composition. Ordinary supernovae are too
weak to reach such energies, but engine-driven or trans-relativistic supernovae with mildly
relativistic ejecta may do so [217, 218, 219, 220, 221]. Their predicted heavy composition
agrees with Auger data. The 2017 detection of a neutron-star merger and its short GRB
confirmed such events as real sources [222, 223]. They could explain cosmic rays below the
ankle [224] or near the second knee [225].

In addition, active galactic nuclei (AGNs) are among the most promising candidates
for accelerating UHECRs. A well-known example is Centaurus A (Cen A), the nearest
radio galaxy to Earth and a long-standing UHECR candidate, illustrated in the right
panel of Figure 1.11. AGNs are powered by supermassive black holes at the centers of
galaxies, which accrete matter and eject powerful jets of particles at relativistic speeds.
These jets, combined with the intense magnetic fields in the central regions of AGNs, are
capable of accelerating particles to energies well beyond 10'® eV through processes like
Fermi acceleration. Observational studies of UHECR arrival directions by the Pierre Auger
Observatory have revealed a correlation between UHECRSs and the distribution of matter in
the large-scale structure of the universe [226], suggesting that these particles likely originate
from nearby extragalactic structures, possibly including AGNs. AGNs with strong jets are
leading candidates for the origin of ultra-high-energy cosmic rays (UHECRs) [13]. When
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the jets point toward Earth, they appear as blazars, which could accelerate and beam
UHECRs directly [227, 228, 229]. However, the number of nearby blazars is too small
to explain the total flux. The radio galaxies, which are the parent population of blazars
with jets not aligned with the line of sight, are also strong UHECR candidates [13]. The
nearest example is Cen A, which is a long-standing candidate [230, 199, 231]. Recent
models show that radio galaxies can produce the observed flux and heavy composition
through shear or re-acceleration processes [232, 233]. In jetted AGN, a large fraction of
the energy goes into radio lobes, which are extended regions with relatively weak magnetic
fields (B ~ 1075 G), where energies up to 10?° eV are possible [234, 235]. In addition,
radio-quiet and low-luminosity AGN or quasar outflows could contribute collectively, as
they are much more numerous [236, 237, 13]. Besides, large-scale structure (LSS) shocks
formed during cluster and filament growth are natural sites for diffusive shock acceleration
and may contribute to high-energy cosmic rays. However, limited magnetic fields (~ uQG)
and energy losses restrict the maximum energy to about 10'®-10' eV, which makes their
contribution to UHECR production uncertain compared with AGNs and GRBs [238].

1.6 Acceleration

The acceleration of cosmic rays should explain the broad energy range observed in their
spectra, extending from a few MeV up to ultra-high energies exceeding 10'®eV [19]. In
1949, Fermi proposed that charged particles can gain energy through random interactions
with moving magnetic irregularities, a stochastic process now known as second-order Fermi
acceleration [239]. This mechanism produces a power-law energy spectrum, N(E) oc E~7,
and is expected to operate in turbulent environments such as the downstream regions of
supernova-remnant shocks, within active galactic nucleus (AGN) jets, and in intracluster
turbulence. Subsequently, the theory of diffusive shock acceleration (DSA), known as the
first-order Fermi mechanism, was developed as an efficient process that naturally generates
power-law spectra [240, 241, 242, 2]. It operates at collisionless shocks, such as those in
supernova remnants, in shocks within AGN jets, and in internal or external shocks of
gamma-ray bursts. Although both mechanisms rely on repeated interactions with magnetic
fields, they differ fundamentally in their energy gain per cycle.

1.6.1 Fermi Acceleration

Fermi’s 1949 idea proposed that cosmic rays gain energy through repeated elastic scatterings
with moving magnetic irregularities. This stochastic process increases their energy gradually
and does not yet distinguish between different orders of acceleration [239]. In this context,
the “order” refers to how the average fractional energy gain per interaction depends on
the velocity of the scattering centers, usually expressed as = v/c. Later developments
clarified that such interactions fall into two regimes: second-order Fermi acceleration, where
the energy gain is stochastic and scales as (AE/E) oc 82, and first-order Fermi acceleration,
which occurs at shock fronts and gives a systematic gain scaling as (AE/E) x (.

Fermi proposed that cosmic rays could gradually gain energy through repeated elastic
scatterings off moving magnetic irregularities, often referred to as “magnetic clouds” in the
interstellar medium [239]. During each individual encounter, the particle’s energy changes
only by a small amount, but when one averages over many random head-on collisions and
overtaking interactions with these magnetic irregularities, the statistics yield a consistently
positive net energy gain for the particle. In the case where the scattering centers move
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non-relativistically, such that their speed satisfies 5 = V/c < 1, the average fractional
energy gain per interaction is (AE/E) ~ 4/32/3, so the growth is second order in 3 and
thus slow per interaction. Nevertheless, if one denotes the average fractional energy gain
in a single encounter by £ = (AE/FE), then after n such scatterings the particle’s energy
follows a simple multiplicative growth law, given by

B, = Eo(1+&)", (1.35)

and with escape probability per encounter P the survival probability after n encounters
is (1 — Pesc)™. Eliminating n = In(E/Ep)/In(1 + &) gives a power-law integral spectrum:
1 — Pege)"” 1 < E >_'y _ In(1/Pese)

(
N(> F) x = — = ,
( ) Pesc Pesc EO 7 ln(l + f)

where FEj is the particle’s initial energy, and the equation gives the proportion of particles
reaching energies greater than F, which can be found by summing the probabilities of all
possible encounters beyond n. This relation is the basic Fermi result (see also [243, 19]).

(1.36)

Consider a relativistic particle with lab-frame energy FE; entering a scattering region,
moving at velocity V = fc¢ at an angle 6; with respect to the flow direction. After
several scatterings within the moving magnetic cloud, the particle’s momentum distribution
becomes isotropic in the cloud frame. In the cloud’s rest frame, the particle’s total energy,
including both rest mass and kinetic contributions, is denoted by FE}. If the scattering is
elastic, the energy remains unchanged in the moving frame (F) = E'), and transforming
back to the lab frame gives Fo. They are expressed as,

E] =T Ei(1 —fBcosb), Ey=TFE)1+ Bcosbh), (1.37)

where T' = (1 — 82)~1/2 is the Lorentz factor, ) is the exit angle of the particle relative to
the direction of motion of the scattering region. Combining the two equations above, the
single-encounter fractional energy change is obtained as
AE 11— Bcost; + [cosby — 3% cos b cos b
E, 1—p32

which is valid for F =~ pc due to the approximate relativistic condition.

—1, (1.38)

Second-order Fermi mechanism: scattering from plasma clouds. During a scattering
event with such a cloud, the distribution of outgoing particle directions is isotropic in
the cloud’s rest frame, whereas the distribution of incoming directions is not uniform but
instead weighted by the relative velocity between the particle and the moving cloud, which
biases head-on encounters [19]. This isotropy of the outgoing directions implies that the
differential distribution satisfies dn/(d cos ) = const., over the full range —1 < cosfy < 1,
and therefore the average value vanishes, giving (cos 9/2> = 0, as expected for a symmetric
angular distribution. When one averages Eq. (1.38) over the relevant angular distributions

in the non-relativistic limit 8 < 1, the incident-angle average becomes (cosf;) = —V/(3c¢),
and the mean fractional gain per encounter is [19]
AE 4 .,
=(—) ~ - p“ 1.39
§=(%) ~ 38 (1.39)

where 5 = V/c denotes the velocity of the plasma flow relative to the speed of light, rather
than the velocity of the cosmic-ray particles themselves. Because the gain scales as 32,
many encounters are required for substantial acceleration [19].

First-order Fermi mechanism: encounters with a plane shock front. In the shock
case, particles scatter on turbulence upstream and downstream and execute repeated
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shock crossings [19]. For particles transmitted downstream in the shock frame, the
angular distribution is no longer isotropic but weighted toward forward directions, with
dn/d cos 0y = 2 cos 6, over the interval 0 < cosfj < 1, and this leads directly to an average
value of (cosfh) = 2/3 [19]. To characterize the dynamics, we denote by u; and ug the
plasma flow velocities upstream and downstream of the shock, respectively, in the shock-rest
frame, with u; > wug as required for a compressive shock [19]. Similarly, averaging (1.38)
over angles gives (cosf;) = —2/3 and obtain the gain fraction [19]

5_<&> N éul—m A

= ~ (1.40)

3 ¢ 3¢’
where u; is the shock speed. For non-relativistic, strong shocks (ugs ~ u1), we set 5 ~
Bs = us/c. This linear scaling makes diffusive shock acceleration far more efficient than
stochastic scattering, allowing particles to reach higher energies [19].

Energy spectrum. If the average fractional gain per cycle is { = (AE/E) and the escape
probability per cycle is Peg, then after n cycles E,, follows Eq. (1.35). Hence, v =~ Peg /¢,
where £, Pese < 1, because Fermi acceleration assumes small fractional energy gains and
small escape probabilities per cycle, which allows the continuous and power-law limit [19].
For a plane shock, projecting an isotropic flux onto the shock plane gives an encounter
rate cpcr /4, while downstream advection removes particles at a rate pcrug, so the escape
probability per cycle is Pese = 4ug/c. Combining Pege with Eq. (1.40), yields [19]
Pose o 3

f (5] / ug — 1 ’
where r = wuj/ug is the compression ratio. To get the differential spectrum, we first
differentiate N(> E) as in Eq. (1.35), one obtains
d

v = (1.41)

d o dN dN
—N(>F)=— { dE'} =——. 1.42
dE ( ) dE /g dF’ dE ( )
Therefore, the differential spectrum and the corresponding differential source index are
dN r+2
—xE0TD s=q41= : 1.43
aE &  SEYHLI=IT (1.43)

A shock forms when the upstream plasma velocity exceeds the local sound speed, u; > ¢y,
corresponding to a Mach number M = wj/c; > 1. From the conservation of mass,
momentum, and energy across the shock, the ratio of downstream to upstream densities
(or equivalently the inverse velocity ratio) is [244, 19]
P (gt DM (1.44)
pr w2 (g —1)M? 42
where v, = ¢,/c, is the adiabatic index of the gas. In the strong-shock limit (M > 1),
this expression approaches pa/p1 = (74 +1)/(74 — 1). For a monoatomic ideal gas, where
vg = 5/3, the compression ratio becomes r = p/p1 ~ 4. This value is widely adopted for
non-relativistic shocks, and through diffusive shock acceleration, to the canonical source
(acceleration) spectrum dN/dE oc E~2.

Equations (1.39) and (1.40) show why shock acceleration is generally dominant, i.e., the
gain is first order in 3 rather than second order in 2. Hillas’ criterion provides a general
consideration for estimating the limited energy to which cosmic rays can be accelerated in
sources such as SNRs and AGNs [245, 19]. The requirement is that a particle must remain
magnetically confined within the acceleration region. The Larmor (gyration) radius of a
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charged particle with energy F in a magnetic field B is
_pic E

~ ZeB ~ ZeB’
where Ze is the particle charge (Z is the atomic number) and p; is the component of its
momentum perpendicular to the magnetic field. For effective acceleration by a shock, the
condition 71, < R must be satisfied, where R is the size of the acceleration region in the
source. This Hillas criterion gives an upper bound on the maximum energy:

Emax < ZeBBR, (1.46)

TL (1.45)

where 8 = us/c, the inclusion of /3 is necessary because the acceleration rate depends on
the speed of the shock or plasma motion, which represents the dimensionless velocity of
the scattering or acceleration region.

Galactic supernova remnants (SNRs) are widely considered the main accelerators of
cosmic rays up to the knee energy, Einee ~ 3 x 101° €V. Classical estimates of diffusive shock
acceleration (DSA) without strong magnetic-field amplification limit the maximum proton
energy in typical SNRs to Frpax < 101712 eV, often referred to as the Lagage Cesarsky
limit [246, 247], also verified by Morlino [248]. Efficient magnetic-field amplification by
streaming instabilities, such as the non-resonant hybrid (Bell) instability, can increase the
field to B ~ 100 uG, allowing young SNRs with fast shocks (us ~ 5-10 x 103kms™!) to
reach proton energies of a few PeV for a short period, consistent with the Hillas scaling [190,
3, 232], as Eq.(1.46) shows. Observation aspect, the knee and its rigidity-dependent
steepening are consistent with a Galactic proton cutoff near a few PeV and heavier nuclei
extending up to Z times higher energies [23, 19, 245]. Recent 7-ray observations of the
Galactic Centre region also indicate the presence of a long-lived Galactic PeVatron capable
of accelerating protons to PeV energies [6]. In addition, the LHAASO observatory has
detected a 7-ray source (a < 6° bubble) above PeV energies in the Cygnus OB2 region,
providing further evidence of active Galactic PeVatrons [8].

Besides, the ultrarelativistic shocks in GRBs or powerful AGN shocks are under the
Fermi first-order (diffusive shock) acceleration mechanism. When two collisionless plasma
flows collide with a Lorentz factor I' > 1, a shock forms and accelerates particles through
repeated shock crossings. Under small-angle, quasi-isotropic scattering, this process
produces a nearly universal power-law spectrum with index s ~ 2.2-2.3 [249, 250, 251].
The maximum energy is bounded by confinement (Hillas criterion), available time, and
losses. In favorable conditions, GRBs and powerful AGN shocks can reach EeV energies
for protons [207, 206, 204]. So, the highest energies still stay as a mystery.

1.6.2 Other Acceleration Mechanisms

In cosmic-ray sources, besides diffusive shock acceleration, several other processes can work
together with or replace Fermi acceleration, depending on the environment and evolutionary
stage [3]. In complex environments such as SNRs, stellar clusters, and relativistic jets,
shocks where flows collide, magnetic reconnection where fields reverse, shear at velocity
boundaries, and turbulence throughout may all contribute to particle energization. Potential
cosmic-ray accelerators can be classified by their characteristic size and magnetic-field
strength [245], as shown in the Hillas diagram (Figure 1.12). The dominant mechanism
depends on the plasma magnetization, geometry, available acceleration time, and the ability
of particles to remain confined long enough to reach the observed energies [3, 204].

For example, magnetic reconnection provides an additional acceleration channel in
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highly magnetized plasmas; oppositely directed magnetic fields can reconnect, releasing
magnetic energy and generating strong electric fields that accelerate particles directly [252].
In relativistic jets and magnetized coronae, reconnection can operate alongside shock
acceleration and may feed the particle population that shocks further energize. This
process is relevant in pulsar wind nebulae (PWN), AGN jets and coronae, and accretion
flows [252]. Giannios found that, in relativistic jets, magnetic reconnection can accelerate
protons up to about E ~ 10?° eV in GRBs and powerful AGN jets, while iron nuclei can
reach similar energies in moderately luminous AGN jets [253].

Besides, a rotating, magnetized compact object sets up a global electromotive force
that extracts charges and drives currents along open magnetic field lines, which is the
Goldreich—Julian framework [254]. This framework fixes the corotation charge density,
opens field lines beyond the light cylinder, and provides a large potential drop across
the open zone. In principle, this voltage can accelerate particles to very high energies.
Meanwhile, pair creation and radiation losses reduce the energy. Within the Goldreich—
Julian picture, the polar-cap model was proposed [255, 256], which is a specific local
mechanism. Above the magnetic poles, charge-starved gaps can form where E)| # 0, directly
accelerating particles along open field lines [255, 256, 257]. The induced potential, roughly
® ~ (QBR?)/c, can in principle accelerate particles up to Epay ~ Ze®. For the typical
properties of millisecond pulsars, protons could be accelerated to the energy F, ~ 1PeV,
with luminosities of L, ~ 5 X 103% ergs™!, using particle-in-cell simulations of the aligned
pulsar magnetosphere [258]. For a typical pulsar, the energy corresponds to ~ 1014716 eV [255
257], while young/fast SNRs (e.g., Crab Nebula) can reach ~ 101716 eV [259].

Moreover, unipolar inductors provide an alternative way to accelerate particles to
ultrahigh energies [179]. They arise in fast-rotating, magnetized systems such as neutron
stars or black holes with accretion disks that lose rotational energy through jets. In
neutron stars, rotation and strong magnetic fields induce electric fields that can accelerate
charged particles along magnetic lines [204]. This process was first discussed for ordinary
pulsars [261], but typical pulsars cannot reach energies above 10?° eV. Young magnetars
with millisecond rotation periods and very strong surface magnetic fields can, however,
reach such energies [262]. As the magnetar spins down, the energy of the accelerated
particles decreases, producing a power-law energy spectrum [262, 263]. Ultra—high energy
particles are thought to be produced during the early life of a magnetar, within a few days
after its birth, making the emission short and impulsive [263]. This model was first proposed
to explain the lack of a GZK cutoff, but the very hard injection spectrum it predicts does
not match current data. A range of initial voltages among magnetars could produce a
softer spectrum and may also generate detectable gravitational-wave signals [204].

Lastly, wakefield acceleration (WFA) forms when strong waves create charge separation
in a plasma, which was found by Tajima in 1979 [264]. When intense electromagnetic or
plasma waves propagate through a plasma, they push electrons and ions differently, creating
strong charge separation and driving a wakefield behind the wave. The wakefield produces
a ponderomotive force, a time-averaged, nonlinear force in an oscillating, inhomogeneous
field, that can trap particles and accelerate them efficiently once the wave potential exceeds
their initial momentum [264]. In this way, energy stored in collective plasma oscillations
is converted into particle kinetic energy. In laboratory studies, plasma wakefields can be
driven by high-energy beams, such as the 400 GeV proton beam used in CERN’s AWAKE
experiment [265]. Chen proposed that strong Alfvén shocks in relativistic astrophysical
plasmas can drive plasma wakefields capable of accelerating particles to ultra-high energies
[266]. Acceleration by the wake’s longitudinal field can reduce some radiative losses
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Figure 1.12: Left: Hillas diagram of the distribution of potential CR accelerators, where
objects are positioned according to their characteristic size R and magnetic-field strength
B [245, 13]. The shown B values correspond to the comoving frame of the outflow.
The horizontal axis denotes R, interpreted as the distance from the central engine or,
equivalently, the commoving source size scaled by the bulk Lorentz factor I'. Solid and
dashed curves represent the confinement limits for protons (red) and iron nuclei (blue) at
energies of 1020 eV, assuming relativistic (B, = 1) and sub-relativistic (s, = 0.01) shock
velocities, respectively. Sources located to the left of these boundaries cannot accelerate
particles to 10?0 eV. Right: Energy budgets of various candidate classes derived from
infrared, radio, X-ray, and gamma-ray observations, compared with the ultra-high-energy
cosmic-ray production rate estimated in [260]. Both panels are adapted from [13].

compared to shock cycles and can yield power-law spectra under suitable conditions [266].
Ebisuzaki and Tajima [267] suggested that intense Alfvén waves from magnetized accretion
disks around supermassive black holes can drive ponderomotive and wakefield forces in
relativistic jets, accelerating particles up to ZeV energies.
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Chapter 2

Reconstruction of Anisotropies

Cosmic-ray arrival directions are not perfectly isotropic. Multiple experiments have now
observed both large- and small-scale modulations across TeV-EeV energies [136, 268, 135,
269, 138, 139, 270, 137]. The typical amplitudes are at the level of 1074-1073 in the
TeV-PeV range, hence, careful control of exposure and systematics is essential [5].

These anisotropies appear on different angular scales. Large-scale features (dipole
and low-¢ multipoles) are consistent with a Galactic gradient shaped by diffusion and
local magnetic geometry [16]. In contrast, small-scale structures suggest additional effects
such as local magnetic turbulence and, possibly, nearby sources imprinting patterns that
standard, smooth diffusion does not capture [5, 136]. Together, these observations indicate
that cosmic-ray transport is more complex than simple homogeneous diffusion. At PeV
energies and above, deflections in the Galactic magnetic field decrease, so arrival directions
retain more information about their sources. This makes the anisotropy a potential way
to probe the origin of the highest-energy Galactic cosmic rays, although limited statistics
and non-uniform detector exposure still make reconstruction difficult [270]. Since the main
goal of this thesis is to investigate detailed cosmic-ray anisotropies at high energies and to
search for clues about Galactic cosmic-ray sources, this chapter focuses on introducing the
existing methods used to reconstruct small deviations in cosmic-ray arrival directions from
isotropy before presenting the main analyses in the following chapters. We will explain
the coordinate transforms used to place events in the sidereal frame, describe reference-
map building with time scrambling, and review both harmonic (Rayleigh/multipole) and
likelihood approaches that fit sky intensity and detector acceptance [143, 5].

2.1 Reconstruction Procedures

Reconstruction of cosmic-ray anisotropies from isotropy involves two main steps for the data.
First, each event is placed in the sidereal frame by converting event times to local sidereal
time and mapping local directions to equatorial coordinates. Second, the detector exposure
must be modelled carefully so that instrumental effects do not mimic real sky patterns.
The observed event map is then compared with an exposure-based reference. To build this
reference, time-scrambling or direct-integration methods are used to estimate the isotropic
expectation under the detector’s live time and acceptance. Weather, pressure, and live-time
variations can produce artificial day-scale modulations, so solar and anti-sidereal sidebands
are checked to monitor possible systematics [143, 271]. Analyses typically use sky-map
projection, sidereal harmonics, or full-sky likelihood for large scales, apply East—West or
maximum-likelihood fitting for reconstructions, and verify results in solar and anti-sidereal
bands. Amplitudes, phases, and post-trial significances are then compared across different
methods and energy bins [143, 5]. For the reconstruction of small-scale anisotropies, the
spherical harmonic expansion, combined with the likelihood method, provides the most
effective way to recover all possible structures [5, 16]. Based on this, an extended method
is developed and applied to KASCADE-Grande in Chapter 6.
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CHAPTER 2. RECONSTRUCTION OF ANISOTROPIES

2.1.1 Coordinate Systems

Many cosmic-ray observatories record each event’s arrival time in Coordinated Universal
Time (UTC), providing a uniform global reference for timestamping large data sets. For
example, the KASCADE-Grande experiment and the Pierre Auger Observatory supply data
sets in which every event contains a UTC timestamp. For anisotropy analyses, however,
the physical modulations of interest are expressed not in UTC but in sidereal, solar, and
anti-sidereal time, so each recorded event must be transformed into these different time
frames to separate signals from seasonal or instrumental effects. This conversion requires
applying a well-defined time-transformation procedure based on the Greenwich Mean
Sidereal Time (GMST), which relates the Earth’s rotation to celestial coordinates.

To transform to equatorial coordinates, which are independent of the observer’s position,
we begin by computing the altitude h, which is related to the zenith angle, i.e., h = 90° — 6.
Using the observer’s latitude ¢ and azimuth A, the declination d, which is the angular
distance of the object from the celestial equator [272, 273, 274], can be calculated as:

sin d = sin ¢ sin h + cos ¢ cos h cos A. (2.1)

After determining the declination, the next step is to compute the hour angle H. The
hour angle represents the time since the celestial object last crossed the observer’s local
meridian. It can be calculated through the following relations:

sinh —singsing . o _coshsind (2.2)
cos 9

cos H =
€os ¢ cos §

where the hour angle H can then be obtained by applying the arctan2 function, to combine
both the sine and cosine components [273]:

H = arctan2 (— cos hsin A, sin h — sin ¢sin ¢) . (2.3)

To find the right ascension «, the Local Sidereal Time (LST) must first be determined.
We adopt the azimuth convention A measured from North through East (0° =N,
90° =E). The GMST expression gives hours and is defined with respect to UT1, the formal
timescale for sidereal time. In practice, UTC is used as an approximation (the UT1-UTC
difference is typically less than one second). All angles and times are wrapped to their

ranges. The LST depends on the observer’s longitude A and the Greenwich Sidereal Time
(GST) [272, 275] through the equation:

LST = GMST + A/15, (2.4)

where the GMST is derived from the Julian Date and is calculated at Oh Universal Time
(UT) using the following formula:

GMST [h] = 18.697374558 + 24.06570982441908 D, D = JD — 2451545.0. (2.5)

where D represents the number of days since the reference epoch J2000, and JD =
turc/86400 4 2440587.5, where ty¢. is simply the event timestamp expressed in Unix time,
i.e., the number of seconds (some data may also include microseconds) recorded since
the time 00 : 00 : 00 UTC in 1970-01-01. Finally, the right ascension « is calculated by
subtracting the hour angle H from LST [272, 275]:

o =LST — H, (2.6)

result wrapped to [0,24) h or degree. We must emphasize that “Sidereal time” usually refers
to GST, which is a clock that tells us which part of the celestial sphere or right ascension
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(RA) is crossing the meridian at Greenwich (0° longitude). However, what really matters
for a given observatory (e.g., KASCADE-Grande) is the sidereal time at the observatory’s
longitude, which gives the current RA crossing its local meridian. If one uses GST instead,
it would shift all phases of the detector longitude, and any true RA modulation will be
washed out. Therefore, LST, as defined in Eq. (2.4), should be used for anisotropy studies.

2.1.2 Time-Scrambling of Data

In cosmic-ray anisotropy studies, the main goal is to detect deviations from an isotropic
distribution of arrival directions. However, the observed anisotropies in real data may
come from two different sources: instrumental exposure variations across the field of view,
and true anisotropies produced by cosmic-ray sources and propagation. The exposure-
related modulation is fixed in the detector’s local coordinate frame, while an astrophysical
signal is stable in the sidereal frame. The challenge is therefore to disentangle these two
effects [139]. The time-scrambling algorithm addresses this by constructing an exposure-
matched isotropic reference for comparison with the observed data [139]. It keeps each
event’s local coordinates fixed and resamples their arrival times in UTC (which closely
approximates UT1, the timescale based on Earth’s true rotation). Right ascension (R.A.) is
then recomputed from the new LST. This procedure effectively randomizes celestial phases
while preserving the detector’s local response, including zenith and azimuth acceptance,
event rate, and acquisition gaps, thereby removing any real astrophysical anisotropies but
retaining detector-related exposure effects.

Specifically, the data from an experiment contains the measured directions in equatorial
coordinates (a,0) obtained from local coordinates (6, ¢) and event time ¢. The reference
data is built by keeping each event’s local coordinates fixed and assigning k new UTC
times t;j drawn from the data’s own time distribution within a window At centred on ¢;
(thus preserving live time and gaps) [139, 138, 88]. With (6;, ¢;) fixed, § does not change,
and the obtained new R.A. follows from the LST:

o ; = LST(t; ;) — H(0:, di, Psite) (2.7)
equivalently, we replace H, and obtain
o ; = a; + [LST(#] ;) — LST(t;)] (mod 360°), (2.8)

where «; is the initial R.A. All sidereal quantities are derived from the resampled UTC times
(UT1 in principle). The scrambled data is then (a,d) < (a; ;,d;), which preserves detector
conditions (including dead time) by sampling from the data’s own time distribution. In
a simple picture, the live-time intervals define the frame within which the scrambling is
performed; all resampled timestamps remain confined to this frame, ensuring that none fall
outside the valid data-taking periods (no time gaps inside). For two-dimensional sky-map
analyses, no additional exposure weighting is needed since the data and reference maps are
constructed under identical detector conditions and can be compared pixel by pixel [139].
However, for the standard one-dimensional Rayleigh analysis, an exposure correction as a
function of local sidereal time or R.A. must be applied to account for non-uniform coverage
in R.A., which will be discussed in Chapter 6. The choice of window At sets the R.A.
mixing scale. Scrambling over At mixes, R.A. by approximately

At
1 hour’

acting as a high-pass filter that suppresses structures broader than A« and retains smaller-

Aa ~ 15° %

(2.9)
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scale features [88]. At the South Pole, stable conditions allow At = 24h (UTC), which
robustly captures exposure over a full sidereal rotation [139]. This method is widely used
by IceCube and Auger to identify large- and small-scale anisotropies [138, 139, 88].

2.1.3 Anisotropy and Significance

The anisotropies of cosmic-ray arrival directions are usually expressed in terms of the
relative intensity, denoted by I or its differential part §I [5]. The relative intensity can be
defined as the ratio of the observed flux in a given direction to the isotropic expectation. It
is defined as, I(n) = ¢(n)/¢iso, where ¢(n) is the directional flux and ¢;s, is the isotropic
mean [5], the unit vector n is defined in the equatorial coordinates,

n(a,d) = (cos acosd, sin v cos 9, sin 0). (2.10)

By this definition, I(n) = 1 corresponds to perfect isotropy. Often one writes: I(n) =
14 dI(n), where 01(n) is the anisotropy map (or residual map), satisfying (6I(n)) = 0.
For N events with uniform exposure in «, the Rayleigh amplitude can be obtained, which
gives a fast test for a first harmonic in sidereal time [131, 5].

From the observation aspect, based on the time-scrambling procedures as described in
Section 2.1.2, the scrambled event distribution Ng(ay,d;) at the i-th pixel on the reference
map is calculated as Nexp (i, d;) = Zévzl E(t;;)/E(a, ), where N is the total number of
events in the scrambled dataset, £(ay, d;) is the relative exposure in the direction (o, d;),
E(t}) is the exposure at the scrambled time tgj. This approach effectively normalizes the
scrambled events by exposure at their new, randomized arrival times, resulting in an
isotropic reference map that accounts for detector effects [139]. Once the reference map is
constructed, the anisotropy in cosmic-ray arrival directions is detected by comparing the
data map Nops(cr, d) (number of observed events in a given direction) with the expected
reference map Nexp(a, d). The relative intensity I(c, d), and the corresponding statistical
significance of the anisotropy are computed as given by

_ I(a,0)

M7 S(a,d) = ———, (2.11)

0l(a,d) =
( ) Nexp 0s1

where S is the simple z-score, 57 >~ 1/,/Nexp gives the uncertainty (standard deviation)
of the relative-intensity map, which is obtained from the fluctuation (Poisson) of Nyps,
ie., 051 = \/Var(Nops)/Nexp, and Var(Nops) = v/ Nobs. The significance map S(«, d) is the
simplest form, defined as the direct deviation of event distributions from the null-hypothesis
(isotropy). This helps identify regions in the sky with excesses or deficits in the cosmic-ray
flux compared to an isotropic background in a simple way.

For cases with limited statistics, the background in the signal (ON) region is not
precisely known and must be estimated from data. It is standard to use the Li-Ma
likelihood significance [276], which defines a separate background (OFF) region, chosen
such that it contains only background events and no signal. The event counts in the ON and
OFF regions are treated as independent Poisson variables that share the same background
rate, scaled by an exposure factor c. This method gives properly calibrated p-values, unlike
simple Gaussian estimates that assume a known background. The significance S is

1+« Non Noff
S =v2/Noy 1 { } Nog 1 [1 ot | 2.12
f\/ B Ny Nog | T o I [(L ) e P (212)

where Ny, is the number of observed events in the signal region, Nyg is the number
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Figure 2.1: Example of combined IceCube and HAWC sky maps after subtracting the
multipole fit from the large-scale map at a median energy of 10 TeV. Panel (A) shows the
relative intensity dI(c, ), and panel (B) shows the corresponding signed statistical Li-Ma
significance S(a,d). Figure adapted from [16].

of events in the background region, and « is the ratio of their exposures. The Li-Ma
significance assumes Poisson statistics and quantifies the likelihood that the observed
excess or deficit arises from random fluctuations rather than a true signal. These values
represent local significance, meaning they do not account for the effect of scanning many sky
positions. When multiple regions are tested, random fluctuations may appear significant
by chance, a phenomenon known as the look-elsewhere effect. The global significance can
be approximated as pglobal = 1 — (1 — Plocal) Ve, where Neg ~ AQpeyv/AQyy, is the number
of trials, given by the ratio of the solid angle of the FoV to the top-hat smoothing scale.
This statistical method is widely used to assess the significance of excesses or deficits
in anisotropies and source searches. It has been applied to «-ray source identification by
H.E.S.S. [277], and to cosmic-ray source searches by HAWC [136, 16] and the Pierre Auger
Observatory [278, 279]. Figure 2.1 shows the combined IceCube and HAWC sky maps
at a median energy of 10 TeV, which illustrates the residual small-scale anisotropy after
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removing the large-scale components up to £ = 3, revealing structures smaller than about
60°, displaying 61 («,d) and the corresponding significance S(«,d) [16]. A clear excess
appears near « = 50°, known as Region A, first reported by the Milagro Collaboration [280].
It extends roughly from (54°,—16°) to (78°,18°). Region B marks the boundary between
the excess and deficit areas in the northern sky [16].

2.1.4 Fit of Anisotropies

A simple way to obtain large-scale anisotropies from the distribution (a sky map using
HEALPix [281]) of cosmic-ray arrival directions is to perform a projection on the sky
map. Once we obtain a relative intensity map, 61 («,d), we can extract the dipole and
multiple information by projecting the sky map onto the equatorial plane. By doing so,
the two-dimensional map 61(c, d) becomes a one-dimensional map 0/(«). Specifically, we
bin « into n bins, then average the value of 1 for all pixels within each « bin to obtain
§1(a). To quantify these deviations, the observed §1(«, ) distribution is often fitted with
a combination of dipole and higher-order multipoles, representing different angular scales
of anisotropy [138]. The fit of n different §1(a) points can be written as a function of a,

o0
I(a) =14 > Apcos(a — ¢y), (2.13)
n=1
where 1 represents the monopole (n = 0), [ = 1+ dI, A, is the harmonic amplitude,
and ¢, is the phase [5], assuming a full-sky coverage. The dipole fit (n = 1) gives a
global measure of the anisotropy, while the multiple expansion reveals fine structures in
the cosmic-ray distribution. The above expression can also be written in an equivalent
sine—cosine (Fourier) form, known as the Rayleigh analysis, which will be introduced in
a later section. The average uncertainty os; follows standard error propagation in the
form o057 = /(1 4+ 1/k)Nexp, where k is the number of scramblings used for the reference
maps. For k = 20, the correction is only about +2.5%. This approach has been applied in
experiments, such as IceCube and HAWC, to study both large- and small-scale anisotropies
in cosmic-ray arrival directions [63, 282, 283, 88, 139, 136, 140].

Many observatories today can reconstruct the dipole anisotropy directly from two-
dimensional sky maps of relative intensity I(«a, ). However, some experiments still use the
right ascension of the above projection method, where the partial-sky coverage will lead to

=

a “fake” dipole amplitude. Now, we apply a new form for the projection as [5]

SO 1 (2« . 1 S0
A" = = doce'™ { / ds I(a,d)} , (2.14)
™Jo §2 — 81 Jsy

where s = sind and the limits s; 2 = sind; 2 define the declination range [d1, d2] covered by
the detector. If the relative intensity follows a pure dipole, this projection gives the correct
dipole phase, &; = aj, but the amplitude is reduced by a geometric factor,

< 01 — 02 + c151 — €252
Al ~
2(81 — 82)

where A; and aq are the true dipole amplitude and phase, and ¢; = cos §;. In most cases, the
measured projection amplitude A; is reported without this correction, which generally leads
to an underestimate of the true dipole strength by a factor of order one [5]. This partially
explains the scatter in reported dipole amplitudes between different experiments. Moreover,
this one-dimensional projection can also mix in contributions from higher multipoles (¢ > 1),
adding further uncertainty to the reconstructed dipole amplitude [5].

Ay, (2.15)
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2.1.5 Harmonic Analysis

The relative intensity of cosmic rays observed across the sky can be regarded as a scalar
function defined on the celestial sphere and expressed in the usual spherical coordinate
system. Any such angular function can be decomposed into spherical harmonic modes, i.e.,
spherical-harmonic components Yy, (0, ¢). In this standard representation, the angular
position of each sky direction is specified by the polar angle 6 and the azimuthal angle ¢.
These spherical coordinates are related to equatorial coordinates (d,«) by 6 = w/2 — § and
¢ = «a. For convenience, we therefore introduce the notation,

Yim(3, @) = Yi(6 = 7/2 — 6,0, (2.16)
which does not redefine spherical harmonics. The anisotropy (i.e., the relative intensity
I(6,)) can then be expressed as the cumulative sum of contributions from all scales,
I(a, (S) ZFO()}/O()((S, Oé) + F10Y10((5, Oé) + Fl,_lYL_l((S, a) + F11Y11(5, O()
oo+ T 0Ye, (0, ) + T Yo (6, ),

where the degree £ — oo depends on the anisotropy scale present in the observations or the
underlying assumptions, I'y, representing the coefficient corresponding to each moment of
the degrees of scale structures. The functions Yy, (0, «) are derived from the associated
Legendre polynomials. Specifically,

(2.17)

Vi (6, @) = \/ (2{; D ((f +:Z)) PP (sin 6) e, (2.18)

For ¢ =0, we have Yo = 1/v/4m. For ¢ = 1, the expressions are given as follows:

3 , 3 3 ;
Yi—1 =1/ g 08 de " Yo =1/ Esiné, Yii=—y/ 55 08 de'. (2.19)

For higher-degree harmonics, explicit expressions are listed in Appendix A. More generally,
I(0,«) in Eq. (2.17) admits a complete spherical-harmonic expansion, starting with the
monopole term (¢ = 0) and extending, in principle, to infinitely high multipole orders:

9] ¢
§) =YY" amYm (0,a), (2.20)

L=0m=—¢
where ay,, are the spherical harmonic coefficients, which quantify the strength of each
multipole mode, i.e., for every degree £ and order m, they specify the amplitude and phase
of the corresponding spherical-harmonic component Y, (9, ). Note that I'y,, in Eq. (2.17)
is actually equivalent to ag,,. Together, these coefficients describe the full angular structure
of the cosmic-ray anisotropy. Considering the well-defined relative intensity as shown in
Eq. (2.20), the harmonic coefficient is expressed as

27 7r/2
—/ / I(e,0) Y, cosd do da, (2.21)
w/2

where the complex conjugate follows the relation Yy_,, (8, ) = (—1)™Y}: (8, a), ¢’ ranges
from 0 to infinity when handling integrals of spherical harmonics over real domains, any
imaginary components that arise from the complex exponential should either cancel out or
be disregarded, as they do not contribute to the final real-valued outcome.

The coeflicients ag,, are determined by projecting the relative-intensity map dZ (9, a) onto
the basis functions Yy,,. This projection is defined through the usual inner product on the
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Figure 2.2: Combined (IceCube+HAWC) angular power spectrum of the cosmic ray
anisotropy at 10 TeV. Figure taken from [16].

sphere, where the function is multiplied by the complex conjugate of the spherical harmonic
and integrated over the full solid angle. Through this process, the projection extracts the
“amount” of each spherical harmonic Yy, (d, @) that is present within the function 7(4, «).
Each coefficient ay,, carries both amplitude and phase information regarding both the
amplitude and phase of the corresponding spherical harmonic component within 7(4, «)
and indicates the weight or significance of a particular spherical harmonic in the function’s
expansion. Larger values of agy,, imply that the corresponding spherical harmonic Yz, (d, @)
contributes more significantly to the overall function. The angular power spectrum, in this
context, represents the average power of all orders m for a specific degree (¢), i.e.,

a4
1
Cr= —— E 2 2.22
L 2€+1m:7€|aém‘ s ( )

where 2¢+ 1 is the number of independent modes for a given multipole £. For a full-sky case,
the variance of the spectrum C; is Var(C;) = 2C7/(2C + 1), and the uncertainty (standard

error) is obtained as o¢, = y/Var(Cy) = Cyy/2/(2¢0+ 1).

An illustrative example is provided in Figure 2.2, which shows the combined Ice-
Cube-HAWC angular power spectrum of the cosmic-ray anisotropy at a median energy
of 10 TeV. In the context of cosmic-ray relative-intensity studies, the monopole term
simply corresponds to the overall isotropic mean flux. Since the relative intensity is defined
regarding this mean, the monopole contribution vanishes, i.e., Iy(c, ) = 0, which directly
implies that the monopole coeflicient satisfies agg = 0. Now, we assume that the relative
intensity, denoted by Z4(d, ), is well-described as a function of dipole distribution only,
specifically expressed as 01q = a10Y10 + a1,—1Y1,—1 + a11Y11. Then, C; can be obtained.
The dipole’s amplitude is encapsulated within the components a19, a1, —1, and a;1. Now,
let us consider our description of the dipole,

dI4(ar,0) = Asind sin dq + A cos d cos dq cos (o — ag) - (2.23)

where (agq,dq) is the dipole’s orientation. The amplitude ag,, is then rewritten as

4 2 ; 2 )
alg = % A sindg, aig = —/ % A cos bq et aj,—1 =1/ % A cosdge . (2.24)
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These coefficients describe the directional dependence of the dipole: a9 corresponds to the
contribution along the declination axis, while a1 +1 represent the dipole projection in right
ascension, carrying the phase information through the complex exponentials e**®d. The
amplitude of the multipole at degree £ is then obtained from the harmonic coefficients

y4
> Jam|* = /e 1), (2.25)

m=—/

A1 = /3 for dipole. For the case of a partial-sky-coverage sky map, one can directly apply
Eq. (2.15) for a dipole. For the cases of £ > 1, one can use the MASTER algorithm [284],
which relates the observed pseudo-power spectrum (partial-sky) to the true sky spectrum
through a coupling matrix.

To reveal smaller-scale features in the data, one can model the dominant large-scale
pattern with a monopole, dipole, and quadrupole, then remove that model from the
relative-intensity map and study the residual. A convenient approach, widely used in
CMB analyses (see, e.g., [285]) and adopted in cosmic-ray studies, expresses the fractional
intensity map dI(«, d) in a real spherical harmonic basis [286]:

0I(cv,8) =mg + py cosd cosa + py cosd sina + p, sind
+ Q1 (3cos?6 — 1) + Qo sin(26) cos a + Q3 sin(25) sin av
+ Q4 cos® § cos(2a) + Qs cos® §sin(2a),

where mq is a constant offset (monopole), (ps,py,p.) are the dipole components, and
(Q1,...,Q5) are the five independent quadrupole coefficients. The angular coordinates are
right ascension « and declination . For fitting, one can select the analysis region (sky
pixels within the experiment’s field of view). Then, fit Eq. (2.26) to the relative-intensity
map by least squares (or maximum likelihood with Poisson weights) [286]. Next, build
the large-scale model from the best-fit parameters and subtract it from the data to obtain
a residual map. Finally, evaluate goodness of fit (e.g., x?/ndf or likelihood ratio). If
significant residual structure remains, higher multipoles (¢ > 3) are required. The dipole
and quadrupole usually describe most of the small anisotropies at the 1073 level, although
the quadrupole can sometimes be as strong as or stronger than the dipole, depending on the
detector’s sky coverage and acceptance [286]. A poor fit probability after removing ¢ = 1,2
indicates unresolved structure and motivates extending the model (e.g., octuple or direct
angular—power—spectrum methods) to describe the residual anisotropy [286]. For higher
multipoles ¢ > 3, the residual structures can provide additional insights into the influence
of the local magnetic field and possible point-like sources, as shown in Figure 2.2 [16].

2.2 Other Reconstruction Methods

Cosmic-ray anisotropy reconstruction employs several techniques to identify and quantify
directional variations in cosmic-ray flux. Each method provides unique insights into
different scales of anisotropy, from large-scale structures spanning the entire sky to smaller,
more localized features. The Rayleigh analysis is effective for identifying large-scale
dipole anisotropies by examining variations in right ascension. Large-scale features are
described with sidereal harmonics such as the Rayleigh first harmonic or low-¢ multipoles,
while full-sky likelihood methods recover two-dimensional structures and medium-scale
features. Besides, the exposure can also be handled through the East—West method or

45



CHAPTER 2. RECONSTRUCTION OF ANISOTROPIES

fitted together with the sky in a maximum-likelihood approach that simultaneously solves
for relative intensity and detector acceptance [143, 5], which leverages the Earth’s rotation
to detect asymmetries in cosmic-ray flux between the eastern and western hemispheres.
The generalized maximum-likelihood method allows for detailed analysis of both large- and
medium-scale anisotropies, combining data from multiple observatories, calibrating the
detector’s exposure automatically. In this section, we will review these methods and their
specific applications in reconstructing cosmic-ray anisotropies.

2.2.1 Rayleigh Analysis

The Rayleigh analysis is an effective method for reconstructing large-scale anisotropies in
cosmic-ray arrival directions. This method is closely linked to discrete Fourier analysis,
where the arrival direction of cosmic rays, given by the right ascension «, is interpreted as
the polar angle in the zy-plane. The goal of the Rayleigh analysis is to extract the first
harmonic modulation from the distribution of these arrival directions, which helps identify
any dipole anisotropy in the cosmic-ray flux. The advantage of Rayleigh is that it reduces
errors that come from small scales, thus it is good for large-scale anisotropies, such as a
dipole.

Specifically, the distribution of cosmic-ray arrival directions in right ascension can be
described by a periodic function f(«), which can be expanded into a Fourier series as

fla) = % + Z (ag cos(kar) + by sin(ka)) . (2.26)
k=1

where a; and by are the Fourier coefficients. For cosmic-ray anisotropy studies, we are
primarily interested in the first harmonic term (k = 1), which represents the dipole
component. Then, a; and by are given by the integrals [1]:

2w 1 2w
ay = — f(a)cos(a)da, by = — f(a) sin(a) da. (2.27)

™ Jo ™ Jo
In the simplest case, where we assume isotropy (i.e., no directional dependence in
cosmic-ray arrival directions), the probability distribution f(«) is taken to be constant.
Under this assumption, and in the context of real-world cosmic-ray data, where the number
of events N is finite, these coefficients are expressed in discrete terms, and the sums over
cos(ay) and sin(ag) in the Fourier series expansion simplify to [131]:

2 & 2 &
a1 = kZ::lcos(ozk), by = N kZ::lsin(ak). (2.28)

These discrete sums arise by replacing the continuous integrals with sums over individual
events, where each right ascension value ay, corresponds to the observed arrival direction
of the k-th cosmic-ray particle. Utilizing these values, the Rayleigh method identifies the
amplitude Ap and phase ap of the first harmonic as the key indicators of anisotropy, which
indicate the strength and direction of any detected anisotropy. These are computed using
the Fourier coefficients a; and by as follows [131]:

b
Ap =+/a? + b2, ap = arctan2 (;) , (2.29)
where the amplitude Ap represents the strength of the dipole anisotropy, while the phase

ap points to the right ascension of maximum cosmic-ray intensity. This direction provides
insight into the source or modulation effect causing the anisotropy. Given that cosmic-ray
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anisotropy studies rely on large datasets, one can estimate the uncertainties in both the
amplitude and the phase. The uncertainties for the coefficients a; and b1, and thus for Ap
and ap, depend on the total number N of observed events. The uncertainty in the Fourier
coefficients is given by [131, 88, 89], 04, = 03, =~ \/2/N, which leads to uncertainties in
the amplitude and phase, and are expressed as:

o(Ap) ~ \/z, o(ap) ~ AlD\/g’ (2.30)

and the Rayleigh p-value is P(> Ap) = exp|—N A} /4]. Thus, the larger the amplitude, the
smaller the uncertainty in the phase measurement. Worth noting that the Rayleigh analysis
is insensitive to structure orthogonal to the RA first harmonic. Meanwhile, small-scale
features that modulate RA can leak into the dipole (k = 1) case.

2.2.2 East-West Method

The East—West (EW) method provides an exposure-independent way to measure large-
scale anisotropies in right ascension by exploiting the approximate east—west symmetry of
ground-based arrays [287]. Events are divided into two azimuthal sectors, i.e., the east and
west. For each zenith range, the difference between the counting rates from both sectors
removes common exposure effects such as atmospheric and detector variations, leaving a
residual signal proportional to the derivative of the cosmic-ray intensity with respect to
right ascension. If the acceptance is nearly symmetric and stable in time, this difference
isolates the celestial modulation, where small asymmetries (e.g., from local obstacles or
slow drifts) can be tested through stability checks.

Specifically, for each event with time ¢; and azimuth ¢;, the right ascension of the local
zenith is given by «ag(t;). Events are recorded as coming from the east if 0 < ¢; < 7 and
from the west if —7 < ¢; < 0. The harmonic coefficients of the East—West modulation are
then computed as the summations of all the events that fall in the corresponding sectors,

2 Y 2 Y
aAEwW — N ZCOS [O&o(ti) — fz], bEW = N Z sin [Oé()(ti) — fz], (2.31)
i=1 =1

where ag(t;) is the R.A. of the zenith at time ¢; (the local sidereal time), and & = 0 for
eastward events and 7 for westward events. The amplitude and phase of the right-ascension
modulation are obtained from the EW coefficients as [287]

TEW = 1/ CL}QEW + b]%jw’ (EW = arctan2 (bEw, aEw). (2.32)
They relate to the physical first-harmonic in R.A. as [287]

7 (cos d)

T
— = — 2.33
3 (5m ) TEW, ¥ =9EWt 5, (2.33)

where (cosd) and (sin @) represent event-averaged factors that account for the detector’s
field of view. Measuring an EW amplitude equal to or greater than rgw for an isotropic
distribution is given by the so-called Rayleigh probability:

P(>rgw) = exp(— NCEJW> . (2.34)

This directly estimates the equatorial component of the dipole without requiring an explicit
exposure model. It has been widely applied in large-scale anisotropy studies by experiments
such as ARGO-YBJ, IceCube, and the Pierre Auger Observatory [287, 88]. The EW
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method remains particularly valuable at low energies, where the trigger efficiency varies
with time or azimuth, since such effects largely cancel in the east—west difference.

Bonino et al. [287] were the first to introduce this technique for analyzing the equatorial
dipole component in a way that minimizes the dependence on detailed exposure modeling
and therefore avoids many detector-related systematics. The Auger experiment applied
the EW method to long-term data to control exposure systematics, finding a significant
dipole above ~ 8 EeV with an amplitude of ~6% and a stable phase, while using EW below
1 EeV where trigger efficiency varies [88]. Overall, the method is suitable for large-scale
anisotropy studies and complements full-sky maximum-likelihood or Rayleigh analyses [3].

2.2.3 East-West Derivative Method

The standard East-West (EW) count difference gives a direct variation of anisotropy
(dipole only), but can be biased by slow variations in detector acceptance. The EW
derivative method instead estimates df/da (the RA gradient), which is much less sensitive
to acceptance drifts and therefore yields a cleaner first-harmonic (Rayleigh) reconstruction
of the dipole in the equatorial plane [287, 288]. From the first harmonic of the EW signal,
one obtains the dipole amplitude and phase in RA.

Using the collected cosmic-ray event data, the flux can be expressed in a general form,

d(a,d) = ¢o I(e,0), (2.35)

where ¢q is the angular-averaged flux, which represents a monopole component in the
flux (isotropic). The intensity, denoted by ¢(a,d), is a function of right ascension o and
declination 9, while 6 = I — 1 represents anisotropy. The intensity is defined as

I(t,0,¢0) =1+ 61(t,0,¢), (2.36)

where 61 is the relative intensity, which is always in the level 102 — 103 for the ground-based
observatories for cosmic-ray detections. Assuming the detector exposure £.

At a given sidereal time ¢, under the local coordinate system, the arrival directions of
cosmic rays can be naturally separated into two parts, covering the east (0 < ¢ < 7) and
west (—7m < ¢ < 0) sectors. The number of events observed within a short sidereal time
interval At in the east (+) and west (-) sectors can be expressed as

T Omax
N () = do At E(t) /0 do /0 d6 sin 0 A(,0) I(t, +¢,0), (2.37)

where sin 6 is the geometric factor, and £ is decomposed into the time-dependent exposure
E(t) and the acceptance A. The detector acceptance A can be written as A = A%(1+67),
where A is the average acceptance and 0.7 is the deviation of the acceptance in the east
or west sector from A°. Therefore, Eq. (2.37) can be rewritten as

Na(t) = b0 ALE(D) [ AL+ 0T (0. 0) (14 01(t, ,6)) A2,
o= (2.38)

_ 0

— o At E(t) A% (/Qi 0 + /Qi 57 A0+ /Qi 5140 + j(SIdQ) ,

Qyp

where €21 denotes the solid angle of the east and west sectors, and AL their corresponding
acceptances. The east-west asymmetry at sidereal time ¢ is then defined as

Apw (t) = Ny(t) = N_(t)

NIV (2.39)

48



CHAPTER 2. RECONSTRUCTION OF ANISOTROPIES

Because the average acceptance A° is even for the two sectors, i.e., A% = A" and the
deviation 4.7 is odd, i.e., 0J+ = —d0J—, inserting Eq. (2.38) into Eq. (2.39) yield

[ 8TAQ — [L6TAQ + [, SIAQ+ [_ 51D + O1(8T61)

Apw(t) = 20+ 0y(3.701) o (240)

where 2 = Q4 = Q_. The deviation of acceptance follows § 7 < 1 and 61 < 1 for ground-
based observatories, thus, O1(6J0I) and O2(0JdI) are nothing but the second-order “cross”
terms, which approximately zero. Therefore, Eq. (2.40) is reduced to

Apw(t) = (0T) + % (01 (t, ¢,0)) = (0I(L, =, 0))) - (2.41)

Based on the relation between local sidereal time ¢ and right ascension «, i.e., a =t — H,
as shown in Eq. (2.6), one can convert ¢ to « in the data. Every particle from azimuth ¢ in
the east sector is sampling the sky at R.A. a+da(y, 0), and the West sector at o —da(¢, 0),
where da < 1 is the small EW hour-angle shift is within a sidereal time bin. The first order
Taylor expansion at each 01 around the central R.A. a is §I(a + dar) = §I(a) & 0D 01 ().
When averaging 01 (a + da) over the east and west sectors,

(61(a £ 80)) ~ (61(a)) £ (6adadI(a,0)), (2.42)

where d1(c,0) corresponds to the anisotropy evaluated at the central azimuth (¢ = 0)
where the shift is measured. We simply replace all those tiny, direction-dependent shifts
0a(f, p) by one “effective” shift, Aa. Thus, one has

Apw(t) = (8T) + Aa8a01(a, 0), (2.43)

where (AJ) denotes the sector-averaged East—West acceptance asymmetry, which arises
because no ground-based detector is ever perfectly symmetric with respect to azimuth, small
odd-in-azimuth differences in effective area or trigger efficiency always remain and therefore
do not cancel in the EW subtraction. The effective hour-angle offset A« represents the
acceptance-weighted mean eastward projection of all reconstructed arrival directions and
quantifies how the map’s local azimuthal asymmetries result in a shift in right ascension.
With these definitions, the differential function of the relative intensity is then expressed as
9a01(c,0) = (Apw(t) — (7)) /Ac. In local (east-north-up) coordinates, for a direction
specified by zenith angle § and azimuth ¢ (measured from north increasing toward east)
has unit-vector components v, = sinfsin ¢ points toward the east (which we denote
VR = Uy), Uy = sinf cosp toward the north and v, = cos¢ points upward (toward the
zenith). Computing the average of vg over all events in the east sector and subtracting the
corresponding average in the west sector vy, one finds

Aa = %((sinﬁsin ©)E — (sinfsin p)w) = (sinfsin p), (2.44)

since the small acceptance deviation 07 is antisymmetric (odd) in azimuth between
the east and west sectors, as noted earlier, the same odd symmetry carries over to
the geometric eastward projection. Therefore, when averaging the eastward component
sin @ sin ¢ over the west sector, one obtains the opposite of the value in the east sector,
namely (sin 0 sin p)w = —(sin 0 sin p)g, which leads to the simplified expression for Aa.
From a data-analysis perspective, the measured cosmic-ray events are initially grouped
into Ngiq discrete sidereal-time bins 7, and within each time bin, the sky is further divided
into Npix celestial bins 7. Using this two-dimensional binning in time and local direction,
one can then construct an estimator for the East—West asymmetry by explicitly comparing
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the event counts in the corresponding eastward and westward subsets of local-angle bins.
Specifically, this estimator is defined as

A\EW,T = (Z Nri — nTZ) /Zn’ru (245)
i€D+ i€D_

where Dy are the sets of all bins in the east (+) or west (-). The deviation of the EW
asymmetry 67 as Eq.(2.40) and (2.41) shown can be estlmated as

/—\

Nog ZAEWTv (2.46)

where the summation extends over all events in both the east and west sectors for each
sidereal-time bin. The effective right-ascension step A« is then determined from the
acceptance-weighted average of the eastward projection of the arrival directions, which
reflects the detector’s geometrical response to an infinitesimal shift in hour angle, given by

— 1

Ao =
“ 2]\fsid

Z (Aay - +Aa_;), (2.47)

where Aoy ; = (sinf;sin ;)1 and Ao ; = —(sin6; sin ;) — based on the fact that Aoy »
is always positive. Consequently, within a given sidereal-time bin 7, the effective right-
ascension step is about averaging over all pixels within the range, namely

Aag ;= Z N7 sin 6;] sin %|/ Z Nri- (2.48)

€Dy 1€D4

The leading-order statistical uncertainty in each sidereal time bin 7 is given by

1/2
o(Aad61(ar)) (Z n”) , (2.49)

where, for notational simplicity, we restrict our consideration to the equatorial plane (i.e.,
¢ = 0) and introduce 61 (a;) = 0I(ar, = 0). Assuming that the underlying anisotropy
is dominated by a dipolar modulation in right ascension, we parametrize the relative
intensity at sidereal time 7 as dI(a;) = Agq cos(ar — aq), where Agq is the amplitude of
the equatorial dipole and oy is its phase. To fit the data to this pure dipole, we perform

124\ _ —_—
Dud () = 2EW(D) = (0F) (2.50)
A«
at each time bin 7, where 0,01 (c;) = —Agiq sin (o — aq) from model, and we then perform

the least-squares fit of this form as given in Eq. (2.50).

It is important to emphasize that this method is sensitive only to anisotropy in the
equatorial plane, ignores any azimuthal structure in each sidereal-time bin 7, and cannot
detect higher-order or latitudinal anisotropy components [288].

2.2.4 Maximum-Likelihood Method

The generalized maximum-likelihood method developed by Ahlers et al. [143] is a statistical
technique for reconstructing cosmic-ray anisotropies using data from multiple observatories
with overlapping fields of view. This method provides an optimal solution for reconstructing
the anisotropies of cosmic rays, especially for large-scale and medium-scale anisotropies
across the sky. This method is simplified and summarized in paper [143, 16].
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Because cosmic-ray arrival times are widely spread due to large diffusion, the flux can
be treated as effectively continuous over the full observation period of a ground-based

detector. For a fixed energy range, the differential flux (in units of cm=2s71sr™1) is:

¢(a,0) = ¢iso I (v, 9) (2.51)

Here, ¢iso denotes the average isotropic flux level, while I(«a,d) represents the relative
intensity at celestial coordinates (a,d). The deviation from isotropy is then defined as
0I = I — 1, which is expected to be small, i.e., |0]| < 1 [288]. In the local horizontal
coordinate system of the observatory, each cosmic-ray direction is specified by the azimuth
angle @, zenith angle 6, and the local sidereal time ¢t. A unit vector n’(6, ) in this frame
transforms to equatorial coordinates through n = R(¢) n’, where R is a rotation matrix
dependent on sidereal time ¢ and the geographic latitude ® of the detector [143]. The
detector’s field of view is limited to zenith angles 6 < Oy, resulting in a declination band
over time dyin = max(—7/2, ® — Oyax) and Opax = min(mw/2, @ + Opax)-

The method assumes that the detector’s exposure £(6, ¢, t), per solid angle (6, ¢) and
sidereal time ¢, accumulated over many sidereal days, can be factored into an angular-
integrated exposure E(t) and a relative acceptance A(6, ¢), which is normalized as

£(0,6,t) ~ E(t)A(0, ¢), (2.52)

where A(0, ¢) is normalized such that [ A(0,¢)dQ2 = 1. It is valid when the detector’s
directional response changes slowly with time compared to its diurnal modulation. This
expression assumes that the relative acceptance of the detector does not vary significantly
with sidereal time [143, 16]. For a given observatory, the number of cosmic rays expected
from an angular element AS2; of the local coordinate sphere corresponding to coordinates
(05, ;) during a sidereal time interval At; is given by:

firi ~ LiN-As, (2.53)

where NV, = At¢°E(t,) represents the expected number of isotropic events in sidereal
time bin 7, and [;(7) is the relative intensity observed in the local coordinates during the
same time bin [143]. The relative acceptance, defined as A; = AQ;A(0;, ¢;), represents the
binned detector acceptance for a given angular element. To relate the observed sky in local
coordinates to the celestial sphere, the relative intensity I;(7) is defined by a coordinate
transformation that maps the local coordinates (6;, ¢;) to equatorial coordinates (c, )
through a time-dependent transformation R(7), which relates the unit vector n in the local
coordinate system to the corresponding vector in the celestial system. Thus, the intensity
can be modelled as I;(r) = I(R(n))n'(€;). Each bin (,4) corresponds to a small time
interval (typically a few minutes) and a small solid-angle element of the local sky, within
which the detector records n,; events. Since each detected cosmic ray is an independent
event, the number of observed events in this bin is random. The Poisson distribution is
the natural model for this counting process and is given by:

e_MTi (MTi)nTi
nﬂ-!

P(nri | pri) = : (2.54)
which quantifies how (un)likely our observed data n; is, given the model prediction pir;. If
wri is large, and we observe many fewer events, then the probability is low, which means
a deficit. Conversely, if we observe more than expected, that also reduces the likelihood,
possibly indicating an excess or a feature in the anisotropy. The likelihood of observing n;
cosmic rays from a pixel 4 is described by the product of Poisson probabilities for all time
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bins 7, and the likelihood for the entire data set is given by [143]:

Nri 6_,“'7'1'

ot 04y = I e

TLTZ‘!

(2.55)

T
The likelihood is maximized when the predicted values p.; best explain the observed data
nr; across all times and angular bins. The anisotropic cosmic-ray intensity 1(6, ¢) can be
reconstructed by mmaximizing this likelihood function. To determine the best-fit values
of 1(0,¢), the likelihood ratio A is calculated as the ratio of the likelihood for the null
hypothesis of no anisotropy, (10 [143], N A©),

LN A)
= L(n|I1®, NO), A©))

(2.56)

with [c(lo) = 1. The estimators for the isotropic expectation N, and relative acceptance A;
are determined iteratively by the following relations [143]:

NO =S g, A =Y 0 [ Y g (2.57)
7 T KJ

subject to the normalization condition >, A; = 1.

In the combined analysis of data from HAWC and IceCube, the likelihood function (2.55)
is extended by incorporating individual detector exposures for each observatory, while
assuming a common relative intensity across both. The total exposure £ is generalized by
summing over disjoint sky sectors, which together form the entire field of view [16]. Each
sector corresponds to the integrated field of view of a detector, and the exposure for each
sector is modelled as a product of its angular-integrated exposure E*(t) and the relative
acceptance A®(p, ), specifically [143],

E(t,p,0) ~ Z E*(t)A%(p,0). (2.58)
sector s
where the values of I, N/, and A of the maximum likelihood ratio (I*, N'*, A*), as (2.56)
shown, must satisfy the following implicit equations [143]:

I = 27 Nra NS* — > Winr; AS* — D Wing (2.59)
¢ Esn AiéNS*’ T Zj Ai*I;j, ’ ZHNS*I/;"

where the window function w;{ indicates whether a pixel i belongs to sector s (with a
value of 1 if it is in the sector, and 0 otherwise). The binned quantity A%, represents the
relative acceptance for the sector s in equatorial coordinates at the pixel a during time bin
7 [16]. Since these are nonlinear equations, they cannot be solved explicitly but must be
approached iteratively to find the best-fit solution.

Unlike traditional methods like the East-West derivative approach, the maximum-
likelihood reconstruction does not need to assume azimuthal symmetry but corrects for
detector systematics directly and reconstructs the full two-dimensional anisotropy pattern
on the sky. It also makes it possible to combine data from different observatories and check
how significant features are across different angular scales. This approach is particularly
advantageous when combining data from multiple observatories, like HAWC [136] and
IceCube [288], which together provide near-complete sky coverage, which would remove
the biases caused by partial sky coverage.
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Chapter 3

Sensitivity to Cosmic-Ray Anisotropy

Cosmic-ray anisotropy presents a key challenge in understanding cosmic-ray origin and
propagation, as previously discussed. At lower energies (below a few TeV), anisotropies
formed by nearby sources and the structure of the local interstellar magnetic [15, 136,
16]. As the energy increases from the TeV to the PeV range, both the amplitude and the
phase of the anisotropy evolve: a phase shift appears around tens to hundreds of TeV,
and then approaches the knee, the measured amplitudes are at or below a few 1072, with
several results giving upper limits rather than a clear increase. These features point to
changes in transport and a possible role of nearby Galactic sources, but the interpretation
remains uncertain [17]. Composition changes around the knee, as well as energy-dependent
diffusion, further complicate the connection between anisotropy and sources. Progress,
therefore, requires energy-resolved, full-sky combinations across experiments with careful
control of systematics and declination coverage.

However, the lack of full sky coverage can introduce biases in the reconstruction of
anisotropies, such as dipoles or multipoles. Statistically significant measurements of the
projected dipole amplitude are missing in the energy range between 2 PeV and 8 EeV (gap).
The Pierre Auger Observatory has not yet observed a significant dipole below 8 EeV [270],
and KASCADE-Grande did not find evidence for a dipole anisotropy in the data with
median energy from 2.7 PeV to 33 PeV [268, 87]. Before proposing optimized reconstruction
approaches (Chapter 4) for anisotropies and performing analysis with observational data,
we will first investigate the sensitivity of an experiment (or multiple experiments) to
anisotropies within this energy gap, using simulations with specific statistical and energy
parameters. These sensitivities are both statistically and energy dependent. Following this,
we will develop a theoretical framework to estimate the sensitivity of the surface array to
cosmic-ray anisotropies using statistical methods and theoretical models. Finally, we will
compare the sensitivity results from both simulations and theoretical calculations.

In Section 3.1, we begin by presenting an example using the planned IceCube-Gen2
surface array, followed by a detailed study of air-shower reconstruction efficiencies with
this experiment. Then, we will evaluate its sensitivity to anisotropies in the cosmic-ray
arrival directions at different primary energies and zenith angles of injected artificial dipoles,
using dipole sky maps generated from Monte Carlo simulations. In Section 3.2, we aim
to propose a theoretical framework for efficiently estimating the sensitivity of a surface
observatory, such as IceCube-Gen2, to cosmic-ray large-scale anisotropies. By focusing on
the significance function of the estimated one-dimensional projected dipole amplitude, we
can develop equations to quantify uncertainties, allowing for an accurate assessment of
dipole detection capabilities, namely, the sensitivity to dipole anisotropy. The consistency
of the theoretical calculations with Monte Carlo simulation results reinforces the reliability
of our approach. Additionally, the methodology for reconstructing the dipole phase and its
significance was introduced. This work provides a basis for understanding the sensitivity
of cosmic-ray observatories to anisotropic patterns in arrival directions, and can offer a
quick estimate of their dipole sensitivity without the need for Monte Carlo simulations.
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3.1 IceCube-Gen2 Surface Array

In this section, we present an analysis of the surface array’s zenith-dependent and energy-
dependent sensitivity to cosmic-ray anisotropies by examining the detector’s response,
specifically the cosmic-ray reconstruction efficiencies of the surface array, to primary parti-
cles such as protons and iron nuclei across a wide range of energies, and by reconstructing
their arrival directions. The results of these simulations also suggest details of the array’s
design to improve its sensitivity to cosmic-ray anisotropies.

3.1.1 The Experiment

IceCube-Gen2 is a planned next-generation extension of the existing IceCube Neutrino
Observatory [83], which is located at the geographic South Pole in Antarctica, one of the
most stable and radio-quiet environments on Earth, making it an ideal site for high-energy
particle astronomy. IceCube has already contributed to several significant discoveries in
both astroparticle physics and particle physics (such as high-energy neutrinos, cosmic
rays, and fundamental interactions). The current detector features an in-ice array of
optical modules placed 1.5-2.5 kilometers deep in the ice, covering a total instrumented
volume of about 1 km®. Above this deep array lies the IceTop surface detector, an array
of ice-Cherenkov tanks distributed across a ~ 1 km? footprint, providing measurements
of extensive air showers from cosmic rays. Both the in-ice optical array and the surface
detector will be significantly expanded in IceCube-Gen2, improving the observatory’s
sensitivity, effective volume, and energy reach [83].

The high-energy optical array (Fig. 3.2) consists of 120 new strings (orange), spaced by
240 m, each instrumented with 80 advanced optical modules over a vertical extent of about
1.25km. IceCube-Gen2 in the reference design comprises 361 stations, including both
shallow and hybrid types of radio antennas. Adjacent to this, the optical high-energy array
is depicted in Figure 3.2, consisting of 120 new strings (indicated by orange points) that are
distributed 240 meters apart. Each string is equipped with 80 advanced optical modules
spanning a vertical length of 1.25 kilometers. The optical detector’s total instrumented

v IceCube-Gen2 Radio IceCube-Gen2 Optical @ IceCube ok IceCube Upgrade
L]
- ® ‘ .
-’: P o e o N -
e e o * ¥ * ‘ 3 . *
N .. '.,.-... e ° .
e o ° I *

1 km ‘ 250 m ' 25m

Figure 3.1: Top view of the proposed layout for the IceCube-Gen2 Neutrino Observatory at
the South Pole station in Antarctica is presented. From left to right: The in-ice radio array
in the reference design comprises 361 stations, an optical high-energy array consisting of
120 new strings, and the surface array. On the far right, the seven strings of the planned
IceCube Upgrade are also shown, illustrating their position relative to the new arrays.
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Figure 3.2: Illustration of IceCube-Gen2 surface array stations with elevated scintillator
panels and radio antennas. The figure is taken from [289)].

volume in this configuration is approximately 7.9 times greater than that of the existing
IceCube detector array (illustrated by blue points). To the extreme right, the positioning of
the seven IceCube Upgrade strings in relation to the existing IceCube strings is illustrated.

The expansion of the observatory to include a surface array builds on its past successes and
its crucial role in enhancing our understanding of cosmic rays as well as air-shower physics
[85]. To detect extremely high-energy (EHE) and PeV-scale neutrino events, IceCube-Gen2
will include an in-ice radio array (left panel), which is optimized for > 10'7 eV neutrino
detection (not for CR detection). The design uniquely allows the detection of low-energy

scintillators‘ii,

I::%antenna

scintillators = scintillators
clg
(not to scale) Qg

Figure 3.3: (Left) Schematic layout of a surface station developed for the IceTop enhance-
ment, serving as the reference design for the IceCube-Gen2 surface array. Each station
includes four pairs of scintillation detectors and three radio antennas linked to a central
local data-acquisition unit. (Right) Photograph of the prototype station deployed at IceTop,
where both scintillators and antennas are mounted on adjustable stands to mitigate snow
accumulation. Plot and figure are taken from [27].
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particles like GeV muons and electromagnetic particles at the surface, while muons above
300 GeV are detected in the ice. This makes the observatory a leader in studying particle
physics through air showers [85].

The planned IceCube-Gen2 surface array will include stations equipped with elevated
scintillator panels and radio antennas, as illustrated in Figure 3.1 and Figure 3.3. These
stations follow the design proposed for the surface array extension, consisting of eight
scintillator panels arranged in paired units that form a triangular geometric layout. Each
of the three arms of this layout will have a radio antenna positioned approximately halfway
along its length. These stations will be strategically placed above the in-ice optical strings,
maintaining an average inter-station spacing of about 250 meters. Additionally, the center of
the array will host four TceAct stations, each separated by about 200 meters and equipped
with seven Cherenkov telescopes [27, 26]. For the study of anisotropies in the arrival
directions of cosmic rays, the detections utilizing the scintillator panels are of particular
interest. These scintillation detections will provide valuable data to help identify and
analyze the subtle variations in the directional distribution of incoming particles, which
have not been done by IceCube previously. The IceCube-Gen2 surface array will have a
larger area with scintillator panels and will obtain more statistics than the current IceTop.

3.1.2 Simulation of Air Showers

To evaluate the full scientific potential of the planned IceCube-Gen2 surface array, an
extensive and carefully constructed library of air-shower simulations was used for this
study [289]. These existing simulations employed CORSIKA [290] to model the detailed
distribution of secondary particles at the surface and CoREAS [291] to compute the
associated radio emission produced by the electromagnetic component of the showers.
For the detailed physics interactions, CORSIKA was compiled with FLUKA [292] to
handle low-energy interactions and Sibyll 2.3d [293] for high-energy processes. Given the
extensive computational demands of radio simulations and in order to reduce the need
for thinning the simulations, two different approaches were implemented. For cosmic
ray energies between 10'® and 10!7 eV and zenith angles up to 51° (72° for energies up
to 1016 eV in dedicated trigger-performance studies), showers were simulated without
thinning using only the CORSIKA particle routines together with the modeled response of
the scintillator array [289]. The resulting energy—zenith distributions for simulated proton
and iron primaries are displayed in Figure 3.4, while the corresponding sky maps of their
arrival-direction distributions are shown in Figure 3.6, illustrating the coverage expected
for the surface array. For radio emission simulations, the thinning algorithm was applied.
Proton and iron primaries were used to model extreme cases [289].

Air showers were injected multiple times within a 1.5 km radius from the array center,
and the detector response was simulated. Secondary particles were injected into scintillator
panels, with energy losses calculated using Geant4 [295], and signals expressed in MIPs [289].
The main observables were derived from signal amplitudes and timestamps, enabling
precise shower geometry reconstruction using scintillator data. The study confirmed that
for the larger IceCube-Gen2 surface footprint, the shower geometry could be accurately
estimated using scintillator reconstruction. IceTop tanks, shielded by several meters of
snow, functioned as muon-sensitive detectors, particularly effective at distances greater
than 600 meters from the shower axis [296].

The planned surface area covered by the IceCube-Gen2 surface array is 6.6 km? (de-
pending on the definition of the containment for reconstruction). The corresponding
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Figure 3.4: Histograms of simulated proton and iron energies. The left plot shows their
energy distributions, while the right plot shows the combined distribution. The red line is
weighted to the H4a flux model [294], and the blue line is unweighted.

CORSIKA simulations of the scintillator array response were performed for proton- and
iron-induced air showers with 4 < log,,(E/GeV) < 8 and zenith angles (f) up to 51°, and
4 <log,o(E/GeV) < 7.5 with 6 up to 63° [289]. To simulate a large sample of contained
events, the shower cores were randomly distributed within a 1.5km radius from the center
of the surface array. The detector response was then simulated for the scintillators, where
the secondary particles on the ground were injected into the scintillator panels.

To show the realistic capabilities of the IceCube-Gen2 surface array, we perform a
selection process that involves choosing true air shower core locations (x, y) within a
distance of 100 meters from the polygonal boundary of the array, ensuring that the full
geometric footprint of the shower is properly accounted for. The scintillator array is fully
efficient (100%) in triggering on air showers above 0.5 PeV for vertical events (f = 0). For
a simple air shower trigger, at least three scintillator hits inside the array are required in
order to achieve a minimal reconstruction of the shower direction and geometry. For a more
realistic requirement, at least five scintillator stations should be triggered. Considering
the scintillator-triggered multiplicities > 5, we show the reconstruction efficiencies for
proton and iron primaries and make the histograms for the two cosmic-ray primary
particles. To account for the incomplete coverage in the region 0.6 < sin?(6) < 0.8 and
7.5 <log;o(E/GeV) < 8 we fill the missing bins by assuming a conservative 100% efficiency
in that phase space (see Figure 3.5). Finally, we fit the unbroken histograms using a
modified two-dimensional error function parameterized in terms of the primary energy E
and the zenith angle z = sin? §, which is expressed as

E — 2 3
(o + p1z + poz” + p3z ))} ' (3.1)

q

€(F,z) == |1+ erf <
(E,2) 2 o0+ 012

where pg, p1, fo, 13, og and o1 are constant. These parameters for both proton and iron
in Eq. 3.1 are listed in Table 3.1. We estimate the reconstruction efficiencies for helium,
nitrogen, and aluminum using the natural logarithm of their mass numbers, denoted as In A.
This estimation is based on the logarithmic mass dependence of the cosmic-ray primaries.
The reconstruction efficiency for helium, nitrogen, and aluminum can be written as

In Az —In AP

€(A;, E,2) = nAp —InAp lere(E, 2) —ep(E, 2)] + ep(E, 2), (3.2)
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Figure 3.5: Two-dimensional histograms of the reconstruction efficiency for proton-induced
(top left) and fitted (center left), and iron-induced (top right) and fitted (center right) air
showers for scintillators in the IceCube-Gen2 surface array. The energy range is from 10°
GeV to 108 GeV, with zenith angles up to 63° in sin? § scale, and a scintillator multiplicity
of > 5 to trigger the event. The bottom two histograms show the absolute differences
between the original and fitted histograms, respectively.
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Figure 3.6: Sky maps showing the total simulated proton and iron flux for IceCube-Gen2,
without weighting by the H4a flux model.

where In Ap = 0 for protons. The index ¢ ranges from 1 to 3, representing the estimated
helium, nitrogen, and aluminium, respectively. Polynomials up to the third degree (z3)
can capture sufficient details for the efficiencies. We plot the contour lines at 50% and 98%
reconstruction efficiency using Eq. (3.1), as shown in the left panel of Figure 3.7. The total
efficiency of all particles utilizes Eq.(3.1), (3.2) and the H4a flux model [297].

The scintillators will be the most sensitive component of the surface hardware of
IceCube-Gen2, and thereby determine the energy threshold necessary for cosmic-ray
detection. In the performance studies of the reconstructed arrival direction presented in
paper [289], it is shown that for air showers with threshold energies around 1PeV, the
incoming direction can already be reconstructed with an accuracy of a few degrees, even
for events arriving at zenith angles as large as 45°. As the primary energy increases, the
reconstruction improves, and above 10 PeV, the angular resolution reaches the sub-degree
level. The accurate estimation of the shower geometry and the reliable determination of
the arrival direction make it highly valuable for studying cosmic-ray anisotropies.

3.1.3 Simulation of Arrival Directions

The section aims to simulate the arrival directions of cosmic rays and generate synthetic
sky maps to evaluate the sensitivity of the IceCube-Gen2 surface array to cosmic-ray
anisotropy studies. We utilize the H4a flux model to estimate the number of cosmic-ray
events detected in different energy bins. By integrating reconstruction efficiency and the
number of cosmic rays over a decade of exposure, we can simulate the expected arrival
directions. This involves complex calculations incorporating various factors such as detector
efficiency, geographical location, and anisotropic distribution patterns.

By understanding how the array responds to different directional inputs, we can better
predict its performance in identifying cosmic-ray dipoles across the sky. Therefore, we can
test the IceCube-Gen2 array’s ability to detect cosmic-ray anisotropies. The ability to

Table 3.1: Parameters in the fit function Eq.(3.1) of cosmic ray reconstruction efficiency of
the IceCube-Gen2 surface array. Only proton and iron primaries are covered in this table.

Particle Lo H1 2 3 00 o1
Proton 5.0174+0.008 0.711 £0.083 —1.791 £0.240 3.824 4+ 0.198 0.483 £0.008 0.001 +£ 0.000
Iron 5.177 +0.006 0.753 £0.063 —0.665+ 0.182 2.073 £0.149 0.404 +0.006 —0.067 £+ 0.012
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Figure 3.7: Left: contour lines with 50% and 98% reconstruction efficiency of the IceCube-
Gen2 surface array are shown for proton and iron, and total efficiency of all particles
utilizing the H4a flux model [274]. Right: histogram (with error bands) of the event counts
of the IceCube-Gen2 surface array with a 10-year exposure, considering the H4a flux model
and the reconstruction efficiency with 3 additional energy bins.

simulate different scenarios and predict outcomes enhances our capability to distinguish
between random fluctuations and genuine anisotropic patterns. These simulations help us
understand the directional dependencies and the potential sensitivity of the IceCube-Gen2
array to cosmic-ray anisotropies, highlighting the IceCube-Gen2 array’s sensitivity to dipole
anisotropies. The following parts will detail the methodologies used in the simulation,
including the computational models and algorithms employed. We will also discuss the
interpretation of the results, focusing on how well the IceCube-Gen2 array can detect and

analyze cosmic-ray anisotropies.

Using the H4a flux model [297], the expected number of arrival directions in each energy
bin can be obtained by integrating the two-dimensional function defined in Eq. (3.1) and
(3.2), which describe the reconstruction efficiency and the number of cosmic rays with 10
years of exposure of the IceCube-Gen2 surface array. This calculation is a function of
and z = sin? @ for each primary mass group. Therefore, we have the event counts for each
of the 5 primary components in the energy bins (see the right panel of Figure 3.7):

emax E;
Nati= [ [ € (E.0) Nusas () dEdb, (3.3)
gmin Ejfl

where ¢ runs from 1 to 5, corresponding to the five different primary particles, while j runs
from 1 to 8, denoting the upper and lower edges of the seven reconstructed energy bins
used in the simulation. The quantity Np4a; refers to the number of expected events for
each primary component, as determined by the mass-dependent H4a flux model. Using
this procedure, the full simulation produces a total of 8.355 billion simulated cosmic ray
events distributed across all seven energy bins. Taking into account the ratio of different
primaries weighted by the mass-dependent H4a flux expressions [297] and Eq. (3.1) and

(3.2), the total efficiency averaged over all primaries is written as
?:1 €i (E,0) pnai (E)
z , (3.4)
> i1 PH4ai (E)
where ¢;(F,0) ~ 1 for log,o(E/GeV) > 7, as shown in Figure 3.5.

€tot (E, 9) =
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Now, let us examine how one can simulate cosmic-ray arrival directions on the celestial
sphere using equatorial coordinates at a given observatory. To obtain a realistic sky map,
several key factors need to be taken into account in this model to ensure accurate simulation
results. First, the total efficiency of the detector, as calculated in Eq. (3.4), is considered.
This efficiency encompasses the detector’s ability to capture and accurately record cosmic
ray events from various directions. It also accounts for how features such as detector
orientation, trigger conditions, and threshold effects influence the probability of detecting
particles from different zenith and azimuth angles. Second, the relative exposure of the
observatory needs to be taken into account, since the observatory’s latitude, field of view,
and duty cycle determine how long each sky region is observable and therefore contribute
unevenly to the overall directional sensitivity. Lastly, the anisotropic distribution of the
arrival directions is modelled and given by:

Wobs (Ea 97 67 emaXa -A, 5d7 5obs) =w (97 53 Hmaxa 5obs) X €tot (E, 9) x D (-’47 5, 6da 5obs) s (35)

where § refers to the declination of the simulated cosmic-ray arrival directions, while dq
specifies the declination of the injected dipole. The quantity dops represents the declination
of an observatory, and w is the relative acceptance (exposure) of IceCube-Gen2 surface
array at declination dops = —89.99° without detector efficiencies.

The probability density function (PDF) describing this declination-dependent relative
instantaneous acceptance, which characterizes the real-time directional sensitivity of the
detector, is expressed by the following relation [274]:

1
w(d) = = (€OS Gobs €OS I SIN Ay + iy SIN o SIN ) | (3.6)

where 7 is used for normalizing the maximum possible value to 1, ay, is given by a clip
function which ensures the geometric factor (§) that links the observatory’s latitude stays
within the valid range for the arccos function, namely, oy, = arccos (clip(¢, —1, 1)), which
determines whether a celestial object at a given declination (J) is within the observable
zenith angle from a specific latitude (ag). It is basically the furthest left or right the
observatory can look to see a celestial object before it moves out of view. The quantity £ is
used to calculate the maximum observable azimuth angle at which an astronomical object
can be observed from a specific location on Earth, and is a geometric relation between
the observatory’s position and the celestial object’s declination. Taking into account the
Earth’s curvature and the observatory’s field of view, £ is expressed as:

&=

€08 Oinax — Sin dgpg sin §

3.7
€OS Opbs COS O (3.7)

which relates how celestial coordinates (a, ) are converted into local coordinates, such
as altitude and azimuth, at a given time and location. For the IceCube-Gen2 surface
array, the relative exposure is well approximated by w(d) ~ cos(d — dobs) due to the
geometric symmetry. Besides, the function D (A,0d,dq,0Gen2) in Eq. (3.5) provides the
dipole distribution, taking into account the relative orientation of the IceCube-Gen2 surface
array to the dipole. The algorithm for configuring the dipole is as follows.

In this study, the primary focus is on dipole anisotropies, which describe how the
observed cosmic-ray flux varies with direction across the sky. The resulting full distribution
function, therefore, determines the probability of detecting cosmic rays from different
directions. It is given by a comprehensive formula that incorporates detector efficiency,
relative exposure, and anisotropy parameters. By integrating these key factors into the
simulation, we can create a realistic model of how cosmic rays arrive at the observatory,
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Figure 3.8: Combined 3D spherical coordinates and equatorial coordinates. The left plot
shows the 3D FoV of IceCube-Gen2, where a point D represents the excess of a dipole, and
the hexagon at the bottom represents the location of IceCube-Gen2. The right plot is the
2D projection of the celestial sphere on the zy plane, with IceCube-Gen2 at the centre.

which allows us to generate synthetic sky maps that accurately reflect the expected
distribution of cosmic rays, thereby enabling detailed studies of cosmic-ray anisotropies
and the effectiveness of the IceCube-Gen2 array in detecting these phenomena.

To simulate CR dipole anisotropy, we developed a mathematical model to simulate the
behavior of dipole distributions on a spherical surface, which is particularly relevant for
studying phenomena such as Cosmic Microwave Background (CMB) anisotropies. This
model aims to create a realistic representation of how dipole patterns manifest on a
celestial sphere due to varying intensities and directional influences. The model begins with
the definition of a dipole vector in three-dimensional Cartesian coordinates (xyz) and is

characterized by a direction vector, namely, 5) = (z,vy, z), which forms a full 3D unit vector
of the arrival directions and defines the orientation of the dipole pattern on the sphere, as
shown on the left plot of Figure 3.8. Next, the sphere is divided into discrete points or
pixels, each representlng a segment of the sphere’s surface. The angle between the dipole

direction vector D 4 and the vector pointing to the center of each pixel, vz, is calculated,

denoted by ©;, which determines the 1nten51ty of the dipole at each point, and the sum of

—
all cos ©; are calculated as follows: cos©; = D . v and cosOq = vazpf‘ D - vl, where

Npix is the total number of pixels, cos ©; yields a scalar field over the sphere ranging from
-1 to 1, and the value of cos ©4 represents the angular deviation relative to the dipole’s
direction. The coordinates of specific pixels can be obtained utilizing the transformation
function in the HEALPix library [281], which transforms the HEALPix grid pixels to
three-dimensional Cartesian coordinates, based on the principle of equal-area division on
the sphere. This transformation begins by identifying each pixel with a unique identifier,
which corresponds to a distinct area on the sphere. It then maps these identifiers to the
geometric centre of their respective areas, calculating the Cartesian coordinates (z,v, 2)
that represent these centres. Theoretically, @4 can be expressed as

cos ©g = cos f cos B + sin 0 sin B4 cos (¢ — ¢q), (3.8)

where 0 and ¢ are the spherical coordinates of the vectors on the celestial sphere, 85 and
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¢q are of the dipole. To transform this dipole distribution into a modulation pattern, it is
scaled by an amplitude factor 4, which controls the strength of the dipole influence. This
scaling is essential for adjusting the visibility and contrast of the dipole pattern across the
sphere. The mathematical representation of this scaling is Dyap = 1 4 A - cos O4, which
assigns to each pixel a value that reflects the dipole intensity at that point on the sphere.
Finally, to ensure the values across the sphere sum to one, making it a valid probability
distribution, the entire map is normalized by its total sum,

Dpdf — Dmap/ Zz Dmapy (3'9)

which is critical as it converts the dipole map into a probability density function (PDF),
and is used for statistical analysis and simulations.

To proceed with the simulation of dipole patterns on the celestial sphere, it is essential
to translate the dipole orientation, which is originally specified in celestial coordinates such
as right ascension (RA) and declination (Dec), into a corresponding set of three-dimensional
Cartesian coordinates. This transformation relies on the standard definition of spherical
coordinates (r,0,®), where the Cartesian components are expressed as x = sin 6 cos ¢,
y = sin @ sin ¢ and z = cos ¢, where @ is colatitude, i.e., the angle measured southward from
the North Pole, ranging from 0 to 7w, and ¢ is longitude, i.e., the angle measured eastward,
ranging from 0 to 2. RA () is equivalent to the longitude (¢) component in degrees, while
Dec. (9) ranges from -90 degrees (South Pole) to +90 degrees (North Pole). Colatitude,
however, is measured from the North Pole downward. Therefore, the conversion from
equatorial coordinates (right ascension and declination) to spherical coordinates (longitude
and colatitude) is ¢ = a, @ = /2 — ¢, which can also be expressed in hours, if needed. By
specifying the equatorial coordinates of a dipole, we can straightforwardly determine its
Cartesian coordinates on the celestial sphere. This simplifies the input procedure of dipole
injections in the simulation. Based on the setup of all the above and the combination of
them as described in Eq. (3.5), the cosmic-ray arrival directions are simulated by randomly
selecting pixels from these weighted distributions.

For each pixel of the sky map, the orientations of the individual direction vectors within
that pixel are assigned randomly, with the total number of vectors corresponding to the
expected number of cosmic ray events over the specified years of observatory exposure.
This process is repeated across multiple maps to systematically compile and analyze the
spatial distribution of cosmic rays detected by the observatory setup. Each step in the
process, from generating weighted distributions to mapping and counting events, is strictly
defined to ensure an accurate representation of the observatory’s detection capabilities
under the studied conditions. In this way, we obtain the effective probability for injecting
a given dipole component into the simulated arrival-direction distribution as it would be
observed by the IceCube-Gen2 surface array.

3.1.4 Dipole Injections

To evaluate the observable dipole anisotropy of IceCube-Gen2 and its sensitivity, we take
into account the reconstruction efficiency discussed earlier, even though it approaches
nearly 100% above 107 GeV. In the simulation framework, we inject cosmic-ray arrival
directions into the geometry of the IceCube-Gen2 surface array, assuming event counts
that are roughly consistent with what is expected from a ten-year observational exposure.
The simulated dataset is divided into six logarithmic energy bins, spanning the range from
10° GeV to 1034 GeV, with a bin size of 0.4 in log;,(E/GeV). Here, as an example, injected
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dipoles have an amplitude of 1073, consistent with the approximate magnitudes reported
for reconstructed dipoles in multiple experiments.
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Figure 3.9: Sky maps of relative intensity illustrating a simulated pure dipole anisotropy
injected at R.A. o = 60° and declination § = —30° with an amplitude of 1073, The distri-
butions are shown for all six representative energy bins of IceCube-Gen2, demonstrating
the detector’s sensitivity to large-scale anisotropy patterns across different energies. Each
map has been smoothed using a 20° top-hat filter to emphasize large-scale structures.

The sky maps for a representative example of the simulated arrival directions are
displayed in Figure 3.9. In these maps, the injected dipole patterns are visibly pronounced
in the first three energy bins, while they disappear in the higher energy bins. This disap-
pearance is attributed to the lack of statistical significance at higher energies. Figure 3.12
presents the corresponding angular power spectrum for the first energy bin, illustrating that
the dipole term with ¢ = 1 is clearly more prominent than the medium-scale anisotropies
(¢ = 2,3) and the small-scale anisotropies (¢ > 4). A more detailed analysis, including
an initial test of how the reconstructed significance varies for different injected dipole
declinations and amplitudes, is shown in Figure 3.10. The observed symmetry along the
declination is a result of the partial sky coverage of the observations, as well as the inherent
projection effects of the dipole. For these reasons, we intend to perform more precise
analyses to determine the sensitivity of Gen2. This will include injecting additional sets of
dipoles with larger amplitudes to investigate how the statistical significance propagates
through the reconstruction. Through these tests, our goal is to derive a more accurate
and detailed sensitivity curve that reflects the realistic performance expected for Gen2,
particularly in the energy range where current experiments are still limited by statistics.

To get a precise and stable value of the reconstructed dipole amplitude, we choose dipole
amplitudes depending on the declination, focusing on amplitudes that can be detected at
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Figure 3.10: Two-dimensional histogram illustrating the reconstruction significance of sim-
ulated dipole anisotropies for various injected amplitudes and declinations. The simulation
covers dipoles at declinations from —80° to 80°. The color scale indicates the statistical
significance derived from the injected dipole maps shown.

> 100 within 10 years of operation. Otherwise, it would be required to simulate the same
dipole repeatedly to capture the uncertainties adequately. We now apply the reconstruction
efficiency to simulate the arrival directions for the IceCube-Gen2 surface array with a
10-year exposure. The simulation is divided into 7 energy bins ranging from 10° GeV to
1088 GeV with a bin size of 0.4 in log;,(E/GeV). In each energy bin, we inject 15 different
dipoles at declinations ranging from —80° to 80°. In total, we have 1785 injected dipoles
and their corresponding sky maps. Next, we randomly inject the CR arrival directions
using the relative acceptance of the detector for all energy bins and all zenith angles below
the threshold and scan over the dipole declination from —80° to 80° with a bin size of 10°.
It is irrelevant whether the dipole orientation is within or outside the field of view (FoV)
of Gen2. Furthermore, any observatory situated on Earth will invariably detect a partial
sky coverage CR dipole, with the dipole orientation, or ’hotspot’, potentially located either
within or outside the FoV. In the simulation, we have a total of 1785 injected dipole maps,
each with amplitudes detectable at levels exceeding 100. Our goal is to study how dipole
significance propagates at IceCube-Gen2, so we consistently use larger amplitudes as inputs.
Therefore, the amplitudes are chosen from 7 x 1072 up to 9.56 x 10~! for the injected
dipole, with different energy bins covering different ranges of the amplitude.

3.1.5 Reconstruction of Dipole Anisotropy

To properly reconstruct the cosmic-ray dipole anisotropies at a partial-sky coverage ob-
servatory, it is essential to compare the actual sky map of injected CR arrival directions
(data map with a simulated dipole in Eq. (3.5)) with a sky map that reflects the detector’s
response to an isotropic CR flux (reference map without dipole). Note that, in our case, the
reference map is constructed to be purely isotropic once the detector exposure is applied.
In particular, no dipole component is included, i.e., D (A, dgdGen2) = 1. This comparison
allows us to evaluate the deviation from isotropy and quantify the presence of the dipole
anisotropy in the simulated data by Eq. (3.5). Therefore, the residual between the data
maps and the reference maps, which are obtained by normalizing each declination band
independently, is sensitive only to anisotropy in right ascension («). In particular, the
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Figure 3.11: Upper panel: sky maps display the relative intensity. Lower panel: corre-

sponding one-dimensional projections of these maps are shown with the first-harmonic fits,

which extract the dipole parameters in each scenario.

fitting of the dipole’s projection in the equatorial plane with the first harmonic allows for a
direct measurement of a dipolar cosmic ray distribution. We ignore acceptance effects and
assume an ideal homogeneous exposure in the injection procedure in Section 3.1.3, so that
any remaining modulation in right ascension arises solely from large-scale anisotropies and
statistical fluctuations. Based on the Monte-Carlo simulation as described, we generate
sky maps of relative intensity defined by the equation

Npix,i — (V)
(N)

5 = pho! (3.10)
pix,s

where Npix; represents the observed data map while (N )mx’i represents the expected
background map. This calculation allows us to visualize deviations from the expected

isotropic background, highlighting regions of relative intensity differences.

Next, we divide the right ascension into n, bins. We then perform a one-dimensional
(1D) projection of the sky map and fit it with a first-harmonic function, given by

01 reco = Areco COS (04 - 90) + B, (311)

where Ayeco 18 the amplitude of the reconstructed dipole, ¢ is the phase, and B is a
constant. This fitting procedure helps us identify and quantify the dipole anisotropy.
The reconstruction ratio, defined as the ratio between the reconstructed dipole amplitude
and the true injected amplitude (Areco/A), typically remains below about 80%. This
reduced ratio arises mainly from the limited field of view (FoV) of the surface array, which
restricts the portion of the sky that is observed and therefore limits how accurately the
injected anisotropy can be recovered. It is important to note that A represents the input
dipole, which is a spherically distributed dipole, given that cosmic-ray arrival directions
are inherently based on spherical coordinates, rather than the projected dipole we observe.
Figure 3.11 shows the sky maps of relative intensity and their corresponding one-dimensional
projection fits. The bottom panels display the 1D projections of the two maps, fitted with
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Figure 3.12: An example of the power spectrum of a dipole distribution. The wave-like
points are generally from the limited field-of-view of IceCube-Gen2.

the first-harmonic function defined in Eq. (3.11). Figure 3.12 shows an example of the
power spectrum of a dipole distribution, where the dipole (C;) point is significantly far
away from the noise band. This is what we need, i.e., the dipoles with large significance.

3.1.6 Sensitivity to Dipole Anisotropy

Now we assess the sensitivity of a partial-sky coverage observatory to a dipole anisotropy.
To assess the significance of a dipole deviation from isotropy, we consider a null hypothesis
in the number of sigmas (i.e., a simple z-score)

Ne = -Areco - Ahypo) (312)
gA
where Apypo is set to 0, corresponding to the value expected under the null hypothesis of no
dipole signal, which differs from the idealized full-sky situation discussed in [274]). Under
this hypothesis, the true amplitude equals the mean of the underlying Gaussian distribution,
so its expected value remains zero. The variance, however, is determined entirely by the
statistical uncertainty of the measurement and is given by oupin o< 1/y/N;, where Nj is
the total number of arrival directions in each right ascension bin while ¢ = 1,2,...18. The
total number of arrival directions (N) in all energy bins. It is easy to get the approximate
uncertainty of the map at each pixel, namely,
1< 1
Omap X ||~ ; o (3.13)
where n is the total number of right-ascension bins used in the one-dimensional projected
map, which in this analysis is fixed to 20 in this work. Consequently, we assume that the
significance of the reconstructed dipole amplitude, as well as that of its one-dimensional
harmonic extraction, scales proportionally to the inverse square root of the total number
of events on the sky map, namely o4 x 1/ V/N, which is verified through Monte Carlo
simulations of the first harmonic fit of the 1D projected map. In principle, the coefficient
should be relevant to the observatory’s orientation, particularly concerning declination,
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Figure 3.13: The fitting curves of significance o and A of the reconstructed dipole (left)
and the corresponding true dipole (right) are shown based on the sampled data points
(ne/V/N, A) obtained from the simulation in Section 3.1.3. The colored lines are for the
various declinations of the dipole.

which provides different FoVs and thereby affects the significance of dipole anisotropy.
Furthermore, it also depends on the maximum zenith angle up to which cosmic-ray events
are accepted, since this parameter controls the range of arrival directions contributing to
the anisotropy reconstruction, because different dipole orientations project differently onto
the observable sky. A larger exposure or wider zenith acceptance consequently improves
the reconstruction significance by increasing the effective event statistics and sky coverage.

Therefore, based on Eq. (3.12), the sensitivity function (expressed in units of statistical
significance, i.e., number of o) can be written as follows:

ne =38 (A, E, emaxa 5d7 5Gen2) A\/N; (3.14)

where § is defined as a sensitivity coefficient which is the inverse of the coefficient of o 4.
The sensitivity to the reconstruction of the one-dimensional sidereal dipole, denoted as,

Ng = Sreco-Areco\/N' (315)

which will be obtained from the observation by the IceCube-Gen2 surface array in the
future. Similarly, the sensitivity of Gen2 against the true dipole can be expressed as,

Ng = StrueAtrue\/N- (316)

It is important to clarify that the sensitivity to the true dipole is not obtained directly
from the reconstruction of the input dipole amplitude (A). Instead, it represents the true
dipole amplitude that would yield a reconstructed dipole detected at a given significance
level, typically 30 or 50, under the same observational conditions and detector response.
To quantify this relationship, we scatter the data points (n,/v'N,.A) obtained previously
(see Section 3.1.4) for both the reconstructed and true dipole cases, and fit these points
with a polynomial function of the form Z?:1 M\ A?, where \; are the polynomial coefficients
(see Figure 3.13). The slope of these fitted curves then defines the sensitivity coefficients
for both the reconstructed and true dipole scenarios, which can be expressed as

S(A,E) = M (E) + 2Xao(E)A + 3)3(E) A2, (3.17)
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Figure 3.14: The ratio between the reconstructed dipole and the true dipole in the Monte-
Carlo simulation with the same significance, while the amplitudes are chosen from 7 x 1073
up to 9.56 x 10~ for the true dipole. However, different energy bins cover different ranges
of the true dipole amplitude. The curves show the propagation of the ratio with the
declination of the true dipole from 80° to 80° with an angle bin size of 10°.

where A1, Ao, and A3 are energy-dependent parameters that differ for proton and iron
primaries. Figure 3.14 illustrates the ratio between the reconstructed dipole amplitude and
the corresponding true input dipole. The sensitivity curves and bands for both 30 and 50
are shown in Figure 3.15, the corresponding points are in Table 3.2.

The sensitivity curves for the reconstructed dipole amplitudes, along with the cor-
responding bands that represent the true full-sky dipole amplitudes expected for the
IceCube-Gen2 surface array, are displayed in Figure3.15. These curves illustrate how
significantly a measured dipole would deviate from the null hypothesis of perfect isotropy.
Because the surface array observes only part of the sky, the reconstructed amplitudes
Areco are lower than the bands of true amplitude due to the field of view (FoV) of the
IceCube-Gen2 surface array. When selecting the relevant energy interval for this study, we
account for the region above 10% GeV and below 1088 GeV (overlap region with Auger),
where upper limits exist, as well as the highest-energy points currently provided by IceCube.
A dipole located close to either celestial pole becomes increasingly difficult to reconstruct
with a one-dimensional projection method, since the projection distorts the amplitude and

Table 3.2: Shown are the points indicating the 30 and 50 sensitivity level bands for the
reconstructed dipole for each energy bin E; (i = 1 to 7), the upper and lower boundaries
of the corresponding true dipole for both cases (sensitivity bands).

Median energy E; 1.8 PeV 4.4 PeV 11 PeV 28 PeV 70 PeV 176 PeV 441 PeV

Areco (x1077) 0.1224 0.2818 0.6981 1.8004 4.5926 12.0377 32.4111
0.7067 1.6294 4.0435 10.4918 27.1849  74.3954  231.7128
Areco (x1073) 0.2037 0.4694 1.1626 2.9980 7.6521 20.0448 53.8664
1.1786 2.7160 6.7524  17.6033 46.0785 130.4091 483.0933
Agrue (x1072) 0.7700 1.7720 4.3935 11.3220 28.9098  75.7195  204.2397
Agrue (x107°) 1.2834 2.9524 7.3194 18.8748 48.1612 126.2120 342.2035
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Figure 3.15: The curves show the 30 and 5o sensitivity of the IceCube-Gen2 surface array
to the reconstructed dipole, while the bands represent the corresponding injected true
dipole of 30 and 50. The data points shown are reconstructed dipole amplitudes from
various experiments [136, 268, 298, 299, 134, 133, 135, 269, 138, 140, 270, 300, 301]. The
upper limits of KASCADE-Grande and Auger cover the range from 2.7 PeV to 8 EeV,
where a significant energy gap remains.

phase. Consequently, a joint analysis combining IceCube-Gen2 with observatories in the
Northern Hemisphere, such as LHAASO [137], will likely be necessary to achieve full-sky
dipole sensitivity. Furthermore, very inclined dipole declinations must be explored, because
present observations provide little information about the true dipole orientation and allow
for a wide range of possibilities. Using Eq. (3.14) and Eq. (3.17), we also generate a sky
map of the relative intensity at 176 PeV under the assumption of a reconstructed dipole
detected at the 50 level. In this case, the reconstructed amplitude is set to 9.029 x 1073,
and with 20° top hat smoothing, as shown in Figure 3.16. The dipole orientation is set
as (270°,—10°) for the right ascension and declination. The corresponding amplitude of
the injected true dipole (A = 1.437 x 1072) can be derived using the reconstruction ratio
Areco/A. We use HEALPix [281] (with Ngge = 64) for the sky map; the size of each pixel
tile in the sky map is approximately (0.84°)2.

To conclude, we present the two-dimensional reconstruction-efficiency function for air
showers induced by proton and iron primaries in the IceCube-Gen2 surface array, derived
directly and consistently from the full set of existing CORSIKA simulations to capture the
detector response. Building on this, we estimate the corresponding efficiencies for helium,
nitrogen, and aluminium primaries by interpolating smoothly in the natural logarithm of
their mass numbers, and then determine the total, composition-weighted efficiency using
the H4a flux model to represent the expected cosmic-ray mixture. Next, we simulate
cosmic-ray arrival directions using a dedicated toy Monte-Carlo framework, in which we
inject a set of fifteen dipoles that span declinations from —80° to 80° across seven energy
bins that range from 10% GeV up to 1038 GeV in steps of 0.4 in log;y(E/GeV). Altogether,
this procedure produces 1,785 injected dipoles, with different anisotropy configurations.
To study the anisotropy, we compare the actual sky map generated for each injected dipole
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Figure 3.16: Simulated relative-intensity map as an example for the IceCube-Gen2 surface
array, showing a 5o reconstructed dipole with an amplitude of 9.029 x 1073 at 176 PeV.
The injected dipole orientation is set as (270°, —10°) for the right ascension and declination.
The corresponding amplitude of the true dipole is 1.437 x 1072,

with a corresponding reference map constructed without any dipole for all 1,785 cases,
produce sky maps of the relative intensity together with their one-dimensional projections,
and then fit these projections with first-harmonic functions to obtain the reconstructed
amplitudes and phases. To assess the sensitivity of the IceCube-Gen2 surface array to
a dipole anisotropy, we consider a null hypothesis and the propagation of the sigmas.
Finally, we get the sensitivity function and show 30 and 5o sensitivity to the CR dipole
anisotropy with curves and bands for the surface array. These results reveal the sensitivity
of IceCube-Gen2 to cosmic-ray large-scale anisotropies, and are published at [84, 302].

In order to improve the accuracy of the sensitivity analysis for the IceCube-Gen2
surface array, we can extend the threshold of the zenith angle in the CORSIKA simulation
up to 80° for scintillators, IceTop in IceCube-Gen2, in the future, which can provide a
more accurate estimation of the reconstruction efficiency. With IceCube-Gen2, it will
be possible to improve the sensitivity of the CR anisotropy in the energy range of the
galactic-extragalactic transition of the CR origin. The sensitivity studies will be extended
in the future by more realistic simulations.

3.2 Theoretical Considerations

In the previous section, we estimated the sensitivity of IceCube-Gen2 to high-energy cosmic-
ray large-scale anisotropies. Here, we develop a general theoretical framework to assess
an observatory’s response to a dipolar anisotropy by evaluating the relative intensity of
individual pixels on the sky map. This involves calculating the uncertainty associated with
the projected dipole amplitude and deriving the corresponding sensitivity using statistical
methods and theoretical models. Moreover, we aim to conduct a detailed and systematic
analysis of the uncertainties involved in measuring the dipole amplitude, to understand
how statistical noise and observational limitations propagate through the reconstruction.
By these, one can derive the standard errors of the estimated parameters and quantify the
sensitivity of both the dipole amplitude and phase with greater precision than before. By
considering the observational parameters of the observatory, such as the declination and
field of view of IceCube-Gen2, we can estimate its sensitivity to cosmic-ray anisotropies.
We thus validate these theoretical results with MC simulations to ensure their consistency
and accuracy. Additionally, we will compare the derived sensitivity function with the
results obtained from simulations in the previous section to check for consistency.

71



CHAPTER 3. SENSITIVITY TO COSMIC-RAY ANISOTROPY

3.2.1 Uncertainty of Dipole Amplitude

To approximately examine and quantify the uncertainty associated with the projected
dipole amplitude, our analysis begins by evaluating the statistical fluctuations at each
individual pixel on the sky map. The map is divided into n;, bands along the right ascension
(RA) axis to ensure uniform coverage and statistical consistency. For each RA band, we
compute the relative intensity for the i-th pixel within the k-th band, denoted by 1,
defined as the deviation of the observed event counts from the average counts at that pixel,

0l = (Nki — (Nka)) / (Nii) (3.18)

where Ny, ; is the number of detected events, and (N} ;) is the expected count for an isotropic
flux. The corresponding uncertainty associated with each relative intensity measurement,
which arises from both the observed and expected counts at the pixel,

DS I, )2 ( DS I, )2
;= . . 3.19
Oki \/( N, oN;, | +K 8<Ni>0<Nl> ) (3.19)
where oy, = /N, oy, = 1/(Ni). The calibration factor & is set as 1/ns, where ng

represents the number of samples in the reference map used to determine expected counts
at each pixel. In this theoretical calculation, ny; = 1. However, in practical experimental
analyses, a larger n leads to more accurate estimations of relative intensity. The uncertainty
calculation can be simplified as follows:

1 2 N; N 1 &
Oki = <<Ni>UNZ-> + K <—<Ni>2‘7<Ni>> W\ + Ny (3.20)

In the 1D projection method, as discussed in Section 3.1.5, we average dlj; over the
entire k-th RA band to obtain 61;. To determine the corresponding overall uncertainty for
each right ascension band, we calculate the average uncertainty in each right-ascension bin
(o) as the square root of the average uncertainty with all pixels within this bin, namely,

(3.21)

which is due to the nonuniform arrangement of pixels on a sky map, a geometric factor
(see the next section) should be considered in a continuous scenario for integration.
Sensitivity to ideal cosmic-ray anisotropy depends on the total statistics, the statistical
methods used and the approach to fitting the anisotropy. For the method with 1D
projection of §I and fitting 51}, to the first harmonic function (which yields the sidereal
dipole amplitude, \A;), the variance of a parameter, such as the projected dipole amplitude
denoted as o 4, obtained from the fitting process provides a quantitative measure of the
uncertainty in the estimation of A,. This variance is directly derived from the covariance
matrix produced by the fitting process, specifically from the diagonal element corresponding
to A. To symbolically derive the full covariance matrix cov(X) for the parameters of the
fit function as specified in Eq. (3.11), and corresponding to the combination of all the
parameters, A, ¢, and B, which are represented by the parameter vector, given by

X =[A, ¢, B, (3.22)
whose best-fit values describe the reconstructed dipole from the 1D harmonic fit.

We begin the procedure by first evaluating all components of the Fisher information
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matrix, denoted as F. This calculation is carried out by constructing the Jacobian matrix
J , which contains the partial derivatives of the fit function with respect to all parameters of
interest, and quantifies how sensitively the model responds to variations in each parameter.
Once the Fisher matrix has been fully assembled from these gradients, the next step is to
compute its inverse. Inverting F transforms it directly into the covariance matrix, cov(X),
which yields the estimated uncertainties of the fitted parameters [303, 304, 305]. The
Jacobian matrix of the fit function 0Z(cy; X) with respect to the parameters X is a matrix
of first-order partial derivatives. Each element of this matrix is defined as

_ [96T 96T 90T
LoAT 0p’ OB’
where each element corresponds to a derivative with respect to one of the parameters for

each data point ¢ involved in the fit. The Fisher Information Matrix for the least-squares
fitting process is approximated by utilizing the Jacobian matrix, namely,

F=J"WJg, (3.24)

Ti (3.23)

where VW is the weight matrix, a diagonal matrix where each element Wy, = 1 /a%
corresponds to the inverse of the squared standard deviation of the k-th data point. Here,
J7T is the transpose of the Jacobian matrix. Therefore, the Fisher Information Matrix is
constructed by calculating the derivatives between any pair of parameters of the relative
intensity, including the derivatives of the same parameter with itself, as follows:

1 90Z 95T
Fu = kz::l?gaxi 0X;’

p

(3.25)

where n), is the total number of data points in the fitting [303, 306]. The covariance matrix
cov(X) of the parameter vector X is calculated as the inverse of the Fisher information
matrix (F;:'). This inversion process converts the Fisher Information Matrix into its
corresponding covariance matrix, which quantifies the variance and covariance of the
parameter estimates [307, 308]. Each element of this matrix reveals the uncertainty and

the relationships between pairs of parameters within the model, as expressed by:

Faa Fap Fuas -

cov(X) = | Fou Fpo Fos | - (3.26)
Fpa Fpy, Fss

The standard error of estimation of parameters (X) in a fitting process is calculated via
the square root of the corresponding covariance matrix, namely,

ox = y/cov(X). (3.27)

Therefore, the uncertainty of the estimation of the one-dimensional projected dipole
amplitude is given by (F 4 A)*l/ 2 on the whole equatorial plane with n, RA band, namely,

o cos?(ay — ) ~1/2

OA= (Z 2) , (3.28)
K Tk

where 77 ~ 73 ~ ... > E,%p, since the difference of relative intensity and number in each

RA band is tiny when the statistics are large, and the anisotropies are weak. Therefore,

one can independently calculate the uncertainty &3 from Eq. (3.28), which is useful for

estimating the significance and the observatory’s sensitivity to cosmic-ray anisotropies.
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3.2.2 Sensitivity of Observations

To efficiently estimate the capabilities of a specific ground-based observatory with respect to
cosmic-ray large-scale anisotropies, whether still in the planning stages or lacking sufficient
operational time to obtain statistics, we are currently exploring a straightforward and
calculable method. This method is designed to provide an approximate estimation of the
anisotropy sensitivity of an observatory by considering the overall significance function of
the estimated one-dimensional projected dipole amplitude, as shown in Eq. (3.28).

Now, continuing the discussion developed in the previous section, we shift our focus
toward examining a sky map characterized by an anisotropic (dipole) distribution of cosmic-
ray arrival directions. To quantify this distribution accurately, we begin by estimating the
total number of detected events corresponding to a particular right ascension bin aj on
the sky map. Specifically, we consider the following expression:

N
Ny = Z Noe(d;) cos (8; — dobs), (3.29)
i=1
where €(d;) denotes the air-shower reconstruction efficiency for cosmic rays arriving at the
observatory from a specific declination interval ¢;, and the term cos(d; — dons) represents the
geometric acceptance of the observatory at that declination. The factor Ny is the number
of events in the pixel corresponding to the observatory’s vertical maximum acceptance,
where the zenith angle is 0. In this section, we assume 100% reconstruction efficiencies for
IceCube-Gen2. Clearly, Ny, which quantifies the total number of events at a specific right
ascension, depends critically on both the number of pixels and the event counts within
each pixel that fall under the maximum acceptance of IceCube-Gen2 that corresponds to
the declination. Specifically, this relationship can be expressed as follows:

N, = AngNo, (3.30)

where ng = npix, the parameter A is interpreted as the weighting factor applied across all
pixels at ay, taking into account Eq. (3.29). This approach applies not only in scenarios
where pixel size decreases but also in an equivalent continuous scenario where integration
is used, and the pixel size is exceedingly small, namely,

> cos (i — Jobs) €OS O;
ZN‘S cos d; ’

2

A= (3.31)
where cos § serves as the calibration weighting for averaging over the celestial sphere, and
dobs represents the declination of the observatory. To transition this discrete setup into a
continuous representation, the expression can be restructured into an integral form. By
multiplying both the numerator and the denominator by the interval, denoted as Ad and
letting Ad approach zero, we achieve the following integration:

f(;;LU €os (0 — dops) €os 6dd

A 0
s, cos 6dé
2((5U — 5L) COS 5obs + sin (26U - 50bs) — sin (26L — 5obs)

(3.32)

)

4(sin éy — sin dy,)

where 01, and dyrepresent the lower and upper limits of the field of view (FoV) of a given
ground-based detector, respectively. Referring to Eq. (3.20), when Nj; becomes significantly
larger than the ratio between the event counts in any given pixel, and the average counts
in that pixel approaches unity, Ng;/ (Ng;) ~ 1. Furthermore, the expectation value, (Ng;)
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is a 6-dependent function, taking the form
(Nki) = No€(0gi) cos (0gi — dobs), (3.33)

where we let €(dx;) = 1 in this calculation to account for a cutoff at the zenith where
efficiency is less than 1. Under these simplified yet representative conditions, and by
incorporating the relationships defined in Eq. (3.29) and Eq.(3.30), Eq. (3.21) can be
reformulated to more accurately describe the dependence on these parameters, as follows:

ng 1/2

i=1

Now, assuming that the pixel size approaches zero, we can replace the discrete summation
by a continuous integral, and take into account the spherical calibration by multiplying
the factor cosd, which leads to the approximation:

2\ Sy cosé 5

—2

or ~ dd = —, 3.35
FTNGWY Js, cos (8 — Bops) Nj, (3.35)
where v represents the calibration coefficient, and W = sindy — sindy, provides the

normalization factor for the spherical calibration. This coefficient encapsulates the combined
influence of various observational parameters, particularly the observatory’s geographic
location (declination) and its FoV, both of which directly affect the measurement uncertainty
and directional sensitivity. It serves as a correction term that scales the reconstructed
amplitude to account for geometric and exposure-related effects, and is given by

2\

cos Oy \ .
=— |(bu—2¢ Jobs + 1 ( ) 3o S} , )
Y= (0u — OL) cos dops + In cos 0, sin dop, (3.36)

where we define 0, = 01, — dops and &y = dy — dobs for simplicity. We obtain the numerical
results A = 0.587 and v = 2.487 by considering ér, = —90°, dy = —10° and dops = —90° for
the IceCube-Gen2 geometry in Eq. (3.32) and Eq. (3.36).

Furthermore, the uncertainty of the reconstructed dipole amplitude, as outlined in
Eq. (3.28), can be reduced to a more straightforward form, providing an interpretation of
the amplitude’s variability. The simplified expression for this uncertainty is:

Ny, Jo
0;\2 = 7 Z cos? (ay — ), (3.37)
k

where n,, is the number of right ascension (RA) bands, the sum equivalent to an integration
concerning « from 0 to 27 and equal to w. This integration is normalized by the sum of
the derivative of a across the entire right ascension plane, specifically, Aa = 27 /n, for
the discrete case and da = 27/n,, for the integration. Consider the averaged uncertainty
Eq. (3.34) in each right ascension bin, one has

2"}/
= 3038
oA Ntot ) ( )

with Niot = no Vi representing the total number of events. Finally, we examine the
propagation of the significance of a projected dipole deviation from isotropy by considering
a null hypothesis that varies solely with respect to the observed dipole amplitude and the
statistics. This is described in Equation (3.12), which follows the form:

1
TLO—(AP) = \/7277.'4})\/ Ntot' (339)
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In the case of IceCube-Gen2, where we have assumed a 100% reconstruction efficiency
throughout this study, as discussed earlier, the resulting estimate yields 1/,/2v ~ 0.448.
This value is in very good agreement with the expectations derived from our analytical
framework as presented in Section 3.1.5, aligning well with the expectations, as shown in
the left panel of Figure 3.13, which illustrates the close agreement.

Moreover, the orientation of the dipole is characterized by the right ascension (phase)
and declination (Dec) of the dipole’s location within the distribution of cosmic rays. While
we do not have a method to accurately determine the dipole’s Dec (which will be discussed
in the next chapter), we can reconstruct the dipole phase. Similar to the estimation of
amplitude, the uncertainty of the dipole phase is quantified as follows:

Do A2 sin(ay — ¢)?
-2
0,0 =) "t = : (3.40)
k

the sum equivalent to an integration concerning « from 0 to 2w. This integration is
normalized by the sum of the derivative of o across the entire right ascension plane,

1 27y

Op = — .

v -Ap Ntot

Since the dipole phase, ¢ is a variable measured in radians ranging from 0 to 2, it differs

fundamentally from A, whose significance is derived from the deviation from the null

hypothesis. For the significance of the dipole phase, we propose that it be defined as the

deviation from half of the RA plane, specifically calculated as (ny(¢) = 7/0,),

ne(p) = \/72—7/41)\/ Ntot, (3.42)

(3.41)

which suggests a direct relationship to the significance of the amplitude, nq () = 7 nq(Ap).
The same idea for the significance of the reconstruction of angles can be applied to the
dipole’s declination in subsequent chapters, e.g., for the analysis presented in Chapter 6.

In summary, we have derived closed-form expressions for the uncertainties and signifi-
cances of the one-dimensional, projected dipole amplitude and phase, Egs. (3.38), (3.39),
and (3.41), that depend solely on the total event statistics Niot and a geometric—exposure
calibration factor «y (itself determined by the observatory’s declination coverage and FoV
via A, refer to Egs. (3.32) and (3.36). These relations reproduce the Monte Carlo trends
(Section 3.1.5) and therefore provide a reliable, fast estimator of dipole sensitivity and
parameter precision without requiring new MC simulations. Practically, they enable rapid
forecasting and optimization of observatory performance (e.g., trade-offs between exposure,
FoV, and energy binning), quick consistency checks against data, and straightforward
propagation of expected improvements as Nyt grows, making them especially convenient
for observatory design studies and early-stage analyses.
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Chapter 4

Optimized Anisotropy Reconstruction

The sensitivity of ground-based cosmic-ray observatories is hindered by the lack of statistics
at high energies, particularly above the PeV range, as discussed in Section 3.1. Over
the past few decades, experiments have provided long-term and significant observations
of subtle sidereal anisotropies. However, these observations are often limited by the
restricted coverage area of the observatories and the scarcity of high-energy data. As
a result, there are substantial uncertainties in the reconstructed dipole amplitudes and
corresponding data. Moreover, when the amplitude is minimal, extensive statistical data
still lead to considerable uncertainties in both the reconstructed dipole amplitudes and
phase. Therefore, it is necessary to develop improved methods for reconstructing the
large-scale anisotropies against the lack of statistics and to reduce the instabilities of the
reconstruction of anisotropies, such as the dipole.

4.1 Reconstructions with Partial Sky

The lack of full sky coverage can introduce biases in the reconstruction of anisotropic signals,
such as dipoles or multipoles. To overcome these limitations, various techniques have
been developed to project the observed sky map onto equatorial coordinates and properly
account for missing regions. These reconstructions aim to minimize the impact of partial
sky coverage on the analysis of cosmic-ray arrival directions. In the following sections,
we will delve into the mathematical framework used to achieve these reconstructions,
starting with an introduction to spherical angles and their relevance in understanding the
distribution of cosmic rays in equatorial coordinates.

4.1.1 Spherical Angles

Cosmic-ray anisotropy analyses are usually based on 3-dimensional distributions with equa-
torial coordinates («, ), where « represents right ascension (RA) and d denotes declination
(Dec). To achieve precise theoretical analyses of anisotropies, we have to develop suitable
distribution functions using equatorial coordinates. The function will enable us to accu-
rately describe the relative intensity at any point within the three-dimensional distributions
of cosmic-ray arrival directions, characterized by dipole or multipole orientations.

Now, let’s consider a celestial sphere in spherical coordinates defined by xyz axes.

Within the framework of spherical trigonometry, we explore the connections among three
—  —

—
unit vectors: OA, OC and OD. These vectors originate from a common point and extend
to the vertices of a spherical triangle on the celestial sphere. The orientation and Cartesian

i

coordinates of these vectors are on the Northern Hemisphere and defined as follows: O A
H

is aligned along the z-axis and sits on the North Pole, OC' is a random vector on the

—
Northern Hemisphere, and OD is positioned to an orientation with positive x coordinate
in the xz plane for simplifying the analysis. The points A, C' and, D form a spherical

7



CHAPTER 4. OPTIMIZED ANISOTROPY RECONSTRUCTION

Figure 4.1: Spherical trigonometry, illustrating both the spherical and equatorial coordinate
systems. The diagram shows the geometric relation between two points on the sphere: a
random point C' and the dipole maximum point D.

triangle A}AiC& The sides opposite these points are labelled a, ¢ and d corresponding to

the arcs CD, AD and AC, respectively. These sides correspond to the two-dimensional

plane angles ZCOD, ZAOD and ZAOC. The spherical angles are represented by the
—  —

points /A, Z/C and /D or simply as A, C and D for brevity. The vectors OA, OC and
H

OD can be expressed utilizing both the plane angles and the spherical angles within the
three-dimensional Cartesian coordinates (zyz), as previously defined, specifically:

H

OA = (0,0, 1),

H

OD = (sinccos @, sin csin ¢, cos ), (4.1)
—

OC = (sind cos ¢, sindsin ¢, cosd),

where the spherical angle A corresponds to the sum of ¢ and ¢, can be obtained from the
spherical law of sines, and is also equal to the projected angle on the xy plane, represented

by AC’ oD Furthermore taking the scalar (dot) product of the two vectors OD and OC’
yields OD . OC = cos a, which directly leads to the expression for the angle ZCOD as:

cosa = cosd cos ¢ + sind sin ccos A, (4.2)

which also represents the spherical angle of the arcs C/@, or in other words, the angular
distance between points C' and D. This expression is precisely what we expect for the
distribution function of a dipole with relative intensity.

Now, let’s consider the scenario of anisotropic distributions of cosmic rays in their arrival
directions. We start with an original dipole located at the point D on the same celestial
sphere, denoted as (x4, ¥d,24), as we previously discussed. This point is characterized
by spherical coordinates (z,y, z). Our goal is to describe the distribution of cosmic rays
at the random point C on an equatorial spherical surface. This requires converting
spherical coordinates (x,y, z) into equatorial coordinates (a,d) with right ascension and
declination. Now, we assign the point (0,1,0) to represent &« = 0, § = 0. The point
(0,—1,0) corresponding to « = —m or 7, 6 = 0. The northern pole (A) is represented by
a =0,0 =m/2. The point C is denoted by («a, ), and the dipole locals at D, is specified

78



CHAPTER 4. OPTIMIZED ANISOTROPY RECONSTRUCTION

as (aq,dq). Eventually, the spherical angles of arcs ¢ and d together with the angle A can
be transformed into their equivalents in the equatorial coordinate system, namely,
7 T

d—>§—5, C—)§—5d, A= a—ag, (4.3)
which is expressed as a function of the relative intensity of the 3D spherical cosmic-
ray anisotropic distribution in equatorial coordinates («,d) with the orientation of an
original dipole (agdq). The spherical angle between the random point C' and the dipole D
corresponds to the angular distance between two points. Considering Eq.(4.2), we obtain
the distribution function, which is characterized as

D(a,d) = sind sin dq + cos d cos d4 cos (o — ) , (4.4)

where D is defined as the distribution function of the original unit dipole. When o = aq
and § = éq, D = 1, indicating the point of maximum relative intensity in the distribution of
the unit dipole, known as the dipole hotspot, located at the point D, which consistent with
the dipole’s setup that we assumed. Observably, the first term in the expression represents
the relative declination distance between the random point («,d) and the dipole (aq,dq),
while the second term indicates the relative RA distance. The relative intensity across the
entire celestial sphere is therefore defined as dZ(a, d) = AD(«, §), namely,

0Z (e, 9) = Asind sin dq + A cos d cos dq cos (o — aq) , (4.5)

where A denotes the amplitude of the original dipole. The first term concerns only
declination and represents the vertical shift in the dipole’s harmonic distribution of relative
intensity, relative to the equatorial plane. Meanwhile, the second term describes the
distribution along the equatorial plane, which relates to both right ascension and declination.

4.1.2 Dipole Projections

In cosmic-ray anisotropy studies, the relative intensity of cosmic-ray distributions on the
celestial sphere is displayed on sky maps and usually plotted in equatorial coordinates
with right ascension («) and declination (§), using the HEALPix mapping method [281],
such that the areas of all pixels at a given resolution are identical. The one-dimensional
projection of the sky map involves averaging the physical quantity, in this case, the relative
intensity, of all pixels at certain right ascensions across all declinations within the Field of
View (FoV). In this study, a proper theoretical method for averaging the dipole relative
intensity, denoted as dZ, as specified by Eq. (4.5) over the range of declinations, is needed.
To properly calculate the averaged dipole intensity over declination, we should consider
the relative scale of the spherical surface area elements and average over the declination
with appropriate weighting to obtain a function of right ascension alone.

Specifically, this geometric consideration requires that the averaging procedure include
an additional weight factor to ensure that every region of the celestial sphere contributes
in proportion to its physical area. This follows from the fact that the width of a band of
constant declination decreases progressively as one moves away from the equator toward
either pole, so each latitude strip covers a smaller surface area than a corresponding strip
near the equator. To account for this shrinking area, the correct weight for an average over
declination is the factor cosd, since the surface-area element on the sphere is proportional
to dd cosd. Therefore, when projecting the two-dimensional sky map onto the equatorial
plane in one dimension, the projection should be formed by integrating the relative intensity
over declination with the appropriate cosd weight and then normalizing by the full range
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of . Thus, the one-dimensional projection of the relative intensity sky map onto the
equatorial plane can be expressed as follows:

A 0u 5T (e, §) cos 6d6
51-(@) _ f(SL 5( ) )
Js5, cos ddé

where dZ(av, d) represents the original dipole before projection, as defined by Eq. (4.5), 67 ()
donates the sidereal projected dipole after the integration over ¢, while d;, and dy represent
the lower and upper limits, respectively, of the certain FoV of a surface observatory on
Earth. This projection method has been proven through MC simulations on a sky map
with an injected dipole. By inserting Eq. (4.5) into Eq. (4.6), we derive the expression of
the projected dipole, which is distributed along the equatorial plane only and includes a
shift term along the amplitude axis, namely,

D) :%(sin 5u + sin 81.) sin 6

0y — d1, + sin dy cos dy — sin dy, cos 4, (4.7)

cos 04 cos (o —
2(sin dy — sin dr,) acos ( a);
which is a function of right ascension only. This corresponds to the experimental data
of anisotropies and represents the true modulated dipole projected with respect to right
ascension, specifically, §I(a) = AD(«), where A is the original 3-dimensional dipole
amplitude. The projection shifts along the declination with a coefficient,

Cs = %(sin du + sindy), (4.8)

which is a relative shift, and becomes the actual shift when it is multiplied by the vertical
components of the dipole’s self-effect, specifically, sindq. The projection term, moving
along right ascension and similar to the shift term, involves coefficients that are determined
by the observatory’s FoV and depend on its upper and lower limits, namely,

oy — 01, + sin dy cos oy — sin Iy, cos dy,
cp =

2(sin 6U — sin 6L) ’ (4'9)
which also involves the actual modulation after being multiplied by the parallel component,
cosdq. For a given dipole declination dq, this projection factor approaches unity in the
limiting case where the field of view becomes extremely narrow and effectively collapses onto
the equatorial plane, i.e., when éy — 0 and d1, — 0, the projection coefficient approaches
one. This term was also derived in the paper [309] using a different approach with the
East-West method, but without the shift term, as shown in Eq. (4.8). Furthermore, when
combined with the projection factor ¢, the expression provides a straightforward way
to reconstruct the dipole declination in a simplified one-dimensional framework. The
equations above can be validated using an MC simulation that involves injecting a dipole
with a specific amplitude into a sky map. This dipole is then projected onto the equatorial
(right ascension) plane, covering a specific observatory’s FoV, and fitted to a first harmonic
function. The parameter functions ¢, and ¢, are confirmed by comparing the ratio of the
projected amplitude to the injected amplitude.

4.1.3 Reconstruction of Dipole Declinations

In this section, we examine the theoretical framework for reconstructing the dipole dec-
lination and highlight the importance of including a shift term for a more accurate and
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Figure 4.2: Expected reconstruction of the dipole declination (dq) from the ratio between
the monopole shift and the projected dipole amplitude. Vertical shift terms at fixed energies,
once measured, align along the corresponding theoretical curves.

stable result. The reconstruction is based on fitting a specific function to the observed data
(arrival directions), in which both the projected dipole amplitude, Ap, and the monopole
shift term, B, are extracted through a first-harmonic analysis. These parameters are
essential for correctly describing the dipole structure in the observed field of view. Once
these parameters are determined, the dipole declination dd can be calculated by taking the
arctangent of the ratio between the shift term B and the projected dipole amplitude A,

In principle, the most appropriate method for reconstructing a dipole anisotropy is
to explicitly incorporate the shift term into the fit, since neglecting it leads to biased
or unstable results, especially for dipoles located away from the equatorial plane. The
corresponding fit function used in this reconstruction is

0l (o) = A, cos(a — aq) + B, (4.10)

where the parameters A, and B can be determined directly from the harmonic fitting
procedure applied to the one-dimensional projection of the sky map. These two parameters
specify a complete description of the projected dipole, as well as the true three-dimensional
dipole structure within the limited field of view. By substituting the explicit expressions
for the projection coefficients ¢s and ¢p, and using the relation B = (¢s/cp)Ap tan §g, we
can rewrite the problem in a way that allows us to recover the dipole declination. Thus,
the reconstructed dipole declination is obtained as

dq4 = arctan <ci]fp>’ (4.11)

as shown in Figure 4.2, the z-axis is defined by the experimental parameters c,, cs, B and
A,. The uncertainty of d; depends on the uncertainties of B and A, denoted as o and
04, respectively. The uncertainty in dg is calculated as follows:

) 2 a6 2
agd:<al;folg> +<a,4i,0““'7) , (4.12)

where the intermediate variable u = ¢, B8/cs Ay, is defined for convenience, and where the
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derivative is written as 004 as darctan(u). Carrying out the differentiation yields

2 2 2
2 U 04 oR
aéd—(1+u2> (A§+82)’ (4.13)

which can also be expressed as a function of the significance of A, and B, denoted by Sa
and Sg, respectively. Additionally, this expression can also be rewritten in terms of the
significances of A, and B, denoted by R = B/A,,. It is specifically expressed as

L= (om) (57 52)
o0 = (1 verz) \s3 s (4.14)
where the covariance term Cov(.Ay, B) is small and approximates 0, and is ignored.

The large FoV tends to increase the sensitivity of the dipole’s declination to R, which
consequently leads to greater uncertainty in the reconstruction process. Consequently,
when an observatory has an exceptionally wide FoV, it can be advantageous to subdivide
the observable sky into two distinct FoV segments, so that the dipole declination can be
reconstructed independently in each region. By performing a separate analysis in both
segments and subsequently averaging the two reconstructed values, one obtains a more
stable and reliable estimate of the true dipole orientation. This approach provides a reliable
estimate of the true orientation of the dipole when performing a one-dimensional projection
of the sky map, especially under a broad FoV, and the projection effects become weak.

4.2 Optimized Estimation of Significance

Building on the estimation techniques discussed in Section 4.1, the next step focuses on
optimizing the estimation of the significance of cosmic-ray anisotropy detection. In this
section, we further refine this approach by introducing an optimized method for estimating
significance. We incorporate the weights related to the number of events observed in each
pixel, leading to a more accurate uncertainty estimation.

4.2.1 Weighted Uncertainties

By taking into account variations in the number of events across pixels, we ensure that the
dipole detection is both robust and sensitive to actual anisotropic features in the cosmic-ray
flux. Considering the weights in the averaged uncertainty to consider the number of events

in each of the npix pixels, given by, 7 = \/ D a,%iNZ- / >°; N;, namely,

N.
1 PN, <1 1
—2 7
O = , E — + ) N;. (4.15)
SN N (N2 AN (N

Taking into account the definition of relative intensity, one has

N (i+i> Ni = (14 0Tw)? (2 + 0Tw) (4.16)
<NZ>2 NZ <NZ> 7 ki ki) .
where Zy; is the dipole distribution function as discussed in Chapter 4, namely,
0Zk; = Asin 0; sin 6q + A cos d; cos dq cos (ax — aq) - (4.17)

In the next step, we incorporate Eq. (4.17) into Eq. (4.16), and we additionally introduce a
weighting factor to account for the nonuniform distribution of events across declination
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more accurately. Consequently, the uncertainty associated with a specific right-ascension
band, denoted by a, can be reformulated into a more optimized and physically meaningful
expression: 6k% = [ 6ak?w,ds/VW. This transformation from discrete to continuous is
denoted as the transition from 6Z;(ax, d;) — 0Z(, d), can give a smooth description of
the weighted uncertainty across the sky, and 6,% is expressed as follows:

1 oy
NiW Jsy,

where Nj denotes the total number of events contributing to the right-ascension band
ay. To move from a discrete sum over declination bins to a continuous formulation, we
replace 0; with the continuous variable §. The factor w(J) = cosd serves as the appropriate
spherical-geometry weight, ensuring that each declination contributes in proportion to its
actual surface area on the sky. The quantity WV is the sum of the weight over the effective
field of view of an observatory, namely W = [, (?LU cos 6dd.

6% = (14 67)2 (2 + 6T) w(6)ds, (4.18)

To obtain an optimized fit for the dipole parameters, it is necessary to incorporate
the vertical shift of the fitting function, which arises from the combined effects of the
observatory’s restricted field of view and the orientation of the dipole in declination. This
shift naturally appears in the dipole expression,

(o) = Apcos(a — ag) + ZiAp tan 04, (4.19)
P

which expresses the projected dipole as a combination of a cosine modulation and a constant
offset determined by observational geometry, can also be written in the equivalent form

0 (o) = Acp cos(a — ag) + Acs, (4.20)

where the coefficients ¢s and ¢, depend directly on the field of view and latitude of the
observatory, as derived in Chapter5 and shown explicitly in Eq.(4.8) and (4.9). The
uncertainty associated with the reconstructed amplitude A, can then be determined using
the covariance matrix derived in Chapter 3. By applying this formalism to Eq. (4.19), the
inverse squared uncertainty takes the form

np ~ /a2
_9 (cos(ag — ) + é5/6ép)
o= S (4.21)
k

where ¢ = ¢, sindy, ¢, = ¢, cosdg and ny, is the number of right ascension bands, as well
as the number of a points used for the harmonic fit of the sidereal dipole.

Now, let’s look at details about N (in Eq. (4.18)) of each right ascension band on the
projected map. Link to the expression of the projected dipole, Eq. (4.19), the number of
events on each band follows the distribution of the projected dipole, namely,

N — (Ng) é
Ny Ay cos(a, — o) + Z Ap, (4.22)

where (IVg) is the average number of events at every band (whole band as one “pixel”),
0l is the relative intensity at the k-th band, meaning, the deviation of the counts at the
k-th band from the average counts at the same band and therefore 01 also equivalent to
Eq. (4.19). The counts at the k-th band read,

5Ty =

N = <Nk> <.Ap COS(Oék — Oéd) + ZTsAp + 1) , (4.23)
7
where (N}) itself is approximately proportional to the total number of events on the sky,
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weighted by the width of each right ascension interval. Specifically,
Ntot Ntot
27
where the second expression provides the continuous differential version of the same relation
and is useful for analytical treatments of the projected event distribution.

(Ny) = da, (4.24)

Aakza <dN> =

The uncertainty () = 6(«) appearing in Eq. (4.21) is defined in the limit where
the width of the right-ascension band becomes infinitesimally small, that is, when Aay =
Aa — 0 and Aa = da. Under the same limiting treatment, Eq. (4.23) can be rewritten as

Ny = (Ng) <Ap cos(ay — ayg) + ?Ap + 1> . (4.25)
P

Now, insert Eq. (4.17) into Eq. (4.18) and consider the mentioned approximation as well as
for the declination bin d;. Now, we transition from discrete indices to continuous variables
by replacing, namely, d; with 0, ag with «, (Vi) with (dN). In this continuous formulation,
the uncertainty associated with a right-ascension value «, corresponding to a band of
infinitesimal width de, is expressed as

.9 2m
g =
WNtot((SI + 1)da

The declination integral above, leading to the expression

/5 " (14 612 (2 + 6T) w(8)ds. (4.26)

f(a) = 2(sin dy — sindr,) + gA[(sim2 Sy — sin? 1) sin 04

+ (dy — I, + sin dy cos dy — sin dy, cos dy,) cos §g cos (a — ad)] +0(A?) (4.27)

~ (sin dy — sin d,)(2 + 501 («)),
where second- and third-order contributions in .A have been omitted, since both A and A,
are of the magnitudes ranging from 1073 to 10~!. The second term in this expression is
simply the projected dipole 61(«) multiplied by the constant factor (sin dy — sin dy,), which

is equal to W. Using Eq. (4.19), the uncertainty associated with the estimation of A, as
introduced in Eq. (4.21), can finally be reformulated into the compact expression

o=2 — A&ﬁ./w (8I(e) + 1)dI%(a)
A T or A2 )« 2+4561(a)

where one sees that the weight factor VW naturally cancels out of the expression.

do, (4.28)

We define the integral term as g(«), which can be approximated by expanding it into

a Taylor series around 61 = 0, noting that 6 varies only within a relatively small range,

typically between 1073 and 10~!. In this expansion, we treat 61 as the expansion variable
512 3613

g(a) = = = =~ + 0@, (4.29)

where we retain only the leading and next-to-leading terms of the series, as higher-order

contributions are negligible for the magnitude of anisotropies considered. Making use of

the functional form as 61 described in Eq. (4.22), we obtain the result of the integration:

m

G(Ay) = —

(4) =]

where, for convenience, we have introduced the ratio ¢é;/¢, = ¢. Next, by substituting the

integrated result G(Ap) into the uncertainty expression given in Eq. (4.28), and evaluating

the significance of a dipole’s deviation from isotropy under a null hypothesis, we can

[(2+4¢%) A2 — (9¢ + 66%) A3] (4.30)
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derive the final results concerning the observational significance of the sidereal dipole. This
sensitivity, denoted as n,(Ap) and analogous to Eq. (3.39), can be written as

1/2
no(Ap) = 1/ Ng’t [(2 +46%) A2 — (96 + 6@3)A§] , (4.31)

which is a function of \A,. This significance is described as a function of the one-dimensional
projected dipole amplitude, A, which, as calculated in Chapter 3, is not a linear approxi-
mation but has been refined to be more precise and optimized.

4.2.2 Angular Resolution of Dipole

The orientation of the dipole is characterized by the right ascension and declination of the
dipole’s location in the cosmic-ray arrival-direction distribution, which together specify the
phase and latitude of the dominant dipole component on the sky and thus determine its
observable projection. Based on Eq. (3.40),

Do A2 sin(ay — @)?
2 _ P
0;2=%" 2 , (4.32)
k

which quantifies the statistical uncertainty of the reconstructed dipole phase. We apply
the same procedure used previously to convert discrete sums over right ascension into
continuous integrals, thereby obtaining a compact expression that is directly comparable
across different binning choices and observational layouts; in particular, following the
transformation used for Eq. (4.28), namely,

o2 Niot A2 /” (0I(a) + 1) sin?(a — )

? 27 o 24501 ()
where we employ the same small-anisotropy expansion as before to retain analytic control.
Integrating with the integral term g(«), we obtain the series

da, (4.33)

1 3, 3 9 15,5 5 3
G(Ap) =T <§ — ZCAP + gAp + gc Ap + O(Ap) , (434)
where we drop higher-order terms in Ap since these contributions are subleading in the

parameter range of interest for cosmic-ray dipole studies. This immediately yields,

2 3. 3, 15, o\ Y2
o, = VNG <1 - icAp + Z.Ap +¢ .Ap) , (4.35)
which represents the uncertainty of the reconstructed dipole phase after the full projection-
and-fit procedure is applied. Since the angular variables (o and ) vary on the compact
interval from —x to 7, the most reliable way to evaluate phase sensitivity is therefore to
consider its uncertainty o, directly.

Now, let’s deal with the declination of the reconstructed dipole in greater detail. By
considering the Fisher information matrix within the least-squares fitting framework,
along with the corresponding covariance matrix derived from the fit function as shown in
Eq. (4.19), we can obtain the statistical uncertainty of the estimated dipole declination, dg4,
through the inverse-square-root of its diagonal Fisher element, (Fs5)~'/2, namely,

Ec2 A1 Newcd A7 dI(e) 41

—2 s
g = _— =
J Zk: ¢z cost dg 12 210 c2costdq J—n 2+ 561 ()

da, (4.36)
where we have transformed the discrete sum into a continuous integral consistent with
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earlier sections. Next, by expanding the integrand in a Taylor series and retaining only
the first two nontrivial orders that contribute to the significance, we obtain an analytic
approximation for the declination uncertainty:

V2 cos 64sin by < 4
o == —MmM8M8MF — =
T T A/ Nooy 3

where we retain only the dominant contributions controlling the scaling with respect to Ap
and the total number of detected events Ntot, while noting that more precise higher-order
terms may be added later if necessary. If desired, one may also illustrate the behavior of
this uncertainty by plotting the corresponding significance curves for different total event
counts, such as 104, 10°, 10%, 107, 108, respectively.

15 5, 155 —1/2
CAp+ A+ EA+ O(A§)> , (4.37)

4.2.3 Uncertainty with Ideal Exposure

Since the exposure of surface detectors depends on the zenith angle through a characteristic
cos 6 modulation, the resulting average event rate recorded across the sky naturally acquires
a dependence on declination. In the simplest and most idealized approximation, assuming
uniform operational conditions and neglecting detector irregularities, this effect can be
expressed as a proportionality to cos(d; — dobs), Where dopg denotes the geographical
latitude of the observatory. Therefore, the distribution of the event rate can be taken into
account when estimating the dipole uncertainty, as this directly affects the calculation of
the statistical significance and the comparison with observed data.

We begin with the discrete form of the dipole distribution function, denoted as 6Z(c;, ),
which corresponds to the relative intensity in the pixel located at the i-th right ascension
band and the j-th declination bin. This function is given by,

0Z(cv, ;) = Asind;sin g + A cos d; cos dq cos (a; — aq) , (4.38)

which represents the relative intensity (RI) in each pixel. It is fully equivalent to the
continuous formulation 0Z(a, ), which was introduced earlier in Section 4.1.2, but written
here in discrete form to match the structure of sky maps produced by the HEALPix binning.
Following the same procedure as in Eq. (3.33), we can obtain the discrete representation
of the full event count distribution, i.e., Z on a sky map, by incorporating the dipole
term, the exposure, and the efficiency of the observatory. The resulting expression for the
expected number of cosmic-ray events in each pixel is

N(Cki, (5]) = Ny 6(9) [1 + (5:[(052', 53):| cos ((5] — 5obs); (4.39)

where Ny is the number of events in the pixel with the dipole maximum (hotspot), €(6) is
the air-shower reconstruction efficiency at an observatory. The expression of N4 can be
obtained by summing the both sides of Eq. (4.39) with respect to ¢ and j, namely,

ns Na

Niot = Z Z Nd€(9) [1 + 5I(ai, 51')} COS (5j - 5obs)a (4-40)
i=1j=1
where Niot = >2; >°; N(ai, dj), na represents the total bins of right ascension (RA), while
ns donates as the number of pixels in every RA bin. To get the integral form, Eq. (4.40)
should be multiplied by dé and divided by dd, as well as da, which are given by

1 [0 1 0 2
=2 [Cascoss = da=L [Tda=, (4.41)

nes Joy, ns Nag J—7 Na
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where W = sin §y — sin dr, accounts for the spherical geometry weighting needed when
averaging or integrating over declination. Therefore, by multiplying by dé and dividing
by W/ns, and multiplying by da and dividing by 27/n,, the sum of Eq. (4.39) becomes
equivalent to the integration with respect to a and 4, specifically,

Ndnpix
2T W

where the total number of pixels within the FoV is given by npix = nsn, and the geometric
calibration has already been included in A and W.

T 9
Niot = / / ) [1 + 0Z(«, 5)} 08 (0 — dops) cos d do da, (4.42)
—T 5L

Taking into account the expression for dZ(«, d), as specified in Eq. (4.5), the total number
of events can be obtained by utilizing the fraction of the count in the hotspot, namely,
Niot = Nanpix A, where X is the result of the integration decided by 27W, specifically:

1 1 . .
A= m((SU — d1,) coS dobs + v [Sln (20U — dobs) — sin (2dy, — 50bs)]
1 .
+ MA sin dq [cos (01, + dobs) — cos (0y + 5Obs)] (4.43)

1 .
+ WA sin dq [cos (301, — dobs) — cos (30y — 50bs)} i

Therefore, we can obtain the expression of Nq and replace it in Eq. (4.39), we can obtain:

N(a,8) = Voot e(0) [1 + 6Z(a, 5)} co8 (6 — Gobs), (4.44)
npix)\

where € may be taken as unity for many experiments that operate above their full-
efficiency threshold for reconstructed cosmic-ray arrival directions. The quantity Niot can
be obtained from the cosmic-ray flux within a known exposure, or the experiments’ data.
Equation (4.44) therefore provides a description of the expected statistical distribution of
arrival directions for a dipole with a given orientation and amplitude on the sky. Meanwhile,
the corresponding statistical uncertainty can be estimated from the counts in each pixel,

2 _ N (1 P ) L (1 46T, 2+ 6T (4.45)
PTG \Ny W) TN v
where Nj; is given by N(ay,0;), as expressed in Eq. (4.44). Therefore, agj can be rewritten
in terms of global observatory parameters and acceptance as:
2 npix)\ (1 + (SIU) (2 + 51'”)
o5 = : , (4.46)
Niot  €(0) cos (5] — Jobs)
where A is the declination-weighting factor defined previously. To obtain the uncertainty
for a one-dimensional projection, the next step is to compute the averaged uncertainty 6,%
for each right-ascension band. This requires summing (or integrating) over all declination
pixels in that band, incorporating both the event-count distribution and the acceptance
modulation. The transition from the discrete form 6Zy;(ag, d;) with 0Z(«, d), allowing for
smooth integration over the full declination range.

To convert the discrete summation into a continuous integral form, we begin by
multiplying Eq. (4.46) by an infinitesimal declination interval dé, and then divide by the
corresponding normalization factor taken from the right-hand side of Eq. (4.41), where
dd = W/ng, following directly the same logic applied earlier in the conversion step of
Eq. (3.35), which ensures a consistent transition from discrete binning to continuous angular
integration. After performing this transformation, we replace the pixel-level uncertainties
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with their averaged values across each full RA bin, adopting precisely the same procedure
described in Eq. (3.21), with the substitution ny = nk to denote the total number of
pixels contained within the k-th RA strip. A crucial constraint in this construction is that
the relation ns = npix/n, must always remain satisfied, since, as emphasized previously,
the geometric dependence of the FoV is already absorbed into the weighting factors A and
W, and the pixel grids in RA and Dec are chosen to have equal angular spacing. With
these, the average statistical uncertainty associated with all pixels contained within a given

RA bin can ultimately be expressed in the following continuous integral form:

Ang [ (14 6Z)(2+ 67)
NiotW Js;, cos (6 — dobs)

where N;, denotes the total number of events recorded within the RA band centered on
ag, and the e term has been neglected. Once a specific observatory latitude dqops is chosen,
one can directly determine the statistical uncertainties associated with both the dipole
amplitude and the dipole phase by employing Eq. (3.28) together with Eq. (3.40). For
convenience, we introduce the notation F'(dp,dyu, dobs; @¢). Next, based on Eq. (3.28), we
convert it into an integral form by using da = 27/n,, from Eq. (4.41), i.e.,

o2 NigtW 27 cos?(a — )
A 2w 0 F(5L7 5U7 50bs; a)

where the factors of n, cancel out, and where ¢ = agq denotes the input dipole phase.
Since the phase merely shifts the integrand along the a-axis and because the integration
extends over the entire interval [0, 27], the integral is invariant under such a shift. Hence,
without loss of generality, we set ¢ = 0 in both numerator and denominator. With this
simplification, the original sensitivity expression in Eq. (3.39) can be recast into

67 = 0s 6 dd, (4.47)

da, (4.48)

WM
nU(Ap) = DESY Ap V Ntot, (4.49)

where M is a function that depends on the parameters dq, Ap, 01, du and Jdobs, represents

the part that is integral over the entire « plane. Similarly, following the structure of

Eq. (3.40), the uncertainty associated with the dipole phase can be estimated through
o2 — NiogtW 27 "412) SiDQ(a ) da, (4.50)

v 27X Jo  F(dL,0U, dobs; )

where the sin term arises naturally from the covariance elements of the Fisher information

matrix associated with variations in the dipole phase. Since the phase significance is defined

as ng(p) = m/0,, as introduced earlier in Section 3.2, we obtain an improved and more

Table 4.1: Shown are values of /WM /2w \. Top panel: dipole declination dq from —80° to
80° in 20° steps, for amplitudes A, = 0.01 and A, = 0.1. Bottom panel: for 64 = 0°,30°
and amplitudes A, from 0.01 to 0.10 in steps of 0.01.

dq (deg) —80° —60° —40° —20° 0° 20° 40° 60° 80°
A=0.01 04448 0.4451 0.4458 0.4468 0.4478 0.4489 0.4498 0.4505 0.4509
A=01 04189 0.4226 0.4296 0.4391 0.4499 0.4606 0.4700 0.4769 0.4805

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0g =0° 0.4478 0.4479 0.4480 0.4482 0.4483 0.4486 0.4488 0.4491 0.4495 0.4499
d0qg = 30° 0.4494 0.4510 0.4527 0.4544 0.4561 0.4579 0.4598 0.4616 0.4636 0.4656
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Table 4.2: Shown are values of \/TWV/2\. Top panel: dipole declination dq from —80°
to 80° in 20° steps, for amplitudes A, = 0.01 and A, = 0.1. Bottom panel: values for
0q = 0°,30° and amplitudes A}, from 0.01 to 0.10 in steps of 0.01.

dq (deg) —80° —60° —40° —20° 0° 20° 40° 60° 80°
A=0.01 13992 1.4003 1.4025 1.4054 1.4088 1.4121 1.4151 1.4173 1.4185
A=0.1 13176 1.3285 1.3492 1.3777 1.4109 1.4449 1.4757 1.4989 1.5114

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0g =0° 1.4088 1.4089 1.4090 1.4091 1.4093 1.4095 1.4098 1.4101 1.4105 1.4109
0g =30° 1.4137 1.4187 1.4237 1.4289 1.4341 1.4393 1.4446 1.4500 1.4555 1.4610

symmetric expression for the corresponding sensitivity. Specifically, this yields

WV
ne(p) =1/ = oAV Nt (4.51)

where V' represents the part that is integrated over the entire a plane, analogous to W.

For the case of IceCube-Gen2, and assuming a 100% reconstruction efficiency, meanwhile,
the FoV is limited by dr, = —90° and dy = —10°, as mentioned previously. Using Eq. (4.49),
we perform a systematic scan of the dipole declination dq from —80° to 80° in steps of 20°
for two representative amplitudes, A, = 0.01 and A, = 0.1, with the results summarized in
the top panel of Table4.1. Furthermore, for fixed dipole declinations 6q = 0° and 30°, we
vary the amplitude from 0.01 to 0.10 in increments of 0.01, yielding the results shown in the
bottom panel of Table4.1. The corresponding coefficients /mWV/(2)), which determine
the phase sensitivity, are listed in Table4.2. We find that at larger dipole amplitudes
(Ap 2 0.1), the sensitivities of both the amplitude and phase vary more rapidly with
the dipole declination. When the dipole is located on the equatorial plane, i.e., dg = 0,
the sensitivities remain relatively stable as the amplitude changes. However, at non-zero
declinations, such as §q = 30°, the sensitivities increase noticeably for larger amplitudes.
Compared to the rough estimate in Section 3.2, the framework developed here directly
includes the declination-dependent acceptance cos(d — dops) and the dipole in the pixel and
band weights, and gives a more accurate and reliable uncertainty evaluation.

4.3 Gradient Method

Inspired by the contour (isoheight) maps commonly used in geography and geophysics, we
propose applying an analogous concept to the study of cosmic-ray large-scale anisotropies,
focusing in particular on variations associated with dipole structures. Specifically, the
gradient method we construct here is a novel approach for reconstructing the dipole
anisotropy of cosmic rays, utilizing the gradient normal to isoheight lines on the three-
dimensional celestial sphere to precisely measure and characterize the intensity of cosmic
rays across different regions of the sky. This method leverages the analysis of isoheight lines,
which are conceptualized as contours of constant cosmic-ray intensity, analogous to isobar
lines in meteorology. These lines facilitate detailed mapping of anisotropic patterns on the
celestial sphere. By examining the normals (i.e., local gradients) to these isoheight lines, one
can obtain a clearer distribution of cosmic-ray arrival directions, particularly the amplitude
and coordinates of the dipole’s orientation. All averages below are exposure-weighted using
a reference map that encodes detector acceptance.
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4.3.1 Interpretation of the Gradient Method

To conduct a systematic analysis, the celestial sphere in equatorial coordinates is divided
into arc bands, similar to slices of a spherical “toast.” These bands are kept fixed in counts
while the coordinate belts are rotated (rather than rotating the events themselves) and
segmented along right ascension or declination. The exposure-weighted average of the
relative intensity is then computed within each band, using inverse-variance (reference-
count) weights.

The main idea of the “Gradient Method” is to search for the maximum and minimum
average amplitudes within these spherical bands. We begin by selecting a central point
characterized by its median declination and right ascension, around which a horizontal
band is formed. This band is then rotated from horizontal to vertical, with rotation angles
ranging from —90° to 90°, and each segment has a bin size of 9°. For each rotation,
we calculate the (exposure—weighted) average relative intensity d1; across the resulting
ring belts, identifying the maximum and minimum values, denoted as d7 i, and 67 max
respectively, at certain rotation angles, specifically Ad| 57, and Ab| T Clearly, there
exists a relationship between the rotation angles and the dipole’s declination, which can
be expressed as 0qg = 7/2 — 04, where 64 represents the rotation angle corresponding to
the absolute maximum (by magnitude) of the exposure-weighted average relative intensity.
The rotation angle 64 corresponding to the dipole’s maximum intensity can be specified as

—1, lf |5Tm1n} > |5Tmax|a

_ — 4.52
17 if |6Im1n} < |5Imax| . ( )

0a = 0 (argmax { |0 min| , [0Tmax| }) ¥ {
Following the selection of the belt that exhibits either the minimum or maximum average
relative intensity, as indicated by the rotation angle 64, we proceed to rotate this chosen
belt along the right ascension axis («) over a range from 0° to 180°. This rotational
procedure allows us to compute, for every position of the belt, the exposure-weighted
average relative intensity 61(«) for each segment within the belt. We then determine the
right ascension of the dipole, aq, by fitting 61(a) with a first harmonic,

§I(a) = Ay cos(a — aq) + By (4.53)

which uniquely fixes aq, up to the expected 180° dipole ambiguity.

Clearly, the sky is segmented into npy, belts, with each belt being associated with
a particular rotation angle that determines either a minimum or maximum value. The
best-fitted estimate of the dipole amplitude, which is expressed as

51},
(6k7 Aék) COS((Sk — 5d)7

A= 7 (4.54)
where k denotes the gradient-belt index, 01 signifies the exposure-weighted average
relative intensity of the belt, 0y is its central declination, and F'(dg, Adg) is a finite-belt
geometric factor (accounting for the belt width and spherical weighting) that equals 1 in
the infinitesimal-belt limit. Additionally, d represents the declination of any point situated
on the belts within the field of view. This setup is akin to the dipole function presented
in Eq. (4.5). Therefore, the distribution of the best-fitted dipole on the celestial sphere
can be described by Eq. (4.5), which captures the original cosmic-ray arrival directions
with relative intensity across the entire celestial sphere, unlike the 1D projected dipoles
typically reported by most experiments, which usually omit the dipole declinations. Now,
let’s explore the weighted relative intensity method.
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Accordingly, the expression for the amplitude of a true dipole can be rewritten in a
form that includes exposure weighting across the sky map, namely

Npix,k Npix, k
Airie = Z oL W; ( Z W; cos(0r — 5d)) , (4.55)
i=1 i=1

where 0I; = (N; — Nret,i) /Nref,; denotes the relative intensity in pixel 7, and W; = Nyef ;
serves as the appropriate inverse-variance weight for Poisson-distributed counts. Here, N;
represents the observed number of events in a pixel 4, while Nyt ; gives the corresponding
isotropic expectation (i.e., the reference or exposure map). The quantity J; denotes the
central declination associated with the k-th belt. Furthermore, this approach compensates
for uneven sky coverage, a common issue in observational cosmic-ray studies. In areas of
the sky where the exposure is higher, corresponding to larger values of N, the method
automatically accounts for the increased statistical precision by assigning proportionally
larger weights. As a result, the weighted sum appearing in Eq. (4.55) adjusts itself in a
manner that ensures all sky regions contribute in proportion to their statistical significance,
thereby yielding a more stable and unbiased estimate of the dipole amplitude.

4.3.2 Optimized Gradient Method

The optimized gradient method further generalizes the approach described above so that
it can be effectively applied to data sets in which the available statistics are limited. To
minimize noise coupling, the event map is kept fixed, and only the coordinate belts are
rotated during analysis, using small angular steps of 2°. This is coupled with the use of
larger pixel scales for constructing three-dimensional sky maps, specifically choosing a
small value of ngge (= 16 in this study), which defines the HEALPix grid resolution used
to divide the sphere. These settings allow different belt orientations to sample comparable
event populations within the same pixels across maps, thereby improving stability.
Focusing on a broad belt located in the median plane, we rotate only the belt coordinate
frame (not the events). This process unfolds in several stages. First, belt orientations are
adjusted by declination offsets 0g in small ¢ bins, denoted as dr ;. Each rotation yields a
new coordinate distribution of the (fixed) arrival directions, visualized on 3D sky maps via

SCR. = OCR. — OR.i» (4.56)

where gCR,i is the declination of the event 7 in the rotated belt frame. Next, the maps
are segmented into six vertical belts, facilitating a comparative analysis across different
spatial sections of the sky. For each rendition of the map, the (exposure-weighted) average
relative intensity d1; is calculated across n belts, and the maximum and minimum averages
are identified; the corresponding rotation angle defines 64, which correlates with the dipole
declination via 4 = 03. We then refine the estimate by averaging the six values of dq
obtained from all belts. Subsequently, the procedure is repeated with a coarser rotation
step of 3° to check stability and consistency; following the same steps yields a second
set of angles. The average of these angles, denoted by 8;, determines the average dipole
declination, 6q = 6; — ORr,i- The corresponding algorithmic expression is

7 1 R [ B _
= S Lzzjl b1y (0205 (|6T i |6 T ])) — 10| €. (4.57)

where ng is the number of belt rotations, ny, is the number of belts, and C is a sign factor
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fixing the north/south dipole hemisphere,

B {—1, if |07 min| > [0Tmax] »

_ _ 4.
1a if |5Im1n{ < }5Imax| . ( 58)

In the next step, we apply an analogous procedure to the right ascension coordinate.
Keeping 64 fixed, we rotate the belts along the R.A. axis and estimate the dipole phase
from the locations of the extrema

1 MR | Nbelt o _
o4 = NRMbelt ; Lz:; ij (max (|0 T min| , [0 Tmax])) — or,i | D, (4.59)

with an east/west ambiguity captured by

B {2, it | Tumin] > 0T

_ _ 4.60
17 if |6Imin| < |5Imax|- ( )

Alternatively, the procedure can start without any initial global rotation of the 3D map.
The celestial sphere is divided into six belts, each belt is rotated along R.A. in small
angle bins, and for every rotation the (exposure-weighted) average relative intensity 61 (c)
is computed. A first-harmonic fit, 1(a) = A; cos(a — aq) + By, then yields the dipole
phase aq, and the dipole amplitude is obtained by fitting the weighted averages with
Eq. (4.55). Partially overlapping slices matched to the pixel scale can be introduced to
increase robustness, while keeping the event map fixed and applying only belt—frame
rotations to avoid noise coupling.

This section presents the optimized gradient method as a proposed framework for
reconstructing large-scale cosmic-ray anisotropies, particularly under conditions of limited
statistics. By fixing the event map and rotating only the coordinate belts, this approach
reduces statistical noise and improves the stability of dipole reconstruction across decli-
nations. While the method provides a conceptually straightforward and computationally
flexible way to extract dipole parameters from isoheight gradients, it remains primarily
a proof of concept rather than a finalized analysis tool. In Chapter 6, we will develop
and test a more precise analytical method, building on this idea to create a complete and
quantitative framework for reconstructing anisotropy and evaluating sensitivity.
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Chapter 5

Unified Cosmic-Ray Anisotropy

In many experiments, the reconstructed dipole amplitude A and phase aq4 are shifted
because the field of view (FoV) for each individual experiment covers only a portion of
the sky, which is different depending on the local experiment. In addition, the results
are influenced by event samples (see Figure 5.2) based on other variables and by varying
median energies for these samples. Therefore, the projected sidereal dipoles are not the
original dipoles and lose some key information about the original distribution of cosmic-ray
arrival directions, such as the declinations and amplitudes of the dipoles. The cosmic-ray
anisotropies reported by experiments depend invariably on the observatory’s location, its
field of view, the efficiency, and the accuracy (both energy and direction) of reconstructing
the primary cosmic-ray particles, as well as the corresponding event samples. This situation
directly impedes the exploration of the cosmic-ray anisotropies and the studies investigating
the direction of cosmic rays. That’s the main reason discrepancies exist in the data on
reconstructed dipoles from different experiments, even at the same or similar median
energies. Therefore, we are motivated to extract the data reported by major experiments
to reconstruct the “real” cosmic-ray dipoles as a function of energy. In this chapter, we
will state that the unified real cosmic-ray dipole varies solely with energy, serving as a
baseline in the interpretation of the CR anisotropies over a wide energy range.

We will present the amplitudes and phases of the projected dipoles, which are accurately
reconstructed from the selected data after applying the partial-sky correction (discussed
in Chapter5) together with the calibrated fitting procedure. This includes detailed
analyses of the event sample distributions, the overlap principle of cosmic-ray anisotropies,
interpolation for cosmic-ray anisotropy distributions, the appropriate approach for one-
dimensional projections of sky maps, and the algorithm to restore the reconstructions of
the original cosmic-ray dipoles with their energies. In general, this work will not only
recover the global evolution of cosmic-ray anisotropies but also provide some information
on the origins and propagation of cosmic rays in our Galaxy.

5.1 Overlap of Anisotropies

We have developed a method to optimize and accurately reconstruct the large-scale
anisotropies of cosmic rays, especially dipoles, at observatories with certain and different
fields of view (FoV) and specific energy samples. This approach utilizes optimized algorithms
to calibrate for the large discrepancies, which are from observations and partial sky
coverages that change the original cosmic-ray dipole characteristics. By restoring the
original amplitude and phase information, this method facilitates more precise comparisons
between different experiments. It effectively gets rid of the impacts of geographical
locations and observational constraints. Within this approach, we propose a new method
for reconstructing the declination of dipoles by analyzing the characteristics of the dipole
distribution and the corresponding fitting results. Furthermore, it could also allow for a
refined analysis of the cosmic-ray spectrum, revealing subtle variations in dipole features
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Figure 5.1: Reported dipole anisotropy. The data points shown are reconstructed sidereal
dipole amplitudes (Top) and phases, i.e., right ascensions (Bottom), from various experi-
ments [136, 268, 298, 299, 134, 133, 135, 269, 142, 140, 270, 300, 301]. Some of these results
have been calibrated for partial-sky field-of-view (FoV) effects and thus report comparable
sidereal dipole amplitudes (e.g., IceTop, IceCube, Auger, HAWC, and HAWC+IceCube),
while the others have not and require further correction. The IceCube, IceTop, Auger,
LHAASO, and GRAPES-3 data are updated dipole results as of 2025. Both plots reveal
large discrepancies among different experiments in the energy-dependent reconstruction of

dipoles, arising from various factors.
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that were previously obscured.

The principle behind the observation of cosmic-ray anisotropies is based on accumulating
large numbers of cosmic-ray events in their arrival-direction coordinates across different
observation times, energy ranges, and sky regions. Consequently, these yield cosmic-ray
anisotropies and spatial distributions on the celestial sphere. To restore the true dipole
behind, let’s first start from the relative intensity of the j-th pixel on this sky map, which
is defined by 01 = (N; — (N;))/ (N;) at a certain energy, where N; represents the observed
number of cosmic rays in the j-th pixel, and (N;) denotes the average expected number of
cosmic rays for that pixel. The quantity of 41 therefore measures how much the observed
intensity deviates from the expected average at a given energy. Concerning the fact that
the dipole anisotropy of cosmic rays is known to vary with energy, and because published
dipole measurements are frequently obtained from partially overlapping energy samples
(as illustrated in Figure5.2), we aim to understand the underlying principle governing the
combination and interpretation of these continuously sampled dipole measurements.

Based on the assumption that a single, globally valid dipole exists as a function of
energy, we partition the full sky map into n overlapping sub-maps, where each sub-map
contains a subset of events whose distribution matches the event selection corresponding
to a particular energy sample and its representative median energy. The total number of
events across all n sub-maps is constructed to be equal to the total number of events in
the full energy range, thereby guaranteeing complete statistical consistency. To clearly
illustrate this concept, we first consider a simplified example in which the sky is divided
into only two overlapping sub-maps. The shared region between these two maps, together
with their respective relative intensities, denoted by 617 and 615 for each map, respectively,
can then be expressed in the forms:

Nij — (Nij) Naj — (Naj)
(Ny) (Noj) 7
where the index j is used to specify the j-th pixel on the corresponding sky maps, thereby

enabling a pixel-by-pixel comparison of the relative intensity fluctuations in the two data
sets. The overlap of the two maps at pixel j, denoted by d1s,, can be expressed as follows:

(N15 + Naj) — ((N1j) + (Nay))

(N1j) + (Noj) ’
which is obtained by summing the recorded counts N; = Ni; + Na; for the combined obser-
vations and the corresponding expected average counts (N;) = (Ni;) + (N2j), representing
an approximation to the mean number of events that would statistically fall into pixel j
when the two sky maps are combined. Focusing on this expression, the mean number of
events in the j-th pixel of each map can be estimated by summing the average counts of
that pixel from both maps and multiplying by the ratio of the event counts in that pixel
to the total counts of both maps, acting as a weighting or fractional factor, namely,

5L, = I, = (5.1)

5120 =

(5.2)

(V1) = i (V) + (), -
(Vo) = g (M) + (),

where the expression ((Ni;j) + (NNa;)) can also be obtained for each individual sub-map.
Utilizing Eq. 5.3, the relative intensity of the overlapped map given in Eq. (5.2) can be
reformulated into a more explicit form, one that represents the weighted sum of the
relative intensities associated with the j-th pixel in map 1 and map 2, where the weights
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are determined by the respective event counts in that pixel. This leads to

Nij + Noj oh Nij + Noj 0Lz, (5.4)
the appearance of 01; results from substituting the term ((INq;) + (N2;)) in Eq. (5.2). This
indicates that the 13, is not merely the sum of the 0I; from the two sub-maps.

Similarly, let’s explore a situation that is closer to a continuous distribution, moving
beyond just two intervals to include extremely tiny energy intervals denoted by E; (where
i ranges from 1 to n) within the energy sample under analysis. Following the process of
overlaying the j-th pixel from each of the n sub-maps to create composite event statistics,
we can determine the relative intensity of this overlapped j-th pixel, as follows,

(N1j = (N1y) + (Vo — (Vo)) + . + (Nnj — (Vi)
<N1j> + <N2j> + ...+ <Nn]> ’
where we apply the same assumption as discussed in Eq. (5.3), and considering n counts
with their corresponding average counts across the n energy intervals, donates as:
Nij ((N1j) + (N2j) + ... + (Nuj))
Nlj + N2j + ...+ Nnj

019 =

S0 = (5.5)

(Nij) = (5.6)
Subsequently, we further rewrite Eq. (5.5) by replacing the sum of (IV;;) over i from 1 to n,
denoted by 7" (Nj;) from Eq. (5.6), and resulting in:

Nij (N1j — (N1y)) PEAEY (N2 — (N2;)) I, (Nnj — (Nuj))
<Nlj>¢§1 Ny (N2j) Z; Noyj (Nnj) ; Ny

where elements denoted by ¢1;;, defined as 01;; = (N;; — (Nyj)) / (Nij) exist in the sum.
Therefore, we derive the expression of relative intensity (d1,,) of the sky map, resulting
from the overlapping of dI;; across n sub-maps, specifically:

> Nij— 32 (Nij) 3 Nygély;
5In0 = =1 - i=1 — Zzln , (58)
> (Nij) ; Ni;

=1

5Ino = ) (5'7)

M=

which clearly illustrates the impact of varying event counts on statistical observations.
This demonstrates that the overlapped 01; in a specific pixel is not merely the sum of the
01;; values. Instead, the fractional differences in event counts across different segments of a
distinct energy sample directly influence the observed patterns of cosmic-ray anisotropies.

For example, if two dipole maps overlap, with certain orientations (aq,0) on the
equatorial plane, amplitude (A), and total number of events (), and the dipole distribution
can be expressed as dI = Acos(a — aq), we can analyze their combined contribution.
Specifically, assume that dipole 1 has orientation at (0,0), with .47 = 1072 and Ny = 108,
while dipole 2 has orientation at (7/2,0) with Az = 107 and Na = 2 x 10%; their overlap
leads to 61, = 0.0034 cos (o« — w/16). Now, in the continuous case, we represent a specific
location within the sample by the energy (FE), with an infinitesimally small interval dF,
and the integral form of 01, in Eq. (5.8) for a specific energy sample can be expressed as:

ST — JN(E)SI(E)dE

" [N(EYE
where 01, represents the relative intensity of the entire energy sample, N (E) donates the
probability density function (PDF) of the distribution of events in the energy sample, as a

(5.9)
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function of energy, and, in principle, the integral (accumulation function) of N'(E) equals 1
over the sample’s entire energy range.

Up to now, we have understood the principle behind the formation of the observed
dipole anisotropy, as shown in Eq. (5.9). This approach enables us to evaluate the variation
in the relative intensity of cosmic-ray arrival directions by integrating data across different
and continuous energies, and subsequently, to restore the energy-varying dipole anisotropy.

5.2 The Unified Anisotropy

The reported sidereal dipoles by the experiments are invariably multi-overlay results,
which are overlapped concerning the dipoles with continuously varying amplitudes and
orientations at continuously varying energies. The overlap of the dipole with different
amplitudes at different energies and different orientations, with different event counts, will
lead to varying observations, as we discussed before. Therefore, the reported data of these
main experiments are usually not comparable. We now aim to reconstruct the full process
of a global, continuous and energy-dependent cosmic-ray dipole as it would be detected
and reconstructed through projection procedures by any observatory on Earth.

The reconstruction of dipole anisotropies involves projecting the 3D distributions of
relative intensities, denoted by 67 , which are, in principle, integrations over the experiments’
field of view (FoV), specifically the declination range, and the specific energy range of the
energy samples. Based on the discussions in Section 5.1, 67 is given by:

E
ST(Eya) = — [ / " N(E)AE)D(E, o, 6)w(8) dE s, (5.10)
NoW Je, Js;

where Ny = [ gLU N(FE)dE, and N is equal to 1 normally, meaning, the full accumulation
of the probability density function of any energy sample which obtained by Monte-Carlo
simulation is approximately normalized, both the dipole’s right ascension and declination
are functions of energy in the projected unit dipole D, w(J) = cosd in this study, is the
declination weight for the spherical surface area, VW is the sum of the weight over the
effective field of view. The integration over § means the projection of Z(FE, o, §) onto RA
plane, becomes 7 (E, ). After integrating with respect to declination (), we can obtain

57 (a) = / N (B A(BYD(E, 0) dE, (5.11)

Er,

where energy E changes to be median energy after the integration, denoted by FEi,,
ﬁ(a, E..), which is the projected sidereal dipole. Since we don’t have information about
the dq in data, therefore we can only consider a joint expression, namely, Ac, cosdq = Ap.
Acosdq = Ajp, represents the a-component of the original dipole amplitude A. When the
FoV is maximum, namely, d;, = —7 and dy = 7, ¢, reaches the maximum value, denoted
by ¢pm = m/4. Therefore, we can also plot the curve with the maximum projection of
a-component of A by Apcpm/cp. The corresponding reconstructed Relative Intensity (RI)
from the experiments can be expressed as follows:

SI(Bum, @) = Ap(Fw) cos[a — aq(Em)]+B, (5.12)

where §1 represents the fitted relative intensity that has already been determined, while
En, Ay, and ad are taken from the reported data of various experiments. The term B
can be safely neglected in this study, since there are currently no available published data
regarding the shift term in the harmonic fits, similar to the situation in Eq. (4.7).
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5.2.1 Energy Distributions of Data

The data samples from various experiments consistently exhibit a log-normal distribution
when the categorization of primary cosmic-ray particles is based on the number of hits
recorded by detectors, designated as Nchannel- This categorization can refer, for example,
to specific channels like the muon channel in the case of the IceCube experiment [139] and
LHAASO [137], or the aggregated detected particle density, ¥p, as observed in experiments
like Tibet [310]. As contained in Eq. (5.10), the number density distributions of cosmic-ray
events at each median energy are approximately expressed as

2
N(E) = Mo e : (5.13)
Eov2or

where N is a constant, o is the standard deviation of the log-normal distribution, and
1 is its mean, given by the natural logarithm of the median energy FE.,, i.e., In Fy,. For
LHAASO [137], as shown in Figure 5.2, and Auger [311, 312], the energy resolutions are
modelled as Gaussian distributions in logarithmic energy space, making them special cases
of the log-normal distribution and thus approximately consistent with Eq. (5.13). The
corresponding 68% containment interval of the event energies is bounded by e#~7 and e#*7,
respectively. Therefore, the standard deviation ¢ can be obtained from the lower and upper
bounds as @ = In (Ey/EL)/2. The total number of events in an event sample is obtained
by integrating the number density concerning primary energy within the whole energy
range from Ey, to Ey, namely, [ N(E)dE = Ny, and Ny represents the total event count
for the given energy sample. By normalizing Ny to 1, Eq. (5.13) becomes a probability
density function (PDF). This normalization allows dipole results from different energy
samples and experiments to be directly compared in this study.

In the specific case of KASCADE-Grande, the reconstructed energy distribution associ-
ated with the median energy of 2.7 PeV follows a log-normal distribution within the range
(6.22,6.60) in lg(£/GeV). For higher energies, such as 6.1 PeV and 33 PeV, corresponding
to the intervals (6.60,7.41) and (7.41, 8.84) respectively in 1g(E/GeV), the distributions
are well described by an exponential tail function, namely,

N(E) = Nye k=) (5.14)

where zg denotes the starting point of the exponential tail, and N, is a normalization
constant that can be adjusted to yield a proper probability density function (PDF) within
the specified energy range. Further details on the corresponding energy distributions,
fitting parameters, and the overall fitting procedure are discussed in Section6.1.

5.2.2 Analytical Reconstruction Method

Now, we construct the fitting functions for the a-component of the original amplitude,
denoted by A*, and the right ascension of the original dipole. These functions, which
depend solely on energy, are expressed as suitable combinations of polynomials and Gaussian
functions to capture both smooth trends and localized variations, specifically,

n n
ANE) =Y NEY T ag(B) =" ¢ EPieE. (5.15)

i=1 j=1
According to the data shown in Fig. 5.1, the number of polynomial terms in all three
functions is chosen as n = 4. The parameters are set as follows: 81 =7, = p1 =m =0,

B2 = p2 =1, and 2 = 19 = 0. In most experimental dipole reconstructions, the projected
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Figure 5.2: Tllustration of simulated true energy distributions (i.e., median energy) for
the assumed events. Shown are five examples of energy distributions for Tibet [310],
LHAASO [300], IceCube [140], IceCube+HAWC [16], and IceTop [142] used in anisotropy
studies. The IceTop simulations assume iron (blue), proton (red), and all-component
(dashed) compositions. Other experiments report their energy distributions mainly in
tables, without providing plotted representations. All energy distributions correspond to
all-particle events. At a fixed energy, different experiments exhibit significant differences in
their reconstructed energy distributions.
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sidereal dipole includes only the right ascension term, and the fitting function is
0I(a) = Ap cos(a — aq) + B, (5.16)

where A, denotes the projected dipole amplitude. Due to the dipole reconstructions
performed by the experiments, which were based on harmonic fits that did not include the
shift term in Eq. (5.15), we set B = 0. The corresponding theoretical expression for the
projected dipole, denoted by 67 (a) for each energy sample, is detailed in Eq. (5.11). To
assess the goodness of fit of the unified anisotropy model relative to a reference function
with known parameters, we apply the least-squares method to minimize the difference
between the observed and predicted values. Referring to Eq. (5.15), we fit the initial guesses
of the fit functions in Eq. (5.12) to the standard first harmonic. This involves comparing
the relative intensity from the data, given by Eq. (5.16), to our model, given by Eq. (5.11),
across all data points from the selected experiments, expressed as

0li(a) = Apicos (o — ;) , 01i(ar) = _U N(E)A*(E)cos (a — aq(E))dE,  (5.17)
Ey,
at a fixed energy, where 7 is the index of the data points, A ; and ¢; represents the dipole
amplitudes and phases from the data. Now, let P denote the vector in the least squares
expression used in the minimisation process, namely,

D ((SIZ — 52-1)2

~9 )
i=1 9;

(5.18)

P = min

where G; represents the universal uncertainty, which is given by integrating the error of
01;, namely, AdI;, over the whole right ascension plane from —m to 7 and weighted by 2,
taking into account both uncertainties of A, and aq (represented by ¢; here) from the
reported data. Consequently, the universal uncertainty can be written in the form:

= / ccos?(a — ;) + .A?,Z 0, sin o — ©i)) dov. (5.19)

The difference between observation and the model is defined as AdéI; = 61; — 5@, which
should use the integral form since both of them are multi-curves (harmonics), not points,
in principle. However, the positive and negative regions would be eliminated. Therefore,
we seek the discrete calculation, which is expressed as:

ASTi (o) = 61i(ag) — 0ZL;(aur) (5.20)
where the index k£ = 1,2,3,...,n, and oy spans the full interval from —n to w. The

modified least-squares minimization function is now written as:

Np n ( o) — 5@(%))2

P = min ZZ

) , (5.21)
i=1 k=1 &7 (a)

61-2(0%) denotes the discrete value of the universal uncertainty &; at ay. Using this data, one
can determine the best-fitted parameters for the assumed functions of the dipole amplitudes
and their corresponding orientations. Additionally, the parameters specified in Eq. (5.15)
can be derived. Ultimately, we generate the evolution curves for the original dipole’s
amplitude, right ascension, and declination, which vary with energy. This represents the
first method to reconstruct the dipole anisotropy of cosmic rays.

Now, let’s consider the dipole declinations, d4, which in theory can be derived utilising
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Equations (5.16) and (4.11). However, the data reported by experiments like HAWC
and IceCube often omit details of the shift term in the first harmonic fit. Although
these reports include 2D fits for the maximum sidereal dipoles, they lack information on
declinations. This is because 6Z = A*¢é, cos (o — ), where A* = Acosdy is considered the
a-component of the original dipole \A. Additionally, while A, = Ac, cos d4 and A, = A*c,,
are reported for 2D and 1D fits respectively, the actual declination d4 remains unreported.
The reconstructed Relative Intensity (RI) for a specific energy sample is then expressed as
an integration over the energy range of that sample, specifically,

A

57 (v, B = EEU N(E; Eny, 0) A%(E) cos (a — aq(E))dE, (5.22)

and E, is the median energy of the energy sample.

Since the fit of dipole anisotropy is based on the existing data of sidereal dipole
amplitudes A, and phases aq, and is sensitive to both parameters, even small changes
in either can introduce significant bias in the resulting fit, namely, the inferred dipole
amplitudes and phases. A more reliable approach is to fit the A, and aq data to the
most likely curves first, using a maximum-likelihood method, before extracting the dipole
parameters with our technique. This curve fitting assumes that the dipole varies smoothly
in both amplitude and orientation (in right ascension only, as declination is not included
in this analysis) with changing energy. To determine smooth energy-dependent trends of
the cosmic-ray dipole anisotropy, we apply a maximum-likelihood fitting procedure to the
projected dipole parameters, the projected dipole amplitude .4, and the phase aq, which
are reconstructed at different energy bins. These two parameters characterise the relative
intensity modulation in right ascension «, given by the sidereal dipole form,

0 (o) = Ay cos(a — aq), (5.23)

where « represents the right ascension plane, ranging from —x to 7. This expression for

0I(«) has also been discussed earlier. The projected amplitude A, is the projection of a

full dipole, with the entire celestial sphere as the FoV. The observed projected amplitude

AL = cpAp involves coefficients that are determined by the observatory’s FoV and depend

on its upper and lower limits, as shown in Eq. (4.9). Thus, A, is calculated as
Al 20y — 201, + sin 20y — sin 26y,

Ay =—, ¢ =

p 4(sin dy — sin dy,)

(5.24)

)

where ¢, is the calibration factor for the FoV. The amplitude A, = Acosdq represents the
horizontal component of the dipole amplitude A, projected by the factor cosdq.

The measured values of A, and ay, together with their associated uncertainties o4,
and o,,, are obtained in several energy bins. Because the measured amplitude and phase
are derived from the same underlying function and are not statistically independent, we
do not fit them separately. Instead, we construct a log-likelihood based on the full dipole
modulation §I(«), sampled across a set of right ascension values aj. Assuming that
the dipole amplitude and phase evolve smoothly with energy, they can be modelled as
polynomials times exponentials as functions of F, in logarithmic scale,

ANE) =" a;E'exp(ME), a)(E) =) bE' exp(vE), (5.25)
i=1 =1

where ¢ = 0,1, 2, and the coefficients a;, b;, together with the exponential parameters \;
and -; constitute the full set of free parameters to be determined through the global fit.
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The resulting model prediction for the phase is subsequently wrapped into the interval

[—m, 7] to get a valid phase angle. The observed dipole function for each energy bin FE;

and right ascension sample ay, and the corresponding model prediction, are given by
515 = .Ag) oS (ock - ag)) . oIN = .Ag[(EZ-) cos (ak - ay(Ei)) , (5.26)

where « is discretized into a set of uniformly spaced bins. The uncertainty associated with
each relative-intensity value, denoted by o, is obtained by propagating the measurement
uncertainties of the dipole amplitude 4, and a4 according to

o3 = [cos (. —alf)) - oY] "4 [AD - sin (ap — ) 0] (5.27)

ag
We assume Gaussian uncertainties on A, and oy, the likelihood for a measurement is:

1 SI — 61X)?
————exp _(Of = 0L)” 5 i) ; (5.28)
V2w oy, 2073,
and the corresponding total log-likelihood is given by:
(612 — s131)?

2

Ok

Lix (SIR 61, o) =

InL= —% > lln(27r o2) + ] : (5.29)
ik

where only the second term (residual squared over variance) is relevant for optimisation, as

the logarithmic prefactors are independent of the model parameters, thus, the log-likelihood

maximisation reduces to minimising the weighted sum of squared residuals, which is a

generalized x? function.

However, after applying the necessary smoothing procedure to the measured dipole data,
it becomes evident that estimating the best-fit parameters directly from Eq. (5.22) does
not provide a sufficiently accurate or stable result. This limitation arises because the initial
guesses for the model parameters A%/[(E) and o}l(F) require fine-tuning and perfectly
reconstructed dipoles, which do not reflect the reality of experimental results, where larger
discrepancies appear at nearby energies. The sensitivity of the fitting procedure is further
constrained by the relatively small number of available measurements, namely the sets
of observed amplitudes .ApD and adD. Consequently, the resulting estimates of Agl (E) and
ag/[ (E) may deviate noticeably from the true, smoothly varying dipole behaviour that the

model aims to describe. Therefore, a more reliable method is required.

5.2.3 Grid Iteration Method

To obtain a more accurate reconstruction of the dipole anisotropy and to extract the
underlying dipole signal from the superposition of contributions at different energies within
the effective energy range of a given energy bin, we perform an iterative procedure on
each point, corresponding to a small energy interval within the data’s effective energy
range (energy samples, see Figure 5.2), where the measurements refer to the projected
sidereal dipole amplitude Aj, and phase ®,. Specifically, each energy point corresponds to
a weighted average over dipole vectors, with weights determined by the discrete energy
distribution of the sample. These dipoles overlap and collectively contribute to a mean
dipole, which, in principle, corresponds to the measured dipole signal 61 = A}, cos(ow — ®y,)
associated with the energy range centred at the median energy F,,. This forms the basic
idea for extracting the energy-dependent dipole from data corresponding to a single energy
sample. Meanwhile, this procedure can be applied to all (A, ®,) data pairs that include a
given energy point, ultimately yielding the best estimate of the dipole at that energy.

102



CHAPTER 5. UNIFIED COSMIC-RAY ANISOTROPY

To represent the measured dipole anisotropy at an energy F (whatever median energy
or energy), we express each dipole distribution (relative intensity) as a complex form,

51, = % (cita=t0) 4 =ila=o)) (5.30)

which representation is mathematically equivalent to the traditional cosine formulation, and
captures only the real part of the complex exponential. Simply, we can express the dipole
distribution as 61 = Age'®= %) allowing us to manipulate the complete signal directly
in the complex plane, while the measured quantity corresponds to its real projection,
R[0I] = Acos(a — ¢). The introduction of this complex representation naturally leads to
the definition of a complex dipole vector Dj, = Ape'®*, which compactly includes both
the amplitude Ay and phase ¢y as a linear system. The magnitude |Dy| of this vector
straightforwardly yields the dipole amplitude, whereas the complex argument arg(Dy)
corresponds to the phase. This representation eliminates the need to split the expression
into positive and negative frequency components, as required in the cosine form. The
measured dipole vectors at a given energy sample, with median energy Fy,, are characterized
by their amplitude A; and phase ®;. We then express each in complex form, i.e.,

Di(Ey) = Aie'®, (5.31)

here, the index i (with i=1, 2,..., M) labels the dipole measurements from all experiments,
each corresponding to a median energy E,, with an 68% energy range (energy resolution)
bounded by Ey, and Ey, and energies lying within the overall range [Epin, FPmax|. The
range covered by the data with energy is approximated continuously. Rather than dividing
the energy range of each sample individually, the global energy range is discretized into
small intervals. using a grid of equally spaced bins E;, and j = 1,2, ..., N, referred to as
grid points, at which the underlying dipole signal is estimated. In this analysis, we use
Ny =200 grid points spanning from 2.9 to 10.8 in 1g(£/GeV), corresponding to energies
from 0.8 TeV to 60 EeV. Each grid point corresponds to a dipole characterized by the
sidereal amplitude and phase, denoted by D; = Aj@i% , at a specific energy ' = E;. When
the grid spacing is sufficiently small, this provides a good approximation of the continuous
energy dependence of the dipole.

We now propose a model by assuming that each measured dipole D; can be described
as a sum (or an integral, in the continuous case) of contributions from the dipoles D;
over the energy range corresponding to D;. The sum of all dipoles (Ej w;i;Dj) at all grid
points within [Fiin, Fmax| of the i-th energy sample yields a model estimated instantaneous
pseudo-dipole I);, which corresponds to the measured dipole at the median energy E? .
Specifically, the pseudo-dipole vector D; is given by

Ng
]D)l(Em) = Zwij.Ajer == Aiei\pi, (532)
j=1

where the sum runs over all grid points with w;;, noting that w;; = 0 if Egrid ¢ [El E! ] .

min’ ~max
The value of ID; approximates the measured dipole D;, but they are not necessarily equal.

The weight w;; at the grid point j for the i-th measured dipole is defined by
N(E;; B, B, Ef)AE

~ N N(Ej;El, B, EL)AE

where AFE; represents the width of the energy grid point centred at E;, N is the probability

density function (PDF) describing the energy distribution within the 68% containment

(5.33)

wij
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range. It is modelled as either a log-normal or exponential-tail distribution, depending
on the experiment, and is defined in terms of Ei, Eﬁ, and E! | as given by by Eq. (5.13)
and Eq.(5.14). For each dipole 4, the weight w;; is normalized so that >_j wij = 1 since it’s
based on the discrete form of the PDF. To extract the dipoles, an inversion process, which
is referred to as deconvolution, is performed, based on the exponential linear model given
in Eq. (5.32), or, in an equivalent matrix form,

D = WD, (5.34)

where D is a M x 1 vector of the observed dipoles, where D is a N x 1 vector of unknown
global dipoles at energy grid points E; (with j =1,..., N) (which include both amplitude
and phase, and can therefore be regarded as a complex-valued vector), and W is a M x N
weight matrix that contains all rows of w;;. In the continuous form, the measured dipole
is expressed as a weighted integral over energy, representing the contributions of the
dipole across the energy range, D; = [, N'DdE, which makes the estimation of the dipole
more challenging due to the continuous and energy-dependent fact of the integrated. The
integration is performed over the full energy range [E!.  E‘ ] corresponding to the
i-th measurement. If multiple pseudo-dipole matrices D cover the same energy range,
they independently constrain the value of the dipole D; at the corresponding grid point.
For example, we suppose the energy range of measurement 1 overlaps the grid points
FEs, B3, and Ey4, while the range overlaps F3, F4, and E5 of measurement 2. These are
independent data points, but because their energy ranges overlap (not double-counting),
both provide information about the dipoles D(Es3) and D(E,) through their overlapping
contributions. In the deconvolution process, the contributions to each energy grid point
from all measurements are combined according to their respective weights. That is, the
system of equations takes the form

Dy = wy 2D(Es) + w1 3D(E3) + w1 aD(Ey) + - -,

5.35
Dy = wy3D(E3) + wa4D(Ey) + wasD(Es) + - - -, (5.35)

where we propose the ansatz DD; =~ D;, identifying the model prediction with the measured
dipole. Both measurements are sensitive to the same underlying D;, but each with different
nonzero weights and additional contributions from other energy grids Fj.

The deconvolution involves more than simply summing the overlapping values to obtain
D;. Instead, it determines a set of values D; (one for each energy grid point) that best
satisfy all the independent constraints simultaneously through an iterative optimization.
To reconstruct the energy-dependent dipole vector D; from measured dipole data D;, we
assume that the observed dipole at each energy bin is a weighted average of the dipole
signal over a finite energy range. With respect to the pseudo-dipole matrix in Eq. (5.34),
the matrix formulation of the ansatz ID; ~ D; can then be written as

D~ WD, (5.36)

where the vector D contains M complex-valued dipole components (D € CM), D contains
the dipoles at N discrete energy grid points (D € CV), and W is a M x N weight matrix.
Each element w;; describes the contribution of the dipole at the energy grid point E; to
the measurement ¢, based on the energy response of that measurement. The inversion
(or deconvolution) procedure solves Eq. (5.36) to obtain the full vector of dipole values
D. Specifically, it solves for a set of underlying dipoles such that the model prediction,
D; = 3, wi; Dj, closely approximates the observed dipoles D; for all i. At each iteration,
the full set of D; values is updated simultaneously to minimize the difference between
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predicted and measured dipoles. This process continues until convergence, i.e., until
D; ~ D; is satisfied across all measurements. To determine the matrix D, we define a cost
function that combines a data misfit term:

2
M Ng
C(D)=>_|Di— > wijD;| +AR(D). (5.37)
i=1 j=1

The first term corresponds to a least-squares data misfit, [|[D — WD||?, which is equivalent
to a chi-squared statistic under the assumption of uniform uncertainties, where all o; are
taken to be equal and absorbed into an overall normalization. The second term introduces
regularization, where R = Zﬁ\/:gl— ! |Dj+1 — Dj|? denotes the regularization term and A
controls its strength and is taken to be 0.8. Since multiple measurements contribute to a
single energy grid point, the inversion procedure can cause misfits in the reconstructed
dipoles. To address this, we solve for D iteratively by minimizing the cost function C using
a gradient descent algorithm [313], which also regularizes the solution. Let the vector of
dipoles be expressed in the form:

D = (D(E1), D(Ey), ..., D(Ex))" . (5.38)
At each iteration n, the estimate is updated for the full system [313], which is given by:
D) = D) 4y [WT (D - WD™) — AVR] , (5.39)

where 7 is the learning rate and is set to 0.3, and the second term is the gradient of the data
misfit. The smooth gradient term VR = D1 —Dj for j =1, VR = 2(2’D§»n) - D§7i)1 - D§‘1)1)
for all others j. The extracted dipole curves (amplitude and phase) are stabilized by
reducing fluctuations between neighboring energy bins. This is approximately equivalent

to local averaging that pushes each point toward the mean of its neighbors.

The initialization of D is performed by averaging all measured dipoles whose energy
range [El ., Bl includes the grid point E;. Specifically, the initial value at each grid
point is given by D§O) = 3, Di/Ngt, where N3t = {i|E; € [Ely,, Eba]} is the set of all
measurements whose energy range includes £, and Ng};{ is the number of such measurements.
The iteration continues until convergence is achieved, which is defined as the condition
that the norm of the update vector is smaller than a convergence criterion e:

HD("“) - D(”)H <e (5.40)

here we set the convergence threshold to e = 10712, After convergence is reached, the
dipole amplitude and phase at each energy grid point are extracted from the complex
solution, i.e., the best-estimated vector D, as A; = |D;| and ¢; = arg (D;), where D; is
the j-th component of D. Results are shown in Figure 5.3.

The uncertainties on the deconvolved dipole amplitude and phase are estimated using
a resampling (Monte Carlo) method that propagates measurement uncertainties through
the inversion process in a statistically consistent manner. The core idea is to generate
many samples of the measured dipole data by perturbing each measurement according to
its known uncertainties, applying the deconvolution to each sample, and quantifying the
statistical spread of the reconstructed dipoles at each energy grid point. Each measurement
i has associated uncertainties 04 ; and o ;. For each resampling iteration r (out of a total
of B), the measured amplitude and phase are perturbed as:
A = A+ e, ol =@ e, (5.41)

(2
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Figure 5.3: Unified anisotropy based on reported data from major experiments ([136, 87,
298, 299, 135, 269, 142, 140, 270, 300, 301]) spanning 1 TeV to 50 EeV, with all amplitudes
calibrated by the FoV factor ¢, as defined in Eq. (4.9) and (5.24). Note that the first
Auger data point is excluded due to the large biased phase from the others. Top: extracted
sidereal dipole amplitude, A, (E). Bottom: the phase of the extracted dipole, aq(E). Both
fit curves are obtained as a function of energy. The error bands of A, (E) and aq(E) shown
are by using data resampling. The short dashed line in both panels marks the flip energy
at 107.9 TeV, with amplitude A, = (2.1 £ 0.40) x 10~* and phase ag = 315.3° 4+ 7.7°,
which may indicate a shift in the dominant cosmic-ray sources. The long dashed lines
represent the galactic centre. The global fit curve of the amplitude exhibits a characteristic
“W?”-shaped structure, while the phase curve shows a twist in the middle.
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where the perturbations E(X,)i ~ N(0,04;) and eg:)i ~ N(0,04,;) are independently drawn

from Gaussian distributions centred at zero with standard deviations equal to the ex-
perimentally reported uncertainties. These perturbed values are converted into complex
dipoles and used as inputs for the deconvolution. At each energy grid point E;, only the
measurements overlapping with that energy range, i.e., where E; € [E%,  Ei ], contribute
to the estimation. This process quantifies the variability in the reconstructed dipoles due
to measurement noise, with the spread across the B samples providing the statistical
error bands on both amplitude and phase. Using the perturbed amplitude and phase, we
construct the corresponding perturbed measured dipole

DM = AP (5.42)
Using these perturbed dipole vectors as inputs, we repeat the full deconvolution procedure
to obtain a resampled estimate of the underlying dipole vector, denoted by D) for each
iteration r. The deconvolution procedure is then repeated using the perturbed dataset,
yielding a resampling estimate of the dipole vector at each energy grid point Dj(»r). Once
all B resampling realizations have been processed, we compute the statistical uncertainty
on the dipole amplitude and phase at each energy grid point j. The uncertainty on the
amplitude is calculated as the standard deviation over the B resampling samples

1 E e s LS e
JAJ\/Bl;(‘Dj —Aj>v Aj—B;‘Dj

where .,le represents the mean reconstructed amplitude at the energy point. To determine
the corresponding uncertainty in the reconstructed phase, we employ circular statistical
methods, which are required because phases lie on a compact angular domain and cannot
be treated with ordinary linear statistics. Specifically,

(r)

IR
0oy =/ —2I(Ry), Rj=|5> "
r=1

where R; denotes the mean resultant length of the ensemble of phase vectors, giving a
natural measure of phase around their mean direction. The error bands are obtained by
repeatedly resampling the measured dipoles, performing the reconstruction 100 times, and
averaging the results. To reduce statistical noise in the displayed uncertainty bands, the
resulting standard deviations are additionally smoothed using a moving average in energy.
Specifically, the standard deviation in the energy bin i is replaced by the average over the
bin 7 and its four neighboring bins, which suppresses statistical fluctuations.

Based on this approach, we can extract the global and continuous dipole as a function
of energy. We must emphasize that all reported anisotropy data from the main experiments
have already incorporated this 3D geometric calibration, since they average data within
specific right ascensions based on the HEALPix mapping method. This pixelation produces
a subdivision of the spherical surface where each pixel covers the same surface area as
every other pixel. Thus, direct averaging without additional declination-specific weighting
maintains the integrity of the data by ensuring that each unit area of the celestial sphere
is equally represented. However, we notice that the equal size and solid angle of each
pixel can cause discrepancies in capturing large-scale anisotropic patterns, which vary from
the equatorial plane to the poles. Near the poles, patterns are stretched and magnified,
resulting in a disproportionately higher contribution to the average. Therefore, to achieve
precise projections with minimal distortion, it’s necessary to adjust the relative intensity,

. (5.43)

, (5.44)
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01, to decrease near the poles by a factor of cosd. Alternatively, creating bands of equal
width for the RA projection might be a more effective solution.

Based on the extracted dipole as a function of energy, a dipole flip is confirmed to occur
at the energy of 107.9 TeV, where the dominant cosmic-ray sources appear to transition,
corresponding to a sidereal amplitude of A}, = (2.140.4) x 10~* and phase ag = 315.3°+7.7°.
This flip may indicate a shift from nearby sources, such as the y-ray source Crab Nebula
(83.6°, 22°) and the Geminga supernova remnant [282, 135] (98.5°, 17.8°), to a nearby
source region, where medium-scale anisotropies have been reported by ARGO-YBJ [282,
135]. The sidereal amplitude A, (E) of the dipole, as shown in Figure 5.3, exhibits a
steeper energy dependence than that seen in the measured data in the range of 103 to
10°GeV. This difference arises from the flattening effect in dipole reconstructions, where
each measured dipole is a superposition of the dipole and contributions from neighbouring
energy intervals. The resulting dipole phase tends to lie between the individual dipole
phases, and the amplitude is correspondingly reduced. This averaging effect causes the
measured dipole amplitude and phase to vary more slowly with energy compared to the
dipole. Consequently, the observed flips in both amplitude and phase appear less sharp
than those recovered through uncompress, i.e., the deconvolution.

Meanwhile, the global fit of the amplitude shows a characteristic “W-shaped” struc-
ture, as illustrated in Figure 5.3. The amplitude and phase shift around 3 x 10® eV,
corresponding to the energy of cosmic-ray ankle [123]. At this energy, the trend may
indicate a growing contribution from an extragalactic component dominated by protons
and helium. Overall, due to limited statistics, the fits of the dipole phase between (10'° eV
and 10! eV remain uncertain. In particular, between 1 PeV (Tibet-ASy and IceCube) and
200 PeV (KASCADE-Grande), the dipole phases show complex variations and significant
discrepancies, most notably in the KASCADE-Grande data. Therefore, a detailed new
analysis of the KASCADE-Grande data is necessary to clarify the anisotropy in the PeV
range, which is discussed in Chapter 6.
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Chapter 6

Anisotropy Studies with KASCADE-Grande

In the reported anisotropy studies of KASCADE-Grande so far, no significant dipole
anisotropy (more than 50) has been found [87, 288]. One reason for this is the lack of
sufficient statistics, and in combination with methodical uncertainties, even though the
dipole amplitudes in the respective energy range of the experiment are larger than 1073.
Interestingly, recent work [8] from LHAASO found a gamma-ray bubble spanning at least
100 deg? in ultra-high energy (UHE), up to a few PeV, in the direction of the Cygnus X star-
forming region. This bubble implies the presence of super PeVatrons capable of accelerating
protons to at least 10 PeV. This energy range is also covered by KASCADE-Grande, which
strongly motivates us to improve the significance of dipoles and medium-scale anisotropies
using KASCADE-Grande data.

To reduce systematic effects and enhance the significance of the reconstructed dipole,
we plan to apply the previously discussed angular-vector method to the measured sky
maps, which should help minimize uncertainties in the reconstructed dipoles. Besides, to
visualize the distributions of 2D equatorial dipoles, 3D celestial dipoles, and higher order
multipole harmonics, we will employ an optimized maximum likelihood (ML) method based
on that developed by Ahlers [143], and verify the large- and medium-scale features found
in the 33 PeV bin by propagating CR particles from a potential source (Cygnus) using the
CRPropa software [178] in this analysis.

6.1 The Experiment and Data Selection

The KASCADE-Grande experiment was an advanced air shower experiment dedicated
to observing cosmic rays (CRs) by detecting charged particles generated in extensive air
showers. The footprint of these showers and, in principle, the arrival times of particles
on the ground enable us to reconstruct the arrival directions of the CRs. The number of
charged particles (INg,) in the shower serves as an indicator of the initial energy of the
CRs. It was designed to study the composition and interactions of cosmic rays within the
energy range of 10® to 10'® eV, situated at the Karlsruhe Institute of Technology (KIT) in
Karlsruhe, Germany (49.1°N, 8.4°E,110 m), KASCADE-Grande expanded upon the initial
KASCADE experiment (104 — 1017 eV), which had been operational since 1996 [110]. This
extension involved integrating 37 additional stations, each equipped with 10 square meters
of plastic scintillation detectors, thereby enlarging the experimental area of KASCADE to
approximately 0.5 square kilometres [110], as shown in Figure 6.1.

Operating in tandem with the existing KASCADE detectors until data collection ended
in January 2013, KASCADE-Grande was arranged on an irregular triangular grid with
an average station spacing of 137 meters. The stations were grouped into 16 hexagons,
each consisting of seven modules that triggered upon full coincidence. This arrangement
enabled precise measurements of cosmic ray shower parameters, including arrival direction,
core location, and the total number of charged particles (N.,) [110] as well as the muon
number N, with the shielded detector of KASCADE. The main scientific objective of
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Figure 6.1: Layout of the KASCADE and the Grande arrays. The 37 Grande stations are
marked by circles, and the 16 KASCADE detector clusters by squares. Each of the 12
outer KASCADE clusters includes 192 shielded plastic scintillator stations for measuring
N,,. This figure is taken from [314].

KASCADE-Grande was to investigate the transition from galactic to extragalactic cosmic
rays, characterized by variations in the energy spectrum and mass composition. The
experiment identified a knee-like structure in the energy spectrum of lighter elements, such
as hydrogen and helium, around 10 eV, and a similar feature for heavier elements, such
as iron, near 80PeV [23]. Additionally, an ankle-like structure was detected at around
100 PeV in the spectrum of light cosmic rays [23].

A notable discovery from KASCADE-Grande was that the muon attenuation length
in the atmosphere exceeded predictions from existing hadronic interaction models [91].
This finding has significant implications for our understanding of cosmic ray air-shower
development and interaction mechanisms. KASCADE-Grande’s capability to measure
muon numbers with high precision provided critical data for testing and refining these
models [91]. The extensive dataset gathered over more than two decades has been made
publicly accessible through the KASCADE Cosmic Ray Data Centre (KCDC!), in line
with the Berlin Declaration on Open Data and Open Access. The ongoing analysis of
this valuable dataset continues to improve our understanding of cosmic ray physics and
contributes to the field of high-energy astroparticle physics [24].

For the current anisotropy study, we utilized data collected from March 2004 to October
2012, available through KCDC [24]. In the updated preselected datasets” from KCDC, we
choose ReducedData-GRANDE_runs_4775-7398_HDF5, which limits event arrival directions

!See https://kede.iap.kit.edu.
2See https://kedc.iap.kit.edu/datashop/fulldata/.
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to zenith angles below 40°. To facilitate comparison with previous anisotropy studies
by the KASCADE-Grande Collaboration [268, 87], we selected high-energy events with
Ng, > 10°2, where Ny, is the reconstructed total number of charged particles at the
observation level of KG. The data is categorized into three Ng, bins corresponding to
median energies of 2.7PeV, 6.1 PeV, and 33 PeV (see Figure 6.2 and 6.3). These bins are
defined by log;o Nen ranges of [5.2,5.6), [5.6,6.4), and > 6.4, respectively, with median
energies derived from Monte Carlo simulations [268]. All events are reconstructed with
zenith angles 6 < 40° and Ny, > 1052 are considered. The primary CR energy is estimated
from Ng,(0), which is adjusted to a reference zenith angle (6, = 20°) using the constant
intensity cut technique [268]. This energy estimate is based on a calibration function for
primary protons [315] using the QGSJetII-02 hadronic interaction model [316]. The total
systematic uncertainty is about 20% at E = 10'eV and rises to ~ 30% at E = 10'8¢V,
nearly independent of the hadronic interaction model [317]. These energy estimates are
conservative, as the actual CR composition is likely heavier than pure protons. The dataset
was also cleaned up by removing unnecessary array information for the data, meaning that
only events with valid information are retained, enhancing data quality and relevance.

Since the primary energies in the anisotropy studies using KASCADE-Grande data are
derived by converting the number of charged particles, Ng,, into energy, we examine our
data based on the N, distribution, as shown in Figure 6.2, and extract the corresponding
energy distribution around each energy bin. The distributions of Ng, of the three energy
bins can be fitted using two different functions:

A (Inz — M)2>
Ni(w) =Y erat + (— ,
) K AT aver P 202

Ny s(z) = Nexp[—k(x — z¢)],

where Np corresponds to the fit for the first energy bin, while N5 3 are used for the second
and third energy bins. For N, the fit consists of a second-order polynomial combined with
a log-normal distribution F,(z; i, o). The coefficients are given by ¢; = 1.212 x 100, ¢y =
—4.711 x 10%, c3 = 4.498 x 103, with a log-normal amplitude Ay, = 2.646 x 108, mean
p = 1.663, and standard deviation o = 0.075. For the second energy bin, the distribution
is fitted with an exponential tail of the form, where Ay = 2.725 x 107, ko = 4.294, and
x% = 5.6. For the third bin, the parameters are A3 = 6.669 x 10°, k3 = 4.575, and :1:8 = 6.4.
Note that N7 and Ny 3 are not normalized as probability density functions (PDFs), since
the amplitudes are included to represent the full event distributions.

The primary energies are estimated from the correlation between the true primary
energy and the reconstructed number of charged particles, which is carefully derived and
experimentally validated through extensive Monte Carlo simulation studies [315]. This
correlation considers both primary protons and iron nuclei, as well as different hadronic
interaction models. Under the assumption of a linear relationship on a logarithmic scale,
as obtained from fits to simulated data, the correlation is given by

Ig(E) = a; + bi - 1g(New), (6.2)

where F is in GeV, and the index i (ranging from 1 to 5) corresponds to proton, helium,
carbon, silicon, and iron, respectively. For protons and iron nuclei, the fit parameters are
ag = 1.23, bg = 0.93, and ap, = 1.75, br, = 0.90, respectively, based on a specified primary
composition [315]. The fit is performed within the range of full trigger and reconstruction
efficiencies with zenith angle 8 < 40°. Since the energy calibration relies on simulations, it
inherently depends on the choice of the hadronic interaction model. For the anisotropy

(6.1)
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Figure 6.2: Distributions of KASCADE-Grande charged particles, shown for the full dataset
(left) and zooming in on the high-energy (33 PeV) subset (right). The three lines indicate
the boundaries of the three energy bins used in our analysis. The full distribution is fitted
using a composite function: a log-normal distribution, a second-order polynomial in the
range 5.2 < 1g(Nep) < 5.6, and an exponential tail for 1g(Ne,) > 5.6.

studies, the QGSJetII-02 model is used for energy estimation [315]. For other nuclei, we
consider the interpolation between proton and iron by In A, where A is the nuclear mass
number. Then we can get the correlation for each nucleus given by lg E4 = a4 +ba-1g(Nen),
where a4 = ag + (ag — ape) In A/ In 56, and by = by + (bg — bpe) In A/ In 56. Finally, we
obtain the estimated fit parameters for helium, carbon, and silicon as follows: aye = 1.41,
bre = 0.92; ac = 1.55, bg = 0.91; and ag; = 1.66, bs; = 0.91, respectively.

Now we transform the measured all-particle charged particle distribution into an
energy distribution. This can be achieved by applying an “average” or reference energy
calibration. Alternatively, we can bin the data in energy by inverting the calibration
relation. Using the charged particle distribution N, (Figure 6.2), and the fit function
in Eq. (6.1), we convert the differential distribution dN/dlg(Ng,) into the corresponding
energy distribution dN/d1g(E), and keep the binning in lg(F) space is properly handled.
Now, by differentiating the calibration relation Eq. (6.2) with respect to 1g(E) and lg(Ney),
we obtain the corresponding transformation of the differential distribution for a specific
component ¢, which is in a Jacobian form:

dlg(E)  dlg(Nay) dlg(E)  b; dlg(Nay)’

Assume the original histogram is binned uniformly in lg(N,) with a bin width of Alg(Ne),
(e.g., 0.1). To convert the binning into 1g(FE) space, the bin edges are mapped using
the calibration relation. For a bin in 1g(Ny,) with edges x; and z;41 = x; + Az, the
corresponding edges in 1g(E) space are y; = a; + b; x; and y;+1 = a; + b; (z; + Az). The
bin width in 1g(E) is then given by Alg(E) = b; Alg(N,). This bin mapping guarantees
that the total number of events is conserved:

dN AN
Z <dlg(NCh) Alg(Nch)> = Z (dlg(E) Alg(E)) . (6.4)

i J

(6.3)

In our data, the all-particle lg(N¢p,) distribution originates from a mix of different compo-
nents, each of which would be converted with its own slope b;. When only the combined
distribution is available, one can define an effective slope beg(E) as a weighted average of
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Figure 6.3: Distributions of the KASCADE—-Grande energy samples extracted from the
lg(Nep) histograms shown in Figure 6.2, displayed for both the full dataset (left) and a
zoomed-in view of the 33 PeV subset (right). The three vertical lines indicate the boundaries
of the energy bins used in our analysis. The full distribution is fitted using a composite
function consisting of a log-normal function in the range 5.2 < lg(N,) < 5.6, while only
exponential tail fits are applied to the lg(Ng,) > 5.6 distributions.

the slopes. Let f;(E) denote the fraction of events from the component i at the energy bin
E (with >, fi(E) = 1). An effective calibration slope is defined as

beff(E) = ZfZ(E) bi, (65)

where i = 1,2...,5 and the functions f;(E) can be derived directly from the published
KASCADE and KASCADE-Grande all-particle spectrum measurements [119] and available
KCDC dataset!. The full set of resulting curves for f;(FE), which quantify the effective
spectral slopes for each of the defined energy intervals, is shown in Section 6.5 (see Fig-
ure 6.28). Using this effective slope, we can directly transform the all-particle distribution
dN/d1g(Ne,) into the corresponding energy distribution consistently and continuously
without needing first to separate the sample into individual mass components. As a result,
the resulting energy distribution for the combined mass composition, valid over a given
interval in lg(Ng,) range, is given by:

dN 1 dN
= , (6.6)
dlg(E)  be(E) dlg(Nen)
with the new bin width in energy space given by Alg(E) = beg(E) Alg(Nep). After applying
all the above steps, the total event count remains conserved as mentioned previously. The
result is presented in the left panel of Figure 6.3.

Finally, the full reconstructed distribution is fitted using a composite functional form
that combines three components: a log-normal distribution describing the lower part of the
spectrum, a second-order polynomial valid in the intermediate range 5.2 < 1g(Ng,) < 5.6,
and an exponential-tail function applied to the region lg(N.,) > 5.6, which can capture
the steeply falling behaviour at lower particle counts. From this fit, the lower and upper
bounds of the central 68% containment of the distribution are 6.00 and 6.55 in lg(E/GeV),
respectively. The resulting effective energy interval associated with the 2.7 PeV sample

1See https://kedc.iap.kit.edu/spectra,/.
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is found to be (6.22,6.60) in Ig(£/GeV). For the 6.1 PeV sample, the parameters of the
exponential-tail probability density function, as defined in Eq. (6.1), are obtained from
the fit to be A = 4.99, k = 4.66, and x¢ = 6.60. Similarly, for the 33 PeV sample, the
corresponding fit parameters are A\ = 1.61, k = 4.75, and xg = 7.41. As part of these
procedures, the median primary energy of each bin can also be estimated. For example,
the median energy for the 33 PeV bin is determined using the condition 1g Ng, > 6.4, with
an upper limit of (Ig Ngp)max ~ 8, which corresponds to the lower boundary of the true
33 PeV true energy bin, reported in [87]. Based on this, the energy range in lg E4 for each
nuclear species is estimated to be: 1g(E/GeV) = (7.18,8.67) for protons, (7.30,8.77) for
helium, (7.37,8.83) for carbon, (7.48,8.94) for silicon, and (7.51,8.95) for iron.

6.2 East-West and Rayleigh Analysis

The KASCADE-Grande data set used in this analysis covers a total observation period
of roughly eight years, as mentioned. During this period, the detectors experienced
partial operations and shutdowns, along with environmental effects such as variations in
temperature and atmospheric pressure. Consequently, these time-dependent effects can
lead to non-negligible biases in the inferred anisotropy signals, particularly when studying
small amplitudes at the 1073 level or above. Therefore, it is necessary to examine the data
in different time frames, such as solar time, anti-sidereal time and segmented local sidereal
time. In parallel, we apply both the East—West method and the classical Rayleigh analysis
to cross-check the stability of any detected modulation in the anisotropy studies.

6.2.1 Time Frames and Dipole Anisotropy

Sidereal time is a star-based astronomical timing system, in which the local sidereal time
(LST) at an observatory corresponds to the right ascension of the celestial objects that are
crossing the local meridian at that particular moment [272]. In cosmic-ray anisotropy studies,
one challenge is variations in the data, which are caused by natural and human activities
that directly affect the observed anisotropy patterns and introduce additional components.
Fortunately, when the distribution of solar days in the data is sufficiently uniform, and the
dominant systematic effects originate from natural (non-human) environmental variations,
the East—West method can cancel the distorted components of the sidereal anisotropy [287,
288]. However, the large time gaps in data can still cause inconsistencies in the anisotropies.
Therefore, we will examine the data in the solar, sidereal, and anti-sidereal time frames to
better understand the sources of these inconsistencies.

Solar time is the standard time based on the Sun, consisting of 24 hours per day. The
analysis of data with solar time can reveal systematic effects, including those caused by
human activities and the Sun’s regular influence on the environment, such as temperature
and pressure variations. Additionally, many observatories, including KASCADE-Grande,
have temperature-sensitive electronic components. If these electronics respond slightly in
sync with the Sun, they may introduce artificial anisotropies due to changes in response,
trigger, and threshold stability. If anisotropy is detected in solar time, it suggests local
environmental effects rather than true cosmic-ray anisotropies.

A sidereal day is not exactly 24 hours; it’s about 23 hours, 56 minutes, and 4 seconds
long (or a sidereal day Dgiq = 23.93447 hours), roughly 4 minutes shorter than the 24-hour
solar day. This small difference must be considered when searching for genuine cosmic-ray
anisotropies. The relationship between solar time and sidereal time is Tyiq = Tso1(Dsol/Dsia)-

114



CHAPTER 6. ANISOTROPY STUDIES WITH KASCADE-GRANDE

—— Sidereal
—— Anti-sidereal
1.30 1 Solar

—— Average

S

=

c

g 1.25

n

—

()

a

]

$1.20 1

>

w

1.154

24 22 20 18 16 14 12 10 8 6 4 2 0
Time [hour]
Figure 6.4: Event distributions (23.7 million events in total) from the selected KAS-
CADE-Grande dataset (see Figure6.3), each folded into 0-24 h cycles and displayed in the
sidereal, anti-sidereal, and solar time reference frames.

Anti-sidereal time is a totally “fake” time system, which is the opposite way of the sidereal
time and a bit longer than a solar day, since the anti-sidereal timescale is defined as
Tanti = Tso1(Dsia/Dso1), which corresponds to 24 hours and 4 minutes per day (or 24.0657
hours). This corresponds to a bias in the reference frame, where a day is 4 minutes
longer than a solar day. This defines the so-called anti-sidereal time [318, 319], which
is a non-physical time frame. If an anisotropy appears in anti-sidereal time, it cannot
originate from real astrophysical sources but may instead result from systematics related
to non-regular environmental conditions, instrumental effects, or exposure variations. For
example, detection efficiency may fluctuate throughout the day due to operational or
environmental changes. Additionally, periods of detector operation and shutdowns can
lead to irregular exposures. A strong signal in anti-sidereal time indicates potential issues
with data-taking procedures or exposure modelling. The distribution of KASCADE-
Grande data with Ng, > 10%2 in sidereal, anti-sidereal, and solar time (day) is shown
in Figure 6.4. A noticeable variation in solar time suggests a strong influence from the
Sun on the environment or daily human activities, particularly those of researchers at the
observatory doing maintenance of the detectors. Meanwhile, sidereal and anti-sidereal time
exhibit similar variation amplitudes, but their periods and phases are difficult to determine.
Although the solar-time variations are strong, they reflect instrumental and environmental
effects rather than true signals. True cosmic-ray anisotropy is locked to the sidereal period,

Table 6.1: Amplitudes and phases of sidereal dipoles for the two subsets of each energy
bin, shown for both the seasonally divided data and the time-ordered data splits.

Eregy  A9(1070)  af'()  APT(0) o) A0 af'()

Total 0.57+£0.15 339.60+£15.28 2.55+0.74 137.59£16.53 1.90+0.45 191.59 £+ 13.46
2.7PeV 048+ 0.17 335.97+20.03 251+£0.78 140.17£17.72 1.794+0.45 191.55+ 14.43
6.1 PeV 0.86+£0.25 349.56+16.43 2.70£0.69 132.424+14.50 2.20+0.57 189.30 £ 14.80
33 PeV  237+£1.78 239.66 £42.99 3.57+£2.06 75.25£33.26 4494228 253.34 £29.28
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Figure 6.5: Relative intensity of cosmic-ray arrival directions in sidereal, anti-sidereal,
and solar time frames using the East-West method, using a first-harmonic function. The
dipole amplitude in the anti-sidereal time frame exceeds the statistical expectation from
the sidereal frame, and its phase appears largely inverted, indicating residual systematics.

so solar-day fluctuations should weaken when the data are folded in sidereal or anti-sidereal
time. However, the anti-sidereal distribution still exhibits large variations, comparable to
those in sidereal time, revealing residual systematics.

To reduce acceptance-variation effects in the data, we apply the East—West derivative
method [287, 288] to analyze anisotropies in each energy bin. To fit the data to a pure
dipole, we perform the least-squares fit of Eq. (2.50), which models the differential relative
intensity at each local sidereal time bin 7 as

0001 (0;) = —Agig sin (ar — aq), (6.7)

where Agiq is the amplitude of the equatorial dipole and «ayq is its phase, and assuming
the pure dipole §I(a;) = Agiq cos (o — aq). The observed values of 9,0I(a;) are those
calculated from the data via the right-hand side of Eq. (2.50). As mentioned in Section 2.2.3,
this method derives the relative intensity with respect to the binned and modelled right
ascension (R.A.), automatically accounting for time-dependent variations in detector
exposure by assuming equal acceptances from the eastern and western half-sectors of the
sky. Therefore, in principle, it can smooth out long-term systematic biases and diurnal
variations, especially in cases of slight directional or seasonal shifts, while remaining less
sensitive to detector acceptance variations or atmospheric effects. Figure 6.5 presents the
reconstructed dipole anisotropies of the arrival directions across the three time frames using
the East-West derivative method, with detailed results provided in Table 6.1. However,
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across the three time frames, the full dataset as well as the 2.7PeV, 6.1 PeV and 33 PeV bins
all show solar and anti-sidereal dipole amplitudes larger than the corresponding sidereal
amplitudes, revealing significant time variations or systematic biases in the data that
the East-West method cannot completely eliminate. For the three bins, each sidereal
dipole always exhibits inverted phases compared to the corresponding anti-sidereal dipole,
suggesting that systematic effects dominate the signal rather than a true cosmic anisotropy.
Because true anisotropy only appears at the sidereal period, any signal that also shows
up at the anti-sidereal period, especially with opposite phase, likely reflects solar-day
systematics leaking into the observed dipole phases. Therefore, splitting the data in time
is necessary to find, understand, and eventually mitigate these systematic effects.

6.2.2 Data Splitting Checks

To examine systematic effects in the data with details on sidereal anisotropy, we split
the datasets for each energy bin into two independent time-based subsets. We then
reconstructed the sidereal anisotropy separately for each subset to compare their consistency.
One approach is to check for seasonal dependence, as done by IceCube, where the data were
divided into austral summer and austral winter sets [319]. Another approach is to split the
dataset into two time-ordered bins, as performed by the Pierre Auger Observatory [89].
These two ways would help identify potential systematic effects that could or noticeably
influence the observed anisotropy.

We first split the total dataset and each energy bin (2.7PeV, 6.1 PeV and 33 PeV) into
winter (1 October—31 March) and summer (1 April-30 September) subsets to investigate
possible seasonal influences and environmental dependencies in the measured anisotropy
signals. For each of these subsets, we then repeat the full dipole reconstruction using the
East—West method exactly as described previously, applying identical binning and fitting
procedures to ensure direct comparability between the two subsets. The corresponding
results are shown in the top four panels of Figure 6.6. From this comparison, we observe
that, for the total dataset as well as for the 2.7PeV and 33 PeV bins, energy bins, the
dipole amplitudes obtained in winter and summer remain broadly consistent with one
another, although the associated dipole phases show the largest degree of variation between
the two seasons. In contrast, the 6.1 PeV bin shows a noticeable difference in amplitude
between the two seasons: Aj;, decreases from 0.0145 in winter to 0.0037 in summer, yielding
AA of 0.0108 (corresponding to roughly an 3o effect), while its phase remains largely
unchanged. These results indicate significant seasonal variations in dipole phase across all
samples, which may still reflect residual atmospheric or detector-related systematics not
fully corrected by the derivative East—West method.

To investigate possible long-term effects in the data, we next divided each energy
sample into two chronologically ordered halves (2004-2008 and 2008-2012) to examine
potential temporal drifts and stability in the reconstructed anisotropy parameters over the
full observation period. We find that the dipole amplitudes remain consistent only for the
33 PeV, while all three bins exhibit phase shifts of 20° — 40° (exceeding their combined
uncertainties), as shown in the bottom four panels of Figure 6.6. This indicates that the
observed variations are not random but arise from underlying systematic effects, such as
hardware upgrades or calibration changes, or evolving data-quality cuts that alter the
detector’s exposure profile over time and cannot be removed by simple seasonal splitting.
Detailed dipole amplitudes and phases of the 3 bins are listed in Table 6.2. Therefore, a
more detailed examination of the filtered data is necessary to identify the specific causes.
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Figure 6.6: Comparison of the sidereal dipole for all three energy bins and the full dataset,
using the derivative East-West method, under both seasonal and time-ordered data splits.
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Table 6.2: Amplitudes and phases of sidereal dipoles for the two subsets of each energy
bin, including both seasonal (winter and summer) and time-ordered data splits.

Median £ Season Ap(1072) aq(®) t-order  A,(1072%) aq(®)
Total Winter  0.86 + 0.21 0.40 + 14.17 Bin1l 0.55£0.29 3.05 + 30.57
Summer 0.45+0.15 299.22+18.33  Bin 2 0.67 +0.15 320.62 £ 13.31
9.7 PeV Winter  0.68 + 0.22 5.22 +18.40 Bin 1 0.43+£0.37  26.87 £49.08
Summer 0.504+0.20 295.98 £22.47 Bin 2 0.77 £ 0.17 310.60 £ 12.67
6.1 PeV Winter 1.454+0.45 355.88+£17.84 Bin 1l 1.144+0.36  340.07 £ 18.28
Summer 0.37+£0.26 324.77+39.53 Bin2 0.63+0.32 6.93 £+ 28.67
33 PeV Winter  2.21 +2.82 276.90 £ 73.02 Bin 1 3.71+£3.14 172.32+48.54

Summer 3.174+2.38 217.08£43.07 Bin2 4.76+244 285.51 £ 29.36

6.2.3 Data Quality Filtering

Since the above analyses reveal significant anisotropies in all time frames, one can examine
the distribution of events across all sidereal days to better visualize temporal and directional
variations in detector exposure. This can be done using a 2D histogram that maps the
counts of arrival directions at each sidereal hour (or in half-hour intervals) throughout all
recorded sidereal days and observation periods for the full data sample of a given energy
range, and the details of the data collection can be directly displayed for further comparison
between different energy bins and observation seasons.

First, we remove all sidereal days that are essentially empty, as such days do not
contribute meaningful exposure and can distort the temporal structure of the dataset.
Next, we clean the full dataset by excluding sidereal days that contain one or more
substantial time gaps, thereby ensuring a more uniform exposure and a reliable temporal
coverage across the entire observation period. Specifically, each 24-hour sidereal day is
divided into 48 half-hour bins, and any day with a total gap (i.e., bins containing fewer than
100 events) exceeding 2 hours is removed, improving data stability. The data distributions
before and after filtering are shown in Appendix C. Moreover, Figure 6.7 shows that, after
filtering, sidereal and anti-sidereal variations are reduced while the solar variation remains
large, reflecting normal daily fluctuations; overall variability is lower than before. The
solar-time variations can be suppressed in the sidereal fold used for anisotropy studies.
Still, any residual solar-day signal that isn’t perfectly removed will leak into the sidereal
analysis at a reduced amplitude (typically at the 10=% level). We therefore fit the data to
the dipole model to dig into these details.

Next, we split the filtered data and performed dipole reconstruction via the EW
derivative method, utilizing Eq. (6.7) for fitting. After reconstruction, the R.A. phases for
the total dataset and the 2.7 PeV and 6.1 PeV bins agree within 1o uncertainties in the
two-part comparison, whereas the 33 PeV bin remains a large shift that persists across
multiple checks. We then compared these results with those from the unfiltered dataset (see
Figure 6.8) to evaluate the impact of data filtering. The reconstructed dipole amplitudes
are consistent between the two time-ordered subsets for all energy bins. The phase biases
are reduced in the 2.7PeV and 6.1 PeV bins but remain too large as before in the 33 PeV
bin. This persistent disagreement most likely indicates additional time-dependent effects
in the data, even though the EW method already corrects for angular acceptance and
livetime variations [288]. Alternative anisotropy reconstruction methods are needed to fix
the time gaps and further subtract the time-dependent variations from the data.
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6.2.4 Rayleigh Analysis with Time-Scrambling

For reconstruction methods other than the East—West technique, it becomes essential to
account explicitly for data calibration effects. Since our dataset contains sidereal gaps and
many days have time gaps, where certain hours are underrepresented or even missing, the
effective exposure is nonuniform over time, as seen in the 2D event distributions along
sidereal days shown in Appendix C. Filtering the dataset improves the situation, but cannot
eliminate these exposure variations, since gaps of different magnitudes persist across the
entire observation period. To further reduce them, we apply a time-scrambling technique
to the data. In this approach, each recorded event retains its local arrival direction (zenith
and azimuth angles), but its R.A. is recalculated using event times randomly selected from
a predefined time window AT around the original event time. In our analysis, we use a
24-hour window, following the method applied by IceCube [139], which maintains sensitivity
to angular structures on all scales. Notably, scrambling event times while preserving the
zenith angle in local detector coordinates is equivalent to randomly altering the R.A. within
the same declination band, with the width determined by the chosen pixelization [139].

When performing the scrambling, live-time gaps are preserved in the resulting dataset,
thus making the background data directly comparable. Each recorded event is characterized
by event time ¢; (seconds), original right ascension «, local arrival direction zenith 6; and
azimuth ¢;. To generate a scrambled dataset, we randomly assign new times ¢, to each
event within a predefined time window

ti=t;+0t, &t ~U(-AT/2,AT/2), (6:8)

where 6t is uniformly drawn from the time interval (—AT/2, AT/2). Following the method
applied by IceCube [139], where AT = 24 sidereal hours. The sidereal time at ¢, denoted
by Ogiq(t), increases linearly due to the Earth’s rotation:

O4id(t) = Ogia(to) + wsia(t — to), (6.9)

where ©Ogq(to) is the sidereal time at the reference epoch tg, wsig ~ 27/23.93 is the Earth’s
sidereal angular velocity, (t — tg) is the elapsed time in seconds. The reference epoch ty is
typically chosen based on astronomical standards or the dataset’s initial timestamp. Using
the newly assigned event time ¢/, the sidereal time is updated as:

@sid(tg) = Ogq(to) + wsid(tg —tp). (6.10)
Given the hour angle H; of the event, the new right ascension is
&; = Oga(t;) — H; (mod 360°), (6.11)

and local arrival direction (6;, ¢;) remains unchanged while only the RA is randomized.
The scrambled data is then («,§) < (a;, d;). It is worth noting that scrambling the local
sidereal time of arrival events is equivalent to scrambling the RA coordinates within the
same declination ring as the original arrival directions, making it a simpler approach
compared to the time-scrambling, namely

t; + 0t
3600's

Oéi:ai'i‘

15°, (6.12)

24h

where the |.| symbol denotes that the scrambled time is constrained within the range of 0
to 24 hours. As a result of this construction, the difference between the true distribution
of arrival directions and the corresponding reference maps, where each declination band is
independently normalized, remains sensitive to anisotropy in right ascension only.
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Figure 6.10: Comparison of the Rayleigh and Fourier analyses using right ascension bins.
The top four plots show the original data without filtering, while the bottom four plots
show the filtered results. Both without time-scrambled data as the background.
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Figure 6.11: Comparison of Rayleigh and Fourier analyses using right ascension bins. The
data are unfiltered, with time-scrambled data used as the background. The top right panel
shows a smaller anti-sidereal dipole amplitude than the sidereal case. The bottom-left and
bottom-right panels correspond to the first and second halves of the dataset, respectively,
split in sidereal time, and reveal a large bias in dipole phases.

The standard Rayleigh analysis (see Section 2.2.1) for large-scale anisotropy studies does
not account for acceptance or exposure variations, and therefore requires explicit corrections
for these data fluctuations [278]. When the FoV approaches full-sky coverage, the obtained
amplitude corresponds to the actual projected equatorial dipole A;f) = Apcosdq, where
p = (cos d); otherwise, it will be shifted and requires a 3D reconstruction model for precise
dipole recovery. In our dataset, sidereal gaps and uneven event distributions over sidereal
time introduce nonuniform exposure, as mentioned, as illustrated in Appendix C; therefore,
we employ time-scrambling. After time scrambling, the dataset is used in the weighted
Rayleigh analysis, where each scrambled event is assigned a background. Then, we subtract
the background from the data, the effective Fourier coefficients a; and by, are computed as

ap = ag — aE and by, = bg — bz, namely,

2 N 2 niN B 2 N 2 niN
ag = N ;COS ko — nN]; coskai™, b= N ;sin ko — an;sin kai™, (6.13)

where a}i and bg denote the harmonic coefficients computed directly from the data using
the original right-ascension values «;, while a}; and b}; are obtained from the scrambled
aj, denoted by a". Here, N is the total number of cosmic-ray arrival directions, and n
represents the number of times the data is scrambled to obtain a background. For the
33 PeV energy sample, we n = 200 for scrambling to achieve a smooth and high-precision
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Figure 6.12: Comparison of Rayleigh and Fourier analyses using right ascension bins. The

data is filtered, and time-scrambled data are used as the background. The top right panel

shows a smaller anti-sidereal dipole amplitude than the sidereal case, while the bottom

two plots of the split data reveal a large bias in dipole phases.

background. Once the difference between the data and background coefficients is obtained,
the harmonic amplitude and corresponding phase are obtained as

= 1 b
re =1/ az + b2, o= Earctan -+ (6.14)

Qg
with k = 1, it yields the dipolar component in the harmonics. Considering the standard
propagation of errors, we obtain that the uncertainties of r; and ¢ are

[2(1+1/n) 1 2(1+1/n)

=\NTN o TN N
which shows that the background subtraction increases the variance slightly by a factor of
(1+ 1/n), thereby accounting for the additional uncertainty introduced through the finite
number of scrambling realizations used to construct the background. The corresponding
p-value P(> r) in this analysis is the probability of obtaining an amplitude equal to
or larger than the observed sidereal dipole amplitude r under the null hypothesis of
isotropy [131], which is the tail probability of the Rayleigh distribution. Assuming r, = a
and ry = b are the independent Gaussian random variables with zero mean = 0 (because
the vectors are uniformly distributed) and variance o2, their joint probability density
function is the product of two 1D Gaussian: f(ry,r,) = (1/270?) exp(—(r2 + r2)/20%)),
which satisfy [[ f(ry,ry)dry dry = 1. Using the polar coordinates (r,6) with r, = rcos@

(6.15)
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and R, = rsin6, the area element becomes dr, dr, = rdr df. Integrating out ¢ then gives
the Rayleigh PDF for the magnitude r:

oo r2m 72 r2
P(>r)= /r /0 507 exp(—ﬁ> rdfdr = exp <_ﬁ> , (6.16)

where the Gaussian’s variance 02 = 1/N for the standard Rayleigh analysis. In our case,
where the background is subtracted, substituting o, from Eq. (6.15), one obtains:

2
P(>r) =exp (—M) , (6.17)

where 1/n contributes a weight to each scrambled event. If n is large (say n = 20),
then (1 + 1/n) ~ 1.05, which is only a small correction compared to the standard case
P = exp(—Nr?/4). A small value of P, therefore, indicates significant deviation from
isotropy. The corresponding significance in standard deviations is ¢ = /2 - erfc_l(p).

In addition to the Rayleigh analysis, we apply a Fourier analysis to the binned right
ascension (RA) distribution to investigate the first harmonic and the first 5 components of
harmonics. The Fourier analysis involves binning the cosmic-ray arrival directions in RA
and computing the relative intensity within each bin. The number of events in each RA bin
is determined from the observed dataset, while a background distribution is generated using
time-scrambled data. By comparing the observed event counts to the expected background,
we compute the relative intensity as 61 = N3/N — 1 for each RA bin. The data is then

Table 6.3: Shown are all four cases: (1) original data without filtering or scrambling, (2)
filtered data without scrambling, (3) original data without filtering but with scrambling,
and (4) filtered data with scrambling. The table lists amplitudes, phases, and p-values
from the Rayleigh and Fourier analyses using right ascension bins. Results are presented
for sidereal and anti-sidereal anisotropies, as well as for the first and second halves of the
dataset split in sidereal time. The last case provides a more stable reconstructed dipole
amplitude; however, the phase still shows a large bias between the two split parts.

33 PeV R (1072) oRY (©) P-Ray r1°"(1072) ofou(°) P-Fou
Sid (original) 14404 17456 +1553 0.0011 14404  175.284+16.46 0.0010
Anti (original) 0.9+04  265.61+24.05 0.058 0.9+04  266.70 +28.03 0.0653
1/2 (original) 21405  170.88+14.28 0.0003 2.1+0.5  171.94+14.76  0.0003
2/2 (original) 0.6+0.5  186.57+46.29 0.4649 0.7+0.5  188.41+4515 0.4364
Sid (filter) 0.6+£04 2123143724 0.3061 0.6+04  213.04+36.56 0.2743
Anti (filter) 0.5+04  275.07+49.97 05183 05+04  273.13+50.18  0.4856
1/2 (filter) 1.340.6  21489+2551 0.0803 1.34+05 2156442383 0.0707
2/2 (filter) 0.1+£0.6  88.55+£470.91 0.9926 0.1+0.6  297.99+586.74 0.9954
Sid (ori4-scr) 02404  295.64+87.07 0.8053 0.2+04  290.28 £87.05 0.8053
Anti (oritscr) 02404 201.69+11894 0.8905 0.2+0.4  198.30 +136.58 0.9159
1/2 (ori+scr) 0.240.5 227.11+13548 0.9145 03405  229.03+114.75 0.8818
2/2 (oritscr) 0.5+05  297.154+65.09 0.6788 0.5+0.5  292.56 +63.52  0.6681

Sid (filter+scr) 0.4+0.4 297.50 £63.93  0.6692 0.4+0.4 291.91+£63.24  0.6650
Anti (filter+scr) 0.2+0.4 199.59 £125.71  0.9013 0.24+04  202.78+113.02 0.8798
1/2 (filter+scr) 0.3+0.6 219.74 +£100.75 0.8507 0.4+£0.6 220.54 £87.64  0.8059
2/2 (filter+scr) 0.4+0.6 308.15 £ 78.65  0.7669 0.4+0.6 302.26 £81.09  0.7790
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fitted to a harmonic expansion, 61 = )", Ay cos (ka — @), where k ranges from 1 to 5, as
the monopole term in this analysis is zero.

The results are shown in Figure 6.11 for the 33 PeV energy bin only, to address the issue
of large biased phases as illustrated in Figure 6.8, without filtering, and in Figure 6.12 with
filtering applied (days with total gaps exceeding two hours, i.e., bins containing fewer than
100 events, are removed). The first-harmonic fits from the Fourier analysis closely overlap
with the dipole curves obtained from the Rayleigh analysis in all cases. The anti-sidereal
dipole amplitude falls within the 1o uncertainty range of the sidereal dipole, but the phases
remain inverted. Additionally, the first half of the dataset always exhibits a significant
dipole phase bias compared to the second half. Moreover, medium-scale anisotropies from
higher-order harmonic fit curves exhibit significant instability across the two time periods.
Furthermore, as seen in the bottom-right plot of Figure 6.8, the split data analyzed with
both Fourier and Rayleigh methods display smoother variations along right ascension, but
show shifted dipole phases compared to results obtained with the derivative East-West
method. Detailed values obtained from the Rayleigh analysis are provided in Table 6.3,
corresponding to the plots shown in Figures 6.10, 6.11, and 6.12.

To conclude, neither the East—West derivative method nor the optimized Rayleigh
analysis can fully resolve the time—variation issues observed in the reconstructed dipoles
across the three considered energy bins. Firstly, this may be because the time gaps continue
to introduce artificial effects and uncertainties in exposure. In particular, if missing or
removed sidereal days, as well as the non-uniform detector acceptance, are distributed
unevenly throughout the year, they can create a seasonal imbalance that also leaks into
the sidereal and anti-sidereal frames, shifting the residual dipole. Besides, we suppose the
data filtering does not perfectly remove solar diurnal or seasonal modulations. In that case,
some of that power can also leak into the sidereal and anti-sidereal frames, introducing
long-term systematics that were previously averaged out over time [320]. Therefore, rather
than discarding entire days with long gaps, it is preferable to assign weights to each sidereal
day based on the background, which has an effective time-dependent acceptance, and
reduce these biases without losing valuable exposure. A more precise approach is therefore
required, one that balances limited statistics with data stability.

6.3 Analysis with Angular-Vector Method

To achieve a higher level of precision in the reconstruction of potential anisotropies—and
to further suppress the systematic effects that particularly affect dipole measurements,
as discussed in Section 6.2, we perform an analysis using declination-dependent angular
vectors and self-defined coordinate angular vectors within a full 3D dipole framework.
This method reconstructs cosmic-ray dipole anisotropies, which is particularly effective
in low-statistics scenarios. It analyzes the angular distribution of vectors and propagates
uncertainties from vector components to the resultant dipole. The process begins by
summing individual vectors on a celestial belt to obtain a resultant vector representing
the pseudo-dipole moment. Two cases are considered: the first involves declination belts
perpendicular to the z-axis, which are used to extract the dipole phase (right ascension)
and the combined dipole amplitude of the vertical and horizontal components of the belts.
The second case involves solid angle belts that are perpendicular to the y-axis, which
incorporates both the vertical and horizontal components, but within a different geometric
framework. These belts can be well modelled under the assumption of a pure dipole, which
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Figure 6.13: Declination bands in the angular-vector method: The left plot represents the
d-belt approach, while the right plot represents the ©q-belt approach. The purple vectors
in both cases represent the data, while the red vectors, Df and Dy, represent the resultant
vectors obtained from the averaged data vectors.

yields an integrated dipole distribution to serve as the theoretical model and is directly
comparable to the summed data vectors.

In both cases, we include the reference (background) from time-scrambled data and
apply acceptance weights to both the data and reference vectors, strengthening the true
signal while reducing natural and artificial noise. By comparing these two integrals, the
method uncovers the relationship between the three-dimensional dipole amplitude and the
declination, allowing for an accurate and self-consistent determination of both quantities.
It is important to emphasize that the standard Rayleigh analysis [131, 321] corresponds
to a special case of our method in which no weights are applied to the vectors and the
reference (background) vectors are not subtracted, and it is therefore unsuitable for precise
reconstructions for anisotropy studies.

For the first case, namely, the J-belt shown in the left panel of Figure 6.13, we project
the three-dimensional dipole distribution onto each declination belt and integrate it over
the full right-ascension range, o from 0 to 27w. These J-belts lie within the FoV of an
air-shower observatory such as KASCADE-Grande, and, for simplicity, their acceptance is
normalized through the application of the time-scrambling procedure. The method starts
by analyzing 2D vectors within a declination ring, u = (ug, u,), where the dipole direction
and amplitude are encoded in the average resultant vector. This approach considers two
cases: one using only pure 2D vectors, and the other performs dipole reconstruction using
those 2D vectors together with each arrival direction’s individual z components, though
the combination is not treated as a full 3D vector. The analysis focuses on unit vectors
within d-belts, where the dipole excess is extracted by summing and averaging vectors and
performing self-cancellation across the full plane. When the entire FoV covers the full sky
and is treated as a single belt, with a large event count and no weights or background
subtraction, the result aligns with the standard Rayleigh analysis [131]. In both cases,
the dipole excess is expressed in terms of vertical and parallel dipole components. The
relationship between A and dq is then derived by equating the data average to the average
of the integral dipole distribution function. In addition, the dipole phase aq.
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Since the true dipole orientation is not necessarily confined to the equatorial plane,
estimates of the dipole phase and declination can become biased at high declinations
due to the limited FoV and the predominance of equatorial dipole components in the
measurement. Therefore, as an important cross-check, we perform a second reconstruction
using a different class of belts, denoted by ©q-belts, defined in our custom coordinate
system (see the right-hand plot in Figure 6.13). In this configuration, the ©g-belt examines
dipole distributions within solid angle belts that are oriented perpendicular to the y-axis
on the celestial sphere, utilizing spherical coordinates. Each such belt is constructed
by selecting a specific angular interval ©¢q, around the y-axis, forming rings and belts
on the celestial sphere with corresponding 2D vectors in the xz-plane. The FoV can be
divided into two or more belts for analysis, depending on the available statistics and the
existence of higher-order harmonics. As Oq varies, a narrow ring extends into a belt,
enabling the analysis of vectors within specific angular regions. To reconstruct the dipole
amplitude and orientation on a given ©g-belt, we evaluate the two-dimensional vectors in
the zz-plane alongside the individual y-component of each event’s arrival direction, which
includes the three-dimensional dipole information within that band. The vector intensity
on the belt is calculated as the deviation from a corresponding reference belt, derived from
time-scrambled data and located symmetrically opposite the ©q-belt. The resultant vector
on the belt is obtained by averaging the vectors and subtracting the summed reference
vectors, incorporating weight as before, which accounts for acceptance variations. The
magnitude of each vector is corrected for geometric projection effects at different Oq along
a belt. The summation of vectors is mathematically equivalent to integrating a dipole,
representing an integral component that forms an equation. The equations derived from
different belts are used to determine the dipole amplitude and orientation, ultimately
leading to the recovery of the global dipole. In the following, the method will be introduced
in detail and then applied to the selected KASCADE-Grande dataset.

6.3.1 Vectors on Declination Belts

Now, we approach the problem from a theoretical standpoint to determine the components
of the dipole amplitude for the averaged relative intensity on both the d-ring and belt. The
2D vectors within a d-ring, denoted by u = (ug, uy), follows a dipole distribution. Although
the observatory’s acceptance rate is not uniform across the ¢ range within the d-ring,
specifically within a small § interval ring, this non-uniformity in acceptance primarily
influences the uncertainty and precision associated with dipole estimation, rather than
altering the fundamental characteristics or main features of the dipole itself. Each §-ring
yields the same dipole phase, and its amplitude is independent of the ring’s declination
coordinate, varying as sin 4. Moreover, the discussions regard the symmetry of the dipole’s
excess and deficit as equivalent to fitting only the first harmonic for the dipole, thereby
allowing the small-scale anisotropies to be disregarded. When taking into account the
spherical geometry associated with equatorial coordinates, the distribution of vectors across
the entire celestial sphere follows an intensity function, which is represented as:

Z(e,0) =1+ Asindqsind + A cos dq cos d cos (o — aq), (6.18)

where dq and aq represent the dipole’s declination and right ascension, respectively, while
A denotes the dipole amplitude. A detailed discussion on this is given in Chapter 5.
The dipole amplitude of the a-component (which is projected onto the equatorial plane,
specifically the zy-plane) with maximum field of view is denoted as A, = A cos dq, whereas
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the d-component (which is projected onto the z-axis) is given by As = Asindq. In the
scenario where the ¢§ interval is finite, the §-ring becomes a d-belt.

We now begin the reconstruction using the d-belts, where each event is represented by
a vector corresponding to its cosmic-ray arrival direction. In the three-dimensional dipole
reconstruction, the 2D vectors in the equatorial plane are combined with the z-component
of each arrival direction, allowing the dipole amplitude and phase to be recovered using
the information contained within a single belt. To carry out this procedure, we first
divide the full FoV into a series of d-belts, each containing 2D vectors (u). Focusing on
one single belt, if its § interval approaches zero, it becomes a d-ring, labelled as ;. The
coordinates of a vector positioned on a given d-ring are represented by right ascensions («)
as u; = cos o and u, = sin «, forming a unit vector. The unit vectors (u;;) on a given 6-ring
are anisotropically distributed in a two-dimensional plane and can be expressed in the
(ugz,uy) coordinate system. These unit vectors (N in total) are equivalent to isotropically
distributed non-unit vectors, denoted by u;. The magnitude of each u;; represents the
event density at the point j. Worthing to note that N; # N;*, because the sum of u;; and
u;*j are equal, but their counts are not.

Before introducing our main reconstruction approach, we first revisit the traditional
dipole reconstruction method (see Chapter 3) as applied to belt-based vectors. To accurately
represent relative intensity (RI), denoted as 61;; = I;; —1 at any position on a d-ring or belt.
It is essential to account for sidereal variations in event counts in both the data and the
reference (background), which may be influenced by various factors such as human activity
and atmospheric effects, as previously mentioned. A reliable method for addressing this is
to scramble the local sidereal time of arrival events to create a background for comparison
with the data. As described in Eq. (6.12), scrambling the local sidereal time is equivalent
to scrambling the right ascension (RA) coordinates within the same declination ring as
the original arrival directions, denoted by &, with each declination band independently
normalized. Moreover, the horizontal RI (01;;) at the j-th point on the i-th §-ring can be
estimated by the deviation of the corresponding equivalent data vector at this point from
the reference vectors r;j; at the same location on a d-ring with A equally spaced non-unit
vectors rj;, where the reference d-ring or belt indicates a null hypothesis, which corresponds
to the magnitude of the average vector on the belt, assuming an isotropic distributed
dipole. It is important to note that the total number of data vectors uj; on the i-th ring
or belt is equal to that of the corresponding reference ring or belt in the time-scrambling
case, i.e., N = N}, but not in the isotropic background case, where N # N} (as will
be discussed in detail later). For consistency across different background constructions,
we may choose to enforce N = N} and calibrate the magnitude of each reference vector
accordingly. Specifically, at the j-th point, the relative intensity is defined traditionally:

*

|ufj| - |r;'kj’
(]

(5[1‘3' = ~ |u

| = Il (6.19)

Lol

ij
where |r;| = 1 in the case of an isotropic background, but |r};| # 1 when using time-
scrambling. Eq. (6.19) is valid for both cases: reference belts with an isotropic distribution
and those constructed using time-scrambling, since the denominator [r};| remains close
to 1 in the time-scrambling case, with variations much smaller than those of §1;;. The
numerator, (Juj;| — |r};]), represents the relative difference between a data vector and its
corresponding reference vector, typically on the order of 1072 ~ 1072 mostly, and reflects
the specific anisotropy at the position of the data vector. The average of §1;; over a é-ring

isolates only the vertical component of the dipole, as the equatorial component cancels out
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under the assumption of a pure dipole. This is equivalent to the continuous average of the
dipole’s intensity function Z(a, d), as given in Eq. (6.18), over the equatorial plane within
the full range o € (0,27) and a specified declination interval (41, dy), i.e., from the lower
to upper bounds of the field of view for a given §-belt. Consequently, this approach does
not permit reconstruction of the local dipole on the ring through simple averaging, but
instead requires fitting the first harmonic. However, from a data-driven perspective, this
method becomes less reliable when statistical precision is limited.

Alternatively, and differing from the standard definition in Eq. (6.19), we can analyze
the difference in magnitude between the average of the non-unit data vectors uj; and the
average of the corresponding reference vectors rj;, where j runs from 1 to N, representing
the residual vectors in the dipole excess region. Fortunately, each 2D data vector within a
0-ring or belt deviates (local imbalance) from its corresponding reference vector, which is
not cancelled out but instead individually compared. The resultant vectors, denoted by I,
effectively counterbalance each other across the entire plane over a full 27 rotation. This
yields an alternating pattern of excess and deficit along the ring, and after summation
over the full 27 range, only the dipole excess remains, as the deficit components cancel
out. Moreover, the resultant vector consistently points in the same averaged principal
direction of the dipole. Equivalently7 under the assumption of an isotropic distribution
of non-unit vectors, one has u;; = %u% and rj; = n;; uz], where ndj represents the total
number density of data vectors at j-th equally spaced position of the i-th ring or belt. The
number density or magnitude of vectors follows the relations

nd] = nSIg +n, ng = n F+ i, (6.20)
where n” = 1 contributes the absolute monopole part in the reference vectors. This number
density only weights the magnitudes of each vector. Therefore, one has

uf;g = nS;g u); = (n§; — nj; +n)ul (6.21)

where u - represents the equal spaced unit vectors. Clearly, Eq. (6.21) yields an intensity

vector, Wthh we denote by I;;, such that I;; = uf;g, which can also be defined as
Lij=wj; —rj; + rlj7 (6.22)
where u). = r¥.. The reference Vectors under the assumption of isotropic distribution of

i
non-unit vectors can be expressed as r;; = r ; +r;7, which is equivalent to the anisotropic

distributed non-unit vectors r;; from the scrambled data vectors; r (Z-)j represents the pure
isotropic distributed vectors, namely, monopole, on the reference ring, while r;; is the
anisotropic part (multipole) in the reference vectors, namely, the residue multlpoles Wlthout
monopole and dipole. The data vectors u;; share the same principle as r};, which makes
u;; and r;; are comparable individually at the micro level. The corresponding average of

I;;, with its amplitude denoted by fi, is expressed as

VAL VAL TRl
7 si d 0
L= |57 2wl = N: DM W = R D T W
tj=1 tj=1 v =1
v (6.23)
Ni N
1 1
e rva u;; — Nr Z k|,
v =1 i k=1
where the sum of r? G = n%u% cancelled out, due to its circular symmetry. The sum of

*

u;; equals the sum of u;;, as well as the sum of r}; and r;;. When the number of time-
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scrambling iterations nge > 1, the total number of reference vectors becomes N} = nge,Nj,
while the average of r;; remains effective and yields improved statistical stability. To reduce
fluctuations in the reference vectors, we choose ng.; = 20 for the scrambling.

We perform exposure and acceptance calibration on the data before averaging the
vectors and applying time-scrambling to generate reference vectors, unlike papers [278,
89]. Omitting this step can increase the contribution of higher-order multipole components
(rzr-‘]?), primarily due to time gaps and variations in exposure. Equivalently, the local number
density n;; increases, which may lead to stronger signal cancellation and reduced precision in
estimating the dipole amplitudes and orientations. Proper calibration, therefore, increases
the effective contribution of signal-relevant vectors and reduces the uncertainty in 7 and
dipole reconstruction. The amplitude of the calibrated resultant vector is

Ii = M;W]‘ uij — /\Tlr kglwk rikl, (6.24)

where wj denotes the weight w; repeated across the ng., time-scramblings of the data. The
resulting weighted reference vectors are identical whether one applies the weights before
time scrambling or applies time scrambling before weighting. The weight w;; is defined as
the inverse of the efficiencies in data, namely

w;j = [er(7j) cos8;n(m;)] ", (6.25)

where er(7;) = ng(7)/(ny(7)) denotes the time efficiency, defined as the ratio of the
effective number of sidereal bins (n1), accumulated over all sidereal days in the data,
to the average number within the full 0-24 sidereal hour range. In this analysis, the 24
hours are divided into £ = 360 time bins. The quantity n(7;) = N /(N:?") represents the
acceptance efficiency at each sidereal time bin, derived from the local sidereal time (LST)
histogram obtained by applying ne. time-scrambling to the data. Note that the effect of
eT is absorbed into 7. Since the original time stamps are preserved during scrambling, all
detector live-time gaps remain encoded in the data. Meanwhile, any true sky anisotropy
is effectively smeared out due to the randomization of right ascension, making N* an
unbiased estimator of the detector’s relative live-time in each LST bin £. The effective event
rate becomes approximately uniform in LST, so that any first-harmonic signal extracted
can be attributed solely to the sky.

For convenience in the subsequent derivations, we introduce the symbol il; = I; for all
subsequent calculations. The amplitude of the resultant vector, denoted by either I or,
equivalently, &I) is then expressed in the usual form {4 = /42 + 1132/. Since the covariance
between the two components is zero, Cov(&l,, ) = 0, the variance of the amplitude &l is
approximated by Var(il) ~ (9,;4)?Var(4,) + (9,40)*Var(4l,), with Var(4,) = Var(l,) and
Var(U,) = (W/N? + W' /N"2)Var(cos ¢), where W = 3, w2, W' = 3, wi = nge;W, and
Var(cos ¢) = Var(sin¢) = (cos? p) — (cos¢)? = 1/2 for ¢ ranging from 0 to 2. Based on
Eq. (6.24) and the standard propagation of errors, the uncertainty of i; is then given by

w ( 1 )
=4/ == |1 . 2
Jﬂ,l \/2/\/;2 + nscr (6 6)

As the scramble times ng.; increase, gy decreases slightly. The above uncertainty expression
is similar to Eq. (6.15) in the scrambled Rayleigh analysis, i.e., equivalent to a 3D version
of the Rayleigh analysis, and differs only by a factor of 2,/W/N;. The tail probability of
the Rayleigh distribution, i.e., the probability of obtaining an amplitude equal to or larger
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than the observed amplitude {; under the null hypothesis of isotropy. Inserting Eq. (6.26)
into Eq. (6.16), the tail probability is then obtained,

NG )
W+ 1/nge)/’
which is similar to the form obtained in the Rayleigh analysis, as shown earlier in Eq. (6.17).
Once two or more d-belts are available, the individual phase estimates aé extracted from
each belt can be combined and fitted to yield a single best estimate of the dipole phase,
since under the assumption of an ideal, purely dipolar sky distribution, all belts should in
principle return identical phase values. For the case involving higher harmonics beyond
the dipole, one has uy = sinna and uy = cosna. The resultant amplitude is given by
U = /(U7)2 + (U?)2, and the corresponding phase by ¢, = tan~! (U2 /U7?)/n, with n = 1
yields the dipolar component in the harmonics. The uncertainty of oy retains the same
form as in the dipole case, while the uncertainty in the phase is given by o,, = oy/nil.

P(> ;) = exp (— (6.27)

Up to now, the relative intensity has been defined based on vectors in the declination
plane (and belts) after subtracting the scrambled data as a reference. The next step, the
reconstruction of the dipole within the declination belts, will be discussed.

6.3.2 Discrete Equivalence on Declination Belts

To achieve high precision when the total number of events in the FoV is small (e.g.,
N < 107) and the relative intensities are at the 1072 ~ 1072 level, the average can be
computed using a discrete series of points from the pure dipole excess. The Ny points are
equally spaced within the interval [—m /2, 7/2] on the J;-ring, with angles denoted by .
A more convenient form for ¥y (including both endpoints) is

9, — T . km

T2 TNy -
At each ¥, we evaluate the pure dipole excess scaled by the vertical component (cos ) of
the vectors, which contributes solely to the summation, while the horizontal components

cancel out. The summation over the entire ¥ range is
1 Ny—1 1 Ny—1
= —— Ascos? ¥y, = — A
N Z J ETNG Z J

k=0 k=0

k=0,1,2,.,Ny—1. (6.28)

0Z;(8)

1 1
3 + 5 cos (20;6)} , (6.29)
where As = Acosdqcosd is the local dipole amplitude on the d-ring. When k& = 0, or
k = Ny — 1, sint = 0, so the endpoints do not contribute to the overall dipole sum.
Inserting Eq.(6.28) into Eq.(6.29), one has

Ny—1
A 2k
(513(51') = ? + QAJ\Zg E cos <—7T + ~, iT 1) . (6.30)
k=0

Use the known identity of the finite sum of cosines in arithmetic progression, namely,

n—1

Z cos (o + kB) = sin (n3/2) sin™! (8/2) cos (a + (n — 1)5/2)), (6.31)

k=0
in our case, n = Ny, a = —7, B = 27 /(Ny — 1). Thus, the sum of cosines in Eq. (6.30) is
Nyg—1

3 cos (—w + J\%) = sin (N/;/”_WJ sin ! (/\f;— 1> =1, (6.32)

k=0
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for all integers Ny > 3, and Nym/(Ny — 1) is actually 7 + 7/(Ny — 1). Therefore, we get
the precise expression of 950Z;(d), an equatorial relative intensity at J, follows the form

(Ny — 1) As
2Ny

where Ny = N;/2, as mentioned. Recalling the average of the dipole excess from data, the
local pseudo-dipole amplitude on the ring is obtained as

2 A 2
gl Af = 5l
3 K3

where .%I:g denotes the averaged local dipole amplitude evaluated over the full é-interval
of the corresponding d-belt, and N; remains the unchanged form for simplicity. Because
Aj; varies only weakly from one belt to another, its belt-to-belt deviation can safely be
neglected, especially given that the vertical dipole component contributes only at the level
of 1072 — 1073, As A; becomes very large, one has §Z;(8) = A:g/Z and Aj; ~2lufl, /NG, a
result that can be explicitly verified by considering the continuous integral representation
of the dipole excess over the angular range 9. Note that within any given declination belt,
the operators satisfy flj; #* Asdue to the contribution of the vertical dipole component.

§11(0) = (6.33)

Al = (6.34)

However, when averaged over the full sky, fig = flé, since the vertical term cancels out.

6.3.3 Reconstruction with Declination Belts

We are now focusing on the approximate continuous case. Since the difference between the
average of the data vectors and the average of the reference vectors yields the mean of the
cos a and sin v components of the intensity vector I, the amplitude of the resultant vector,
I, serves as a pseudo-average of the intensity, as shown in Eq. (6.24). This resultant vector
always points toward o = aq within the accessible region. In the continuous case, assuming
a pure dipolar distribution, the two-dimensional intensity vector of the data is denoted
by Z = (Z,,Z,), which is equivalent to the intensity vector defined in Eq. (6.22). The z
and y components are given by Z, = Zcosa and Z, = T sin o, where Z(c, §) denotes the
data intensity distribution, which follows the dipole form defined in Eq. (6.18). In addition,
the vertical component of the dipole is captured by Z, = Z cos§, which will be used in
subsequent averaging procedures. Specifically, under partial-sky coverage with « € (0, 27)
and d € (0r,,0u), the integrals of 7, 7,,, and Z, are expressed as

~ §U 27

I, :/ Z(c,d) cosacosd dadd = AL P cos ag,
L J0

R oy 2w

I, = / Z(e,0)sinacos 6 dadd = m AL Psin agq, (6.35)
o, J0

R 1 27
7, = / " [ Z(08) sind cos ddadd = 2m(S; + AsSy),
6, JO

where the dipole shift term is defined as A5 = A sin §q, and the equatorial dipole component
is A, = Acosdq. The constants Si, So, and P are given by:

5t S Su
S1 = / sindcosddd, S = / sin?dcosdds, P = cos? § do. (6.36)
or, o1, or,

The averages of Z,, fy, and Z, are obtained by normalizing each component by the integral
of the intensity distribution Z(«,d) over the entire field of view. This integral yields a
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monopole term, as it effectively averages out the dipole anisotropy. Namely,

R oy 2w
7y = / (6, @) cos 6 da ds = 2r(Co + AS)), (6.37)
o, JO
where Cy = fgs cosddéd. Analogous to the vector averaging procedure described in

Eq. (6.24) for the data, the average values of 7, Z,, and Z, within a given §-belt are
approximated by Z, Iy, and Z,, respectively, each normahzed by the integral of Z(«, §)
over the field of view. This normalization yields the idealized vector average for a pure 3D
dipole distribution. The resulting average components are given by

7, :Appcosad &: Ay psinaq §: s+ Ast (6.38)
Ty 2004+ Ass)” 7, 21+ Ass)’ Iy 14+ Ass’ '

where we define the parameters p, s and ¢ as

_ _ S, _ S
=G = (cosd), s= Co (sind), t= G (sin®d), (6.39)

where the quantities (sind), (cosd) and (sin? §) represent the average over the entire FoV,
weighted by the geometric factor cosd, and are expressed as:
cos(24y,) — cos(28y) 2(6y — o) + sin(20y) — sin(24y,)

(sin.d) = 4 [sin(dy) — sin(dr,)]’ (cos ) = 4 [sin(dy) — sin(dp)] ’

(6.40)
(sin? 0) = é(sin2 5y + sin® 0y, + sin dy sin or).

When dealing with data within a limited FoV, it should be noted that the horizontal dipole
component is always present and contributes to the observed modulation, whereas the
vertical shift term becomes strongly suppressed because of the factor Agss < 1 in Eq. (6.38).
In the case where a single §-belt spans the entire FoV of KASCADE-Grande, that is to
say, o, = 9.1° and dy = 89.1°, we can therefore obtain (sind) = 0.579, (cosd) = 0.746 and
(sin? §) = 0.394.

To connect the theoretical model with the measured data, we define 7, as the amplitude
of the intensity vector Z averaged over the i-th d-belt. Formally, it is given by,

A N 2 NN
7, = (LC) + (Iy> ___Ar (6.41)
To i 2(14 Ass)
which serves as the model. This serves as the model. It differs from the Rayleigh analysis
by a factor of 1/2 because we do not employ the Fourier-expansion method that introduces
a factor of 2 in the first-harmonic coefficients a and b. Those factors cancel out, and the
two approaches are therefore equivalent. Therefore, Eq. (6.41) is comparable to analyses
in the spherical polar coordinate system with zenith angle and azimuth, as mentioned in
the papers [321, 287], where the dipole model is based on 3D direction vectors, whereas
our formulation uses («,d) coordinates as shown in Eq. (6.18). Equivalently, we set the
data amplitude I;, with I; = {; = Z; as defined in Eq. (6.24), equal to the model amplitude
7;. Both the data and model amplitudes represent the sum of the dipole’s horizontal
component (the amplitude of the local dipole projected onto the right ascension plane)
and the vertical shift term when considering partial-sky coverage of the entire FoV or
a single d-belt. The 3D dipole amplitude and phase at the i-th declination belt can be
reconstructed. The dipole amplitude A; can be obtained using Eq. (6.41), while the dipole
phase aq; can be estimated from a d-belt is given by the direction in which the resultant
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vector Ll; points. The reconstructed amplitude A; and phase ad, i are obtained as follows:

284,
A; = —
p; cos 05 — 24U, s; 8in dg

aq,; = arctan <LL’“) , (6.42)
ux,i
where p; and s; can be obtained from Eq. (6.39). Using standard error propagation, the
uncertainties on the reconstructed A; and aq; are therefore given by
2p; cos dq oy Oy
: y Oagi = - 6.43
p; €08 8q — 240; s;8in 04)2 adt g ( )
where oy ; is obtained from Eq. (6.26). The dipole phase and its error are comparable to
those in Rayleigh analysis, as presented in Eq.(6.14).

OAi = (

If we have multiple d-belts, we obtain a dipole phase g, for each belt. These values of
aq; can be combined using the weighted circular mean approach. Instead of fitting the
angles directly, each angle is first converted into a 2D unit vector on the circle: x; = cos o}
and y; = sin ozé, which correspond to the previously obtained i, ; and &L, ;, respectively.
To compute the weighted average direction while accounting for uncertainties, we calculate
the vector sum U, = Y wiil, ; and Uy = >~ w;dly, ;, where the weight is given by w; =1/ aé "
with of,, being the uncertainty of each dipole phase. The weighted circular mean of the
dipole phase, along with the uncertainty on the mean (the circular standard error), is

computed using the weighted resultant vector U = (U, Uy) as follows:

U 2 U
ag = arctan2 (Ui) , Oag = \/_neff In <Zwi>’ (6.44)

where aq is modulated within the 27 range, and U = /U2 + UZ is the magnitude of
the weighted resultant vector, o,,is estimated as 04, & 0¢ir/\/Net, Where the common
circular standard deviation is given by o¢iy = v/—21In(U/ > w;). The global tail probability
(P-value) of the vector distribution can be computed by combining each value from P,
i.e., (6.27), using Fisher’s method. The combined test statistic is given by X = —23" InP;.
which, under the null hypothesis, follows a chi-squared distribution with 2n.g degrees of
freedom, where nqg is the number of belts. The global P-value from the angular-vector
method is given by J-belts is then Pgiopal = 1 — Fy2(X; 2ns), where F)2(X; 2neg) is the
cumulative distribution function (CDF) of the chi-squared distribution.

For the reconstruction of A and d4, one may treat A; and dq; as common parameters
and solve the full set of amplitude—declination equations, i.e., Eq. (6.42), simultaneously
across all d-belts. For the special case where the FoV is divided into just two §-belts, the
dipole declination and amplitude follow directly from the condition A; = As. One has

Hopp — U 2810

2P1 1D2 )7 A= 1 ‘ 7 (6.45)
284 Us(s1 — s2) p1 cosdq — 24Uy s18in dg
where the coefficients s1, s, p1 and ps depend on the specific FoVs (¢ ranges) of the
respective belts. Owing to the complexity of the calculations, the uncertainties in A and
0q are evaluated numerically using computational methods.

04 = arctan <

Furthermore, as we obtain a set of Eq. (6.42) at different d-belts, it becomes necessary
to estimate the best-fit values of A and dq using a least-squares (LS) approach. Now, let us
detail the process for estimating the parameters A and dq from the given dataset (L4;, s;, p;),
with associated uncertainties oy, using the LS fitting approach. The equation (6.41) is
expressed with linearity in terms of 4; and 9B, as follows:

s, = AB;, B, =p;cosds — LU; s;81ndg, (6.46)
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where 9B, is just the parts in the parenthesis of ;. In matrix notation, this problem can
be represented as U = AB, where U = (4; Lo i,lﬂ)T and B = (281 B, ---’BH)T. To
determine A and dq, we minimize the sum of squared residuals, which is given by:

so3(odny 647

oy,

which is the weighted sum of squared residuals, incorporating the inverse of the variance,
oy, as given in Eq. (6.26). Since *B; is a function of dq, the optimization problem becomes
non-linear. The fitting process begins with an initial guess for A and dq, typically chosen
based on simple approximations derived from sky maps of the datasets. Using a non-linear
optimization algorithm, we fit the model to the data by minimizing the objective function,
and the process adjusts A and dq utilizing Eq. (6.47). By minimizing the objective function
S and iteratively determining the best fit. Next, one can estimate their uncertainties using
the covariance matrix derived from the fitting procedure. The covariance matrix, denoted
by C, contains information on the variances and covariances of the estimated parameters.
Specifically, for the parameters A and dq4, the covariance matrix is given by

2
C= ( 7A "A5d> , (6.48)

2
O-Aéd O-éd

where 034 and O'gd represent the variances of A and dq, respectively, while o 45, denotes the
covariance between these two parameters. The variances 034 and O'gd are obtained from the
diagonal elements of the covariance matrix, which provides a complete and quantitative
description of the statistical uncertainties in the fit. The uncertainty in the dipole amplitude
is therefore determined by o4 = +/Ci1, and it directly reflects the precision. Similarly,
the uncertainty in the parameter dq is calculated as o5, = +/Cag2, which describes the
stability. The covariance o 45,, which quantifies the degree of correlation between A and
d4, is directly taken from the off-diagonal element of the covariance matrix, specifically
o5, = Ci2. By choosing 4 d-belts segmentations of the FoV, the fitting results are shown.

Alternatively, an improved method is to compute each belt’s dipole declination, dq;,
by using not only the right ascension (RA) «y, included in i; for each event, but also
the declination ¢;, and then averaging all values of dq;. Next, substitute each d4, into
Eq. (6.54) to obtain the corresponding dipole amplitudes A;, and average these amplitudes
to determine the final values of §q and A. Because the individual declinations ¢; are ignored
in the previous RA-only analysis, this approach extracts additional anisotropy information
from the full three-dimensional event distribution. Moreover, it permits an independent,
simultaneous fit of both A and dq within a single d-belt, thereby improving accuracy and
overall model consistency. Specifically, we define 4, ; as the averaged z-component of the
arrival directions of events, namely, sin §, which is not included in the 2D data vectors
u;; or the corresponding reference vectors r;;. The relation between data and theory
yields 4, ; = Z,/Zo. Similar to Eq. (6.24), the effective average of this sin § over the FoV is
obtained by the weighted summation

Uy = N Z w; sin d;; — N Z Wy, sin 6j;, + N Z sin 5% , (6.49)
tj=1 v k=1 Lj=1

where &}, denotes the declination of each event in the background sample (i.e., after time-
scrambling. Let 70 be the third term of Eq. (6.49), i.e., the average of all z-components
within the i-th belt, sin (5?]- denote the isotropic background (as a monopole) for the z-
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component of CR arrival directions. Equivalently, it can be written as the mean value of
the z-components integrated over the § and « ranges of the belt, given by

1 27 6U
N : — (sin g — g
i = AQ /0 /§L sin d cos d dd da = (sin d;5) = sy, (6.50)

where s is defined in Eq. (6.39), and AQ = |, 56LU cosd dd. The variance of i, is Var(Ll,) =
(W/N? + W' /N™2)Var(sin §). The uncertainty of &; is given by

Wo2 1

where the variance of sin d, denoted by agin s, is calculated as
9 sindy +sindy,  sin? 6y + sin dy sin oy, + sin? oy,
sind — -
2 3
As the scramble times ng. increase, o, decreases slightly.

Based on Eq. (6.38) and (6.41), As and A}, can be expressed as functions of the resultant
amplitude 4; and the FoV parameters p, s and ¢, namely

=t; — 2. (6.52)

g

ilzi — S; 2111‘(1 + .ASSZ‘)
.= , 7 St Sl T 6.53
A ti —sill Ap i (6.33)
Given the relation tan dq = Ag/Ap, the dipole declination dq is then reconstructed as
p (s — si)
6d,i = arctan <M) . (654)

Then, A can be obtained by Eq. (6.42). If 0-belts suffer from large statistical fluctuations,
we may limit the field of view to just two or even a single belt when estimating dq ;. The
statistical uncertainty on dq; is obtained by standard error propagation, yielding

where denote Q as the argument of the arctan in Eq. (6.54), for simplicity. Subsequently, us-
ing standard error propagation with respect to 4l; utilizing Eq. (6.41) and dq, the uncertainty
of A; in this method is obtained as

X 2
\/(4 p? cos 5(2171- Uﬁ’i + [2LLL~ (pisindq; + 24l; s; cos (5d,i)] Ugd,i
(picosda,; — 24, s;sindq ;)2

OA; = ) (6.56)
where the uncertainty in dgq, i.e., 05, ;, is obtained from Eq. (6.55).

However, this approach has the potential to result in significant biases in the estimation
of both A and 44, particularly in situations where the observed cosmic-ray dipoles are
positioned at relatively lower declinations and exhibit nonuniform exposure across the field
of view. In such cases, the small gradients observed in the Ll; values along the declination
can therefore lead to poor and uncertain reconstructions of both A and d4, thus affecting
the overall reliability of the results. As a result, the precision and accuracy of these
estimations are both significantly compromised under such observational limitations. For
this reason, an independent analysis using an alternative approach is thus necessary to
provide a cross-check and to complement the d-belt method through joint analysis. This
would hopefully lead to more accurate and less biased reconstructions of A, agq and dq
using the same dataset. In the next step, we choose a different set of belts for the FoV.
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6.3.4 Vectors on Solid-Angle Belts

Unlike the case of the J-belts, we now introduce a family of solid-angle belts that are oriented
perpendicularly to the y-axis, thereby providing an alternative geometric configuration
that enables an independent cross-check of the dipole reconstruction. Each of these belts
can still be expressed in terms of the usual equatorial coordinates, including both right
ascension («) and declination (), which is similar to the case of declination belts, but
with a focus on their orientation relative to the xz plane instead of the yz plane. For a
given solid angle O¢q, which is oriented perpendicularly to the y-axis and extending over
the interval from 0 to 7 along the y-axis, the boundary of this solid-angle region forms
a circular ring on the celestial sphere. The angle Oq, is specifically defined as the angle
subtended by this ring, as depicted in Figure 6.14. A self-defined coordinate system (¢, Ogq)
is introduced, where ¢ (ranging from 0 to 27) represents the plane angle on the ring, i.e.,
the angle between a vector and the y-axis, while ©q (ranging from 0 to 7) represents
the opening angle of the ring relative to the y-axis. The origin of this coordinate system
corresponds to the centre of the celestial sphere.

The vectors on the Oq-ring and its associated belts remain two-dimensional, a choice
that greatly simplifies the averaging procedure along the ©q direction on the celestial
sphere, in close analogy to the approach previously applied to the d-belts. More specifically,
a two-dimensional unit vector v = (v,,v,) with |[v| = 1 on a Ogq-ring is geometrically
expressed in terms of the angles ©q and ¢ at the orientation by dividing the factor cos @,
namely in v; = cos ¢ and v, = sin ¢ to define its orientation more precisely. The relative
acceptances at the positions of these vectors are not 100% due to zenith angles in the data,
ranging from 0° to 40°. To represent the vectors on these solid angle belts using data, we
employ both spherical (z, z) and equatorial coordinates (a, d), as the arrival direction data
are usually given in equatorial coordinates. Specifically, the relationships are given by

T cos d sin av
V pr— P— 5
TVr2 £ 22 /sinZ0 + cos?osin? a
z sin 0 (6.57)
Vz

pr— pr— - = 5
VaZ 4+ 22 /sin? 6 + cos? sin? «

and then v on a ©g-ring can be well expressed. Most importantly, the vectors v;; must
be calibrated to account for the non-uniform relative acceptance ¢ = cos#@ if the arrival
directions in data, where 6 denotes the zenith angle at the given position. This is because
the acceptance is not uniform along the ¢ direction within the same Oq-ring or belt, making
vectors at different locations not directly comparable. Since both coordinate systems can
equivalently represent a given point on the celestial sphere, their corresponding x, y, and z
coordinates must be equal. Thus, one obtains the relationships between angles, namely,

sin©q cosp = cosdsina, cosOqg = cosdcosa, sinBOqsinp = sind. (6.58)

All angular relationships in this construction can be derived directly from the equations
presented above. When a Oq-ring continuously varies its opening angle ©¢q as it moves
across the celestial sphere, the result is the creation of what we define as a Oq-belt. In this
scenario, when the mean angle is equal to ©q, the corresponding ring becomes identical to
a specific slice of the belt at that same opening angle, thereby preserving its geometric
interpretation. Oq. This allows for a precise recovery of both the amplitude and orientation
of the global real dipole later. Before performing the dipole reconstruction, we partition
the celestial sphere into a sequence of ©g-belts based on a relationship triangle, with the
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KASCADE-Grande KASCADE-Grande

Figure 6.14: The relationship between different coordinate systems on a solid angle belt is
illustrated. The right plot depicts a 3D belt perpendicular to the y-axis, while the left plot
presents the 2D plane projection of the belt along with the spherical coordinate system.
The red lines indicate a vector from the data on the belt.

solid angle O, right ascension a and declination ©q, as illustrated in the right plot of
Figure 6.14. This division is performed specifically according to the following relation:

sin? ©q = sin® § + cos? § sin® (6.59)

where Ogq, a, and § span specific ranges, and the relationship described in Eq. (6.59) is
based on a random point located on the ©g-ring, as depicted by the dashed circle. Due
to the limited FoV of the observation, the rings, and belts are no longer complete. As a
result, the local dipole maximum excess will not always lie on a broken ©gq-ring or belt.
To reconstruct the dipole anisotropies from data, we first configure the distribution of a
dipole’s relative intensity over the full celestial sphere using the defined (p, ©q) coordinate
system, similar to the representation in equatorial coordinates shown in Eq. (6.18). Based
on spherical trigonometry, the dipole distribution function is expressed as

Z(p,0q) = 1+ Acos OF cos Oq + Asin O sin Oq cos(p — pq), (6.60)

where the dipole amplitude in the ¢-plane (which corresponds to the xzz-plane) at declination
0, namely the parallel component, is denoted as A, = Asin @% sin ©¢q, analogous to the
case of a one-dimensional projection. The term cos(¢ — pq) accounts for the dipole variation
in the -plane, which, in fact, corresponds to a d-ring. Meanwhile, the shift term, denoted
as Ag = Acos @% cos Oq, is aligned with the y-axis in the ©Oq direction.

As in Section 6.3.3, we also review the traditional dipole reconstruction method using
the vectors defined above. To accurately reconstruct the dipole amplitude and orientation
on a Ogq-belt, we start by considering a reference belt, which serves as the null hypothesis
in our analysis. This reference belt is carefully selected so that it exhibits a rotational
symmetry relationship with the Og-belt (for the case of time-scrambled data as background,
not symmetric). The relative intensity, denoted as 61;; = I;; — 1, where I;; is intensity
of vector v;;. It is associated with the arrival directions on the Oq-belt is then defined
as the deviation in the distribution density of v;;, from what is expected under the null
hypothesis, namely, dZ(¢) = (pp — pr) / PR, Where pp(¢) represents the density of events
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at a specific location on the Og-belt, while pr(¢) refers to the density at a corresponding
location on the reference belt.

At a given position of a vector on the i-th belt, the reference vector r;; is obtained
from the averaged vector using the time-scrambling approach as we did for the d-belts
previously. The key point here is to translate the information of event density into vectors
in the data. Note that the total number of data vectors v;; on the i-th ring or belt is
generally not equal to that of the corresponding reference ring or belt, i.e., N; # /\/ZR
in both the time-scrambling case and isotropic background case. To ensure consistency
in the number of vectors between the data belt and the reference belt, whether for the
isotropic background or the time-scrambling case, we assume N; = N} by appropriately
scaling the magnitude of each reference vector, as was done in the é-belt case, shown
in Eq. (6.19). This adjustment is not necessary for the data vectors themselves, as the
averaging procedure, discussed later, automatically accounts for this. Similar to the §-ring
case discussed in Eq. (6.19), the unit vectors (v;;) on a given Oq-ring ring are distributed
anisotropically in the xz-plane, expressed in (v,,v.). There are N such unit vectors in
total, which can be mapped to N;* non-unit vectors v;; that are isotropically distributed,
and note that N; # N;*. Each v;; has a magnitude proportlonal to the local event density
at point j. The relative 1nten81ty at the j-th position on a Oq-ring is now defined as:

vi| — |k
0L;; = M >~ |[vi;| = Irl, (6.61)
‘rij’
where |rj;| = 1 in the case of an isotropic background with well-calibrated and uniform

acceptance in both data and background, resulting in isotropically distributed non-unit
vectors. Therefore, Eq. (6.61) is also valid in the time-scrambling case, since the denominator
|r};| remains close to 1, with variations much smaller than those of 0Z;;. The numerator,
(|v ;| —Ir7;1), quantifies the RI between a data vector and its corresponding reference vector
(typlcally ranging from 1073 to 1072) and captures the small-scale localized anisotropy at
the position of the data vector with improved directional resolution accuracy. Eq. (6.61)
is equivalent to the standard definition, 6Z = N;/(N) — 1, when the pixel scale is small,
as commonly used in most sky map analyses. However, this approach requires fitting the
first harmonic and, from a data-driven perspective, becomes increasingly less reliable when
statistical precision is limited, especially in regions of sparse coverage, as discussed for the
d-belts in Section 6.3.1.

Similar to the intensity vector defined in Eq. (6.22) for the d-belt case, we define the
intensity vector to imitate the average of vectors on the ©g-belts, and analyze the difference
in magnitude between the average of v;; and the average of r;;. Under the assumption of

an isotropic distribution of non-unit vectors, we define v;; =ndvY and r;=n; vV where

J ijvij ij Vi
nU and n;; are the number densities of data and reference vectors, 1respectlvely7 at the at
j-th equally spaced position of the i-th ring or belt. Equivalently, these densities serve only

to weight the magnitudes of each vector. Therefore, one has

vz’]ig nS;g v?] =(n ?j —ng; + nQ') v?j, (6.62)
where v . denotes the equally spaced unit vectors, while setting n = 1 accounts for
the absolute monopole term in the reference vectors. The intensity vector I;;, which by
definition equals I;; = ng , can then be written as

Ijj = v, —r}; + rw, (6.63)
where V?j = r?j. As in the §-belt case, we model the reference vectors under an isotropic
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distribution of non-unit vectors by r;; = r ; +1r;;, where r . the pure isotropic component
(monopole) on the reference ring and r;; captures the amsotroplc residuals (higher-order
multlpoles) The scrambled data vectors r;; follow the same decomposition, ensuring
that uj; and rj; share the same structure and can be compared directly at each position.

Denotmg the average of I; by I;. By applying Eq. (6.25) to weight both the data and
reference vectors, similar to Eq. (6.24), the amplitude I; is calculated as follows:
Nr
=% ij Vij — /\/r ij ikt N ZrU , (6.64)
7

51g

where the sum of v?j does not cancel out. We define U; = I; for clarity, as before, the
uncertainty of ; remains the same as Eq. (6.26). The sum of u;; equals the sum of u;;, and
likewise for r;?‘j and r;;. Moreover, due to the broken belt, the resultant vector consistently
fails to point in the direction of the dipole.

To reconstruct the 3D dipoles with Oq-belts, we first consider the ideal case in which
the reference belts are drawn from an isotropic background r . Let NV denote the total
number of vectors within the entire field of view, and let ng be the vector density on the
reference celestial sphere. Although the reference §-belt and GOq-belt differ only in their
geometric shape, the number of vectors on a reference Gq-belt is then given by

R @g
.N’i =MNo

Pu
/ sin O dpdOg = ngAL, (6.65)
05 JoL

where sin Oq represents the geometric calibration on the celestial sphere, @5 and @g
represent the lower and upper bounds of the Oq-belt, respectively. Based on Eq. (6.58),
the range of ¢ is determined as follows:

sin 5L

L = arcsin < -
4 sin Oq

) . (SiH5L>
, @u=m—arcsin | —

SnOg (6.66)

where 1, and ¢y are symmetric around the z-axis. Given that the angle of the ring varies
along the belt, the average is taken over the entire angular range Oq of the belt. The solid
angle AQ covered by the reference belt (equal to that of the data belt) is:

Y .
AQ = /LQ sin Ogq (77 — 2arcsin ( S,m oL )> dOq, (6.67)
eQ

sin Oq

which does not have a symbolic result, but only numerical results for certain given @Iﬁ
and @8. Different from the d-belt case, a dipole excess cannot be obtained by directly
comparing with the reference vectors on a ©¢q reference belt. This is because vector
cancellation between the data and the reference does not leave only the dipole excess on
the broken ©q-belts. The vector #) represents the average of all vectors r% on the reference
belt. Specifically, 7;(z) = 0 and 7(;(2) = sin ¢, since the symmetry of ry; on the reference
belt causes all cos ¢ components to cancel out. Integration of the remaining z-components
of the vectors over ¢ and Oq yields a resultant vector, which is given by

1 ®u 2 [
P = 0 /@LQ /saL sin ¢ sin ©q dp dOq = AQ /@; V/sin2 Oq — sin2 6, dOq, (6.68)

and ¥ = (0,0,79(2)). To correctly perform the averaging of all vectors across an entire
Oq-belt, a geometric calibration factor sin ©g must be included, analogous to the cosd
factor used in equatorial coordinates. This calibration is essential because the ©q-belts are
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broken due to the FoV and therefore are not full cycles. As a consequence, the natural
self-cancellation that would occur for a full cycle is no longer valid, and the summed vector
on the belt becomes biased by this geometric incompleteness. To compensate for this effect,
we construct reference belts that have the same geometric shapes as the data belts, with
identical ranges in both ¢ and ©q and which are generated under the null hypothesis of
isotropy. The reference vectors, r = (r,,7,), are then defined to be equally spaced along
this reference belt within the intervals (¢, py) and (05, ©5). Even with this construction,
the total summed vector obtained from a ©q-belt usually has a biased direction compared
to the real dipole direction on the belt.

Similar to what we did in Section 6.3.4, we now introduce the symbol U; = I; for
all subsequent calculations. The amplitude of the resultant vector (i.e., I or ) is
given by U = /U2 + V2. Since the covariance Cov(U,,V,) = 0, the variance of U is
approximated by Var(0) ~ (9,90)*Var(U,) + (9.9)?Var(V,), with Var(D,) # Var(3,)
for ¢ ranging from ¢, to m — ¢, as Eq. (6.66) shows. The variance of U, and U, are
Var(0,) = (W/N?4+W?* /N'2)Var(cos ), Var(0,,) = (W/N2+W?* /N'?)Var(sin ), where
W =3, wi, W'=Y, w2 = ng;W. Based on Eq. (6.24) and the propagation of errors, the

error of U, is obtained by oy = /U2 Var(Ux) + V2 Var(T,) / 20, namely

1 /W 1
m-\//\/? (1 + - ) (V2,020 + 02, 02,,), (6.69)
7 i scr
where the variances of cos ¢ and sin ¢, denoted as Ufow and Usmw are given by

GSOS(P (cos? ) — (cos p)? / / (cos? p — cos ) sin O dp dOg,
(6.70)

afmw (sin? ) — (sin p)? / / (sin? p — sin ) sin Oq dp dOq,.

As the number of scramblings nge, increases, oy decreases slightly, while the overall stability
of the reference map improves. Inserting Eq. (6.69) into Eq. (6.16), the tail probability of
the Rayleigh distribution is then obtained as

NE ot )
2 2 ’
2W(1 + 1/nscr)(%x % gosgp + SU Sdngo)

which differs from Eq. (6.27) for the §-belt case, where the variance of cosines is not equal to
the variance of sines. This arises because in the case of the broken Ogq-belts, the value of P
varies when the range of ¢ spanned by the belts changes, assuming N; remains unchanged.
Besides, when ¢ spans the full interval 0 to 27, it reduces to Eq. (6.27). The overall P value
for the entire FoV can be obtained by averaging the P values of all belts, appropriately
weighted according to the number of vectors (i.e., event counts).

To conclude, the ©g-belt approach provides a reconstruction of dipole anisotropies
that is fully comparable in performance and interpretation to the d-belt that was discussed
in the previous sections. They therefore form not a purely one-dimensional Rayleigh
analysis, but rather a two-dimensional extension of it. However, it is important to maintain
sufficiently high statistics in each belt and to ensure an accurately calibrated, declination-
dependent exposure that properly reflects the zenith-angle acceptance of the detector when
determining how many Ggq-belts can be reliably defined within the available FoV. In the
next step, the method of dipole reconstruction on the G¢q is described in full detail and
describes how the global dipole parameters are recovered from these quantities.

P(=> ;) = exp (— (6.71)
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6.3.5 Reconstruction with Solid-Angle Belts

Next, we evaluate the average of the intensity vector Z;;(y, ©q), as defined in Eq. (6.60),
over the entire Oq-belt. The resulting amplitude 4; now represents the actual pseudo-
average over the broken belt after acceptance calibration. However, its direction does not
correspond to the true dipole direction, since the belt does not cover a full cycle. Since the
magnitude of the difference between the averaged data vectors and reference vectors yields
a residual vector containing the x- and z-components of the pseudo-average of intensity,
this residual can then be fitted to the pure dipole distribution function by integrating and
averaging over the entire ©q-belt. Based on the dipole distribution function, i.e., Eq. (6.60),
the two components on a GOq-ring can then be expressed as

T.(¢,0q) = I(¢,Oq) cosp, I.(¢,0q) = I(p,Oq)sin ¢, (6.72)

and after averaging Z(p, ©q) over a J range, we obtain the pseudo-average of intensity on a
O©q-belt. Based on the dipole distribution function Eq. (6.60), the z-, z- and y-components
of 7 as well as the monopole component Zy are calculated as

) 05 [vu d
T, = / / 7 cos ¢ sin OqdpdOq = P Asin O, cos ¢4,

05 JoL

N 04 [vu
7, = / LQ T sin ¢ sin OqdpdOq = S1.A cos O + P Asin O sin pq,
(€]

©

b - (6.73)
7, = /@L T cos Oq sin OqdpdOg = Sy + Py Acos O + 2P3 Asin ©F sin ¢q,

Q ¥$L

A 0§ reu

Ty = /LQ 7 sinBq dpdBq = AQ + SyA cos @?2 + 2 Py A sin @?2 sin @q,
99 L

where, ¢, and ¢y are defined according to Eq. (6.66), the solid angle AQ is given by

Eq. (6.67), the factor sin ©q provides the geometric calibration on the celestial sphere. The

first and second integral terms in Z, equal zero. The parameters S1, So, P1, P2, P3 and

Py are obtained from the integrations over Ogq, as follows:

@U
Sp = / LQ 2 cos Og, sin O, cos 1, dOq,
®Q

@U
Sy = / Q(7r — 2p1,) cos Oq sin O dOq,

o5
oY 1
P = / . sin? Oq (E — L — = sin2<,0L> dOgq,
ek 2 2
P, = /L (m — 2¢r1,) cos? Oq sin O dOq,
eﬂ
ol in2s
P = / “ sin? BOqcosOqy/1 — §11127d dOq,
ek sin“ Oq
ey in2s
sz/ Qsir12€)g 1—S,1r127dd®g.
ok sin“ Ogq

The angle B¢ always satisfies the condition sin ©q > 0, and the declination ¢ is restricted
to the interval 6 € (0,7/2) due to the FoV of KASCADE-Grande. Within these constraints,
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the relation sin¢@q = sindq/ sin @?2 connects the dipole phase pq on a O¢q to the true
dipole declination §; and the corresponding belt opening angle @%. Using this geometric
relation, the pseudo-average vector on the i-th ©q-belt can be expressed in terms of the
contributions from its two fundamental components, namely

AN 2 AN 2
4 vk 1
U, =1; = = +{=), (6.75)
s L5

where different belts yield different ranges of O for the parameters shown in Eq. (6.74).

Besides, we define U, ; as the averaged y-component of the arrival directions of events,
namely, cos ©q, which is not included in the 2D data vectors v;; or the corresponding
reference vectors r;;, but provides additional information for the dipole reconstructions.
The relation between data and theory yields U, ; = f; /Z8. Similar to Eq. (6.49), the
effective average of cos ©q over the FoV is then obtained by the weighted summation
NT

1 Af’L 1 7 . 1 M 0
j\—/izzle cos ;5 — A?kz:lwk cos O, + A—/iz:lcos@ij
j= = j=

]

Vi = , (6.76)

where O], denotes the declination of each event in the background, and cos @?j represents
the uniformly spaced unit vectors that serve as the background for each cos ©;;, which
do not cancel out because each belt’s © range is incomplete. The variance of U, is
Var(U,) = (W/N?% + W*/N™2)Var(cos ©). The uncertainty of 4; is then obtained as

Wo?
09gy,i = 7/\;‘556 <1 +
(]

L ) (6.77)

Tscr

where the variance of cos ©, denoted as 02 o = (cos? ©) — (cos ©)?, is calculated as

g,

9 B cos® ©r, — sin® Oy < sin? Oy — sin? O, )2
cos® 7 3¢ 2(cos O, — cos Oy)

As the scramble times ng. increase, oy, , decreases slightly.

cos O, — cos Op) (6.78)

Because the Oq-belts are broken, the pseudo-phase obtained at the i-th belt is equivalent
to that of the integrated case and does not represent the actual phase of the local dipole
on the belts. Based on Eq. (6.73) and Eq. (6.74), the theoretical expression of U, ; is thus
obtained as: R ' ' . ' .

v, — {yﬂ- _ 5’5'4— PQZA cos O, + 2P§A sin O, sin ¢q '

Y T AQ+ SjAcos ©F + 2 PiA sin O sin g

(6.79)

The dipole pseudo-phase ¢} ; is estimated from a d-belt as the direction of the resultant
vector {l; points, is given by tan(py ;) = V.,i/Vy,;. Together with Egs. (6.75) and (6.79),
one can solve for A, ¢4 and @?2. However, a more direct approach is to compare the
average data components, i.e., Uy ;, V. ; from the 2D vectors and Y, ; from Eq. (6.79),
with those of the model. By considering the averages of 7, and Z, using Eq. (6.64) and
Eq. (6.73), the two components U, ; and U, ; are expressed as

. . — i:v,i _ P} Asin ©¢ cos ¢q4

o Io; AQ+ SiAcos O + 2 PiA sin ©F sin g’ (6.50)
.. = Z. St Acos ©4 + PiAsin ©F sin ¢4 '

zi — =

0.i T AQ+ SiAcosOY + 2 PEA sin O3 sin g
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The uncertainties of U, ; and U, ;, denoted by oy, ; and oy, ; correspond to the two terms
in Eq. (6.69). At each belt, A, ¢4 and @?2 can be solved using the three functions in
Eq. (6.79) and Eq. (6.80). Furthermore, for simplicity, we can replace ©% and ¢q with dq
and aq using the angular relationships between the equatorial coordinates (4, ) and our
self-defined coordinates (Ogq, ¢), as shown in Eq. (6.58), namely

sin @% CoS g = cos dq sin g, €oS @% = oS dq COS g, sin @% sin pq = sindq, (6.81)

which can be derived from solid geometry based on the equatorial coordinates and the
self-defined coordinates, as shown in Figure 6.14. We note that the uncertainties of U, ;,
. ; and U, ; are not equal to it in Eq. (6.26), because ¢ varies over an incomplete cycle
rather than a full period, and similarly for U, ;, since ©q does not span a full period
either. The uncertainties of A, aq, and dq can also be determined in the fit through error
propagation, taking into account the uncertainties from the data, i.e., oy, associated with
0;. Finally, the overall uncertainties of A, aq and dq for the entire FoV can then be
obtained by taking a weighted average of the individual belt uncertainties.

The procedure described above can also be viewed as a Fourier-like “on-off” or sig-
nal-background comparison method, which is particularly advantageous in situations with
limited statistics and intrinsically weak anisotropy signals. In the “on-off” method, one
typically compares the number of counts (or events) in an “on” region (where both signal
and background are present) with those in an “off” region (where only background is
measured). The difference (after appropriate scaling) gives an estimate of the signal. By
contrast, our angular-vector method is designed not merely to compare event numbers
but to extract detailed directional information, specifically the amplitude and phase of an
anisotropy, from the distribution of arrival directions, thereby achieving a much higher
level of precision than the standard count-based approach. For instance, consider the case
where ten events are recorded within a small directional patch, and the background model
also contains ten events within the same patch. Using the traditional on—off method, one
would conclude that the observed flux is perfectly isotropic, i.e., the anisotropy equals
zero, since there is no difference in the event counts between observation and background.
However, in our angular-vector analysis, the directional distributions of arrival directions
in the observation and background are not identical. As a result, their respective resultant
vectors differ, indicating the presence of anisotropies in the data.

6.3.6 Dipole Reconstructions

In this analysis, we exclude solar days from the early period when detector operation
and data collection were unstable, and data coverage was largely non-continuous; see the
distribution of solar days in Appendix C. Specifically, we include only the complete years
from 2005 to 2011. The filtered datasets for all energy bins with sidereal days containing
time gaps longer than two hours were removed. Furthermore, to improve overall consistency
and suppress residual seasonal or instrumental effects, we first filter the data to retain only
those sidereal years in which any day gaps are filled by the same sidereal days from other
years. Figure 6.15 shows the event histograms for both the original and filtered data, where
each 24-hour sidereal day is divided into 48 half-hour bins. Any day with a total gap (i.e.,
bins containing fewer than 100 events) exceeding two hours is removed to improve data
stability. The anti-sidereal time histogram exhibits smaller variations than the sidereal
one, indicating that systematic effects have been reduced.

To suppress statistical fluctuations in the construction of the reference (scrambled)
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Figure 6.15: Event distributions of the selected KASCADE—-Grande data from 2005 to

2011, folded into a 0—24 h cycle in sidereal, anti-sidereal, and solar time. The top panels

show the original data, while the bottom panels display the filtered data after removing

days with large time gaps, revealing reduced fluctuations across all three time frames.

vectors, we set the number of time scrambles according to the available statistics in each
energy bin. Specifically, ng; = 10 for the high-statistics 2.7 PeV bin, ng; = 20 for the
6.1 PeV bin (limited by memory), and ng.; = 100 for the low-statistics 33 PeV bin, before
reconstruction. For the per-event time weight w(7;), we apply a two-layer UTC reweighting
scheme. First, we build per-day histograms with B = 48 time bins per day (corresponding
to ~ 30min each) and define an effective day count

B
nnonempty(d) +e€ ’

where € is a small positive constant added to the denominator to avoid division by zero
or unstable values when a day has very few or even no non-empty time bins. Then, the
above expression 6.82 yields a day weight wqay(d) o< (Nefr,day)/Neff day(d), renormalized

Nef‘f,day(d) = Nday(d) (682)
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Table 6.4: Angular-vector method with d-belts and time-scrambling applied to the original
data. Shown are the reconstructed sidereal dipole equatorial amplitudes, phases, and
Rayleigh probabilities P(> i) obtained using a single d-belt. The corresponding solar
and anti-sidereal dipole amplitudes are also presented for all time-ordered subsets of each
energy bin. The dipole phases derived from the time-ordered subsets are more stable across
all bins compared with those in the previous section, as shown in Tables 6.2 and 6.3.

Energy N Ap(1073) aq(®) P(>4) AXN(1073) ARM(107)
Bin 1 (Total) 13,770,325 3.55+0.57 207.14+9.1 294x107° 0.12+0.19 0.02+0.19
Bin 1 (05— 11) 13,117,461 2404058 206.3+13.8 1.88x107* 0.114+0.20 0.02+0.20
Bin 1 (05-08) 8,234,965 1.81+0.73 209.3+23.1 455x1072 0.13+0.25 0.04+0.25
Bin 1 (09-11) 4,882,496 4.84+0.96 241.8+11.3 2.87x107% 0.11+£0.32 0.01£0.32
Bin 2 (Total) 4,737,418 5444096 229.6+10.2 1.23x 1077 9.01+0.33 4.86+0.33
Bin 2 (05— 11) 4,525,248 3.844+0.99 23954147 513x107* 849+0.34 4.70+0.34

(

(

(

(

(

(

Bin 2 (05-08) 2,782,856 3.884+1.25 23484185 813x107® 7.56+0.43 5.41+0.43
Bin 2 (09-11) 1,742,392 3.704+1.61 22584249 7.10x107% 1894055 5.32+0.55
Bin 3 (Total) 115, 566 4344576 293.4476.0 7.53x107" 2414209 6.7342.09
Bin 3 (05-11) 110, 303 5094589 275.34+66.3 689x107t 213+£214 6.03+2.14
Bin 3 (05-08) 68,531 7.654+7.46 26034559 591 x 107 3524272  6.59+2.72
Bin 3 (09-11) 41,772 290+£9.60 306.9+189.6 9.55x 107" 4.04+£3.49 5.0843.49

such that (wgay) = 1. Afterwards, combining all available days together (weighted by
Wday ), We then form an effective occupancy per UTC time bin i and define a bin weight
w; < (Net bin)/Neff bin (%), also renormalized to (w;) = 1. Each event occurring at UTC
phase 7; on day d(j) is then assigned w(7j) = wi(r;)/Wday(d(j)), followed by a final
normalization to (w) = 1 (with small limits applied to remove extreme weight values).
Finally, we can apply the same weights to both the data and the scrambled background
when constructing the weighted angular vectors and dipoles.

Now, we proceed to the dipole reconstruction. For the §-belt case in the angular-vector
method, the time-scrambling procedure effectively accounts for daily variations while
preserving sensitivity to angular structures at all scales. However, as discussed earlier,
due to limited statistics, noisy data, and a partially covered sky, the dipole’s vertical
term As = Asina becomes uncertain. Given that Ags ~ 1072-1073 in this analysis,
the denominator factor (1 + Ass) ~ 1 of the denominator in Eq. (6.41), Eq. (6.41) is
then reduced to A, = 24/p with only the equatorial dipole component remaining. The
corresponding error of A}, is obtained as o 4, = 20y/p. The reconstruction of dipole phase
remains the same as Eq. (6.42) shown. By performing a single d-belt reconstruction, the
amplitude A, can be obtained with reduced fluctuation and improved statistical overall
stability. Furthermore, the detailed sidereal amplitudes and phases for 2.7 PeV, 6.1 PeV,
and 33 PeV are shown in Tables 6.4 and 6.5, corresponding to the original and filtered data,
respectively. The phase uncertainties are reduced compared to the analysis in Section 6.2,
while the equatorial amplitudes closely match those reported in the papers [87, 288]. Finally,
the phase for the 6.1 PeV bin is smaller than reported in the literature, most likely due to
remaining residual systematics. Similarly, in the scenario where a single Oq-belt spanning
the full KASCADE-Grande FoV (@ =4, = 9.1°, @Q =7 — 5L). However, this one-belt
setup is largely insensitive to the dipole declination 5d, while using multiple belts introduces
additional noise due to the limited FoV of each belt. Therefore, this Og-belt case is not
used in the analysis presented in this thesis.
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Table 6.5: Angular-vector method with d-belts and time-scrambling applied to the filtered
data. Shown are the reconstructed sidereal, solar, and anti-sidereal dipole equatorial
amplitudes, phases, and Rayleigh probabilities P(> 1) obtained using a single d-belt. The
dipole phases obtained from the time-ordered subsets show reduced stability in the second
energy bin, while those in the first and third bins remain stable. The amplitudes, however,
are more consistent across the last two bins, except for the first bin.

Energy N Ap(1073) aq(®) P(>4) AXN(1073)  ARM(107%)
Bin 3 (Total) 11,924,773 1.28+£0.61  174.5+27.1 1.08 x 107! 0.07£0.21 0.0240.21
Bin 3 (05-11) 11,483,834 0.96£0.62 206.3+37.1 3.04x10™' 0.0740.21 0.0240.21
Bin 3 (05-08) 7,034,107 1.80+0.79  106.8+25.0 7.30x 1072 0.0940.27 0.0340.27
Bin 3 (09-11) 4,449,727 3.14+1.00 260.6+18.2 7.10x107% 0.104£0.33 0.03+0.33
Bin 1 (Total) 4,096,639  2.11+£0.99 23874269 1.03x10™' 6.02+£0.35 1.9940.35
Bin 1 (05-11) 3,954,264 1.36+1.01 244.6+42.6 4.05x107! 5724036 1.9440.36

(

(

(

(

(

(

Bin 1 (05-08) 2,371,325 1.524+1.30 263.5+48.7 5.0l x107' 6.81+0.46 2.85+0.46
Bin 1 (09-11) 1,582,939 2.44£1.60 248.8+37.7 3.15x 107" 6.30+0.57 2.33+0.57
Bin 3 (Total) 115,567 5.62+£6.21 281.6+63.3 6.64x 107" 0.56+0.62 0.46 & 0.62
Bin 3 (05-11) 95,792 5.50 £ 6.32 276.6 £65.9 6.85x 107" 0.55+0.63 0.40+0.63
Bin 3 (05-08) 58,024 3.67+811 247.04+126.7 9.03x 107" 0.374+0.81 0.3740.81
Bin 3 (09-11) 37,768 3.924+10.08 283.64+147.4 927 x107' 039+£1.01 0.39+1.01

To assess the long-term stability of the reconstructed anisotropies, we divide the filtered
event dataset into two time-ordered subsets, following the same procedure used earlier, and
compare the corresponding results obtained from the East—West method and the optimized
Rayleigh analysis, as shown in Figure 6.8 and Fig. 6.11 respectively. The reconstructions
of sidereal 3D dipoles for the three energy bins, the results are presented in Tables 6.4
and 6.5. We observe that, for all three energy bins, the reconstructed dipole amplitudes
and phases agree between the two time-ordered halves within their respective statistical
uncertainties, although small residual biases remain. This indicates that the combination of
time-dependent weights and the applied time-scrambling procedure does not fully account
for variations in the effective number of active detector stations, nor does it completely
correct for gradual long-term efficiency drifts or for seasonal fluctuations in event statistics.
These incomplete corrections lead to residual modulations in the data, and such modulations
leak into the sidereal frame, thereby contaminating the reconstructed anisotropies. Recall
that experiments such as Auger [89] and HAWC [136] typically build reference maps (the
isotropic expectation) by factoring the detector response into a local-angle acceptance
and local angles. However, we do not have such detailed detector information. That is
why we employ the time-scrambling approach, which works by randomly shifting events
within a time window and averaging. This procedure smooths statistical noise and yields
a stable background, but it cannot simultaneously smooth over all scales (from hours to
months). Consequently, we obtained large biases in both dipole amplitude and phase for
all three energy bins, as shown in Tables 6.4 and 6.5. Therefore, we must seek a more
appropriate method to estimate the detector’s solar (UTC) acceptance, rather than relying
on time-scrambling.

Next, we smooth the UTC/Solar acceptance estimate by introducing a Dirichlet prior
for the expected counts in each time bin. Specifically, we adopt the form oy = & ¢;, where
¢, denotes the relative detector exposure (livetime) in bin ¢, and & is a global scale factor
setting the effective sample size of the prior, which is the average over all UT bins across
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Table 6.6: Angular-vector method with d-belts and Dirichlet prior (see Eq. (6.83)) applied
to the original data. Shown are the reconstructed sidereal dipole equatorial amplitudes,
phases, and Rayleigh probabilities P(> 1) obtained using a single §-belt, together with the
corresponding solar and anti-sidereal dipole amplitudes for all time-ordered subsets of each
energy bin. The phases of the time-ordered subsets remain stable, whereas the amplitudes
of the first two bins show noticeable bias, while the last bin remains consistent.

Energy N Ap(1073) aq(®) P(>4) APN(1073)  ARM(107)
Bin 1 (Total) 13,770,326 4.704+0.53 311.2+6.5 895x 107 0.12+£0.19 0.02£0.19
Bin 1 (05-11) 13,117,462 3.5240.54 3175488 7.68x107'° 0.1140.20 0.024+0.20
Bin 1 (05-08) 8,234,966 5.0240.69 321.64+7.8 225x107'? 0.134+025 0.04+0.25
Bin 1 (09-11) 4,882,496 1.6440.89 323.3£31.2 1.85x107' 0.1140.32 0.01£0.32
Bin 2 (Total) 4,737,419 4.674+091 313.7+11.1 1.81x10°% 0.09+0.33 0.01+£0.33
Bin 2 (05-11) 4,525,249 3.514+0.93 320.6+£15.2 7.81x10"* 0.0940.33 0.04+0.33
Bin 2 (05-08) 2,782,857 5.814+1.19 323.2+£11.7 590x107% 0114042 0.02+0.42
Bin 2 (09-11) 1,742,392 1.264+1.50 351.9£68.0 7.01 x10™' 0.074£0.54 0.06 £ 0.54
Bin 3 (Total) 115,567  6.25+5.83 31344535 5.63x107! 0.374+2.08 0.32+2.08
Bin 3 (05-11) 110,304  5.944+5.97 31544576 6.10x 1071 037+213 0.37+2.13
Bin 3 (05-08) 68, 532 6.02+7.58 301.14+722 7.30x107' 0544271 0.37+2.71
Bin 3 (09-11) 41,772 6.52+9.73 3359+855 7.99x107!' 0.27+348 0.17+3.48

the whole timeline, i.e., kK = Niot/ >_j tj, where t; represents the non-empty time bins. If
bin t is a gap, Nfbs = 0, and ¢; = 0 ensures that true gaps don’t get artificial counts
from the prior. Assuming uniform exposure at all time bins, ¢, = 1. Follows from the
Dirichlet—multinomial distribution [322, 323], and adding pseudo-counts proportional to
the exposure, i.e. Ny = NtObS + Kk £;. The posterior expectation is given by

obs

E[p, | D] = M’

tot + K Bl
where p; denotes the probability that an event falls into a bin ¢, constrained by the
normalization ), p; = 1, and where D represents the full dataset consisting of the observed
counts Nfbs in each bin. The above equation provides the smoothed probability fraction
for bin ¢t. This expression yields the smoothed fractional probability associated with bin ¢,
and the corresponding smoothed expectation for the number of events in bin ¢ is obtained
from E; = Niot, E[py]. It is important to emphasize that E; introduces a global suppression
of the observed detector acceptance, regulated by the prior strength k, which reduces
large acceptance fluctuations. Unlike a local time-average procedure, the smoothing acts
coherently across all bins and does not impose short-scale averaging. The efficiency (inverse
of weight), as shown in Eq. (6.25), er(7;) is now expressed as

Ny

er(7j) = N E@)

which directly serves as the detector’s relative exposure as a function of livetime. Based
on the weights, Eq.(6.84) and the ratio of the effective number of sidereal bins 7(7;)
as described in Eq. (6.25), and by utilizing the previous angular-vector approach with
a single belt, the results obtained from the time-split data and from the full data are
presented in Tables 6.6 and 6.7. Importantly, the results obtained with the time-split
data show improved consistency compared to the previous results derived using the direct

(6.83)

(6.84)
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Table 6.7: Angular-vector method with d-belts and Dirichlet prior (see Eq. (6.83)) applied
to the filtered data. Shown are the sidereal, solar, and anti-sidereal dipole amplitudes and
phases for all subsets. The amplitudes of the time-ordered subsets remain stable except for
the second bin, while the phases of the first bin are consistent, whereas those of the last
two bins still exhibit larger biases between the time-ordered subsets.

Energy N Ap(1073) aq(®) P(> ) AN (1073) AR (1077)
Bin 1 (Total) 11,924,774 2.094+0.57 304.2+15.6 1.15x 107%  0.04£0.20 0.02+0.20
Bin 1 (05-11) 11,483,835 1.714+0.58 314.64+19.5 1.32x1072 0.034+0.21 0.03+0.21
Bin 1 (05-08) 7,034,108 2.274+0.74 32554187 9.02x107% 0.06+0.27 0.05=+0.27
Bin 1 (09-11) 4,449,727 1.11+093 326.84+47.9 490x10"* 0.08+0.34 0.04+0.34
Bin 2 (Total) 4,096, 640 2.134+0.98 306.0+26.2 9.21x1072 0.02+0.35 0.0440.35
Bin 2 (05-11) 3,954,265 1.76 £0.99 314.04+324 2.09x10"! 0.01+0.36 0.03+0.36

(

(

(

(

(

(

Bin 2 (05-08) 2,371,326 3114128 31724237 531 x107% 0.06+£0.46 0.02=+0.46
Bin 2 (09-11) 1,582,939 0.86 £1.57 9241045 8.60x 107" 0.06+0.56 0.0240.56
Bin 3 (Total) 99, 291 3.89+6.29 308.74+92.7 826x 107" 0.24+2.25 0.18+2.25
Bin 3 (05-11) 95,793 4244640 312.0+£86.5 8.03x 107" 021+£2.29 0.23£2.29
Bin 3 (05-08) 58,025 3.954+823 286.8+59.8 891x107' 036+£294 0.37+294
Bin 3 (09-11) 37,768 47441023 337.8+61.8 898x 107" 0.16+3.66 0.3143.66

time-scrambling method, as shown in Tables 6.4 and 6.5.

We also evaluate the residual first-harmonic amplitudes in solar (SOL) and anti-sidereal
(ASID) time using the same event weights that are applied for the sidereal analysis. After
the UTC envelope correction, each event is assigned a combined weight w;, and the residual
amplitudes are obtained by projecting the weighted sample onto the corresponding temporal
bases. As shown in Tables 6.6 and 6.7, the measured SOL and ASID dipole projected
amplitudes A;Ol and Agmi are much smaller than their statistical error, consistent with
noise expectations. This confirms that the weighting procedure suppresses the daily or
seasonal variation, as well as the artificial variations caused by time gaps. In principle, this
approach is mathematically equivalent to smoothing and can be regarded as an optimised
time-scrambling method when multi-scale time-scrambling is considered. At the same
time, it overcomes the problem posed by the existence of numerous time gaps in the data,
ranging from hours to months.

Besides, we also perform the log-likelihood iteration to achieve the best estimation of
acceptance and anisotropies of the arrival directions, based on the weighted data using
Eq. (6.84) and the ratio of the effective number of sidereal bins 1(7;) as described in
Eq. (6.25). We use the original data from 2005 to 2011, as shown in Figure 6.6, rather
than the filtered dataset in Table 6.7, since filtering may increase instabilities by removing
additional sidereal days. In fact, the Dirichlet prior in Eq. (6.84) already accounts for
acceptance variations, making further filtering unnecessary. Firstly, we divide one sidereal
day (23h 56m) into N; equal phase bins i = 1,..., N;. We then fold all years of data
into those Ny bins, so each bin ¢ accumulates every event that occurred at that particular
sidereal phase, regardless of which day it was. In the iteration, we fit one IN; per phase
bin i. This captures the time-dependent (i.e., phase-dependent) exposure or overall event
rate. We fit a single acceptance map A; over the local-sky pixels j, each defined at a
fixed zenith—azimuth (6;, ;). Here, A; does not depend on i; it represents the average
angular acceptance pattern of the detector. Considering the mean, i.e., p;; = N;A;I; of
the Poisson distribution in the iteration, as discussed in Section 2.2.4, where I; is the
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Figure 6.16: Comparison of the sidereal dipole in the phase—amplitude plane for time-
ordered data splits (2005-2008, 2009-1011), together with the full data set (labeled as
“all”) in all three energy bins and in the full data set, using original unfiltered data
(top) and filtered data (bottom), analyzed with the Angular-Vector method. Compared
with Figure 6.9, which was obtained using the East—West method, the two plots above
show reduced biases. It appears that the long-term variations (solar-time) are further
disrupted after removing days, weakening the self-cancellation of the solar-time component.
Consequently, the dipoles reconstructed from the original data (top) are more reliable.
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Figure 6.17: Updated unified anisotropy based on reported data from major experiments
spanning 1TeV to 50 EeV, with all amplitudes calibrated by the FoVs as discussed in
Chapter 5. Note that the first Auger data point is excluded due to the large biased phase
from the others. The KASCADE-Grande data used here come from the angular-vector
method with a Dirichlet prior, whereas the dipoles in the older plots in Figure 5.3 were
obtained using the East—West method as in the official paper [87]. Top: extracted sidereal
dipole amplitude, A,(E), considered for a visible global sky. Bottom: dipole phase,
aq(F). Both amplitude and phase curves are obtained as a function of true energy. The
short dashed line in both panels marks the energy of 107.9 TeV, where the dominant CR
sources may shift, with a corresponding amplitude A, = (2.1 4 0.40) x 10~* and phase
aq = 315.3°£7.7°. The energy and amplitude of this flip remain unchanged from Figure 5.3.
The long dashed lines mark the Galactic centre.
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relative intensity, follows the 1D Fourier form of the data distribution (or vectors), namely,
Ij =1+ acosaj + bsinaj. The results remain consistent with those obtained using the
angular-vector approach, as shown in Tables 6.6 and 6.7, but they are not shown here.

Based on the dipole amplitudes and phases shown in Table 6.6, which are the final
results with KASCADE-Grande data in this thesis, we then update the unified anisotropy
through a joint analysis of different experiments, as studied in Chapter 5, and present the
results in Figure 5.3. In particular, the updated results are shown in Figure 6.17. The
extracted dipole variates exhibit a “W?” shape in both amplitude and phase. Moreover, the
fitted curves indicate that the dipole flip remains unchanged at 107.9 TeV, as confirmed in
Chapter 5, suggesting a transition of Galactic cosmic-ray sources from local origins. As
discussed earlier in Chapter 4, this flip may indicate a shift from nearby sources, such
as the y-ray source Crab Nebula (83.6°, 22°) and the Geminga supernova remnant [282,
135] (98.5°, 17.8°), not toward the Galactic Center (GC) region as previously proposed,
but instead toward the Cygnus region. Furthermore, the fitted curve from around 1 PeV
(Tibet-AS~ and IceCube) to around 100 PeV (KASCADE-Grande) shows a slight peak in
phase at around 7 PeV, with dipole A, = 0.0025 and phase ag =~ 315°. The corresponding
energy is close to the first cosmic-ray knee at 3 PeV. Consequently, this peak may be
related to the deflection of the local magnetic field (including its turbulence), affecting
cosmic rays propagating from the Cygnus region to Earth. Finally, between 6 PeV and
400 PeV, the next peak in amplitude at around 340 PeV, with amplitude A, ~ 0.006, which
may point to a transition of the cosmic-ray sources from the Cygnus region to extragalactic
origins. This energy is also close to the second cosmic-ray heavy knee at 100 PeV.

It is important to emphasize that KASCADE—-Grande is located at a latitude of 49.1°,
and the data cover declinations from 9.1° to 89.1° due to a zenith threshold of 40°. The
density of events decreases at lower declinations (closer to the equator) due to larger
zenith angles, and this effect is further amplified by geometric stretching. Given that
event statistics across all three energy bins are relatively low compared to sidereal dipole
amplitudes, this may introduce large fluctuations in both event densities and anisotropies
across the entire right ascension plane, especially at lower declinations where the field of
view is narrower and exposure less uniform. Moreover, a detailed analysis of medium-scale
anisotropy structures is necessary to determine whether the observed patterns indicate
particular preferred orientations associated with potential cosmic-ray sources. This more
refined investigation will be carried out in the following section.

6.4 Medium-Scale Anisotropy

Unlike large-scale anisotropies such as the dipole, which are typically associated with
the overall cosmic-ray gradient in the Galaxy, the medium-scale structures are likely
produced by scattering off local magnetic field irregularities or turbulence in the interstellar
medium. These features may result from interference patterns as cosmic rays move through
anisotropic magnetic turbulence. A nearby and recent source, such as a supernova remnant
within a kiloparsec, could create an excess of cosmic rays in certain directions, but magnetic
scattering distorts or shifts the excess, forming these medium-scale patterns. They don’t
necessarily point straight back to the source, but could still reflect its presence. Besides,
these structures might also indicate a transition between different propagation regimes, i.e.,
different dominant sources located far from each other. In this section, we mainly focus on
the KASCADE—-Grande data to check the detailed anisotropies with sky maps.
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6.4.1 Updated Maximum-Likelihood Method

Before the analysis, we validated the maximum-likelihood (ML) method by applying
a time-scrambling procedure to the data for background estimation. The results are
consistent with those obtained using the original method, in which the background in each
pixel is iteratively updated based on an expected isotropic intensity map. The resulting
maps will be shown later, and since they are identical, they are not repeated here. The
underlying assumption of the maximum-likelihood method follows the same principles as
direct integration or time-scrambling, as described in [143]. In principle, with a complete
period (hours) of data, the analysis has equal sensitivity to anisotropic cosmic-ray arrival
directions at all right ascensions. Therefore, as in Section 6.3, it is not necessary to exclude
incomplete days with hour-scale gaps, as doing so would reduce the statistical power of
the dataset. The only data excluded are those recorded before 27 November 2004, during
which detector operation was unstable, and data coverage was largely non-continuous.

To investigate medium-scale anisotropies in the arrival directions of cosmic rays, we
employ the maximum-likelihood reconstruction technique [143, 16], which was previously
introduced in Section 2.2.4 Our goal is to recover the celestial relative intensity distribution
I(c,0) on the celestial sphere while simultaneously accounting for the detector’s time-
dependent normalization N and its directional (local) acceptance A;, a probability density
(or relative exposure) at the local direction i. The number of events observed in a time bin
7 and local angular bin 4, denoted by n,;, is assumed to follow a Poisson distribution with
mean p,; = N;A;IL;, where I; represents the celestial intensity evaluated at the right
ascension and declination associated with the local bin 7 at the sidereal time corresponding
to 7. The overall likelihood, assuming independence among bins, is then expressed as

N\Nri plri
L1 AN) =] (“)n,e (6.85)

Taking the logarithm simplifies this product into a sum:

logﬁ = Z [’I’L.,-i log (NT AZ In') - NT .Al L—i — log (’I’L.,-Z')] . (6.86)
Since log(n.;!) is independent of the parameters, we focus on maximising the effective
log-likelihood of Eq. (6.86), namely

log ﬁeﬁ? = Z [nn- log (./\/T .AZ Iﬂ') - NT AZ I-ri] s (6.87)
T,
where the parameters I(«,0), A;, and N, are non-linearly coupled. The value of I, is
obtained by transforming the celestial intensity map into local coordinates at sidereal time
7, and an analytical solution for the maximume-likelihood estimate is not feasible. Instead,
we employ an iterative approach to obtain convergence. We begin by setting an initial
guess based on the null hypothesis (an isotropic sky):

10(,6) =1, N0 =Y n,,, A= 2 (6.89)

L Zfij kg ’

where the condition >, .AZ(O) = 1, since it quantifies how likely (or how much relative
exposure, assuming the total exposure is 1 of the entire FoV) the detector is to observe
an event from direction 4, assuming the sky is isotropic. This iterative procedure updates
three sets of parameters, i.e., the intensity I, the time-dependent normalization factors N,
and the directional acceptance values A4;. The updated value of the intensity in a given
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celestial pixel a is obtained by gathering contributions from all local angular bins ¢, at all
times 7 a, that project onto the pixel at through the detector’s coordinate transformation.
The corresponding intensity update is therefore expressed as

7D _ D or N
a - 9
SHYare

(2

(6.89)

where the coordinates are transferred from (6;, ¢;) to the corresponding celestial coordinates
(g, 94). Eq.(6.89) remains unchanged compared with the old expression, as Eq. (2.59)
shows, since it is the ratio of observed to expected counts under the current model. We
define I(a,d) = 1+ dI(a, d) and also remove the m = 0 spherical harmonic components to
remove any variations in declination, since the data are insensitive to them. Keeping [
and A fixed, we first maximize log Leff with respect to N, then, holding I and N fixed,
we take the derivative regarding .4; and obtain:

0 IOg Eeff {nn‘ :| 0 log Eeff [nri }
—_— = — - AL, —/ = — =N L. 6.90
ON Z N A DA, Z 2, (6.90)
Setting the derivatives to zero gives the update rules for the iterations, namely,
(n+1) _ Zz Tz (n+1) _ ET N7
NT Z'-A(n) I(@+l)’ 'Al D N£n+1) I(Tﬁrl)’ (6'91)

where the acceptance is renormalized as ), AE”H) = 1 after evaluating AE”H) for all 4.

We repeat the above steps until the solution of intensity at pixel a, I, converges, meaning
that successive iterations yield only negligible changes in the reconstructed intensity.

To improve the numerical stability of the iterative maximum-likelihood procedure,
particularly during early iterations or in the presence of statistical fluctuations, we introduce
a learning rate parameter n € (0, 1] [324, 325, 326]. This learning rate controls the step
size in updating each of the key parameters: the time-dependent normalization N, the
directional acceptance A;, and the cosmic-ray intensity I, in a given sky pixel a. Instead
of applying the full maximum-likelihood update at each step, we use a convex combination

of the current value and its update U(*+1) = w() 4 n(\I/I(\Zfl) — ¥™), namely
W) = (1) w4y O, (6.92)

where ¥ € {N;, A;, I,} denotes any of the iteratively updated quantities. Here, \111(\7/}; b
represents the value obtained from a full maximum-likelihood step, and ¥(™) is the current
value from iteration n. The parameter 1 controls how far the update proceeds toward the
newly estimated solution. For n = 1, the procedure reduces to the original undamped
iteration, as used in [143]. Choosing n < 1 helps suppress oscillations and avoid overshooting,
which is particularly beneficial when working with low-statistics bins or complex detector-sky
coupling, allowing for smoother convergence and improved stability, especially important
when detector exposure is highly non-uniform or when Poisson fluctuations in sparse
bins introduce noise. In our implementation, 7 is scheduled dynamically as a function of
iteration number n = 1/4/n [325], allowing the method to take smaller steps at early stages
and converge more confidently as the likelihood surface flattens, and improve the quality
of the final anisotropy reconstruction.

Note that the intensity update function, i.e., Equation (6.89), is computed as the ratio
of observed to expected counts across multiple bins. This multiplicative update is inherently
de-normalising and, for this reason, is typically accompanied by an explicit projection step
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that removes any m = 0 harmonics. As a result, the updates for N, and A; are expressed
in the form of an additive convex combination, as shown in Equation (6.92). In principle,
we do not need to include 7 in the intensity update, so it keeps the same as (6.89). For N
and A;, their update with learning rate are

(n+1) _ (1 _ o\ nf() o () 2siTri
Nz _(1 l )NT e 5 AM [
ZTnT’i
T N D) (1)

(6.93)

AT = (1= ™) A )

(2
followed by renormalization ), AETLH) = 1. The updated intensity is calculated as the
ratio of observed to expected counts, based on the current estimates of AV, and A;. As a

result, Ic(lnﬂ) is already normalized within the iteration process.

6.4.2 Significance of Anisotropy

Medium-scale anisotropies were studied using the same likelihood-based method as in
the large-scale analysis. However, instead of fitting a global dipole, the intensity I was
reconstructed individually for each sky pixel within the three previously defined energy
bins. Following Ahlers et al. [143, 16, 288], we applied a Gaussian smoothing (FWHM =
2°) during the iterations to stabilize the reconstruction and suppress numerical noise. To
highlight structures on angular scales, top-hat smoothing with different radii is performed
in the analysis for all energy bins in the analysis. For each celestial bin a, the total number
of observed and expected events within this angular radius is computed based on the
optimized iterations of N and A; at each pixel, as shown in Eq. (6.93),

ﬁa: Z anv ﬂa: Z ZA:bN:I;7 ~]c:t)g: Z ZA:hN:IEg (6'94)

beDa T beDy T beDy T
where Aj denotes the detector’s relative acceptance in pixel b and sidereal time bin 7,
N7 represents the expected number of isotropic events in sidereal time bin 7, and Zj, is
the actual intensity at pixel b [16, 288], the symbol |*| denotes values after convergence.
Assuming the background is approximately flat, ZP¢ = 1, the smoothed intensity becomes

0o = fia/figf — 1. (6.95)

The top panels of Figures 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24 show sky maps of intensity
(anisotropy maps), illustrating the reconstructed anisotropies in three energy bins. To
assess the statistical relevance of local excesses or deficits, a corresponding significance is
constructed with Eq. (6.94), namely,

So= /2 (i + 1% + g log(1 +014)). (6.96)

which yields a significance map. The value of Sy is interpreted in units of Gaussian o,
provided that the smoothing radius is not too large, as also shown in the mentioned
figures. All maps are constructed using top-hat smoothing with angles optimized for each
energy bin, corresponding to the maximum pre-trial significance S, obtained from the
smoothing-radius scan shown in Figure 6.18, for both the original and filtered data.

To effectively highlight the medium-scale anisotropy accesses on sky maps, and consid-
ering the limited statistics available from KASCADE-Grande, it is necessary to utilise both
“pre-trial significance” and “post-trial significance”. Pre-trial significance is the significance
level calculated for a specific hypothesis or test without considering that multiple tests are

157



CHAPTER 6. ANISOTROPY STUDIES WITH KASCADE-GRANDE

I (')riginilil Data ! Toéal ITotaI I Filtered Data I I
40 —— 2.7PeV | 545 —— 2.7Pev ]
b 6.1PeV | o 6.1 PeV
g —+— 33PeV | & —+— 33 PeV
540 1 & 4.0t 1
= o
= b=
5 5
w35 935
I ©
— —
+ F +
(9] 4 QO
x 1 x
© (©
=25t 1=
25

5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Smoothing radius (°) Smoothing radius (°)

Figure 6.18: Top-hat smoothing-radius scan for the pre-trial significance sky maps using
both the original and filtered data. The corresponding radius at which each energy bin
reaches its maximum significance is taken as the smoothing radius.

being conducted, as Eq. (6.96) shows. It’s the p-value obtained from a single hypothesis
test [303, 327]. This is typically calculated using standard statistical tests (e.g., z-test,
t-test, x? test) and corresponds to the probability of observing the test statistic under
the null hypothesis. Pre-trial significance is used when only one hypothesis is tested,
reflecting the likelihood that the observed effect is due to chance. We employ the x?
test for the pre-trial significance in this study. The post-trial significance, also known as
the adjusted significance, accounts for the fact that multiple hypotheses are being tested
simultaneously [303, 327]. It provides a more accurate representation of the statistical
significance by adjusting for the increased likelihood of Type I errors, thereby enhancing
the reliability of the conclusions drawn from the data.

We follow the same procedure as in [288] to analyze the post-trial significances with the
maximum-likelihood method [328]. We estimate the effective number of trials as Niyja) =~
AQpov/AQpin, where AQpoy represents the size of the observatory’s time-integrated field
of view, and AQy;, denotes the effective bin size corresponding to the top-hat smoothing
scale. For the 33 PeV bin, for example, when using a smoothing radius of 19°, we obtain
Nirial = 15. Various methods, such as Bonferroni correction, Holm’s method, and FDR
control [303, 327], are used to adjust the p-values to reflect the number of tests conducted.
The post-trial p-value can then be approximated as follows:

Ppost = 1 — (1 — p)Nexial (6.97)

where p = erfc(S,/v/2)/2. The above function targets the multiple comparisons in statistical
hypothesis testing. When conducting multiple independent hypothesis tests, the probability
of making at least one Type I error (false positive) increases, necessitating an adjustment to
the individual p-values to control the overall family-wise error rate (FWER). The derivation
begins by recognizing that the probability of not observing a significant result in a single
test is 1 — p;. When performing Ny, independent tests, the combined probability of not
observing any significant results across all tests is (1 — p;)™ial, The complement of this
probability, 1 — (1 — p;)Vrial | represents the probability of observing at least one significant
result by chance, which serves as the adjusted p-value, and the FWER is properly controlled
across multiple comparisons [303, 327]. Figures 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24 also
present the post-trial significance maps using Eq.6.97, shown in the bottom panels for all
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three energy bins and the time-ordered subsets of the KASCADE—-Grande data, shown in
equatorial coordinates.

The optimized method for iterative dipole reconstruction introduces a learning rate
parameter 1 to the existing maximum-likelihood method by Ahlers [143, 288], which
controls the update step size of don and dg, which correspond to As and A, as discussed
previously in our analysis. These components of the dipole are aligned along the declination
and right ascension directions, respectively, and correspond to the strength of the dipole
anisotropy in those directions. They are used to determine both the magnitude and phase
of the 3D real dipole anisotropy. The dipole amplitude is given by A = (/A2 + .,4% where
As = Asindg is the vertical (declination) component, and A, = Acosdq is the equatorial
projection. Note that A refers to the dipole amplitude, not to be confused with the relative
acceptance A;. The dipole phase is given by aq = arctan 2(.Ag, Ap,). The highest pre-trial
and post-trial significances reach approximately 3 o across all three energy bins. Specifically,
for the original data, the post-trial significance reaches about 2.00 at 2.7PeV, 3.00 at
6.1 PeV, and an excess of 4.0 0 at 33 PeV, located near a Galactic longitude of about 80°.
For the filtered data, the post-trial significances are 2.8 ¢ at 2.7PeV and 4.2 0 at 6.1 PeV,
and 2.8¢0 at 33 PeV.

In analyzing cosmic ray significance maps, it is crucial to consider the uncertainty in the
position of detected hotspots, particularly when the data has been smoothed using a tophat
function [329, 330]. The value at any given point on the map after smoothing represents
the average significance over the surrounding region. While this process reduces noise, it
also broadens features on the map, leading to an inherent uncertainty in pinpointing the
exact position of a maximum (hotspot). To estimate the positional uncertainty due to
smoothing, the tophat function can be approximated by a Gaussian function. Although
the tophat is not exactly Gaussian, this approximation is useful for deriving an analytical
estimate of the uncertainty. The Gaussian approximation is often used in various fields to
simplify the analysis of smoothing functions and to relate the width of different types of
kernels [329]. For a Gaussian distribution in two dimensions, the function is given by:

G(0) L xp( 92>, (6.98)

= 02 C 202
where o is the standard deviation, which determines the “width” of the distribution. The
full width at half maximum (FWHM) of a Gaussian is related to o by:

FWHM = 2v2In20 ~ 2.355 0. (6.99)

The smoothing process can be mathematically represented by a tophat function W(6),
defined as W (6) = 1/763 for 0 < 6y, and W (#) = 0 for 6 > 6y, where 6 is denotes the
characteristic radius of the tophat and therefore determines the angular scale over which
the smoothing operates. The diameter of the tophat function (26p) can be matched to the
full width at half maximum (FWHM) of a Gaussian kernel to provide an equivalent effective
“width” for comparing the angular resolution of the two smoothing schemes. By setting
the FWHM of the Gaussian equal to the diameter of the tophat, namely 26y = 2.355 o,
this leads to the relation o = 0.85 5. However, when considering the uncertainty in the
position of the maximum introduced by the smoothing procedure, it is more appropriate
to adopt the standard deviation that is directly associated with the radius of the tophat,
rather than that derived from the FWHM-Gaussian equivalence. This approximation
leverages the well-known correspondence between the smoothing behaviour of tophat and
Gaussian filters for estimating angular-position uncertainties in cosmic-ray anisotropy
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Figure 6.19: Sky maps of anisotropy, namely, relative intensity (top four panels), pre-
trial significance (middle four panels), and post-trial significance (bottom four panels),
obtained from the original KASCADE-Grande data. Each group of four maps corresponds
to the total data, the 2.7PeV bin, the 6.1 PeV bin, and the 33 PeV bin, respectively.
Different energy bins use different top-hat smoothing radii, which are determined from the
corresponding maximum pre-trial significance in the smoothing-radius scan. The detailed
resulting values are accordingly shown in Figure 6.18.
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Figure 6.20: Shown are the original KASCADE-Grande data with time-ordered subsets,
i.e., the 2005-2008 year range, used to check the consistency of anisotropies for each energy
bin. Sky maps of anisotropy are presented, including relative intensity (top four panels),
pre-trial significance (middle four panels), and post-trial significance (bottom four panels).
Each group of four maps corresponds to the total data, the 2.7 PeV bin, the 6.1 PeV bin,
and the 33 PeV bin, respectively. Different energy bins use different top-hat smoothing
radii, which are determined from the corresponding maximum pre-trial significance in the
smoothing-radius scan. The detailed resulting values are shown in Figure 6.18.
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Figure 6.21: Shown are the original KASCADE-Grande data with time-ordered subsets,
i.e., the 20092011 year range, used to check the consistency of anisotropies for each energy
bin. Sky maps of anisotropy are presented, including relative intensity (top four panels),
pre-trial significance (middle four panels), and post-trial significance (bottom four panels).
Each group of four maps corresponds to the total data, the 2.7 PeV bin, the 6.1 PeV bin,
and the 33 PeV bin, respectively. Different energy bins use different top-hat smoothing
radii, which are determined from the corresponding maximum pre-trial significance in the
smoothing-radius scan. The detailed resulting values are shown in Figure 6.18.
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Figure 6.22: Sky maps of anisotropy, namely, relative intensity (top four panels), pre-trial
significance (middle four panels), and post-trial significance (bottom four panels), obtained
from the filtered KASCADE-Grande data. Each group of four maps corresponds to the total
data, the 2.7 PeV bin, the 6.1 PeV bin, and the 33 PeV bin, respectively. Different energy
bins use different top-hat smoothing radii, which are determined from the corresponding
maximum pre-trial significance in the smoothing-radius scan. The detailed resulting values
are accordingly shown in Figure 6.18.
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Figure 6.23: Shown are the filtered KASCADE-Grande data with time-ordered subsets,
i.e., the 20052008 year range, used to check the consistency of anisotropies for each energy
bin. Sky maps of anisotropy are presented, including relative intensity (top four panels),
pre-trial significance (middle four panels), and post-trial significance (bottom four panels).
Each group of four maps corresponds to the total data, the 2.7 PeV bin, the 6.1 PeV bin,
and the 33 PeV bin, respectively. Different energy bins use different top-hat smoothing
radii, which are determined from the corresponding maximum pre-trial significance in the
smoothing-radius scan. The detailed resulting values are shown in Figure 6.18.
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Figure 6.24: Shown are the filtered KASCADE—-Grande data with time-ordered subsets,
i.e., the 20092011 year range, used to check the consistency of anisotropies for each energy
bin. Sky maps of anisotropy are presented, including relative intensity (top four panels),
pre-trial significance (middle four panels), and post-trial significance (bottom four panels).
Each group of four maps corresponds to the total data, the 2.7 PeV bin, the 6.1 PeV bin,
and the 33 PeV bin, respectively. Different energy bins use different top-hat smoothing
radii, which are determined from the corresponding maximum pre-trial significance in the
smoothing-radius scan. The detailed resulting values are shown in Figure 6.18.
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Figure 6.25: Shown are the post-trial significances obtained from the KASCADE-Grande
data at the 33 PeV energy bin, together with eight ~-ray events above 1PeV from the
nearby source region Cygnus OB2, as observed by LHAASO. The dashed circles mark
the orientation uncertainties, computed from Eq.6.101 using the smoothing angles. For
the top panel, the original data reaches a maximum pre-trial significance of 4.6 o with
a smoothing angle of 19° and an uncertainty of s = 13.4°; the corresponding post-trial
significance is 3.9 0. For the bottom panel, the filtered data reach 3.5 ¢ with a smoothing
angle of 24° and o3 = 17°, with the corresponding post-trial significance being 2.8 ¢.
The hotspot (maximum) orientation for the original data (top) is located at Galactic
coordinates (I,b) = (78.3°,7.8°), corresponding to equatorial coordinates RA = 298.8°
and Dec = 44.2°. For the filtered data (bottom), the maximum is at Galactic coordinates
(1,b) = (83.4°,21.6°), corresponding to RA = 282.2° and Dec = 54.3°.
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maps, as discussed in papers [329, 330]. The RMS radius is a measure of the spread of a
distribution around its mean, and it corresponds to the standard deviation for a uniformly
distributed circular region, which directly corresponds to the standard deviation of the
distribution after smoothing. The standard deviation og represents the uncertainty in the
position due to the smoothing effect of the tophat function. For a uniform distribution
within a circular region of radius p, the mean square radius (§?) is calculated as

1% 05 63
92:—/ 2mr -t dr = 0 = 2. 1
(0°) 7T0(2) ; mr - redr 498 5 (6.100)
The RMS radius is RMS = /(62), which also represents the effective positional uncertainty,

o5 =/ (02) = 60/ V2. (6.101)

The relationship between the RMS value and the standard deviation for uniformly dis-
tributed circular regions is well established in statistical mechanics and geospatial analysis
[331]. Therefore, in our case, for example, when using the original data at 33 PeV, the max-
imum pre-trial significance of 4.56 ¢ is reached at a smoothing angle of 19°, corresponding
to an uncertainty of og ~ 13.4°.

In Galactic coordinates, we found that the hotspot region with maximum post-trial
significance, shown in Figure 6.25, shifts by about 15° after the data filtering, i.e., from
Galactic coordinates (I,b) = (78.3°,7.8°), corresponding to equatorial coordinates RA =
298.8° and Dec = 44.2°, to (I,b) = (83.4°,21.6°), corresponding to RA = 282.2° and
Dec = 54.3°. This arises from time gaps in the data and the discontinuous sidereal days,
which interrupt and distort the seasonal variations. The hotspot may reveal a correlation
with the slight dip observed between the cosmic-ray knee and the second knee, which is
strongly linked to the LHAASO ~-ray bubble region located near the Cygnus region [§],
with a galactic longitude of approximately 80° and a latitude close to 0°. This could
suggest that the origin of the observed excess is non-diffusive and may point to a local
source of PeV v-rays situated in the Cygnus region. These y-rays could also be the result
of high-energy cosmic ray interactions occurring in the vicinity of their sources. LHAASO
reported 8 high-energy ~-ray photons with energy > 1PeV [8], including 2 located in the
region of the massive star association Cyg OB2, roughly 0.5°. Specifically, the Cyg OB2
association has an approximate radius of about 2 degrees on the sky, the center is located
at (I,b) = (79.8°,0.8°). This association is one of the largest and most massive known
stellar associations, and it spans a significant area in the constellation of Cygnus. The core
massive region of Cyg OB2, where the density of massive stars is highest, is often described
with a smaller radius, around 0.5° [8]. This core region covers the known Cyg X-3 and
a powerful pulsar PSR J203144127. As shown in Figure 6.25, the Cyg OB2 is within
the KASCADE-Grande access region, which can be verified through the propagation of
charged particles from the Cygnus region, such as Cyg X-3 or PSR J2031+4127, and reach
on Earth and distribute the arrival directions of CRs on the celestial sphere.

6.4.3 Isotropy Test

The previous analytic method in Eq. (6.97) introduces an approximate trials factor by
assuming Niia1 independent tests within the significance map to compute pposi. This
provides a quick estimate of how the global significance is reduced by multiple compar-
isons. However, since smoothing causes nearby pixels to become correlated and not fully
independent, this method can slightly overestimate the real global significance and should
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Figure 6.26: Sky maps of anisotropy (relative intensity), pre-trial significance and post-trial
significance with KASCADE-Grande FoV, showing 10 examples out of 100,000 generated
maps. All maps are smoothed using a 20° top-hat radius.

therefore only be regarded as an approximate and practical estimation.

A more accurate way to evaluate the global significance is to use Monte Carlo (MC)
isotropy tests, following the approach used by the Auger Collaboration [279]. In this
procedure, we generate a large ensemble of mock data sets with purely isotropic arrival
directions and process each of them through the exactly same reconstruction and smoothing
steps as the real data. For every simulated sky, we record the maximum significance found
anywhere on the sphere after the full smoothing-radius scan, thereby effectively capturing
the look—elsewhere effect (LE). Repeating this many times yields the sampling distribution of
the maximum significance under isotropy, and we count how often an isotropic sky produces
a maximum significance equal to or greater than that observed in the data. Concretely,
let Sgata denote the largest pre-trial significance found in the data after scanning over
sky position and smoothing radius. From N isotropic realizations, let k of them produce
a maximum significance S > Sqata. The global (post-trial) p—value is then ppost = k/N,
which we convert to a one-sided (excess only) Gaussian equivalent significance Zpost via
Ppost = 0.5 erfe(Zpost/ \/5) The binomial counting uncertainty on ppest is estimated as
0p ~ \/Ppost(1 — Ppost) /N and propagated to Zyost using dp/dZ = — exp(—22%/2)/V/2r.
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In the 33 PeV bin, we identify hotspots with local pre-trial significance Sigeal = Sy > 4.60
for the original data and Sioea) = Sq > 3.510 for the filtered data, using the definition in
Eq. (6.96). We then generate N = 10° isotropic maps with the same total event counts
as the data sets (Ney = 1.1 X 10° for the original and Nyt = 9.6 x 10* for the filtered
sample). Each MC realization is processed identically to the data: same pixelization, same
number of events (with acceptance ignored), and the same top—hat smoothing radius. Ten
representative isotropic examples are shown in Figure 6.26. Among all maps, k£ = 558
and k = 15,922 of them produce a maximum significance > Sgata, yielding post-trial
probabilities of ppest = 5.58 x 10~3 and 0.159 for the original and filtered data, which
correspond to Zpest ~ 2.8 and 1.4. These translate into global significances of 2.8 ¢ and
1.4 0. This result indicates that the observed medium-scale excesses are compatible with
rare statistical fluctuations in an isotropic sky, yet they provide a localized hint of a possible
signal. After accounting for the look—elsewhere effect from scanning over both sky position
and smoothing radius, the excess reaches global significances of ~ 2.8 ¢ (original data)
and ~ 1.4 0 (filtered data). Further propagation simulations are necessary to evaluate the
consistency of the results considering the biases present in the original and filtered data.

6.5 Simulation of Propagation

Although the exact flux fraction contributed by Cygnus OB2 relative to the diffuse Galactic
background remains uncertain, the central question is whether the arrival directions
expected from this region align with the KASCADE-Grande field of view (charged particles
as CRs). Since any individual source can supply only a limited fraction of the total observed
spectrum, it becomes essential to estimate the relative contribution that Cygnus OB2
could plausibly make. The previous anisotropy analysis demonstrated that the Cygnus
OB2 region falls well within the location of the 3 PeV cosmic-ray excess observed by
KASCADE-Grande, with the hotspot offset by only about 10° from Cygnus OB2. We
therefore employ the CRPropa simulation framework' and its documentation?, both of
which are based on the methodology described in paper [178], to model the propagation
of cosmic rays originating from the powerful pulsar PSR J2031+4127 in the Cygnus OB2
region, and compare the results with the 33 PeV excess (see Figure6.25 as well as 6.19
and 6.22). Next, we generate sky maps of the simulated arrival directions exclusively for
the 33 PeV bin only, since the 2.7PeV and 6.1 PeV bins involve much slower cosmic-ray
propagation, and compare these maps to the anisotropies observed in the same 33 PeV bin
of the KASCADE-Grande data, focusing on the hotspot region as seen from Earth. Finally,
we evaluate whether the distribution of cosmic-ray protons originating from the Cygnus
OB2 region falls close to the field of view accessible to KASCADE—-Grande to account for
part of the observed excess.

As mentioned previously, Cygnus OB2 spans a radius of approximately 2° on the
sky, centered at (I,b) = (79.8°, 0.8°). It is one of the largest and most massive stellar
associations in the Cygnus region. Its dense core is typically characterized by a smaller
radius of about 0.5° [8], encompassing Cyg X-3 and the energetic pulsar PSR J2031+4127
in it. As shown in Figure 6.27, the central region of Cygnus OB2 is clearly visible within
the field of view, together with diffuse hot gas and nearby structures, though not the full
extent of the Cygnus OB2 association.

!See https://github.com/CRPropa.
2See https://crpropa.github.io/ CRPropa3/pages/Installation.html.
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Figure 6.27: Left: Cygnus X and Cyg OB2. Top: 500 pm (blue) and 8 pm (orange) emission
showing cold dust and photon-dominated regions, observed by the Herschel/SPIRE and
MSX telescopes. Bottom: 1.42 GHz continuum map, mostly thermal free—free emission
from gas likely ionized by Cyg OB2, from the Canadian Galactic Plane Survey. Both
panels cover the same Galactic field. Image adapted from [332]. Right: Composite image
from the Chandra X-ray Observatory centered on Cyg OB2, showing its dense stellar core
(bright purple and blue-white region near the centre). Image credit: NASA.

6.5.1 Flux from Observation

Before estimating the relative fractions between the background and the total detected flux,
we begin by examining in detail the nuclei fractions measured by KASCADE-Grande [119].
At around 33 PeV, the elemental abundances observed at Earth cannot be directly inter-
preted as the composition of particles arriving from any individual astrophysical region,
including potential sources located in Cygnus OB2. This is because the measured flux
at Earth is an integrated superposition of contributions from many sources spread across
different distances and sky directions, each undergoing various levels of propagation ef-
fects during transport through the Galaxy, such as rigidity-dependent escape (Galactic
leakage) and spallation interactions that break up heavier nuclei like silicon or iron. Conse-
quently, the observed composition represents a complex, transport-weighted mixture of all
contributing sources rather than the intrinsic composition of any single acceleration site.
The detailed elemental fractions are obtained from the values published in the KAS-
CADE-Grande composition analysis [119], supplemented by the KCDC dataset® (see
Section 6.1), and are shown in Fig 6.28. From these results, we observe that light nuclei
dominate the spectrum at lower energies and continue to constitute a major fraction
even above E > 1072 GeV. Meanwhile, the proton component remains relatively small
when compared to the contributions from heavier mass groups, whereas iron becomes
increasingly prominent as energy increases. In addition, the inferred fractions depend
on the hadronic—interaction model used in the air-shower reconstruction (e.g., QGSJet,
EPOS), on the unfolding methodology used to recover the primary composition, and on
uncertainties in the absolute energy calibration of the experiment. A rigidity-ordered

3See https://kedc.iap.kit.edu/spectra/.
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Figure 6.28: Left: cosmic-ray flux from the published KASCADE-Grande measure-
ments [119], together with the data provided in the KCDC dataset. Right: the cor-
responding composition fractions derived from these datasets, illustrating the relative
contributions of the various nuclear mass groups across the relevant energy range.

sequence of spectral knees, where the cutoff energies follow approximately Fipee X Z, is
consistent with the observed trends and further complicates a direct mapping from the
Earth—observed mixture to any single source population.

Because the measured flux includes contributions from all directions in the sky, the
specific part coming from the Cygnus OB2 region can only be studied using detailed
modeling. In this approach, we simulate how particles are produced at the source (their
spectra and cutoffs), how they travel through the Galaxy, taking into account diffusion
and magnetic turbulence, but ignore their interaction with other nuclei on the way. These
propagation simulations are then compared with the detector data to separate a possible
Cygnus OB2 signal from the overall background of cosmic rays at O(1-100) PeV.

6.5.2 Propagation Settings

For the propagation simulations using CRPropa, to reduce CPU time in simulations of
cosmic-ray propagation from Cygnus-OB2 to Earth, we adjusted the integration step sizes
to 0.1 pc, which decreases the number of integration steps in smoothly varying regions. The
integration step is set from 0.01 pc to 10 pc when propagating charged particles through the
field. We set a spherical boundary centred at the Galactic center (the origin) with a radius
of 20 kpc, removing any particles that propagate beyond this distance from the simulation.
The rigidity of iron is very small compared to the lighter elements. It would experience
large deflection angles continuously in the Galaxy, which are difficult to simulate, require
a significant amount of CPU time and collect less from the Earth as an observer, being
much more isotropic compared to the medium components (He+C+Si) group, whose flux
is roughly the same as iron’s. In contrast, the proton flux is 8 times less than that of iron
and the light group. For heavier nuclei, we imposed effective propagation boundaries based
on their Larmor radii to reduce CPU time.

In this analysis, we do not account for the Compton-Getting effect during cosmic-ray
(CR) propagation. The cosmic rays reaching Earth from the Cygnus OB2 region can
directly reveal the probability of CR distribution on the celestial sphere, influenced by
Earth’s location and the tilt of its rotational axis relative to the Galactic plane. Since the
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Compton-Getting anisotropy is on the order of 1072 (as discussed in Chapter 3), which
is smaller than the 10~2 magnitude anisotropy observed at 33 PeV, its effect is negligible
in our case. We injected 10° protons and helium and 10 carbon, silicon and iron nuclei
from the source, assuming a 0.1 kpc boundary scale around Earth. For the propagation,
we used CRPropa [178], incorporating both random striated and turbulent components of
the Galactic magnetic field under the JF12 model [333] and the UF23 model [334]. In the
UF23 case, we perform simulations using two different models: the “base” model and the
“twistX” model, each of which adds additional grid-based turbulence components.

6.5.3 Turbulence in Magnetic Field

The Galactic magnetic field in our simulations is modelled as the superposition of a coherent,
large-scale component and an isotropic, small-scale turbulent component [335, 333]. In
the JF12 model [335], the turbulent contribution is implemented as a purely stochastic
perturbation that does not possess an explicitly defined power spectrum or correlation
length, meaning that it captures random magnetic fluctuations without following any
physically motivated scale-dependent structure. The large-scale coherent, dust, and halo
structures are specified, while the small-scale turbulence is added as a parametric random
term. In CRPropa, if one needs explicit spectral control, one usually adds a synthetic
turbulence module [333, 336]. It provides a statistical description of magnetic fluctuations
but does not include resonant power at physical scales relevant for cosmic-ray scattering.
In contrast, the UF23 model [334] provides updated coherent-field solutions constrained
by recent data. In this work, we make use of both the UF23-base configuration, which
provides the minimal coherent-field solution, and the UF23-twistX configuration

To describe the turbulent field more realistically, we use a hybrid approach that combines
a Sun-centered grid turbulence for large eddies and a plane-wave superposition for small
scales [178, 337] (also see the introduction webpages'?). This setup captures field-line
wandering on scales 2 50 pc and pitch-angle scattering down to sub-pc scales, which
are important for heavy nuclei at PeV-EeV energies [338, 339]. The turbulence grid is
centered at the solar position (z,y,2) = (—8.5, 0, 0) kpc. We use a cubic box of half-size
2kpe (a 4kpe cube) with 2563 cells, giving a spatial resolution of Az ~ 15.6pc. The
grid turbulence follows a Kolmogorov spectrum, P(k) o k=%/3, between fpmi, = 50 pc
and fmax = 300 pc [339, 340], where ¢ denotes a spatial length scale (the inverse of the
wavenumber k& = 27 /¢) in the turbulence spectrum. The minimum scale is chosen to be
larger than 2-3 grid cells to avoid aliasing, while the maximum scale extends to large
Galactic eddies. The RMS (root-mean-square) strength of the grid component is Bgid,
which represents the large-scale part of the turbulent field. Because the mean field (B)
in turbulence is zero, only the variance (B?) is physically relevant, giving Byms = /(B2).
These keep the smallest turbulent structures well above the grid resolution limit and
produce turbulence ~ 100 pc, which is relevant for large-scale trajectories near the Sun.

Small-scale scattering is added through a plane-wave superposition method in which N,
random modes are generated, each assigned an independently chosen phase, polarization
state, propagation direction, and amplitude drawn from a common Kolmogorov spectrum
extending over the interval £l to gsmall “\We et gsmall — 0.3 pe (tightenable to 0.2 pc if

min max min

needed) and £m3l = 50 pc, so that the small-scale band overlaps the grid’s lower end and

extends well below the Larmor radii of heavy nuclei at tens of PeV. Unless noted otherwise,

!CRPropa MF: https://crpropa.github.io/ CRPropa3/buildingblocks/MagneticFields.html.
Zhttps:/ /crpropa.github.io/CRPropa3/api/classcrpropa_ 1 1PlaneWaveTurbulence.html.
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we use N,, = 1024, which provides an approximately isotropic realization and stable
diffusion coefficients while keeping runtime reasonable. The plane-wave RMS strength is
BPY_ . We adjust (B8, BPY ) 5o that the total turbulent RMS near the Sun satisfies,

rms-* rms’ rms

. 2 w 2
Bims & \/ (B&S) + (B%’ms> ~ 3 4G, (6.102)

which consistent with local ISM estimates [338, 339, 341]. We choose a balanced split, e.g.,
Bgd ~ BPY =~ 2.1 uG. This hybrid setup is motivated by considerations of rigidity. For a
particle of charge Z and energy F, the Larmor radius in a pG field is
E/PeV
ZBug

At E = 33PeV and B ~ 3 uG, we have r; ~ 12 pc for protons and 7y, ~ 0.5 pc for iron.
The grid turbulence (with £, = 50pc) correctly captures large-scale meandering but
contains little to no power at ~ 12 pc and cannot represent sub-pc resonant modes. The
plane-wave component fills this gap, supplying power from 0.3 pc to 50 pc and thereby
enabling resonant pitch-angle scattering for both 33 PeV protons and iron [337, 339, 178].
Finally, one can compare different nuclei at fixed rigidity R = E/Z [339, 342].

rr, ~ 1.08 pc

(6.103)

6.5.4 Injection Spectrum

Cygnus OB2 is a massive OB association located in the constellation Cygnus. It is one of
the richest and most compact concentrations of young, massive stars in the Milky Way and
is considered a potential source of high-energy cosmic rays. The source’s characteristics—its
location, age (~ 107 years), stellar wind speed (3000 kms™!), and collective mechanical
power (~ 10 ergs™!), make it an ideal cosmic-ray accelerator. It can inject GeV-PeV
protons into the surrounding medium, powering both the UHE ~-ray bubble and the
33 PeV cosmic-ray excess observed by KASCADE-Grande in this region [8]. In Galactic
coordinates, Cygnus OB2 is located at approximately | ~ 80.22° and b ~ 0.79° [332], while
its equatorial coordinates are roughly R.A. 2233™ and Dec 41°28'. It is positioned at
(—8.256,1.427,0.025) kpc in the Galactocentric Cartesian coordinate system. A distance of
1.45kpc from Earth is adopted for the propagation setup and subsequent analysis.

Before estimating the all-particle flux, we should start with the injection spectrum
at the source. First, we take the y-ray flux and the associated proton flux from the
ultrahigh-energy (PeV) ~-ray bubble linked to Cygnus OB2, as reported by the LHAASO
collaboration [8]. The model assumes a steady injection of energetic protons over the
system age tage, originating from a point-like source at the center of the bubble [8]. If
Cygnus OB2 is indeed the source of these energetic protons, the system age is estimated
to be tage = 2-3 million years [8], through the v-ray observation. The initial injection (or
acceleration) spectrum of cosmic rays is modelled as

Qp = QoE, " exp (—%) (6.104)

0
at the source, where Ey = 5PeV is the spectral cutoff energy, s is the spectral index.
This cutoff is treated as a fitting parameter and does not necessarily indicate the upper
limit of the injection spectrum. The normalization factor Qg is constrained by the total
proton injection luminosity, Ly, which is estimated to be L ~ 1037 ergs™!, or equivalently
6.24 x 1033 PeVs~! [8]. When the injected proton spectrum spans from GeV to multi-
PeV energies, the normalization factor is approximately Qo ~ 3.205 x 1032 PeV~1s~ 1,
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Table 6.8: Distribution of the case if we inject 107 protons (H) and 10° iron (Fe) per energy
bin (other nuclei are not shown), including corresponding median energies.N denotes the
number of injected primary particles. For protons, only the first five energy bins contribute
effectively, whereas iron extends across all energy bins.

E Bin 1 2 3 4 5 6 7 8 9 10
EX [PeV] 17.20 25.30 35.40  50.10 70.00 98.00 138.00 197.00 280.00 400.00
EX [PeV] 1520 21.41 30.17 4253 59.80  84.36 119.00 167.40 235.90 334.80
EX . [PeV] 2141 30.17 4253 59.80 84.36 119.00 167.40 235.90 334.80 468.00
Nu 8,500,000 1,370,000 130,000 5,750 400 50 0 0 0 0
EF° [PeV] 17.68 24.89 35.02 49.26 69.24 97.25 136.42 101.08 267.10 372.46
EFe [PeV]  15.20 21.41 30.17 4250 59.87 84.34 118.82 167.39 235.81 332.20
EFe_[PeV]  21.41 30.17 4250  59.87 84.34 118.82 167.39 235.81 332.20 468.00

Nre 411000 253000 152000 88770 49450 25840 12350 5210 1850 530

calculated using Qo = L/ || 51 2 EQdE, with integration limits E; = 1 GeV and Ey = 10 PeV.
Expressed entirely in GeV units, the normalization becomes Qg ~ 1.602 x 103 GeV~1s71.
The proton injection spectrum follows an exponential cutoff of Ey around 5PeV, s = 2.25,
as LHAASO estimates. To extend this model to nuclei with charge Z., we assume that the
acceleration mechanism is rigidity-dependent, such that the cutoff energy for a nucleus
scales as ZFEcyp [111], where Egyyp = Ep is the cutoff energy of a proton. Under this
assumption, the injection spectrum for a nucleus A can be written as

. . E
Qr=naQoE exp( ZeE())’ (6.105)

where 14 is the abundance of nucleus A relative to protons, which can be influenced by
R-dependent acceleration and escape, nuclear decay, and photo-disintegration processes.
For instance, helium typically has an abundance in the range nge ~ 0.1-0.2, depending on
the source environment. For simplicity in the propagation process, we set the number of
total injected protons as 10°, following the injection spectrum Qp, with energy 1g(E/GeV)
within (7.182,8.670), i.e., from 15.2PeV to 468 PeV to cover the median energy of 33 PeV.
This range ensures that both the core and the tail of the expected source spectrum are
sampled in the simulations, giving a direct comparison between the simulated and observed
fluxes. The energy ranges of the medians for other nuclei are given at the end of Section 6.1.

6.5.5 Arrival Directions on Earth

After injecting and propagating protons from the Cygnus OB2 region, we collect all protons
that reach the assumed detection sphere of radius (0.1 kpc centered on the solar position.
We first examine these arrival directions before applying any anisotropy reconstruction to
visualize the raw distributions. Figures 6.29 and 6.30 show these sky maps in Galactic and
equatorial coordinates, using plain event counts in each pixel. The three panels in each
figure compare the arrival distributions for the JF12 model and for the base and twistX
configurations of the UF23 model. We observe clear differences between the arrival-direction
distributions produced by JF12 and those obtained from the UF23 models. In the next
section, we will analyze the detailed anisotropies of the simulated arrival directions using
relative-intensity maps. Before doing so, we must estimate the signal fraction by studying
the effective diffusion coefficient derived from the full set of simulated arrival directions.
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Figure 6.29: Collected protons on Earth, assuming an Earth-centered detection sphere with
a radius of 0.1 kpc, obtained from protons injected and propagated from the Cygnus OB2
region. The sky maps are in galactic coordinates.
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Figure 6.30: Collected protons on Earth, assuming an Earth-centered detection sphere with
a radius of 0.1 kpc, obtained from protons injected and propagated from the Cygnus OB2

region. The sky maps are in equatorial coordinates.
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6.5.6 Diffusion Coefficient

To estimate the flux from the source (Cygnus OB2 region) on Earth, we have to record
the arrival time (i.e., the total propagation time starting from the source) of the particles.
Because the numerical experiment models an impulsive, one-second release, the resulting
distribution of arrival times corresponds directly to the Green function G(F,t,r), i.e., the
probability density that a single particle emitted at the source arrives on Earth after a delay
t with energy E. In the case of isotropic diffusion in three spatial dimensions, the Green
function represents the probability density that a particle released at the origin at time
t = 0 is later found at the position r at time ¢ [19, 343]. For an impulsive (instantaneous)
point source, the Green function is given by

G(E,r,t) =

13§ )
————exp|——+— |,
(rD(E) )32 P ( AD(E)t
where r is the position vector of the source, t is the time since injection, and D is the
spatial diffusion coefficient. In realistic cosmic-ray scenarios, the diffusion coefficient is
energy-dependent, typically modelled as

(6.106)

D(E) = Dy (gof (6.107)

where Dy and FEj are normalization constants and § is the spectral index, generally in the
range 0.3—-0.6 based on observational fits or turbulence models [19]. The typical parameters
of the diffusion coefficient in Eq. (6.107) are Dy = 3 x 10*6 cm?s™! and § = 0.7 in fits [8,
344]. For a source that follows an injection spectrum Q(E), the resulting cosmic-ray density
at position r and time ¢ is given by n(E,r,t) = Q(E)G(r,t, E).

In this analysis, cosmic-ray particles that propagate from a single source (SNRs) in the
Cygnus OB2 region are assumed, and a total of 107 protons with energies ranging from
15.2 PeV to 468 PeV are injected for propagation, see Table 6.8. These arrival particles,
shown in the histograms, are simulated assuming an Earth-centred bubble with a radius of
0.1kpc. The energy-dependent diffusion coefficients can be fitted using the distribution of
arriving cosmic-ray particles, as shown in Table 6.9. The parameter Dy is obtained by fitting
the arrival-time histogram (see Figure 6.31) to the Green’s function using the first two
energy bins and Eq. (6.107), resulting in Dy = (2.09+0.01) x 102 cm? s}, with Ey = 1 TeV
and 6 = 0.62£0.03. This corresponds to a characteristic root-mean-square displacement in
three-dimensional isotropic diffusion, {|r|) = /(r?) = V6D t, which is valid in the diffusion
regime. For shorter times, the propagation follows a more straight-line trajectory and is
bounded by r < ct. The expression of (r?) is obtained by (r?) = (x2) + (y?) + (2?), and
(x?) = (y?) = (2%) under isotropic diffusion, where (#?) = [ 2% G(x,t)dz. If we assume
the source is a plane source, the diffusion away from the plane source is given by the mean
value of the distance from the plane (|z|) = 2/Dt/7 [19], using {(|z|) = [ |2|G(z,t)dz.

To determine the energy dependence of the diffusion coefficient and recover the Green’s
function, we first fit the full expression in Eq. (6.106) using all arriving protons. From these
fits, we extract the diffusion index §. As shown in Table 6.8, the first four proton energy
bins contribute most to the injected flux, and their corresponding Green’s function fits are
shown in Fig. 6.31. However, the derived ¢ values remain highly uncertain because the
analytic Green’s function assumes idealized conditions—an infinite, homogeneous medium
with constant D, negligible energy losses, no boundaries, and fits to the full arrival-time or
spatial distributions. A more reliable determination of § would therefore require a much
larger number of simulated particles per energy bin.
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Figure 6.31: Fit of the arrival-time histogram of protons to the Green’s function. The 50.1
PeV plot is obtained using 10* injected protons, applicable only to this energy bin.

Alternatively, the mean-squared displacement (MSD) approach is simpler and faster,
which is the standard method for extracting diffusion coefficients from the propagated
particles using CRPropa [345]. In the case of homogeneous and isotropic diffusion, the
spatial dispersion of cosmic rays from a point source follows a simple relation between
mean squared displacement and propagation time. In spatial d-dimensions, the mean MSD
can be obtained via the Green’s function, Eq. (6.106),

(r?) = /7“2 G(r,t)dr = 2d Dt, (6.108)

where D is the diffusion coefficient defined in Eq. (6.107) and ¢ is the particle’s arrival
time [345]. If particles are emitted from a point source and are detected at ¢, each with
a recorded trajectory r, then on average one has D = (r?)/2dt. In the case of three-
dimensional space (d = 3), the diffusion coefficient simplifies to D = (r?)/6¢. Then, we
can directly estimate the diffusion coefficient. However, in our simulation, every proton is
detected on the same spherical shell at a fixed radius of 0.1 kpc, but they arrive at different
times t;. Because each trajectory’s endpoint displacement satisfies r; = r for all i. As a
result, the mean-squared displacement becomes (r?) = r2, which contains no information
about the diffusion process itself. The spread in arrival times, rather than the spread in
spatial displacement, carries the relevant diffusion information in this case. Therefore,
the standard MSD method cannot be used to estimate D, and a time-dispersion or flux
evolution approach must be adopted instead for this fixed-boundary setup.
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Table 6.9: Diffusion coefficient extracted from a Green’s function fit to the full 33 PeV
energy sample, covering 15.2-468 PeV and divided into 10 median energy bins. A total of
N{Pt = 146549 events (unfiltered) are observed above 15.2 PeV, distributed across energy
bins according to the fractions fuin(E). In this analysis, both the Cygnus signal (Neyg)
and the KASCADE-Grande sample (Nkya) are assumed to consist entirely of protons. The
total Cygnus contribution across the energy range is N0 = 2181.

cyg
E Bin 1 2 3 4 5 6 7 8 9 10
E& [PeV] 17.2 25.3 35.4 50.1  70.0 98.0 138.00 197.0 280.0 400.0
D(E)[10%] 1.22 1.55 2.07 2.46 X X X X X X
op[10°°]  0.0116 0.00754 0.0289 0.0711  x x X X X X
Deye/Pxa  2.52%  0.77%  0.13%  0.01% X X X X X X
fon(E)  50.76%  25.06% 12.36% 6.07% = x X X X x x
Nka(E) 74395 36729 18115 8902 X X X X X X
Neye(E) 1876 281 23 1 X X X X x x

Now, consider the problem from a different perspective. Each particle contributes
exactly one measurement, i.e., its arrival time t;, so our data set consists of the list
t;, rather than particle positions at a common time. In effect, we sample the diffusion
process via the first arrival times at radius r (first passage to a sphere), which defines the
appropriate arrival-time probability distribution derived from the diffusion Green’s function
in Eq. (6.106). The corresponding arrival-time distribution for isotropic diffusion in three
dimensions is obtained from this Green’s function and exhibits a long-time power-law tail.
Similar to the MSD method, we can attempt to describe diffusion over time by using the
spread of particle arrival times. However, the mean arrival time, (t) = [ ¢ G dt diverges at
the long-time ¢t =3/ tail of the arrival-time distribution. We therefore employ a likelihood-
based approach to the problem. Now, if we detect N particles at times t1,ts,...,tN, the
overall likelihood of measuring that particular set of times is given by the product of the
individual probabilities f(¢;| D,r). When integrating the Green’s function G(r,t) over
time up to infinity, one obtains [;° G(r,t)dt = 1/(4wDr). Therefore, upon normalization,
the arrival-time probability density can be written as

2

7@ exp (_W) . (6.109)

The likelihood for observing a particle with arrival times ¢; is then given by

f@|D,r) =

N
L(D) =[] | D7), (6.110)
=1

where f(t| D,r) is the normalized arrival-time probability density derived from the Green’s
function Eq. (6.106). Taking the natural logarithm on Eq. (6.110) yields the log-likelihood:

7’2N1

—Y - 6.111
4D = t; (6.111)

N 3
InL(D)=Nlnr — 5ln(47rD) - 5;111757; -

To find the maximum-likelihood estimation for D, we differentiate In £(D) regarding D,
dropping the terms independent of D, and set the derivative to zero:
0 N 2 X1
iy | D=——+___N"2Z_0. 112
o WED) 2D+4D2;ti 0 (6.112)
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Figure 6.32: The energy-dependent (rigidity) diffusion coefficients using different field
models are shown. The green band is the Kolmogorov extrapolation to high-energies based
on B/C ratio, with Dy = (3 — 8) x 2028 cm?s™ !, inferred at FEy = 10 GeV [151, 342].

By solving this equation, we obtain the maximum-likelihood estimator for D,

211 1?1
D‘?N;E‘E<¥>’ (6.113)
where 7 is the fixed source-to-Earth distance used in the simulation. By introducing the
harmonic mean of the arrival times, (1/t), no divergence occurs. It is equivalent to fitting
the full Green’s-function shape by maximum-likelihood, but is much simpler to perform
numerically and more precise, since it eliminates the need for fine-tuning the fit parameters,
as shown in Figure 6.31. The resulting values of D and their corresponding uncertainties
for the first four energy bins are shown in Table 6.9.

The ratio between the isotropic turbulence and the regular magnetic field strength is
defined as 7 = Byms/Bo, where By is the strength of the regular (uniform) magnetic field,

Bims = \/(B2,;,) is the root-mean-square of the turbulent (random) component of the
magnetic field Byyp. The value of 7 gives how strong the turbulent field is relative to the
regular field and determines the anisotropy level of cosmic-ray propagation through the
interstellar medium. It has been found that, for isotropic turbulence in the presence of
a uniform regular magnetic field, a turbulence level of n = 0.5 yields a parallel diffusion
coefficient D) that is consistent with values inferred from boron-to-carbon (B/C) ratio
measurements [342, 151]. In contrast, higher turbulence levels lead to diffusion coefficients
that are too low to match the observed data, strongly indicating inefficient large-scale
transport and excessive scattering of charged particles [342, 151]. This suggests that
cosmic-ray propagation must be anisotropic, requiring a sufficiently strong regular magnetic
field component to reproduce observational constraints. However, the default Galactic
magnetic field model in the CRPropa module (JF12Field) includes a turbulent component
that is stronger than the regular field at both the Earth and the source location. Specifically,
we find n = 3.46 at Earth and n = 2.33 at Cygnus OB2, implying that the local field
environment is dominated by random fluctuations rather than by a coherent ordered field.
Therefore, to reach the regime consistent with B/C-based diffusion, where n = 0.5, the
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field configuration should be rescaled.

For this, we set n < 0.5 as a global parameter in the Galaxy. We consider a simulation
box spanning R € [0.5,15] kpc and |z| < 5kpc, which is sufficiently large to capture the full
propagation volume of PeV protons or iron nuclei. This choice is motivated by the smallness
of the Larmor radius at these energies. For example, a 1 PeV proton in a magnetic field of
1 uG has a Larmor radius of approximately ri, ~ E/eB ~ 1pc, while an iron nucleus at
the same energy has 7y, smaller by a factor ~ Z (i.e., ~ 0.04, pc for Z = 26). Moreover, we
chose vertical extent |z| < 5kpe, which corresponds to the expected size of the Galactic
cosmic-ray halo. Most importantly, the anisotropy systematics discussed in paper [346]
are broadly consistent with an energy-dependent diffusion coefficient D(FE), as illustrated
in Fig. 6.32. Through the relation in Eq. (1.33), an effective slope 8 < 1/3 reproduces
the observed dipole-amplitude trend from 10TeV up to nearly 40 PeV, as illustrated in
Figure 6.17. It should be noted that ¢ in Eq.(1.33) is the transport index governing
D(E)  E?, whereas (3 is the observed dipole-amplitude index A(E) oc E?; typically 3 ~ 6,
unless energy-dependent source gradients or geometry break this equivalence.

6.5.7 Estimation of Source Flux

Formally, the cosmic-ray density at Earth can be expressed as a convolution of the source
injection function Q(E) with the Green’s function G(F,r,t) that describes propagation
through the interstellar medium [343]. Specifically, it is given by:
Tage
n(E) = / “ OB)G(E,r,b) dt, (6.114)
tmin

where |r| = 1.45kpc as mentioned previously. From the distribution of arrival time of
protons in the simulation, the source age is adopted to be T,z = 3-5 million years under
the assumed injection spectrum of protons. The shortest possible propagation time for a
PeV particle travelling in a straight line over a distance of approximately 1.5 kpc is about
1.54 x 10 seconds, or 4.9 x 103 yr. This time sets the lower bound, tuyin, for the Green’s
function in principle. The Green’s function falls to zero extremely rapidly ¢ — 0 due to the
exponential term exp(—r2/4Dt). Physically, this reflects that cosmic rays cannot diffuse
from the source to Earth in an infinitesimally short time. As a result, the earliest time bins,
which are near t = t.,in, contain almost no events. The event counts then rise and reach a
peak around fpeax = r2/6D, after which the behaviour is dominated by the power-law tail
falling off as ¢~3/2, as illustrated by the histograms and Green’s function fit curves shown
in Figure 6.31.

To compute the differential flux ®(E) of cosmic rays incident on a surface, we consider
the directional intensity over the upper hemisphere, i.e., over solid angles with 6 € [0, 7/2].
For an isotropic particle distribution with number density n(E), ®(FE) is obtained as

dN c
~dEdAdan " E) (6.115)

where c is the speed of light, and the number of particles is given by dN = ndVdEdQ /4,
since only the fraction dQ2/4m of particles from an isotropic distribution travel into the
solid-angle element df). The differential volume element is dV = dA cdt cos 6, where 6
is the zenith angle. The factor cos# accounts for the projection of the particle’s motion
onto the surface of the Earth-centered bubble. The factor 1/4 arises from the angular
integration over the upper hemisphere. Based on Figure 6.32, we then calculate the arrival
proton flux [343], which, following Eq. (6.115), represents the steady-state flux (without

o(E)
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Figure 6.33: Top panel: differential fluxes at Earth for protons propagated from Cygnus
(red solid curve), the reported KASCADE-Grande proton flux (blue square markers), and
the Cygnus Bubble y-ray flux within 6° (black solid curve), alongside an estimate of the
Cygnus proton flux without Galactic magnetic-field and diffusion effects (red dashed curve).
Bottom panel: fractions of propagated Cygnus protons relative to the KASCADE-Grande
flux (blue) and to the undistorted proton flux (red). At true energies of 17.2, 25.3, 35.4, and
50.1PeV (i.e., log;o(E/GeV) = 7.24 7.40 7.55 and 7.70), relative to the KASCADE-Grande
proton flux, the Cygnus contribution is 2.522%, 0.767%, 0.132% and 0.011%, respectively.
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any solar or geomagnetic effects) at Earth. This flux can be predicted if the source has
been emitting long enough that the local particle density no longer evolves with time:

_ cQ(B) or || . ||
(I)(E)_167T2]r|D(E) [ f(g D(E)tmm) f(2 D(E)Tage)]7 (6.116)

where Q(E) is obtained by Eq. (6.105), and D(FE) is obtained by Eq. (6.107). As tuyin — 0,
the argument of the error function diverges, and we find erf (r / 2%) — 1. Similarly, as
tage — 00, the error function approaches erf (r/2,/D Toge) — 0, ie., [¢¥ Gdt ~ 1/4nD|r|.
However, the condition Tyge > tmin is not always satisfied, for example, in the case of
protons with energies of several tens of PeV, the second error-function term may be
exponentially small but still not entirely negligible.

The detailed distributions of the differential fluxes at Earth for protons propagated
from Cygnus, along with the corresponding fractions relative to the KASCADE-Grande
proton flux, are shown in Figure 6.33. In this analysis, both the Cygnus signal (Neys) and
the KASCADE-Grande sample (Nka) are assumed to consist entirely of protons. The
number of expected events in the four effective energy bins is summarized in Table 6.9.

Since the diffusion coefficient D in Eq.(6.107) applies to protons only, and D is
rigidity-dependent, we must apply the same methods to all other nuclei (helium, carbon,
silicon, and iron) to obtain their signal ratios. To set their fractions relative to protons
in the source spectrum, we need to estimate each element’s abundance. It is important
to emphasise that the abundance ratios of nuclei to protons from a single source differ
from the Galaxy’s overall composition and the observed composition on Earth due to
effects during propagation. A reliable approach is to first estimate the composition of
charged particles accelerated at the source (e.g., supernova remnants), and then account
for propagation effects beyond diffusion, such as energy losses, decay, and so on.

6.5.8 Anisotropies on Earth

In statistical theory and probabilistic modelling, the Poisson distribution is a discrete
probability law that describes the likelihood of observing a specific number of events within
a fixed interval of time or space, assuming that individual events occur independently
of one another and at a constant underlying average rate, without any dependence on
the time elapsed since the previous event [347]. In this section, we adopt a pixel-based
Poisson likelihood formulation to reconstruct the cosmic-ray relative-intensity map, under
the assumption that the exposure is uniform across the entire sky

We begin by dividing the celestial sphere into Npix equal-area HEALPix pixels. Denote
by n; the number of simulated arrival events that fall into pixel ¢, so that the total number
of events within the entire FoV is given by Niot = vazpf‘ n;. Under the assumption of
uniform exposure, and each pixel shares the same average expected counts i, we introduce
a dimensionless relative-intensity map I; to describe anisotropy deviates from the mean,

which is defined as:
Npix

N,
=% 3 I = Npixe (6.117)
=1

)
Npix

i = IU’IM

If the expected number of events in a pixel ¢ is fi;, then the probability of observing exactly
n; events in that pixel is governed by the Poisson distribution, which takes the form:
,Uzljni e_:ui

P(ni | pi) = T (6.118)
!
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which represents the probability. Similar to the maximum-likelihood method we applied
earlier to the observational data in Section 6.4.2, we now employ the same framework for
the simulated propagation dataset, where the analysis is performed under the simplifying
assumption of uniform exposure and partial-sky coverage, with no detector-related sys-
tematics included. Regarding the entire FoV, we assume statistical independence across
all sky pixels, so that the joint likelihood of the model y, given the observed counts n, is
constructed as the product over all pixels of the corresponding Poisson probabilities for
observing n; vents when the expected number of events in that pixel is ;. Substituting
Eq. (6.117) into the likelihood, one then obtains

Npix an; —p, AN A
N pyte pli) " e
L) = [T =—=—=11 ( Z)n., (6.119)
i=1 v i v
The full log-likelihood (dropping the constant term n;!) is then obtained as
InL=> [niIn(al;) — L] + C, (6.120)
i

where C' is a constant. Maximizing In £ with respect to I;, namely, 9, In £ = 0, one finds
the analytic maximum-likelihood estimator

where i = (n;), 6I; denotes the relative deviation or fractional excess above isotropy, and
measures the anisotropy contrast at each point. This is the special case of perfectly uniform
exposure (no mask, no time or detector acceptance variations), the Poisson maximum-
likelihood estimate for each pixel’s intensity is simply its count divided by the all-sky mean.
When the detector’s exposure varies across the sky, due to limited field of view, zenith-angle
cuts, or azimuthal asymmetries, the simple form Eq. (6.121) no longer holds. Instead, one
must introduce a per-pixel acceptance A; and, if the exposure also varies with time (e.g.,
sidereal rotation), a per-time-bin normalization IV;, as given in Section 6.3.3 and 2.2.4,
and the theory is proposed in paper [143]. The sky maps of relative intensity, pre-trial
significance and post-trial significance for collected protons (median energy 33 PeV) under
the three different magnetic-field models are shown in Fig. 6.34.

To quantify the significance of any deviation from isotropy, we form the likelihood-ratio
test statistic (TS) comparing the fitted anisotropy I; to the null hypothesis I, 219 £ =1:

crey o
TS = _o1m “h ):22[7%111 M+ = i, (6.122)
L(1;) i=1 Hy

with M?g = fi and fi; = i I;. Under Wilks’ theorem [348], TS follows a x? distribution with
degrees of freedom equal to the number of free parameters in the anisotropy model (e.g., two
for a dipole: amplitude and phase). The TS is the significance (in likelihood-ratio units) of
that deviation, comparing the best-fit anisotropic model to the isotropic null-hypothesis. It
reveals how unlikely the observed count in pixel ¢ would be under the isotropic hypothesis.
A per-pixel significance map is obtained as o; = 1/TS;, namely,

0 = \/2 (ni n(us /%) + 1 = pai). (6.123)
which is equivalent to Eq. (6.96).

The post-trial significance map of KASCADE-Grande at 33 PeV highlights regions
of high significance while suppressing low-significance regions due to the multi-trial test
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Figure 6.34: Sky maps of relative intensity, pre-trial significance, and post-trial significance
in equatorial coordinates, obtained from propagated protons. From top to bottom are
results using the JF12, UF23-base, and UF23-twistX Galactic magnetic-field models. The
JF12 model exhibits large biased patterns, whereas the UF23-base and UF23-twistX
models reproduce features more consistent with the anisotropies observed at 33 PeV by
KASCADE-Grande (see Figures 6.19 and 6.22).
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algorithm. This outcome differs from the cosmic-ray propagation results generated using
CRPropa, which show the directly observed distribution from Earth. However, we can
analyze the propagated cosmic rays and compare them with the anisotropy maps from
KASCADE-Grande in both Galactic and equatorial coordinates, as shown in Figures 6.30
and 6.30. The differences in the excess regions obtained with different magnetic-field models,
as illustrated in Figure 6.34, are likely due to the limited statistics of the KASCADE—-Grande
data at 33 PeV and a possible contribution from very high-energy v-rays overlapping with
the cosmic-ray excess in this region. Here, we conclude that the 33 PeV cosmic-ray
excess observed by KASCADE-Grande is highly likely to originate from the Cygnus OB2
association. This may account for the significant discrepancy in dipole phases observed
by IceCube and KASCADE-Grande at tens of PeV, as shown in Figure 5.1. This feature
arises due to the deviation of Earth’s rotational axis relative to the Galactic plane and
the non-uniformity of the Galactic magnetic field (GMF), which behaves anisotropically
for upstream and downstream cosmic rays originating from Cygnus OB2. In summary,
sources within the Cygnus OB2 region, such as Cyg X-3, can plausibly account for the
medium-scale anisotropies observed at 33 PeV by KASCADE-Grande (see Figure 6.25) from
a propagation perspective, and cooperate with the very high-energy PeV ~-ray emission
observed by LHAASO [8].

6.6 A Proposal for the Acceleration Mechanism

The analysis of the unified anisotropy with the mean experiments in Chapter 5, and
the results of KASCADE-Grande in Chapter 6 show evidence of a cosmic-ray source at
33 PeV, which is close to the Cygnus region. This inspired us to investigate the mechanics
of acceleration of high-energy charged particles, which can reach tens of PeV range in
the Milky Way. However, while SNRs are capable of accelerating particles up to PeV
energies, they are insufficient to explain the highest energy cosmic rays in our Galaxy,
which necessitates considering other sources. In addition to supernova remnants, other
astrophysical objects within the Milky Way, such as pulsar wind nebulae (PWNe) and
massive star clusters, may also contribute to the Galactic cosmic-ray population. Pulsars,
rapidly rotating neutron stars with intense magnetic fields, can accelerate particles in their
magnetospheres and in the surrounding wind nebula. These objects are thought to be
capable of contributing to the population of Galactic cosmic rays, especially at energies
near the knee [3], at around 3 PeV.

The wakefield produces a ponderomotive force, a time-averaged, nonlinear force in an
oscillating, inhomogeneous field, that can trap particles and accelerate them efficiently
once the wave potential exceeds their initial momentum [264]. Charged particles can be
accelerated by the wakefield in plasma via the Landau resonance, a process known as
wakefield acceleration (WFA). This concept was first proposed in the study of laboratory
plasmas [264]. In laboratory experiments, wakefield acceleration in plasma can be achieved
using a laboratory-scale wakefield accelerator. This technique accelerates particles to high
energies over short distances by utilizing a plasma wave or wakefield generated by either
a particle beam or a laser pulse. In the first method, a high-energy electron beam (the
“driver”) generates a plasma wave in a gas, which then accelerates a secondary electron beam
(the “witness”). In this way, energy stored in collective plasma oscillations is converted
into particle kinetic energy. The wakefield in plasma can be driven by either high-energy
particle beams or by intense laser pulses. In the beam-driven case, a high-energy “driver”
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Figure 6.35: Schematic structure of a supernova remnant (SNR) containing a central
pulsar (PSR) and its surrounding pulsar wind nebula (PWN). The yellow dashed circular
wave illustrates the plasma wakefield that may arise from the interaction between the
termination shocks of the pulsar wind and the reverse shocks propagating within the PWN.

)

beam propagates through plasma, generating a wake that accelerates a trailing “witness’
beam. A notable example is CERN’s AWAKE experiment [265], which uses a 400 GeV
proton beam from the Super Proton Synchrotron (SPS) to drive a wakefield capable of
accelerating electrons to GeV energies. The laser pulse must be coherent and have a
duration which matches the plasma’s duration of oscillation. This pulse drives a wake in
the plasma, similar to a boat moving through the water, and the electric fields in the wake
accelerate electrons to high energies.

In the context of cosmic-ray acceleration via the wakefield acceleration (WFA) mecha-
nism, Chen [266] proposed that strong Alfvén shocks in relativistic astrophysical plasmas
can drive a plasma wakefield capable of accelerating cosmic-ray particles to ultra-high
energies. Acceleration by the wake’s longitudinal field can reduce some radiative losses
compared to shock cycles and can yield power-law spectra under suitable conditions [266].
Ebisuzaki and Tajima [267] further suggested that intense Alfvén waves generated in
magnetized accretion disks around supermassive black holes can excite ponderomotive and
wakefield forces within relativistic jets, enabling particle acceleration up to ZeV energies.
However, such bursts from accretion disks are characteristic of extragalactic sources, such
as active galactic nuclei (AGNs), and have no known analogue within the Milky Way. Other
galactic processes are typically limited to energies up to the GeV range and therefore cannot
account for the observed PeV cosmic rays. In recent years, the acceleration mechanisms
of PeV galactic CRs have been focused on magnetospheres described in [258]. The work
is relevant to proton acceleration in the pulsar magnetosphere, but only involves proton
acceleration. It is worth noticing that some works have involved wakefield acceleration
(WFA) of high-energy CRs, up to the PeV range, but the coherence and duration problems
are not considered well.

For the first time, I propose that PeV cosmic rays in the Cygnus OB2 association may
originate predominantly from pulsars. In contrast to previous interpretations, standard
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Fermi acceleration in Galactic sources explains cosmic rays up to the knee (~ 3PeV for
protons, tens of PeV for Fe). Beyond this range, however, galactic contributions weaken, and
cosmic rays with > 107 eV are usually attributed to extragalactic accelerators. However,
the KASCADE-Grande 33 PeV bin shows an excess near Cygnus OB2, which, as mentioned
earlier, is supported by propagation simulations discussed earlier. High-energy cosmic-
ray acceleration can involve wakefield acceleration, which, in principle, requires coherent
emissions and short, matched durations relative to the plasma’s frequency. Recent work
primarily focuses on extragalactic sources such as active galactic nuclei (AGNs) [349, 266].
Similarly, I propose a cosmic-ray acceleration model through plasma wakefield acceleration,
driven by high-energy coherent radiation from pulsars, as illustrated in Figure 6.35. In this
framework, coherent radiation (ChR) generated by a relativistic electron beam or ChR
pulse from polar-cap regions of neutron stars drives a wakefield in the surrounding PWN
plasma. Pulses from pulsars, modulated during propagation, interact with the plasma in
pulsar-wind nebulae (PWNe), generating wakefields capable of accelerating cosmic rays to
PeV energies, which in turn can efficiently accelerate charged particles (such as protons)
within the PWN wakefield. The detailed theory and mechanism will be presented in future
work following this thesis.
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This thesis focuses on high-energy cosmic-ray anisotropies and their origins, motivated
by the existing observations from experiments such as IceCube, IceTop, LHAASO, Tibet,
ARGO, HAWC, and Auger. In the PeV energy range, the observed dipole anisotropies reveal
a significant signal across an energy gap that few observatories can currently access. After
introducing the fundamentals of cosmic-ray physics and anisotropy reconstruction methods
in Chapters 1 and 2, Chapter 3 presents my sensitivity studies for observatories (e.g.,
the IceCube-Gen2 surface array) in cosmic-ray anisotropy research. There, I developed
both a Monte Carlo (MC) simulation framework and an equivalent theoretical model
for evaluating sensitivity. Chapter 4 introduces optimized analytical methods for the
reconstruction of cosmic-ray anisotropies. In Chapter 5, I combined and unified the dipole
anisotropy measurements reported by major experiments to obtain a global fit of the dipole
amplitude and phase from the TeV range up to beyond 100 EeV. The results reveal a
distinet “W”-shaped dependence of the dipole amplitude on primary energy (and similarly
for the phase), which may indicate a transition in the dominant cosmic-ray sources as well as
rigidity-dependent propagation effects within our Galaxy. This feature provides important
clues to the origins of cosmic rays in the Milky Way, particularly in the PeV energy range,
above the so-called “knee” of the cosmic-ray spectrum. However, the dipoles reported
in the official KASCADE-Grande analyses show a noticeable bias relative to those from
IceCube and IceTop in overlapping energy ranges. This motivated a deeper investigation
of dipole and medium-scale anisotropies using KASCADE-Grande data, which is described
in Chapter 6. From this analysis, I found that the significance of the 33 PeV energy bin
reaches 30 near the Cygnus OB2 region, a result further supported by propagation studies
using the CRPropa framework. Finally, I propose, for the first time, that ~ 33 PeV cosmic
rays from within the Cygnus OB2 association may originate predominantly from pulsars
and be possibly accelerated by wakefields formed within their pulsar wind nebulae (PWNe).

In the thesis, Chapter 3 quantifies the sensitivity of a partial-sky surface array using
IceCube-Gen2 at the South Pole as the concrete example, to large-scale (dipole) anisotropy
across 109-10%® GeV using two approaches: (i) MC simulations of detector response and
arrival directions and (ii) a theoretical frame for estimation based on the statistics of a
first-harmonic fit in right ascension (RA). Both approaches agree on dominant scalings
and limitations, yielding a coherent, practically useful picture of measurable signals and
design trade-offs. On the simulation side, the detector’s air-shower reconstruction efficiency
is parametrized as a smooth function of energy and zenith, €¢(E,z) with z = sin?#,
folded over primaries with the H4a flux to obtain a total efficiency et (E,0) (as an
option). Arrival directions are drawn on HEALPix by combining €, the declination-
dependent exposure, and an injected dipole modulation. Each map is converted to relative
intensity, smoothed on large scales, projected into RA, and fit with the first harmonic
01 1eco() = Aeco cOs(a — @) + B. Significance is summarized with the simple z-score n, =
(Areco — Anypo)/04 with Apype = 0. Partial-sky coverage compresses amplitudes, typically
Areco/ A < 0.8, with stronger reductions for dipoles near the poles or largely outside the field
of view. By scanning amplitudes and declinations across energy bins and plotting n,/ VN
versus A, smooth fits provide effective slopes that convert a measured amplitude and total
counts into an expected significance, enabling 30 /50 sensitivity curves for reconstructed
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amplitudes and corresponding bands for the true (full-sky) amplitudes. The theoretical
approach starts from the same RA fit but derives uncertainties and significances directly in
terms of the total number of events and a single geometry—exposure factor v that encodes
latitude and declination coverage. In words, the projected amplitude uncertainty scales
as 04 = \/27/Niot, and the amplitude significance scales as nq(Ap) = (1/v/27) Apv/Niot,
as Eq. (3.39) shows. The phase precision improves in lockstep, o, = (1/4,)\/27/Niot,
and a convenient phase “significance” proxy is nq(¢) == 7nq.Ay,, with equations (3.40)
and (3.41). For the Gen2-like geometry adopted here, v ~ 2.487, so 1/,/2y ~ 0.448,
in excellent agreement with the MC-measured slope ny/v/N versus A. This allows all
ground-based observatories to perform a fast and convenient estimation of their sensitivity
to cosmic-ray dipole anisotropies in the future.

In Chapter 4, I present several optimized reconstruction methods developed to minimize
biases in the recovered cosmic-ray dipoles and their uncertainties. These approaches account
for partial-sky coverage and enhance the estimation of dipole significance. In addition, a
“Gradient Method” is introduced to identify stable dipole directions under limited statistics,
though it is not aimed at detailed reconstruction. The chapter establishes FoV-aware
techniques for large-scale anisotropy reconstruction. The compact 3D dipole field on the
sphere is expressed as 61 (o, §) = A(sind sindq + cos d cos dq cos(a — aq)). Projecting over
declination yields the 1D modulation 61(a) = Acp cos(a— o) +.Acs, where ¢s and ¢, encode
the observatory FoV. Using the fit model 61(a) = Ap cos(a — ayp,) + B, the dipole latitude
is recovered via 69 = arctan(c,B/(csAp)). For low-statistics data, the gradient method
would increase the stability by scanning rotated spherical belts, applying inverse-variance
weighting, and fitting iso-height contours to extract the dipole orientation (agq,dq) and
amplitude A.

In Chapter 5, I address why reported dipoles from different experiments disagree and
how to recover the underlying, “real” global dipole as a function of energy. Partial-sky
FoV, site geometry, sample definitions, and energy resolution bias the projected sidereal
dipoles (amplitude and phase). I formalize how overlapping energy samples combine in
relative intensity, model experiment-specific energy PDFs (log-normal or exponential tails),
and calibrate FoV effects via Eq. (4.9). I then reconstruct the energy-dependent dipole
using two approaches: (i) an analytical fit that projects a 3D dipole to right ascension
and matches least-squares to reported (Ap, aq); and (ii) a deconvolution on an energy grid
where each measured dipole is a weighted sum of complex dipole vectors D; = .Ajei“’i, with
weights from the sample’s energy PDF. I solve Eq. (5.36) iteratively by gradient descent and
propagate uncertainties by MC resampling. I also note practical projection details, such as
applying cos § weighting or right-ascension banding for accurate large-scale patterns using
HEALPix. The unified result yields continuous curves of amplitude and phase from 1 TeV
to 50 EeV after FoV calibration, revealing a dipole flip at E ~ 107.9 TeV with amplitude
Ap = (2.1£0.40) x 10~* and phase aq = 315.3°£7.7°. The amplitude shows a characteristic
“W-shaped” structure, as shown in Figure 6.17, while the phase twists with energy. Around
the ankle (~ 3 x 1018 eV), the trends suggest an increasing contribution from extragalactic
sources. Compared to raw measurements, the deconvolved dipole varies more sharply with
energy because the superposition of wide energy bins in experiments flattens the true
variations. These studies indicate that IceCube-Gen2 will provide important measurements
for studying cosmic-ray anisotropies in the PeV-EeV range. However, some differences,
especially in the 1-100 PeV range and in the KASCADE-Grande data, call for a more
detailed analysis in the PeV range, which is presented in Chapter 6.

In Chapter 6, I analyze KASCADE—-Grande data for dipole and medium-scale anisotropies
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at median energies of 2.7, 6.1, and 33 PeV. Using KCDC public data, I select events with
6 < 40° and Ng, > 10°2. I first survey systematics in solar, sidereal, and anti-sidereal time,
then apply the East—West derivative method. A strong solar-time signal and anti-sidereal
amplitudes comparable to the sidereal, with roughly inverted phases, which point to residual
exposure and environmental effects. Seasonal and time-ordered splits show phase drifts
of 20°-40°, with the 33 PeV bin particularly unstable, motivating stricter data-quality
cuts. To stabilize exposure, I remove days with large gaps and run time-scrambling—based
Rayleigh/Fourier analyses to subtract a high-statistics background. This filtering reduces
variability and smooths the RA modulation, but anti-sidereal leakage and split-phase
inconsistencies remain, especially at 33 PeV. In short, East—West and standard Rayleigh
by themselves can’t cleanly correct time-variation biases when live time is patchy; day-level
acceptance weighting and FoV-aware 3D reconstructions are needed. I then reconstruct 3D
dipoles by averaging exposure- and acceptance-weighted 2D vectors in belts and subtracting
a time-scrambled reference to isolate the excess. I use declination belts to constrain the
equatorial dipole via (4, ;) and the vertical component via the mean z term, and I also
use solid-angle belts (Oq, ¢) perpendicular to the y-axis as a geometric cross-check under
partial FoV. This links the measured resultants to A and (ag,dq) through FoV moments
p = (cosd), s = (sind), and t = (sin? §); uncertainties are propagated from the weights
and the scramble count ng.,. Phases from multiple belts are combined, and A and d4 are
obtained per belt or via a global non-linear least-squares fit.

Moreover, I average the acceptance—calibrated intensity vector over broken ©q-belts
to form pseudo-resultants (U, ;,*V. ;) and a complementary y-component U, ;, then fit
these belt—averaged components to the integrated dipole model on (©q, ), noting that
incomplete belts bias the resultant direction (a pseudo—phase). Using closed-form belt
integrals (coefficients S1, Sa, Py, P1, P2, P3) and the angle relations that map (0%, ¢q4) to
(0a, @a), I solve per belt for (A, aq,dq) with uncertainties propagated from (ow,, 0w, , 0%, );
in practice, a single Og-belt spanning the KASCADE-Grande FoV is insensitive to dgq
and multiple belts add noise, so I do not use this channel for final results, but used the
declination d-belt. For data quality, I remove unstable early solar days and large-gap
sidereal days, apply nger time—scrambling to stabilize references, and introduce a Dirichlet
prior on UTC occupancy to build a smoothed exposure weight that suppresses multi-scale
time gaps; with these weights, residual solar/anti-sidereal amplitudes are consistent close
to zero, validating the correction. The d-belt angular—vector reconstructions (original
and filtered, as well as time-split subsets) exhibit broadly stable phases and improved
amplitude consistency, although limited statistics and partial sky coverage still induce biases,
especially near low declinations, in the results. The updated FoV-calibrated anisotropy
results indicate that the dipole amplitude changes with energy in a "W”-shaped pattern,
as shown in Figure 6.17. A clear phase change appears around 107.9 TeV, and a small
peak occurs near a few PeV (close to the knee). These features suggest that different
sources dominate at different energies—possibly shifting toward the Cygnus region, and
that magnetic fields affect the observed directions. Above a few PeV up to about 10'7 eV,
the results may indicate a gradual transition to extragalactic cosmic rays. More studies of
medium-scale structures are needed to confirm the source directions.

Next, I searched for medium-scale structures in KASCADE-Grande using an improved
maximume-likelihood method that fits the sky intensity, time normalization, and directional
acceptance together, with Gaussian smoothing and a slower, more stable iteration. I map
relative intensity and compute pre- and post-trial significances after top-hat smoothing
optimized per energy bin, then validate global excesses with isotropy Monte Carlos to
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capture the look—elsewhere effect. A hotspot at 33 PeV attains ~ 4.6 o (pre-trial) and ~ 3o
globally after trials, with location shifting by ~ 15° under data filtering, consistent with
acceptance/coverage systematics. Its region (Galactic [ ~ 80°) overlaps with Cygnus, where
PeV ~-ray activity has been observed, suggesting a possible local origin but not a confirmed
discovery. The lower-energy bins show weaker post-trial features (< 30). Overall, the
weighting, filtering, and ML stabilization help reduce solar and seasonal effects and random
noise, but the limited FoV and statistics are still the main limitations. To study deeper the
possible origins of the local enhancement, in Section 6.5, I simulate CR propagation from
the Cyg OB2 region (PSR J20314+4127) with CRPropa and JF12/UF23 magnetic fields,
using a hybrid turbulence model, to test whether source-born arrival directions populate
the KASCADE-Grande FoV and reproduce the 33 PeV hotspot near [ ~80°. Protons (and
nuclei) are injected with an LHAASO-motivated spectrum (s~2.25, Fy~5PeV, rigidity-
scaled cutoffs); diffusion parameters are inferred from arrival-time fits to the Green function
by using a maximum-likelihood estimator D = r?(1/t)/2, as shown in Eq. (6.113), and
giving D(FE) x E? with §~0.6 and Dy~2 x 10%? cm?s™! at TeV reference. The predicted
Cygnus proton flux contributes a few percent at ~17-25 PeV, declining rapidly with energy,
and sky maps under the model of the magnetic field named UF23 (base/twistX) align better
with the observed 33 PeV excess than the model JF12. Altogether, the simulations support
Cyg OB2 as a plausible contributor to the KASCADE-Grande medium-scale excess. The
result supports a possible pulsar-driven wakefield acceleration scenario in pulsar-wind
nebulae (PWNe), discussed in Section 6.6. The KASCADE-Grande measurements and
our propagation simulations exhibit broadly consistent anisotropy morphologies. However,
canonical Galactic accelerators struggle to exceed the PeV scale, leaving the energy range
above 10PeV under-explained. At the end of this thesis, I therefore propose wakefield
acceleration in PWNe embedded in supernova remnants (SNRs): intense, magnetized,
relativistic winds can drive longitudinal plasma waves whose ponderomotive fields trap and
accelerate ions to multi-PeV rigidities. In this scenario, short-term particle injection, strong
rigidity ordering, and magnetic beaming naturally produce the observed medium-scale
excess near the Cygnus region while staying consistent with the large-scale dipole limits.

To give an outlook, future experiments and observations, such as IceCube-Gen2,
LHAASO, CTA, AugerPrime/TA x4, and SWGO, as well as the Pierre Auger Observatory
at the highest energies, will explore cosmic rays above PeV energies. They will also compare
PeV ~-ray maps with medium-scale cosmic-ray excesses, search for possible neutrino signals
from the Cygnus region, and allow three-dimensional anisotropy studies that take into
account each experiment’s field of view. Combined multi-messenger analyses and improved
maps of the Galactic magnetic field will help reduce uncertainties in cosmic-ray propagation
and reveal whether pulsar-wind nebulae are Galactic PeVatrons above 10 PeV.
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Appendix

A Spherical Harmonics

The common spherical harmonics, namely, Y7, are based on spherical coordinates, zenith
angle (0) and azimuth angle (¢). The Spherical harmonics with equatorial coordinates,
namely, right ascension («), and (J) are Yy, (9, «). The azimuth angle (¢) is equivalent to
right ascension («), while the transformation between the zenith angle (or polar angle) in
spherical coordinates and declination in equatorial coordinates, namely 6 = 7/2 — §. Their
complex conjugates are Y, (9, ), which are follows a relation with Yy, (4, ), namely:

Yiem(6,0) = (=1)"Y 3, (6, ), (A.1)

which follows from the general properties of the associated Legendre functions and ensures
orthonormality on the sphere. In anisotropy analyses, the cosmic-ray relative intensity
map I(a,d) is often expanded into these basis functions to isolate large- and small-scale
angular structures. The coefficients ag,, obtained from this expansion quantify the strength
and phase of anisotropy modes of different angular scales, with the dipole (¢ = 1) and
quadrupole (¢ = 2) terms being of large-scale anisotropy. The detailed Y;_,, (6, ) with
degrees ¢ =0, 1,2, 3 are given by the following:

For ¢ = 0: ] ]
Yoo(d,a) = —, Yy(d,a) = —. A2
00( Oé) \/ZE OO( Od) \/ZE ( )
For ¢ = 1:
Yi 1(6,0) = \/ o cosbe™@,  Y{_y(6,0) = | — cosdei®
1,-1(6, @) = {/ o—cosde™, Y1 _4(6,a) =1/ o cosde
Y10(6, ) = \/isiné Yiu(0, ) = \/isind (A.3)
’ 47 R 47
Y11(8 )——\/300‘5 L G0 )——\/300‘5 i
1,100, ) = S soe, 1,100, ) = S sde .
For ¢ = 2:

1 .
Y, 2(d, ) =14/ 375 cos® fe 2
7r
15 . —
Yo _1(d, ) =14/ P cos d sin e ¢,
™
Yoo (0, ) =/ 16%(3 sin? g — 1), (A.4)
15 ;
Y21(6, ) = —1/ o cos d sin de'”,
T
1 .
Y22(9, ) =1/ 375 cos? 6e?e,
s
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For ¢ = 3:

T
Y3 9= \/gcosz(é) sin(8)e~ 2,
F s 2 —i
Y3 _1 = 647COS(6)(5 sin“(9) — 1)e™*,
Yao = \/12(5@3(5) — 3sin(d)), (A-5)
Y3, = —\/7005(5)(5 sin?(0) — 1)e’®, Y5, = —\/Tcos(é)(E) sin?(0) — 1)e™™@
’ 647 ’ ’ 64

B Coordinates

The function arctan2(y, ) can be formally defined as:

arctan (%) if x >0,
arctan (%) +7 ifz<0andy>0,

arctan (£) —7 if x <0 and y <0,

arctan2(y, ) = e B.1
.2 =14 if 2 =0and y >0, (B1)

-3 ifz=0and y <0,

undefined ifz=0and y=0.

The traditional arctan function, o = arctan (y/z), only returns values between —7/2 and
7/2, which is insufficient to determine the correct angle for points in all four quadrants.
By using arctan2, we ensure that the computed angle accurately reflects the position of
the point (z,y) in the plane, taking into account the signs of both x and y.

C KASCADE-Grande Data

The distributions of the total data for KASCADE-Grande, collected from March 12,
2004, to October 9, 2012, are shown below, including only non-empty sidereal days. The
raw data contain timestamp gaps due to detector downtime, maintenance periods, and
acquisition interruptions, resulting in non-uniform time coverage. Non-valid sidereal days
with a total gap of > 4 hours and < 100 events in any half-hour bin have been removed,
and the cleaned data set is shown afterwards. The detailed time distributions in both
Local Sidereal Time (LST) and Coordinated Universal Time (UTC) are shown below.
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Sidereal Days from 12520 to 12959
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Sidereal Days from 13790 to 14005
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Sidereal Days from 14677 to 14983
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Sidereal Days from 12522 to 12959
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Sidereal Days from 13790 to 14005
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Sidereal Days from 14677 to 14983
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600 ~ Distribution of Solar Time
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600 ~ Distribution of Solar Time
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600 ~ Distribution of Solar Time
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