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Kurzfassung

Diese Arbeit présentiert die Entwicklung und Anwendung einer Methodik, die die numerische
Untersuchung siedender Stromungen ermdoglicht. Aufgrund seiner Komplexitit ist das Siede-
phdnomen noch nicht vollstindig untersucht und Gegenstand der aktuellen Forschung. Hiufig
sind experimentelle Messungen siedender Stromungen schwer umsetzbar, weshalb grenzflachen-
auflosende Simulationen einen vielversprechenden Ansatz darstellen, um ein tieferes Verstidndnis
zu erlangen. Des Weiteren weisen Simulationen mit der Reynolds-Zeitmittelung Genauigkeits-
probleme auf, da empirische Modelle zur Blasengrofenverteilung in siedenden Stromungen nur
eingeschrinkt anwendbar sind. In dieser Hinsicht konnten Blasenstatistiken aus grenzflichenauf-
losenden Simulationen zur Verbesserung dieser Modelle eingesetzt werden. Jedoch sind grenz-
flachenauflésende Simulationen von Siedephinomen in der Umsetzung aufgrund ihres hohen
rechnerischen Aufwands und der Notwendigkeit spezialisierter Losungsmethoden anspruchsvoll.
Im Hinblick auf diese Schwierigkeiten soll eine effiziente und konsistente Methodik zur grenz-
flachenauflosenden Simulation siedender Stromungen entwickelt werden, die eine statistische
Auswertung lokaler Blasenereignisse ermoglicht. In dieser Arbeit wird die "Accurate Conserva-
tive Diffuse Interface”" (Abk. ACDI, engl. genaue konservative diffuse Grenzflache) Methodik
zur numerischen Beschreibung der Phasengrenzfliche verwendet. Gegeniiber anderen Methoden
zur Simulation von Phasengrenzflichen zeichnet sich die ACDI-Methodik durch eine Vielzahl
numerischer Vorteile aus. Allerdings wurde ACDI bisher nicht auf komplexe Siedevorginge
angewandt. Um dies zu ermoglichen, wird eine Reihe von notwendigen numerischen Verfahren
entwickelt. Dazu zihlen unter anderem: (i) das Untersuchen der Transportgleichungen, wobei
zusitzliche Beitrige in der Impulsbilanz identifiziert wurden, die jedoch oft vernachlissigt wer-
den; (ii) die Entwicklung eines Drucklosungsverfahrens, das die Verwendung von "Fast Fourier
Transformations" (Abk. FFT, engl. schnelle Fourier-Transformation) ermoglicht; und (iii) die
Modellierung des Phaseniibergangs fiir die ACDI-Methode. SchlieBlich wird die Simulations-
software einer Reihe einschlédgiger Literaturtests unterzogen. Diese Tests reichen von einfachen,
eindimensionalen Grenzflachensimulationen bis hin zu komplexen Simulationen von Blasen im
dreidimensionalen Raum. Hier kann gezeigt werden, dass die zusitzlichen Beitrdge der Impulsbi-
lanz eine wichtige Rolle bei dem genauen Simulieren des Drucksprungs durch den Phaseniibergang
spielen. Zusitzlich werden mit diesen Beitrdgen prizisere Vorhersagen iiber die Blasendynamik
ohne Phaseniibergang erhalten. Der Druckloser zeigt im Vergleich zu bisherigen FFT-Verfahren
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den Vorteil, dass durch den Phaseniibergang zusammen mit hohen Dichteunterschieden keine
Druckoszillationen entstehen. Die numerischen Tests zeigen auflerdem, dass das entwickelte
Modell des Phaseniibergangs verlédssliche Ergebnisse liefert und keine simulationsabhéngigen Pa-
rameteranpassungen erfordert. Durch den Vergleich mit experimentellen Daten wird gezeigt, dass
die Simulationssoftware ein geeignetes Werkzeug darstellt, um technisch relevante Strémungen
zu simulieren. Hierfiir wird auch die Skalierbarkeit des Simulationscodes auf Hochleistungsrech-
nern nachgewiesen. Als eine technisch relevante Stromung wird Blasensieden in einer turbulenten
Rechteckkanalstromung simuliert und ausgewertet. Diese Anwendung der ACDI-Methodik ist in
der Literatur neu. Fiir die Auswertung der so entstandenen Blasendaten wird ein spezielles Ver-
fahren entwickelt, bei dem Blasenzellen konstruiert und gruppiert werden. Dieses Verfahren ver-
wendet das Voronoi-Diagramm, um eine konsistente Definition einer Blasenzelle zu erméglichen,
die fiir die Ermittlung volumengemittelter Daten erforderlich ist. Der Gruppierungsschritt hat die
einzigartige Eigenschaft, dass auch instantane Blasenstatistiken ausgewertet werden kdnnen. Die
Blasengruppierung hat auch den Vorteil, dass die Stichprobengrofe fiir eine lokale Blasenstatistik
drastisch erhoht wird. Besonders wichtig ist diese Eigenschaft fiir Daten grenzflachenaufiosender
Simulationen, da die Ausfiihrung der Software rechnerisch aufwendig ist. Zusammengefasst hat
diese Arbeit zur Bereitstellung eines geeigneten Softwarepakets gefiihrt, das kiinftig zur weiteren
Untersuchung von siedenden Stromungen verwendet werden kann.
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Abstract

The development and application of a framework for the numerical investigation of boiling phe-
nomena is presented in this thesis. The phase-change mechanism of boiling is a highly complex
physical phenomenon that, to date, is not fully understood and is subject to ongoing research.
Since experimental measurements of boiling phenomena are challenging to implement, interface-
resolved simulations present a promising approach to gain deeper insights. Furthermore, lower-
order simulations lack accuracy due to the fundamental challenge of modelling the polydisperse
nature of boiling flows. Bubble statistics from interface-resolved simulations could help to address
this challenge. However, interface-resolved simulations of boiling flows involve high computa-
tional costs and advanced methods, which make them far from straightforward to implement. In
light of these challenges, this thesis aims to develop an efficient and sophisticated framework for
interface-resolved simulations of boiling flows that also allows for the consistent evaluation of
statistical bubble data. The gas-liquid interface is represented by the accurate conservative diffuse
interface (ACDI) method. The ACDI method is deemed computationally advantageous over other
interface-capturing methods in numerous applications. However, the application of ACDI to sim-
ulate complex boiling flows has not yet been explored. For this application, a range of necessary
modifications is proposed in this thesis. These modifications include: (i) analyzing the system of
transport equations, revealing that additional terms are required to achieve consistency in boiling
flow scenarios; (ii) developing a pressure solution scheme that enables the use of fast Fourier
transformations (FFT); and (iii) modelling the mass transfer between the gas and the liquid phase.
These developments are compared to numerous benchmarks in the literature through an extensive
testing campaign. The testing campaign ranges from one-dimensional interface simulations to
complex simulations of three-dimensional bubble dynamics. It is found that the proposed terms in
the momentum transport equation are crucial for accurately capturing the recoil pressure jump at
interfaces subjected to phase change. Even in the absence of phase change, the accuracy improves
significantly when using the proposed system of equations. Notably, the developed FFT pressure
solver eliminates spurious pressure oscillations commonly encountered in the presence of high
density ratios and phase change. In the testing campaign, the developed phase change model reli-
ably yields accurate results without simulation-dependent parameter adjustments. Comparisons
with experimental data demonstrate that the framework developed in this thesis is a suitable tool
for efficiently simulating technically relevant boiling flows. It is shown that good code scalability
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on high-performance computing systems is achieved, which is essential for conducting large-scale
simulations. In a final simulation, a novel application of the ACDI method for simulating nucleate
boiling in a subcooled turbulent duct flow is presented. A grouped Voronoi analysis is proposed
for the statistical evaluation of the resulting bubble data. This Voronoi analysis is found to provide
a consistent definition of a bubble cell, which is required to derive statistics of volume-averaged
quantities. In this thesis, the grouping of bubble cells is proposed, which allows the definition
of instantaneous local bubble statistics. Moreover, grouping drastically increases the sample
size for any local bubble statistics, constituting an important feature given that interface-resolved
simulations are computationally costly. Overall, this thesis has led to a sophisticated software
package that can be used to further understand boiling flow phenomena.
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1 Introduction

Phase-change phenomena appear in everyday situations and are a crucial part of numerous
technical processes. The boiling of water in the daily cooking routine, the evaporation of a
refrigerant for the cooling in refrigerators, or, on a larger scale, the production of steam for driving
turbines in power plants — all are common examples of heat being transferred while a liquid
fluid transitions to a gaseous state (or vice versa). Though commonly encountered, phase-change
phenomena are considered highly complex and subject to ongoing research. This thesis proposes
a methodology that enables the advanced analysis of phase-changing flow through computer
simulations. The subsequent sections of this chapter introduce the study of boiling phenomena,
and related simulations (Sec. 1.1), and present a motivation behind the chosen research field
(Sec. 1.2). A refined definition of the research objectives is presented in Sec. 1.3 and the chapter
concludes in Sec. 1.4 with an outline of the thesis.

1.1 Background and Context

The transition from a liquid to a gaseous state (evaporation), and the reverse of this process
(condensation), can be further categorized by the mechanism driving the transition. That is,
concentration-driven phase change or heat-driven phase change (Scapin et al. (2020)). For
instance, concentration-driven evaporation occurs when water evaporates from wet clothing into
the surrounding air of low humidity. This thesis, however, focuses on heat-driven phase change.
An example of this is the boiling of water for cooking, where liquid water is heated until the
saturation temperature is reached and vapour bubbles start to form. Refer to Fig. 1.1 for a
visualization of boiling.

The heat-driven phase change mechanism exhibits fast evaporation rates, and is capable of enabling
highly efficient heat transfer at a constant coolant temperature. These properties make heat-
driven phase change interesting for industrial applications, where large amounts of heat must be
transferred through small areas. Prominent examples include the cooling of: high-performance
computer electronics, power electronics in vehicles, and fusion reactor components (see Mudawar
(2011)).
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Figure 1.1: Boiling heat transfer on a heated rod in an annular gap. Experimental figure provided by Wefers et al. (2025a)
obtained by using the COSMOS-L facility at KIT (refer to Wefers et al. (2025b) for details).

BRI

Figure 1.2: Thermal damages on heated metal rods after reaching the critical heat flux (refer to Point C in Fig. 1.3).
Figure provided by Wefers et al. (2025a) obtained by using the COSMOS-L facility at KIT (refer to Wefers
et al. (2024) for details). Sudden surface temperature increase of up to 103K within a few seconds can be
identified by a change in surface colour.

1.1.1 Brief history of boiling flow research

The utilization of boiling processes for technical applications was dominated by the generation
of steam for steam engines in the 18" to early 20" centuries. Since the beginning of the 20*"
century, new technologies, such as rocket engines and nuclear reactors, have increased scientific
interest in boiling heat transfer (Nishikawa (1987)). However, the applications of boiling processes
have always been associated with risks, as they often involve high pressures, large amounts of
thermal energy, or high heat fluxes, which can potentially lead to catastrophic accidents. For
example, Fig. 1.2 demonstrates the sudden thermal damage on heated rods after exceeding the
critical heat flux (refer to Fig. 1.3). The critical heat flux causes a change in the boiling heat
transfer mechanism, which, in nuclear power applications, must be avoided at all times. As a
result, there has been an increasing interest among the research community to delve into the fluid
mechanics of boiling flow phenomena.
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Figure 1.3: Visualization of the boiling regimes. This figure depicts the heat flux from a wall to a fluid, as a function
of the surface temperature. Regime A-B: Single-phase heat transfer; no bubbles are forming on the surface.
Regime B-C: Start of two-phase heat transfer; liquid partially contacts the surface. Point C: Critical heat
flux. Regime C-D: transferred heat flux decreases and surface temperature increases; no liquid contacts the
surface. Point D: Leidenfrost point. Regime D-E: Film boiling region. Loosely based on Zuber (1959).

The first notable description of boiling phenomena was published in 1756 by J. G. Leidenfrost
(translated publication Leidenfrost (1966)), who described the evaporation behaviour of droplets
on hot surfaces. He found that at high surface temperatures, droplets "dance" on the surface
and take longer to evaporate entirely. However, there was little other boiling research conducted
until the start of the 20" century (Nishikawa (1987)). Among the earliest modern studies,
in 1934, Nukiyama measured the wall temperature of different heat fluxes and described a
maximum point in the applied heat flux (translation in Nukiyama (1966)). In the subsequent
years, researchers identified different boiling regimes, depending on the applied heat flux. For
example, the PhD thesis of Zuber (1959) marks a significant milestone in the understanding
of boiling regimes. Boiling regimes can be identified on a boiling curve, where the interplay
between surface temperature and applied heat flux is visualized (e.g. Fig. 1.3). The nucleate
boiling regime, in which bubble growth is observed on a heated wall, is typically located in section
B-C of the boiling curve (see Fig. 1.1). Higher wall temperatures lead to the formation of a gas
film that separates the liquid from the wall (D-E), which is referred to as film boiling.

Although the majority of studies on boiling in the 20" century remained purely experimental,
several simulation-based studies were published in the latter half of the century. The first
simulations considered formulations in which two-phase flow is described as a continuous and
time-averaged mixture (see Zuber and Findlay (1965), Ishii (1977)). These descriptions are
challenging, as they require substantial empirical modelling. Quantitative boiling simulations,
involving the instantaneous capturing of the interface, followed significantly later in Juric and
Tryggvason (1998), Son and Dhir (1998) and Welch and Wilson (2000).
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Figure 1.4: Instantaneous visualization of a turbulent boiling flow scenario.

1.1.2 A generic nucleate boiling flow

Fig. 1.4 illustrates a typical scenario in an industrial boiling flow application. Specifically, an
instantaneous snapshot of a slice through a nucleate boiling flow is depicted. An external device
(e.g. a pump) generates a forced flow from left to right. The bottom boundary represents a
solid wall (grey area), at which a heat flux transfers heat from the solid to the fluid (arrows).
The heat flux increases the temperature of the fluid. The fluid temperature at which boiling
occurs is referred to as the saturation temperature. In this figure, the temperature is qualitatively
visualized by a colour scale, where white represents the inflow temperature (assumed to be below
the saturation temperature in this sketch). Orange hues represent areas where the fluid reaches
the saturation temperature, while red hues indicate superheat conditions. In areas where the
saturation temperature is met, small impurities in the liquid, or imperfections on the solid surface
(i.e., nucleation sites), trigger small bubbles, which subsequently grow through phase change.
The transition from the liquid to the gaseous state requires thermal energy (latent heat), which
cools the surrounding liquid. The bubbles move within the surrounding liquid and may interact
with other bubbles (e.g. merge or break-up). This figure, specifically, depicts a turbulent flow
scenario, in which random fluctuations affect the transport of the bubbles and the temperature. As
a result, there are many different bubble shapes and sizes. Turbulent flows are highly stochastic
processes; accordingly, every snapshot of this same flow would look different.

1.1.3 Time-averaged description of a boiling flow

From an engineering perspective, the instantaneous description of a boiling flow is often neither of
interest nor practical. Instead, the description from a time-averaged perspective is often preferred
(Ishii and Hibiki (2011)). For example, a design engineer could be interested in the average
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Figure 1.5: Time-averaged representation of Fig. 1.4

temperature expected on a heat-transfer surface or the average gas content in a liquid. A flow
description of the latter scenario is depicted in Fig. 1.5. Indeed, Fig. 1.4 and Fig. 1.5 may describe
the same flow. By averaging in time, random temperature fluctuations are filtered out and the
smooth colour gradient indicates the mean fluid temperature.

With time-averaging, the phase interface between liquid and gas is also lost. Instead, an average
gas content remains, which is defined as the probability of finding either gas or liquid in each
location (represented by iso-contours of selected probabilities). When describing a bubbly flow
by its mean gas content, specific information about the bubbles are not captured. Namely, a
time-averaged gas content does not provide information on the size of bubbles in the flow; thus,
one cannot discern whether the flow featured many small bubbles or a few very large bubbles.
This is problematic, as these two scenarios would result in two very different flows. An enriched
description would be to use a Probability Density Function (PDF) to capture this information
about the time-averaged distribution of the bubble size. This would allow crucial information on
the occurrence frequency of a specific bubble size in a flow to be captured. Sec. 1.2.1 discusses
this challenge of accounting for the polydisperse nature of boiling flows in the context of computer
simulations.

1.2 Challenges in CFD of boiling flows

The preceding paragraphs outlined the physical basics of boiling flows and highlighted different
views for describing a flow, instantaneous or time-averaged. This section will discuss the use of
computational fluid dynamics (CFD) for aiding the prediction of boiling flows through numerical
simulations. In detail, an overview of CFD methods, from both instantaneous and time-averaged
flow perspectives, is provided.
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1.2.1 CFD for engineering

As mentioned in Sec. 1.1.3, the time-averaged description of a boiling flow is sufficient for most
engineering applications, as time-averaged results are often of interest. To obtain predictions of
boiling through computer simulations, adequate mathematical equations need to be formulated.
For the mathematical description of a flow, the conservation equations for mass, momentum,
and energy (temperature) are averaged in time; these are referred to as the Reynolds-averaged
Navier Stokes (RANS) equations. In CFD, solving RANS equations is associated with a low
computational cost, making this an interesting approach for industrial applications. However,
time-averaging filters out statistical information about the bubbles and the turbulence (see Sec.
1.1.3), and thus, requires mathematical modelling. The modelling of turbulence for RANS
simulations is a research field of its own, and will not be discussed here. However, an overview
of methods used to model bubble statistics in RANS simulations is provided below.

Relevance of the bubble statistics

The characteristics of a bubble (e.g. the bubble size) impact the behaviour of the flow. The
intuitive solution, using average values of the bubble characteristics, is insufficient when non-
linear effects are present. For example, Tomiyama et al. (1995) showed that larger bubbles in
a duct flow move away from a wall, while smaller bubbles move towards the wall. This highly
non-linear behaviour led Krepper et al. (2008) to use different transport velocities for the gas
fraction in their simulation depending on the bubble size. Another important consideration for
improving the simulation accuracy is the coalescence of smaller bubbles, which is a central process
during the life span of a bubble in a boiling flow (Lee et al. (2002)). When Yeoh and Tu (2006)
accounted for the coalescence and break-up of bubbles of various sizes, significant improvements
in the accuracy of the boiling flow simulations were achieved. In addition, accurate prediction
of the interfacial area, a quantity dictated by the bubble’s size and shape, largely determines
the overall quality of the simulation (Colombo and Fairweather (2016)). All of the presented
examples are non-linear effects that depend on the bubble characteristics. Therefore, representing
the occurrence probability of a bubble with a certain characteristic (e.g. a certain size) in the
simulation software has been implemented to improve the accuracy of the simulation software.

Bubble statistics in CFD

Given that the probability distribution of different bubble characteristics (particularly their size)
is essential for obtaining accurate predictions, several methods for representing these statistics
have been developed (Shiea et al. (2020)). Fig. 1.6 visualizes three methods to account for
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Figure 1.6: Visualization of different methods to represent bubble statistics in CFD.

polydispersity in boiling flow CFD. One possible approach is to apply the the S.-Model when
assuming the shape of the bubble size PDF (Fig. 1.6a). Here, the PDF is characterized by
a number of moments (e.g. first (mean), second (variance), and third (skewness)) for which
transport equations are formulated. Kamp et al. (2001) assumed a log-normal distribution and
applied this approach to bubbly pipe flows. Using the same PDF, Yun et al. (2012) successfully
obtained predictions for subcooled boiling flows. The Multiple Size Group (MUSIG) model is
another approach, which was proposed by Lo (1996). In this approach, the PDF is divided into
multiple bubble size groups, each with their own transport equation (Fig. 1.6b). In addition, the
groups can interact with eachother; for example, to model coalescence, fractions of smaller groups
can move to a larger group (and vice versa for bubble break-up). Researchers have successfully
employed this approach in boiling flow simulations (e.g. Krepper et al. (2013)). The stochastic
fields method is a lesser-used approach (Fig. 1.6¢). This method selects representative (field)
values from the bubble size PDF for which evolution equations are formulated. The evaluation
equations add random fluctuations to the representative fields and the sum of the n representative
fields is then used to approximate the local bubble PDF. Raquet (2019) successfully explored the
use of this approach for simulating flows subjected to cavitation.

Accuracy of boiling flow CFD

The previous paragraph showed that numerous studies have used PDF methods to simulate
boiling flows. In general, the dynamics of bubbles in RANS simulations is still implemented
using empirical correlations (e.g. Colombo and Fairweather (2016)). Many parameters in these
empirical correlations are resticted to a narrow range of flow conditions and require case-specific
adjustments, as highlighted by Krepper et al. (2013). Accordingly, good accuracy of most boiling
flow CFD codes is not guaranteed for a wide range of flow conditions, and their predictions
must be used with caution (Giustini (2020)). As a result, researchers (e.g. Li et al. (2025)) have
emphasized the importance of finding better models to improve the reliability of the simulation
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results. For example, models available for bubble break-up and coalescence are often viewed as
the limiting factor for using bubble PDF methods (Liao et al. (2011)). In particular, the modelling
of the interaction between bubble dynamics and turbulence requires future development (Krepper
et al. (2013)).

1.2.2 Interface-resolved simulations

Interface-resolved simulations constitute an alternative approach to predicting boiling flows that
does not involve time-averaging. This approach resolves the instantaneous flow field, and thus,
the instantaneous location of the phase interface (i.e., Fig. 1.4). Therefore, interface-resolved
simulations do not require the modelling of time-averaged quantities. However, the high com-
putational cost of this approach limits its use to academic applications. As a result, this type
of simulation is primarily used for enhancing the understanding of the physics of boiling flows
(Kharangate and Mudawar (2017)).

Benefits of interface resolved-simulations

There are many benefits of using interface-resolved simulations for predicting boiling flows. Im-
portantly, from resource and safety perspectives, simulations can replace hazardous or expensive
experiments. In addition, these simulations grant access to the flow quantities at every time
step, and discrete location, in the computational domain. While many quantities are difficult to
measure in boiling experiments, numerical simulations can fill this gap, and thus, provide deeper
insights into the prevailing physics. The instantaneous velocities, temperature, gas fraction, mass
transfer intensity, bubble shape, and pressure, among other quantities, are examples of accessible
data that are readily available from interface-resolved simulations.

Computational cost

Studying boiling flows through interface-resolved simulations is typically associated with high
computations costs, due to considerable spatial and temporal resolution requirements. In terms of
spatial resolution requirements, the accurate simulation of bubble growth requires the resolution
of a thin thermal boundary layer around a bubble (Bures et al. (2024)). In addition, temporal
resolution requirements arise from the prevailing time scales, for example, in surface tension
dominated fluid systems, as presented by Kang et al. (2000). In addition, numerically, some
interface capturing methods entail higher computational costs due to the complexity of the
algorithms (Mirjalili et al. (2019)). Accordingly, interface-resolved boiling flow simulations
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are often regarded as impractical, or sometimes, impossible (Kharangate and Mudawar (2017)).
However, the benefits stated in Sec. 1.2.2 make this approach appealing and, therefore, have
motivated the development of more efficient simulation frameworks.

1.2.3 Statistical evaluation of bubbly flows

As described in Sec. 1.2.2, interface-resolved simulations can aid in understanding the physical
phenomena of boiling flows. Therefore, the results of interface-resolved simulations could be
used to derive improved PDF models for RANS-based simulations, enhancing their accuracy
(Sec. 1.2.2). However, this would require suitable evaluation methods. For instance, an important
link — the definition of a PDF in an instantaneous bubbly flow field (Weber et al. (2023)) — has not
yet been developed. In PDF models for RANS simulations, often-used solution quantities include
the fraction of the local gas content (see Krepper et al. (2013)), or the volumetric bubble count
density (see Yeoh and Tu (2006)), that is occupied by bubbles of, e.g., a certain size. Central
questions related to both of these quantities are: How is the related volume around a bubble
defined? And, how is the statistical significance guaranteed for every point in space?

1.3 Obijectives of the thesis

The objectives of this thesis are to develop a numerical framework that (i) addresses the challenges
in contemporary interface-resolved simulations of boiling flows, and (ii) is capable of providing
bubble statistics to further understand physical phenomena that could be used to improve RANS-
based simulation models.

To address objective (i), a suitable framework for interface-resolved boiling simulations must be
developed. The goal of objective (i) is twofold: efficiency and consistency. First, an adequate
mathematical description of the interface has to be chosen. Subsequently, all methods for this
simulation framework should be selected, or developed, in accordance with these goals and with
the interface description method.

To achieve the second objective, a method that allows the consistent statistical evaluation of boiling
flow data, obtained from interface-resolved simulations (or experiments), must be developed. This
method should provide a clear definition of bubble statistics that ensures statistical significance
for all points in space. This also entails connecting the evaluation scheme with the simulation
framework.
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Following the development phase, for both objectives, the framework must be verified through
a comprehensive testing and benchmarking campaign. As a final step, a realistic boiling flow
scenario should be simulated and evaluated as a proof of concept.

1.4 Thesis outline

The thesis is structured as visualized in Fig. 1.7. In the next two chapters, i.e. Ch. 2 and Ch. 3,
the relevant literature for the present work is reviewed and discussed. First, available methods for
interface-resolved simulations of boiling flows are reviewed in Ch. 2. Next, tools for the statistical
evaluation of bubbly flows are discussed in Ch. 3. Based on the reviewed literature, a suitable
flow solver is developed in Ch. 4. Ch. 5 concludes the development phase of this thesis, with a
description of the statistical evaluation of bubbly flows. The developments are verified through
numerous benchmarks and test cases, the results of which are presented in Ch. 6. As a proof of
concept, the simulation of a realistic boiling flow is described and evaluated in Ch. 7. Finally, the
findings of this thesis are summarized in Ch. 8.
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boiling flow

This chapter reviews methods for interface-resolved simulations of two-phase flow, with a focus
on boiling applications. First, various methods for resolving the phase interface are discussed.
This results in the selection of one interface representation method — the accurate conservative
diffuse interface (ACDI) method — for the simulations in this thesis. All subsequent sections focus
on methods tailored to this interface representation method. This chapter consists of a literature
review, of which parts are published in Weber et al. (2026); scientific contributions of this thesis
are presented in later chapters. Note that in the remainder of this thesis, the following assumptions
are made:

e The liquid phase and the gaseous phase are incompressible
» All physical properties of the liquid phase and the gaseous phase are constant

e The saturation temperature is constant

2.1 Interface description

Over the past three decades, a variety of methods have been used for the interface-resolved
simulation of boiling flow phenomena. Fig. 2.1 illustrates a classification of some of the most
commonly used methods for representing the interface; these can be divided into sharp-interface
methods (orange) and diffuse-interface methods (blue).

Sharp interface methods are characterized by an interface that has an exact position and separates
the two phases. This class of methods was the first to be used to simulate boiling flows, when
Juric and Tryggvason (1998) applied the front-tracking (FT) method to simulate film boiling. In
the FT method, the interface is represented by a set of Lagrangian marker points as seen in Fig.
2.2a. In the same year, the level-set (LS) method was introduced by Son and Dhir (1998). The
term LS refers to the signed distance function that describes the distance of a point to the interface
(Fig. 2.2b). Two years later, Welch and Wilson (2000) introduced the volume of fluid (VOF)

11
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One-fluid model

Interface-tracking

Interface-capturing

Figure 2.1: Methods for interface-resolved simulations of two-phase flow. The schematic is loosely based on Mirjalili
et al. (2017) and Roccon et al. (2023). Blue shades highlight methods that are classified as diffuse-interface
methods, while orange shades highlight sharp-interface methods. The thick circle delineates the method —
ACDI - that is applied for the simulations in this thesis.

method for simulating film boiling. The VOF method utilizes a colour function that describes the
phase fraction from which the interface position can be reconstructed (Fig. 2.2c¢).

In contrast to sharp interface methods, diffuse interface methods are a class of methods where
both phases coexist within a smooth interface region (Fig. 2.2d). Diffuse interface methods
were applied to boiling flows later than sharp interface models, and were initially limited to
very simple cases. For example, in the first implementations of diffuse interface methods, Jamet
etal. (2001) and Sun and Beckermann (2004) conducted one-dimensional simulations of velocity
and pressure jumps due to phase change. In the following years, most studies were restricted
to two-dimensional domains, as seen in Onuki (2007) for studying boiling with contact angle
dynamics or in Laurila et al. (2012) for boiling on heated plates. Since the publication of studies
by Badillo (2012) and Badillo (2013), three-dimensional diffuse interface boiling studies have
been the norm.

In terms of computational cost, sharp interface methods are often more expensive than diffuse
interface methods (e.g. Mirjalili etal. (2019)). This is due to the execution of additional algorithms
that are required in sharp interface methods, such as interface reinitialization (LS), interpolation
steps (FT), or interface reconstruction (VOF). Diffuse interface methods are considered more
efficient, as they usually just require the solution of a single transport equation for the phase
indicator. In light of the high computational costs associated with boiling flow simulations,
diffuse interface methods are discussed further in the next section.

12
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Figure 2.2: Visualization of different methods to represent the phase interface for simulating two-phase flows.

2.2 Phase field models

The term phase field refers to the use of a smooth phase indicator variable to describe the diffuse
interface. Historically, the most commonly-used phase field models have been the Allen-Cahn
(AC) equation (from Allen and Cahn (1976)) and the Cahn-Hillard (CH) equation (from Cahn
and Hilliard (1958)). In both models, an equation is derived to describe the evolution of the
phase field. The conservative formulation of the CH equation allows for mass to be conserved.
However, it requires a forth-order partial differential equation (PDE) in space to be solved, making
it challenging on a numerical level (Tab. 2.1). In contrast, numerically solving the AC equation
is simpler, as it exclusively contains second-order derivatives (Tab. 2.1). However, mass is not
conserved in the AC equation; this led Sun and Beckermann (2007) and Chiu and Lin (2011)
to modify the right-hand side (RHS) of the AC equation to derive a mass-conservative method.
This mass conservative second-order equation was first applied to boiling scenarios in 2021 by
Haghani-Hassan-Abadi et al. (2021) and Tamura and Katono (2021).

Mirjalili et al. (2020) and Jain et al. (2020) proved that specific parameter choices allow this mass
conservative second-order phase field equation to be spatially discretized with central differenc-
ing schemes for incompressible and compressible flows, respectively. Their improved scalability
potential and low numerical dissipation make central differencing schemes well-suited for simu-
lating complex turbulent flows (see Moin and Verzicco (2016)). Researchers (e.g. Mirjalili et al.
(2020)) named this method the conservative diffuse interface (CDI) method (Tab. 2.1).

Jain (2022) introduced further improvements to the CDI equation, which led to the name accu-
rate conservative diffuse interface (ACDI) method for its higher accuracy and reduced time step
constraint. This promising ACDI method has been applied to various phase-change simulations
in recent years. For instance, Brown et al. (2023) simulated icing using the ACDI, and Mirjalili
et al. (2022a,b) and Salimi et al. (2025) applied the CDI/ACDI to simulate concentration-driven

13
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Table 2.1: Comparison of common phase field methods.

Method Spatial order of PDE Mass-conservative
Cahn-Hillard 4th v
Allen-Cahn ond X
Conservative diffuse interface ond v

Liquid

0
w/el]

Figure 2.3: Visualization of the equilibrium interface profile of the ACDI method of thickness e (hyperbolic tangent
shape). Level-set value ¥ and the phase field variable ¢p € [0, 1] are shown for as a function of the non-
dimensional distance from the interface.

evaporation. In terms of boiling, Scapin et al. (2022) and Roccon (2024) used ACDI for simulating
nucleate boiling and bubble growth, respectively; however, these simulations were limited to two
dimensions. The potential of using ACDI to simulate complex boiling flows in three dimensions
has not been explored, to the best of the authors’ knowledge. To implement boiling flow simula-
tions, appropriate transport equations must first be described. Accordingly, the following sections
— (Sec. 2.3), (Sec. 2.4), and (Sec. 2.5) - will review the literature on the transport equations for
mass/phase field, momentum, and energy, respectively, focusing on that related to ACDI.

2.3 Mass and phase field transport using ACDI

The ACDI equation describes the evolution equation of a phase field parameter ¢ € [0, 1]. For
phase changing flows, Scapin et al. (2022) and Roccon (2024) used the phase field evolution
equation

o¢ M =

— + V. (pt) =—+ V" R, 2.1

o TV 00 =+ @.1)
where  is the mixture velocity, p; is the density of phase 1, and M is the mass transfer rate. R,

commonly named the regularization term, maintains the equilibrium interface profile (hyperbolic
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tangent shape, see Fig. 2.3). The mass transport of the mixture density p = p1¢ + p2(1 — ¢) with
pi being the density of the i-th phase is then

PV (i)=Y F (22)

The differential mass flux F is defined F = (p; — p2)V - R. In line with the ACDI method by
Jain (2022), the regularization term is calculated as

R=T [ew) - i (1 — tanh? (i))ﬁ] . (2.3)

Here, T" is the regularization speed, € defines the interface thickness, VU is the level-set function,
and i = V¥ /|V| is the interface normal unit vector. The regularization speed I is directly

coupled to the maximum velocity in the domain ;,4,, so that I' = I'*|u,4.|, with T'* being a
dimensionless factor. Similarly, € is coupled to the grid spacing Az through multiplication with

a dimensionless factor €*, i.e., ¢ = ¢*Axz. The level-set function ¥ (see Jain (2022)) is defined as

B ¢o+e

In Eq. (2.4), the small number ¢ ensures stability for regions further away from the interface.
Jain et al. (2020) showed that, for central differencing schemes, the time step constraint is

1
max{ (£5) - (32).0]

In the CDI studies by Mirjalili et al. (2020) and Jain et al. (2020) it was suggested to use €* = 1
and I'* = 1. Using the ACDI method through Eq. (2.3) allows thinner interfaces 0.55 < e* <1
while I'* = 1, as suggested in Jain (2022).

Aty = min (2.5)

2.4 Momentum transport

In the context of CDI/ACDI the following balance equation (e.g. Mirjalili and Mani (2021)) is
commonly used to describe the momentum transport

opti L = . Lo
W+V~<(pu—.7:)®u):—Vp+V~T+pg+ng. (2.6)
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In this equation, p is the pressure, and 7, the viscous stress tensor of the mixture, is defined as
7 = u(Vi + Vi), where the mixture dynamic viscosity p is used. The RHS also features
contributions of the gravitational acceleration g and the surface tension force ﬁqT. With the
ACDI method, various surface tension models can be applied; these are discussed in Sec. 2.4.1.

Mirjalili and Mani (2021) and Huang et al. (2020) show that the momentum transport of Eq. (2.6)
conserves the total kinetic energy. The strategy for deriving Eq. (2.6) is based on the "consistency
of mass and momentum transport" (Huang et al. (2020)). This means that the convective transport
of momentum in Eq. (2.6) must match the mass transport in Eq. (4.11). In the literature, Eq.
(2.6) is the most commonly used momentum transport equation in the CDI/ACDI community.

Note that the momentum transport equation used for diffuse interface methods also remains an
ongoing research topic beyond the CDI/ACDI community. For instance, a range of studies (see
Gurtin et al. (1996), Lowengrub and Truskinovsky (1998), Boyer (2002), Abels et al. (2012),
Soucek et al. (2014), Rehof (2018), ten Eikelder et al. (2023, 2024)) have been published by the
CH community. Recently, ten Eikelder and Schillinger (2024) applied an alternative momentum
transport equation to simulate bubble dynamics using the CH model. In the study by Soucek et al.
(2014), it was stated that some derivations might not be consistent for arbitrary magnitudes of
the regularization term R. However, the applicability of Eq. (2.6) for boiling with ACDI has not
been discussed thus far.

2.4.1 Surface tension models

Modelling the surface tension force introduces spurious flow structures, which can significantly
impact the simulation accuracy (Scardovelli and Zaleski (1999)). Fig. 2.4 from Kim (2005)
depicts such spurious currents around a bubble. The intensity of these flow structures generally
increases in the presence of phase change (Tanguy et al. (2014)), due to the interfacial velocity
jump. Moreover, spurious flow sometimes interacts with the thermal boundary layer around
bubbles in phase change scenarios (Sato and Niceno (2013)). For CDI/ACDI, two classes of
surface tension models are possible (Mirjalili et al. (2023)): (i) continuum surface force (CSF)
models (Brackbill et al. (1992)) and (ii) energy-based models (Jacqmin (1999), Kim (2005)).
To date, neither of these models has been assessed for simulating boiling flows using the ACDI
method.
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Figure 2.4: Visualization of spurious currents. Reprinted from Kim (2005), Copyright 2004, with permission from
Elsevier. The figure qualitatively demonstrates the flow field around a bubble at rest without the influence of
gravity.

The continuum surface force
The CSF model from Brackbill et al. (1992) takes the simple form

fsr.csr = oKV, 2.7

where k = V - 77 is the interface curvature and o is the surface tension constant. Although
the simple form of Eq. (2.7) is appealing, the CSF is commonly associated with low accuracy
(Roccon et al. (2023)). In light of this drawback, alternative formulations have been proposed.
For application to flow in porous media, Raeini et al. (2012) proposed

.]Ffsk'T,CSF =okV¢'. (2.8)

This differs from Eq. (2.7) through its use of a sharpened phase indicator ¢’, which is defined as

(b’:lin[min(max (¢>, 727)1—’27> —727] 2.9)

The factor 7 defines the strength of the sharpening. Raeini et al. (2012) proposed to use 1 = 0.5
for VOF methods, but did not provide best practice guidlines for phase field methods.

Energy-based surface tension models
Energy-based surface tension models use the chemical potential (denoted &) from the AC model

(Allen and Cahn (1976)). In the context of CDI/ACDI the following form (e.g. Mirjalili et al.
(2023)) of the energy-based model is used

[6(1—¢)]>. (2.10)

N | =

for.p =&V, €= 6?0 (ff; - 62V2¢>, and @ =
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The chemical potential ¢ is based on the free energy ®. Compared to CSF, several studies (Mirjalili
etal. (2023), Roccon et al. (2023)) found that this energy-based model has a superior convergence
rate for non-phase-change applications. Mathematically equivalent alternative formulations of
Eq. (2.10) were proposed to optimize its discrete implementation. For example, Huang et al.
(2020) formulated the following "conservative" energy-based model

fg'T,EB =

(56 - evio)vo=(vo-awiave). e

e
Another approach was used by Brown et al. (2024), where ]%T, e is expressed in terms of the
level-set function W. This level-set variation (Brown et al. (2024)) reads

s = = (1= (1= 2001 [0) - coll - 970 ). 1)

The benefit of using Egs. 2.10, 2.11, or 2.12 for simulating boiling flows is yet to be evaluated.

2.5 Energy transport

Several formulations of the energy transport equation have been used in the context of diffuse
interface methods. The generic formulation (Jain et al. (2020), Salimi et al. (2025)) for transporting
the mixture enthalpy ph (neglecting viscous dissipation and the contribution pressure) reads

Oph . -

o Y (phi)) = V- (AVTa) + V - [(p1h1 = paha)R], (2.13)
where ph is defined as ph = p1hi¢ + p2ha(l — ¢) and the mixture heat conductivity A is
A = A1¢+ A2(1 — ¢). The enthalpy of the i-th phase h; is defined as h; = ¢, ;Taps + ho,i, Where
Tips is the absolute temperature, ¢, ; is the heat capacity (at constant pressure) and hg ; is the
enthalpy of formation at 0 K. Energy transport is often formulated in terms of the transport of the
temperature. For instance, Wang et al. (2021) uses a non-conservative formulation

aTd S -
pcp< atb‘ + - VTabs> =V (AVTys) — LM. (2.14)
Here, L is the temperature-dependent latent heat defined as L = f(Tyw) = L + (cp1 —
¢p,2) (Tas — Tsar), With L, being the latent heat at the saturation temperature Ty, Noted that in
Eq. (2.14), no term accounts for the differential flux from the diffuse interface model. However,
other works (e.g. Mirjalili et al. (2022a)) suggest accounting for this contribution in the equation
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2.5 Energy transport

for temperature transport. Different variations (e.g., Roccon (2024) and Brown et al. (2023)) of
the temperature transport equation have been proposed. A consistent derivation of the temperature
transport equation for applying ACDI to boiling flows is not reported yet.

2.5.1 Phase change models

The calculation of the mass transfer rate M is closely connected to the solution of the energy
transport. In recent years, an abundance of phase change models, used to calculate M, have been
proposed (see Kharangate and Mudawar (2017) and Liu et al. (2020)). In general, phase change
models can be divided into two classes (see Wang et al. (2021)): (i) heat conduction models, and
(ii) kinetic models.

Heat conduction models

Heat conduction models are based on the Rankine-Hugoniot jump conditions (see Gibou et al.
(2007)). Therefore, the mass transfer flux i times the latent heat Ly, is equal to the heat that is
transported into the interface (Kharangate and Mudawar (2017)), i.e.

T T
mLsat = <)\28_, 0

_)\IT
il

) and M =|V¢|m (2.15)
phase 2 phase 1

This model class is more commonly used than kinetic models, and can be found in numerous
studies, including Wang et al. (2021), Tamura and Katono (2021), Roccon (2024), and Haghani-
Hassan-Abadi et al. (2021). The prominent advantage of this approach is that Eq. (2.15)
is free from empirical or problem-dependent parameters. However, use of this model class
entails estimating temperature gradients on both sides of the interface, which can complicate the
algorithm (Irfan and Muradoglu (2017)). Therefore, heat conduction models are considered to be
more computationally expensive than kinetic models for diffuse interface frameworks.
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2 Interface-resolved simulation of boiling flow

Kinetic models

Kinetic models were originally based on the kinetic theory of gases (see Schrage (1953)). Fur-
ther developments (e.g. Tanasawa (1991)) simplified Schrage’s model so that 71 has a linear
dependency on the vapour temperature, as

s 20 [ M pi LT — Taw) (2.16)
2—v\ 27R, \/ﬂ

Here, v is a model constant, M is the molecular mass, and R, is the universal gas constant.

Although the model is simple, v is a problem-dependent constant (Kharangate and Mudawar
(2017)), which is a major drawback of this model. Moreover, other developments, e.g. by Lee
(1980), require empirical constants. Rattner and Garimella (2014) and Pan et al. (2016) proposed
models that utilize local temperature, which do not require model constants. However, the latter
two studies (i) were developed for sharp interface methods, (ii) require sub-iterations for the
energy transport, and (iii) are strongly dependent on the time step size (Liu et al. (2020)).

2.5.2 Anti-trapping current

In the context of diffuse interface modelling, researchers have derived transport terms to improve
convergence towards the sharp interface limit. Initially, Karma (2001) and Ohno and Matsuura
(2009) employed the so-called anti-trapping current in their study of dendrite growth. Sun and
Beckermann (2010) also utilized an anti-trapping current when studying concentration-driven
bubble growth. Badillo (2012) presented an anti-trapping current for boiling flows. Badillo’s
anti-trapping current reads

; (%ﬁ(m—v+<1—2¢><é&“))_1+¢+7>' o

e o1~ 0)

According to Badillo (2012), the model constant v € [0, 1] describes the dynamics of the heat
flux into the interface. For scenarios where the heat coming from the liquid side to the interface is
much larger than that from the gas side, v is set to zero (Badillo (2013)). In this case, Eq. (2.17)
reduces to

- —ﬁMLe(;\l - 1). 2.18)

2

As such, fis an artificial heat flux and can be added as +V jto the RHS of Eq. (4.21). Within the
diffuse interface, adding the anti-trapping current entails that the heat flux is not solely defined by
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2.6 Numerical Solution

Fourier’s law. However, the anti-trapping current can be explained as a mechanism that accounts
for the steep variation in heat conductivities between the gas and the liquid (see Badillo (2012)).

2.6 Numerical Solution

The preceding sections in Ch. 2 discussed the transport equations utilized in the CDI/ACDI
method. The remainder of this chapter presents the state of the art for numerically solving these
equations.

2.6.1 Spatial discretization

For the spatial discretization of the equations, a staggered grid arrangement is commonly chosen
(Fig. 2.5). Egs. (2.1) and (2.6) can utilize second-order central differencing schemes for
approximating spatial derivatives. Specialized schemes may be required for the transport of
temperature or enthalpy, as the temperature may exhibit sharp gradients at the phase interface. In
these scenarios, the fifth-order WENO scheme from Castro et al. (2011) is commonly used.

For parallel computing, second-order central differencing schemes are preferable. Theey solely
require one neighbouring grid point and feature a low numerical dissipation (Moin and Verzicco
(2016)). In contrast, WENO schemes like in Castro et al. (2011) require two neighbouring grid
points, which increases the communication between processors, and thus, limits the scalability.
The complete spatial discretization of the transport equations is a standard technique and will
not be reported here (see Zhang et al. (2022) for central differences and Castro et al. (2011) for
WENO).

2.6.2 Time-stepping scheme

Many schemes exist for temporal discretization. The explicit Adams-Bashforth (AB) scheme is
a simple second-order scheme that has been implemented in numerous studies (e.g. Crialesi-
Esposito et al. (2023), Salimi et al. (2025)). In general, the second-order AB scheme (Canuto
et al. (1988)) takes the form

Cn+1 _an

C

g = faBl+ B (2.19)
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2 Interface-resolved simulation of boiling flow
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Figure 2.5: Visualization of a two-dimensional staggered grid arrangement taken from Weber et al. (2026). Circles
outline the location where scalar fields (e.g., the phase) are defined. The arrows show the location of the
velocity components.

In this equation, 3 describes the temporal rate of change at timestep n for a quantity c. That is,
the RHS of a PDE of the form dc/dt = B.. Furthermore, At"*1 = ¢"+1 —¢" is the time step
size between the discrete times ¢ and ¢"T!. The AB coefficients fe1,[t,2 are defined as

n+1 Athrl

At
—14+—=— and -
fia + and  fi2 SA

A (2.20)

Integrating Eq. (2.1) using Eq. (2.19) (e.g. Salimi et al. (2025)) results in

. - M™
O = 9" A (fa B+ By ) with B = V(") + VR4 T 22
1
For the solution of the momentum equation (Eq. (2.6)), a pressure correction scheme (Chorin
(1968)) can be employed to obtain the velocity and pressure. For this purpose, the integration
of (pii)™ is divided into two steps: an intermediate momentum (pii)* = p"*14* and the final
momentum (pi)" ! = p? 14" 1, In Crialesi-Esposito et al. (2023), the momentum equation is

integrated by splitting

(pu)™*' — (p0)*  (pu)* — (pu)" 5 Sl nble | Fail 1
At Apntl = fi1B,; + ft,QBZg +p" g+ for —Vp"T.
Step 2 Step 1

Step 1 Step 2

(2.22)
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2.6 Numerical Solution

Note that gravity ¢ and the surface tension force f;vT are excluded from the AB scheme. Using
Eq. (2.6), ggﬁ would therefore be ggﬁ =-V-(pra"®u") + V- (]:"” @u")+ V-7 Asa
result, the first step entails solving

(pi)* = (piD)" + A" (fe1Bllg + feaBlz ') + 0" G+ fo ], (2.23)

and the intermediate velocity #* = (pi)* /p"*1. The second step is therefore

Atn-l-l
anrl

,Jn—i—l =

AV (2.24)

To solve Eq. (2.24), the pressure p™ ! must first be computed. The following Sec. 2.6.3 reviews
methods to solve for pressure.

2.6.3 Pressure solution

In incompressible flows, the pressure is a quantity that enforces continuity (Ferziger and Perié
(2002)). To enforce continuity, the divergence operator can be applied to the second step of Eq.

(2.22), which gives
antt — @ 1
V. (W> =V (- pn+1Vp"+1>. (2.25)

Since the divergence of @ is equal to M"™ "1 (1/p; —1/p2) (e.g. Sun and Beckermann (2004)),
Eq. (2.25) can be rewritten as

NS NS S DS R CY SR
\Y% (pn+1Vp >_At"+1 {V U —M ik (2.26)

Accordingly, this equation is referred to as the pressure Poisson equation (PPE). Obtaining the

pressure from Eq. (2.26) is generally associated with the highest computational cost, as it
requires inversion of a matrix. For constant-density single-phase flows, iterative schemes are
often employed. Two-phase flows, especially those with large density contrasts, render Eq. (2.26)
into an ill-conditioned matrix which reduces the convergence rate (Alsalti Baldellou et al. (2022))
and requires robust preconditions (see Ferronato (2012)).
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2 Interface-resolved simulation of boiling flow

Density splitting and pressure extrapolation

To overcome this problem, Dodd and Ferrante (2014) introduced a method to turn Eq. (2.26) into
a constant coefficient matrix for two-phase flows, on a uniform grid. Their idea is based on the
approximation

1 n 1_ . 1 1 " 1_ .,
THVP +_ 2y +1+< n+1_>vP AR v +1+(
P Po P Lo Po

1 1
—— | vper. (2.27)
pn+1 Po) p

The constant density pg is chosen pg = min(p1, p2), and p*” is the extrapolated pressure from the
previous two time steps, i.e., p°* = (1+At" T /At™)p™ — (At /At™)p™~L. Therefore, in Eq.
(2.27), the density is divided into a variable part and a constant part (first step), and additionally
p"*1 is approximated through the extrapolation p** (second step). Following Frantzis and
Grigoriadis (2019), the pressure correction scheme becomes

1 1 :

@ = @ — At [( - —)pr}, (2.28)
P Po
11
v2 n+l £0 \VART A n+l( - - 2.29
g Agntl ! M p1 p2)) (229
Atn+1
ottt = @ - —/—vpntl, (2.30)
Po

where «** is a second intermediate velocity after the solution of Eq. (2.23). This method has
gained popularity and been used in numerous studies, such as Crialesi-Esposito et al. (2023),
Salimi et al. (2025) and Scapin et al. (2020). However, Cifani (2019) demonstrated that for
interfacial pressure jumps, the approximation of Eq. (2.27) can lead to pressure oscillations. In

the case of surface tension effects, Cifani (2019) proposed a treatment for the forcing term fg;f L

which removed the oscillations. Additionally, Cifani (2019) recommended low CFL numbers to
achieve satisfactory results.

Interfacial velocity jumps due to phase change also introduce pressure jumps at the interface,
known as the recoil pressure. Poblador-Ibanez et al. (2025) showed that similar pressure oscil-
lations occur due to recoil pressure and adapted the scheme by Cifani (2019) for terms arising
from the convective momentum transport (Trujillo (2021)). In the study by Poblador-Ibanez et al.
(2025), significant improvements were achieved, however, start-up oscillations remained.
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2.6 Numerical Solution

Method by Juric and Tryggvason (1998)

Juric and Tryggvason (1998) avoid division by density when solving Eq. (2.26). Instead of
solving Eqs. (2.24) and (2.25), they arrive at

1

VI = g [V () =V () (2.31)
S\x Atn—i—l n+1
and then "' = (o) P! Vb . (2.32)

This procedure is appealing, as it obtains a constant coefficient matrix from Eq. (2.31), even for
flows with large density ratios. However, shortcomings of this approach are:

* Solving Eq. (2.31) requires (pi)"*!, which is generally unknown at this stage

—n,

* The velocity field @"** is not guaranteed to have the divergence of M"™*1(1/p; — 1/p2)

FFT-based pressure solution

Turning Eq. (2.26) into a system with constant coefficients (e.g. Eqs. (2.28) or (2.31)) enables
the application of fast Fourier transformations (FFT) to accelerate the PPE solution. FFT-based
schemes can generally accelerate the PPE solution by one order of magnitude (Buzbee et al.
(1970)). The simple example shows how the PPE is reformulated to be efficiently solved with a
Gauss elimination scheme (refer to Costa (2018)). Consider a system

V2p = RHS. (2.33)
On a spatially discrete level in two dimensions, Eq. (2.33) is written as
(pi—1,j + Pij—1 — 4Pij + Pis1,; + Dij+1)/Ax® = RHS, j, (2.34)

where ¢ and j refer to the grid indices (see Fig. 2.5). The matrix resulting from Eq. (2.34) has
five non-zero diagonals. To reduce the number of diagonals, an FFT can be used. In this section,
a hat * denotes a variable that has undergone an FFT in the y-direction. Applying the FFT to Eq.
(2.34) results in

—Lpij+ (Pic1j — 2Pij + Digr,j)/Ax® = R/\Hsi,ja (2.35)

where eig; denotes the eigenvalues. The Eq. (2.35) is a tridiagonal matrix that can be solved
with a complexity O(n). After solving the transformed system, a backward transformation
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2 Interface-resolved simulation of boiling flow

b

Figure 2.6: Visualization of the pencil-like domain decomposition. Reprinted from Costa (2018), Copyright 2018, with
permission from Elsevier. Left: Primary domain decomposition. Middle: transposed domain decomposition
to align with direction of first FFT. Right: Transposed domain decomposition to align with direction of second
FFT.

(Costa (2018)) must be performed to obtain the pressure p. The extension to three dimensions is
straightforward and requires one additional forward and backward FFT. Each FFT has a complexity
order of O(nlogn). Therefore, using an FFT-based pressure solution is favourable for solving
large flow problems.

2.6.4 Domain decomposition

This section presents the domain decomposition of the popular FFT-based framework by Costa
(2018). In his work, a pencil-like domain decomposition is proposed, where the pencil aligns
with the x3-axis. This situation is illustrated on the left side of Fig. 2.6, where a two-dimensional
processor grid decomposes the domain into equally sized subdomains. This x3-alignment repre-
sents the decomposition of all variables during the simulations. The only exception is the solution
of the pressure using the FFT. For the forward and backward transformations in the z;-direction,
the data (RHS and p, see previous section) are transposed so that the pencils also align with
the z-direction (Fig. 2.6, middle). Therefore, the FFT, itself, does not require inter-processor
communication. For the second FFT (in xs-direction), another data transposition is performed,
as visualized on the right side of Fig. 2.6.
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3 Statistical insights into bubbly flows

The preceding chapter presented an overview of methods that enable the simulation of bubbly
two-phase flow. This chapter discusses methods for the post-processing of bubbly flow data.
Specifically, methods that allow for the statistical evaluation of bubbles are discussed. Further-
more, the questions stated in Sec. 1.2.3 are explored, namely, (i) how the volume around a bubble
can be defined and (ii) how to ensure the bubble evaluation is statistically significant. The methods
discussed in this chapter are not limited to simulation data, but can also be applied to post-process
experimental data. This chapter consists of a literature review, of which parts are published in
Weber et al. (2023); scientific contributions of this thesis are presented in later chapters.

3.1 Box-counting method

When evaluating local statistics of bubbles, the volume associated to which a bubble belongs
needs to be defined. The simplest approach is called the box-counting method. The name "box-
counting" originates from the process of defining control volumes (boxes) and identifying the
bubbles inside each box (e.g., Aliseda et al. (2002)). Subsequently, a statistical analysis of the
bubble characteristics can be performed for each box volume. This method has been used to
obtain bubble size PDFs (Lau et al. (2013), Laupsien et al. (2019) and Zhao et al. (2021)) and
to analyze particle swarms in particle-laden flows (Aliseda et al. (2002) or Laura Villafane-Roca
et al. (2016)).

To demonstrate this method, a generic bubble distribution is shown in Fig. 3.1a. Here, the
bubbles have an inhomogeneous distribution, with a higher concentration on the right side and
a lower on the left. If the local effects are not of interest, the entire domain is defined as a
single box (Fig. 3.1a), and all of the bubbles are used to analyze bubble statistics globally (e.g.
Laupsien et al. (2019)). This approach is appropriate if the bubble distribution is approximately
homogeneous. However, in the case of Fig. 3.1a, where the bubble distribution is inhomogeneous,
a decomposition with more boxes (as in Lau et al. (2013) or Zhao et al. (2021)) might be desired
to obtain local information. For instance, Fig. 3.1b depicts a possible decomposition into uniform
boxes. However, a problem with this decomposition is that the left and middle boxes each only
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Figure 3.1: Visualization of various control volume definitions for a bubble distribution featuring concentration gradients.
Bubbles are sketched as circles.

contain one bubble, and thus, constitute poor sample sizes for statistical analysis. To balance
the sample distribution between the boxes, the decomposition should account for the bubble
concentration. This can be challenging, as the bubble concentration is rarely known a priori
(Lau et al. (2016)). The decomposition in Fig. 3.1c could, therefore, be a potential solution.
However, a statistic derived from the left box will still be less statistically significant than a
statistic derived from the right box. Another drawback of this approach is that quantities like the
bubble concentration and the gas fraction are only available as box-averaged values. The bubble
concentration or gas fraction associated with each bubble is lost when performing box averaging
(Weber et al. (2023)).

3.2 Voronoi analysis

To overcome the problems of the box-counting method (Sec. 3.1), researchers utilized space-
filling and auto-adaptive decomposition methods. The Voronoi diagram method, proposed in
Voronoi (1908a) and Voronoi (1908b), fulfills these criteria. A Voronoi diagram decomposes an
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3.2 Voronoi analysis

n-dimensional domain into convex, hexahedral shaped subdomains (bubble cells). By definition,
the Voronoi diagram is free from voids or overlaps between the subdomains. As a result, the
Voronoi diagram clearly defines a volume around each bubble, which allows a unique bubble
concentration and void fraction to be calculated.

The use of cellular models in the context of multi-material flows was initiated by Simha (1952),
who analyzed suspensions using an interaction-with-nearest-neighbour model. Later on, Nigmat-
ulin (1979) and Arnold et al. (1989) used polyhedral shapes to study particle flows. In terms of
dispersed flows, the term "Voronoi diagram" appeared significantly later, e.g. in Monchaux et al.
(2010) and Kidanemariam et al. (2013) for particle-laden flows and even later in Lau et al. (2013)
and Kipping et al. (2022) for bubbly flows.

In mathematical terms, a domain that contains a number of bubbles NV, with positions &, @5, ...,
Zn, decomposes the space into N, bubble cells. The n-th bubble cell 2y, (Voronoi (1908a,b))
is defined as

Qv ={Z | T2, <|T—F|forj#n,je{l,2,..,No}}. (3.1)

Eq. (3.1), termed ordinary Voronoi diagram, uses the Euclidean distance to assign each point in
the domain to the closest bubble centre. A visualization of the bubble cells is provided in Fig.
3.2.

An advantage of Voronoi diagrams is that each bubble has a single associated bubble cell, and
therefore, a unique assigned volume. Thus, quantities like bubble concentration and gas fraction
can be related to a single bubble. However, the instantaneous definition of a bubble statistic is
not possible, as the sample size is unity. This is not problematic if enough instantaneous data are
available, but this can be a drawback if instantaneous data are limited (e.g., for transient flows or
computationally expensive simulations), as the local sample size might be small.
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3 Statistical insights into bubbly flows

Figure 3.2: Visualization of bubble cells based on an ordinary Voronoi diagram obtained from a random bubble
distribution. Figure is taken from Weber et al. (2023).
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4 Flow solver developments

Thus far, Ch. 2 and Ch. 3 have provided an overview of the relevant literature regarding the
simulation of boiling flows and their statistical evaluation, respectively. This literature review
is the basis for deriving and conducting the required method developments. Specifically, the
following development goals can be derived from the knowledge gaps identified in Ch. 2:

* The system of transport equations for simulating boiling flows is not consistent throughout
the literature. Thus, the clarification and analysis of a suitable mathematical description is
needed (see Sec. 2.4 and 2.5)

e The available FFT-based pressure solution schemes shall be improved (see 2.6.3)

* A computationally inexpensive phase change model that avoids the use of empirical param-
eters is lacking (see Sec. 2.5.1)

Based on these goals, Ch. 4 describes the development of a sophisticated flow solver. The content
of this section is published in Weber et al. (2026).

4.1 Improvements to the system of equations

From the governing equations of the liquid and the gas phase, a system of transport equations has
to be derived for the artificially diffused interface region. Therefore, these transport equations
constitute a modelled system of equations to describe the dynamics of the two-phase flow.
As a result, several possible systems of transport equations exist. Depending on the physical
application, the accuracy of the result can be affected by the choice of the equations due to their
implied assumptions (see Soucek et al. (2014)).

In this section, a system of transport equations suitable for boiling flows is discussed. At
the beginning of this chapter, the required quantities for describing the two-phase mixture are
introduced. For the derivation of a mathematically consistent system of transport equations, the
following strategy is used: (i) Identifying the conservation equation for each phase, separately.
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4 Flow solver developments

(i) Deriving the mixture equation by summation over both phases. (iii) Augmenting the transport
equations with modelling choices for simulating boiling flows.

4.1.1 Mixture quantities

To begin the derivation of the mixture quantities, the ¢-th phase of the two-phase flow has a
volume fraction «; and a velocity ;. The sum of both phases is unity, Y . «; = 1, and both phases
are assumed to be incompressible V - w; = 0. The partial density p; is defined as

pi = Qp;. 4.1

The volume-averaged mixture properties are
p=> aipi, A= a\; and p=> aiu, 4.2)
and the density-averaged mixture properties are

pep = picyi and ph =Y pih;. (4.3)

The decisive factor for the subsequent derivation is the definition of the mixture velocity. One
option would be using a density-averaged (barycentric) mixture velocity v, defined as

7= (piti;)p~". (4.4)

i

The other option is employing a volume-averaged mixture velocity 4, i.e.,
0= oy 4.5)
i

Compared to the density-averaged mixture velocity, an advantage of the volume-averaged defini-
tion is that, in the absence of phase change, « is divergence-free, making it a popular choice in
the diffuse interface community (Boyer (2002), Abels et al. (2012), ten Eikelder and Schillinger
(2024)). In addition, the CDI/ACDI equations are developed for volume-averaged velocities.
Accordingly, a volume-averaged mixture velocity is implemented in this thesis. However, as
stated in ten Eikelder and Schillinger (2024), formulations arising from either mixture velocity
definition reflect "two sides of the same coin".
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4.1 Improvements to the system of equations

Generally, the velocities in both phases differ, which motivates the introduction of a differential
velocity A to quantify the mismatch. The differential velocity is defined as Aud = u; — s
(following Badillo (2012)), and thus the phasic velocities u; can be expressed by using the
quantities @ and A as follows

U = U+ At and Uy = U — a1 AU (4.6)

4.1.2 Mass and phase field transport

The mass transport in each phase is

9pi
ot

+ V- (piti;) = M;. 4.7

Since mass is conserved, the mass transfer rates have a zero sum, Zl M; = 0. Going forward,
the phase field variable ¢ refers to phase "1", which is the gaseous phase. Therefore, a; = ¢ and
as = (1 — ¢). Setting ¢ = 1 for Eq. 4.7 and dividing by p; results in the phase field transport
equation

%0 v om) =21,

o o 4.8)

To eliminate the phasic velocity u;, the relations from Eq. (4.6) are implemented. For conciseness,
the subscript 1 is dropped from M, so that M; = M and My = —M. This results in

0 L M ;
a—f + V- (¢0) = o V- [o(1 - ¢)Ad]. (4.9)

Multiplying with the reciprocal density, the divergence of « can be derived from Eq. (4.7) as

0o il eveaom( L oL
Z{at+v~(aiui)}—v-u—/\/1<pl p2>' (4.10)

%

Following the same strategy, but without dividing by the density, leads to the definition of the
transport equation of the mixture mass p

2 {%p;i +V- (ﬁiﬁi)] = % + V- (pil) = —(p1 — p2)V - [$(1 — @)Ad].  (411)

i
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4.1.3 Differential velocity closure relation

Thus far, the transport equations for mass and phase field have been derived. However, when
attempting to solve Eqs. (4.9) and (4.11), the term ¢(1 — ¢)Aw is encountered. In general,
At is not accessible and requires closure. In the presence of phase change, the term could be
related to the interfacial velocity jump, but without phase change A is commonly attributed to
counteracting numerical diffusion effects. Closure of A can be reached through a term-by-term
analogy with the well-known CDI/ACDI transport Eq. (2.1). The regularization term R can be
identified as the corresponding term. The analogy yields

—

—p(1—¢)Aii=R and — (p1 —p2)[6(1 — ¢)Ail] = F, 4.12)

and is used for the remainder of this thesis.

4.1.4 Consistent momentum transport

A common strategy for deriving the mixture momentum balance equation is to start by considering
each phase separately. This strategy is followed by many, including Boyer (2002), Sun and
Beckermann (2004), Badillo (2012), Rehot (2018), and recently by ten Eikelder et al. (2023) and
ten Eikelder et al. (2024).

The (simplified) linear momentum balance equation (ten Eikelder et al. (2024)) for the i-th phase
reads

o p;ti;

5 +V - (ipitls @ @) = —;Vp+ V-7 + ipig + I + Ej. (4.13)

Here, I: are the phase interaction forces, which sum to zero ZZ E =0 (see e.g. Sun and
Beckermann (2004)). EZ is the contribution of the surface energy. For AC and CH models,
E'i arises from the energy functional (see ten Eikelder et al. (2024)), and according to Sun and
Beckermann (2004) the sum of Ei is the effect of the surface tension. The stress tensor is
7; = i (Vii; + Vil') and both phases share the same pressure field p.

LHS analysis

The LHS of the mixture momentum transport equation is obtained by summing Eq. (4.13) over
index 7 for both phases. The quantities , R, and F are used to simplify the result:

34



4.1 Improvements to the system of equations

3 {aag’:“" +V - (upily ® ﬁi)] WG (piwd) -V (Fod)

%

—%—V-(ﬁ@f)ij((ler r~ )ﬁ@ﬁ) (4.14)

In Eq. (4.14), no assumptions concerning the relevance of terms are made, and thus, the equation
is presented in full length. Compared to the commonly used mixture momentum formulation
(utilizing a volume-averaged mixture velocity, see Eq. (2.6)), Eq. (4.14) contains additional terms.
Specifically, the terms in the second line of Eq. (4.14) are commonly neglected in the mixture
momentum formulation. Their corresponding shorthand C is introduced in the last line of Eq.
(4.14).

The terms %—f + V- (ﬂ' ®F ) are commonly omitted by assuming "relative momenta [...] are
negligible when computed relative to the gross motion of the fluid", as stated in Gurtin et al. (1996).
This assumption has since been adopted in the derivations of numerous studies, e.g., Abels et al.
(2012), Dong (2014a), Rehof (2018). The strategy of "consistency of mass and momentum
transport” proposed by Huang et al. (2020), and employed by Mirjalili and Mani (2021) and Jain
etal. (2020), implicitly relies on this assumption. Technically, the term %—f +V. (1_[ @F ) # 0 (ten
Eikelder et al. (2023) and ten Eikelder et al. (2024)), and thus, is kept in the present derivation.
ten Eikelder and Schillinger (2024) also demonstrated that accurate results for two-phase flows
were obtained by keeping %—]: +V. (ﬂ' ®F )

The third term in the second line of Eq. (4.14) is also often postulated to be irrelevant and omitted.
However, Badillo (2012) explained that it is part of the pressure and Rehof (2018) added it to the
stress tensor 7.

For the remainder of this work, all the terms of Eq. (4.14) are retained, and the relevance of Cis
evaluated through numerical experiments.
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Noted that the LHS can also be expressed in terms of the density-averaged mixture velocity by
recognizing that pt' = pu — F. This reformulation reads

WG iwd) v (Fed) - v @R v (s 2 VieR
5 TV (pi@d) - V- (F® i) o~V (G F)+V <<¢+1_¢)R®R>
_ 97 ; P\ o R

= o +V (pv®v)+v ((p¢(1_¢)>R®R)

(4.15)

The result of Eq. (4.15) is equivalent to the mixture momentum equation derived in Sun and
Beckermann (2004). However, the divergence of vis V- =V -4 — V - (pfl]:" ); thus, even
in the absence of phase change, the divergence is non zero. Occasionally, ¢ will be used in
subsequent sections due to the compact form of Eq. (4.15).

RHS analysis

It is straightforward to formulate the pressure, gravitation, and interaction forces for the mixture
formulation, as

> (—aiVp+ aipig + I;) = —Vp + pg. (4.16)
However, expressing ) _.(7;) through mixture quantities is more complicated. Boyer (2002) and
ten Eikelder et al. (2024) present complete formulations of ) . (7;), whereas Sun and Beckermann
(2004) present an approximation. This thesis employs the simple approximation

N (m) ~ 7= p(Va+ vaT - 2v - il). (4.17)

By using —2V - 1, the spurious pressure contribution', that arises from the divergence in normal
stress components, is removed (see Juric and Tryggvason (1998), Schreter-Fleischhacker et al.
(2024)).

The mixture formulation of ) _, E; accounts for the effect of surface tension. AC and CH models
would use an energy-based expression. However, since no energy functional is known (Mirjalili

Intuitively, a factor of —2/3 is expected as it is done for the deviatoric stress tensor in the literature of compressible
flow. For diffuse interface simulations of phase change, this factor has a different origin. Here, the correction solely
accounts for the artificial viscous stress due to phase change. Consider a 1D case without modification Eq. (4.17): an
artificial vicious stress contribution of 8, [2uM(1/p1 — 1/p2)] remains in the momentum balance. This spurious
contribution is counterbalanced by Eq. (4.17).
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4.1 Improvements to the system of equations

etal. (2023)) for the CDI/ACDI equations, the term ", E;is expressed by a force f_:gT to represent
surface tension.

The fully closed mixture momentum transport equations is then

a_’ —. — —
aptquV~((pﬂ'.7:)®ﬁ)+C—Vp+V~T+p§+fST7 (4.18)
with ~
> OF L o P1 P2 \3 o3
__ 9 5. (P . 4.1
C o~V (G F)+V <(¢+1¢>R®R> (4.19)

Note that no surface tension model has been selected, yet. Numerical tests in Sec. 6.6.2 will analyze
various surface tension models (Sec. 2.4.1) for avoiding spurious currents in boiling flows. As
such, Sec. 6.6.2 serves as a best practice guideline for conducting boiling flow simulations with
the ACDI method involving surface tension.

4.1.5 Consistent energy transport

The transport equation of the enthalpy of the ¢-th phase is (see Badillo (2012))

Opihi

D + V- (pihiti;) = V - (i Ai Vi) (4.20)

The sum of Eq. (4.20), written in terms of mixture quantities, is

% + V- (phil) = V- (A\VTus) + V - [(p1h1 — p2h2)R]. 4.21)
As such, Eq. (4.21) is equivalent to the formulations used in Jain et al. (2020) and Salimi et al.
(2025). Moreover, compared to Eq. (2.14), the energy-conservative form of Eq. (4.21) makes
it numerically advantageous. However, in contrast to phase field and momentum transport,
specialized schemes for the discretization of the convective transport of the enthalpy are required.
This is due to the potential presence of interfacial temperature jumps, where WENO schemes
(e.g. Castro et al. (2011)) are commonly utilized. Using a WENO scheme for Eq. (4.21),
and central differencing schemes for all other transport equations, can lead to inconsistencies.
These inconsistencies potentially arise from the transport of physical properties in both the phase
field transport Eq. (4.9) and the energy transport Eq. (4.21) (because of pc,). To resolve this
inconsistency, the transport of physical properties are decoupled from the transport of thermal
energy. Therefore, Eq. (4.21) is reformulated below.
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For convenience, a relative temperature 7 is introduced, utilizing the saturation temperature 7,
as areference. Thus, 1" = Ty,s — Ty, and the resulting transport equation is

OpcyT
ot

+ V- (pe,T@) =V - (AVT) — MLy + (pr6p1 — p2acp2)V - (TR). (4.22)

In this equation, Ly, is the latent heat at saturation temperature, defined as Lg, = hq(Tew) —
ha(Te). Making use of the phase field transport equation (Eq. 4.9), the following equation is
obtained

or 3
pe, (at i VT) =V -(AVT) - LM + Ape,R - VT, (4.23)

Thus, the transport of pc, is decoupled from 7. In Eq. (4.23), Apc, is defined as Apc, =
P1Cp1 — P2Cp2. As seen in Eq. (4.23), the transport equation of temperature contains the
contribution of the regularization term. Although other studies (Scapin et al. (2022), Tamura and
Katono (2021), Wang et al. (2021), Haghani-Hassan-Abadi et al. (2021)) did not report this term,
this thesis includes R in Eq. (4.23) for consistency with the ACDI model.

To improve convergence, the present model utilizes the anti-trapping current from Badillo (2012)
(Eq. (2.18)). Therefore, the final energy transport equation reads

oT - =
PCp (at +u- VT) =V -(AVT)+V.-j— LM+ Apc,R-VT. (4.24)

4.1.6 System of transport equations

This section summarizes the final transport equations discussed in the Sec. 4.1.2 - Sec. 4.1.4. The
system of equations reads

0¢ M 5

i (o) = = V. 4.25
gtV N = SoVR (429)
apﬁ . _, . N -
W+v- (pi—F)@i) = —C—Vp+V-7+pj+ fsr, (4.26)
or - -
PCp E+U'VT = V-(AVI)+V-j— LM+ Apc,R-VT. (4.27)

These equations describe the transport of the phase field variable, the momentum and the thermal
energy, respectively.
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4.2 Time-stepping scheme

4.2 Time-stepping scheme

A system of transport equations (Sec. 4.1.6) has now been derived, but the numerical solution still
requires spatial and temporal discretization of those equations. In terms of spatial discretization,
second-order central differences are used for approximating all derivatives, as described in Sec.
2.6.2. The only exceptions are the terms Apcpﬁ -VT and 4 - VT, for which the WENO scheme
by Castro et al. (2011) is employed. The spatial discretization of the transport equations is
straightforward, and therefore, not discussed further here.

The temporal discretization, discussed in Sec. 2.6.2, must be adapted to the current set of equations.
First, the phase field ¢ and the temperature 7" must be integrated, but the mass transfer M in this
scheme is unknown. Therefore, the integration of ¢ and 7 is split into two stages. In the first
stage, the integration is performed without M to obtain ¢ and T" for an intermediate step denoted
by (+)* (between time step t" and t"*1). For this strategy, we obtain

¢* = ¢+ AT (fraBE + fi2B) ), (4.28)
T = T"+ A" (foaBE + fo2BE"). (4.29)

The rates of change B'g and B7., excluding phase change, read

B} = -V-(¢"a")+V-R", (4.30)

B —@ VT (v ST 4 V- J o+ Ape, R VT"). (431)

1
(pep)*

In the second stage of the integration, the phase change term M"*! is added. This splitting
procedure enhances the stability of the integration. The second stages of the integration are then

n+1
o = gt 4 At"HMT and T = T* 4 ATEEL. 4.32)

The temperature increment due to phase change ATJSJCr1 is coupled to M™*! through the relation

Mn+1 — (pcp)*ATlngl

L(T*)Atn+1 @39

In Sec. 4.4, the modelling of phase change and the calculation of AT;gl from 7" and ¢* is
discussed.
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Figure 4.1: Visualization of the three solution stages (darker grey boxes) of the proposed FFT-MPDJ scheme. In- and
output quantities of each stage are shown left of the arrows. Corresponding equation number is shown in
brackets. The purpose of each solution stage is stated in the boxes.

The velocity field is advanced in time using Eq. (4.18). For the integration, the density-averaged
mixture momentum formulation is used for its concise form (see Eq. (4.15)). Similar to Eq.
(2.23), the intermediate momentum (p¥)* is obtained by solving

(p?)* = (po)" + At"+! {(ft,ll?'gﬁ + fr2Bis ) + " g+ it - vp”] . (4.34)

For convenience, the pressure p"t! is decomposed as p"+! = p™ + "+, and the contribution

7\ *

of p™ is added to the intermediate momentum (p¥)*. Here, Bj’;a is calculated from

3 P1P2 5 =
"= V. (P o) -V (| —L2  _)RPeR" )+ V.-, 4.35
’ (v ) ((p%"(l —¢n)> ) *3%)

and represents the contributions of viscosity and convection.

4.3 FFT-based pressure solution for flows subjected
to phase change

Following the intermediate momentum (po)* calculation, a suitable pressure solution scheme must
be selected. The shortcomings of the commonly-used density splitting and pressure extrapolation
schemes, originating from Dodd and Ferrante (2014), were described in Sec. 2.6.3. In contrast,
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4.3 FFT-based pressure solution for flows subjected to phase change

the pressure solution scheme by Juric and Tryggvason (1998) provides a promising approach,
although implementation challenges were identified (Sec. 2.6.3). For this thesis, the momentum-
based formulation by Juric and Tryggvason (1998) is adopted and modified for the current flow
description.

A multi-stage approach is introduced to address the challenges of numerically implementing the
scheme by Juric and Tryggvason (1998). Each stage involves solving a constant coefficient Poisson
equation, for which efficient FFT schemes can be applied. This solution scheme is visualized in
Fig. 4.1. The central part (Stage 2) of the pressure solution is based on Eq. (2.31) from Juric and
Tryggvason (1998), whereas Stage 1 and Stage 3 address the implementation challenges related to
this method. Specifically, Stages 1 and 3 allow for (i) the prediction of the momentum at time step
t"+1 and (ii) ensuring the prescribed divergence of the velocity field after pressure correction.
Therefore, the developed scheme has the form:

Stage 1: To prepare for a momentum-based approach, a predicted momentum (marked by a tilde
") must be found. For this, the strategy from Frantzis and Grigoriadis (2019) is adapted as

follows
1 1\ Al

%k — ok Athrl o n 4
Y Y [(p"'H PO) Atn vy }’ (4.36)

27 o ik n+1 1 1 fn+1 43
= . — _ - — | — 37
VY Attt [v oM (m p2>+v (p"“ @D

N il
and pv = p"Tlovt — At"“p—vw. (4.38)
0

Stage 2: Using the predicted momentum p# as an approximation of the momentum (p#)"+!
allows Eq. (2.31) to be solved. This momentum-based PPE takes the form

1
Atn+1

V- (pt)" =V (,017)”“] ~ {V (p)* =V - pi|, (4.39)

27 —
Vi = RN

where ) refers to the momentum-based pressure estimate for ¢)" 1.

Stage 3: This step is applied to guarantee that V - 4" *! becomes M"+! (1/ p1—1/ pz) after the
pressure correction. Again, this is similar to the scheme by Frantzis and Grigoriadis (2019), but
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instead of an extrapolated pressure gradient, the momentum-based pressure estimate ¢ is used.

Therefore,
1 1 ~
Ty L Atn-i—l |:(pn+1 _ %)CV¢:|, (440)
2 1 n+1 _ £0 ke k% n+1 1 1 fnJrl
Ve = Apil [V - M <p1 — p2) +V- <p”+1 , (441
—k ok ok Atn+1 n ‘/—::n+1
a»n—l—l = 9 — " V,(/) +1 + pn+1 , (4.42)
and p"tt = p"4ynth (4.43)

In Eq. (4.40), v™** represents the improved prediction velocity, after accounting for 1Z Further-
more, the limiter ¢ scales the magnitude of the pressure increment based on the pressure field
1/) This is necessary because the pressure ﬁelds w and 1/) are not fully independent. They are
connected through the prediction momentum pu. Evidently, for stages 1-3 to be valid, w and 1/1
cannot deviate largely. Large deviations will cause instabilities in the solution procedure. The
limiter c is calculated based on the ratios of the extreme values in 72 and zz, as

o |min (¢ )\ \max(w)\
c—m1n<1 |m1n @\ \max @\ . 49

Note that the presented limiter is one of many possibilities and does not appear to be a sensitive
choice.

The remainder of the thesis refers to this multistage scheme as FFT Momentum-based Pressure
treatment for Density Jumps (short FFT-MPDIJ). Test cases to quantify improvements in solving
the pressure when applying the FFT-MPDJ scheme are discussed in Ch. 6.

4.4 Phase change modelling

This work employs a kinetic phase change model due to its computational efficiency. However,
as mentioned in Sec. 2.5.1, a drawback of most kinetic models is that their parameters must
be adjusted depending on the simulation setup. This drawback is addressed in the subsequent
development. In light of its simple formulation, the model by Rattner and Garimella (2014) and
Pan et al. (2016) is used as a starting point for the phase change model development. The idea
behind their phase change model is that the interface temperature at the next time step is equal to
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4.4 Phase change modelling

the saturation temperature, i.e., 71 = 0. Using the definition of the phase change temperature
increment ATIQLJCrl = T+ — T* yields the following relation

ATBE! = (Tt — Tiyy) = =T (4.45)

The mass transfer M™ ! is then obtained by using the relation in Eq. (4.33). To apply the phase
change model to the ACDI method, the following challenges with using Eq. (4.45) are addressed:

e Mass transfer is not limited to the interface region
* Eq. (4.33) strongly depends on the time step size At" ! (see Liu et al. (2020))

* Eq. (4.45) does not account for the change in (pc,)* across the interface. Therefore, the
distribution of M"™*! would be significantly concentrated on the liquid side.

These points are addressed in the following section.

4.4.1 A kinetic phase change model suitable for the ACDI
method

The strategy for calculating the mass transfer is visualized in Fig. 4.2. Similar to some heat-
conduction models (see Mukherjee and Kandlikar (2005) and Mukherjee et al. (2011)), this
strategy assumes that the mass transfer is governed by the heat conduction of the liquid phase.
The heat penetrating the diffuse interface creates a small superheat, which is used to calculate the
phase change rate M"™*1,

For the application to the ACDI model, the temperature increment is modified by introducing four
non-dimensional factors discussed below. The proposed phase change model reads

ATpEY = =T%0,0,.0,. 07 (4.46)

In Eq. (4.46), factor 6, accounts for the time step size, factor 8, is a phase change constant, factor
0, = pc,(¢") accounts for the jump in the heat capacities, and factor 67, = 0,(¢") restricts
M to the interface region.

The factor §7 is a shape function that satisfies 04(¢ = 0.5) = 1 in the middle of the interface
and §4(¢ = 0) = 04(¢ = 1) = 0 in the pure phases (Fig. 4.3). Empirical tests show that shape
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Figure 4.2: Schematic diagram of the developed phase change model. The interface is heated by the thermal energy
transported from the liquid side. The mass transfer M™% is calculated based on this local superheat.
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Figure 4.3: Discrete representation of the factor 64, plotted over the non-dimensional distance «/¢ from the interface.
Values at cell centres are marked with a circle. The distribution of the phase field ¢ shows the diffuse interface
region.

functions with a higher concentration in the middle of the diffuse interface have a more stable
performance. As such, in this thesis, the shape function is based on a cosine function

0y = ;<1+cos (27r|¢0.5)>. (4.47)

Fig. 4.3 illustrates the discrete representation of Eq. (4.47), along with the hyperbolic tangent
profile of ¢.
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4.4 Phase change modelling

The mass transfer rate M is decoupled from the time step size by introducing a phase change
timescale ¢, in the calculation of AT;gl. For this purpose, the thermal diffusion timescale of
the liquid is selected, under the assumption that the liquid heat conduction governs the phase
change. This timescale reads

Ax? Attt

tpe = —, and therefore 60; =
as tpc

(4.48)

Factor 6., dampens the temperature increment towards the liquid side with the ratio of pacy 2
and picp 1 to obtain a balanced distribution of M. The factor 6., is calculated from

1

pCp = Picpa !
pP2Cp,2 a1 + a2

0 (4.49)

The phase change constant 6 is empirically optimized to be 4 = 0.7, by comparing the interface
growth rate with reference data. It is important to emphasize that this constant is valid for all
considered fluid properties and all problem setups (refer to Ch. 6). Note that in Appendix Sec.
A.2 and Sec. A.3 the phase change model is extended to arbitrary ¢* and to non-cubic grid cells,
respectively. These modifications are relevant for Ch. 7, however, they are not in the scope of the
main thesis body.

4.4.2 Time step restriction

Analyzing the Eq. (4.46), it is evident that the condition

etepcopcp 9¢> <1 (450)
must hold. To satisfy this condition, a phase change time step constraint At is obtained as
follows Ag?

1 )\1 x
A< Aty = — == 4.51
pc apc )\2 ay ( )

As such, Eq. (4.51) contains the thermal diffusion time scale of the gas. The thermal diffusivity
time step constraint has to be satisfied regardless. This means that At,. becomes restrictive, only
if A\, " is small.
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4.4.3 Adaptive regularization speed

Selection of the interface regularization speed is closely connected to the phase change timescale.
The literature (see Mirjalili et al. (2020) and Jain et al. (2020)) suggests that the regularization
speed I' is coupled to the maximum velocity in the domain through a fixed factor, i.e. a fixed
I"*. This section shows that this definition can be insufficient for simulating boiling flows, and a
solution procedure is proposed.

For boiling flows, the mass transfer rate M has a strong impact on the interface profile of ¢. In
the absence of phase change, ¢ has the well-known hyperbolic tangent profile in its equilibrium
state. For M = 0, the velocity divergence causes a constant disequilibrium state that R has
to counterbalance. Therefore, too slow regularization speeds can lead to a thickened interface
profile, or even a deterioration of the interface profile, and thus, a simulation failure. The latter
is the case if the interface regularization time step restriction At is larger than the phase change
constraint At,,..

To overcome this problem, a continuous adaptation of I'* is proposed so that, at all times,
Al = CerrAtg, where Cepy, is the CFL safety factor. For completeness, the remaining time
step constraints (from Kang et al. (2000)) are listed below. These time step constraints are due to

A
convective transport At; = a: , (4.52)
max([uy | + [uz] 4 [us)
. Az (p;
viscous effects At, = Tmm — |, (4.53)
AN
A
gravity Aty = ﬁ (4.54)
g
| Az? min; p;
surface tension At, = w, (4.55)
o max|x|
A 2
and heat conduction At, = Txmjn (ai_ 1). (4.56)
3

Kang et al. (2000) combined the time step restrictions Eqs. (4.52)-(4.55) into one constraint Aty
by computing

-1

Aty =2y Ly 1+12+4+4 4.57)
T\ Aty T AL, Aty At AZTAZ) '
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The minimum allowable regularization speed I', . is used as a simulation input, and set to unity
for the remainder of the thesis. The corresponding time step constraint Aty iy is

. 6T | Umaz € Ju; !
At(i),min = miln [max{ (M) — (8‘%1)70} . (458)

Now, I'* can be dynamically adjusted in case of Aty i, > min(Aty, Aty, At,.). By rearrang-
ing Eq. (2.5), the updated value of I'* is obtained as

Ax? 1 Ou;
= i “ . 4.59
6[ttmar € [mm(mg, Aty Al (8:51- )} (4-39)
In the case of Aty min < min(Ats, Aty, Aty.), the regularization speed is set to I'* =T"7 . .
Over the simulation runtime, the time step size At"*! is continuously updated based on
A" = Copr min(Aty min, Ats, Aty, Aty.). (4.60)

For all numerical experiments and simulations in Ch. 6 and Ch. 7, a Ccpp. value of 0.4 was found
to be sufficient.

4.5 Contact angle treatment for the CDI method

For the simulation of two-phase flows involving wall boundaries, it is often necessary to model
the wettability phenomenon. This phenomenon is modelled by prescribing a contact angle at the
three-phase contact point where the wall (solid), the liquid, and the gaseous phases meet. This
work does not consider the effect of contact angle hysteresis (e.g. Yue (2020)). Thus, a static
contact angle treatment is implemented.

Fig. 4.4 depicts important considerations in the modelling of the static contact angle boundary
conditions for CDI. Here, a small bubble, represented by a diffuse interface, is schematically
depicted on a hydrophilic wall. The grey solid, dashed, and dotted lines represent the iso-contours
of three phase field values (e.g., 0.9, 0.5, and 0.1, respectively), of which the corresponding contact
angles O are labelled . In addition, the computational grid is displayed for part of the near-wall
region, including the ghost points, which are used for the phase field boundary condition. The
wall-normal regularization fluxes R on the domain boundary are depicted by orange arrows.

The first consideration is the definition of a contact angle © for small bubbles. From Fig. 4.4, it
is evident that Og 1 # Og.5 # Op.9. When prescribing a contact angle ©, a local contact angle
©’ must first be calculated. Utilizing the local values of the level-set value ¥ and the curvature ,
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Figure 4.4: Visualization of important aspects when modelling the wettability for diffuse interface bubbles.

a simple geometric relation can be derived for small bubbles in three dimensions. Assuming that
both principal radii of the curvature are equal, the local radius " is 7’/ = 2/k, and the radius at
¢ = 0.5is W + r’. The discrete local angle ©; ; is

2+ ki Vi
©; j = arccos <cos® {W]) 4.61)

In Eq. (4.61), the indices ¢, j, and k represent the discrete location in the grid and align with
the x1, x2 and z3 axes of Fig. 4.4. The same approach is followed by Brown et al. (2024)
for two-dimensional problems. The curvature  is assumed to have a zero-gradient boundary
condition on a wall and therefore 92,131 2 R @;, ;.1 (see Fig. 4.4 for index definition).

For phase field methods, two formulations of the static contact angle treatment (see Ding and Spelt
(2007)) are often utilized: (i) the surface-energy formulation, and (ii) the geometric formulation.
Here, the geometric formulation of the boundary condition is used to apply the contact angle
o ia/2r Enforcing a static contact angle translates to prescribing a Neumann-type boundary
condition for the phase field variable. In line with Ding and Spelt (2007), the wall-normal phase
field gradient 77, - V¢ is calculated as

i, - V¢ =—tan (0’ — 7/2)|ii) - V| (4.62)
The magnitude of the wall-parallel gradient |77 - V| is approximated using the second-order

central difference approximation (e.g. Liang et al. (2019) or Zarareh et al. (2021)) of the two
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wall-adjacent layers of grid points. For a wall-normal vector aligning with the x5 direction, this

reads
3 i P i—1.1 — O; . i1
B tan (6! e 7/2) Giv1,41 — 3bi—141 — Pit1,j2 + Pi1,52)
(- V0)ijan ™ = 1Az 3¢i 41,1 — 30ij—1,1 — Pijr1,2 + ij-1,2)
0
(4.63)
The boundary value of the ghost point ¢; ; o becomes
Gij,0 = Giga + max( —Cotij1 , Az, - V¢)i,j,1/2> (4.64)

Compared to the boundary condition in the studies by Ding and Spelt (2007), Liang et al. (2019),
and Zarareh et al. (2021), Eq. (4.64) is augmented with a limiter constant C'g. This limiter is
required to avoid nonphysical boundary values when using very small contact angles © (see Ch.
7). Avoiding nonphysical boundary values is essential for computing a level-set value ¥; ; o from
©i,4,0, which is required for calculating the curvature «. For super-hydrophilic behaviour, a value
of Co = 0.3 is found to provide satisfactory results (see Ch. 7).

To complete the wettability modelling, a treatment for the wall-normal regularization fluxes
R 1 ‘wal] on the wall must be defined (orange arrows in Fig. 4.4). The definition of the regularization
term R (Eq. (2.3)) indicates that for contact angles © # 90°, the flux is R }Wa]] # 0. This is
problematic, as it violates mass conservation, which can lead to significant mass losses over
the duration of the simulation, as seen in Shen and Li (2024). Other researchers (see Huang
et al. (2022) or Scapin et al. (2022)) used Lagrange multipliers to balance the mass conservation.
These Lagrange multipliers redistribute the lost mass in the simulation to enforce the conservation
constraint. To avoid such redistribution of mass, a simple boundary treatment for R is introduced,
instead. Here, employing a homogeneous Dirichlet boundary condition on wall boundaries results
in

Ri| =0 (4.65)

The boundary condition allows mass to always be conserved. This boundary condition is not new,
and was first introduced by Sato and Niceno (2012) in the context of the conservative level-set
method. In their study, a similar resharpening term is used for the reinitialization of the level-set
value. More recently, this approach was applied to the CDI method by Brown et al. (2024) and
Weber et al. (2024a).
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4.6 Outflow boundary treatment

When the long-term behaviour of a bubbly flow is of interest, a sophisticated outflow boundary
treatment for bubbles leaving the domain is often necessary. The most simple outflow condition
assumes a homogeneous Dirichlet boundary condition for the pressure p and a homogeneous
Neumann boundary condition for the velocity @. However, a typical bubbly flow scenario
may involve bubbles featuring small Weber numbers We that are advected towards the outflow
boundary. The We defines the ratio of inertial effects to surface tension. Therefore, small We
entail a high surface tension effect. Instabilities arise when the interfacial pressure jump comes
in contact with the outflow boundary, potentially causing simulation failure (Sato and Nic¢eno
(2013)). With a sophisticated boundary treatment, these instabilities would not occur.

The literature on boundary treatments for small Weber number bubbles is limited. Researchers
either choose to remove bubbles before they touch the outflow boundary (Sato and Nic¢eno (2013)),
or are limited to high Weber number simulations (Bozonnet et al. (2021)). Furthermore, using
an FFT-based pressure solver restricts the choice of boundary conditions, as discussed in Costa
(2018). Therefore, methods that require non-homogeneous boundary conditions (e.g., Dong
(2014b)) are not possible.

Recently, Dhruv (2024) proposed a forcing-based outflow treatment, which allows the use of
homogeneous Neumann and Dirichlet boundary conditions for velocity and pressure, respectively.
Dhruv (2024) claims that his treatment also ensures stable simulations for small Weber number
bubbles. The method is capable of handling a range of simulation settings (see, e.g., film boiling
in a two-dimensional pool in Sec. 6.7). However, a more restrictive scheme is required for forced
convection nucleate boiling flow (see Sec. 7). Accordingly, to satisfy this requirement, a more
restrictive variation of the method by Dhruv (2024) is presented below.

Fig. 4.5a visualizes this more restrictive outflow treatment. The computational domain (box)
features an inflow and an outflow boundary (grey boundaries) through which the fluid can enter
and leave the domain. The convection enforced by the inflow boundary transports the bubbles.
The domain is divided into two regions: (i) the outflow region of length /¢, where outflow
treatment is enabled, and (ii) the region of interest, in which outflow treatment is disabled. The
flow may feature vortices in the region of interest; however, in the outflow region, the flow is
straightened to ensure stable transport of bubbles through the outflow boundary.

The region of interest is separated from the outflow region by introducing an outflow weighting
factor . In line with Dhruv (2024), this factor ( is calculated as

2

¢= 1+exp [4(0L —z1)/lo]

(4.66)

50



4.6 Outflow boundary treatment

o ,T\ﬁr G _— Outflow boundary 20

| 5

o

\ \ 41
O \Outflow region
Cj\ Straightened flow =3

A N o . g
~ Region of interest 3 N
Bubbles
> \ortices

. Domain X

_——— | boundaries X

o Q \ 0 0.0 05 10

Inflow bouandry 9Q,

(a) (b)

Figure 4.5: (a) Sketch of the outflow boundary treatment for a forced convection inflow-/outflow simulation setup. (b)
The outflow weighting factor ¢ is shown for a non-dimensional domain length.

Here, ¢ refers to the length of the domain in the direction normal to the outflow boundary. The
corresponding coordinates in the directions normal and parallel to the outflow are =) and x| (see
Fig. 4.5a). Fig. 4.5b shows the values of ( along the non-dimensional length. It can be seen that
¢ vanishes in the region of interest and becomes order unity within the outflow region of length
lo.

The treatment in the outflow region has two purposes: (i) decreasing the surface tension, and (ii)
straightening the flow. First, the surface tension force is multiplied by (1 — (), which continuously
decreases the surface tension and results in an interfacial pressure jump of zero at the outflow
(see Dhruv (2024)). The outflow-modified surface tension force fthp becomes

fsro =1~ ) fsr. (4.67)

Next, the flow field is straightened by introducing a force fo The outflow force is decomposed
into a perpendicular and a parallel component fo = fo 1+ fO” in relation to the outflow boundary
0Q0. The parallel component fOH straightens the flow and the perpendicular component fo n
unifies the outflow velocity.

The parallel component of the force is defined as
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- 8u‘|
fo) = —Cp( Co“ At +Uo 0Fm, ) (4.68)
— —

straightening convection

This force JFO|| has two terms. The first term removes momentum in the direction parallel to the
outflow at each time step. This process is governed by a constant 0 < Cp| < 1, which regulates
the the amount of momentum that is removed. The second part, adapted from Dhruv (2024),
accounts for the convective transport of the momentum out of the domain, with the characteristic
outflow velocity Up.

The perpendicular component fo 1 unifies the flow field. The idea is that the perpendicular flow
field remains within a defined range of magnitudes. Therefore, fo 1 is active for velocities that
are outside of this range UoCp, < 71, -1 < Ugp. For forced convection flows, back flows at
the outflow are suppressed when 0 < Co; < 1. The perpendicular component is calculated as

A’U/J_ 8’[7J_
=— Up—— 4.69
for = CP( A T O&ﬂ) (4.69)
——
umfymg convection
with
(i, =11 UpCor) if UpCoyi >y -1y
At = (_'J__'ﬁ:J_UO) if Uop <t -1y (4.70)
0 else.

Here, the convection term, adapted from Dhruv (2024), is also utilized. To define the outflow
velocity Up, the bulk velocity at the inflow boundary 0€); is calculated as

fﬁﬂz - nldA

Joa, d

Thus, the outflow velocity is set based on the inflow bulk velocity as well as a safety margin

Uo = (1+Cp) .71

C1 > 0. Two aspects must be considered when selecting a value for C;: First, the value for C;
defines the range of admitted fluctuations for 7 , and, therefore, should be kept to a minimum.
Second, for phase changing flows, the volume change (,01_1 — Py 1) f o MdV has to be taken into
account?, so that Up remains larger than the outflow bulk velocity.

2 Another possibility could be to define U with the velocities on Q0. But since % (,of1 — Py 1) fQ MdV #0
also BUO # 0. To eliminate possible fluctuations in U, the definition of Eq. (4.71) is chosen.
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Figure 4.6: Schematic diagram of the IBM from Breugem and Boersma (2005). The solid subdomain consists of k7 g ps
layers of grid points. The immersed boundary (IB) is located on the cell edge at k = kygas + 1/2. During
the simulation, the velocities in the solid are set to zero. Therefore, the erroneous (apparent) velocity gradient
has to be corrected for the wall-adjacent fluid points. This is done by introducing the IBM forces f} BM-

Accordingly, for the simulations in Ch. 7, the parameters are chosen to be COH =02,C=04
and CO 1 = 0.1.

4.7 Implementing an immersed boundary method

An immersed boundary method (IBM) refers to a methodology that allows representing a solid
region within the computational grid of a fluid simulation. Therefore, the fluid-solid boundary
is immersed in the computational grid. The need to implement an immersed boundary method
(IBM) for the simulation of boiling flows is based on heat transfer phenomena. Typically, nucleate
boiling is caused by the transfer of heat from a solid wall into a fluid. To accurately capture this heat
transport interplay between solid and fluid (called conjugate heat transfer), the simulation of both
the fluid and the solid is required (see e.g. Urbano et al. (2019)). Conjugate heat transfer can be
simulated through coupled subdomains (e.g. Urbano et al. (2019)) or IBM (e.g. Sato and Niceno
(2015)). In this thesis, the IBM approach is applied. This section describes the IBM utilized for
the developed flow solver and focuses on the specific details regarding its implementation.

The IBM by Breugem and Boersma (2005) is utilized (see Fig. 4.6) for the developed flow
solver. Theirs is an improved version of the IBM proposed by Fadlun et al. (2000), designed for
situations where the cell edge coincides with the immersed boundary (IB). This no-slip condition
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is enforced by introducing a force field f} B, Which corrects the errors made when calculating
the contribution of the viscous stress tensor (therefore referred to as Stress IBM). The error is
visualized in Fig. 4.6, where the apparent velocity gradient (dotted) is compared with the actual
velocity gradient at the IB.

Generally, the x3-derivative of the viscous stress tensor for the grid index i, j, k in the zo-direction
(see Fig. 4.6) is

or _ 1 u U2,i5,k+1 — Y25k + U3ij+1,k — U3,k
- i,j+1/2,k+1/2
0wy, Az \THHYEY Az
o (4.72)
U2 4,5,k — U245, k—1 + U3,4,54+1,k—1 — U3,4,5,k—1
—Hij4+1/2,k—1/2 Az

At each time step, the velocity vector @; j . = (U1 jk, Ui j ks Us,ijk) . i set to zero for

k < krpas. Therefore, at k = krpar + 1, Eq. (4.72) yields

or _ 1 e Ui k41 — U2igk T Ui j+1,k — Usijk
O3 pih Ax i,5+1/2,k+1/2 Ax
s 4.73)
U2,i,5,k
—Mz',j+1/2,k;1/2m) for k=kipm+ 1.
However, to impose the no-slip boundary at k = kg + 1/2, the relation us ; jp = —u2, j k-1

is applied to Eq. (4.73). The actual viscous stress contribution is, therefore,

or _ 1 M U2,ij,k+1 — U204k T U3ij+1,k — U3ijk
a = ——\ Hij+1/2,k+1/2
8x32ijk Ax i,j+1/2,k+1/ Ax
ko (4.74)
U2,i,j,k
THi g /2h=1/2 T for k=kipn+1 and wug;jx = —U;jr—1-

The x2-component of the IBM force f; B 1s obtained from the difference between Eq. (4.73)
and Eq. (4.74), i.e.

U235,k
faaBM = —Hij41/2,0-1/2 ijz . (4.75)
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4.7 Implementing an immersed boundary method

As such, Eq. (4.75) is equal to the result presented by Breugem and Boersma (2005). The zero-
gradient pressure condition at the IB is enforced as the solid is excluded from the FFT pressure
solution.

4.7.1 Conjugate heat transfer

To complete the treatments required for the present IBM, the conjugate heat transfer is discussed
in this subsection. In the solid region of the computational domain, the heat transport is governed
entirely by the heat conduction equation

pscw%:g =V (AVT), (4.76)
where p;, ¢, 5, and A are the solid’s density, heat capacity, and heat conductivity, respectively.
Usually, these quantities all exhibit a jump in magnitude across the IB, which requires an additional
treatment to accurately calculate the heat exchanged between the fluid and solid. This jump
of physical properties renders a standard central-difference approximation of the temperature
gradient erroneous. For this purpose, an auxiliary variable, the surface temperature T, is
introduced. Generally, the heat flux g3 ; j ;,,+1/2 from the solid side must be equal to that
coming from the liquid side (in the wall-normal direction). This equality leads to

o — 9\ Tw,ij —Tijkipu — 9\ Tijkrpu+l — Twiiyg 4.77)
3,i5.kipr+1/2 = i,5,krBm Az = 0,5, krpam+1 A s .

and thus,
Niik T; + Nk T; s
Jiskism Lig krem i,9,kipm+144,5,krpv+1
Topi = . (4.78)

)\i7j1kIBAI + >\i7jakIBM+1

For the grid points where k = k;pys and k = kypar + 1, Eq. (4.77) must be utilized to calculate
the heat flux at k = k;pas + 1/2. This strategy for correcting the heat flux in the IB can also be
found in Bures§ and Sato (2022), and Torres (2023).
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Figure 4.7: Flood-fill algorithm (as in Smith (1979)) applied to the VOF method. Numbers in cells represent the phase
fraction of the VOF method. The bubble is clearly defined by connected grid points above a phase fraction
threshold value (here 0.5). Grid points assigned to bubbles "1’ and ’2’ are coloured blue and red, respectively.
The sharp interface front is depicted by the black dashed line.

4.8 Bubble tagging method

Connecting the interface-resolved simulation with the statistical analysis of bubbles requires a
sophisticated methodology. Due to data storage limitations, the trivial solution to frequently
save three-dimensional grid data for all flow quantities is, at most, limited to very small grid
sizes. For the present application to large-scale boiling flow simulations, efficient online bubble
data processing routines are necessary. This need becomes more pronounced when evaluating
bubble trajectories. For trajectories, a high output frequency is required to obtain highly accurate
connectivity between instantaneous data sets. As such, the present section presents a suitable
tagging algorithm for the preprocessed storage of data related to single bubbles for diffuse interface
methods.

The flood-fill algorithm is a commonly used tagging algorithm for bubbles (e.g. Herrmann
(2010)). Flood-fill algorithms were developed for image processing to fill connected areas of a
specific property (see Lieberman (1978) or Smith (1979)). In the context of interface-resolved
simulations, this entails assigning a unique tag number to all grid points that belong to the same
bubble. A bubble is usually defined as all connected grid points that are above a phase fraction
threshold value. Applying the flood-fill method to sharp interface methods is straightforward.
For instance, Fig. 4.7 visualizes the application of the flood-fill algorithm in the VOF method,
where each grid point is tagged depending on its assignment to a bubble (visualized with the
colours blue and red). As shown in the figure, the bubbles have a clear definition and are easily
distinguished due to the sharpness of the interface.

In contrast, applying the flood-fill algorithm to diffuse interface methods is more challenging (Fig.
4.8). Unlike sharp interface methods, the definition of the phase field threshold value ¢y, is
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(b) ¢tpr = 0.1

Figure 4.8: Flood-fill algorithm applied to the ACDI (¢* = 1) method for two different threshold values ¢¢p,.. Grid
points assigned to bubbles "1’ and "2’ are coloured blue and red, respectively. Higher thresholds result in
missing interface information (a), whereas lower values result in unphysical coalescence events (b). The
dotted, dashed and solid lines represent the iso-contours corresponding to ¢ = 0.1, ¢ = 0.5, and ¢ = 0.9,
respectively. Numbers refer to the phase field value of ¢.

not unique for diffuse interface methods. This is demonstrated in Fig. 4.8a, where the flood-fill
algorithm is applied to the same bubble as in Fig. 4.7, using ¢, = 0.5. Although the same cells
are tagged in Fig. 4.8a and Fig. 4.7, information related to half of the interface thickness is lost
when the flood-fill algorithm is applied to the ACDI method. Nathan and Jain (2025) presented a
method to account for this mass loss due to the truncated tagging of cells with the ACDI method.
However, the possibilities of accounting for truncated information are limited, as information
about other quantities (e.g. temperature, mass transfer rate, etc.) cannot be recovered. The value
of ¢y, could be decreased to capture additional interface information. Fig. 4.8b shows the result
for ¢¢p, = 0.1. With this threshold value, the majority of the interface is captured, but at the
expense of detecting an unphysical coalescence event.

This problem can be addressed by using the flood-fill algorithm in combination with propagation
steps. The proposed workflow is as follows. First, bubbles are tagged with a unique number,
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based on a threshold value ¢;,,.. The threshold value is set large enough to not detect unphysical
coalescence events. In subsequent steps, all non-tagged grid cells inherit the largest tag number
of their direct neighbours (top, bottom, front, back, left, and right). This propagation step can
be repeated depending on ¢, and the desired accuracy. Fig. 4.9 visualizes this procedure for
¢ihr = 0.3, with two propagation steps. In Fig. 4.9a, both bubbles receive a tag number based
on connected regions where ¢ > ¢y, = 0.3 (coloured blue and red). In the first propagation
step (Fig. 4.9b), the tag is propagated into the non-tagged interface. Fig. 4.9¢ visualizes a second
repetition of this step. Now, both tags are directly neighbouring each other, but a coalescence
event is not detected.

In principle, the propagation step can be repeated an arbitrary number of times. If ¢y, is larger,
a higher number of repetitions is required to capture the same information about the interface.
On the other hand, when ¢, is set too high, very small bubbles will not be detected. For
boiling flows, this can be problematic, as small seed bubbles are used to initiate bubble growth.
Therefore, high values of ¢, entail losing early-stage information of the bubble growth for
boiling simulations. Accordingly, a threshold ¢, = 0.3 with two propagation steps is used in
the following sections of this thesis.

After running this algorithm, each grid cell carries an identifier Z; ; .. Here, Z; ; € {0,1,2, ..., Ny}
is an integer-valued array, where zero refers to no assignment to a bubble, and the numbers from
one to NV}, each refer to one bubble.

4.8.1 Bubble geometry

Employing the tagging methodology described above, scalar and vector quantities (e.g. a sum,
bubble-average, or minimum and maximum values) can be calculated with ease. In terms of
bubble geometry, the bubble surface, volume, and contact line length are quantities of interest for
boiling flows. However, defining the bubble geometry for diffuse interfaces is not obvious. Two
possibilities are considered

e Utilizing the phase field ¢ to obtain a diffused geometry
 Using the iso-contour of ¢ = 0.5 to obtain a sharp geometry.

For larger bubbles, the difference between the definitions is negligible. However, for small bubbles
(typically seen at nucleation sites of boiling flows), the difference is significant. In the extreme
case, a small bubble might not even reach ¢ = 0.5 at its centre. Consequently, both definitions
lead to different results for the smaller bubbles in the computational domain.
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(b) ¢¢nr = 0.3, first propagation
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Figure 4.9: Demonstration of the original tagging algorithm with ¢ = 0.3 and two propagation steps for capturing more
interface information. The tagged cells resulting from the propagation steps are coloured using lighter hues
of blue and red. Bubbles are represented with the ACDI method and €* = 1.
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In this thesis, the iso-contour of ¢ = 0.5 is used to define the bubble geometry. A sharpening
step improves the approximation of this geometry. Such a sharpening method has already been
discussed for the surface tension model by Raeini et al. (2012) in Sec. 2.4.1. Recalling Eq. (2.9),
the sharpened interface profile ¢’ is calculated as

o = ﬁ [min (max (¢>, 727>1 — g) - 727] (4.79)

Clearly, the sharpening factor 7 € [0, 1] should be set as high as possible. However, to avoid
detecting bubbles of size zero, 1) cannot be larger than two times the tagging threshold value ¢y,
Therefore, the sharpening factor is set to n = 2¢,y,, for evaluating the bubble geometry.

Using ¢’, the n-th bubble volume BV, is
BV, = D D 0(n,Ein)Aa’d 4, (4.80)
gk

where § is the Kronecker delta function that evaluates to unity if both arguments are identical.
The bubble surface area can be calculated by integrating |V ¢’|, as shown in Tiwari et al. (2013).
The n-th bubble surface, BS,,, is therefore obtained from

A2 | Ptk = Pimtin
BS,, = Z Z Zé(n, Ei,j,k)T 2,j+1,k - (/527j_1’k . (4.81)
i ik

/ /
¢i,j,k+1 - ¢i,j,k71

Following the same strategy, the n-th contact line length CL,, is calculated as

/ /
¢i+1,j,1/2 - ¢i71,j,1/2

_ x
CL, = Z Z5(n, Ziik) 5 |9 a1a/2 = Phy12) (4.82)
g
0

where it is assumed that the solid contact surface coincides with the lower domain boundary in
the z3-direction. The corresponding dry spot area DS,, is then

DS, =3 > 6(n,Zi k) Az’ s (4.83)
i g

In both Eq. (4.82) and Eq. (4.83), the value of ¢/ . corresponds to the linear interpolation of
q q i,5,1/2 P p
;, ;0 and (bg, ;.1 onto the cell edge (i.e. the contact surface). The accuracy evaluations of BV,,,
BS,,, CL,,, and DS,, for different bubble sizes are found in Sec. 6.9.
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4.9 Summary and algorithm

After deriving the equation to describe the momentum transport, additional forces were introduced
in Sec. 4.6 and Sec. 4.7. The full momentum transport equation now reads

pii . . - . R
v ((pﬁ—]-')@ﬁ)+C=—VP+V'T+P§+fST,o+fo+fIBM~ (4.84)

Accordingly, the time-stepping scheme is adjusted so that the intermediate momentum (refer to
Eq. (4.34)) is calculated as

—

(p?)* = (p?)™ + AT {(ft,lz’i";;,7 + ft,gl?ggl) + "G+ B fito - Vp"} . (4.85)

To accurately account for the viscous stress contribution of the IBM treatment, the force f} BM 1S
incorporated into B, oo (compare with Eq. (4.35)) as follows

By =—-V-(p"v" @7" —V~<<>Rn®Rn>+V-Tn+ T (4.86)
p (p ) pion(l— o) fiem

The detailed order in which the set of equations is solved is presented in Algorithm 1 (from Weber
et al. (2026)). Comparing Algorithm 1 with the aims stated at the start of Ch. 4, it can be noted
that:

* The solved equations are derived using a consistent derivation strategy throughout the
transported quantities, and additional contributions of R are identified for the momentum
balance equations (see C in Eq. (4.84))

e The FFT-based pressure solution is improved by utilizing the developed FFT-MPDJ solver
(see Sec. 2.6.3)

* A simple and efficient phase change model is developed to calculate the mass transfer rate
M1 (see Sec. 4.4)

* The coupling of the phase change model with the ACDI method is stabilized by using a
scheme that dynamically adjusts the interphase regularization speed I'*
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Algorithm 1 Chronological order for solving the System of transport equations, taken from Weber
et al. (2026)

Set initial conditions ¢(t = 0), T'(t = 0), p(t = 0) , and @(t = 0)
Set the physical properties p;, Cp i, i, fis Ass Pss Cp,s
Calculate initial ¥ using Eq. (2.4)
Calculate R from Eq. (2.3)
while ¢ < t.,4 do
Obtain intermediate phase field value ¢* from Eq. (4.28)
Update physical properties p*, ¢,
Obtain intermediate temperature 7 from Eq. (4.29)
Calculate ATR2" using Eq. (4.46)
10 Obtain M"*! using Eq. (4.33)
Final states of ¢! and T"*! through Eq. (4.32)

R AN A ol s

[u—
—_

12: Calculate Wntt gntl jntl
13: Update the physical properties p™t!, ¢p !, Antt !
14: Calculate prediction momentum (pv)* from Eq. (4.85)

15: Update R"** with Eq. (2.3)

16: Approximate (p7)"*! with pt' by Eq. (4.36) - Eq. (4.38)
17: Obtain pressure estimate 12 by solving Eq. (4.39)

18:  Find final p"*! and @™ through Eq. (4.40) - Eq. (4.43)
19: Update time step size At"+! with Eq. (4.60)

20: if Aty min > min(Aty, Aty, Atpc) then

21: ' with Eq. (4.59)
22: else

23: Use I} .,

24: end if

25: end while
26: End of simulation

62



5 Development of a statistical
evaluation method

Thus far, the first objective of this thesis — the development of a suitable method for simulating
boiling flows — was addressed in the preceding chapter. These simulations can provide instanta-
neous data about each bubble in the computational domain (Ch. 4). This chapter addresses the
second objective of this thesis: the statistical analysis of the bubble data. Considering the short-
comings of other available evaluation methods (see Ch. 3), the Voronoi diagram is implemented
for its more favourable properties, including the unique definition of a bubble cell that it provides.
In this chapter, improvements to the Voronoi method will be proposed, specifically regarding the
statistical significance of each point in the computational domain. The content of this chapter is
published in Weber et al. (2023).

5.1 Conceptualization

Voronoi diagrams are a useful tool for defining a bubble cell, however, the local bubble count
of each instantaneous snapshot is unity. Accordingly, the statistical significance of local bubble
statistics can be low when there are few snapshots. To address this challenge, several Voronoi
cells are grouped so that a bubble cluster is formed. This grouping step (hereby called clustering)
allows for a bubble to be defined, even from instantaneous snapshots (Fig. 5.1). Furthermore, by
grouping bubbles into clusters of equal bubble count, the statistical significance (sample size) is
uniformly distributed in space.

The workflow that emerges when the Voronoi diagram and clustering step are combined is
straightforward. Fig. 5.2 depicts a visualization of the chronological order of the data processing
steps. Three work steps are required before bubble statistics can be analyzed: (i) data pre-
processing, (ii) Voronoi diagram, and (iii) clustering.

The data pre-processing step depends on the source of the data. Data can be derived from
experiments (e.g., shadowgraph as in Laupsien et al. (2019), x-ray scans as in Lau et al. (2016),
etc.) or simulations. The purpose of this step is to obtain information about the bubble location
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Figure 5.1: Schematic diagram of bubbly flow field (left), where the Voronoi diagram decomposes the domain, so that
each bubble is assigned one cellular region. Two bubble clusters are visualized by the red and green regions.
Each cluster contains the same number of bubbles. Within the cluster, an instantaneous void fraction PDF is
defined (right). Figure is taken from Weber et al. (2023).

For all data sets

Figure 5.2: Workflow for the processing of data for the statistical evaluation, adapted from Weber et al. (2023).

and quantities of interest (size, surface, velocity, etc). In the present application to boiling flow
simulations, the data pre-processing step occurs during the simulation runtime, with the data

being obtained through bubble tagging (see Sec. 4.8).

Note that Weber et al. (2023) presents an extension of the data pre-processing step, which allows
data sets to be stacked. This extension can be used if one instantaneous dataset does not contain
enough bubbles. However, this is not the case for boiling flows.

In the second step of the workflow, the Voronoi diagram is constructed to define the bubble cells.
The definition of the n-th Voronoi cell 2y, is already provided in Eq. (3.1). The region Qy -,
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5.2 Constrained /K'-Means clustering

occupies the volume Vi, ,,. The cell-averaged gas content is denoted ¢&. Using Vv, together with
the bubble volume BV,, (see Sec. 4.8.1), the relation

BV,
VV, n

Ay =

(5.1)

is found. Applying the same strategy, the bubble concentration T and the interfacial area

concentration A is defined by

. 1
T, = , 52
" Vo (5.2)
and BS
A n = —2. 5.3
Vs (5.3)

Analogously to &, the symbol * refers to the volume average over a Voronoi cell (2y,.

5.2 Constrained K-Means clustering

In the third step of the workflow, the K-Means algorithm is employed to group the bubbles
into clusters. The original K-Means algorithm (see MacQueen (1967)) clusters a number of
observations (here: bubbles) into K clusters based on the squared Euclidean distance from the
observations to the cluster centre. Formally, the clustering algorithm assigns each of the IV,
bubbles to one of the K clusters. The clustering function f©N¥ expresses this assignment as

FONE (1,2, Ny} = {1,2,...,K}. (5.4)

Using the function f¢V the i-th cluster region Q¢ ; is defined

Ny e fCNK _
Qs — U {van if f (n)=1 . (5.5

it ) else

Calculating a cluster-averaged value for Q)¢ ; requires the definition of a weight factor w,, for
all volume-averaged quantities (i.e. «, T, and A). Thus, the weight w, ; is the volumetric
contribution of the n-th bubble to the i-th cluster volume V¢ ;. Therefore

Vwin e fCNK .
—= if n) =1,

Wn i = Vo f ( ) (5.6)
0 else.
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5 Development of a statistical evaluation method

Subsequently, a cluster-averaged value is indicated by >. For example, the cluster-averaged void
fraction ¢ is

&i = Y wn Gy , VE € Q. (5.7)

Note that & represents an instantaneous value. The corresponding time-averaged value & is
obtained by averaging over S instantaneous data sets as

- 18
33
s=1

. (5.8)

s>
JoP

0|

The original K-Means clustering algorithm (see MacQueen (1967)) does not restrict the number
of observations (here: bubbles) in one cluster. Therefore, the number of bubbles assigned to
each point in space can vary. Instead, this work utilizes the constrained K -Means algorithm by
Bennett et al. (2000), which allows for constraints on cluster size. Note that the above bubble
cluster analysis remains the same when using the constrained /-Means clustering algorithm.

Specifically, with the constrained K-Means clustering algorithm, lower N,,,;, and upper N, q.
boundaries can be set for the number of bubbles in one cluster. The values for NV,,;,, and N4z
are chosen by setting a target cluster size IVy,.4¢. For each data set, one of three settings is selected:

° min — Ntrgt and Nm,(mt = Ntrgt +1
° min — Ntrgt —1land Nz = Ntrgt

* Nmin = Npaz = Ntrgt
The setting that results in the most clusters of size Ny, is selected.

The choice of Ny, itself is always based on the database and the goals of the evaluation. Low
values of Ny, (smaller clusters) reduce the spatial expansion of the clusters, and thus, the spatial
uncertainty of the results. In contrast, larger values of IV;,.4; increase both the spatial uncertainty
and the sample size for each point in space. Therefore, a case-specific choice must be made for
an appropriate balance between spatial uncertainty and statistical significance.

This methodology is demonstrated in Fig. 5.3, where 32 bubbles are randomly distributed in a
quadratic domain. The cluster size is restricted by setting Nypip, = Nyar = Nirge = 8. Each
Voronoi cell is coloured based on its assignment to one of the four clusters. Additionally, all
Voronoi cells are of finite size due to the truncation at the boundary of the domain.
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5.2 Constrained /K'-Means clustering

Figure 5.3: 32 bubbles and their corresponding Voronoi cells, grouped into four clusters with eight bubbles each through
the constrained K'-Means algorithm by Bennett et al. (2000). Each Voronoi cell is coloured based on its
assignment to one of the four clusters. Figure adapted from Weber et al. (2023).

Overall, the developments in this chapter constitute an essential tool for evaluating local bubble
statistics. The significant features of this approach are (i) the consistent definition of an instanta-
neous bubble statistic, and (ii) a substantially improved sample size. The latter feature is important
for Ch. 7 due to the reduced amount of instantaneous datasets arising from the high computational
cost.
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6 Validation and Benchmark
Simulations

Based on the methods development in Ch. 4 and Ch. 5, a comprehensive testing campaign is
conducted. This testing campaign serves as the basis for the application to a technically relevant
boiling flow, which is discussed later in (Ch. 7). This chapter provides a description and analysis
of the testing campaign, which will focus on evaluating:

* Accuracy of the pressure solution, using the FFT-MPDJ scheme from Sec. 4.3
* Accuracy of the phase change model developed in Sec. 4.4.1

e Impact of the additional momentum contributions derived in Sec. 4.1.4
 Performance of various surface tension models

¢ Performance of the wettability model from Sec. 4.5

e Capability of simulating realistic, complex boiling flows

* Accuracy of the proposed bubble tagging method of Sec. 4.8

e Accuracy of the statistical evaluation framework of Ch. 5

All physical properties of the fluids used in this chapter are listed in Appendix A.1.

6.1 3D Rising bubble simulation

Simulating the dynamics of rising bubbles is a common benchmark for two-phase flow solvers (see
e.g. Dodd and Ferrante (2014), Cifani (2019), Mao et al. (2021), Crialesi-Esposito et al. (2023),
and ten Eikelder and Schillinger (2024)). This work adopts the 3D rising bubble simulation
setup from Adelsberger et al. (2014), which is depicted in Fig. 6.1. The content of this section is
published in Weber et al. (2026).
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6 Validation and Benchmark Simulations

The setup consists of a box with wall (no-slip) boundaries at all faces (Fig. 6.1). Before initiating
the simulation, the centre of a bubble with diameter Dy is placed at ¥ = (Dgy, Dy, Do).
Subsequently, the bubble motion due to gravity> § = (0, 0, —0.98) ms~2 is analyzed.

2D,
2D “«—
" \
1
g | i liquid
1
L P2, M2
1
. ! le2 4D,
1
\:\ gas Fluid p2/p1 Re We Fr
1
Xs 'L__ R Fluidp 10 35 1 1
i’ \ Fluidg 1000 3.5 0.125 1
X
v X2 P1, U1

Figure 6.1: Visualization of the rising bub- Table 6.1: Non-dimensional numbers corresponding to the fluid
ble simulation, taken from We- properties by Adelsberger et al. (2014) (see Appendix
ber et al. (2026). Tab. A.1)

For this simulation, two sets of physical properties are used, those of Fluidp and Fluidg (see
Tab. A.1). Temperature transport and phase change are not considered in this benchmark. Thus,
the relevant non dimensional numbers are the Reynolds number Re = p; ureflref,ufl, the Weber
number We = pyu o !, and the Froude number Fr = wyer/+/|§|leet as in Crialesi-Esposito
et al. (2023). These numbers quantify the ratio of inertial forces to viscous, surface tension, and
gravitational forces, respectively. The utilized reference quantities are

lref -
TS Uref = lref‘g|v Pref =

Uref 42
I

lref

let = Do, tref = (6.1)

Quantities marked with an asterisk indicate non-dimensionalization, through the reference quan-
tities from Eq. (6.1). The values of the non-dimensional numbers for each fluid are listed in Tab.

6.1. As seen in Tab. 6.1, surface tension is more relevant for the Fluidg, and laminar flow is
expected for both fluids.

3 The gravitational acceleration on earth is 9.81 ms—2. However, in order to comply with the boundary conditions
given in Adelsberger et al. (2014), a virtual gravity of 0.98 ms—2 has been selected.
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6.1 3D Rising bubble simulation

The quantities of interest are the location of the bubble centre, the bubble sphericity (defined
as BS(t = 0)/BS(¢)), and the rise velocity. In Adelsberger et al. (2014), these quantities are
reported in a comprehensive database using three different flow solvers:

¢ DROPS: A level-set code, using finite elements proposed in Gross and Reusken (2011)
* NASt3D: A level-set code, using finite differences, proposed in Croce et al. (2010)

* OpenFOAM: A VOF code, using the finite volume method (see OpenFOAM (2013))

In the following, this benchmark case serves two purposes: (i) evaluating the pressure solver, and
(i1) evaluating the additional contribution of the regularization terms to the momentum balance
equation. For each test, four simulations are carried out using two grid spacings for both sets of
fluid properties. The considered grids are based on uniform cubic cells of length Az = Dy /32
and Az = Dy /64.

6.1.1 Pressure solver comparison

As shown in Dodd and Ferrante (2014), the pressure solution scheme has a significant impact
on bubble motion. Therefore, conducting a rising bubble benchmark is an important case when
modifying a pressure solution scheme. In the present section, the proposed FFT-MPDJ solver
(Sec. 2.6.3) is compared to the pressure solution scheme by Frantzis and Grigoriadis (2019)
(Sec. 2.6.3). In the study by Frantzis and Grigoriadis (2019), their scheme is validated against
several benchmark simulations and subsequently adopted in other studies (e.g. Crialesi-Esposito
et al. (2023)). Ideally, the FFT-MPDJ solver yields the same results for this non-phase-change
benchmark. Note that for all simulations, the additional momentum contribution C is neglected.

Fig. 6.2a and Fig. 6.2b visualize this comparison between both pressure solvers for Fluidp
and Fluidg, respectively. The quantities considered in this comparison are the bubble location
(top), sphericity (middle), and bubble velocity (bottom). In the comparison, using Fluidp,
negligible differences occur between the FFT-MPDIJ solver (red lines) and the solve by Frantzis
and Grigoriadis (2019) (green lines). At the higher density ratio (Fluidg), a slight difference is
observed for the sphericity of the bubble (Fig. 6.2b). However, the bubble location and velocity
show high agreement when using Fluidg.

A further analysis of the differences between the solution schemes is conducted by comparing
the pressure distribution. For this purpose, the pressure along a line parallel to the x3-axis
is considered, which cuts through the centre of the bubble. This pressure distribution should
approximately exhibit the hydrostatic pressure, with an interruption of the pressure at the location
of the upward-moving bubble. At ¢ = 0, the pressure field is initialized as uniform zero.
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Figure 6.2: Comparison of results from the rising bubble benchmark by Adelsberger et al. (2014) for two different fluids.
The FFT-MPDJ is compared with the pressure solution scheme by Frantzis and Grigoriadis (2019). Figure
adapted from Weber et al. (2026).

In Fig. 6.3, the evolution of the pressure obtained from both pressure solvers are visualized 32
times during the simulation. In the solution scheme by Frantzis and Grigoriadis (2019) (left), the
pressure distribution requires a large fraction of the observation period to adjust to the hydrostatic
pressure field. In contrast, when using the FFT-MPDJ (right) scheme, the pressure field adapts

much faster, i.e., almost within the first output time interval. Minor impacts on the bubble

(b) Results for Fluidg (p2/p1 = 1000)

dynamics can be expected to result from these differences (see Fig. 6.2b).
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6.1 3D Rising bubble simulation
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Figure 6.3: Pressure distribution over time for two different pressure solution schemes, taken from Weber et al. (2026).
Comparison between the FFT-MBDJ (right) scheme with the scheme by Frantzis and Grigoriadis (2019) on
the left.

6.1.2 Relevance of momentum contributions Eq. 4.19

In the second test, the FFT-MPDIJ scheme is utilized, and the impact of the additional momentum
contribution C is studied. The common assumption that relative momenta are negligible (see
Gurtin et al. (1996)) suggests that the impact of C is minor. This assumption is tested in the
following by carrying out each simulation, including and excluding C.

The results of this test are shown in Fig. 6.4a and Fig. 6.4b, corresponding to Fluidp and Fluidg,
respectively. In both figures, black lines represent the results of Adelsberger et al. (2014), which
are used as reference data to indicate the quality of the present results. Red lines refer to the
simulations obtained when C is included (Eq. 4.19), while green coloured data refer to the
simulations where C is excluded. For both fluid properties, a clear improvement is observed when
the additional momentum contributions, arising from the regularization terms, are included. The
improvements are most visible in the sphericity (middle) and the bubble velocity (bottom) of
the high-density-ratio fluid (Fig. 6.4b). Including C helps to improve the accuracy of the results
significantly, in relation to the sharp interface reference data (black lines). For the lower density
ratio fluid (Fig. 6.4a), slight but consistent improvements are visible across all quantities.

6.1.3 Discussion

In Sec. 6.1.1, it is demonstrated that the proposed FFT-MPDJ scheme yields the same results
for bubble dynamics as the scheme in Frantzis and Grigoriadis (2019). As such, the FFT-MPDJ

73



6 Validation and Benchmark Simulations

3.0 1
. 3.0
5251 5
= = 25
() 53
£ 90 =
i Z 20
k] ks
5 5
£ 191 Z 151
o) o
1.0 1.0 1
1.00 A 1.00 1
0.95
0.99
= 2090 1
= £
£ £ 0851
= =
@097 1 @ 0.80
0.75
0.96
0.70 1
0.5 0.5
T 044 "o 04
g 5
~ ~
£ 037 £0.34
£ £
S it
g <
; 0.2 : 0.2
= =
5 =
5 0.1 1 A 0.1
0.0 0.0 1
0 1 2 3 4 0 1 2 3 4 5
Time t* [-] Time t* [-]
—— DROPS -== w/oC, Az = 647D, —— DROPS -== w/oC, Az = 647D,
--— NaSt3D —— with C, Az = 327D, -—= NaSt3D with C, Az = 327D,
------- Openf‘OAM == with €. Az = 64-1D, OPQU?OAM ——= with C, Az = 647'D,
— w/oC, Az =3271D, — w/oC, Az =3271D,
(a) Results for Fluidp (p2/p1 = 10) (b) Results for Fluidg (p2/p1 = 1000)

Figure 6.4: Evaluation of additional momentum contribution C for two sets of fluid properties. Figure adapted from
Weber et al. (2026).
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6.2 Contact angle simulation

scheme is capable to accurately simulate the dynamics of bubbles subjected to gravity. Further-
more, the FFT-MPD]J scheme exhibits advantageous properties over the scheme by Frantzis and
Grigoriadis (2019) for adapting the pressure field to the flow at high-density ratios. When quanti-
fying the effect of including the additional momentum contributions (see Eq. (4.19)), consistent
improvements are seen for all quantities. However, the improvements, although significant, are

minor.

6.2 Contact angle simulation

In this test simulation, a contact angle © is prescribed for a bubble in contact with the wall.
The results of this simulation can be used to verify the wettability model described in Sec.
4.5. Specifically, two quantities are of interest: (i) the accuracy of the contact angle boundary
treatment, and (ii) the integral mass loss during the simulation runtime.

At t = 0, a hemisphere-shaped bubble of radius 7y = 1 mm is placed on a wall (see Fig. 6.5a).
The computational domain has the size 67 x 67 X 3ry. Periodic boundary conditions are applied
in the z; and x5-directions, whereas wall boundary conditions are applied to the top and bottom
boundaries in the zs-direction. The bubble is placed at the centre of the bottom boundary face in
the x3-direction. Gravity is neglected, § = 0, and the properties of saturated water at atmospheric
pressure are applied (see Tab. A.1). Phase change phenomena are neglected.

The influence of grid resolution on the results is analyzed using a coarse grid with Az = ro/10and
a fine grid with Az = r(/20. For both grid spacings, the contact angles © = 45° (hydrophilic)
and © = 135° (hydrophobic) are applied employing the contact angle boundary treatment from
Sec. 4.5. The simulations are run until a steady state solution is reached, where the motion of the
bubble vanishes.

In Fig. 6.5, the initial condition is shown, along with the steady-state solution on the fine grid
for both contact angles. For the shape of the steady-state solution, a simple analytical shape
is derived. This shape corresponds to a sphere cap that has the same volume as the initial
hemisphere but intersects the wall at a contact angle ©. The steady-state shapes are compared to
the analytical shape in Fig. 6.6. The initial shape is the same for both grids, regardless of contact
angle. However, the steady-state solution deviates from the analytical solution for coarse grids.
In particular, a slight deviation is seen for Az = r(/10, at the contact angle © = 45°. However,
the overall agreement for both grid spacings is satisfactory.

Furthermore, the mass loss during the simulation runtime is evaluated. For this, the integral mass
in the domain is considered, that is, f p(t)dV . To obtain the relative mass loss, the mass at t = 0
is used as the reference quantity. In Fig. 6.7, the relative mass loss is plotted for 150 output files
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(b) Steady state, © = 45°

—

(c) Steady state, © = 135°

Figure 6.5: Three-dimensional visualization of the initial condition and the steady state solutions for two contact angles.
Results correspond to the fine grid.
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from Weber et al. (2026) from Weber et al. (2026).

Figure 6.8: Basic simulation settings for the prescribed evaporation simulation.

during the simulation (¢;,; = 0.234 s), corresponding to Az = (/20 and © = 135°. The figure
shows that mass was conserved to machine precision.

6.3 1D prescribed evaporation

Mass transfer has been neglected in the previous two test simulations. Now the focus shifts to
phase-changing flows. A simple, yet essential test is the simulation of evaporation at a one-
dimensional interface (see Sun and Beckermann (2004)). The central quantity of interest in this
test is the interfacial pressure jump. With this quantity, two features of the developed solver can
be assessed: (i) the FFT-MPDJ solution scheme, and (ii) the identified momentum contribution
C. The content of this section is taken from Weber et al. (2026).

Fig. 6.8a depicts a schematic of the simulation setup. A feature of this simulation setup is that the
coordinate system follows the interface with a velocity u;,. Consequently, the phase field variable
¢ is invariant in time and follows the equilibrium hyperbolic tangent profile. The (constant) phase
field profile is visualized in Fig. 6.8b. Using v = ¢u; + (1 — ¢)(u; + Au), and recalling that
V-u=M(py - Py 1), the interfacial velocity jump can be prescribed by setting

S T
A4:Auv¢<——) (6.2)
pP1 - P2

For a given velocity jump Auw, the interface velocity w;, (see Sun and Beckermann (2004)) is

Iculated
calculated as Au

Cp2/pr—1 (63

Uint =
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Figure 6.9: Velocity (a) and pressure (b) distribution for a constant velocity jump Au = 0.5 ms~!. Solid lines represent
the analytical solution and dashed lines represent the numerical phase field solution.

Since the liquid is placed on the left side of the computational domain (see Fig. 6.8a), the Dirichlet
boundary condition (left) has to be set to —u;y to account for the interface displacement. Due to
the momentum difference, a pressure jump Apy,, called recoil pressure, is induced. The analytical
jump (Sun and Beckermann (2004)) reads

Apy = —uZpo <Zj - ) (6.4)

For known ¢ (and thus p) and u, an exact expression for the regularization term R can be obtained

integrating Eq. (4.11) to yield
5 PUF UinP2

R
P1 — P2

Therefore, the only calculated solution quantity is the pressure distribution. This test simulation

(6.5)

has the advantage that, for high density ratios, the velocity jump (and therefore the role of the
regularization terms) is large compared to u;,. Again, two aspects of the flow solver can be tested:
(i) the FFT-MPDJ solution method, and (ii) the contributions of the additional regularization terms.
For all simulations, the densities are set to p; = 0.001 kg m~ and p; = 1 kg m—3, and the
computational domain consists of 100 cells of size Az = 1 mm.

6.3.1 Pressure solver comparison
In the first simulation, the pressure solver of Frantzis and Grigoriadis (2019) is compared to the

FFT-MPDJ scheme. For this comparison, the velocity jump is set to Au = 0.5 ms~! = constant.
The analytical velocity profile, along with its phase field representation, is shown in Fig. 6.9a.
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Figure 6.10: Deviation from Apy, in percent over the simulation runtime (taken from Weber et al. (2026)) in the scheme
by Frantzis and Grigoriadis (2019) versus the proposed FFT-MPDJ scheme.

Similarly, the analytical pressure distribution is calculated using Eq. (6.4), which is shown in
Fig. 6.9b. The results using either pressure scheme are represented by the dashed black line.
The quantity of interest, is the accuracy and number of iterations at which the pressure schemes
approach the solution of Eq. (6.4). As pointed out in Poblador-Ibanez et al. (2025), commonly
used density splitting schemes, like those of Frantzis and Grigoriadis (2019) or Dodd and Ferrante
(2014), are associated with pressure oscillation problems.

The accuracy of the pressure jump calculation versus the number of iterations is shown in Fig.
6.10. The measure of error is calculated from

Ap(t) — Ap

100% 6.6
Apmn ! (66)

Error =

The result obtained when implementing the method by Frantzis and Grigoriadis (2019) is rep-
resented by the green line, whereas the red line represents the FFT-MPDJ scheme. The figure
shows how the scheme by Frantzis and Grigoriadis (2019) results in severe oscillations and only
achieves acceptable errors after 10? iterations. In contrast, the proposed FFT-MPDJ scheme
reduces the error to 1078% in less than ten iterations. This highlights a significant advantage of
the FFT-MPDJ solver over the available density-splitting-based FFT schemes.
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Figure 6.11: Analytical solution in comparison to the phase field simulation results. Velocity distribution at the start
and end of the simulation for a time-dependent velocity jump (a). Pressure distribution at simulation end
(t = 10 s) is visualized in (b), where the effect of the additional momentum contribution C is visualized.

6.3.2 Relevance of momentum contributions Eq. 4.19

To analyze the influence of the identified momentum contributions in Eq. (4.19), a variable
velocity jump is prescribed. In this section, the velocity jump is setto Au = Au(t) = [0.5—0.04¢]
ms~!. As such, the velocity jump reduces over the simulation run time, from Az = 0.5 ms~" at
t = 0s down to Au = 0.1 ms™! at t = 10s. The velocity profiles at the start (+ = 0 s) and end
(t = 10 s) of the simulation are shown in Fig. 6.11a. Asin Sec. 6.3.1, the analytical pressure jump
is obtained from Eq. (6.4). Due to the changing velocity jump, an additional slope in the pressure
gradient (Fig. 6.11b) is expected on both sides of the interface, according to dp/0x = paduin/Ot.
The analytical pressure distribution at £ = 10 s is shown in Fig. 6.11b, represented by the black
solid line. In the same figure, the resulting pressure distributions after including (dashed, red)
and excluding (green, dashed) the momentum contribution C are illustrated. Excluding C results
in an erroneous pressure jump, which exhibits an incorrect magnitude and sign. It is evident from
Fig. 6.11Db that the additional momentum contributions presented in Eq. (4.19) are responsible to
obtain correct recoil pressure distributions in time-dependent phase-change scenarios.

6.4 1D Stephan problem

The Stefan problem is a well-known benchmark test for assessing the accuracy of a phase change
model. The content of this section is published in Weber et al. (2026). This benchmark is
characterized by a wall at a fixed temperature Ty, which transfers heat to a gaseous layer. The
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Figure 6.12: (a) Visualization of the Stefan problem. (b) Interface locations obtained with different grid spacings (dashed)
in comparison with the analytical solution (black solid). Both figures are taken from Weber et al. (2026).

gas layer thickens due to phase change, pushing the liquid phase away from the wall. This situation
is depicted in Fig. 6.12a. An analytic solution for the interface location (see, e.g., Perez-Raya and
Kandlikar (2016)) can be obtained as follows

Cp,1 (Twall - Tsat)
L(Tsat> ﬁ

InEq. (6.7), 3 is a growth constant that is numerically calculated from the transcendental equation.

Tin(t) = 26v/ait ,and Bexp (B?)erf(8) = 6.7)

As such, the analytic distance of the interface from the wall x;,; depends on the problem parameters
and physical fluid properties, and has a square-root dependency on time ¢.

The following simulations consider the properties of the Fluid4. These fluid properties, taken
from Dongliang Sun and Chen (2014), are listed in Tab. A.1. Setting T — Tsae = 10 K, a growth
constant of 5 ~ 0.3064 is calculated. The length of the one-dimensional domain is £ = 0.05 m
and is discretized using uniform grid cells of sizes Az = 2 mm, 1 mm, 0.5 mm, and 0.25 mm.
The simulation is initialized with the interface (¢ = 0.5) located at xg5 = 6 mm and a linear
temperature profile in the gaseous phase (corresponding to ¢t ~ 38.34 ms).

Fig. 6.12b visualizes the interface location versus the simulation runtime. For coarse cell sizes,
the growth of the gas layer is visibly over-predicted. With reduced grid spacing, the simulated
interface location x5 approaches the analytic solution. Convergence of simulation results with
varied grid spacing to the analytical interface location is quantified through the error measure

2
Error = \/Zt xgl 70.5) . (6.8)
t mt
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Figure 6.13: (a) Error measure for the interface location of the analytical solution compared to the simulations with
various grid spacings. (b) Temperature profiles compared to the analytical profile. Both figures are taken
from Weber et al. (2026).

Fig. 6.13a depicts the error, quantified through Eq. (6.8). The error is reduced with decreasing
grid spacing at approximately a second-order rate. At time ¢ = 0.823 s, the temperature profiles
obtained using different grid sizes are visualized in Fig. 6.13b. Aligning with Fig. 6.12b,
larger deviations are observed for the coarser grids, while the two fine grid spacings yield good
agreements with the analytical solution.

Dongliang Sun and Chen (2014) achieved good agreement with the analytic solution for the same
problem parameters, starting from Az = 2 mm, by using a VOF (sharp interface) approach. In
comparison, at least twice the resolution is required in this thesis to obtain reasonable agreement.
This confirms the trend that diffuse interface methods require higher resolution to achieve a similar
accuracy (see the study by Mirjalili et al. (2019)).

6.5 1D sucking interface problem

The sucking interface problem (e.g., Welch and Wilson (2000)) is another one-dimensional
benchmark test for evaluating phase change models. The content of this section is published in
Weber et al. (2026). Fig. 6.14 shows the characteristic problem setup of this benchmark. Different
from the Stefan problem, the wall and the gaseous phase remain at saturation temperature. For
the sucking interface, the liquid phase has a superheated far-field temperature 71, which leads
to a transport of heat towards the interface, resulting in phase change. Therefore, the gaseous
layer grows, and a thermal boundary layer develops in the liquid phase. As in the Stefan problem,
a known analytical solution (refer to Perez-Raya and Kandlikar (2016)) exists for the sucking
interface problem,
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Figure 6.14: Schematic visualization for the sucking interface problem, adapted from Weber et al. (2026).

Zin(t) = 26V/arl. 6.9)

where iy is the analytical interface distance from the wall. The growth constant (3 is calculated
as

exp (B8%)erf(8) | B — (6.10)

2
(Too — Tsa)cpa A2y/@n exp (— B2 ggz;)] y
L)\ +/Tas erfc (ﬂZ;\/\/g)

for the sucking interface problem. The thermal boundary layer in the liquid phase (for x > xjn)
has the following analytic profile:

_ (Too — Tyvan) x B(p1 — p2) [a1
T(Z,t) = TOO — W C 2\/@15 + 2 ;2 . (611)
p2y/az

The accuracy of the simulation results largely depends on the resolution of this thermal layer.
Accordingly, other studies (e.g. Irfan and Muradoglu (2017) or Sato and Ni¢eno (2013)) have
reported underestimation of the growth rates for larger grid spacings. In the following, two sets
of parameters are utilized for the sucking interface problem, using the properties of Fluidp and
saturated Water at atmospheric pressure (see Tab. A.1).

6.5.1 Parameter settings from Irfan and Muradoglu (2017)

The first set of parameters involves the fluid properties of the Fluidg, which originate from a
simulation carried out by Irfan and Muradoglu (2017). Irfan and Muradoglu (2017) propose
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different parameter settings. Simulations with various grid spacings are shown along with the analytical
solution. Figures taken from Weber et al. (2026).

using a computational domain of length £ = 1 m and a far field condition of T, — Ty, = 2 K.
This parameter setting leads to a growth constant value 8 ~ 0.2689, calculated from Eq. (6.10).
The simulations are initialized using the analytic solution corresponding to the time ¢ = 4 s for
the interface location (zj,; = 0.0402 m) and the liquid temperature profile. Four simulations are
carried out using the cell sizes Az = 20 mm, 10 mm, 5 mm, and 2.5 mm.

The results obtained from these settings are visualized in Fig. 6.15a. On the left of Fig. 6.15a, the
resulting interface location is compared to the analytical solution. The figure indicates that the
smaller grid spacings, 5 mm, and 2.5 mm, result in a good agreement for the interface location.
The right side of Fig. 6.15a depicts the temperature profiles for ¢ = 240.8 s. The temperature
in the liquid phase is indistinguishable throughout the grid sizes. In the gas layer, however, a
significant superheat is observed, especially for the larger grid sizes. This can be explained by the
contribution of the anti-trapping current ; (refer to Eq. (2.18)). Different from most 'real’ fluids
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Figure 6.16: Error values calculated with Eq. (6.8) for two parameters settings. Figure taken from Weber et al. (2026).

(see Tab. A.1), Fluidg features \; > Ao. As a result, jis of opposite sign for Fluid and causes
an additional heat transport into the gas layer.

Fig. 6.16a also shows the convergence of the interface location ¢ 5 to the analytic location xjp,.
The figure shows that the error calculated from Eq. (6.8) reduces with Az at approximately a
first-order rate. Here, the convergence rate is considerably slower than that of the Stefan problem,
as it might be affected by the anti-trapping current.

6.5.2 Saturated water at atmospheric pressure

The second set of parameters considers saturated water at atmospheric pressure. Water poses
greater challenges for the simulation due to its steeper temperature gradients and higher interface
growth constants. Selecting a far-field superheat of 7, — T¢, = 5 K gives a value of 8 ~ 0.767
according to Eq. (6.10). For the simulation, the computational domain of length ¢ = 400 pm is
discretized using uniform cells of size Az = 8 um, Az = 4 pum, Az = 2 pym, and Az = 1 pm.
All simulations are initialized using the analytic solution corresponding to ¢t = 5 ps.

The resulting interface location is shown on the left of Fig. 6.15b. The two smaller grids fail to
accurately capture the interface location during the startup phase. This results in a permanent
error for the remainder of the simulation, as shown in Fig. 6.15b. However, in the later stages,
the coarser resolutions reproduce the correct growth rate, as they run parallel to the analytical
solution.

The temperature distribution depicted in Fig. 6.15b (right) shows the steep gradients characteristic
of the properties of water. The close-up reveals that the two smallest grid spacings are capable of
resolving the temperature gradient within the fluid region. In addition, the gas layer remains at
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saturation temperature for all grid spacings. Note that for water A; < Ao, thus, the anti-trapping
current j does not result in additional transport of heat into the gaseous phase.

The convergence rate for the simulation, using properties of water, is also shown in Fig. 6.16b.
The Eq. (6.8) is used to quantify the error in the interface location over time. Towards smaller
cell sizes, the error convergence rate is significantly higher than that of Fluidg. However, the
error convergence is slower compared to that of the Stefan problem.

6.6 Bubble growth in zero gravity

So far, one-dimensional simulations of phase change scenarios have been discussed. Progressing
towards realistic applications, the growth of a bubble in the absence of gravity is simulated in this
benchmark. Similar to the sucking interface problem, a far-field temperature 7%, is prescribed.
Starting at a nucleation site, a bubble grows. In the liquid phase, a thermal boundary layer
develops around the bubbles. The content of this chapter is published in Weber et al. (2026).

Scriven (1959) derived an analytical solution for this spherically symmetric flow, finding an
analytic interface location 7, of

rin(t) = 28V, 6.12)

where the transcendental equation determining 3 is

P2Cp,2 (Too - ﬂat)
P1 (Lsat + (Cp,2 - Cp,l)(Too - Tsal))

= 2f° /01 exp {— 52((1 —x) = 2x(1 = p1/p2) — 1)]d><~

For this scenario, Scriven (1959) derived an equation describing the thermal boundary layer of

(6.13)

the liquid (7 > 7rpn¢) as

_ 26%p
P2Cp,2

x /11 exp [_52((1 )2 =2 (L= pufps) 1)}@(.

T(r,rn) = T (L (e — epn) (Toe — Tsao)

(6.14)
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Figure 6.17: Computational setup (a) and bubble radius evolution for different grid sizes (b). Both figure are taken from
Weber et al. (2026).

The computational setup for simulating the bubble growth is visualized in Fig. 6.17a. Making use
of the bubble’s symmetry, an eighth of the bubble is simulated. Accordingly, an initial bubble of
size 7y is placed in the corner of a cubic domain of size 4r3. Symmetry boundary conditions are
applied to the boundary faces that intersect with the bubble, and all remaining boundary faces are
outflow boundaries. The far-field temperature 75, is set to T, — T, = 5 K, and the properties of
saturated water at atmospheric pressure are used. With these parameters, the growth constant is
determined to be 8 ~ 15.073, thus choosing 7o = 1 mm translates to a physical time of ¢ = 6.55
ms (Eq. (6.12)) at simulation start. The temperature field is initialized using Eq. 6.14, and four
cell sizes are considered for the simulation, i.e., Az = 125 um, Az = 62.5 um, Az = 31.3 pm,
and Az = 15.6 pm.

6.6.1 Zero surface tension limit

From an analytic point of view (refer to Egs. (6.12)-(6.14)), surface tension does not influence
the growth rate. Therefore, the effect of surface tension is neglected ( f:gT = 0) in the first series
of simulations, to isolate the performance of the phase change model.

Fig. 6.17b shows the radius r. 5 (Where ¢ = 0.5) of the bubble versus the simulation runtime. The
lowest grid resolutions, Az = 125 ym and Az = 62.5 um, show significant deviations from the
analytical growth rate. Only the finest grid, with Az = 15.6 um, yields an accurate agreement.
The temperature distribution at time ¢ = 51.5 ms (Fig. 6.18a) illustrates the reason for the strong
grid dependence that results from the steep temperature gradients. Only the finest grid is capable

87



6 Validation and Benchmark Simulations

59[=== Az =125 um Sim /
-== Az =625 pum A P
E4- === Az =313 pm 7/
= 10-14 weeee o)
Z 34 Az = 15.6 ym — ;
% —— Analytical 5 .
=27 | & f
13} K .
14 t=515ms ,,’ 10-24 /./
’ R
0 Seece . .
0 1 2 3 4 105 10-74
Bubble radius [m] %1073 An
(a) (b)
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Figure 6.19: The Velocity (qualitative) and temperature distribution is depicted in the left panel. The mass transfer rate
M together with the velocity (qualitative) and iso-contours for three phase field values are visualized in the
right panel (closeup). Results correspond to ¢ = 51.5 ms and Az = 15.6 um. Figure taken from Weber
et al. (2026).

of resolving the very thin thermal boundary layer that is characteristic of the chosen settings. To
quantify the accuracy achieved with each grid spacing, the error measure

Zt (Tint - TO.S)Q
> Ting

is used. The reduction of error with decreasing grid size is shown in Fig. 6.18b. The error reduces

Error = (6.15)

at close to a second-order rate over all grid sizes.
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Figure 6.20: Visualization of the effect of using the CSF model for the developed flow solver for simulating bubble
growth. Spurious currents are seen on the left of (a),which disturb the thermal boundary layer seen on the
right of (a). Thus, the growth rate exhibits an erroneous acceleration (b).Figures are taken from Weber et al.
(2026).

The qualitative velocity distribution alongside the temperature field for the smallest cell size,
Az = 15.6 um, is shown in the left panel of Fig. 6.19. The pictured two-dimensional distribution
represents a slice through the bubble centre. Here, the thin thermal boundary layer surrounding
the bubble is visible. The velocity exhibits a jump at the phase interface, while the gaseous phase
remains at rest. The right side of Fig. 6.19 zooms in on a section of the interface, which depicts
the distribution of the mass transfer rate M in relation to three iso-contour lines of the phase
field (black). The distribution of M is smooth, however, a slight shift towards the liquid side is
observed.

6.6.2 Evaluation of surface tension models

In Sec. 2.4.1, various surface tension models have been presented, and their inherent spurious
currents have been discussed. Thus far, no study has assessed surface tension models for simulating
boiling flows with the ACDI method. This knowledge gap is addressed in the present section.

At first, the impact of spurious currents on the present methodology is highlighted. In Fig. 6.20a,
an instantaneous snapshot is presented using the generic CSF model (Eq. (2.7)) and Az = 31.3
pm. The left side of Fig. 6.20a shows the velocity distribution, which exhibits strong spurious flow
structures in both the liquid and gas phases. The impact of the spurious flow on the temperature
distribution is visualized in the closeup on the left. The closeup shows that the boundary layer
around the bubble is disturbed due to convective transport. As a result, the bubble growth exhibits
an erroneous growth rate. This effect on the bubble growth is visualized in Fig. 6.20b, where the
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Figure 6.21: Spurious currents using different surface tension treatments and various grid sizes (top Az = 125 pm,
middle Az = 62.5 pm, bottom Az = 31.3 pm). The figure corresponds to ¢ = 29 ms. Solid lines
correspond to the iso-contour of ¢ = 0.9, dashed lines to ¢ = 0.5, and dotted lines to ¢ = 0.1. Figure
taken from Weber et al. (2026).

results obtained with the CSF model are compared to the analytical solution and to fST = 0. The
figure shows that the bubble growth accelerates as the spurious flow increases.

To further explore the behaviour of spurious currents, simulations are carried out using a range of
settings. The standard CSF model (Eq. (2.7)) and the standard energy-based model (Eq. (2.10)) are
compared to the zero surface tension simulation. For each setting, three simulations are conducted
using the grids Az = 125 pm, Ax = 62.5 pm, and Az = 31.5 pm. Instantaneous results for a
slice through the bubble at time ¢ = 29 ms are visualized in Fig. 6.21. This figure illustrates the
direction and magnitude of the flow, thereby highlighting the spurious flow structures. Generally,
larger grid sizes appear to result in weaker spurious currents. The energy-based surface tension
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Figure 6.22: Comparison of spurious currents arising from different formulations of the energy-based surface tension
model. The standard formulation (e.g. Badillo (2012)) on the left is compared to the alternative formulations
from Huang et al. (2020) (middle) and Brown et al. (2024) (right). Figure corresponds to ¢ = 29 ms and
Az = 62.5 pm. Solid lines correspond to the iso-contour of ¢ = 0.9, dashed lines to ¢ = 0.5, and dotted
lines to ¢ = 0.1. Figure taken from Weber et al. (2026).

model performs worse than the CSF model at all grid resolutions. However, both surface tension
models result in an unacceptable level of spurious flow for smaller grid sizes.

Several alternative formulations have been proposed to improve the energy-based surface tension
model (see Sec. 2.4.1). In the following, two alternative formulations are evaluated regarding
their capability to reduce spurious flow in boiling flows. Specifically, the conservative (Huang
et al. (2020)) and level-set (Brown et al. (2024)) formulations are compared to the standard
energy-based formulation (See Fig. 6.22.) The visualized currents show that both considered
alternative formulations result in increased spurious flow. The level-set formulation exhibits
similar performance as the standard energy-based method, while the flow structures obtained
from the conservative formulation are significantly worse. Energy-based models may demonstrate
superior performance in the context of non-phase-change scenarios, however, they result in
unacceptable levels of spurious currents for boiling simulations. Accordingly, energy-based
models are not considered further in this thesis.

Next, the approach by Raeini et al. (2012) is assessed (refer to Sec. 2.4.1) regarding its performance
in simulating boiling flows. Their sharpened CSF approach was initially applied to the VOF
method. Therefore, the influence of the sharpening factor 7 on the phase field profile is studied
first. Fig. 6.23 visualizes the sharpened phase field profiles ¢’ for two different values of 7). Raeini
et al. (2012) proposed using 7 = 0.5 for VOF. For the current application to ACDI, values of
n = 0.5 and n = 0.75 are considered (Fig. 6.23). Depending on the location of ¢ = 0.5 (cell
centre, left - cell edge, right), the gradient of ¢ differs from zero on 2-3 cell edges for n = 0.75,
and 3-4 cell edges for n = 0.5. Consequently, the pressure gradient arising from the surface
tension will be significantly higher in the interface region around ¢ = 0.5.
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Figure 6.23: Sharpening effect of 77 on the hyperbolic tangent profile (¢* = 1) using Eq. (2.9). Value of n = 0.5 is
compared to = 0.75 for two locations of the interface centre, where ¢ = 0.5 (cell centre, (a) cell edge,
(b)). Figures taken from Weber et al. (2026).

Fig. 6.24 illustrates the impact of the sharpening factor on the spurious currents at two instanta-
neous snapshots, ¢ = 29 ms and ¢ = 51.5 ms. Evidently, the sharpened CSF model proposed by
Raeini et al. (2012) is capable of significantly reducing spurious currents. Notably, as 7 increases,
the spurious currents are substantially reduced throughout the simulation runtime. However, to
ensure a stable simulation, numerical experiments suggest that 1 should not exceed a value of
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Figure 6.24: Influence of the sharpened CSF model by Raeini et al. (2012) on the formation of spurious currents. The
currents are visualized at two times during the simulation, where a resolution of Az = 62.5 pum is utilized.
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Figure 6.25: Visualization of computational setup for simulating film boiling in two dimensions. Figure taken from
Weber et al. (2026).

0.75 (in case €* = 1). Based on this evaluation, the sharpened CSF model is employed for all
subsequent simulations.

6.7 2D film boiling

In this section, a film boiling benchmark simulation in two dimensions is conducted to test the
flow solver against a flow configuration with increased complexity. The content of this chapter
is published in Weber et al. (2026). In this benchmark simulation, a horizontal wall has a
temperature T,y that exceeds the saturation temperature Tg,.. The liquid phase is separated from
the wall by a gas layer, which is growing due to phase change (refer to Fig. 6.25). The gravitational
acceleration causes the gaseous film to become unstable, which leads to the formation of a bubble.
The bubble detaches from the liquid film and rises upwards.

The length scale ¢y at which the instability in the gaseous film occurs is equal to the Taylor
wavelength in two dimensions (see Klimenko (1981)). Therefore £, is calculated from

lo = 2my | =T (6.16)
|9|(P2 —Pl)
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As such, the two-dimensional Taylor wavelength is 127r-times larger than the capillary length [, =

Vg~ (p2 — p1)~L. Due to the symmetry of the detaching bubbles, it is sufficient to consider
a computational domain of size ¢y/2 in the x; direction (compare with Fig. 6.25). Therefore,
left and right boundaries are symmetry boundaries. In the zo-direction, the computational
domain is truncated to a length of 3/y/2. In line with the method by by Dhruv (2024), a wall
boundary condition is applied at the bottom, with an outflow boundary at the top. The outflow
boundary by Dhruv (2024) allows a small Weber number bubbles to leave the domain while
keeping homogeneous Neumann and Dirichlet boundary conditions for velocity and pressure,
respectively (refer to Sec. 4.6). Following the studies by Welch and Wilson (2000), Guo et al.
(2011), Dongliang Sun and Chen (2014) and Wang et al. (2021), properties of Fluid¢ are chosen.
For these fluid properties, the length scale ¢ is calculated as ¢y = 78.68 mm. The utilized square
grid cell are the following sizes Az = £y/128, Ax = {;/256, and Az = £y /512.

The initial interface profile is set to trigger the first detachment of a bubble. For this purpose, the
gaseous layer is initialized using a small hump, which follows a sine function. The location of
¢ = 0.5 (centre of interface) is placed at the location of ¢ defined by Dongliang Sun and Chen

(2014) as
Loy Lo 2mxy
— 22 1 0 os .1

b0 32+128005< lo ) 17

The corresponding temperature at t = 0 is initialized with a linear profile (similar to the Stefan
problem) in the gas phase. Accordingly, in the xo-direction, the temperature decreases linearly
from T(x9 = 0) = Tyan — Tea to T'(z2 = ¢) = 0. Different from Dongliang Sun and Chen
(2014), a wall superheat of Ty, — Ty = 1 K is chosen. The reduction is chosen because
phase field models appear unable to simulate bubble detachments at higher evaporation rates, as
observed by Wang et al. (2021). To capture approximately six bubble detachments, all simulations
arerun until ¢ = 4 s.
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Figure 6.26: Nusselt number evolution for different grids Table 6.2: Time averaged values of Nu in comparison
in comparison to the correlation by Klimenko to Eq. (6.19). Table taken from Weber et al.
(1981). Figure taken from Weber et al. (2026). (2026).

The Nusselt number Nu, which quantifies the ratio of the transferred heat including and excluding
convection, is the quantity of interest for this benchmark. Dongliang Sun and Chen (2014) defined
the instantaneous Nusselt number as

T
le faﬂwau B |.’L2:de1

Nu =
(Twall - Tsal) f O dy

(6.18)

From Eq. (6.18), it can be seen that Nu is calculated from the average temperature gradient at
the wall boundary ., which is non-dimensionalized by the capillary length /. and the wall
superheat T, — Ty As reference data, the commonly used correlation by Klimenko (1981) is
utilized. The Nusselt number of the correlation is denoted Nuy, and can be calculated from

L||7]102
Nug = 0.19Gr¥Priy, with Gr = w

<p2 - 1), Y = 0.8973, (6.19)
251

P1

where the Prandtl number is Pr = ¢, 111 )\1_1 and v = ¢p1(Tyan — Tsat)L;tl. This equation
represents the simplified correlation for the chosen simulation settings. The evolution of Nu
versus time in relation to the empirical value Nuy is depicted in Fig. 6.26. The figure shows
that the largest discrepancies between different grid resolutions occur during the startup phase.
After the startup phase, the grid sizes Az = {;/256 and Az = ¢;/512 yield the same Nusselt
numbers. The results obtained from Az = £;/128 exhibit smaller amplitudes compared to the
finer grids, however, the bubble cycle frequency remains unchanged.

95



6 Validation and Benchmark Simulations

8 x10~2
t=056s t=0.76s t=092s
= o A | R Aw = (/128
4 ] ] === Az = (/256
— Az =(y/512
24 :
0 : . : : . : et e
0 2 4 6 0 2 4 6 0 2 4 6

x [m] x1072 x [m] x1072 x [m] x1072

Figure 6.27: Visualization of the interface location during the startup phase using three grid resolutions. Lines represent
the iso-contour of ¢ = 0.5. Figure taken from Weber et al. (2026).

To compare the simulation results with Nug, a time-averaged value of Nu is calculated, denoted
by an overbar (Nu). In Tab. 6.2, the absolute values of Nu and their relative deviation from Nug
are shown. For all grid sizes, the values for Nu deviate from Nug by 21% or more.

Finally, the differences during the startup phase are visualized in Fig. 6.27. Here, the iso-contours
of ¢ = 0.5 are shown at three time steps for all grid sizes. Evidently, the departure of the initial
bubble is delayed for coarser grid sizes. Moreover, the shape of the detached bubble (right panel)
for Az = €,/128 is significantly different from that of the finer grids. The bubble shapes (right
panel) of the two finer grids are the same, only differing by the delayed departure for that of
Az = ly/256. However, Fig. 6.26 shows that the bubble departure times, for the two finer grids,
synchronize during the remainder of the simulation.

6.8 Rising bubble subjected to phase change

This benchmark represents the final simulation for validating the flow solver against experimental
data. The content of this section is published in Weber et al. (2026). In detail, experimental
data from Florschuetz et al. (1969), who studied the growth of vapour bubbles in ethanol under
the influence of gravity, are utilized. For this benchmark, the fluid properties of saturated
ethanol at atmospheric pressure are used (see Tab. A.1). Furthermore, the experimental results
corresponding to a liquid superheat of 3.1 K are chosen. The data from Florschuetz et al. (1969)
have been used as a comparison against the numerical results of many studies, including Sato and
Niceno (2013), Badillo (2013), Rajkotwala et al. (2019), Bures and Sato (2021), Giustini and Issa
(2023), and Poblador-Ibanez et al. (2025).
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Figure 6.28: (a) Simulation setup. Results of zero-gravity study for grid sizes Az = 11.6um and Ax = 7um: (b)
the bubble size evolution in comparison to Eq. (6.12) and (c) temperature distribution at ¢ = 46.6 s in
comparison to Eq. (6.14). All figures taken from Weber et al. (2026).

To reduce the computational costs when simulating bubble growth, the rotational symmetry
of the flow is exploited. Accordingly, a fourth of the computational domain is simulated, as
depicted in Fig. 6.28a. The size of the domain in the x3-direction is further reduced by selecting
a moving coordinate system (as in Rajkotwala et al. (2019) and Giustini and Issa (2023)). As
such, the computational domain follows the upward rising bubble. Accordingly, an inflow and
outflow boundary condition is applied at the top and bottom, respectively. The inflow velocity
is dynamically adjusted to ensure the bubble stays inside the computational domain. Symmetry
boundaries are applied to the domain faces that intersect with the bubble. The free-slip condition
is implemented at all remaining boundaries. Two grid resolutions are employed, using cubic cells
of size Az = 11.7 pm and Az = 7 pm. At the start of the simulation, a bubble of size rqg = 210
umiis initialized (see Fig. 6.28a). For the initial temperature distribution, the zero-gravity solution
by Scriven (1959) is utilized (Eq. (6.14)). For the present parameter settings, a growth constant
of f ~ 5.4969 is determined (physical time at startup is therefore g = 5.17 ms). The use of
the zero-gravity solution for the initialization is justified by assuming that the effect of gravity is
negligible for small bubbles.

At first, gravity is neglected (§ = 0) to compare the bubble growth with the analytical solution
by Scriven (1959). This test provides an opportunity to assess the grid resolution in terms of its
capability to resolve the thermal boundary layer around the bubble. The evolution of the bubble
size versus time, and the temperature field distribution at ¢ = 46.6 s, are shown in Fig. 6.28b and
Fig. 6.28c, respectively. It is observed that both grids yield similar results for this test. The growth
rate is slightly lower than that of the analytical solution, and minor improvements are achieved by
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Figure 6.29: Visualization of the simulation results to investigate the growth of bubbles under the influence of gravity.
Both figures taken from Weber et al. (2026).

using a fine grid. Overall, the agreement with the solution by Scriven (1959) is satisfactory for
both bubble size and temperature. Thus, in the next step, the effect of gravity is considered.

For the following simulations, gravity is setto ¢ = (0, 0, —9.81) ms~2, and the simulations
are run until £ = 90 ms. Fig. 6.29a shows the temperature field at four times during the simulation
on a plane slicing through the bubble centre. Note that all of the results are transformed back
from the moving coordinate system into the laboratory coordinate system. Accordingly, Fig.
6.29a shows the upward-moving bubble, which can be identified by the green area, indicating the
saturation temperature. White areas represent areas where 7' = 3.1 K. All of the bubbles exhibit
a thin thermal boundary layer at the top and a tail of cooled liquid in their wake. The results
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Figure 6.30: Bubble size evolution in the presence of gravity. Comparison of the obtained simulation results to the
experimental data from Florschuetz et al. (1969) and the simulation results by Sato and Nic¢eno (2013).
Figure taken from Weber et al. (2026).

obtained when using the coarse and fine grids are presented on the right and left of Fig. 6.29a,
respectively. The figure demonstrates that both grids return similar bubble locations, bubble
shapes, and temperature distributions. However, the cooling of the liquid wake behind the bubble
is slightly less pronounced in the fine grid compared to the coarse grid.

Fig. 6.29b shows a closeup of the bubble at time ¢ = 68.8 ms. On the left side, the velocity field
(arrows) is shown together with the temperature field. The right side of Fig. 6.29b displays the
quantitative distribution of the mass transfer rate M. In addition, the lower right corner of Fig.
6.29b provides a magnified view of the mass transfer rate at the top of the bubble. The figure
shows that the mass transfer is concentrated to the top of the bubble, with almost no mass transfer
taking place at the bottom of the bubble (due to the cooled liquid wake, see the left half of Fig.
6.29b).
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Figure 6.31: Comparison of the rise velocities. The present simulation results are compared to those of Badillo (2013)
and Sato and Niceno (2013). Figure taken from Weber et al. (2026).

To compare the results to data from the literature, an equivalent radius 7., is utilized, as proposed
by Florschuetz et al. (1969). The equivalent radius is calculated from

1
Teq = Z(DIQ + Dg) (620)

The bubble diameter in the z;-x2 plane is denoted D;5, while the bubble expansion in the z3-
direction is D3. The present simulation results for r.,, with both grid sizes, are visualized in
Fig. 6.30. Here, the results are compared to the experimental data by Florschuetz et al. (1969)
and the numerical results by Sato and Nic¢eno (2013). The experimental data show the evolution
of bubble size at superheats of T, — Ty = 2.8 K, 3.1 K, and 3.2 K. In general, the present
simulation results lie within the scattered experimental data, although more experimental data
points are scattered below the simulation data. The present simulation results also show good
agreement with those obtained using the finest grid spacing in Sato and Niceno (2013).

In the next step, the bubble rise velocity is analyzed. In the literature, the rise velocity is reported
in the studies by Badillo (2013) and Sato and Nic¢eno (2013). The results from the simulations
in these studies are compared to those of the present simulation in Fig. 6.31. This figure reveals
significant differences in the results published in the literature compared to those of the present
simulation. While the magnitude of the peak rise velocity in the present simulation agrees with
that published in Badillo (2013), the timing of the peak differs. Sato and Niceno (2013) and
Badillo (2012) predict a faster acceleration during the startup phase. This difference could be
attributed to a wide range of computational settings reported in the literature. For example,
Giustini and Issa (2023) use different boundary conditions than Sato and Niceno (2013), and
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Figure 6.32: Test simulation evaluating the bubble geometry calculation method, Eqs. (4.80)-(4.83). (a) Simulation setup
and visualization of tagged grid cells. (b) Error evaluation by comparing to Eq. (6.22). Cropped error
magnitudes for BV and CL at r9 = Ax are 44.5% and 37.3 %, respectively.

Badillo (2013) employs a different domain size. However, more comparison data is needed
to investigate the impact of the computational settings. Unfortunately, the rise velocity is not
reported by Florschuetz et al. (1969).

The present simulation yields grid-independent results at a grid size of Ax = 11.6 pm. This is
comparable to the grid sizes used in the sharp-interface studies by Sato and Niceno (2013), Bures
and Sato (2021) and Poblador-Ibanez et al. (2025). In Giustini and Issa (2023), a grid size of
Az = 3.12 pm is employed, which was not required in the present simulations.

6.9 Bubble Tagging Accuracy

The purpose of this section is to evaluate the accuracy of the bubble geometry calculation. Namely,
the accuracy of the bubble volume BV, bubble surface BS, contact line length CL, and dryspot area
DS calculations are evaluated (Eq. (4.80), Eq. (4.81), Eq. (4.82), and Eq. (4.83), respectively). In
particular, the accuracy of the geometry calculation for bubbles of lower resolution is of interest.
That is, for bubbles with radius to grid spacing ratios r/ Az in the range of one to ten.

The test setup is straightforward. At¢ = 0, a hemisphere-shaped bubble of radius ry is placed on
a wall (© = 90°). The initial phase field distribution is prescribed as

ot = 0) = % {1 + tanh (’"‘)_'i_f”')] , (6.21)
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where &, is the location of the bubble centre. The grid spacing is Az = 15.6 pm, gravity is
neglected § = 0, and the properties of saturated water at 1.05 MPa are chosen*. The simulations
are run until the phase field is invariant in time, then the tagging method is applied (Sec. 4.8).
Fig. 6.32a visualizes the result of this procedure. The theoretical "sharp" bubble geometry, BVy,,
leh, CLth, and DSlh, is

2
BV, = grg, BSy = 2772, CLy, = 2719, and DSy, = 7. (6.22)

Next, Eq. (6.22) is used as reference data and compared to the results obtained from Egs. (4.80)-
(4.83). This test is carried out for bubbles of the following sizes: 1o = Az, 2Ax, 3Ax, 4Az,
6Ax, 8Ax, and 10Ax. The deviations of the calculated bubble geometry from the theoretical
values are visualized in Fig. 6.32b. For larger bubbles, the error of the calculated geometry is
less than 1%. In contrast, for ro = A, large errors are observed, exceeding 40% for the bubble
volume BV. These deviations drastically reduce with the increasing bubble sizes 1y = 2Ax and
ro = 3Ax. Therefore, depending on the desired accuracy, the tagging algorithm can be expected
to produce acceptable results from a bubble of size g = 3Az.

6.10 Statistical evaluation of synthetic bubble data

Thus far, a comprehensive benchmarking campaign has been conducted to verify the flow solver
developments presented in Ch. 4. The remainder of Ch. 6, focuses on testing the statistical
evaluation methodology from Ch. 5. The content of this section is published in Weber et al.
(2023).

This section aims to demonstrate the application of the K-Means clustering of bubble cells
obtained from a Voronoi diagram. This assessment uses synthetic bubble data to be able to
quantify the errors by comparing to analytical solutions. The analysis is conducted in two
dimensions, however, the extension to three dimensions is straightforward. Furthermore, the
accuracy in terms of systematic and statistical errors is assessed. As aresult, a better understanding
of the statistical evaluation methodology is obtained.

4 Note that this test is insensitive to the grid spacing and fluid parameters as long as o # 0. However, the fluid

properties might influence the time required to reach a steady phase field distribution.
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6.10.1 Generation of synthetic bubble data

A cubic domain of size ¢ in which bubbles are distributed is considered. The bubble data is
generated by adding randomness to (i) the bubble location and (ii) the bubble size. All results are
non-dimensionalized using /.

First, a number of bubbles IV}, are randomly distributed by prescribing a preferential concentration.
Globally, the bubble concentration is N,/ (3. However, locally, the expectation of the bubble
concentration E(A) is prescribed as

GEA) = Nypfi(z1)fo(z2), (6.23)
6.0162 992
where fi(z1) = [mexp<—2(?_1)2)] (6.24)
192 3
and  fo(zs) = {31?—17010(?) } (6.25)

A random bubble distribution arising from Eq. (6.23) is obtained by using the inverse transform
sampling method, as in Devroye (1986). This function requires the antiderivatives of the PDF f;
and f> so that

dFl(xl)
dxl

dF2 (1’2)
dCCQ

= f2(x2)7 Fl(O) = FQ(O) = O, and Fl(l) = Fg(l) =1.
(6.26)
The inverse of F} and F5 are denoted Ffl and Fy 1. As such, following Eq. (6.23), a random

= fl(xl)a

bubble location &}, is obtained from
FrUX
Ty = ( 1_1( ”’1)>, (6.27)
F, (Xb,Z)

where X}, 1 and X, » are independent random samples drawn from uniform continuous distribution
in the interval [0, 1] (Weber et al. (2023)).

The bubbles each have a randomized bubble radius r, with the expectation [E(r) and the standard
deviation s(r). These are prescribed as
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E(r) B To
= 0.006+0.002<H 1), (6.28)
and 27— go000s, /(% L 2+ 2 : (6.29)
¢ - H 2 H ' '

Note that both E(r) and s(r) have spatial variations. The bubble radius r}, is chosen by ran-
domly sampling from a shifted Maxwell distribution f(r) (e.g., refer to Sadovskii (2019)). The
probability distribution reads

2(r—C1)? -5
A \/;cse e, reltho) (6.30)
where
2 T
Cy = E(T) — 202\/; and Oy = S(T) 3r_8 Cy > 0. (6.31)

As aresult, the expectation of the bubble volume E(BV) is calculated from

o 4 3 4 7 3
E(BV) = / T ) = VT (25CH +9VRC1CE + 328 CCE + VRCIC, ).

o 3 3C,
(6.32)
The local expectation of the gas content E(«) is then
E(a) = E(A)E(BV). (6.33)

The spatial distributions of E(A), E(r), s(r), and E(«) are visualized in Figs. 6.33a-6.33d.
Note that the presented distributions are all arbitrarily selected. However, the distributions aim
to imitate features that could be found in a realistic bubbly flow. For instance, the bubble
concentration Fig. 6.33a could mimic the local entrainment of bubbles on a free surface due to a
water jet. Accordingly, E(r) and s(r) could be interpreted as the spatial variation of the bubble
size due the coalescence and breakup.

6.10.2 Clustering of Voronoi cells

For the present test, 150 random bubble datasets, each containing N, = 1024 bubbles, are
generated using the methodology described in Sec. 6.10.1. The target cluster size for the grouped
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Figure 6.33: Fictive distributions of bubble characteristics as reference data. Figures adopted from Weber et al. (2023).

Voronoi analysis is Vi = 8. As aresult, 150 x 8 bubbles are available at each point in space,
for the subsequent analysis.

The stages of the clustered Voronoi analysis are visualized in Fig. 6.34. Here, the analysis is
conducted for the gas content. However, the presented analysis could be applied to any quantity
related to the bubbles. Fig. 6.34a shows the instantaneous gas content & in each cell after applying
the Voronoi diagram. The cluster-averaged gas content é after grouping eight bubbles together is
shown in Fig. 6.34b. Averaging the results over all datasets results in the distribution depicted in
Fig. 6.34c. At each point in space, a statistical evaluation of the bubble characteristics (here: gas
content &) can be conducted, as shown in Fig. 6.34d.

Following this procedure, the average gas content, the average bubble radius, and the standard
deviation of the bubble radius are calculated and compared to the analytical distributions E(r),
s(r), and E(«). The resulting deviations are shown in Fig. 6.35. The deviation from E(r) does
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Figure 6.34: Results of applying the clustered Voronoi methodology to synthetic snapshot data. Visualization of different
stages during the analysis. Figures adopted from Weber et al. (2023).
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Figure 6.35: Deviation of the calculated values for (a) averaged bubble radius, (b) bubble radius standard deviation, and
(c) average gas content from E(r), s(r), and E(«). Figure taken from Weber et al. (2026).
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Figure 6.36: Visualization of a cluster-averaged bubble concentration A (left). The right side of the figure visualizes a
closeup of the lower left cluster. Voronoi cell centroids (small green dots) and bubble centres (small red
dots) are visualized. The cluster centroid and average location of the bubbles are marked with a big green
and red dot, respectively. The distance between the two is denoted Zerr (grey arrow). Figure adopted from
Weber et al. (2023).

not exceed 5%. Moreover, the analytic standard deviation s(r) shows satisfactory results, not
exceeding error magnitudes of 10 %. Only the calculated average gas content appears to exhibit
substantial error towards the regions of lower bubble contents (see Fig. 6.33a). In the following,
this error in the average gas content calculation (Fig. 6.35¢) is analyzed by distinguishing between
systematic and statistical errors.

6.10.3 Systematic errors

Based on Fig. 6.35c, it is evident that the calculation of the gas content towards areas of low
bubble concentration should be investigated. To examine this, an example cluster is depicted in
the lower left corner of Fig. 6.36. Here, the grey arrow visualizes the difference between two
definitions of the cluster centre, namely: (i) the centroid of the cluster (big green dot), and (ii)
the average location of all bubbles within a cluster (big red dot). The difference between these
two locations is denoted ;. Evidently, the centre of the actual information (i.e., the bubbles)
coincides with the big red dot. However, the apparent location of information coincides with
the cluster centroid, as all points within the cluster are assigned the bubble information. For
bubble distributions without a preferential concentration, this mismatch would average to zero
after processing many datasets. However, for bubble distributions that feature a concentration
gradient, an average error vector Z,; remains, even after processing many datasets. This vector
constitutes the first source of the systematic error.
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Figure 6.38: Spatial uncertainties and spatially averaged expectations at z2 /¢ = 0.85. Figures adopted from Weber et al.
(2023).

The averaged error vector Z,, is quantified in Fig. 6.37. This analysis indicates that the magnitude
of Zr correlates with the cluster size (i.e. correlates with the inverse of the bubble concentration
A). Furthermore, Fig. 6.37 also depicts the direction of the error vector. Comparing this result
with Fig. 6.33a, it can be observed that the direction is correlated with the bubble concentration

gradient VA.

Another systematic error arises from the spatial size of the clusters, even if Ty = 0. Due
to the spatial size of the clusters, or the Voronoi cells themselves, the calculated statistics are
always spatially averaged quantities. This fact can be understood as a spatial uncertainty, which
is depicted in Fig. 6.38a, where the average gas content & is shown. The figure corresponds to
the data at x5 /¢ = 0.85. The average spatial size is depicted by the error bars, at nine locations.
In areas of low bubble concentration, the uncertainty is high compared to areas with a high
bubble concentration. Also, the equivalent cluster size in Fig. 6.37c represents a measure for the

uncertainty.
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Furthermore, due to the spatial size of the clusters, the local value of E(«) cannot be consistently
evaluated. Instead, the cluster-averaged gas content returns an approximation for a spatially
average expectation E'(«). For the i-th cluster, the averaged expectation E'(«v); is calculated

from
1

E(a); = Ve /Q E(a)dV (6.34)

In Fig. 6.38b, the averaged expectation E/(«) is compared to E(«), on a line where x5 /¢ = 0.85.
The differences between E () and E/(«) are insignificant around z;/¢ = 0.5. However, large
discrepancies are observed towards the domain boundaries. This means that, in these areas, the
cluster size is too large to resolve the gradients of E(«). This observation is consistent with the
errors found in Fig. 6.35. A solution could be to decrease Ny,,, which would directly decrease
the sample size and, thus, increase the statistical error. The statistical error is the content of the

following subsection.

6.10.4 Statistical errors

Using the methodology from Ch. 5, the synthetic datasets generated in Sec. 6.10.1 can be
processed by assigning the same number of bubbles to each point in the domain. In this case,
N = § X Nyrg = 150 x 8 bubbles are assigned to each point. For a given point, the observations
(here: gas contents) are o1, (rg, ..., . The mean value (see. Eq. (5.8)) of those observations is

&, which estimates E/(«r). However, ' («v) is unknown for realistic applications. Therefore, the
error |5¢ — E’(a)] has to be estimated to quantify the statistical uncertainty. Rukhin (2007) and
Rukhin (2009) derived confidence intervals for weighted sums, which are required for the current
application (see weights w in Eq. 5.6). Their confidence intervals are calculated from

tC/Qs(N—l)\/Zivzl w)(a; — @)

\/ ¥ =) (NI o) o

Eq. (6.35) estimates that B/ (<) lies within the interval with a probability of 100% — C'%. In this
equation, tc/z, (v—1) represents a t-value corresponding to a student-t distribution with N' — 1

A+

(6.35)

degrees of freedom. The confidence intervals calculated from Eq. (6.35) are shown in Fig. 6.39.
The figure demonstrates how the 99% confidence interval fully covers the averaged expectation
E' ().
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Figure 6.39: Confidence intervals (light blue) of 99%, calculated from the interval proposed in Rukhin (2007). Distribu-
tion of E/ () (red line) and & (dark blue line) are presented. Figure adopted from Weber et al. (2023).

6.10.5 Discussion

In this section, the grouped Voronoi analysis is tested with randomly generated bubble data.
Overall, the results obtained in this section present valuable insights that serve as a best practice
guideline. Specifically, inherent uncertainties when defining a local bubble statistic are discussed.
For example, it is shown that decreasing the statistical error (larger cluster) increases the spatial
uncertainty (and vice versa). In the next step (Ch. 7), this methodology is applied to bubble
data obtained from a large-scale boiling flow simulation. For the evaluation of interface-resolved
simulations, this bubble data is obtained from the tagging methodology presented in Sec. 4.8 and
Sec. 6.9.
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7 Boiling Flow Simulation

The preceding chapters presented methodological developments (Ch. 4 and Ch. 5) and a compre-
hensive testing campaign (Ch. 6). In accordance with the objectives of this thesis (Sec. 1.3), the
final step is to simulate a technically relevant boiling flow scenario.

Specifically, the simulation of a turbulent forced convection flow, in the nucleate boiling flow
regime (see Fig. 1.3), is conducted. The literature regarding this flow configuration is limited.
Nucleate boiling simulations in micro-channels of high-performance electronics have attracted
significant attention in recent years, as summarized by Darshan et al. (2024). However, the length-
scales in such flows do not allow for turbulence to develop (Re < 200). Furthermore, many studies
consider single nucleation sites, as in Sato et al. (2013), or the PhD thesis of Bhuvankar (2019).
In contrast, realistic boiling flows (see Fig. 1.1) feature an abundance of nucleation sites. Notably,
in Kaiser et al. (2024), and Sato et al. (2025), full-scale nucleate boiling flows at higher Reynolds
numbers are simulated. To the best of the authors’ knowledge, no literature has been published
on this flow configuration using a phase field method, to date.

For this simulation of a technically relevant boiling flow, the properties of water are considered.
At atmospheric pressure, saturated water commonly forms a micro-layer (see Kossolapov (2021)
and Wang et al. (2023)). The micro-layer is a thin liquid film between the bubble and the solid
wall. Oftentimes, the thickness is not resolved by the computational grid, and subgrid models
need to be developed (e.g., Sato and Niceno (2015)). In this thesis, however, the micro-layer is
not considered. Thus, water at higher pressures, where the micro region is not present, is chosen
for the present simulation (see Kossolapov (2021)). Indeed, technical applications (e.g. power
plants) frequently operate at elevated pressure.

In the PhD thesis of Kossolapov (2021), comprehensive experiments are conducted at a pressure
of 1.05 MPa, at which no micro-layer is formed. This problem setup is used as reference data
in the present thesis. The same experimental data are also considered in the study by Sato et al.
(2025). The present simulations are carried out for a Reynolds number of Re ~ 40.000.

In the following sections, the simulation setup is described along with minor case-specific de-
velopments. Finally, the results are validated by comparing them with the available data from
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Figure 7.1: Experimental domain (transparent box) in comparison to the simulated domain (grey box). The experimental
domain consists of a square duct of height 2¢. The simulated domain is located on the heater and is centred
on the duct wall.

Kossolapov (2021). Additionally, numerical data are analyzed beyond the experimental measure-
ments.

7.1 Case setup

The chosen reference experiment employs a facility in which boiling is studied in a square duct
(see Kossolapov (2021) and Kossolapov et al. (2024)). The inflow length, before the measurement
section, is long enough to ensure a fully developed turbulent duct flow. The schematics of their
measurement section are depicted in Fig. 7.1. Gravitational acceleration |§] = 9.81 m s~2 points
in the opposite direction of the flow, the channel height is 2/ = 11.78 mm, and a heated section
of 10 x 10 mm? is placed in the centre of the bottom wall. In this chapter, a mass flux of G = 500

kg s~'m~2, is considered. In accordance with the experiments, the properties of saturated water
at 1.05 MPa are applied, which are listed in Tab. A.1. With these properties, a bulk velocity

Reynolds number Re;, corresponding to the liquid phase at the inlet, is determined as

2GY
Rep = — = 39630. (7.1
M2

Direct numerical simulations corresponding to this Reynolds number (= 40, 000) are conducted
in Pirozzoli et al. (2018). According to their results, the bulk velocity Reynolds number in Eq.
7.1 corresponds to a friction Reynolds number Re, = £pau. /o of Re; = 1055. For the chosen
simulation setting, this translates to a friction velocity of v, = 0.03 m/s and a friction length
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Figure 7.2: Schematic of the computational domain. The solid region (blue part) is represented with an IBM. The grey
box represents the fluid region. The locations of the heater start (HS) and heater exit (HE) are indicated with
dimensions.

scale of ; = papsy 'uz! = 5.583 - 1075 m. Both reference quantities are used in the following
analysis to non-dimensionalize results (marked with a plus ()™ in the exponent).

In the experiments by Kossolapov (2021), the heated section consists of a very thin indium tin
oxide layer, which produces heat due to the electrical resistance. For the present simulation, the
thin layer cannot be resolved and an alternative heater model must be applied instead (see Sec.
7.4). The heater produces a heat flux of 1 MW/m? at the fluid-solid interface.

In the present simulation, only a part of the duct flow is represented (see Fig. 7.1). A detailed
visualization, including relevant dimensions, of the computational domain is presented in Fig.
7.2. The solid of the computational domain is chosen thick enough to resolve all temperature
fluctuations that penetrate the solid. To match the experiments, the solid domain uses the physical
properties of sapphire glass: ps = 3970 kg m™3, ¢, s = 750 J kg7 K™, and \; = 28.5 W
m~ KL

An inlet boundary condition is applied to the lower x5 domain boundary (Fig. 7.2 left, see details
Sec. 7.3), whereas the upper x5 domain boundary (Fig. 7.2 right) uses the outflow boundary
condition described in Sec. 4.6. In the x; direction, a periodic boundary condition is applied”.
The solid is simulated using the IBM treatment from Sec. 4.7, and the upper x3 boundary is a free-
slip boundary. In line with the experiments, the inflow temperature T is set to T, — Ty = —10
K.

5 The physical duct flow is, of course, not periodic in the x1 direction. However, this approximation is assumed

sufficient for the simulated section.
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For the spatial discretization, uniform grid cells of size Az; X Az X Axg = 15.6 x 15.6 x 10.4
nm? are utilized, resulting in a total 320 x 800 x 320 grid cells. The use of non-cubic grid
cells has not been discussed, thus far, and requires an extension of the developed phase change
model (Sec. 4.4), which is described in the Appendix Sec. A.2 and Sec. A.3. Using non-cubic
grid cells also entails a variation in the non-dimensional interface thickness ¢* depending on the
orientation of the interface in relation to the grid. For this simulation, the interface thickness € is
setto e = 10.4 pm. Therefore, the non-dimensional interface-thickness has a dependency on the
axis direction: €] = 0.66, €5 = 0.66 and €3 = 1 in the z1, 2, and 23 directions, respectively. In
this regard, the ACDI method by Jain (2022) is advantageous, as it allows stable simulations for
0.5 < €* < 1.0, with no additional time step constraints.

The heated wall is hydrophilic, and thus, a contact angle of © < 90° needs to be enforced. For
lower pressures, Kossolapov (2021) estimated an angle of ® ~ 80°. However, for numerical
simulations, a contact angle of around 1° is suggested for pool boiling scenarios (see Bures
and Sato (2022)). For this study, the contact angle is set © = 1°, which results in satisfactory
agreement with the experimental data by Kossolapov (2021).

7.2 Bubble nucleation model

A central part of the boiling flow simulation is the modelling of the nucleation process. The
nucleation of bubbles starts at small imperfections on the heated surface. Modelling is required,
as these imperfections cannot be resolved and remain at subgrid scale level. Sato and Niceno
(2017) proposed a model that randomly distributes nucleation sites on the heated surface. In
their model, each nucleation site has an activation temperature based on the active nucleation site
density (NSD) for that temperature. Information about the active nucleation site density can be
obtained from experimental measurements or empirical correlations (e.g., Lemmert and Chawla
1977)).

The thesis by Kossolapov (2021) reports measurements of the active nucleation site density,
which are shown in Fig. 7.3a. To utilize this NSD data through the model by Sato and Niceno
(2017), a curve fit function is used. The curve fit function has the shape [A(Tywan — Tsu)]Zs
which was proposed by Lemmert and Chawla (1977). Note that Lemmert and Chawla (1977)
determined A = 185 and B = 1.805, however, with the experimental data, the curve fit yields
A = 0981172 and B = 1.22. This difference is explained by the large variations in the activation
frequency of each nucleation site, as measured by Kossolapov (2021). The maximum expected
wall superheat is set to 30 K, corresponding to a total of 65060 nucleation sites (see Fig. 7.3b).
These nucleation sites are randomly distributed on the heater surface using the method described
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Figure 7.3: Nucleation site density used for the present simulation.

in Sato and Niceno (2017). Following their algorithm, all nucleation sites are inspected at every
time step if the activation conditions are met. These conditions are:

e The local wall temperature exceeds the activation temperature

» The nucleation site is covered by the liquid phase (see Sato and Niceno (2017))

The second condition is straightforward to implement for sharp interface methods, where a clear
separation of liquid and gas is possible. However, diffuse interface methods require an alternative
definition of the second nucleation condition, as both phases can locally coexist. To overcome this
difficulty, a level-set threshold value Wy, is proposed in this work. Recalling that ¥ represents
the signed distance to the next interface, a simple definition of Wy, is obtained. For the present
simulation, it is set to W, = —6Axy, and, thus, the modified nucleation condition is met if
U < Wyp,.. That is, the nucleation condition is met if the nearest interface is at a distance of
six times the grid size. Note that ¥,;,,. is negative, as negative level-set values refer to the liquid
side of the interface (see Fig. 2.3). Evidently, |¥;,.| has to be small enough that no unphysical
suppression of nucleation events occurs, but large enough to ensure numerical stability. If both
nucleation conditions are met, a seed bubble of radius r is placed over the activated nucleation
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Figure 7.4: Impact of the seed bubble size on the bubble growth rate, assuming Too — Tsar = 10K. Analytic solution
(black line) is taken from Scriven (1959). See Sec. 6.6 for computational details.

site. This seed bubble is initialized with a phase field increment A¢, using the equilibrium profile,
as follows:

A = 1 {1 + tanh (m>} (7.2)
2 2e

Here, @), is the centre of the seed bubble, and the phase field is subsequently updated as ¢ + A¢.
The centre of the bubble is placed slightly above the wall so that it matches the enforced contact
angle after nucleation. This wall distance for nucleation can be calculated as g cos(0).

7.2.1 Seed bubble size r,

The seed bubble size rg is a central simulation setting. Clearly, o has to be as small as possible
to capture early-stage information of the bubble growth and to minimize the violation of the mass
conservation implied by Eq. 7.2. However, too small bubbles can lead to erroneous growth rates
due to poor resolution of the thermal boundary layer around the bubble. Therefore, an optimal
value must be found.

To determine an optimal seed bubble size, the results of a simple bubble growth test in the absence
of gravity are compared to the analytic solution from Scriven (1959). Assuming a superheat of
Too — Ty = 10K results in a growth constant of § = 2.94 (refer to Sec. 6.6). Note that the
results in this section correspond to uniform cubic grid cells of size Ax = 15.6 pm. Testing
five seed bubble sizes from ry = 0 to ro = 4Ax yields the comparisons in Fig. 7.4a and Fig.
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Figure 7.5: Visualization of the DNS database by Modesti (2020) based on the DNS in Pirozzoli et al. (2018). Figs.
7.5a-7.5¢ depict two-dimensional visualizations of the streamwise velocity, the TKE, and the dissipation.
Due to symmetry, a fourth of the duct cross-section is shown. The black box depicts the part of the duct that
is resolved in the boiling flow simulation. Figs. 7.5d-7.5f show the lineout data cutting through the centre of
the duct (z1 /¢ = 1).

7.4b. It can be seen that the growth rate is slightly under-predicted for all seed bubble sizes. The
most significant difference is evident at the onset of bubble growth. Here, the growth observed
for a seed bubble size of ry = 0 is significantly delayed in comparison to that of o = Az. The
improvements achieved among the three largest seed bubbles are marginal.

As a result, the seed bubble size for the boiling flow simulation is chosen to be o = Az = 15.6
pm. This seed bubble size allows for a good balance between growth rate accuracy and minimizing
To.

7.3 Turbulent Inflow

The inflow boundary condition poses an additional difficulty for the computational setup. As
seen in Sec. 7.1, a fully developed turbulent duct flow has to be prescribed at the inlet of the
computational domain. Therefore, at every time step, an instantaneous velocity field, with the
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Figure 7.6: (a) Location of computational domain in relation to SEM box containing the synthetic eddies. Eddies are
advected with the bulk velocity Up. The contribution of each eddy is calculated for the inflow boundary.
See Poletto (2015) for further details. (b) Visualization of instantaneous velocity magnitude on the inflow
boundary.

properties of the turbulent duct, is required. In terms of a strategy to obtain this information, a
precursor duct simulation of the upstream flow at Re;, ~ 40000 is too expensive. Moreover, it is
expected that boiling generates fluctuations of large amplitude so that the exact inflow turbulence
is of weak importance. As a result, a synthetic turbulence approach is utilized, which generates
instantaneous velocity fields.

Specifically, the synthetic eddy method (SEM) from the PhD thesis of Poletto (2015) is em-
ployed. This method enables the generation of divergence-free velocity fields for both isotropic
and anisotropic turbulence. In this work, isotropic turbulence is generated, which requires the
following input data: the time-averaged streamwise velocity us, the time-averaged turbulent ki-
netic energy (TKE) k, and the dissipation €. This data is readily available in the database from
Modesti (2020), which corresponds to the DNS reported in Pirozzoli et al. (2018). This database
is visualized in Fig. 7.5, which shows that w3, k, and £ are homogeneously distributed along the
x1 direction in the computational domain of the boiling flow. Thus, the values at the centerline
of the duct are used as the input data for the SEM (Figs. 7.5d-7.5f) of the boiling flow simulation.

The computational setup with SEM is depicted in Fig. 7.6a. For the present application, 1.5 - 10°
eddies are generated in a box of size 5 x 11.79 x 3 mm?® (corresponding to the 21, 7o, and x3
directions). Furthermore, each time step transports the eddies with the bulk velocity® U, in the
streamwise direction. Finally, the contribution of each eddy is calculated at each time step on
the inflow boundary and used as a Dirichlet boundary condition (refer to Poletto (2015)). An
example velocity distribution arising from the chosen SEM is visualized in Fig. 7.6b.

6 1In this simulation, the bulk velocity is U = fBQI uzdzs/ faQI drs = 0.546 m/s.
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Figure 7.7: Thin heater model visualization. Temperature distribution (dark orange line) is modified at the wall (dotted
line) so that the heat flux balance at the fluid-solid interface equals the wall heat flux gz produced by the
heated film.

7.4 Thin heater model

As described in Sec. 7.1, the heater consists of a very thin layer of indium tin oxide. Kossolapov
(2021) reports the thickness of this layer to be 0.7 pm, which is more than one order of magnitude
smaller than the wall normal grid spacing Axzs of the present simulation. As such, a thin heater
model is utilized, which is described in the following.

The present model is based on the assumption that the thermal resistance of the heater film is
negligible, and, thus, the temperature on both sides of the film is equal. Moreover, the model
assumes that no heat is stored in the thin film and that negligible heat conduction occurs in the x;
and x5 directions.

A schematic of the thin heater is visualized in Fig. 7.7. Here, it can be seen that the heat flux qx
that leaves the heated film is prescribed by modifying the surface temperature 7;,. This modified
wall temperature is denoted 7, and the modified heat flux balance at the interface of the solid
and fluid cells is calculated as

’ ’
q 2\ ﬂvjkaBNI+1 - Tw,i,j 2\ Tw,i,j - ﬂvjvk’IBJ\/I
H = 1,5,k 1 - N .
J.krBym+ Az J,R1BM Az

(7.3)

For zero wall heat flux qp, Eq. (7.3) yields the same result as Eq. (4.78). For the general case,
T/, is calculated from the following relation:
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/ _ qrAx
w,i,j T'w,i,j +

(7.4)
Q(Ai;j’leM + )‘iJ,kIBMJrl)

Subsequently, Eq. (7.4) is utilized in Eq. (4.77) to adjust the conjugate heat transfer treatment of
the IBM. Furthermore, the heat that is transferred from the wall to the fluid ( Eq. (4.77)) has to
be accounted for at the contact line in the phase change model. This modification is presented in
the appendix Sec. A.4.

7.5 Simplified LES implementation

The presence of turbulence in the boiling flow poses additional spatial resolution requirements for
the computational grid. For the full resolution of all turbulent structures, the grid spacing needs to
be small enough to resolve the smallest eddies present in the flow. Compared to the grid spacing
used in the DNS by Pirozzoli et al. (2018), a satisfactory resolution of the duct flow turbulence
can be expected. However, the formation and transport of bubbles is deemed to increase the
turbulence. In this case, the turbulent fluctuations closer to the heater are significantly stronger
compared to those of the fully developed duct flow. Therefore, a large eddy simulation (LES)
model is employed to account for potential turbulence at subgrid level.

The use of LES in two-phase flow simulations is not trivial, as interactions between subgrid
turbulence and the phase interface are important. Thus far, numerous studies have proposed
turbulent interaction models (e.g., Saeedipour and Schneiderbauer (2019)) or have compared
various formulations (e.g., Iberl et al. (2025)). However, Kaiser et al. (2024) reported good
results when neglecting interactions between the subgrid turbulence and the phase interface.
Accordingly, this simplification is adopted in the present simulation.

In LES, the unresolved turbulent transport of momentum and thermal energy is accounted for
by using an eddy diffusivity ;; and a turbulent heat conductivity A\;. Accordingly, the modified
transport equations for momentum and thermal energy read

—+V- ((pa'—ﬁ) ®a'> +C=—Vp+ V- [(u+ ) (Vi + Vil —2V-al)] +... (1.5)
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aoT - -
PCp <6t + - VT) =V - [(A+AN)VT]+V-j— LM+ Apc,R - VT, (7.6)
respectively. Note that in Eq. 7.5 and Eq. 7.6, all solution variables refer to spatially filtered
quantities. However, the filter operator is dropped for convenience and for improved readability.
Here, a standard Smagorinsky model (see Smagorinsky (1963)) is utilized. Therefore, the eddy
diffusivity p is calculated as

pe = p[017 A Ca))* V25| r, (7.7)

where A = (Az; x Awg x Axz)'/3, and O(x7) is the wall dampening function proposed by van
Driest (1956), which reads C(z3 ) = 1 —exp(—x3 /25). Furthermore, the Smagorinsky constant
0.17 is taken from Lilly (1967), and ||.S|| » refers to the Frobeniusnorm of the rate-of-strain tensor
S = 1/2(Vii+ V). The turbulent heat conductivity )\; is obtained by using 1 and the standard
turbulent Prandtl number Pr; = 0.9 (as in Kaiser et al. (2024)). Therefore,

_ %

At = .
i PT‘t

(7.8)

7.6 Code scalability

This large-scale flow problem presents an opportunity to assess the scalability potential of the
developed simulation software. For this assessment, the software advances the boiling flow for
2000 time steps, by distributing the simulation across a varying number of CPU cores. The
average time required to perform one simulation time step is measured. Ideally, a simulation
software completes the same number of time steps twice as fast when the number of CPU cores is
doubled. This scalability limit is referred to as strong scaling. However, the data communication
between the CPU cores commonly reduces the speedup.

For this test, 27, 2%, 29, and 2!° CPU cores are considered. The simulation software is executed
on two high-performance computing (HPC) clusters at the Karlsruhe Scientific Computing Center
(SCC): (i) the HoreKa cluster, using the CPU partition with Intel Xeon Platinum 8368 hardware,
and (ii) the bwUniCluster 3.0 (UC3) cluster, using the Ice Lake CPU partition with Intel Xeon
Platinum 8358 hardware. The results of this test are visualized in Fig. 7.8, where the speedup is
normalized with the time required when utilizing 27 CPU cores.
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Figure 7.8: Code scalability assessment for two HPC clusters. Speedup is normalized by the time required to execute the
test with 27 CPU cores. The dashed line represents the strong scaling limit.
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Figure 7.9: Profiler results when using the 27 and 210 cores on the HoreKa cluster.

The software exhibits very similar speedup behaviour on both HPC hardware architectures.
Increasing the number of CPU cores by a factor of eight results in an overall speedup of 6.2 and
6.0 for HoreKa and UC3, respectively. Additionally, a profiler is used to measure the relative
time required to complete the sub-problems during each time step. The results of the profiler
analysis are presented in Fig. 7.9. In general, Fig. 7.9 shows that the pressure solution is the most
computationally expensive part, requiring 40-50% of the computational time. The relative cost of
the pressure solution increases for the results obtained from 27 to 2'° CPU cores. Utilizing more
CPU cores commonly entails increased inter-process communication. This effect is particularly
pronounced for the pressure solution, as the FFT requires a transpose of the pressure data (see
2.6.4). For the FFT itself, the highly optimized FFTW library by Frigo and Johnson (2005) is
employed. Therefore, potential code optimizations could focus only on other parts of the software.
Due to the computational cost of the pressure solution, this optimization potential is limited.
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Figure 7.10: Instantaneous snapshot showing the iso-contour of ¢ = 0.5 and the temperature distribution of the solid.

7.7 Results

With the presented modifications (Sec. 7.2 - Sec. 7.5), the simulation of a turbulent subcooled
nucleate boiling flow can be conducted. After reaching a statistically steady flow, the collection
of flow data is activated. In Fig. 7.10, an instantaneous snapshot of the statistically steady state
is depicted. In this figure, the temperature of the solid region is shown along with the bubbles
represented by the phase field iso-surface. It is evident that the flow under investigation exhibits
a strongly polydisperse nature, characterized by a wide range of bubble sizes. Furthermore, hot
and cold spots are seen on the heater surface, which are visibly correlated with the presence of
bubbles. This flow will be investigated in detail in the following.

For the statistical flow analysis, the simulation is run for 6 non-dimensional turnover times’,
during which the statistical information about the flow and the contained bubbles is recorded.
The evaluation of the recorded data is divided into three parts. First, available data from the PhD
thesis of Kossolapov (2021) is compared to the simulation data. Second, the wall and flow field
statistics are discussed. Lastly, the bubbles in the flow are evaluated through a grouped Voronoi
analysis.

Although the present simulation resolves the interface, certain physical phenomena (e.g., wetta-
bility behaviour or bubble nucleation) are modelled, and thus, introduce uncertainty. As such,
minor deviations from the experiments can be expected. However, compared to RANS-based
simulations, the amount of modelling is minimal. For example, in this simulation, the dynamics
of all bubbles are resolved, allowing the analysis of such data. In the following sections, this fact
is emphasized to highlight the importance of interface-resolved boiling simulations.

7 One turnover time is defined as the length of the heated section (i.e. 10 mm) divided by the inflow bulk velocity Uy,.
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Table 7.1: Comparison of simulation data to results from Kossolapov (2021). Value range refers to the standard deviation.

Quantity Unit Kossolapov (2021) Present simulation
Wall superheat K 10.8 £ 1.8 17.5
Contact line density m~—! 490 £ 75 3265.5 £ 86.4
Dry-spot radius pm 48.7 +28.4 25.74+25.0

7.7.1 Comparison with experiments

A range of quantities that are presented in Kossolapov (2021) for the chosen computational settings
are listed in Tab. 7.1. These are, the wall superheat averaged over the heated surface, the contact
line density, and the dry-spot radius. These quantities are compared to the results obtained in
the current simulation. The table shows that the superheat of the wall and the averaged dry-spot
radius show slight deviations from the experimental results. A significant difference is seen for
the contact line density. This difference means that the simulation features significantly more
dry-spots than the experiment. A visualization of the simulation’s dry-spots is provided in Fig.
7.11. The white spots in this figure represent the areas in contact with the gaseous phase (dry-
spots), which cover, on average, 8.7% of the heated surface. A comparison with the experimental
data in Kossolapov (2021) indicates that the simulation data overpredict the amount of dry spots.
However, it should be noted that the diffuse interface representation, when combined with super-
hydrophilic wetting behaviour, may lead to misinterpretation. As a result, a bubble that touches
the wall with the ¢ = 0.5 contour line is not necessarily fully contacting the wall, as the interface
normal vector is pointing almost in the wall-normal direction. As such, the calculated contact line
depends strongly on the phase field value that defines the contact line. This dependency on ¢ is
depicted in Fig. 7.12. Even a small variation in the contact line definition has an order unity effect
on the contact line density. Therefore, the contact line density presented in Tab. 7.1 is regarded
as a CDI artifact.

Additionally, the elevated surface temperature observed in the simulation could be a result of the
nucleation model. In Fig. 7.13, the dry-spots are shown along with the instantaneous surface
temperature. Downstream, the heated surface patches are present where no dry-spots, and thus,
no seed bubbles are present. This is an artifact of the inhibition of nucleation arising from large
detached bubbles that are transported in proximity to the wall. Therefore, the local level-set value
U is above the threshold level-set value Wy, (Sec. 7.2) and prevents the nucleation events. As
such, the cooling mechanism due to nucleation is missing, and the surface temperature is elevated.
However, this artifact has a minor impact, as the difference to the experimental data is in the order
of a few Kelvin.
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Figure 7.11: Instantaneous dry-spot visualization. Grey areas represent the bubbles projected onto the wall, black areas
are covered by the liquid phase (¢ < 0.5), white areas are dry-spots (¢ > 0.5).
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Figure 7.12: Calculated contact line density based on the cut-off phase field value in comparison to the experimental
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Figure 7.13: Instantaneous heater temperature along with the dry-spot distribution represented by the iso-contour of
¢ = 0.5 on the heated surface.
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Figure 7.14: Probability distribution of finding a nucleation site with a specific bubble departure frequency. Comparison
of simulation results with the experimental data presented in Kossolapov (2021). Dashed lines represent the
corresponding mean values.

Furthermore, Kossolapov (2021) measured the bubble departure frequency for each nucleation
site. Their study shows that although many different nucleation sites are activated, a large
separation among the observed bubble departure frequencies is observed. These frequencies,
corresponding to each nucleation site, are also evaluated in the present simulation. The comparison
between the experiments and the simulation is visualized in Fig. 7.14. The PDF shows the
occurrence probability of finding a nucleation site within a specific range of bubble departure
frequencies. The average (dashed line) departure frequency in the simulation is 3-4 times higher
than in the experiments. In addition, the low-frequency end of the PDF is missing for the simulation
data. However, these observations are influenced by the duration of the simulated time, which
leads to under-resolved occurrences of low frequencies. In the simulation, frequencies below
10 Hz are not resolved. It should be noted that excluding the two lowest frequency bars of
the experiment would theoretically lead to the same mean value as the simulation (70-80 Hz).
Therefore, it is concluded that the simulated departure frequencies exhibit the same features as
the experiments. For example, both simulation and experiment find that very few nucleation sites
have nucleation events at a frequency that is higher than 10 Hz. Further, a large spectrum of
frequencies is observed, ranging over two orders of magnitude. And the number of nucleation
sites exhibiting departure frequencies within a specific range drastically decreases towards higher
frequencies.
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Figure 7.15: Time and spanwise-averaged surface temperature (solid, left axis) together with the spanwise-averaged root-
mean-square value of the wall temperature (dashed, right axis).

7.7.2 Heater surface statistics

This section presents data that extend beyond the reported experimental results from Kossolapov
(2021). In the analysis, the data is averaged in time (denoted by an overbar -) and, for some
figures, averaged along the spanwise (1) direction (denoted by angular brackets (-)). Further, the
Reynolds decomposition, which separates a fluctuation from its mean value, utilizes a prime to
denote the fluctuation. Accordingly, an instantaneous value is rewritten as ¢ = ¢ + ¢'.

Oftentimes, the wall temperature 77, on the heated surface is a primary quantity of interest. This
quantity is shown in Fig. 7.15. Although the temperature exhibits a distinct plateau, a spatial
dependency is seen for the mean surface temperature. A maximum (7,,) of 19.5 K above the
saturation temperature is observed at the heater exit (HE). More interestingly, the root-mean-square
(RMS) value of the temperature fluctuations is evaluated in this simulation, and is represented by
the dashed line. At the heater start (HS), a local peak in the RMS value is observed, which first
decreases downstream before rising again. The spatial distribution of the RMS value is visualized
in Fig. 7.16a. At HS, the elevated fluctuations are visible as streamwise streaks (e.g., red arrow
in Fig. 7.16a). Further, the location of this initial RMS peak coincides with the location of the
most active nucleation sites in the computational domain. This indicates a potential correlation
between the temperature fluctuations and nucleation site activity.

The location of the highly active nucleation sites is also included in Fig. 7.16b, where the spatial
distribution of the dry-spot probability is depicted. The dry-spot probability is calculated using
the time-averaged phase field value ¢, which is interpolated onto the immersed boundary. In
Fig. 7.16b, the bubbles appear to have straight sliding paths between o = 1.5 mm and x5 = 4
mm, downstream the nucleation (e.g., red arrow in Fig. 7.16b). At xo = 4 mm, the dry-spot
probability shows a maximum value. Comparing with Fig. 7.11, this marks the point after which
detached bubbles are observed in the flow. Accordingly, downstream of zo = 4 mm, the dry-spot
probability decreases and becomes irregular. In contrast to the decreasing dry-spot probability,
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Figure 7.16: Spatial distribution of (a) root-mean-square (RMS) value of the wall temperature fluctuations, and (b) time-
averaged dry-spot probability on the solid surface. Black dots represent the location of nucleation sites with
more than 400 Hz bubble departure frequency.

an increase in the temperature fluctuations is observed, as in Fig. 7.16a. In this regard, this data
could be helpful to investigate the heat transfer mechanisms (evaporation, convection, bubble
sliding, etc). For example, the experiments by Kossolapov (2021) showed that up to 60% of the
heat is transferred through unknown mechanisms.

7.7.3 Flow field statistics

In this section, time-averaged information about the two-phase flow is discussed. For this purpose,
the gas content, the mass transfer distribution, the velocities, and the resolved turbulent kinetic
energy (TKE) are presented in the following.
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Figure 7.17: Time and spanwise-averaged (a) mass transfer rate (b) gas content.

First, the distribution of the mass transfer is presented in Fig. 7.17a. Areas in which condensation
is dominant are shaded blue (negative mass transfer rate (M)), . Red areas highlight evaporation-
dominated areas (positive (M)). At the HS, condensation is the predominant mechanism. That
is, seeded bubbles shrink at first on the heater. In line with Kossolapov (2021), evaporation
occurs within a thin layer above the wall. Furthermore, detached bubbles in the bulk of the flow
condensate due to the subcooled inflow condition. However, condensation decreases towards the
outflow as the fluid is heating up.

The average distribution of the gaseous phase due to evaporation is shown in Fig. 7.17b. This
quantity is equivalent to the time and spanwise-averaged phase field variable (4). As such, a
constantly growing layer of bubbles is observed from HS (z2 = 1.5 mm) onward in Fig. 7.17b.
The gas content increases along the heater, reaching a maximum of (¢) = 0.54 at HE. Utilizing
the gas velocity (see Fig. 7.18b) and the latent heat, it is calculated that 37% of the total wall heat

flux input leaves the computational domain as latent heat.

The evolution of the gaseous layer is further visualized in Fig. 7.18a. Here, the profiles of the gas
content are shown at three representative locations in the computational domain. The velocity
at which the gas content is transported is not equal to the average velocity profile. To quantify
the velocity difference between both phases, the phase-averaged (see Ishii and Hibiki (2011))
streamwise velocity is presented in 7.18b. Near the wall, the velocity of the gaseous phase is
higher than that of the liquid for all three locations. Accordingly, an increase in the liquid velocity
is observed along the length of the heater. In addition, the bulk of the liquid phase is accelerated
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Figure 7.18: Time and spanwise-averaged quantities evaluated at three locations in the computational domain: x2 = 3
mm, x2 = 6 mm, and z2 = 9 mm. For reference, the streamwise velocity and the TKE at the inflow from
Pirozzoli et al. (2018) are depicted by black solid lines.
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Figure 7.19: Probability distribution of bubble sizes. The last histogram bin on the right also includes all bubble sizes
larger than 0.6 mm.

due to the increasing gas content (similar observation as in Kaiser et al. (2024)). Starting at
r9 = 6 mm, a clear deviation from the inflow velocity profile of Pirozzoli et al. (2018) is visible.
The interplay between the bubbles and the liquid phase causes an increase in the turbulent kinetic
energy (TKE), as seen in Fig. 7.18c.

7.7.4 Bubble statistics

In the preceding section, the evaluation of the boiling flow has focused on flow field data. The
final stage of the flow analysis, however, aims at evaluating the dispersed data related to single
bubbles. The evaluation of this data is divided into two steps. First, bubble statistics accounting
for all bubbles in the computational domain are evaluated. Second, the local bubble statistics
are assessed using the Voronoi analysis from Ch. 5. Therefore, the spatial evolution of bubble
statistics can be studied.

Global bubble statistics

The distributions of bubble sizes and bubble velocities are evaluated on a global level. For every
time step, the computational domain contains between 1100 and 1200 bubbles of various sizes.
The probability distribution of bubble sizes is provided in Fig. 7.19. The majority of the bubbles
have a size of 15-61 pum, corresponding to between one and four times the grid size Ax;. This
bubble size represents the early growth stage of the bubbles after the nucleation event. With
larger bubble size, the frequency is much lower. From a bubble count perspective (left axis, PDF),
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Figure 7.20: Visualization of the evaluation locations for the Voronoi analysis. Bubble clusters are evaluated at xo = 3, 6,
and 9 mm (x1 = 2.5 mm for all points). Error bars represent the spatial uncertainty calculated from the
mean spatial expansion of the bubble clusters. Grey areas represent the bubbles projected onto the wall,
black areas are covered by the liquid phase (¢ < 0.5), white areas are dry-spots (¢ > 0.5).

bubbles of 0.6 mm and larger play a negligible role. In contrast, they dominate the volumetric
contribution to the total gas volume, as visualized by the green steps in Fig. 7.19.

Local bubble statistics

Global bubble analysis in the previous section does not allow for an evaluation of the spatial
distribution of statistical information. With the aid of the grouped Voronoi framework of Ch.
5, a consistent derivation of local bubble statistics is possible for even a low amount of bubble
datasets. It is necessary to use uncorrelated snapshot data for the evaluation of local statistics
(refer to Weber et al. (2023)). The required time interval for obtaining uncorrelated datasets is
set to a third of the turnover time. For each instantaneous bubble dataset, a Voronoi diagram
is constructed in the bubble layer to define the bubble cells, which are grouped into clusters
of N4 = 16 bubbles. This procedure is repeated for all uncorrelated bubble datasets of the
simulated flow.

For the local evaluation, three representative locations in the flow are used, which are visualized
in Fig. 7.20. In this figure, the error bars visualize the inherent spatial uncertainty in local bubble
statistics. For these locations, the bubble sizes, the gas content, and the gas content distribution
across the bubble sizes are evaluated. The results of this evaluation are presented in Fig. 7.21.

In the first panel (Fig. 7.21a), the spatial evolution of the bubble size PDF is studied. The
occurrence frequency of the smaller bubbles is similar across all considered locations. However,
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significant differences appear for bubbles larger than 0.3 mm in diameter. For o = 3 mm, no
bubbles larger than 0.3 mm are seen, whereas a multi-modal distribution is observed for o = 6
mm and xo = 9 mm, with local peaks at 0.6 mm diameter and 1.0 mm diameter, respectively.

InFig. 7.21c, the probability distribution of the bubble cell-averaged gas content is shown. Similar
to Fig. 7.21a, a unimodal shape is only observed at location x5 = 3 mm. Downstream, higher
values in the cell gas content become more likely to contribute to the local time-averaged gas
content.

The interesting combination of the data from Fig. 7.21a and Fig. 7.21b is the gas content contri-
butions of each bubble diameter class. The distribution of this quantity is shown in Fig. 7.21c.
For example, this distribution is the solution quantity of the MUSIG model in RANS-based
two-phase flow simulations (see Krepper et al. (2013)). At the first location (z3 = 3 mm), the
gas content is dominated by smaller bubbles up to 0.4 mm. Downstream of 2 = 6 mm, two
separate peaks in the distribution become apparent. At z3 = 9 mm, a significant separation
between small and large bubbles is present, where intermediate bubble sizes do not appear. For
this distribution, it is concluded that, at the downstream locations, the growth of all seed bubbles
terminates with a coalescence event with a large bubble. The modelling of these coalescence
events (e.g., Prince and Blanch (1990)) to predict the distributions shown in Fig. 7.21c constitutes
a primary challenge for RANS-based simulation (as in Krepper et al. (2013)). For the present
interface-resolved simulation, experimental data for comparison of coalescence would further
help the validation of the simulated coalescence events (compare Kaiser et al. (2024)).
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Figure 7.21: Evaluation of local (a) bubble size probability distribution, (b) void fraction probability distribution, and (c)
percentage of the total void fraction that is transported by bubbles within a range of diameters.
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8 Summary

In this final chapter of the thesis, conclusions (Sec. 8.3) are drawn from the work presented in
Ch. 4 to Ch. 7. Furthermore, the major scientific contributions of this thesis are summarized in
Sec. 8.2. The chapter closes, in Sec. 8.3, with final remarks concerning future developments and
analyses.

8.1 Conclusions

In the introduction of this thesis, a need to conduct large-scale interface-resolved simulations of
boiling flows was identified. This need stems from the complexity of boiling flow phenomena,
which (i) renders experimental measurements challenging and (ii) limits the accuracy of common
models for RANS-based simulations. A potential solution to the latter challenge is using interface-
resolved simulations to improve PDF models that represent the polydispersity in RANS-based
simulations. For this purpose, an advanced numerical framework was developed that is capable of
simulating boiling flows efficiently and allows for the consistent analysis of local bubble statistics.

In Ch. 2, the accurate conservative diffuse interface (ACDI) method was identified as a promising
interface-capturing method, as it allows for highly efficient calculations. Numerous implemen-
tations of the ACDI method exist in open-source codes. However, the ACDI method has not
previously been applied to complex boiling flows. Therefore, fundamental developments for this
application were required (Ch. 4). These developments include (i) the derivation of a consistent
system of transport equations, (ii) the development of an efficient FFT-based pressure solution
scheme, suitable for simulating boiling flows, and (iii) the development of a phase change model
for the ACDI method.

When deriving the system of transport equations, contributions of the regularization terms, which
maintain the equilibrium profile of the phase interface during the simulation, were identified
(Ch. 4). For boiling flows, an analogy between the regularization term and the interfacial
velocity jump was identified, highlighting that the contribution of the regularization terms is
much more significant in boiling scenarios. Interestingly, the derivation of the momentum
transport equation revealed commonly neglected contributions of the regularization terms that are
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important for accurately simulating boiling flows. Even in the absence of phase change, significant
improvements were observed when compared to benchmark simulations in the literature (Ch. 6).
It is, therefore, concluded that when simulating boiling flows with the ACDI method, using the
presented regularization contributions improves the accuracy.

In addition, for large flow problems, an efficient FFT-based solution scheme is required for solving
the computationally expensive pressure Poisson equation. However, for boiling flows involving
high density contrasts, existing FFT solution schemes were found to exhibit unacceptable pressure
oscillations. In this work, an FFT momentum-based pressure treatment for density jumps (MPDJ)
was developed to overcome this problem (Ch. 4). In Ch. 6, a series of numerical benchmarks
led to the conclusion that the FFT-MPDJ solver (i) suppresses spurious pressure oscillations, (ii)
achieves an improved accuracy for interfacial pressure jump calculations, and (iii) allows for a
faster pressure adaptation to the flow field during the simulation startup.

The modelling of phase change is required to satisfy both efficiency and robustness in the mass
transfer rate calculations. The first requirement was achieved by developing a kinetic phase change
model for the ACDI method that is free from simulation-dependent parameter adjustments. The
second requirement was satisfied by deriving a phase change time step constraint that must match
the time step constraint of the ACDI interface regularization. For this purpose, a dynamic
adaptation of the non-dimensional regularization speed was employed. This novel strategy was
found to return accurate results reliably across all considered computational settings.

Three-dimensional simulations of boiling flow scenarios demonstrated that energy-based surface
tension models led to more spurious currents than the continuum surface forcing (CSF) method
(Ch. 6). It is emphasized that this result is counterintuitive, as the literature reports the reverse
trend for non-phase change simulations. Accordingly, a comprehensive comparison of surface
tension models was conducted to provide a best practice guideline for boiling simulations using
the ACDI method. It is concluded that the sharpened CSF model by Raeini et al. (2012) returned
the lowest spurious currents.

Finally, the simulation framework was successfully validated through an extensive testing cam-
paign involving ten different setups. These tests range from conceptual tests to complex bubble
dynamics with phase change. As reported in Ch. 6, good agreement with theoretical and experi-
mental data was obtained. Therefore, it is concluded that the simulation framework is a suitable
tool for conducting realistic, large-scale boiling flow simulations.

A proof of concept for the application of the ACDI method to simulating nucleate boiling in a
turbulent subcooled flow was pioneered in this thesis (Ch. 7). The considered simulation setup
aimed at replicating the experimental results of such a flow of boiling water at high pressures. A
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range of results was successfully compared to experimental data, exhibiting satisfactory agree-
ment. In the subsequent analyses of the simulation results, both flow field and bubble statistics
were evaluated. It was demonstrated that the presented interface-resolved simulation provides
full access to all flow quantities, thus supplementing experiments with data that is otherwise
challenging or impossible to measure.

As the developed software can simulate the bubble dynamics of boiling flows, a suitable tool for
postprocessing such data was needed and developed. First, in Ch. 3, it was demonstrated that
Voronoi diagrams can provide a proper definition of a bubble cell. However, it was also found that
when evaluating local bubble statistics, with a single bubble per cell, many instantaneous datasets
are required to achieve an acceptable sample size for statistical evaluation. For interface-resolved
simulations, this is computationally too expensive. A constrained /K -Means clustering algorithm
for grouping Voronoi cells was found to solve this problem (Ch. 5). It is, therefore, concluded that
grouping the bubble cells (i) allows an instantaneous definition of a bubble statistic, and (ii) ensures
a spatially homogeneous distribution of the sample size. Finally, in Ch. 7 it was successfully
demonstrated that the proposed grouped Voronoi analysis provides a consistent evaluation of
bubble statistics that can be used as reference data for RANS-based simulations.

8.2 Contributions of this work

In this thesis, significant contributions to (i) the efficient interface-resolved simulation of boiling
flow phenomena, and (ii) the analysis of the resulting data. In line with the conclusions drawn
in Sec. 8.1, the following major contributions to the numerical simulation of boiling flows are
summarized in the following

 Derivation and validation of a consistent system of transport equations for applying the
accurate conservative diffuse interface (ACDI) method to boiling flow scenarios (Ch. 4 and
Ch. 6)

* Development, analysis and validation of an efficient and robust phase change model for the
application to the ACDI method (Ch. 4 and Ch. 6)

* Development and validation of the FFT-MPDIJ pressure solution scheme, which allows the
simulation of boiling flows at high density ratios without pressure oscillations (Ch. 4 and
Ch. 6)

* Assessment and comparison of various surface tension models regarding their suitability
in boiling flow simulations using the ACDI method (Ch. 6)
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* Development and implementation of a consistent methodology to access the local bubble
statistics through grouped Voronoi cells. This involves the instantaneous definition of a
bubble statistic (Ch. 5 and Ch. 6)

* Implementation of a scalable state-of-the-art software capable of simulating turbulent
subcooled boiling flows with the ACDI method (Ch. 7)

* Analysis of a turbulent subcooled boiling flow simulation, involving a comparison of the
results to experimental data (Ch. 7)

8.3 Outlook

The results presented in this thesis inspire a range of potential future research projects that are
beyond the scope of this thesis. A selection of some future study recommendations is provided
in the following.

The presented interface-resolved simulation of nucleate boiling in turbulent flows relies on specific
model parameters that potentially influence the results. In a future study, the influence of the
model parameters could shed more light on the uncertainties of the simulation.

Thus far, the simulation of nucleate boiling on a heated wall has been limited to fluids that do
not form a micro-layer. An interesting project could be implementing such a micro-layer subgrid
model. This feature could significantly improve the versatility of the simulation software. For
example, such a micro-layer model would enable the simulation of water at atmospheric pressures.

Even though all of the numerical schemes in this thesis were carefully selected to ensure an
efficient and scalable simulation of boiling flows, they remain computationally costly and time-
consuming. In recent years, greater interest in heterogeneous computer systems has led to an
increase in the amount of GPU resources offered on HPC clusters. A future study could adapt the
developed software for executing computational tasks on GPUs and, thus, decrease the time-to-
result significantly. This would enable larger simulations of a longer physical time.

Improving models for RANS-based simulations requires the statistical analysis of a wide range of
flow parameters. Accordingly, carrying out further simulations with additional sets of parameters,
such as different wall heat fluxes, could provide more insights into the physics of boiling flows.
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A Appendix

A.1 Physical fluid properties

All of the fluid properties included in the present work are listed in Tab. A.l. Fluidss_ g refer
to fictive fluid properties found in the literature. Saturated water (at two different pressures) and
saturated ethanol (at atmospheric pressure), used for realistic boiling flow simulations, are also
included in this table.
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Physical properties used in this thesis, adapted from Weber et al. (2026).

Table A.1

Property Unit Fluid4'! Fluidg? Fluide! Fluidp® Fluidg® Water? Water® Ethanol®
o1 kgm™? 0.01 0.25 5 100 1 0.597 5.391 1.647

P2 kg m 3 1 2.5 200 1000 1000 958.4 884.84 736.44

I kgm 's~! n/a n/a 0.005 1 0.1 1.26-107° 1.51-10"% 1.02-107°
12 kgem 's™! n/a n/a 0.1 10 10 2.80-107% 1.49-107* 4.49-10~*
Cpa Jkg' K™Y 200 10 200 n/a n/a 2030 2741.6 1806

Cp2 JkgT' K™ n/a 10 n/a n/a n/a 4216 44134 3185

A1 Wm K™t 0.005 0.0035 1 n/a n/a 0.025 0.035 0.0199

Ao Wm K™ n/a 0.0015 n/a n/a n/a 0.679 0.67 0.1654
La Jkg™? 10* 102 10* n/a n/a 2.26-106 2.78-10% 8.499-10°
Tiat °C n/a n/a n/a n/a n/a 100 182 78.2

o Nm™! n/a n/a 0.1 24.5 1.96 0.059 0.0417 0.0174

! from Dongliang Sun and Chen (2014)

2 from Irfan and Muradoglu (2017)

3 from Adelsberger et al. (2014)

4 at 1013 hPa, from Sato and Ni¢eno (2013)
3 at 1.05 MPa, from Wagner et al. (2000)

6 at 1013 hPa, from Kleiber and Joh (2013)
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A.2 Phase change model for arbitrary interface thicknesses

Table A.2: A selection of non-dimensional interface thicknesses €* and their corresponding phase change factors 0.

Interface thickness Phase change constant

€* Ope
0.55 0.645
2/3 0.645

1 0.7

1.1 0.73

2 0.78

A.2 Phase change model for arbitrary interface
thicknesses

The phase change model developed in Sec. 4.4.1 is developed for a non-dimensional interface
thickness of €* = 1. However, the ACDI equation of Jain (2022) allows for thinner interfaces in
the range of 0.5 < €* < 1, with no additional computational cost. Therefore, extending the phase
change model in Sec. 4.4.1 to arbitrary interfaces can be of interest. This extension is presented
below.

A smaller ¢* means that, compared to a situation where ¢* = 1, the same amount of phase change
must occur within a thinner interface region. Therefore, the mass transfer rate M needs to be
increased. To account for this, an inverse proportionality of AT}?F to €* is postulated. This is
analogous to using a dependency of |V ¢| on the mass transfer rate M, as in Brown et al. (2023).
With the proposed modification factor 6, the modified Eq. (4.46) reads

ATRE = =T0,0,.0, 050., (A1)

where 1
0= —. (A2)

€

A slight dependency between €* and the phase change constant 6, is observed. For various
values of €*, the corresponding values of 0, are reported in Tab. A.2. Based on the values of 6,
in this table, a slight non-linear dependency is observed. Therefore, the corresponding value for
0, must be manually set in accordance with Tab. A.2 before starting the simulation.

All parameters reported in Tab. A.2 are applied to the Stefan problem (see Sec. 6.4) and the
sucking interface problem (see Sec. 6.5). The results of these tests are shown in Fig. A.1. For
the Stefan problem (Fig. A.la), the accuracy of the results exhibit clear improvements with lower
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Figure A.1: Effect of interface thickness €* on the results for two benchmarks. (a) Results obtained for the Stefan problem
with the settings reported in Sec. 6.4. (b) Results obtained for the sucking interface problem with the settings
reported in Sec. 6.5.

values of €* until €* = 2/3. The results of the sucking interface problem (Fig. A.1b) show that
€* has a significant impact on the initial interface speed. The interface speed is significantly
slower than the analytical solution for small values of €* (e.g. 0.55). In contrast, larger values
(e.g., 2) lead to an overprediction of the initial interface speed. Combining the findings of both
benchmarks, there is no clear recommendation for setting a value of €*. However, a good balance
of accuracy in both benchmarks is achieved for ¢* values around 1.
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A.3 Phase change model for non-cubic grid cells

A.3 Phase change model for non-cubic grid cells

The phase change model proposed in Sec. 4.4.1 was developed for uniform cubic grids. Accord-
ingly, all benchmark simulations in Ch. 6 use cubic grids. However, the extension of the phase
change model in Sec. A.2 can allow the use of a non-cubic grid. This can be helpful for reducing
the number of grid points when refining the grid along one axis only (e.g., Ch. 7).

In non-cubic (uniform) grids, the size of a grid cell is Azy X Az X Axs, where the index refers to
the 1, x2, and z3-directions. The interface thickness € is constant, leading to a spatially varying
€*, depending on the local interface orientation. Simultaneously, when calculating Angl (see
Eq. (A.1)), a directional dependency is observed through the factors 6;, 0,., and §.. Therefore,
each grid direction leads to a different temperature increment, AT’ 1’2'511, AT;’ZC}Q, and AT;E\?.
To overcome this problem, the three different increments are weighted based on the local interface
orientation. The interface normal vector 77 has the components

= ny (A3)
The components of 77 are then used as weights to calculate AT;JCEl with

‘nl‘ATﬁgh + |”2|AT£312 + |n3|AT£2§’13

[n1| + [na| + |ns|

ATRE = (A4)

This modification is now compared to the analytical solution from Scriven (1959) by simulating
three-dimensional bubble growth in zero gravity. The properties of saturated water at 1.05 MPa
are considered (see Tab. A.1), as in Ch. 7. For a general description of this flow problem, refer to
Sec. 6.6. This specific setup uses the parameters described in Sec. 7.2, with rg = 15.6 pm. The
considered cell sizes are

e 15.6 x 15.6 x 10.4 pm? with € = 2/3Ax4
e 15.6 x 15.6 x 15.6 pym? with € = Az,
e 15.6 x 15.6 x 15.6 pm? with € = 0.55Ax;

e 15.6 x 15.6 x 7.8 pm3 with € = 0.55Ax;

The results of the bubble radius over time are provided in Fig. A.2. Consistent with Sec.
A.2, smaller interface thicknesses lead to less accurate results. However, the grid cell sizes
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Figure A.3: Visualization of mass transfer rate distribution for non-cubic grid cells on a slice through the growing bubble.
Arrows quantitatively depict the velocity field. Figure corresponds to ¢ = 35.7 ms and a grid cell size of
15.6 x 15.6 x 10.4 pm?.

15.6 x 15.6 x 10.4 pm?® and 15.6 x 15.6 x 7.8 pm? yield very similar results to those of the cubic
cells with e = Axy. All grid sizes result in an underestimation of the analytical growth rate, due
to the small initial radius 7o (see Sec. 7.2.1).

The mass transfer rate distribution for a non-cubic grid cell is shown in Fig. A.3. In this case, the
grid cell lengths have the ratio 21 /x3 = 2. As expected, the mass transfer rate M is significantly
larger where the interface normal vector points in the z3-direction. Accordingly, M is reduced
where 77 points in the x1 -direction. Minor spurious currents are observed inside the bubble, which
do seem to affect the overall growth rate. In conclusion, the extension presented in this section
enables the use of non-cubic grid cells.
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Figure A.4: Wall heat flux that needs to be accounted for in the calculation of AT;gl.

A.4 Phase change model for conjugate heat transfer

When non-adiabatic walls are used in combination with boiling flow (e.g., Ch. 7), a modified
phase change model is needed. Recalling the assumptions of the phase change model development
in Sec. 4.4.1, the following inconsistency is observed. Specifically, this inconsistency concerns
the assumption that the mass transfer rate is dictated by the heat transport from the liquid side into
the interface. For non-adiabatic walls, however, an additional heat flux enters the interface region
at the triple contact line (TLC), where the interface is in contact with the solid wall. Therefore,
the wall-adjacent fluid points require a modified temperature increment ATIQLEIM. Within the
interface region, defined by 6, the additional wall heat flux ¢, (see Fig. A.4) directly translates
to phase change. At a grid point with a grid index £ = kypas + 1, the energy balance of the

additional heat flux and the phase change is

T-T,
72

270, = —ML. (A.5)

Further, it is assumed that the temperature in the diffuse interface is approximately zero, i.e.,
T =~ 0.
Reformulating Eq. (A.5), and adding it to Eq. 4.46, yields

ATREL = —0,05, 05(0,0.T" + 205T), (A.6)
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Figure A.5: Visualization of the effect of Eq. (A.6) on a slice through a small bubble sliding on a superheated wall. The

green line represents the location of the wall/IBM. Dotted, dashed, and solid lines refer to the iso-contours
of the phase field values of ¢ = 0.1, ¢ = 0.5, and ¢ = 0.9.

where 0, accounts for the change in the heat conductivity across the diffuse interface, i.e.,

Or=A/A2— 1o+ 1.

In Fig. A.5, the effect of using Eq. (A.6) is visualized. This figure depicts a representative bubble
from the nucleate boiling simulation in Ch. 7. The core of the bubble remains at saturation
temperature. Due to the subcooled bulk flow, the top of the bubble condenses. However, on the
wall, the mass transfer rate M is significantly increased to balance the heat that is transported

from the wall into the interface region.
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