
Proceedings of the 2025 Winter Simulation Conference 

E. Azar, A. Djanatliev, A. Harper, C. Kogler, V. Ramamohan, A. Anagnostou, and S. J. E. Taylor, eds. 

DATA REQUIREMENTS FOR RELIABILITY-ORIENTED DIGITAL TWINS OF ENERGY 

SYSTEMS: A CASE STUDY ANALYSIS 

 
 

Omar Mostafa1 and Sanja Lazarova-Molnar1,2  

 
1 Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, GERMANY 

2 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Odense, DENMARK 
 
 
ABSTRACT 

Ensuring reliability of energy systems is critical for maintaining a secure and adequate energy supply, 
especially as the integration of renewable energy increases systems’ complexity and variability. Digital 
Twins offer a promising approach for data-driven reliability assessment and decision support in energy 
systems. Digital Twins provide decision support by dynamically modeling and analyzing system reliability 
using real-time data to create a digital replica of the physical counterpart. As modern energy systems 
generate vast amounts of data, it is essential to precisely define the data required for enabling Digital Twins 

for their reliability assessment. In this paper, we systematically investigate the data requirements for 
reliability-oriented Digital Twins for energy systems and propose a structured categorization of these 
requirements. To illustrate our findings, we present a case study demonstrating the link between data and 
model extraction for enhancing system reliability. 

1 INTRODUCTION 

Ensuring reliability of energy systems is important to maintain an adequate and secure energy supply, which 

has a direct impact on industrial productivity, economic stability and critical infrastructure. With the 
increasing share of Renewable Energy Sources (RES), the reliability of power systems is challenged by 
intermittent supply, unexpected disturbances and demand mismatches (Johnson et al. 2019; Denholm et al. 
2020). While the impact of the probabilistic nature of RES on the adequacy of the power system has been 
well studied, more attention needs to be paid to the reliability of the renewable energy systems and power 
conversion systems (Niu et al. 2021). Unlike traditional power plants, which operate with predictable 

output, renewable energy generation is subject to variability due to weather, equipment degradation and 
external interactions. Failure of individual renewable components, such as inverters, battery storage or 
photovoltaic cells, can result in degraded performance or insufficient output (Sonawane et al. 2023). As 
managing renewable energy systems and ensuring the reliability of their electrical equipment becomes more 
complex, it is important to use advanced digital and data-driven techniques to assess the reliability of energy 
systems throughout their lifecycle (Li and He 2021). 

 The rapid evolution of digital technologies has paved the way for data-driven reliability assessments in 
energy systems. The integration of data-driven reliability assessment with Digital Twins (DTs) offers a 
transformative approach to improving reliability of future power systems (Song et al. 2023). DTs can enable 
real-time monitoring, predictive maintenance, and optimization capabilities (Li and He 2021). DTs can also 
address various challenges in smart energy systems, including digitization and socio-
economic/environmental transitions and can enable remote monitoring, condition assessment, fault 

diagnosis, and optimization of renewable energy systems, transmission equipment and storage systems 
(Ardebili et al. 2021). Numerous research papers have demonstrated DTs’ ability to improve reliability of 
various energy systems and revolutionize the energy sector (e.g., predicting failures and optimizing 
maintenance strategies) (Yu et al. 2022; Jafari et al. 2023). As the world faces the challenges of integrating 
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renewable energy sources and optimizing energy consumption, the role of DTs in creating more sustainable 
and resilient energy systems has become increasingly important. 
 A key feature of DTs is their bidirectional connection to physical systems, with data flowing both from 

the physical system to the DT and vice versa. The underlying models of DTs rely on a continuous flow of 
high-quality data to accurately represent and simulate their physical counterparts (Glaessgen and Stargel 
2012). The continuous exchange of information between the physical system and its DT allows for adaptive 
updates and dynamic feedback. This adaptability enables DTs to proactively respond to emerging issues 
and provide decision support to support a more stable, responsive, and sustainable energy infrastructures.   
 To enable the development and implementation of DTs in energy systems, it is essential to understand 

and address the data requirements that enable and facilitate their implementation and functionality. Even 
more importantly, data needs to be matched to the purpose of each specific DT (Lazarova-Molnar 2025). 
Our focus is on DTs for assessment of reliability of energy systems. Accuracy and effectiveness of DTs is 
directly related to the quantity, quality, and timeliness of the data they receive (Ebrahimi 2019). 
 To illustrate the data requirements for reliability-oriented DTs in energy systems, we present a case 
study of a small photovoltaic (PV) system. Based on literature insights, this case study identifies essential 

data required for reliability assessment (such as sensor data, fault records, and environmental factors) and 
demonstrates the extraction of reliability models from real system data. The study helps illustrate the 
theoretical concepts and data collection challenges in DT implementation. 
 In this case study, we aim to explore and define the essential data requirements for effective 
development and implementation of DTs for reliability assessment of energy systems. We begin by 
identifying essential system-level parameters (state and condition monitoring data) to model the reliability 

of the energy system (in this case a small photovoltaic system). Using these insights, we build a case study 
to demonstrate how a DT can use this data to reduce outages and improve fault analysis. Our case study is 
based on the Fault Tree (FT) reliability models that the DT automatically discovers from system data and 
then uses to assess system reliability. The simulated data includes FT basic events such as sensor data, fault 
records, and environmental factors that affect component performance. 

In this paper, we begin with a literature review of the related work on energy system reliability using 

DTs in Section 2. Then we identify the data requirements for using DTs to maintain reliability of energy 
systems in Section 3. After that, we demonstrate the extraction of reliability models from energy system 
data with an illustrative case study in Section 4. Finally, we summarize our findings and discuss potential 
extensions of this work in Section 5. 

2 BACKGROUND AND RELATED WORK 

In the following, we provide a background on reliability assessment in energy systems, as well as an 

overview on the use of Digital Twins (DTs) in energy systems. 

2.1 Reliability of Energy Systems 

Reliability of energy systems has two fundamental facets: security and adequacy (Tuinema et al. 2020). 
Adequacy is the system's ability to meet demand under normal operating conditions, while security is the 
system's ability to withstand disturbances like outages or extreme weather events (Fulli et al. 2016). Each 
facet of reliability requires different categories of data to support the functionality of a reliability-oriented 

DT. For example, the data required to assess reliability of a component’s availability (adequacy) differs 
from the data required to assess a component's remaining service life (security). 
 Traditional reliability assessments of energy systems are often characterized by limited automation and 
heavy dependence on manual methods. Reliability is typically evaluated using analytical methods using 
classical models (e.g., event trees, FTs, or reliability block diagrams) and simulation methods (e.g., Monte 
Carlo) (Hou et al. 2021).  However, the increasing complexity and dynamic nature of modern energy 

systems, and rapidly evolving energy networks, incorporating renewable energy sources, smart grids and 
distributed energy resources, requires continuous and adaptive reliability assessment (Bera et al. 2020). To 
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enable continuous and adaptive reliability assessment, automated reliability assessment methods are 
becoming increasingly relevant (Bertozzi et al., n.d.; Duchesne et al. 2020). 
 Fault Tree Analysis (FTA), for example, is a widely used reliability assessment technique that allows 

the identification of critical failure paths by analyzing the logical dependencies between component failures 
(Trivedi and Bobbio 2017). FTA consists of two main approaches: qualitative and quantitative. The 
qualitative approach focuses on analyzing the structure and components of the FT, while the quantitative 
approach focuses on calculating key metrics such as failure probabilities and system reliability using the 
FT (Trivedi and Bobbio 2017). However, FTA is typically based on expert-knowledge rather than 
observable data from the system (Niloofar and Lazarova-Molnar 2023).  

Recent advances in FT extraction have focused on automated, data-driven methods. For example, 
Verkuil et al. (2022) used the C4.5 decision tree and LIFT algorithm (Learning FTs from Observational 
Data) to generate explainable FTs from sensor data (Nauta et al. 2018). Grimmeisen et al. (2022) introduced 
a case study on model-to-model transformation to derive FTs from DTs, integrating them with Markov 
chains for continuous reliability assessment. Niloofar and Lazarova-Molnar (2023) introduced their 
DDFTA algorithm, using a naive Bayes classifier to predict failures from time series data. These approaches 

improve the adaptability and accuracy of reliability assessment for complex power and industrial systems. 

2.2 Digital Twins for Reliability of Energy Systems 

DTs are high-fidelity digital replicas of physical systems that continuously collect and analyze data for 
informed decision making. The concept originated at NASA in the 1960s as a “living model” for the Apollo 
program (Allen 2021) and was later introduced to industry by Michael Grieves in 2002 (Grieves and Vickers 
2017). In 2012, NASA defined DTs as integrated, multiphysics, multiscale, and probabilistic simulations 

of a system that use physical models, sensor updates, and operational history to mirror its corresponding 
physical twin (Glaessgen and Stargel 2012). Since then, the concept of DT has evolved to use advanced 
technologies such as smart sensors, smart devices, cloud platforms, artificial intelligence (AI), and the 
Internet of Energy (IoE) in electric grids (Sifat et al. 2023). 
 In energy systems, DTs serve as virtual entities that replicate the properties, behaviors, and interactions 
of physical energy assets such as power plants, grids, and substations (Song et al. 2023). They enable real-

time monitoring, performance optimization, and predictive maintenance by creating a continuous feedback 
loop between the physical and virtual worlds (Palensky et al. 2022; Pan et al. 2020). DTs are transforming 
energy systems by enhancing efficiency, reliability, and sustainability across various sectors, including 
power generation, transmission, distribution, energy storage, industrial management, and smart cities 
(Mchirgui et al. 2024). DTs are increasingly used in various facets of energy systems to improve 
cybersecurity, efficiency, sustainability, and reliability (Jafari et al. 2023; Cali et al. 2023).  

 Other studies have demonstrated the capabilities of DTs in virtual simulation, condition monitoring, 
performance optimization, and fault diagnosis for renewable energy systems (Li and He 2021). For 
example, De Kooning et al. (2021) provide a comprehensive review of modeling techniques for wind 
turbine components in the context of DTs for wind energy conversion systems. Similarly, Augustyn et al. 
(2021) presents a probabilistic framework for updating the structural reliability of offshore wind turbine 
substructures with DTs. However, these studies focus primarily on component modeling and structural 

reliability, respectively, without considering the overall system reliability. 
 Despite significant advances in DT research, there remains a research gap in the existing literature 
regarding the development and implementation of DTs for energy system reliability. This gap highlights 
the need for more focused research efforts to bridge the gap between DT technology with advanced 
reliability assessment methods for energy systems. While the potential benefits of DTs for improving 
energy reliability are clear, the data required to automatically create accurate reliability models (i.e., digital 

replicas) are not well defined. This limitation underscores the need for further research into the data 
requirements for DTs in power systems, through case study analysis, which can provide practical insights 
into implementation challenges and best practices. 

2334
Authorized licensed use limited to: KIT Library. Downloaded on January 30,2026 at 00:04:24 UTC from IEEE Xplore.  Restrictions apply. 



Mostafa and Lazarova-Molnar 
 

 

3 DATA REQUIREMENTS FOR RELIABILITY-ORIENTED DIGITAL TWINS OF 

ENERGY SYSTEMS 

Data generated by energy systems can be used as input to DTs to simulate system behavior and enable 

informed decisions to improve reliability. However, the effectiveness of DTs in improving energy system 
reliability is fundamentally dependent on the quantity, quality and timeliness of the data provided. 
Therefore, to develop and implement reliability-oriented DTs for energy systems, it is essential to identify 
and categorize the necessary data sources. This section defines the data required for DT implementation 
and their potential sources. 

3.1 Reliability Models for Energy Systems 

To determine the data requirements for DTs aimed at enhancing the reliability of energy systems, it is first 
necessary to understand the underlying reliability models that are used to evaluate them. Reliability 
assessment is typically performed using either analytical models or simulation models. Tuinema et al. 
(2020) outline three main categories of reliability modeling relevant to energy systems: components, small 
systems, and large systems. While small systems allow for component-level modeling, large systems 
require aggregation approaches due to their complexity and scale. Below is an overview of reliability 

models for energy systems. 

3.1.1 Reliability Models of Components in Energy Systems 

Component reliability models form the basis of reliability analysis for energy systems. Typical approaches 
to component reliability modeling include the use of probability distributions such as the exponential, 
Weibull, or bathtub curve (Trivedi and Bobbio 2017). Each distribution is represented by a Probability 
Density Function (PDFs) done through parameters such as failure rate (𝜆)  and repair rate (𝜇) . The 

exponential distribution is widely used to describe random failures characterized by a constant failure rate 
(steady-state operation) such as an electronic component like circuit breakers and relays. The PDF of an 
exponential distribution is 𝑓(𝑡) =  𝜆𝑒−𝜆𝑡, where 𝜆 is the constant failure rate and 𝑡 is time. The Weibull 
distribution, on the other hand, can describe components with non-constant failure rates (age-dependent 
operation) such as a mechanical component like wind turbine gearboxes and bearings. The PDF of a 
Weibull distribution is expressed as 

𝑓(𝑡) =  
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1
𝑒

−(
𝑡

𝜂
)

𝛽

, 

where 𝛽 is a shape parameter (𝛽 ≥ 0), and 𝜂 is a scale parameter (𝜂 ≥ 0). For a shape parameter 𝛽 < 1, 
𝛽 = 1, and 𝛽 > 1, the failure rate is decreasing, constant, and increasing over time, respectively. 

 

Figure 1: The Bathtub Curve. 

 The Bathtub curve (Figure 1) describes component failure rates over the entire life cycle: an initial high 
rate from early defects, a constant rate from random failures, and a rising rate in the wear-out phase due to 
aging and degradation. 
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 Another approach to component reliability modeling is the two-state Markov model (Tuinema et al. 
2020), which represents components in two states, either available (up) state or unavailable (down) state, 
suitable for repairable systems.  The probabilities of these states are represented by: 

𝑃𝑆𝑢𝑝
+  𝑃𝑆𝑑𝑜𝑤𝑛

= 1, 𝑃𝑆𝑢𝑝
=  

𝜇

𝜆+ 𝜇 
= 𝐴, 𝑃𝑆𝑑𝑜𝑤𝑛

=  
𝜆

𝜆+ 𝜇 
= 𝑈, 

where 𝑃𝑆𝑢𝑝
the probability of the up state which equals the availability 𝐴 of the component, and 𝑃𝑆𝑑𝑜𝑤𝑛

 the 

probability of the down state which equals the unavailability 𝑈 of the component. Therefore, to model the 

reliability of components, data on failure times and repair times is required. 

3.1.2 Reliability Models of Small Energy Systems 

Small energy systems consist of several components. Common reliability models for small energy systems 
are reliability networks, FTs, event trees and Markov models. For example, Fault Tree Analysis (FTA) 
systematically identifies potential failure modes and their logical links to system-level failures, offering 

qualitative insight into critical failure paths and quantitative metrics such as system reliability and failure 
probabilities (Tuinema et al. 2020). In FTA, a top event is the undesired system failure being analyzed, 
intermediate events are failures caused by other events, and basic events are the simplest occurrences that 
represent component-level faults. System failure probabilities are derived from basic events probabilities 
using Boolean logic (Niloofar and Lazarova-Molnar 2023). Markov models are also effective for reliability 
modeling of small energy systems, especially for capturing various states of the same components (Tuinema 

et al. 2020). Thus, modeling reliability of small systems requires data on component failure probabilities, 
system architecture/topology, and interdependencies between components. 

3.1.3 Reliability Models of Large Energy Systems 

For larger energy systems, modeling each component state would result in an extremely complicated model. 
Therefore, there are reliability methods specific to larger systems, such as state enumeration and Monte 
Carlo simulations. State enumeration considers system states defined by different combinations of 

component states to determine failure probabilities and impacts. When analytical enumeration is 
impractical, Monte Carlo simulation can be used. Monte Carlo simulation estimates system reliability by 
simulating random failure scenarios to evaluate their impact on system reliability. Both methods are used 
to calculate probabilistic reliability indicators such as Loss of Load Probability (LOLP) or Expected Energy 
Not Supplied (EENS). These methods typically require data on component failure rates, operational loads, 
and generation profiles to accurately model system reliability (Tuinema et al. 2020). 

3.2 Categorizing Data for Enabling Reliability-Oriented Digital Twins in Energy Systems 

Reliability-oriented DTs in energy systems require a variety of data to support the modeling techniques 
introduced in Section 3.1. Kasper et al. (2022) emphasize that effective DT platforms must meet the specific 
data and integration needs of industrial energy systems. The data needed for automatic reliability 
assessment of an energy system can be grouped into state data and condition monitoring data. Both are 
represented as time series and are critical for learning reliability models of energy systems. 

State data captures discrete states of system components over time, such as operating states and fault 
events. Typically in the form of fault records of system components, this data enables automatic learning 
of systems’ reliability models, such as a FTs (Niloofar and Lazarova-Molnar 2023; Dai et al. 2022). 
Condition monitoring data, on the other hand, includes continuous sensor readings, such as temperature, 
voltage, vibration, and pressure, providing insights into component health. This data can be used to 
automatically detect degradation patterns and estimate failure rates through probability distribution fitting 

or machine learning (e.g., Weibull or exponential models) (Friederich et al. 2021; Li and He 2021). 
 Based on the reviewed literature, we categorize the data sources essential for reliability-oriented DTs 
for energy systems into four application-specific categories: component-level, system-level, environmental 
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data, and expert knowledge. Component-level data include component’s operating parameters and 
performance metrics used to estimate component health and failure rates. System-level data capture 
interactions between components and system performance metrics to identify potential failure modes for 

small system as noted in Section 3.1. Examples include system topology, unit capacity, and load. 
Environmental data capture external factors affecting system reliability, such as weather conditions and 
grid stability information. This kind of data allows DT models to respond to changing external conditions, 
improving overall reliability. Finally, expert knowledge supports validation of DTs’ underlying reliability 
models with respect to behaviors of corresponding real-world systems. Figure 2 illustrates these four data 
categories hierarchically according to the scope of integration and relevance to reliability-oriented DTs. 

3.3 Linking Reliability Models to Data for Reliability-Oriented Digital Twins of Energy Systems 

This section links the reliability models discussed in Section 3.1 with the corresponding data requirements 
outlined in Section 3.2. Table 1 outlines the specific data needed for reliability-oriented DT in energy 

systems, based on different reliability models, allowing for automated model extraction and adaptation. 

4 ILLUSTRATIVE CASE STUDY 

In the following, we present a case study to illustrate the data requirements for extraction of reliability 
models from energy system data to enable Fault Trees (FTs) as underlying models for reliability-oriented 
DTs for energy systems. The goal is to identify the data needed to accurately reconstruct the original 
reliability model from a state log using a data-driven method.  For FT model extraction, we use the Data-

Driven Fault Tree Analysis (DDFTA) method, as introduced by Niloofar and Lazarova-Molnar (2023). 

4.1 Case Study Model 

Our case study examines a small solar power system consisting of a Photovoltaic (PV) module, a diode, a 
Miniature Circuit Breaker (MCB), a fuse, and an electrical load. The system converts solar energy to 
electricity, making it suitable for studying the impact of solar variability on reliability. The diode provides 
unidirectional current flow, while the fuse protects against overcurrent from the PV module. We assume a 

direct current (DC) load, such as a battery storage system. Figure 3a illustrates the case study system layout. 
 The reliability model is a FT, which typically consists of three levels: basic events (BE), intermediate 
events (IE) and a top event (TE) (Trivedi and Bobbio 2017). BEs include electrical failures, material 
degradation, high temperatures, environmental factors (e.g., shading) and other technical faults. IEs are 
derived from BEs and reduction in the power output or performance of components. TE represents the 
reduction or failure of the system to generate energy and serves as the ultimate indicator of reliability 

(Sonawane et al. 2023). Figure 3b shows the FT model for the system, which is also the ground truth model. 
 

 
 

Figure 2: Levels of data sources essential for reliability-oriented DT in energy systems specific to the 
application. 
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Table 1: Linking data requirements with different reliability models in energy systems. 

Reliability Model Data Required Model Extraction Key Performance 

Indicators (KPIs) 

Energy System 

Examples 

References 

Reliability 
Distributions   

Maintenance logs 

(failure and repair 

times/duration) 

Distribution Fitting 

(exponential, 

Weibull, bathtub, 

etc.),  

Failure rate, Mean-

Time-To-Failure 

(MTTF), Mean-

Time-To-Repair 

(MTTR)  

Components: 

Battery storage, 

transformer, 

turbine gearbox 

(Trivedi and 

Bobbio 

2017) 

Reliability Block 
Diagram (RBD) & 
Reliability 
Networks  

System 

architecture/topology, 

interdependencies, 

component failure 

probabilities 

Topological 

analysis of system 

connections from 

minimal cut sets 

Overall system 

reliability and 

failure probability, 

risk indices, 

sensitivity indices 

Small-scale 

grids, 

distribution 

networks, 

microgrids 

(Tuinema et 

al. 2020) 

Markov Models/ 
Two-State 
Markov Model 

Component state data 

(up/down), 

failure/repair times, 

sensor and operational 

time-series data 

Hybrid physics-

guided neural 

network modeling 

of state transitions, 

variational inference 

training 

Availability, MTTF, 

MTTR, transition 

probabilities 

Components: 

Battery storage, 

inverter, 

transformer 

(Liu et al. 

2022) 

Fault & Event 
Tree Models 

Basic event failure 

probabilities, system 

architecture/topology, 

interdependencies 

Topological 

analysis of system 

connections from 

minimal cut sets 

Overall system 

reliability and 

failure probability, 

risk indices, 

sensitivity indices 

Small-scale 

grids, 

distribution 

networks, 

microgrids 

(Lazarova-

Molnar et 

al. 2020; 

Niloofar and 

Lazarova-

Molnar 

2023a; 

Sonawane et 

al. 2023) 

Large System 
Models (State 
enumeration and 
Monte Carlo 
simulations) 

Time-series load and 

generation data, 

component failure 

data, outage records 

weather/environment 

Data-driven 

probabilistic 

methods 

Voltage stability 

indices, overload 

probabilities, 

reliability indices 

(e.g., LOLP, EENS) 

Large-scale 

networks, smart 

grids, 

transmission 

networks 

(Tuinema et 

al. 2020) 

  
 We use the ground-truth FT model of the PV system (Figure 3a) and the failure probabilities in Table 
2 to generate synthetic data for faults and failures, including event logs, sensor readings, and environmental 
conditions that reflect the real-world behavior. Niloofar and Lazarova-Molnar (2023) introduced a Data-
Driven FT Analysis (DDFTA) method, which automatically learns FTs from time-series fault data. Using 

this method, we automatically construct the FT from the synthetic data. To validate the extracted FT model, 
we compare it to the ground-truth FT model either through its Boolean equivalent or truth table. The 
Boolean expression represents the FT structure through logical relationships between components and 
system failure (TE), while the truth table lists all possible component states and their impact on the TE. 
This validation ensures accuracy of the data-driven reliability model extraction. 
 From the original FT model of the PV system (Figure 3b), the Boolean expression can be derived using 

the plus sign (+) to represent logical OR gates and the dot (∙) to represent logical AND gates between BEs. 
The resulting Boolean expression of the ground-truth FT model is given in equation (1): 

 𝑇𝐸 = 𝐵𝐸1 + 𝐵𝐸2 + (𝐵𝐸3 ∙ 𝐵𝐸4) + 𝐵𝐸5 + ⋯ + 𝐵𝐸17 + 𝐵𝐸18 (1) 

4.2 Illustration of Data Requirements 

To extract the system reliability model from data, this data must be first identified. The original FT model 
of the system includes several component faults and failure modes and their relationships with the system 
failure. To derive these relationships, we need to analyze the possible faults/failures (internal or external) 
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and study their impact on the system performance. Therefore, the data needed for such a study include time-
series fault logs and sensor measurements related to system performance. 
 Fault logs are historical records of discrete events and alarms that indicate specific component faults or 

failures detected by monitoring systems. However, fault logs often overlook gradual performance 
degradation, such as soiling, partial shading, or hot spots in PV cells, that impact overall system reliability 
without triggering alarms. Continuous data from sensors measuring voltage (V), current (I), and 
temperature can help detect component performance degradations. For example, a localized temperature 
spike in a PV cell compared to other PV cells may indicate a developing hot spot in the PV module. 
Integrating sensor data with fault logs provides a complete view of system reliability, enabling more 

accurate and proactive reliability modeling and analysis.  
 The data required in our case study include fault logs, sensor readings from the system (e.g., voltage, 
current, temperature), and environmental conditions (e.g., solar irradiance). These data can be used to detect 
fault/failure events and their relationship to system performance (i.e., to extract reliability models such as 
FT) collected from sources such as Supervisory Control and Data Acquisition (SCADA) systems or 
Industrial Internet of Things (IIoT) devices. However, collecting accurate and complete data can be 

challenging due to gaps in fault logs and limited access to SCADA and IIoT devices. To generate the 
synthetic data, we used literature-sourced failure probabilities for each of the BEs in the original FT model. 
 

 
 

 

Figure 3: (a) PV system layout for the case study. (b) True FT model of the case study system. 

4.3 Model Extraction from Data 

For our case study, we used data on failure probabilities from the existing literature on PV system 
components and subcomponents such as cables, racks, and grounding (Sonawane et al. 2023; Colli 2015; 

Golnas 2013). For simplicity, all faults and failures are assumed to have constant failure rates following the 
exponential distribution. This assumption does not limit the model extraction approach, which supports 
arbitrary probability distributions. Table 2 lists fault/failure occurrence probabilities, data requirements, 
and data sources for reliability model extraction for all the BEs of the original FT model (Figure 3b). We 
generated synthetic fault logs using failure probabilities of BEs and Monte Carlo simulations to create a 
synthetic fault log for the PV system, mimicking real-world data. The synthetic data are simplified/reduced 

into state data serve as an input for the FT extraction algorithm. The state data represents the truth table of 
the original FT model of the PV system, which we use later to validate the extracted FT model result. Table 
3 shows an example of the generated fault log and its equivalent state data shown in Table 4. 

(a) (b) 
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Table 2: Faults and Failures in the Case Study PV System: Associated Occurrence Probabilities, Data 
Requirements, Data Sources, and Data Categories for Reliability Model Extraction. 

System 
Element 

Fault / Failure Basic 
Event 

Occurrence 
Probability 
(from literature) 

Data Required for 
Reliability Model 
Extraction 

Possible Data 
Sources (from 
actual systems) 

Data Source 
Category 

Fuse 

Oxidation or 
Corrosion  

(𝐵𝐸1) 0.0001 
Electrical resistance 
or temperature 

Ohmmeter, 
thermal sensor 

Component-level 

Improper 
Maintenance  

(𝐵𝐸2) 0.0002 
Maintenance 
records 

Maintenance 
Logbooks 

Expert 
Knowledge 

MCB Faulty MCB (𝐵𝐸3, 𝐵𝐸4) 0.0008 Voltage or current 
I-V sensor over 
MCB 

Component-level 

PV 
Module 

Broken 
Interconnect  

(𝐵𝐸5) 0.0846 Thermal images or  
Infrared camera, 
I-V curve tracer 

Component-level 

Grounding 
System  

(𝐵𝐸6) 0.0490 
Ground insulation 
resistance or 
leakage current 

Ground-fault 
detector 

System-level 

Glass 
Breakage  

(𝐵𝐸7) 0.0003 Visual inspection Camera Component-level 

Soiling  (𝐵𝐸8) 0.0013 
Irradiance and PV 
output 

Pyranometer, I-
V curve tracer 

Environment / 
External 

Shading  (𝐵𝐸9) 0.0088 Irradiance  Pyranometer 
Environment / 
External 

Broken Cell  (𝐵𝐸10) 0.1115 
Thermal imaging 
and cell power 
output 

Infrared camera, 
cell I-V tracer 

Component-level 

Solder Bond 
Failure  

(𝐵𝐸11) 0.1487 Cell power output Cell I-V tracer Component-level 

Hot Spot  (𝐵𝐸12) 0.0101 Thermal imaging Infrared camera Component-level 
Faulty Bypass 
Diode  

(𝐵𝐸13) 0.0021 Voltage or current  
I-V sensor over 
diode 

Component-level 

Short/Open 
Circuit  

(𝐵𝐸14) 0.0052 Voltage or current I-V sensor System-level 

Rack 
Structure  

(𝐵𝐸15) 0.0729 
Tilt angle, 
orientation, or 
vibration 

Gyroscope or 
camera 

System-level 

Encapsulant 
Fault  

(𝐵𝐸16) 0.0570 
Visual inspection 
and PV output 

High-resolution 
camera, I-V 
curve tracer 

Component-level 

Cable 

Insulation 
Failure  

(𝐵𝐸17) 0.0001 
Electrical insulation 
resistance 

Ohmmeter Component-level 

Material 
Aging  

(𝐵𝐸18) 0.0002 
Cumulative 
environmental 
exposure 

Weather station 
data (UV index, 
temperature) 

Environment / 
External 

 
Table 3: Exemplary fault log dataset for a PV system generated using failure probabilities. 

Timestamp Component Description Status Severity 

2025-02-12 10:53:24 PV_Grounding_System_Fault Grounding System Fault detected. Active High 

2025-02-12 17:32:11 PV_Grounding_System_Fault Grounding System Fault detected. Cleared High 

2025-02-17 11:20:54 PV_Panel_Fault PV Hot Spot detected. Cleared Medium 

2025-02-18 13:23:51 PV_Panel_Fault PV Solder Bond Failure detected. Active High 

2025-02-18 08:55:02 Structure_Fault Structural misalignment. Active Low 

 

Table 4: State dataset based on the synthetic fault logs from Table 3. 

Timestamp Grounding System Hot Spot Solder Bond Failure Rack Structure Loss or Reduction in 

Power Output 

1 1 0 0 0 1 

2 0 0 0 0 0 

3 0 1 0 0 1 

4 0 0 0 0 0 

5 0 0 1 0 1 

6 0 0 0 1 1 
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 To extract FT model in our case study, we have implemented an algorithm using Python that 
automatically identifies Minimal Cut Sets (MCSs), smallest combinations of BEs (component failures) 
leading to the TE, from the truth table (state data). The algorithm iterates over the state data to find MCSs 

and then derives a Boolean expression that captures the logical structure of the FT model. For validation, 
we compare the extracted Boolean expression to the original FT model (Figure 3b), represented by Equation 
(1). Algorithm 1 outlines this process. The code used is publicly available (Mostafa 2025). Algorithm 1 
shows the extracted FT model from data using the algorithm. Validating the Boolean expression in Figure 
4 with equation (1), we find that both the original model and the extracted FT model match. 
 

Algorithm 1: Extracting FT Boolean Expression from Truth Table. 

Input: 𝒯 ∈ {0,1}𝑚×(𝑛+1): Truth table with 𝑚 rows (𝑅1, 𝑅2, … , 𝑅𝑚) timestamps, and 𝑛 + 1 columns (𝐵𝐸1, 𝐵𝐸2, … , 𝐵𝐸𝑛, 𝑇𝐸).  

Output: 𝛷(𝐵𝐸1, 𝐵𝐸2, … , 𝐵𝐸𝑛): Extracted FT Boolean expression. 

 1: Load 𝒯 ➢ Load the truth table as input dataset 𝒯. 
2: Step 1: Identify Cut Sets  
3: Initialize 𝐶𝑆 ← ∅  ➢ Create dataset 𝐶𝑆 to store potential cut sets. 
4: foreach 𝑖 ∈ {1, 2, … , 𝑚} do ➢ Iterate over rows in the 𝒯 to identify cut sets. 
5:  if 𝒯[𝑖, 𝑇𝐸] = 1 then 
6:   𝐶𝑖  ← {𝐵𝐸𝑖  | 𝑅𝑖[𝐵𝐸𝑖] = 1} ➢ Check for set of BEs that lead to 𝑇𝐸 = 1. 
7:   𝐶𝑆 ← 𝐶𝑆 ∪ {𝐶𝑖} ➢ Store identified set of BEs as a cut set in 𝐶𝑆. 
8: Step 2: Minimalize Cut Sets 
9: Initialize 𝑀𝐶𝑆 ← ∅  ➢ Creating a dataset 𝑀𝐶𝑆 to store minimal cut sets. 

10: foreach 𝐶𝑖 ∈ 𝑠𝑜𝑟𝑡(𝐶𝑆, 𝑏𝑦 |𝐶| ↑) do ➢ Iterate over all cut sets in 𝐶𝑆 to scan for minimal cut sets. 
11:  if ∄ 𝑀 ∈ 𝑀𝐶𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑀 ⊆ 𝐶𝑖 then ➢ Identify minimal cut sets by eliminating supersets from 𝐶𝑆. 
12:   𝑀𝐶𝑆 ← 𝑀𝐶𝑆 ∪ {𝐶𝑖} ➢ Store identified minimal cut sets into 𝑀𝐶𝑆. 
13: Step 3: Construct Boolean Expression 
14: foreach 𝑀𝑖 ∈ 𝑀𝐶𝑆 do ➢ Construct the Boolean expression using logical OR ( + ) 

between minimal cut sets and logical AND ( ∙ ) between BEs. 15:  𝛷 = ∑ ∏ 𝐵𝐸𝐵𝐸∈𝑀𝑖𝑀𝑖∈𝑀𝐶𝑆   

5 SUMMARY AND OUTLOOK 

We investigated the data requirements for the development and implementation of Digital Twins for the 
reliability assessment of energy systems. Specifically, we identified the distinct data categories, component-
level data, system-level data, environmental data and expert knowledge, required to support effective 
Digital Twin applications. Using a photovoltaic energy system as an illustrative case study, we 
demonstrated that the combination of fault logs with continuous sensor data enables the automated 

extraction of data-driven reliability models, in this case Fault Trees. The fault logs of the photovoltaic 
system, which were synthetically generated using literature-sourced component failure probabilities, were 
transformed into structured state data that enabled Fault Tree model extraction. The extracted reliability 
models from Digital Twins can be used for reliability assessment of energy systems. 

Identifying Cut Sets (first 4 shown): 
Cut Set 1: ['BE18'] 
Cut Set 2: ['BE17'] 
Cut Set 3: ['BE17', 'BE18'] 
Cut Set 4: ['BE18', 'BE4'] 

Minimal Cut Sets:  
['BE18'], ['BE17'], ['BE16'], ['BE15'], ['BE14'], 
['BE13'], ['BE12'], ['BE11'], ['BE10'], ['BE9'], 
['BE8'], ['BE7'], ['BE6'], ['BE5'], ['BE2'], ['BE1'], 
['BE3', 'BE4'] 

 
Extracted Fault Tree Boolean Expression:  TE =  BE18 + BE17 + BE16 + BE15 + BE14 + BE13 + BE12 + 
BE11 + BE10 + BE9 + BE8 + BE7 + BE6 + BE5 + BE2 + BE1 + BE3·BE4 
 
Constructed Truth Table (sample): 
R   BE1  BE2  BE3  BE4  BE5  BE6  BE7   ...   BE13  BE14  BE15  BE16  BE17  BE18  TE 
0    0    0    0    0    0    0    0    ...    0     0     0     0     0     0     0 
1    0    0    0    0    0    0    0    ...    0     0     0     0     0     1     1 
2    0    0    0    0    0    0    0    ...    0     0     0     0     1     0     1 
3    0    0    0    0    0    0    0    ...    0     0     0     0     1     1     1 
4    0    0    0    1    0    0    0    ...    0     0     0     0     0     0     0 
[5 rows x 19 columns] 
Truth table generated and saved from Boolean expression. 
[Validation Successful]: Truth Tables Match! 
The constructed fault tree produces an identical truth table to the original. 

Figure 4: Extracted FT model using Algorithm 1. 
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 Our research shows that while the accurate extraction of reliability models, as enabler for reliability-
oriented Digital Twins, is feasible, it presents challenges, particularly in system complexity and collecting 
time series, high quality, continuous data about the system. Further research is needed to address model 

validation and practical decision support to develop a standard framework for implementing reliability-
oriented Digital Twins. Future studies could extend on our data-driven methodology by exploring 
alternative energy system applications and reliability models beyond Fault Trees, such as Reliability Block 
Diagrams and Markov models. Developing further methods for data-driven reliability model extraction 
would support the implementation of Reliability-Oriented Digital Twins in complex energy systems. 
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