
Incremental Computing by Differential Execution
(Artifact)
Prashant Kumar #

JGU Mainz, Germany

André Pacak #

JGU Mainz, Germany

Sebastian Erdweg #

JGU Mainz, Germany

Abstract
This artifact supports the paper titled “Incremental
Computing by Differential Execution” accepted at
ECOOP 2025. It provides a mechanized formal-
ization in Rocq of the differential semantics and
optimizations presented in the paper, along with a
reference implementation of the differential inter-

preter in Scala. The artifact includes the Bellman-
Ford benchmark used for the performance evalu-
ation in Section 7. Both components are packaged
as Docker images for ease of use and reproducibil-
ity, enabling verification of all claims made in the
paper.

2012 ACM Subject Classification Theory of computation → Operational semantics; Software and its
engineering → Formal language definitions; Software and its engineering → Formal methods; Software
and its engineering → Incremental compilers
Keywords and phrases Incremental computing, differential semantics, programming language design,
formal verification, big-step semantics
Digital Object Identifier 10.4230/DARTS.11.2.13
Acknowledgements This work is supported by ERC grant AutoInc (https://doi.org/10.3030/
101125325).

Related Article Prashant Kumar, André Pacak, and Sebastian Erdweg, “Incremental Computing by
Differential Execution”, in 39th European Conference on Object-Oriented Programming (ECOOP 2025),
LIPIcs, Vol. 333, pp. 20:1–20:24, 2025. https://doi.org/10.4230/LIPIcs.ECOOP.2025.20

Related Conference 39th European Conference on Object-Oriented Programming (ECOOP 2025),
June 30–July 2, 2025, Bergen, Norway
Evaluation Policy The artifact has been evaluated as described in the ECOOP 2025 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

This artifact enables verification of all experimental claims and theoretical results presented in the
paper. Running the artifact components allows verification of:

Formal Correctness (Sections 3–5): The differential semantics’ completeness, validity,
and consistency, along with the admissibility of all optimization rules.

Performance Improvements (Section 7): The significant speedups achieved by differential
execution compared to recomputation, and the initialization overhead tradeoff.

All verification steps are detailed in the Appendix, with a mapping between specific paper
claims and artifact components provided in Section B.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Prashant Kumar, André Pacak, and Sebastian Erdweg;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 11, Issue 2, Artifact No. 13, pp. 13:1–13:8
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:pkumar@uni-mainz.de
https://orcid.org/0000-0002-3452-2558
mailto:pacak@uni-mainz.de
https://orcid.org/0000-0001-7441-6955
mailto:erdweg@uni-mainz.de
https://orcid.org/0000-0002-1974-5956
https://doi.org/10.4230/DARTS.11.2.13
https://doi.org/10.3030/101125325
https://doi.org/10.3030/101125325
https://doi.org/10.4230/LIPIcs.ECOOP.2025.20
https://2025.ecoop.org/track/ecoop-2025-artifact-evaluation#Call-for-Artifacts
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.4230/DARTS.11.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

13:2 Incremental Computing by Differential Execution (Artifact)

2 Content

The artifact is distributed as Docker images for both AMD64 and ARM64 architectures: one set
for the Rocq formalization and one set for the Scala implementation. Each image can execute its
component end-to-end and then drops you into an interactive shell, so you can inspect the code,
rerun proofs or benchmarks, and explore every step yourself.

2.1 Rocq Formalization

The Rocq formalization is contained in file Imp.v, which contains definitions and proofs that
directly correspond to paper sections. Readers can jump directly to the artifact identifiers shown
below and inspect them or rerun any proof.

Section 3 of the paper (Values and Changes): Properties like patch_diff, diff_elim,
store_diff_patch, ∆store_diff_elim, with typing definitions (value_type, valid_change)
in the Rocq formalization.

Section 4 of the paper (Differential Semantics): Definitions exec and ∆exec, with
theorems:

Theorem 4.1: ∆exec_completeness

Theorem 4.2: ∆exec_validity

Theorem 4.3: exec_consistent

Section 5 (Optimizations) of the paper: Various optimization proofs as well as the
formalization components of Rocq are as shown below.

No-Change: NoChangeExpr, NoChangeStmt, exec_NoChange

Idempotence: exec_repeat_idempotence, ∆exec_repeat_idempotence

Loop Incr/Decr: exec_NoChange_repeat_incr, exec_NoChange_repeat_decr

Branch Switching: exec_if_assign_TrueFalse, exec_if_assign_FalseTrue

2.2 Scala Differential Interpreter:

Our differential interpreter implementation in Scala is organized into modules that implement and
test the paper’s concepts:

library/: Core abstractions for changes, diffing, and operators

lang/: IMP language definition (Syntax.scala), parser (Parser.scala), and static analyses
(TypeChecker.scala, WriteBeforeReadChecker.scala)

interp/: Interpreter implementations (StandardInterpreter, BaseDifferentialInterpreter)
and testing infrastructure

benchmark/: Bellman-Ford implementation with performance measurement infrastructure
that reproduces Figures 6 and 7

Both components are packaged as Docker images for easy reproducibility and come with
comprehensive documentation.

P. Kumar, A. Pacak, and S. Erdweg 13:3

3 Reusability and Extensibility

Beyond verifying the paper’s results, the artifact’s design facilitates reuse and extension. The
evaluation committee can consider the following scenarios:

Extending Language Features: The modular architecture of the Scala interpreter (lang/,
interp/) supports the addition of new language constructs. Researchers can define syntax,
standard semantics, and differential rules for new features (e.g., while loops, records, arrays,
objects) following the established patterns in the existing implementation.

Implementing Additional Optimizations: The framework allows defining and verifying
new differential execution optimizations beyond those in Section 5. This process follows our
established methodology: implementing semantic rules in the interpreter and extending the
Rocq formalization to prove their admissibility.

Applying to Other Algorithms: The differential interpreter executes any valid program
in the supported IMP dialect. Researchers can implement and analyze algorithms beyond
Bellman-Ford to study their incremental behavior, leveraging the benchmarking infrastructure
we provide. The interpreter’s API (BaseDifferentialInterpreter) facilitates programmatic
integration.

Extending Formal Verification: The Rocq formalization in Imp.v provides a verified
foundation that can be extended to prove properties of new language features, optimizations,
or alternative differential semantics, following the pattern of our existing proofs.

Reusing Core Components: The implementation of core abstractions like change repres-
entation (Change) and the diffing logic (Diffing) in the library/ module can be reused in
other incremental computation projects in Scala, independent of our specific interpreter.

The comprehensive documentation, and modular structure facilitate these reuse scenarios.

4 Getting the artifact

The artifact archive is permanently available on Zenodo: https://doi.org/10.5281/zenodo.
15363328. This includes platform-specific tar file versions of our docker images for both AMD64
and ARM64 architectures, which can be used to reproduce the results of our experiments.

Alternatively, pre-built Docker images are available on Docker Hub:

Rocq formalization (AMD64): prashantkumar10011989/coq-formalization:amd64

Rocq formalization (ARM64): prashantkumar10011989/coq-formalization:arm64

Scala implementation (AMD64): prashantkumar10011989/autoinc-scala-image:amd64

Scala implementation (ARM64): prashantkumar10011989/autoinc-scala-image:arm64

Source code repositories are also available with extensive README files and examples:

Rocq formalization:
https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-formalization-ecoop25

Scala implementation:
https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-implementation-ecoop25

DARTS

https://doi.org/10.5281/zenodo.15363328
https://doi.org/10.5281/zenodo.15363328
https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-formalization-ecoop25
https://gitlab.rlp.net/plmz/artifacts/autoinc-interp-implementation-ecoop25

13:4 Incremental Computing by Differential Execution (Artifact)

5 Tested platforms

Specifics of the hardware and software on which the testing was carried out is provided in the
table below.

System Requirements
Hardware
RAM At least 24GB to run the full benchmarks
Disk Space About 8 GB for both Docker images plus 20MB for results
Software
Docker Any recent version (20.10+) with sufficient memory allocation
Tested On
Operating System macOS 15.1.1 (64-bit) with Apple M4 Pro chip, 24GB RAM

Docker Image Contents
Docker images are provided for both AMD64 and ARM64 architectures and encapsulate all
required dependencies:

Rocq Images Rocq Proof Assistant v8.18.0 on Debian base image (available for both AMD64
and ARM64)

Scala Images Scala 3.4.1, SBT 1.9.7, OpenJDK 23.0.1, Python 3.10 with matplotlib and
pandas libraries on Ubuntu base image (available for both AMD64 and ARM64)

Note: Performance results may vary depending on system hardware. The key verification goal
is to reproduce the relative performance trends shown in the paper, not necessarily the exact
timing values.

6 License

This artifact is available under the MIT License.

7 MD5 sum of the artifact

8700e93eb87a4a3a80a6d3cb9024c7dc

8 All MD5 Checksums

coq-formalization-amd64.tar: c9aec99bf3cf7c8d2dab23d6d82ff1a7

coq-formalization-arm64.tar: 373ab922b09c0735b3ad41470f8bd4b0

autoinc-scala-image-amd64.tar: e48cfeef7c22dd13e5d456b01c9fc186

autoinc-scala-image-arm64.tar: a2d08b1bb84c59c81dc6bd8f5e6509bb

9 Size of the artifact

Approximately 3.7 GB total (across all platform-specific images).

P. Kumar, A. Pacak, and S. Erdweg 13:5

A Artifact Evaluation Instructions

This section provides instructions for evaluating the artifact components.

A.1 Preparing the Environment
1. Ensure Docker is installed and running with at least 24GB memory allocation.
2. Create a local directory for storing benchmark results as shown below:

mkdir -p results

3. Load the appropriate Docker images from the provided platform-specific .tar files:
For AMD64 Architecture:

docker load -i coq - formalization -amd64.tar
docker load -i autoinc -scala -image -amd64.tar

For ARM64 Architecture:

docker load -i coq - formalization -arm64.tar
docker load -i autoinc -scala -image -arm64.tar

Alternatively, you can also pull the pre-built Docker images from Docker Hub:
For AMD64 Architecture:

docker pull prashantkumar10011989 /coq - formalization :amd64
docker pull prashantkumar10011989 /autoinc -scala -image:amd64

For ARM64 Architecture:

docker pull prashantkumar10011989 /coq - formalization :arm64
docker pull prashantkumar10011989 /autoinc -scala -image:arm64

A.2 Rocq Formalization Verification
This step verifies the mechanized proofs corresponding to Sections 3-5 of the paper.

For AMD64 Architecture:

docker run --platform linux/amd64 -it coq - formalization :amd64

For ARM64 Architecture:

docker run -it coq - formalization :arm64

Expected outcome: The container automatically compiles and verifies the Rocq proof script
(Imp.v). You should see compilation messages ending successfully without errors. The script will
then drop you into an interactive shell within the container.

Estimated time: 30-60 seconds for compilation.

Sanctity Check and Optional Exploration: At the shell prompt, you can check the following.
This allows the reviewers to be assured of the sanctity of the artifact.

View the proof file: less Imp.v

Re-check proofs: coqc -q Imp.v

DARTS

13:6 Incremental Computing by Differential Execution (Artifact)

Validate the compiled object: coqchk Imp.vo

Start an interactive session: coqtop

Exit the container: exit

A.3 Scala Interpreter & Benchmark Verification

This container runs the interpreter tests and the Bellman-Ford benchmark (Section 7).

A.3.1 Short Run

This runs core tests and a minimal version of the benchmark suite to quickly verify functionality.
We do this by setting the SHORT_BENCHMARK environment variable to true. To make this faster,
rather than performing the experiments on graphs of size from 10,20,. . ., 150 we do so only till 90,
that is, 10,20,. . ., 90.

For AMD64 Architecture:

docker run -it --platform linux/amd64 \
-e SHORT_BENCHMARK =true \
-v "$PWD/ results :/ results " autoinc -scala -image:amd64

For ARM64 Architecture:

docker run -it \
-e SHORT_BENCHMARK =true \
-v "$PWD/ results :/ results " autoinc -scala -image:arm64

Expected outcome: There are two outcomes:

1. A test suite associated with the differential interpreter which includes property based testing
for various examples is executed.

2. The container executes tests and a small benchmark subset. It generates simplified ver-
sions of the plots from the Experiment Evaluation section of our paper (Section 7) and
copies them to your local ./results directory. These plots are named appropriately, that
is, Figure_6_a_paper.pdf is the Figure 6(a) from the paper. However, note that due to
simplification, we would not be able to look at the whole trend. To do so, we will have to do a
full run of the benchmarks. In the ./results directory you will also find the .csv file resulting
from the experiment which are then used to draw the plots seen in Section 7.

Figure_6_a_paper.pdf (Figure 6a: Differential vs Baseline - Change i)

Figure_6_b_paper.pdf (Figure 6b: Differential vs Baseline - Change ii)

Figure_7_a_paper.pdf (Figure 7a: Initialization vs Baseline - Change i)

Figure_7_b_paper.pdf (Figure 7b: Initialization vs Baseline - Change ii)

Estimated time: Approximately 8 minutes.

P. Kumar, A. Pacak, and S. Erdweg 13:7

Sanctity Check and Optional Exploration: After the benchmarks complete, the container will
drop you into an interactive shell where you can inspect the various files present there. In
particular, we have provided a simple example file (SampleTest.scala) to explain the working of
our differential interpreter. This file is also shown in README file associated with the git lab
repo of the artifact of our differential interpeter. You can inspect this file in the shell as well
as run it. Additonally, you can execute the test suite in the shell by executing the shell script
runTests.sh. A few concrete examples of things you can do in the shell to help with evaluating
the artifact:

View sample test: cat interp/src/test/scala/autoinc/interp/SampleTest.scala

Run sample test: sbt "interp/testOnly autoinc.interp.SampleTest"

Explore implementation:
cat interp/src/main/scala/autoinc/interp/BaseDifferentialInterpreter.scala

Run additional tests: sbt interp/test or ./runTests.sh

Exit the container: exit

A.3.2 Full Run (Reproducing Paper Results)
This executes the complete benchmark suite necessary to reproduce the performance results
presented in the paper.

For AMD64 Architecture:

docker run -it --platform linux/amd64 \
-e SHORT_BENCHMARK =false \
-v "$PWD/ results :/ results " autoinc -scala -image:amd64

For ARM64 Architecture:

docker run -it \
-e SHORT_BENCHMARK =false \
-v "$PWD/ results :/ results " autoinc -scala -image:arm64

Estimated time: About 1 hour on a modern machine with the aforementioned configuration in
Section 4.

B Mapping to Paper Claims

The artifact components support the paper’s claims as shown in Table 1. Additionally, Note that
running the full Scala benchmark (A.3.2) automatically executes all test cases, including those for
the optimizations described in Section 5, verifying their correct implementation.

C Troubleshooting

Memory Issues: Ensure Docker has adequate memory allocated (at least 24 GB for Scala
full run).

Slow Benchmark Performance: The full benchmark duration depends heavily on CPU.
The short run should be reasonably fast.

DARTS

13:8 Incremental Computing by Differential Execution (Artifact)

Table 1 Mapping between paper claims and corresponding artifact components.

Paper Section/Fig-
ure/Theorem

Artifact Component with Location Verification Method

Sec 3, 4, Thm 4.1-4.3 Rocq formalization: theorems for complete-
ness, validity, and consistency in Imp.v

Run Rocq Verification (A.2)

Sec 5 (Optimizations) Rocq formalization: admissibility proofs for
No-Change, Loop, and Branch Switching
optimizations in Imp.v

Run Rocq Verification (A.2)

Sec 7, Fig 6, Fig 7 Scala benchmark suite: Bellman-
Ford implementation in
autoinc-scala/benchmark

Run Scala Full Benchmark (A.3.2);
check generated PDF files in
./results/

Platform Compatibility: Use the appropriate Docker image for your system architecture
(AMD64 or ARM64). If unsure about your architecture, you can check with uname -m (x86_64
indicates AMD64, arm64 or aarch64 indicates ARM64).

Exiting Container Early: Use Ctrl+C to stop the running process.

	1 Scope
	2 Content
	2.1 Rocq Formalization
	2.2 Scala Differential Interpreter:

	3 Reusability and Extensibility
	4 Getting the artifact
	5 Tested platforms
	6 License
	7 MD5 sum of the artifact
	8 All MD5 Checksums
	9 Size of the artifact
	A Artifact Evaluation Instructions
	A.1 Preparing the Environment
	A.2 Rocq Formalization Verification
	A.3 Scala Interpreter & Benchmark Verification
	A.3.1 Short Run
	A.3.2 Full Run (Reproducing Paper Results)

	B Mapping to Paper Claims
	C Troubleshooting

