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Abstract

The development of advanced battery materials has relied on a combination of
physics-based simulations and experimental techniques for material characteriza-
tion and electrochemical testing. These methods have significantly contributed to
understanding batteries, including electrochemical stability, safety, and degradation
processes. While practical, these conventional approaches face long development
cycles to achieve desired performance criteria. The research and development of
battery materials can be expedited by leveraging data-driven techniques that derive
insights across a broad material space. Among these data-driven approaches, gen-
erative deep learning captures complex, high-dimensional patterns in experimental
and simulation data. In contrast, discriminative learning interprets and contracts
high-dimensional information into meaningful, reduced representations. Coupling
generative and discriminative deep learning frameworks enables both expansion
and distillation of knowledge about the material design space. This thesis proposes
a generative-discriminative deep learning framework to accelerate early-stage
screening, characterization, and guided generation of advanced battery materials.
The implemented framework is demonstrated across multiple application modes.
The first demonstration of the framework focuses on a data-driven analysis to learn
information-rich latent representations of the formation and evolution of solid
electrolyte interphases using physical and data-driven properties derived from
simulations. Later developments demonstrate automated structure and composi-
tion discovery from characterization data and early-stage screening of candidate
battery materials based on functional properties, prior to any experiments or
computational validation. By unifying analysis, characterization, and screening,
the framework provides a cohesive approach to accelerate data-driven design of
advanced battery materials.






Kurzfassung

Die Entwicklung neuartiger Batteriematerialien baut auf einer Kombination aus
physikbasierten Simulationen sowie experimentellen Verfahren zur Materialcharak-
terisierung und elektrochemischen Untersuchung auf. Diese Verfahren zur Materi-
alentwicklung haben wesentlich zum Verstéiindnis von Batterien, einschlieBlich
der elektrochemischen Stabilitét, Sicherheit und Degradationsprozessen, beige-
tragen. Diese konventionellen Ansitze sind zwar praktikabel, erfordern jedoch
einen langen Entwicklungsprozess, um die angestrebte Batterieleistung zu erre-
ichen. Die Forschung und Entwicklung von Batteriematerialien kénnen durch
den Einsatz datengetriebener Techniken beschleunigt werden, um Erkenntnisse
iiber einen umfangreichen Materialraum zu gewinnen. Unter den datengetriebe-
nen Ansitzen erfasst generatives Deep Learning komplexe, hochdimensionale
Verhaltensmuster aus experimentellen und simulativen Daten. Im Gegensatz dazu
sind diskriminative Modelle darauf ausgelegt, diese hochdimensionalen Daten
zu interpretieren und zu sinnvollen Vorhersagen zu verdichten. Die Kopplung
generativer und diskriminativer Deep-Learning-Frameworks ermoglicht somit
sowohl die Erweiterung als auch die Verdichtung des Wissens iiber den Materi-
aldesignraum. Diese Dissertation demonstriert ein generativ-diskriminativeres
Deep-Learning-Framework zur Beschleunigung der Friiherkennung, Charakter-
isierung und gezielten Erzeugung neuartiger Batteriematerialien. Das imple-
mentierte Framework wird in mehreren Anwendungsmodi demonstriert. Die
erste Demonstration des Frameworks konzentriert sich auf eine datengetriebene
Analyse zum Erlernen informationsreicher latenter Abbildungen der Entstehung
und Entwicklung von festen Elektrolytgrenzschichten in Batterien. Dieser Anwen-
dungsmodus ist zur Darstellung und Charakterisierung der Bildung von festen

il



Kurzfassung

Elektrolytgrenzschichten auf Basis physikalischer und datengetriebener Eigen-
schaften aus Simulationen konzipiert. Die nachfolgenden Entwicklungen des
Frameworks demonstrieren die automatisierte Ermittlung von Struktur und Zusam-
mensetzung aus Charakterisierungsdaten sowie das friihzeitige, gezielte Screening
von Batteriematerialkandidaten auf Basis der funktionalen Eigenschaften vor
jeglichen Experimenten oder rechnerischen Validierungen. Durch die Vereinigung
von Analyse-, Charakterisierungs- und Screening-Aufgaben bietet das Framework
einen durchgéngigen Ansatz zur Beschleunigung des datengetriebenen Designs

neuartiger Batteriematerialien.
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Notations

The mathematical notations used in this thesis are formulated based on the
following structure.

The x denotes a data sample belonging to a data domain X C R”, drawn from a
probability distribution p(x), i.e., & ~ p(x).

In unsupervised learning, the dataset D contains /N samples arranged in a matrix
X € RVXD where each row is a sample and columns define its D-dimensional
features. In supervised learning, each sample x has an associated label y.

The datasets in this dissertation contain multidimensional, multichannel data. For
simplicity, spatial tensors are conceptually flattened so each input sample is a
vector . A latent variable is denoted by z € Z, drawn from a distribution p(z).

Vectors are represented by bold lowercase Roman letters, e.g., a. Matrices and
higher-order tensors are written in bold uppercase Roman letters, e.g., A.
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1 Introduction

1.1  Motivation

Batteries may seem simple electrochemical systems composed of four components:
two electrodes, an electrolyte, and a separator. However, developing efficient
energy storage systems requires a deep understanding of how components interact
and the kinetics of the electrochemical reactions involved. The performance of
batteries depends on a network of interdependent physicochemical processes, in-
cluding ion transport, phase transformations, interfacial reactions, and mechanical
deformations. Each of these interdependent processes occurs over multiple length
and time scales, from the nanoscale, where ion transport and interfacial reactions
predominantly happen, to the mesoscale, where phase transformations and mechan-
ical deformations are more significant [1-4]. Advancements in experimental and
simulation techniques [5—7] have advanced the understanding of battery materials
and their interactions across multiple scales. However, most experimental and
simulation methods are constrained by instrumentation parameters and underlying
physics, limiting their ability to derive insights to specific length and time scales

[8].

Traditional materials discovery has been instrumental in driving progress, relying
on careful experimentation and intuition developed through experience. This
approach excels at uncovering valuable insights within well-explored regions of
chemical space and has led to many foundational breakthroughs. However, as
the number of possible material combinations continues to expand, it becomes
challenging to explore new chemistries and understand complex physicochemical
properties that govern battery performance [9-11].
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Just as explorers once charted the unknown islands of distant seas, researchers now
face vast, uncharted territories of chemical combinations, waiting to be discovered
and understood. This adventure into the unexplored chemical "white space" holds
the promise of unlocking innovative solutions for next-generation batteries.

Data-driven approaches empower systematic exploration of complex chemical
spaces and extraction of transferable structure-property relationships in battery
materials research. Machine Learning (ML), a subset of Artificial Intelligence
(AI), employs a data-driven methodology replacing traditional understanding
of fundamental physical processes with observations of the system under study
[12—14]. In the scope of ML, data-driven models are widely classified into
discriminative and generative models. Discriminative models distill information
representation by learning predictive boundaries between classes, focusing on
features relevant to a specific outcome. Generative models, in contrast, expand
information representation by modeling entire data distributions to generate new,
realistic samples that explore previously uncharted regions of chemical space
[13, 3]. Leveraging a generative model in tandem with discrimination offers access
to expansive and contractive knowledge of material design pathways.

Classical ML algorithms typically rely on predefined assumptions and manual
feature engineering to model the relationship between input and output variables.
While effective for structured, low-dimensional data, they often struggle with high-
dimensional, heterogeneous datasets. Neural networks overcome these limitations
by mimicking the way biological neurons work together to identify patterns, assess
options, and reach conclusions. Each neural network is composed of layers of
interconnected units, known as neurons, that process data and identify nonlinear
patterns through weighted connections, bias terms, and nonlinear activation
functions. Traditional shallow neural networks can model nonlinear relationships,
but their limited depth limits their ability to capture complex patterns with a finite
number of neurons.

Deep learning enhances traditional frameworks by incorporating architectures
with multiple hidden layers that automatically learn hierarchical representations.
The transition from standard neural networks to deep learning signifies a shift
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from constrained feature learning to hierarchical modeling. Such advancements
reduce the need for manual feature engineering and improve performance on
high-dimensional, unstructured data. Incorporating generative modeling concepts
into deep learning frameworks enables learning the underlying data distribution,
which in turn enables interpolation, optimization, and the exploration of novel
materials for target applications through representation learning.

1.2 Objective

Addressing the limitations of traditional battery development, this thesis aims to
develop a unified data-driven framework that integrates generative and discrimi-
native methods to automate and accelerate the characterization, screening, and
generation of advanced battery materials. By coupling forward characterization
(discriminative learning) with inverse design (generative learning), the framework
enables contractive-expansive navigation of the material design landscape, thereby
accelerating early-stage battery material design (Figure 1.1). The practical out-
come of the framework enables battery researchers to make informed decisions
across vast material design spaces and to generate information-rich target battery
chemistries.

The proposed framework establishes a latent-space-driven approach that links
material configurations, physical descriptors, and electrochemical performance by
capturing intrinsic correlations among these domains. Within this unified latent
space, the discriminative component serves as a contractive pathway, encoding
essential information to guide material design, while the generative component
provides an expansive pathway that reconstructs or generates novel material
configurations optimized for specific functional targets such as average voltage,
capacity, and energy density. By implementing this bidirectional mapping, the
framework enables automated screening, targeted generation, and characterization
of structure-property linkages.
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Material space Property space Material space

Encoder Generator

Latent space

Discriminator

Figure 1.1: Schematic overview of generative-discriminative framework. The encoder and discrim-
inator define the contraction of high-dimensional material data into information-rich,
lower-dimensional latent knowledge. The generator defines the expansion of knowledge
from the latent representation to high-dimensional data.

The generative-discriminative approach enables a data-centered understanding of
battery material behavior and enhances interpretability across multiple scales. This
framework accelerates predictive characterization, screening large material spaces,
and generating material configurations that meet target physical and functional
properties.

1.3 Overview on generative deep learning in
battery research

In battery research, generative deep learning models are an emerging field
that extends beyond predictive modeling to explore structure-property-function
relationships. While experimental and high-throughput computational screening
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methods have accelerated the search for new materials, such approaches still
only explore a small fraction of the vast chemical and structural design space.
Generative deep learning presents a complementary inverse design approach, which
captures the relationship between structures and properties within a continuous
and information-rich latent space. Building on the review by Rajagopal et al.,
[15], this section of the thesis explores the generative deep learning frameworks
developed in battery research at the material level design. In the context of battery
materials, the crystal structures, molecular interphase design, and microstructure
morphologies of the material dictate the electrochemical performance of the cell
throughout its cycle life. Understanding the structure-function relationship is
critical in defining the operational limitations and degradation pathways. The
design and discovery of the materials that constitute the components of batteries
can be studied in different forms of representations, such as molecular, chemical,
and structural space.

The crystal structure of electrode materials affects battery performance, influencing
ion diffusion and conductivity. The generative frameworks, such as iMatGen by
Noh et al. [16] and CrystalGAN by Nouira et al. [17], demonstrate early efforts
in the novel and stable crystal polymorphs of inorganic solids using Variational
AutoEncoder (VAE) with a stability classifier and Generative Adversarial Network
(GAN) based approaches, respectively. Building on this, Zhao et al. [18]
developed CubicGAN, conditioned on crystal space group embedding and element
embedding, to guide the density functional theory (DFT) validated screening of
new cubic functional materials for applications such as solar panels. To capture
periodicity and chemical invariance of materials, Xie et al. [19] developed the
Crystal Diffusion Variational Autoencoder (CDVAE), integrating graph-based
embeddings with an inductive bias toward stability and a diffusion refinement
process to generate more stable materials. This enables CDVAE to reconstruct
valid, diverse, and realistic materials, as well as generate materials with target
properties. Yang et al. [20] introduced UniMat, a diffusion-based model designed
to scale across the periodic table via a unified representation of materials. UniMat
addresses challenges in generative design by handling systems with arbitrary
chemical compositions and structural complexity, by encoding continuous values



1 Introduction

of atomic locations at the corresponding element entries in the periodic table as
a four-dimensional tensor. The conditional generation with UniMat can scale
to previously established crystal datasets, containing up to millions of crystal
structures, and outperform random structure search in discovering new stable
materials. MatterGen is another diffusion-based generative model developed
by Microsoft Al4Science that uses a diffusion process tailored for the design
of crystalline materials. In addition to the diffusion process, which gradually
refines atom types, the coordinate and periodic lattice adaptation module is used
to fine-tune the desired chemical composition, symmetry, and property constraints
to generate stable, unique, and novel materials [21].

At the molecular and interphase scale, generative learning has been applied
to the design of electrolytes, additives, and polymers, which are critical for
ion transport, interphase stability, and safety in battery systems. Yoon et al.
[22] developed a natural product VAE framework to generate novel electrolyte
additives and simultaneously predict their electronic properties, such as the Highest
Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular
Orbital (LUMO). The predicted HOMO and LUMO electron properties provide
insight into the oxidative and reductive stability of the solid electrolyte interphase
in batteries. Moving towards the design of polymer electrolytes, Khajeh et al. [23]
utilized a minimal version of the generative pre-trained transformer (minGPT) to
generate polymer electrolytes optimized for high ionic conductivity. Yang et al.
[24] compared minGPT and diffusion approaches for polymer design, identifying
candidates with improved conductivity and structural diversity.

The microstructural features of the electrode play an essential role in determining
electrode performance. The microstructural features of the electrodes, including
porosity, tortuosity, and particle connectivity, determine how ions and electrons
move through the electrodes. Gayon Lombardo et al. [25] used a deep con-
volutional GAN (DCGAN) to generate three-dimensional multiphase electrode
microstructures with periodic boundary conditions. Periodic boundaries in mi-
crostructures enable smaller yet representative simulation volumes, significantly
reducing the computational cost of electrochemical simulations needed to evaluate
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microstructure performance during optimization. Following this, Kench et al.
[26] developed SliceGAN to generate three-dimensional microstructures from
two-dimensional images. Traditional two-dimensional imaging often overlooks
important volumetric properties necessary for understanding electrochemical pro-
cesses, such as ion transport and fluid flow in battery electrodes. Using SliceGAN,
researchers can generate realistic 3D representations of battery microstructures,
which enhances the simulations of electrochemical and mechanical behaviors
within battery systems. Dahari et al. [27] extended on the earlier implementation
by introducing a GAN-based fusion framework that combines complementary 2D
and 3D imaging datasets to create high-resolution, multiphase reconstructions
of battery cathode mesostructures. This fusion approach addresses the trade-off
between field of view and resolution typically seen in conventional imaging,
producing realistic mesoscale volumes that accurately depict pore networks and
binder domains, which are important for transport and degradation studies.

1.4 Outline

This thesis builds upon recent advancements in generative deep learning applied to
battery materials research by developing latent-powered generative-discriminative
frameworks that facilitate continuous representation learning, automated material
characterization, and data-driven design of battery materials. The application
of the implemented framework is demonstrated through representation learning
of solid electrolyte interphases, automated translation of battery electrodes into
material descriptors, and application-targeted screening of battery materials based
on their functional properties. The thesis is structured as follows:

* Chapter 2 introduces the foundational concepts of data-driven modeling
and machine learning, followed by the principles of generative modeling,
the motivation for deep learning approaches, an overview of state-of-the-art
generative model formulations, and strategies for model evaluation.
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e Chapter 3 establishes a methodological framework for applying generative
deep learning to advanced battery materials, covering data acquisition and
preprocessing, model selection criteria, and different application modes.

* Chapter 4 demonstrates the results of the thesis contributions, including the
characterization of latent space, the automated translation of characterization
data into material descriptors, and the virtual screening of battery materials
using generative workflows.

* Chapter 5 concludes the thesis with a discussion on key findings and
an outlook on future research directions for generative deep learning in
advanced battery material design and analysis.



2 Theoretical foundation

2.1 Concepts of data-driven modeling

Data-driven modeling is defined as the process of using observed data of the
system to discover, approximate, and predict the functional relationships of the
system without requiring explicit knowledge of its internal physical mechanisms.
In data-driven modeling, parametric and non-parametric approaches provide
two different strategies to approximate the system behavior. Parametric models
assume a specific functional form to fit the input-output relationship, defined
by its set of parameters. Non-parametric models do not assume a fixed form
and rely on the observed data of the system under consideration. This does not
mean that the non-parametric model is free of parameters. Instead, the number
of parameters in non-parametric data-driven modeling increases as the dataset
size grows. Parameter estimation in data-driven modeling is formulated as an
optimization problem to find the model hyperparameters that best represent the
system’s underlying behavior. Once the model structure is selected, the estimation
algorithm searches for parameters that minimize a suitable loss function. As
systems transition from linear to nonlinear and from low-dimensional to high-
dimensional spaces, the complexity of estimation increases, necessitating diverse
approaches that range from classical statistical methods to modern deep learning
techniques. The estimation algorithm used for parameter optimization of data-
driven models includes classical methods such as least squares and recursive least
squares, as well as Computational Intelligence (CI) methods such as fuzzy logic
systems, genetic algorithms, and Machine Learning (ML)[28, 29]. ML-based
estimation methods involve algorithms that learn input-output relationships directly
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from data by minimizing a loss function over the model parameter space. Deep
Learning (DL) is a subset of machine learning that utilizes multi-layer neural
network architectures to capture complex nonlinear relationships in data.

2.1.1 Fundamentals of machine learning

ML is a subset of Artificial Intelligence (AI) that focuses on developing algorithms
and models that enable systems to improve performance on a task by learning
from experience without being explicitly programmed. In the context of ML,
experience refers to the accumulation of past information, often in the form of
large, electronically collected datasets. The quality of the collected data is a
critical determinant of predictive success. ML provides insights into structures and
patterns within these large datasets [12, 14]. The following is the list of definitions
and terminology used in ML:

e Samples: Samples are instances of collected data utilized for learning
or evaluation. Datasets are commonly partitioned into subsets: training
samples are used to fit the model, validation samples are employed to tune
and select model parameters, and test samples are reserved for evaluating
the model’s performance.

» Features: Features are attributes associated with each sample. These may
include individual variables, derived variables, or composite attributes
constructed from underlying data elements.

e Label: A label is the target value or category assigned to each data sample
in supervised learning. Formally, the label represents the output variable
that the model is trained to predict, given a set of input features.

* Hyperparameters: Hyperparameters are high-level parameters that govern
the learning process of a model. They are adjusted to optimize model
performance, training efficiency, and generalization capability.

10
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* Loss function: The loss function quantifies model performance by measur-
ing the discrepancy between predicted and target labels. Model optimization
involves adjusting parameters to minimize the loss function, also known
as the cost function or error function. Various types of loss functions are
used depending on the specific ML task, which will be discussed in the
Section 2.6.1

Assuming a dataset D consisting of N independently and identically distributed
samples. Each sample is represented as a pair (2, 4(), where 2(Y) denotes
the feature vector and y(*) is the corresponding label. The dataset of N samples
can thus be written as D = {(x1), y(1)), (), y@) ... (™) 4N))}. The
goal of ML is to find the optimal function f*(x) from a hypothesis space
F = {f(x;0) | 6 € R} that best approximates the actual mapping between x
and y. The @ represents the model parameters, and d is the number of parameters.
The predicted value can be expressed as, § = f*(x) and p(y | ) = f; (), where
f(x) represents the conditional probability of the label y given input x. The

y
process of finding an optimal function is called training.

The main components of building an ML algorithm include the model, the loss
function for evaluating the model’s performance, and the optimization algorithm.

The model defines the hypothesis space, which can be broadly classified into
linear and nonlinear models. The hypothesis space of linear models is expressed
through f(x;0) = w’ x + b with parameters @ = (w, b). The w represents the
weight vector and the bias b. The hypothesis space of nonlinear models can be
expressed through a linear combination of multiple nonlinear basis functions:
f(x;0) = wT ¢(x) + b, where ¢(x) = [¢1(x), pa(x), . .., ¢x(x)]T is a vector
of K nonlinear mappings.

The learning criterion specifies how well a candidate model matches the true
underlying relationship. The learning criterion is formalized by a loss function,
which measures the discrepancy between predicted outputs and target labels.
Assuming training data samples are drawn from an unknown but fixed joint
probability distribution p(x, y), the learning objective is to approximate the true

11
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mapping function y = g() or, equivalently, the conditional distribution p(y | ).
The performance of the model f(x; 0) can be measured by the expected risk R(6),
which is defined as R(0) = E (4 ) wp, (2.) [L(y, f(2; 6))], where p,.(z, y) is the
real data distribution, £ (y, f(; 8)) is the loss function, which is used to quantify
the difference between two variables. Since the true data distribution is unknown,
this expectation is approximated by the empirical risk computed on the available
training dataset. The empirical risk is given by,

N
Remp( Z (y™, f(z™;0)) 2.1)

where f(x(™); 6) denotes the model prediction for input (") given parameters
6 and L(-) represents the differentiable loss function. This empirical risk mini-
mization principle forms the foundation of most machine learning algorithms, as
it provides a practical way to optimize model performance using finite training
data. The quality of this approximation depends on the size and diversity of the
training dataset, with larger and more diverse datasets generally leading to better
approximations of the true risk. The goal is to determine the optimal parameters
07 that minimize the empirical risk,

0" = arg mein Remp(0) (2.2)

However, this optimization problem is often challenging to solve in closed form,
particularly for complex nonlinear models. Direct analytical solutions exist for
linear models with simple loss functions, such as the ordinary least squares.
Howeyver, for nonlinear models with a non-convex loss function or with certain
type of regularization parameter, a closed-form solution is unavailable and iterative
optimization methods are required [30, 31].

Gradient descent [32] is an iterative optimization technique to find the parameters
of the model that minimize a given objective function. The first-order Taylor
expansion of Remp (@) around the current parameters 6; is given by,

Remp(0) 2 Remp(0:) + VoRemp(0:)7 (6 — 6,) (2.3)

12



2.1 Concepts of data-driven modeling

The gradient VgRemp(6:) points in the direction of steepest increase of Remp ().
To minimize the empirical risk, parameters are updated in the opposite direction.
The update of model parameters is then written as,

6t«H =60, — UVGRemp(et)7 (2.4)

Where 17 > 0 is the learning rate controlling the step size. Substituting the
definition of empirical risk yields the explicit update rule,

N
,'7 n n).

0i1 =0, — N ;Vgﬁ(y( ) f(™;6,)) (2.5

The performance of gradient descent largely depends on factors such as the choice

of learning rate, the properties of the loss function, including convexity and

smoothness, as well as the initial values of the model parameters

Different variants of gradient descent have been proposed to improve the con-
vergence rate, convergence point, and scalability of the algorithm. Each variant
has its own advantages and disadvantages, and the choice of which variant to use
depends on the specific problem at hand.

Batch gradient descent calculates the gradient of the cost function using the entire
dataset, which provides stable convergence by averaging over all samples and is
preferred when the dataset is small and fits in memory. Stochastic gradient descent
(SGD) [33], on the other hand, updates the parameters using a single randomly
selected training sample at each iteration. This makes SGD computationally
efficient and capable of escaping shallow local minima, the noisy updates often
lead to fluctuating convergence and require careful tuning of the learning rate.
Mini-batch gradient descent combines the advantages of batch and stochastic
gradient descent methods by computing the gradient using a subset of training
data at each step. The significant challenges in the above discussed gradient
descent algorithms include choosing the correct learning rate. If the learning rate
is too high, the model overshoots the minimum, and if the learning rate is too
low, the model takes a longer time to converge. To address the issues of slow and

13
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unstable convergence, momentum-based variants of gradient descent algorithms
are used. The momentum-based gradient descent method enhances convergence by
utilizing a velocity vector that accumulates past gradients to accelerate consistent
gradient directions and dampen oscillations in the optimization path. In addition
to momentum-based methods, gradient descent with adaptive learning rates, such
as Adam [34], Adagrad [35], and RMSprop [36], adjust the learning rate for each
parameter based on the gradient history. Adaptive gradient methods allow faster
and stable convergence across varying loss surfaces [37].

2.1.2 Need for deep learning

The performance of classical ML algorithms, such as logistic regression, depends
heavily on the well-defined features. Raw data, such as pixel intensities in images
or word frequencies in text, often exhibit high dimensionality, redundancy, and
noise, which hinder both efficiency and generalization. Therefore, classical ML
algorithms require handcrafted feature engineering based on feature selection and
feature extraction to construct meaningful data representations.

Feature selection identifies informative subsets of features using various strategies.
Filter-based feature selection strategies are model-agnostic, evaluating features
based on statistical measures such as information gain, feature correlations, and
variances, to rank and select the relevant features. Wrapper methods use specific
ML algorithms to search for the best performing subset of features. Wrapper
methods are computationally expensive, as they must train many ML models,
yet provide high accuracy due to the evaluation of the actual model. Embedded
methods incorporate feature selection as part of training through a regularization
technique. The applied regularization during training penalizes unimportant
features by driving the corresponding weights to zero, yielding a sparse model
with only the most predictive inputs [38, 39].

Feature extraction is a complementary approach to feature selection, which focuses
on transforming the original feature space into a new space that captures the
most relevant information for the predictive task. Classical feature extraction
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2.1 Concepts of data-driven modeling

techniques include principal component analysis (PCA), an unsupervised method
that identifies orthogonal linear combinations of features that maximize the
variance in the data, and linear discriminant analysis, a supervised method that
separates multiple classes and features to solve classification problems. Manual
feature selection and extraction can improve machine learning performance, but
function as separate preprocessing steps. This separation reduces effectiveness
and leads to a mismatch between the learned feature space and training objectives
[40, 41].

Deep learning is a specialized subset of machine learning that uses neural networks
with multiple layers to model complex patterns in large datasets. Unlike traditional
machine learning, deep learning models automatically learn to extract relevant
features from raw input data. This reduces the need for manual feature engineering,
allowing the model to discover intricate patterns and representations that may not
be easily discernible by humans [42, 43].

2.1.3 Neural networks

Neural networks are inspired by the human brain, which consists of interconnected
nodes called neurons, organized into layers. The three primary components of a
neural network architecture are the input layer, the hidden layer, and the output
layer. The input layers comprise neurons that represent the features of the input
data. The hidden layers are the intermediate layers between the input and output
layers. The number and size of the hidden layers can vary, contributing to the
depth of the network. Each hidden layer applies a set of weights and biases to the
input data, followed by an activation to introduce nonlinearity. The output layer
produces the final predictions. The number of neurons in the output layer depends
on the nature of the problem [44, 45].
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Figure 2.1 illustrates the standard model of neuron j, which comprises an affine
transformation followed by a non-linear activation function. Given an input signal
x € R" and an output signal h;, the neuron output is computed as follows:

n
hj = g(iji:ci + bj) (26)
i=1
In this formulation, w;, w2, ..., w;, denote the connection weights associated
with the respective inputs 1, s, . .., ,. The weighted sum is combined with

the bias term b;, and g(+) denotes the selected activation function [46].

Inputs

j-th neuron

hy = y/(i:wj,z, +;)
=

Neuron’s output
weights

Figure 2.1: Structure of the artificial neuron. The a; represents the input signal to the j-th neuron and
w; defines the corresponding weights. The b; represents the neuron’s bias, and h ; is the
neuron’s output.

Activation function of the neuron introduces nonlinearity, allowing the network
to learn complex patterns. A purely linear activation function, such as g(z) = z,
reduces the network to a linear model regardless of its depth. To capture the
non-linear relationship in the data, non-linear activation functions are used. The
most commonly used non-linear activation functions include sigmoid, hyperbolic
tangent (Tanh), rectified linear unit (ReLU), Leaky ReLU, softplus, and Swish
[47, 48].
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2.1 Concepts of data-driven modeling

Sigmoid function is one of the earliest and simplest non-linear functions applied
in neural networks. The sigmoid function is mathematically expressed as,

1

= — 2.7
— @)

9(z)
which maps the output to the range [0,1]. The sigmoid function has an S-
shaped curve with a smooth gradient, an important property for gradient-based
optimization methods. One of the other important characteristics of the sigmoid
function is that for z values between —2 and 2, the curve is steep, meaning that
small changes in the input can produce large changes in the output, which facilitates
rapid learning during training. However, the output of the sigmoid function is
saturated for both higher and lower inputs, which leads to the vanishing gradient
problem, where weight updates in earlier layers become negligible, slowing down
the training of deep networks (Figure 2.2). Sigmoid functions are widely used in
the output layer of the network, particularly in cases where the outputs need to be
interpreted as probabilities, such as in classification problems.

Sigmoid Function Sigmoid Derivative
1.0 0.25
0.8} 0.20
0.6 0.15F
0.4 0.10
0.2 0.05F
0'0 L L L L L L L L 0'00 L. L L n n i "
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 2.2: Sigmoid activation function and its derivative. The function produces smooth, bounded
outputs suitable for probability modeling, but gradients shrink near the extremes, which
can slow learning in deep networks.
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Tanh function is another widely used non-linear function and can be interpreted
as a scaled and shifted version of the sigmoid function. The Tanh function is
mathematically expressed as
e*—e’”?

9(z) = tanh(z) = prampert (2.8)
The Tanh function also has a bounded output in the range of [—1, 1], which makes
it zero-centered. The symmetry in tanh functions ensures that the positive and
negative activations are balanced. The tanh function has a steeper gradient than
the sigmoid, allowing more effective weight updates and faster convergence. As
shown in Figure 2.3, the zero-centered output balances activations, reducing bias
in subsequent layers. However, in deep networks, gradients can vanish, slowing
learning, so careful weight initialization and input normalization are essential.
The tanh function is often preferred over the sigmoid function when zero-centered
outputs and stronger gradients are needed.

Tanh Function Tanh Derivative
D00 oo e 1.0
0.75F
0.8
0.50F
0.25F 0.6
0.001
-0.25} 0.4
—-0.501
0.2
—-0.751
_1'00- n n n n n n n 00 n n n n L n n
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 2.3: Tanh activation function and its derivative. The function is zero-centered and provides
stronger gradients than sigmoid, though gradients still diminish for large input magnitudes.

ReLU is a piecewise linear function and is mathematically described as

z, ifz>0,
9(z) = max(0,z) = (2.9)
0, otherwise
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2.1 Concepts of data-driven modeling

which activates neurons only if the input is positive and zero otherwise, providing
sparse and efficient representations. The range of ReLU is [0, c0). The downside
of ReLU is the "dying ReLU" problem, where the input to a neuron falls into a
negative region, resulting in an output of 0 (Figure 2.4). Hence, the gradients of
the neuron will also be zero. As a result, during back propagation, the weights of
that neuron remain unchanged. This can result in a portion of the neural network
becoming inactive, reducing the network’s representational capacity if a large
fraction of neurons die.

RelU Function RelU Derivative

0.8r
0.6r
0.4r

0.2}

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 2.4: ReL.U activation function and its derivative. The function efficiently propagates gradients
for positive inputs, but neurons can become inactive when inputs remain negative.

LeakyReL U addresses the issue of dying ReL.U by introducing a small negative
slope o when z < 0, which can be expressed as

z, ifz>0,
g(z) = (2.10)
az, z2<0

where « is a small constant value. As shown in Figure 2.5, the small negative
slope provides a pathway for gradients to flow, even when the neuron is inactive.
Parametric ReLLU extends LeakyReLLU by making the negative slope learnable, by
optimizing « during training. This adaptive mechanism enables the network to
adjust its activation dynamics for improved performance.
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Leaky ReLU Function Leaky ReLU Derivative

3 08}
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Figure 2.5: LeakyReLU activation function and its derivative. By allowing small negative gradients,
the LeakyReLU function addresses the dead neuron problem and improves learning
stability.

SoftPlus provides a smooth approximation of ReLU and is mathematically
expressed as

g(z) = %log(l + ef%) (2.11)

where 3 is the scale factor, which controls how closely the function approximates
ReLU. The higher the value of 3, the closer the SoftPlus mimics the ReLU
function. Figure 2.6 shows that SoftPlus provides smooth gradient flow, facilitating
continuous optimization. The SoftPlus activation function always outputs positive
values, making it suitable for cases where positive activation is required.

Swish is a smooth, non-monotonic function known as a self-gated activation
function. Swish is mathematically expressed as,

z

= — 2.12
e 2.12)

9(z) = z-0(2)
where o(z) denotes the sigmoid function. Swish is smooth, non-monotonic,
unbounded in the positive region, and bounded in the negative region as shown
in Figure 2.7. The non-monotonicity and smoothness properties of the swish
activation function allow negative outputs, eliminating the dying ReLU and
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SoftPlus Function SoftPlus Derivative
6 1.0f
5 0.8}
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Figure 2.6: SoftPlus activation function and its derivative. This smooth approximation of ReLU
ensures continuous gradients, supporting stable optimization across all input values.

promoting stable gradient flow. The swish function is computationally more
expensive than ReLU due to the sigmoid term.

Swish Function Swish Derivative
6
1.0
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0.8t
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0.61
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-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Figure 2.7: Swish activation function and its derivative. The self-gated, smooth function balances linear
and nonlinear behavior, often improving gradient propagation and network performance.
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Training algorithm of neural network: Forward and backpropagation

Training artificial neural networks can be divided into two stages: the forward
pass and the backward pass, also known as backpropagation.

In the forward pass, the input is transformed into an output prediction by sequentially
propagating through the network’s layers. In a multi layer perceptron (MLP)
(Figure 2.8) with N hidden layers, Mathematically, for an input vector x, the
output of each layer is given by,

r =g (Wu):,3 i b<1>) 7 (2.13)
rO = f <W<z>,.<z—1> +b<z>)7 1<i1<L, (2.14)
§=WDpd) 4 pI) (2.15)

Here () denotes the activation of the neurons in the I-th layer, WO and b® are
the weight matrix and bias vector of the [-th layer, ¢(-) is a nonlinear activation
function, and ¢ represents the network output.

Hidden Layer

Figure 2.8: Structure of the multi-layer perceptron.
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2.1 Concepts of data-driven modeling

The loss function quantifies the difference between the predicted and target outputs.
To quantify the network’s performance for the forward pass, the predicted output
¢ is compared with the target y using a loss function L.

In the backward pass, the gradient of the computed loss is used to adjust the
network’s parameters in the opposite direction, thereby minimizing the loss
surface. The gradient computation in a feedforward neural network without any
intermediate hidden layer is straightforward. In a multi-layer network, the gradient
is computed using the backpropagation algorithm, which applies the chain rule of
calculus to propagate gradients from the output layer to the input. To compute
the loss £, the network is run in a forward pass. To efficiently compute the exact
gradient %, information about the loss needs to be passed in the opposite direction
of the forward pass, hence the name backpropagation. To illustrate the principle
of backpropagation, consider a simplified three-neuron chain network consisting

of an input node «, a hidden node r, and an output g (Figure 2.9). Assuming that

o1 .
L(y9) =59, 2.16)
The change of the weight w,. is given by
oL
=—(y—9 2.17
Do, WO (2.17)

This weight update depends only on local information at the input and output units
of this connection. For the input weight w,,, the gradient is given by

OL 0L Or  OLOIY Or
Ow,  Or dw, 09 Or dw,’

(2.18)

Here, the update of w,, is not local as it requires information from a downstream

weight w,.. In other words, the error % = — (y — g) is backpropagated from
the output node to the input node. The backpropagation algorithm provides a
method for determining how much w, and w, should be adjusted to improve the

network’s performance.
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Forward pass Yy \

oL oL oL
Ows  oc  ocor  Or oc ocoy oc 99

- = — V.
0wy Ir Owy, ar g or Yy "
Backward pass

Figure 2.9: Illustration of the forward and backward propagation in a neural network. During the
forward pass, input @ is transformed through a hidden unit 7 = w2 to produce output
9 = wyr. The backward pass propagates the loss gradlent from the output back to earlier
_ oL
layers, computing dos = or aw
depend on information transmitted across multiple layers. Inspired from [45]

2.2 Discriminative modeling

Discriminative modeling in machine learning focuses on learning a direct mapping
from input observations to their associated outputs. As shown in Figure 2.10, the
discriminative model learns a conditional probability distribution p(y | ), where
1y can be a discrete class label for a classification task or a continuous value for a
regression task. Consider a supervised dataset D = {(x(), y())}¥ |, where each
input vector () € R and each output y(*) may be discrete or continuous. The
likelihood of the model parameters 6 is

20| D)= Hpg (y@ | @) (2.19)

and the log-likelihood is

(0| D) = Zlogpg (y D | ). (2.20)
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The model parameters are estimated by maximizing the log-likelihood:

0= arg max (0| D). (2.21)

By focusing on p(y | «), discriminative models effectively extract the relevant
features of the input that best describe the output, whether the task is classification
or regression.

2.3 Generative Modeling

Human reasoning often relies on the ability to envision possible scenarios without
directly experiencing them. Machine learning adopts a similar concept through
generative modeling, which aims to reproduce the mechanisms that generate
observed data. A generative model aims to capture the process by which data
is generated and can produce new instances similar to those in the training set.
Formally, a generative model learns to approximate the probability distribution
underlying a dataset. The key idea is to utilize this learned distribution to sample
or generate new data and incorporate information.

In generative modeling, the sample space defines the complete set of possible
outputs a model can, in principle, generate. To describe how likely different
elements of the sample space are, the generative models rely on the probability
density function pg(a) for unsupervised dataset D = {xV} N | or pg(,y) for
supervised dataset D = {(z(?, 3} |, parameterized by model parameters 6.
For an unsupervised dataset, the Probability Density Function (PDF), expressed
as pg(x) and parameterized by 6, specifies how probability mass is distributed
across the sample space. Because infinitely many density functions could be
employed to approximate the true distribution of the data, parametric modeling
imposes structure by restricting the choice to families of functions with adjustable
parameters. Assuming a Gaussian distribution allows the parameters that best
describe the observed data to be estimated. The likelihood measures how well a
given set of parameters explains the observed data, expressed as pg (), which
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represents the probability of data & under the model parameters 6. The likelihood
function can be expressed as,

Z(0 | x)=pe(x), (2.22)

and for a unsupervised dataset D = {x(}N

26| D) H e ( (2.23)
xe€D
Discriminative approach Generative approach
@
® e
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Directly estimate p(y | ) Estimate p(x | y) to infer p(y |

Figure 2.10: Comparison of discriminative and generative modeling approaches. In the context of a
classification problem, discriminative models estimate p(y | @) to directly discriminate
between different data classes, while generative models learn p(x | y) to capture the
underlying data distribution and infer p(y | «).

Calculating likelihood in complex datasets, involving multiplying small proba-
bilities, can lead to numerical underflow. To address this, the log-likelihood is
often used, since it converts products into sums that are easier to compute. The
log likelihood is given as

((6|D) Z log pe ( (2.24)
xeD
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The model parameters are then optimized using the principle of maximum
likelihood estimate (MLE), which selects the values of 6 that maximize the
log-likelihood. Mathematically, the maximum likelihood estimate 0 is given as

~

0 = arg max L(6|D). (2.25)

While MLE provides a systematic method for parameter estimation, applying it
directly to high-dimensional data can be computationally demanding. The number
of parameters grows rapidly with the dimensionality, and unobserved points may
be assigned a negligible probability. Naive Bayes offers a simpler alternative by
assuming conditional independence among features, which drastically reduces
the parameter count. However, independence assumptions limit the model’s
expressiveness. For example, Naive Bayes cannot capture pixel correlations in
images. To overcome these limitations, modern generative modeling often relies
on deep learning. As discussed in Section 2.1.2, Deep neural networks learn
hierarchical, non-linear feature representations, allowing them to capture complex
dependencies without restrictive independence assumptions. By leveraging
multiple layers of abstraction, deep generative models provide a more powerful
and flexible framework for modeling high-dimensional data [49].

2.4 Overview of generative deep learning

Integrating deep learning into generative modeling addresses the limitations of
traditional generative modeling in representing complex, high-dimensional data.
As discussed earlier, conventional generative modeling approaches, such as Naive
Bayes models, rely on simple assumptions, including that the data features are
independent. However, this assumption is not applicable when modeling image
pixels. Generative DL models use Bayes theorem, which formalizes the reasoning
under uncertainty, variance, and hidden structures in data. The Bayes theorem can
be expressed as
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p(H|E)=2L ;E(E];I) yac p](:f;)p ) (2.26)

The term p(H) represents the prior distribution, which encodes the beliefs or
hypotheses prior to any data being observed. The likelihood p(FE | H) represents
the probability of observing evidence E given a hypothesis H. The evidence p(E)
represents the marginal probability of observing E for all the possible values,
while the posterior p(H | E) represents the belief after incorporating the evidence.
Computing the evidence p(E) = [p(E | H)p(H)dH is often infeasible in
high-dimensional spaces because the integral requires integrating over all possible
configurations. In continuous high-dimensional spaces, the number of possible
configurations grows exponentially, making this computationally infeasible. To
address this challenge in Bayesian inference, generative models employ various
approximation strategies, including variational inference and Markov chain Monte
Carlo estimators [50, 43].

Generative models can be categorized based on how the model distributions
Pmodel () are learned. Explicit density models define a probability density function
Pmodel (; @) with parameters 6. The goal of an explicit model is to maximize the
likelihood of the training data under this model. Under this category, the two main
approaches include tractable and approximate density models. Tractable explicit
density models define a density function ppeger(; @) that is computationally
tractable, which directly calculates the likelihood ppoger(@; €) for a given data
point x.

Autoregressive models, including PixelRNN [51] and Pixel CNN [52], decompose
the joint probability over dimensions into a product of conditional probabilities us-
ing the chain rule p(x) = [[, p(x; | z1,...,z;_1) with each conditional modeled
by a neural network. While the autoregressive models achieve high likelihood
scores, sequential generation slows sample production [53-56]. Normalizing
flow transforms a simple distribution, such as a Gaussian, into a complex data
distribution using a series of invertible transformations with tractable Jacobians.
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2.5 Generative models

Normalizing flow offers exact likelihood estimation and efficient sampling once
trained.

Approximate explicit density models also define pmogel(; @), which incorporates
latent variables z, making exact likelihood computation intractable. Variational
Autoencoders (VAEs) introduce latent variables and assume data is generated via a
conditional distribution p(x | z). An encoder network approximates the posterior
distribution over latent variables, while a decoder reconstructs data from latent
samples. Training maximizes a lower bound on the log-likelihood, known as the
Evidence Lower Bound (ELBO), which balances the fidelity of reconstruction and
divergence from a prior distribution over latent variables. These models provide
a structured latent space, efficient sampling, and stable training, though samples
may appear blurrier, and only a lower bound on likelihood is obtained [57].

Implicit density models learn to generate samples from pode () Without explicitly
defining the density function itself. Instead, implicit models provide a mechanism
for directly sampling from the distribution. The generative adversarial network
falls into this category, which uses a generator network G that maps a random noise
vector z randomly sampled from a simple prior p, (z) to a data sample x = G(z).
A discriminator network D tries to distinguish real data from generated samples.
The generator learns implicitly to transform the prior distribution p,(z) into the
target data distribution [58].

2.5 Generative models

2.5.1 Variational Autoencoders

A standard autoencoder consists of two neural networks: an encoder £ and a
decoder G (Figure 2.11). The encoder network maps the data points from the input
space X to a lower-dimensional latent space Z, while the decoder reconstructs
the samples by mapping Z back to X. The goal of an autoencoder is to encode
and reconstruct a sample x € X. The reconstruction of the sample is given by
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& = G(E(x)). The latent space Z creates a bottleneck at the encoder to compress
input data into a meaningful latent representation of x. The latent representation
is a compressed representation of the salient features of the data, achieved by
filtering out irrelevant features.

An autoencoder only with linear activation in both the encoder and decoder
networks is mathematically equivalent to principal component analysis (PCA),
which identifies the principal components of data through a linear transformation.
The fixed latent vector in autoencoders is useful for tasks such as data compression
and regeneration. Despite their effectiveness in learning compact encodings, the
fixed latent vector representation prevents standard autoencoders from functioning
as generative models. Since the latent space remains unconstrained, random
sampling of z € Z fails to yield valid reconstructions, leaving discontinuities in
the learned latent representation. This limitation of the autoencoder is addressed
by probabilistic VAEs, which impose variational inference on the autoencoder. In
VAESs, the encoder maps the input data to a latent distribution defined by its mean
and variance, rather than a fixed latent vector. The variation inference estimates
the distribution over z in the latent space given a data sample «, in other words,
the posterior probability distribution p(z | ). Then the p(z | @) can be computed
using Bayesian theorem as,

p(x|2) p(2)
plx)

For a continuous distribution, the integral is taken over all sample partitions:

p(zlx)= 2.27)

p () = / p(@|2) pl2) de. (2.28)

The estimation of the posterior requires computing the marginal density or evidence
p (x). Computation of the evidence requires integrating over the entire latent
space, which becomes infeasible in high dimensions. To solve this challenge, the
posterior p(z | ) is approximated by a family of tractable distributions ¢(z | «)
from a known family of distributions known as an inference model. A tractable
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z ~ N(p, diag(c?))
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Variational Auto Encoder

Figure 2.11: Schematic illustration of an autoencoder and a variational autoencoder. The autoencoder
compresses input data into a latent vector and reconstructs it back to the original form.
The VAE encodes the input into a probabilistic latent space defined by the mean
and variance o, yielding a continuous representation. The encoder and decoder are
connected through a low-dimensional bottleneck, enabling the model to learn meaningful
latent variables z for accurate data reconstruction .

training objective is obtained by taking a variational lower bound on p (x) using
the approximate ¢(z | @):

logp(x) = log/q(z | :c);((:’zm))dz. (2.29)

Applying Jensen’s inequality to the logarithm, yields the following variational

lower bound, known as the evidence lower bound (ELBO):

p(z, 2)
logp(x) > Ey(z|a) [log q(z:/c)] . (2.30)

The difference between log p(x) and the ELBO corresponds to the Kullback-
Leibler (KL) divergence between the approximate posterior ¢(z | ) and the true
posterior p(z | x),

log p(x) = ELBO + KL(q(z | z) || p(z | @)). (2.31)
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Since p(x) is independent of the variational parameters, maximizing the ELBO
is equivalent to minimizing this KL divergence. The VAE architecture uses the
variational inference framework by assigning the encoder £ to parameterize ¢(z |
) and the decoder G to model p(x | z). Substituting p(x, z) = p(x | z)p(z)
yields the following training objective:

L =Eyz1z) [logp(x | 2)] —KL(q(2 | 2) || p(2)), (2.32)

The term ;|4 [ log p(z | 2)] corresponds to the reconstruction likelihood, and
KL(q(z | @) || p(z)) regularizes the latent distribution by penalizing deviations
from the prior p(z), typically a standard Gaussian A/ (0, I'). The regularization
constraint enforces smoothness in the latent space, ensuring that samples z ~ p(z)
correspond to valid reconstructions through G. Unlike standard autoencoders,
where £ maps each x to a fixed latent vector, VAEs map the input data to a
probability distribution over the latent variables. The encoder outputs parameters
p and o of a normal distribution ¢(z | ) = N(u,diag(a?)), from which
latent variables are sampled. To maintain differentiability during training, the
reparameterization trick is applied:

z=p+oOe e~N(0,I). (2.33)

The reparametrization trick moves stochasticity to the € node that is independent
of parameters by sampling it from a standard normal distribution with mean 0
and variance 1, enabling gradient-based optimization of p and o. For Gaussian
posteriors and priors, the KL divergence admits a closed-form expression:

k

1

KL(g(z| @) [ p(=) = 5 3 (—logo? —1+o?+uf). (234
i=1

While VAEs successfully resolve the discontinuities present in standard autoen-

coders by enforcing a smooth latent space, they often produce blurry reconstructions

and generated samples. The strong regularization imposed by the Gaussian prior
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may lead to oversmoothing. The S-VAE framework mitigates this effect by
introducing a weighting parameter § on the KL term:

Ls =B [logp(x | 2)] = BKL(a(z | ) [ p(2)). (239

Assigning a larger [ value enables a disentangled latent space at the expense of
reconstruction fidelity, whereas smaller values of 3 focus on perceptual quality.
Popular generative models, such as Stable Diffusion, adopt an extremely small
value of 3, relying on massive training datasets to preserve generative capacity
while maximizing visual quality [57, 59—-63].

2.5.2 Generative adversarial networks

Generative Adversarial Networks (GANSs), first introduced by Goodfellow et al.
[58], represent a class of implicit density generative models that can synthesize
high-quality data samples. As shown in Figure 2.12, the GAN framework consists
of two neural networks: a generator GG, which maps latent variables z ~ p.(z)
into the data space, and a discriminator D, which evaluates whether an input
originates from the real data distribution or the generator. The interaction between
G and D represents the adversarial learning process.

The generator G takes a noise vector z as input to generate data & that resembles the
real data . The role of the discriminator D is to distinguish real samples & from
generated samples €. During training, the generator and discriminator compete
in a min-max optimization problem: the discriminator seeks to maximize the
probability of correctly classifying real and generated samples, while the generator
aims to minimize this probability. In practice, training alternates between updating
D and G: when D is updated, G’s weights remain fixed, and vice versa.
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The interaction between the generator and the discriminator can be mathematically
formalized as

mén max V(D,G) = Egmpypa(a)log D(z)]

+E.p.(2) [log (1 — D(G(2)))] -

Here, the function V(D, G) consists of two terms that need to be optimized.
Epaaea (@) 10g(D (z))] represents the average log probability produced by the
discriminator when input is real and E ,_ () [log (1 — D(G (z)))} represents
the average log probability produced by the discriminator when the input is
generated [64—67].

Generator update

Generator loss

Real samples

xr

Random noise input

Generated samples

Discriminator loss

Figure 2.12: Schematic representation of a generative adversarial network (GAN). The generator creates
realistic data samples from random noise vectors, while the discriminator differentiates
between real and generated samples. Both networks are trained adversarially, improving
performance through mutual competition.

Maximizing the objective function with respect to the discriminator leads to an
optimal solution where real samples & ~ pg,, are assigned a probability of one
and generated samples & ~ pg are assigned a probability of zero. The generator,
in contrast, influences only the second term of the objective, and minimizing
this term drives it to produce samples that are indistinguishable from real data.

34



2.5 Generative models

This process compels the generator to approximate the real data distribution
Pdata- Training proceeds through alternating updates to the two networks, where
achieving optimal performance depends on maintaining a balance that ensures
neither model overpowers the other [65-67].

2.5.3 Diffusion model

Diffusion Models (DMs) have emerged as a powerful class of generative models,
recently surpassing Generative Adversarial Networks (GANs) in several benchmark
tasks. Diffusion models are inspired by non-equilibrium thermodynamics, which
define a Markov chain that gradually corrupts data by adding Gaussian noise
via forward diffusion and subsequently learns to remove the noise via reverse
diffusion [68]. The following formulation of the diffusion model is based on the
definition of the denoising diffusion probabilistic model (DDPM). As depicted
in the Figure 2.13, the forward process begins with a data point &y ~ ¢(x() and
introduces Gaussian noise over 7" discrete timesteps. Each step depends solely on
the immediately preceding state, reflecting the Markovian property. The forward
diffusion process introduces noise to the training data over a series of time steps,
with the noise scale varying linearly with time. This is achieved by using linear
noise scheduling at each step until the training data is corrupted, resulting in pure
Gaussian noise. In the forward diffusion process, noise is introduced using a
Markov chain, indicating that the current state of the training data relies solely
on its most recent state. Let g (x() be the probability density of the training data,
where the index 0 denotes the data before adding any noise. Given an uncorrupted
training sample x¢ ~ ¢ (o), the noised versions @1, xs, ..., X7 are generated
through the following Markovian process:

q(xy | Ty_1) :/\/(wt; w=+1-pBrx; 1, ¥ = ﬁtI) , vte{l,...,T}
(2.36)
Here, T is the number of diffusion steps, (1, ..., 87 are the hyperparameters
controlling the noise variance, and I is the identity matrix with dimension equal to
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the input data dimension. This setup enables the sampling of «; when t is drawn
from a uniform distribution ¢t ~ U ({1,...,T}):

o0 =N (win=fhenm =00, @3

Denoising Unet architecture

T

Figure 2.13: Schematic representation of diffusion model showing the forward and reverse diffusion
process. In the forward process g, clean data &g ~ g() is progressively perturbed
with Gaussian noise until it becomes pure noise. The reverse process pg, typically
implemented with a U-Net, iteratively denoises the samples to reconstruct realistic data
from noise.
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2.5 Generative models

This shows that, given the original data &y and variance schedule ;, the noisy
sample x; can be derived in a single step. The reparameterization trick allows
sampling from ¢ (x; | o) with oy =1 — 3; and &y = H§:1 o; as follows:

:ct:\/(l—ﬁt)-:co—i—\/Ef

(2.38)
xy =\ay-xo+ /(1 — @) e,

where € ~ N(0, I) is a standard normal variable, enabling the faster sampling
of the noisy version from the original sample. In the reverse diffusion process,
the goal is to remove the noise added to the training dataset in a structured and
controlled manner, thereby reconstructing the original data xy. For example,
if the forward diffusion process can be reversed and sample from g (x;—1 | ).
However, estimating ¢ (x;—1 | ;) is difficult because it requires the use of the
entire dataset. To achieve the reverse diffusion process, a neural network model
pe is trained to approximate these conditional probabilities. The model learns
to reverse this diffusion process during training, generating new data. Starting
with pure Gaussian noise p (z1) := N (xr;0, I), the model learns the reverse
trajectory or joint distribution py (xo.7) as

T
Pe(-’BOT pe Ti—1 |
I[l (2.39)

with, pg (-1 | ¢) = N (2i—1; po(xe, 1), B (24, 1)),

where py (.7) denotes the reverse diffusion trajectory. The reverse diffusion
kernel pg (x+—1 | @) is defined by the mean g9 (¢, t) and the covariance matrix
3o (x4, t). Using the Markov chain, g is generated by first sampling a noise
vector &1 ~ p (x), then iteratively sampling from the learnable reverse diffusion
kernel ;1 ~ py (@41 | ;) until ¢ = 1. The sampling process is improved
by training the reverse Markov chain to match the forward Markov chain. In
other words, the parameter ¢ has to be adjusted so that the joint distribution of
the Markov chain closely approximates that of the forward process. After the
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necessary parameterization of the reverse diffusion process following Ho et al.,
[69], the objective formulation to train the diffusion model:

£simple = Et,wg,e [HE - 69(\/a o+ Vv 1— Qi €, t)”Q]v (240)

where [E refers to the expected value and €y represents the neural network trained
to predict the noise in given input ;. The oy is calculated from oy = 1 — 3,
and & = Hi:o as. The reparameterization of reverse diffusion, py (xi—1 | T¢),
simplifies the process by fixing the covariance at a constant value. The mean is
then defined through variance scheduling, which denotes that it only depends on
x;. Consequently, the neural network is trained to predict the noise added at each
specific time step, rather than estimating both the mean and covariance [69-71].

The main drawbacks of diffusion models include slow inference and high training
cost. Despite their successful implementation, diffusion models have drawbacks,
including high computational cost during both training and inference. Each
generated sample typically requires thousands of sequential denoising steps.
Several approaches have been proposed to mitigate this limitation. Diffusion
Denoising Implicit Models (DDIMs) introduce a non-Markovian formulation that
enables deterministic sampling and skips certain steps in the diffusion process,
thereby accelerating inference while preserving generation quality [72]. Another
significant advancement in the diffusion model is the introduction of Latent
Diffusion Models (LDMs). In standard DDPMs, the diffusion process occurs
directly in the high-dimensional data space, which is computationally demanding.
LDMs instead apply diffusion in a compressed latent space, obtained via VAE. By
operating on latent representations, the dimensionality is reduced, enabling faster
inference and reduced memory requirements while retaining semantic richness
[73].
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2.6 Loss functions and Evaluation metrics

Loss functions and evaluation metrics are two valuable tools for assessing model
performance, but they serve distinct purposes in model development and evaluation.
During training, the loss function measures the discrepancy between the predicted
outputs and the target outputs. The goal of the loss function is to optimize model
parameters by minimizing this gap. In contrast, performance metrics are applied
after training to evaluate how well the model works with new data. The evaluation
metrics enable comparison across different models and configurations to find the
model that performs best for the task.

2.6.1 Loss functions

Mathematically, the loss function £(6) for a model parameterized by 6 and trained
on dataset D = {(z?,y")}\; can be expressed as

1 & o
HORSDIUCICIND 2.41)

where [(-) represents the loss per sample and 6 represents the model parameters.
The mathematical properties of loss functions, such as convexity, differentiability,
smoothness, robustness, and monotonicity, are important for the stability of the
gradient-based optimization process during model training. Convexity ensures
that any local minimum of a loss function is also a global minimum, facilitating
the consistent convergence of optimization algorithms to an optimal solution.
Differentiability of the loss function enables the calculation of derivatives or
gradients, which are crucial for the gradient descent method used in model
training. The smoothness of the loss function features a continuous and stable
gradient, which prevents sudden changes in the loss landscape and supports steady
convergence throughout training. Robustness protects the optimization process
from distortions caused by outliers or unusual data points. Monotonicity ensures
that the loss value consistently decreases as predicted outputs approach the actual
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target values, providing a clear direction for optimization. These mathematical
properties of the loss function provide a stable and understandable basis for
evaluating predictive error, which helps in creating machine learning models with
better accuracy and generalization [74, 75]. The following subsection will focus
on the loss functions used in the different generative tasks.

Reconstruction Loss

Reconstruction-based losses are employed in generative models to quantify the
difference between the original and reconstructed data, thereby forcing the model
to capture and reproduce the essential features of the input data. The choice of an
appropriate loss function is significant, as it makes an implicit assumption about
data distributions that directly affects the learned latent representations. The fol-
lowing subsections reveal the most widely used reconstruction losses in generative
models. Depending on the data normalization range, the activation function of the
model’s output layer, and the specific task, the following reconstruction losses are
selected.

Mean Squared Error

The mean squared error (MSE), also known as the L2 loss, is a fundamental loss
function that measures the average squared distance between predicted outputs
and ground truth values. The squaring of the difference between the predictions
and ground truth values results in a higher penalty assigned to larger deviations
from the target value. Taking the average normalizes the total loss against the total
number of samples in a training dataset. The mathematical equation of MSE is
expressed as,

N
1 7 ~0\2
Lvse = 3 ;(:c —&")2. (2.42)

Where N denotes the total number of samples in the dataset, =* is the ground
truth value for the i-th sample, and &' is the predicted value for the i-th sample. In
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generative modeling, the MSE loss is widely used in generative tasks that require
pixel-level reconstruction accuracy in models such as autoencoders. However,
due to the higher sensitivity of the larger deviations, MSE may over-penalize
outliers, resulting in blurred outputs when applied to image generation tasks. This
limitation necessitates the use of weighted loss functions, such as perceptual losses,
to achieve visually sharp results.

Mean Absolute Error

The mean absolute error (MAE), also referred to as L1 loss, measures the average
absolute difference between the predicted and actual values. Unlike MSE, which
features a quadratic penalty, MAE loss penalizes errors linearly, making the loss
function inherently robust to outliers and encouraging predictions with fine and
high-frequency details. The mathematical equation of MAE loss is expressed as,

LMAE = Z | ' — & (2.43)

Where n denotes the total number of samples in the dataset, 2 is the ground truth
value for the i-th sample, and & is the predicted value for the i-th sample. In
image generation, the MAE loss is often preferred for image-to-image translation
models, image denoising, and super-resolution tasks.

Binary Cross Entropy
The binary cross-entropy (BCE), also known as log loss, is another widely adopted
reconstruction objective in generative modeling when the input data are binary,

representing normalized probabilities within the range [0, 1]. The BCE loss is
formally defined as:

N D
Lpce(x, &) ZZ [mz log(:fci + (1 —x )log(l - )} (2.44)
i=1 j=1
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where N is the number of samples and D is the dimensionality (e.g., number
of pixels). «! € {0,1}" denotes the ground truth value of the j-th pixel or
feature in i-th sample and & represents the corresponding model’s predicted
probabilities. Similar to the Mean Squared Error (MSE), this loss is averaged
over all samples within a mini-batch during training. Minimizing the BCE
loss is equivalent to maximizing the log-likelihood of the observed data under
the assumption that each feature wj is independently drawn from a Bernoulli
distribution parameterized by &7. This probabilistic interpretation provides a direct
measure of how well the reconstructed outputs align with the true data distribution.
In the context of generative modeling, BCE reconstruction loss is frequently
employed in VAEs, binary image generation, and probabilistic reconstruction tasks
such as segmentation mask prediction. In VAE training, the BCE term typically
serves as the reconstruction component of the Evidence Lower Bound (ELBO),
in conjunction with a Kullback-Leibler (KL) divergence regularization term that
enforces latent-space structure. The BCE loss provides a statistically grounded
and probabilistically interpretable measure of reconstruction fidelity, making it
particularly effective for generative tasks involving binary data.

Categorical Cross Entropy

The categorical cross entropy (CCE) measures the difference between the predicted
class distributions and the true class distribution. In a generative context, CCE loss
is used when the model’s output is discrete, effectively maximizing the likelihood
of observing the true data class distributions under the model’s parameters. The
mathematical equation of CCE loss is expressed as,

1 N C
Lcocg = —¥ 2_; ; yilog(4 (2.45)

Where C is the number of classes, yg is the true label for the i-th observation or
sample and class ¢, which is a one-hot encoded vector to assign O for different classes
and 1 for the same class during loss computation, and 4 is the predicted probability
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distribution for that class. CCE loss can be sensitive to imbalanced datasets, where
the number of samples in each class is not equal, and the requirement for one-hot
encoding increases memory usage instead of using real values for the classes of
the data. CCE loss functions are used as an objective function in sequence-based
generation models, including autoregressive models for language modeling, as
well as in text-to-image generation tasks and other image classification tasks.

Adversarial Loss

Adversarial loss establishes a dynamic min-max game between the generator G,
which maps noise vectors to synthesized data, and the discriminator D networks,
which classify input as real or generated. The generator G is optimized to minimize
loss by synthesizing data indistinguishable from real data. At the same time,
the discriminator D maximizes the loss by correctly classifying inputs as real
or fake. The generator-discriminator competition drives G to learn the true data
distribution. Assuming z ~ p,(z) is the noise drawn from the latent distribution
and & ~ Py () is a real data sample from the target distribution, the adversarial
loss is expressed as

mén max Eerpu log D(x)] + Ezp, [log (1 — D(G(2)))]. (2.46)
Here, D(x) outputs the probability that & belongs to the real data distribution, and
G (z) maps a latent vector z into the data space. This formulation corresponds

to the BCE loss between the discriminator predictions and the corresponding
real/fake labels. The discriminator is optimized by minimizing

LD =~ Egnpllog D@)] — Eny log (1 - D(G(2))].  (247)
while the generator minimizes

Lo =—E., [logD(G(2))]. (2.48)
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The BCE-based formulation assumes that the discriminator performs a binary
classification task, treating real and generated samples as distinct classes. However,
in practice, the BCE formulation can suffer from gradient saturation, where D
becomes overly confident early in training, leading to negligible gradients for G.
This limitation has motivated alternative loss formulations designed to improve
training stability and convergence [64].

Least Squares Adversarial Loss

The least squares adversarial loss modifies the standard GAN objective by replacing
the binary cross-entropy loss with a least squares formulation. In conventional
GAN:S, the sigmoid cross-entropy loss can lead to vanishing gradients when
generated samples lie on the correct side of the discriminator’s decision boundary
but remain distant from the real data manifold. The vanishing gradient problem
limits the generator’s ability to improve further as it generates almost realistic
samples. The least-squares GAN (LSGAN) addresses this issue by using a
quadratic loss that continues to penalize samples based on their distance from the
target, thereby providing smoother, more informative gradients during training.

Formally, let @ and b denote the discriminator’s target values for fake and real data,
respectively. The LSGAN objectives are defined as:

. 1 1
leH VLSGAN(D) = 5 Emdim(m) [(D(a:) - b)2]+§ ]EZsz(z) [(D(G(Z)) - Q)Q] .
(2.49)

LB [(DGE) -0 @50

min Wiscan(G) = 2

where c represents the value the generator wants the discriminator to output for
its generated samples, often set equal to b to encourage the generator to produce
realistic data. Unlike the cross-entropy loss, which saturates and yields near-zero
gradients for well-classified samples, the least squares loss maintains a non-zero
penalty proportional to the prediction error. The least-squares approach ensures
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that the generator continues to receive meaningful gradient information, even
when its outputs are close to realistic, leading to more stable, gradual learning.
By penalizing both under- and over-confident discriminator outputs, LSGAN
encourages smoother decision boundaries and reduces the likelihood of mode
collapse.

Empirically, LSGANs have demonstrated improved stability and visual quality in
image generation tasks such as image-to-image translation and super-resolution.
Their quadratic objective helps align the generated data distribution more closely
with the real distribution while maintaining robust gradient flow [76].

Wasserstein adversarial Loss

The Wasserstein adversarial loss redefines the GAN objective using the Earth
Mover’s Distance (EMD). The EMD measures the dissimilarity between two
multidimensional distributions by calculating the minimum work needed to
transform one into the other. Let p,.(x) denote the real data distribution and p, (&)
represent the generator-induced distribution. The Wasserstein distance between
pr(z) and py (&) distributions is defined as the minimum cost required to transport
the probability mass of one distribution to the other, formulated as the following
optimal transport problem:

W) = _inf [ e-d| di.a) @51)
Y€ (Pa,pg) J &, 2
where I'(pq,pg) is the set of all joint distributions ~(z, &) whose marginals
correspond to py and p,, respectively. The term || @ — & || denotes the Euclidean
distance, representing the cost of moving a unit of probability mass from & to x.
The integral thus captures the total minimal transport cost required to morph one
distribution into the other, establishing a meaningful geometric distance between
them. The Lipschitz continuity constraint is imposed on the discriminator of
Wasserstein GAN (WGAN) to ensure that the discriminator behaves as a smooth
and bounded function. The constraint prevents the discriminator from becoming
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overconfident, which provides almost no gradient to guide the generator. The
Lipschitz constraint is enforced via a gradient penalty that penalizes deviations
in the gradient norm from unity, improving training stability and removing the
discrete clamp on weights [77].

Perceptual Loss

Perceptual loss, also known as feature reconstruction losses, differs from traditional
pixel-wise loss functions by comparing high-level features extracted from pre-
trained convolution neural networks ¢, such as the Visual Geometry Group (VGG)
model. The core idea behind perceptual loss is to use the feature maps from
various layers of a convolutional neural network (CNN) trained on a large dataset.
By extracting the feature maps from both the target image « and the generated
image &, the difference in the high-level features, such as edges, textures, and
patterns that the network has trained to detect, can be quantified. Let ¢; () be the
activations of the j-th layer of the network ¢ when processing the image «. The
feature reconstruction loss is then computed as the Euclidean distance between
the feature representations.

g5 (&, ) = | 6;(&) - d;() I3 (2.52)

C’HW

where Cj, H;, and W} represent channel, height, and width dimensions of layer
j. Minimizing the feature reconstruction loss ensures that the generated outputs
& are perceptually similar to the target . However, the feature reconstruction
loss does not capture the stylistic attributes such as texture, color, and common
patterns. To capture the stylistic representations, Gatys et al., [78] proposed the
style reconstruction loss, which measures the difference in feature correlations
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between the generated and target images. For a given layer j, the Gram matrix
Gf(:c) is defined as

H; W;
1 J J
G(?(w)c,c’ — ¢'(m)h,w,c¢'(w)h,w,c’a (253)
J CjHj V[/j };:1 2:1 J J

where ¢;(x) represents the activation tensor of shape C; x H; x Wj. The
indices h and w correspond to spatial locations in the feature map, and ¢ and
¢’ denote feature channels. Each product ¢; (&) w,c®;(€)hw, measures the
degree of co-activation between channels ¢ and ¢’ at position (h, w). The complete
Gram matrix Gf(a:) € R *C encapsulates the texture and style characteristics
represented in layer j. The style reconstruction loss measures the discrepancy
between the Gram matrices of the generated and target images, formulated as

LY (&, @) =|| GY(&) — GL(x) |3 . (2.54)

The Frobenius norm F' calculates the overall difference in feature correlations,
capturing stylistic divergence between the two images. Minimizing the style
reconstruction loss enables the generated image to reproduce stylistic patterns of
the reference image while preserving global content alignment [79].

2.6.2 Evaluation Metrics

Evaluation metrics for generative models are quantitative and qualitative measures
that assess how well the selected metrics capture, reproduce, or approximate the
underlying real data distribution. The selection of the evaluation metric depends
on the objectives of the generative model, such as density estimation, sampling,
and latent representation learning. The following subsections describe evaluation
metrics used to assess generative model performance across different aspects of
the generated sample [75, 80, 81].
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Inception Score

The Inception Score (IS) measures the fidelity and diversity of generated images.
In practice, IS relies on a pre-trained classifier, commonly the Inception-v3
network, to evaluate the conditional label distribution of generated images [82].
Let p(y | @) denote the conditional class distribution for a generated image @, and
p(y) represent the marginal class distribution over all generated samples. The IS
is defined as:

IS = exp (Exmppo [Dxcr (p(y | 2) || p(1))]) (2.55)

where Dy, (- || -) represents the Kullback—Leibler divergence (KL). The IS score
measures the average KL divergence between the conditional label distribution
p(y | ) of the samples and the marginal distribution p(y) over all samples. A
higher IS value indicates that the generated images are both highly classifiable and
diverse. However, IS does not directly compare the generated distribution to the
real data distribution and is thus sensitive to the choice of classifier.

Fréchet Inception Distance

The Fréchet Inception Distance (FID) quantitatively evaluates the distance between
the feature representations of real and generated data extracted from a pre-trained
network. FID assumes a Gaussian distribution for the features computed by the
inception network for both the real and generated samples. FID employs the
Fréchet distance between two multivariate Gaussians, which provides a closed-form
expression for the difference between their statistical parameters. For both real
and generated samples, Gaussian distributions are fitted to the features obtained
from the pool3 layer of the Inception network. Let (gt,, %) and (4, 3,) denote
the empirical mean and covariance matrices of the real and generated feature
distributions, respectively. The FID is then computed as
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FID = oy = gy |2 +Tr (B, 4+ 2, - 2(5.5,)12) . 256)

where Tr(-) denotes the trace operator. The performance of the metric depends
on features extracted by the inception network. A lower FID value indicates a
smaller distance between the real and generated distributions, thereby reflecting
high sample fidelity and diversity. Even though the assumption of Gaussian offers
computational tractability, it does not represent the true distribution of features,
leading to approximation errors [83, 84].

Kernel Inception Distance

The Kernel Inception Distance (KID) provides a non-parametric alternative to
the Fréchet Inception Distance (FID) for assessing the similarity between real
and generated data distributions. Unlike FID, which assumes Inception features
follow a Gaussian distribution, KID uses the maximum mean discrepancy (MMD),
making it distribution-agnostic and providing unbiased, more stable estimates,
especially on small datasets. MMD measures the distance between the mean
embeddings of two distributions in a high-dimensional reproducing kernel Hilbert
space. For the real p, and generated p, distributions with kernel k, the squared
MMD is expressed as

MMD? (prvpg) = Ew,m’NPT[k(a’v :B/)] —2 EENPT’ E~pg [k(:l:, :%)} —HEQ@'NPQ [k(ii’, jl)}
(2.57)

The KID metric is calculated by applying the squared MMD to the feature

embeddings of real and generated samples from the final average pooling layer of

the inception network.

KID = MMD?(¢(z), ¢(&)), (2.58)

where ¢(-) denotes the feature embeddings from a pre-trained network. KID
utilizes a polynomial kernel and remains unbiased even for finite sample sizes.
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Perceptual Metrics

The Learned Perceptual Image Patch Similarity (LPIPS) metric quantifies percep-
tual similarity between two images using deep feature activations extracted from a
pretrained convolutional neural network. LPIPS builds on the observation that
deep features encode perceptually relevant information that correlates strongly
with human visual judgments.

For a reference image patch x and a distorted patch &, let ¢;(-) € RH>xWixCi
denote the feature activations at layer [. These activations are normalized along
the channel dimension to obtain unit-normalized features

- _ aO)hw
S = Tl

Let w; € R®" be learned per-channel weights. The LPIPS distance is then defined
as

LPIPS(z. ) = HZWZZHM@ di@ i — @) @59

where H; and W are the spatial dimensions of the [-th feature map, and © denotes
element-wise multiplication. Using uniform weights reduces the expression to a
cosine distance between deep features.

LPIPS can be computed using features from various pretrained networks, most
commonly VGG-16 or VGG-19, which provide deep, perceptually rich repre-
sentations. Shallower networks such as AlexNet offer faster computation, while
compact networks like SqueezeNet are suitable for resource-constrained scenarios.
All networks are typically pretrained on ImageNet, and the linear channel weights
are learned to calibrate the metric to human perceptual judgments [85].
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Peak Signal to Noise Ratio

Peak signal-to-noise ratio (PSNR) is a measure of image quality that compares
the maximum possible power of a signal to the power of corrupting noise. The
corrupting noise is measured using the MSE between the reference and generated
images. The PSNR is then defined as,

(2.60)

2
PSNR(I,K) = 1010g10( (MAX,) )

MSE(I, K)

Here, MAX represents the maximum possible pixel value of the images. PSNR
is a widely used metric for assessing reconstruction fidelity in grayscale images
[84].

Structural Similarity Index Measure

The structural similarity index measure (SSIM) is another perceptual metric that
evaluates the similarity between two images by focusing on properties important
to human visual perception, such as luminance (I), contrast (C'), and structure
(S). For two images « and &, the I, C' and .S components are defined as follows:

2 : +C
I(z,&) = %’
o 20':1:U:i: +02
C = 2.61
(@.8) = 2o o 2.61)
. ozz + Cs3
S(z,3) = T=2 T8
(ar:,ac) 0204 + Cs

Where 15 and 5 are the mean intensities of local patches centered at  and
x, o, and o are the standard deviations, and o4 is the covariance between
corresponding patches. The constants C, Cs, and C'5 prevent division by zero
and improve numerical stability. The luminance, contrast, and structural terms are
combined to compute the SSIM score:
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SSIM(x, &) = I(z, %)*C(z, %) S (x, £)7, (2.62)

where the exponents «, /3, and y control the relative contributions of luminance,
contrast, and structural components. SSIM is widely used for image quality
assessment because it reflects perceptual differences and captures both intensity
and structural information at local image regions [86].
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3 Methodological framework of
generative deep learning for
advanced battery materials

This chapter discusses the methodological frameworks used in this work to
implement generative deep learning for the development of advanced battery
materials. As shown in the Figure 3.1, the methodological framework of this thesis
is classified into the data layer, the generative core, and the application layer. The
data layer comprises workflows for data extraction, preprocessing, augmentation,
and management. The generative core defines the model architecture type based
on the intended application. The application layer defines the possible application
modes based on the model architecture.

3.1 Data Layer

This section focuses on the foundational data layer. Data lies at the basis of any
data-driven analysis upon which generative models learn, generalize, and generate
new data instances. In the context of the development of battery materials, the data
span multiple scales, from atomistic, interphase configuration, and microstructural
data to macroscale electrochemical material properties and performance metrics.
The quality, diversity, and representativeness of the dataset strongly influence the
generative model’s ability to capture structure-property-performance relationships.
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APPLICATION LAYER

GENERATIVE CORE

Model architecture type 1: z
Variational Autoencoder + Property LATENT SPACE N ;
Re Latent Diffusion Model
gressor . - e
Virtual screening and characterization of battery

Virtual analysis and synthesis of solid materials
electolyte interphase

Model architecture type 2:

DATA LAYER

Battery data

Reproducible data Workflow

FAIR workflow data management using
Kadi4Mat and KadiAI

Figure 3.1: Overview of methodological framework of the thesis. The bottom frame constitutes the
data preprocessing and management workflow. The middle frame selects a latent-powered
generative model architecture for the intended application. The top layer defines the
application modes, such as characterization, screening, and generation, based on the
selected model architecture.

The following subsection provides an overview of the possible battery data sources
along with the preprocessing, normalization, and data representation strategies
applied to prepare the data for generative modeling.

3.1.1 Battery data sources
The battery material datasets originate from multiple sources, including experi-

mental measurements, computational simulations, and data-driven methods, which
are collected to understand material structure, composition, and performance.
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Analyzing the influence of atomic structure, crystallographic domain arrange-
ment, and composition on nano-, micro-, and mesoscale features of electrode
materials is essential for improving battery system efficiency. Experimental
characterization techniques encompass a wide range of methods for understanding
structural, morphological, and electrochemical properties across different length
and time scales. X-ray diffraction reveals phase composition and changes in
electrode materials. Electron microscopy methods reveal nanoscale morphology
and interfacial processes. Spectroscopic techniques, such as X-ray photoelectron
spectroscopy, provide detailed insights into the electronic structure, oxidation
states, and local chemical environments of electrode and electrolyte materials.
Atomic force microscopy and other scanning probe methods enable characteriza-
tion of morphological, mechanical, and local electrochemical behavior. The probe
microscopy techniques also reveal how these factors affect the battery’s material
properties during charge and discharge cycles [87, 88].

Despite advances in experimental techniques, low throughput remains a challenge
for many methods. This limits scale and diversity in available data, resulting in
sparse coverage of the vast compositional and structural design space of potential
battery materials. Available data is also often biased toward commercially
dominant chemistries. To address these challenges, data augmentation and targeted
data collection are required. These approaches are designed to mitigate the effects
of data sparsity and bias by expanding the diversity and inclusiveness of the dataset.
By generating synthetic data through augmentation and focusing data collection on
underrepresented areas, the aim is to create a more balanced and comprehensive
dataset, enhancing the robustness of the generative deep learning models [89, 90].

Lack of standardized data formats, variations in cell designs, cycling conditions,
and measurement protocols complicate data aggregation and interoperability across
studies. These limitations highlight the need to complement experimental data with
systematically generated computational datasets for scalable generative modeling.
In computational simulations of materials, density functional theory (DFT) [91]
and molecular dynamics (MD) [6] overcome limitations in experimental data. DFT
predicts formation energies, electronic structures, and phase stability of compounds,
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producing well-labeled, internally consistent datasets for deep learning. Molecular
dynamics simulations offer atomistic insights into temperature-dependent transport,
interfacial dynamics, and ion-diffusion mechanisms. Machine learning-accelerated
potentials enhance these methods, achieving near-DFT accuracy at the molecular
dynamics scale [92]. Kinetic Monte Carlo methods bridge quantum and continuum
scales, modeling phenomena across length and time scales [93, 94]. Advances
in computational techniques have led to the creation of open materials databases
such as the Materials Project [95], the Open Quantum Materials Database [96],
AFLOW [97], and the Inorganic Crystal Structure Database [98]. In this work,
simulation-based databases support the development of generative deep learning
frameworks for advanced battery material design and analysis.

3.1.2 Data Preprocessing

Raw data from experimental measurements and simulations are inherently diverse
and heterogeneous, often containing noise, missing values, and inconsistencies.
Data preprocessing transforms these raw datasets into clean, consistent, and
structured formats suitable for data-driven analysis. Preprocessing includes data
cleaning, reduction, scaling, and transformation. These steps improve data quality
and enhance the performance and interpretability of subsequent analytical tasks
[99, 100].

Data cleaning is the first preprocessing step, resolving data issues that may distort
model performance by handling missing values, errors, and outliers. Missing
values, due to incomplete measurements and simulations, are addressed through
imputation, which estimates replacements based on the dataset. Imputation can be
univariate, replacing missing values with the column’s mean, median, or mode,
or multivariate, leveraging features from other datasets. K-Nearest Neighbors
(KNN) selects K similar rows to estimate missing values [101-103]. Outlier
detection identifies values that deviate from the rest, as outliers bias statistics and
model performance. Detection approaches vary by data type: standard deviation
flags points more than a set number of standard deviations from the mean (for
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normal data), the Interquartile Range (IQR) flag points more than 1.5 IQRs
from either quartile (for skewed data), and z-scores classify points exceeding a
set threshold. For complex, high-dimensional data, techniques such as isolation
forests, autoencoder reconstruction, and clustering algorithms can detect anomalies
[99, 100].

The data reduction step in preprocessing tackles large, multidimensional datasets.
Row-wise reduction selects representative samples via random or stratified sam-
pling, preserving statistical balance between material types or cycling conditions.
Clustering further identifies redundant or correlated data segments. Column-wise
reduction minimizes the number of input variables by selecting or extracting
features. Filter methods rank descriptors by correlation or mutual information;
wrapper methods use recursive feature elimination; and embedded methods in-
tegrate feature selection into model training via regularization techniques such
as LASSO. Feature extraction methods, such as principal component analysis
(PCA), compress descriptors into orthogonal components that capture the dominant
variance [104]. Nonlinear autoencoders or convolutional encoders capture com-
plex interactions among microstructure, chemistry, and electrochemical response.
These techniques efficiently integrate experimental and simulated datasets with
redundant descriptors [105, 106].

Data transformation converts data into formats suitable for analysis. During
preprocessing, scaling and standardization techniques normalize numerical values
to a standard scale or distribution. Commonly used data scaling methods include
min-max normalization, which scales each feature to a specified range. Max
normalization scales each record by its local maximum to reduce the influence of
outliers. Standardization, or z-score normalization, transforms the data so that it
fits a Gaussian distribution. This centers observations around the mean with unit
variance. For categorical features, label or one-hot encoding converts them into
numerical values [107-109].

Advanced imaging techniques used in battery research, such as high-resolution
X-ray computed tomography, FIB-SEM, and synchrotron techniques, yield high-
resolution and high-dimensional datasets. The imaging datasets require dedicated
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preprocessing steps, including noise suppression, image alignment, voxel-intensity
normalization, and segmentation to determine active material, binder, electrolyte,
and pore phases. ML-based segmentation, watershed algorithms, and convolutional
neural networks are now used to achieve consistent phase identification. From the
segmented imaging data, morphological parameters such as porosity, tortuosity,
particle connectivity, and interfacial area can be extracted to simulate their linkage
with transport and mechanical properties [110, 111].

3.1.3 Data augmentation

Data augmentation increases the diversity of training datasets by applying realistic,
random transformations. Augmentation strategies are tailored to the specific task
and dataset dimensionality. For image and microstructural data, augmentation
includes geometric and intensity-based transformations to replicate real-world
variability. Geometric transformations such as rotation, reflection, translation,
cropping, and elastic deformation capture orientation-invariant features. Intensity-
based augmentations, including histogram equalization, contrast adjustment,
Gaussian noise injection, and Poisson noise replication, reproduce variability
introduced by imaging techniques. Advanced augmentation methods, such as
patch mixing, style transfer, and texture synthesis, utilize generative models like
GANs and VAEs to sample diverse configurations by learning the higher-order
structural data information. These generative model-based approaches produce
realistic morphologies that maintain pore connectivity and grain morphology in
microstructures [112, 113].

For crystal structure-based materials data, the applied data augmentation process
must preserve lattice periodicity, stoichiometry, and bonding topology. Conven-
tional augmentation approaches used in this direction include random perturbation,
rotation, translation, and axis swapping, which produce new crystal configura-
tions that maintain periodicity and symmetry [114]. In recent approaches, the
lattice-scaling method is used to augment the crystal dataset for further data-driven
analysis. In lattice scaling, the lattice parameters of the crystal structure are
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modified isotropically and anisotropically within a narrow range, e.g., simulating
the volumetric strain observed in an insertion-based mechanism during charge and
discharge cycles [115, 116].

Data extracted from open materials databases, such as the Materials Project [95],
is often dominated by widely used materials and their compositions, resulting
in imbalanced datasets. Models trained on such datasets may exhibit bias
toward majority classes and poor generalization for minority classes. To address
this, data augmentation strategies based on sampling techniques are employed.
Oversampling duplicates minority-class samples or generates synthetic data via
interpolation, such as the Synthetic Minority Oversampling Technique (SMOTE),
to preserve statistical properties and prevent overfitting. Undersampling reduces
the majority class by removing redundant or non-informative samples, achieving a
more balanced dataset at the expense of total data volume [117, 109].

3.1.4 Data management workflow

Incorporating data management into everyday research operations simplifies and
organizes the research data lifecycle. Within a machine learning framework, the
data layer includes acquisition, preprocessing, and augmentation. An efficient
research data management (RDM) tool ensures consistency, reproducibility, and
transparency across these stages. An integrated RDM tool promotes FAIR
(Findable, Accessible, Interoperable, and Reusable) data principles and supports
automation and scalability of complex scientific processes [118].

The growing adoption of data-driven methods in materials science has resulted in
the generation of multifaceted datasets from experiments and simulations [119,
120]. Heterogeneous data from these sources must be integrated, standardized, and
analyzed to extract meaningful insights. Implementing FAIR data principles in
materials research enhances data accessibility and makes it easier for the research
community to manage, share, and reuse.
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A flexible RDM infrastructure should provide access to both raw and intermediate
data generated in ongoing studies, as these datasets contain valuable information
for adaptive model refinement and early-stage insight generation. Managing
intermediate data enables continuous feedback between experimental and modeling
activities, with systematic documentation, versioning, and analysis. Integrating
such infrastructure reduces redundant experimentation, enhances reproducibility,
and maintains traceable research processes. Established research data platforms,
including Zenodo [121], Dataverse [122], DSpace [123], and NOMAD [124],
manage and publish finalized datasets. To support daily research operations,
additional tools are necessary to handle unprocessed data, automate workflows,
and enable cross-platform data integration. These functions are supported by
electronic lab notebooks (ELNs), which digitalize experimental and computational
records and link recorded data to subsequent analyses.

Commonly used ELNs include Jupyter Notebooks [125], Galaxy [126], Fireworks
[95], ElabFTW [127], and Aiida [128]. These ELNs are effective for documenting
experiments, conducting simulations, and tracking data provenance. However,
most lack interdisciplinary capabilities and require programming expertise to
automate research workflows. Therefore, a research data management system
capable of supporting interdisciplinary research processes is necessary. Such a
system should provide access to intermediate data, which refers to unpublished
data yet to be analyzed. Integrating ELNs with repository-based RDM tools that
support both user-interface and script-based workflow implementations reduces the
effort required for daily research activities such as data retrieval from experimental
devices, data sharing, data analysis, and visualization.

To address the aforementioned requirements, Kadi4Mat has been developed as
an open-source data platform at the Karlsruhe Institute of Technology [129].
The Kadi ecosystem integrates a data repository, electronic lab notebook (ELN),
and workflow management system. The repository organizes heterogeneous
data into structured records enriched with metadata, while the ELN component,
KadiStudio [130], enables the design and execution of experimental and compu-
tational workflows in a reproducible format. Both web-based and programmatic
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interfaces support the creation of interactive, automated workflows, enabling re-
searchers to smoothly transition between manual exploration and high-throughput
computational pipelines.

Beyond data management, Kadi4Mat provides access to KadiAl and CIDS
(Computational Intelligence and Data Science) [131-134], which extend the
platform capabilities to include machine learning and artificial intelligence (AI)
applications. These components enable researchers to define, execute, and
monitor Al-driven workflows within the same infrastructure. KadiAl offers
interactive dashboards for defining machine learning pipelines and managing
model training, while CIDS provides a Python-based library for data preprocessing,
feature engineering, model development, hyperparameter tuning, and performance
analysis. Together, they enable both graphical and script-based workflow execution,
ensuring accessibility for users with varying levels of technical expertise. The
functionalities defined in KadiAI and CIDS enable the creation of intelligent data
analysis projects and the recording of associated metadata at each step in an ML
workflow, describing input sources, preprocessing steps, model configurations,
and results [135].

In this work, the Kadi4Mat ecosystem serves as the central RDM framework for
implementing reproducible generative deep learning workflows. These workflows
establish traceable model development pipelines for each data-driven application,
including the virtual analysis of solid electrolyte interphase formation in battery
systems, as demonstrated in [135].

3.2 Generative core

This section describes the core components utilized to develop the generative
frameworks presented in this thesis. The subsequent subsections outline the
principles guiding model selection, architectural customization, and domain-
specific modifications for analyzing materials data.
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3.2.1 Model selection criteria

Selecting an appropriate generative model for a given application depends on
the characteristics of the input data, the model’s capacity to capture higher-order
structure data and its ability to generate meaningful outputs from learned higher
order representations. In materials research, generative models need to reproduce
observed data and generate new instances that conform to the physical constraints
of the real materials.

The selection of a generative model is influenced by how it learns to estimate
the density of the input data distribution. Generative models can be broadly
categorized as explicit and implicit density estimators. Explicit density models,
such as VAEs, learn a parameterized distribution over the data by optimizing
a variational lower bound on the likelihood. VAEs (Figure 3.2a) build on the
autoencoder architecture, encoding input data into a reduced latent space that can
then be used for generative tasks, such as synthesizing new material structures
or images. Unlike standard deterministic autoencoders, which map each input
to a single latent vector, VAEs treat the latent space probabilistically, encoding a
range of possibilities for each latent variable. This probabilistic encoding allows
the model to generate entirely new samples that are unique yet consistent with the
original data distribution [57].

To generate meaningful new samples, the learned latent space must satisfy
continuity, meaning that nearby points decode to similar outputs, and completeness,
meaning that any point sampled from the latent space produces a valid result.
These properties are enforced by constraining the latent space to follow a normal
distribution. Each latent variable is represented by the mean vector u, and the
standard deviation vector o, which together define the range of possibilities
and expected variance for that variable. The VAE training objective combines a
reconstruction loss with an additional KL divergence term that penalizes deviations
of the learned latent space from a standard Gaussian distribution. This ensures that
sampling from the latent space produces coherent, physically plausible outputs
(Section 2.5.1). The balance between reconstruction loss and KL Divergence
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ensures that the learned latent space remains smooth, interpretable, and suitable for
sampling new physically valid configurations. Sampling from the learned latent
space enables exploration of the underlying data manifold to generate continuous
latent representations in materials science.

Implicit density models, such as GANs (Figure 3.2b), generate data by taking noise
as input. Instead, GANs generate samples that mimic the true data distribution
through a min-max competition between a generator, which produces synthetic
data, and a discriminator, which distinguishes generated from real examples.
The adversarial training process allows the generator to capture complex, high-
dimensional relationships without assuming an explicit likelihood model. GANs
are particularly effective for generating high-fidelity microstructural images or
complex morphological features where visual accuracy and fine structural details
are essential [64, 136].

Diffusion models (Figure 3.3a) represent a class of generative models that combine
the characteristics of both explicit and implicit density estimation. During training,
diffusion models behave as explicit density estimators, as they are optimized by
maximizing a variational lower bound on the data likelihood. In contrast, during
generation, the diffusion model operates as an implicit model by taking noise as
input, where generation proceeds through an iterative reverse diffusion process
that gradually transforms random noise into structured samples [70, 71, 69].

In addition, hybrid generative models are developed to combine the complementary
strengths of different generative models. The VAE-GAN (Figure 3.2c) model
integrates the representational stability of VAEs with the perceptual sharpness of
GANS. This allows the model to evaluate similarity in a learned feature space rather
than at the pixel level, making the reconstruction more invariant to local shifts and
noise [137-139]. Extending the diffusion model approach, LDM (Figure 3.3b)
integrate autoencoding, adversarial learning, and diffusion mechanisms into a
single framework. By performing diffusion in a lower-dimensional latent space,
LDMs achieve efficient, high-quality generation while significantly reducing
computational cost. This hybridization enables scalable, interpretable, and high-
fidelity generative modeling suited for complex materials data [73].
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Figure 3.2: Schematic overview of generative deep learning architectures: (a) Variational Autoencoder
(VAE), (b) Generative Adversarial Network (GAN), and (c) integrated VAE-GAN model.

In this work, two hybrid generative modeling approaches are implemented to
develop latent-space-based frameworks for material characterization, screening,
and generation. In the first application, a VAE and a regressor (prVAE) model are
jointly trained to enable the virtual analysis and synthesis of the solid electrolyte
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Figure 3.3: Schematic comparison of diffusion model and latent diffusion model. The diffusion
(a) operates in input space, whereas the latent diffusion model (b) employs a two-stage
approach using an autoencoder to confine the computationally expensive denoising process
to a lower-dimensional latent space.

interphase (SEI) in batteries. The VAE learns a compact latent representation
of SEI morphologies, while the regressor maps these representations to physical
properties such as thickness, porosity, density, and volume fraction. This joint
training organizes the latent space according to relevant material properties,
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allowing both the characterization of existing SEI configurations and the inverse
generation of new interphases with desired properties [108].

In the second application, an LDM integrates a variational autoencoder and a
diffusion-based generative process to enable conditional generation and screening
of battery materials. The LDM operates in a learned latent space, where high-
dimensional material data are efficiently represented, enabling diffusion-based
sampling guided by functional properties such as average voltage, capacity, and
energy density, as well as the translation of material characterization data into
understandable material descriptors [109].

3.3 Application Layer

This section discusses the different application modes of the generative models in
materials data analysis. By incorporating additional training objectives beyond
reconstruction and statistical accuracy, generative frameworks can be adapted
for tasks such as material characterization, screening, and inverse design. The
extended objectives guide the models to capture not only statistical similarity but
also property correlations in the latent space, enabling meaningful exploration and
generation of information-rich samples.

3.3.1 Characterization

In the characterization mode, the explicit generative model is employed to extract
and represent latent relationships between structure, composition, and physical
properties. The trained model embeds complex high-dimensional material data
into a compressed latent representation, providing a reduced representation of the
material behavior. The learned latent representation encodes essential features
of high-dimensional material data. This mode focuses on identifying physically
interpretable patterns and correlations that characterize material behavior and the
translation of materials data into interpretable material descriptors.
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Information-rich latent space learning

Representation learning enables automatic extraction of generic features to solve
other ML tasks, such as regression and classification. Representation learning
provides a foundation for understanding complex material data by mapping high-
dimensional data to a structured, lower-dimensional latent space [140]. The latent
space encodes abstract representations of high-dimensional, complex data that
capture the underlying features not directly observable. The desirable properties
of the latent space include smoothness and disentanglement. The smoothness of
the latent space indicates that it is continuous, which ensures that small variations
within result in proportional variations in the output. The disentanglement property
ensures that altering a single latent dimension mainly affects the features of a
single category, while leaving the features of other categories relatively unchanged
[141].

Traditional dimension reduction techniques have been employed to learn mean-
ingful latent representations of high-dimensional data. Linear methods such as
principal component analysis (PCA) focus on capturing maximum variance for
dimensionality reduction [142, 143]. PCA is an orthogonal linear transformation
of a real inner product space that projects the data into a new coordinate system
such that the maximum variance lies along the first principal component, with
decreasing variance along the remaining principal components. By decomposing
the data covariance matrix into eigenvectors and eigenvalues, PCA identifies eigen-
vectors as directions of maximum variance and eigenvalues as the corresponding
magnitudes. Selecting components with the largest eigenvalues forms a compact
latent representation that retains most information while reducing redundancy and
noise. The linear discriminant analysis (LDA) emphasizes maximizing separation
between classes in the low-dimensional space [144, 145]. Kernel PCA is an
extension of PCA that applies a nonlinear mapping function to the data before
performing any linear transformation, thereby capturing more complex, nonlinear
relationships between data points [146, 147].

67



3 Methodological framework of generative deep learning for advanced battery materials

The advent of deep learning and generative models expanded representation
learning beyond linear and nonlinear embeddings. Deep neural networks learn
hierarchical representations through multiple layers, progressively extracting
abstract features. Convolutional neural networks (CNNs) capture spatial structure
in the data and provide translation invariance [148]. Out of the different generative
model classes, the VAE provides a tractable latent space for efficient exploration,
interpolation, and optimization of a large material design space [149, 150].
However, in most vanilla VAE methods, balancing KL divergence regularization
and reconstruction quality is difficult, leading to entangled latent representations.
Weighting methods are used in VAEs to balance the contributions of the KL
divergence and the reconstruction loss to achieve disentangled latent representations
[151]. Different hybrid approaches based on a VAE-discriminative model are used
to construct an ordered latent space from discrete labels or continuous properties
of the input data. An additional discriminative model, such as a classifier or
regressor, helps disentangle the latent space to form an information-rich lower-
dimensional representation. The additional discriminative model in the VAE
training disentangles and organizes the latent space according to material properties
[152, 153].

The above approach is demonstrated in the Section 4.1.3 [108] of this thesis,
which focuses on the data-driven virtual characterization and synthesis of SEI to
enhance battery performance and safety. In this study, a VAE-regressor hybrid
model is trained to jointly learn the structure—property relationships of the SEI.
The regressor helps to organize the latent space according to physical properties,
enabling virtual exploration and synthesis of interphases with desirable physical
properties. The detailed results of this contribution are presented in the Section 4.1.

Translation of characterization data to material descriptors
In translation mode, the generative model converts material data into meaning-

ful material descriptors. This functionality is used to extract information from
characterization techniques such as atomic force microscopy, scanning electron
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microscopy, and transmission electron microscopy [154, 155]. While these meth-
ods provide high-resolution morphological and structural information, translating
heterogeneous datasets into descriptors that capture structure—property relation-
ships remains challenging. Generative models address this challenge by learning
mappings between data modalities, enabling the conversion of raw experimental
observations into structured, property-relevant representations.

The Pix2Pix GAN model is a supervised image-to-image translation model that
learns direct mappings between the input and output domains. In Pix2Pix GAN
model, the generator network transforms input images into target representations,
while the discriminator evaluates the realism and structural consistency of the
translated outputs. The learning objective combines an adversarial loss that
enforces global similarity to the target distribution with a reconstruction loss that
ensures spatial correspondence between the target and translated outputs [156]. In
this direction, the cycle-consistent GAN introduced unsupervised image-to-image
translation by incorporating a cycle-consistency loss that ensures the translation
from one domain to another and back preserves the original structure. The
cycleGAN is particularly useful when a paired image dataset of identical regions
of material is unavailable [157]. The development of such translation models
enables multimodal characterization to better understand material behaviour across
different scales.

In this work, the VAE-GAN component of LDM, as demonstrated in the Sec-
tion 4.2.3 [109], is used to translate simulated AFM images of battery electrodes
during discharge into meaningful material descriptors. The translation mode of the
VAE-GAN framework is activated by incorporating an adversarial objective from
Pix2Pix GAN. The results of the translation mode are presented in the Section 4.2.

3.3.2 Screening

Selecting a material configuration for a specific application is often time-consuming
and costly. Generative model-based screening extends beyond reproducing or
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classifying existing data by exploring the learned material space to identify configu-
rations that meet specified target properties. This approach transforms conventional
screening into generative exploration guided by the learned distribution of material
configurations.

Targeted material screening

The traditional screening process in materials development involves using compu-
tational or experimentally cheaper techniques to filter a large dataset to isolate a
small subset of candidates with desirable properties, followed by experimental
validation. The traditional screening process is employed in sequential steps, in-
cluding descriptor-based filtering, multi-criteria decision making, regression-based
property prediction, and global optimization techniques, e.g., genetic algorithms
[158, 159], with subsequent property estimation,n e.g., density functional theory
(DFT) and molecular dynamics (MD)[160, 161]. The above mentioned com-
putational approach narrows down candidates by ranking based on specified
performance criteria. While effective, this approach relies heavily on preexisting
databases, expert intuition, and incremental modifications of known materials,
which makes the material development cycle iterative, expensive, and inherently
limited to the known material design space.

Generative modeling redefines the material screening workflow by enabling
the direct generation of candidate materials from the learned data distribution
[162, 163]. Instead of screening what already exists, the generative model can
learn the underlying data distribution and sample new candidates directly from
the learned continuous latent space, enabling interpolation and extrapolation
towards the desired property. In a VAE model, the encoder-decoder architecture
extracts the essential features of the material. The learned latent space in VAE
encodes material features related to composition, bonding, and stability. The
decoder reconstructs the material configurations from this latent space. The
property-conditioned variants of VAE frameworks unlock the targeted screening
of materials. The VAE-based models seem to perform well with single property

70



3.3 Application Layer

constraints since multiple property constraints can cause entanglement of latent
representation and thereby limit the target material screening. But the material
screening process requires a combination of target properties to decide on the
material for an application. In this direction, the conditional LDM is better
suited for multi-property screening compared with the vanilla VAE framework.
The iterative denoising process in the LDM gradually transforms the random
noise in the learned latent representation into a valid material representation over
many timesteps. The iterative denoising gradually injects multiple conditioning
signals through a cross-attention-based mechanism in the LDM architecture, which
influences the update direction of the latent representation during the denoising
process [164].

This conditional LDM is demonstrated in [109], which focuses on virtual screening
of battery material based on functional properties. The conditional LDM leverages
multiple functional properties, such as average voltage, energy density, and
capacity, to guide targeted screening of battery materials. The implementation
details and results of the conditional LDM will be discussed in Section 4.2.

3.3.3 Generation

The generative mode constitutes the unifying stage of the methodological frame-
work, in which the trained generative model advances beyond characterization
and screening to create new, physically meaningful material configurations via
the inverse design strategy. In the generation mode, the model synthesizes novel
material structures, morphologies, or compositions guided by the learned latent
distribution and conditioned target properties. This capability enables inverse map-
ping from desired material properties to structural or compositional configurations,
facilitating virtual design and discovery of new materials [165].

The generative process utilizes latent representations learned during information-
rich characterization and targeted screening. Sampling within the latent space
enables exploration of previously uncharted regions of the material design space,
resulting in novel structures that remain statistically consistent with the studied
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material distribution. This approach accelerates material discovery, supports recon-
struction of incomplete data, augments sparse datasets, and generates hypothetical
material configurations for targeted applications.

In this work, the generative mode integrates the generative model architectures
developed in Section 4.1 [108] and Section 4.2 [109]. The prVAE model demon-
strated in Section 4.1 establishes a structured latent space that supports the virtual
synthesis of solid electrolyte interphases (SEIs) with desired physical and chemical
properties. Once the latent space is trained, new SEI structures can be generated
by sampling latent variables corresponding to target physical properties, such as
interphase thickness, density, porosity, and volume fraction. This virtual synthesis
capability enables exploration of SEI configurations that may not be easier to
observe experimentally but remain realizable within the learned data manifold
(Section 4.1.5).

The LDM, as demonstrated in Section 4.2, further extends this capability by
introducing an iterative, property-conditioned generative process. In the LDM
framework, diffusion is performed within a learned latent representation that
encodes structural, compositional, and functional correlations. Through iterative
denoising guided by property-conditioning mechanisms, the model generates
material candidates that simultaneously satisfy multiple target properties, such as
energy density, capacity, and voltage stability. This multi-property conditioning
allows for the generative exploration of a high-dimensional design space, bridging
the gap between structure-property learning and target property-driven design.

The methodological framework developed in this work integrates the prVAE
and latent diffusion model architectures to establish a comprehensive generative
approach for materials research. Specifically, the VAE regressor enables the
construction of property-structured latent spaces, facilitating interpretable charac-
terization and efficient virtual synthesis of SEI configurations. The LDM enables
multi-objective material generation, enabling diverse property constraints during
the design process. This unified framework delivers a coherent, traceable workflow
that links latent representation learning to the targeted design and synthesis of
advanced battery materials.
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4 Results of generative deep
learning for battery material
design and analysis

This chapter presents the results of the methodological framework discussed in the
previous chapter. The first demonstration of the framework focuses on data-driven
design and analysis of solid electrolyte interphases using property regressor VAE.
The second demonstration of the framework focuses on the virtual screening and
characterization of battery materials using a latent diffusion model.

4.1 Data-driven design and analysis of solid
electrolyte interphases using property
regressor VAE

The solid electrolyte interphase (SEI) is a passivation layer formed on electrode
surfaces from the decomposition products of electrolytes during the initial charge-
discharge cycles of the battery. SEI allows ions to pass while blocking electron
transport, preventing further electrolyte decomposition [166]. The formation and
stability of the SEI play an important role in the electrochemical performance,
safety, and cycle life of batteries. Despite extensive research, the mechanistic
understanding of SEI evolution remains incomplete due to its structural complexity
and sensitivity to environmental and operational conditions. SEI exhibits a
heterogeneous composition of both inorganic and organic compounds, and its
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distribution and morphology depend on factors such as electrolyte composition,
electrode material, temperature, and charge current density.

Different experimental characterization techniques are used to understand the
chemistry, physical properties, and formation process of SEI. Ex situ methods,
such as X-ray photoelectron spectroscopy (XPS), are used to reveal chemical
information about the SEI [167-170]. In situ and operando methods, such
as atomic force microscopy (AFM), transmission electron microscopy (TEM),
and scanning electron microscopy (SEM), are used to study the morphological
evolution of the SEI, including volume expansion and crack formation. However,
these techniques are limited by resolution, the higher sensitivity of SEI, and the
difficulty of accessing buried interfaces. As a result, a complete understanding of
SEI growth and transformation mechanisms has yet to be achieved [171].

Computational modeling provides a complementary approach to probe SEI
formation across scales that are experimentally inaccessible. Quantum chemical
[166, 172] and molecular dynamics [173, 174] simulations are widely used to
investigate the early stages of electrolyte reduction and SEI nucleation at the atomic
level. Although computational methods offer detailed mechanistic insight, the
limited temporal and spatial scales prevent simulating SEI growth beyond initial
formation. To bridge the scales, the kinetic Monte Carlo (KMC) method provides
an intermediate framework that captures both molecular and mesoscale evolution
by using reaction rates derived from quantum-chemical calculations. KMC
captures the spatiotemporal evolution of SEI, governed by a series of chemical
reactions, diffusion, and aggregation, based on kinetic information computed for
the given electrolyte-anode chemistries [94].

Conventional approaches to optimizing battery interphases rely on trial-and-error,
progress from known structures, and require substantial expert effort to progress
further. Inverse design, in contrast, based on a data-driven approach, starts with
target performance or properties and generates the structures that realize them,
addressing the complexity of battery systems across multiple scales and phases
[4]. Generative models offer a principled approach to modeling complex SEI
configurations with target observable properties such as porosity, volume fraction,
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density, and thickness [163]. In this work, a VAE with a property regressor (prVAE)
is jointly trained to learn the key features of 2D SEI configurations from 50000
samples obtained at the end of each KMC simulation for a given set of possible
reaction barriers in lithium-ion battery chemistry. The key features extracted
from the SEI configuration are studied at the VAE bottleneck to understand
how the SEI’s observable properties influence the learned data-driven properties.
To further improve the classification of 2D SEI configurations based on their
influential properties, the variational autoencoder model was conditioned on a
reaction barrier set tailored to specific SEI conditions. Therefore, this data-driven
strategy generates SEI configurations with tailored physical properties for given
sets of reaction barriers.

4.1.1 Data generation and preprocessing

The SEI configuration used for the study is simulated using a 2D KMC scheme
developed by Esmaeilpour et al. 2023 [94], which implements a rejection-free
BKL algorithm to simulate SEI growth at molecular level resolution. [175]. The
implemented KMC scheme follows a bottom-up multiscale modeling strategy that
captures the evolution of mesoscale processes. In this study, simulation is applied
to lithium-ion battery (LIB) chemistry to model SEI growth. The results of the
simulation are represented in a 2D square lattice where each site corresponds
to individual molecular level resolution ~ 1nm of components of SEI in LIBs
such as Li;EDC, LiyCOs3, and CoH4OCOOLIi. The simulations are performed
on a 50 x 50 lattice, with the bottom boundary representing the electrode surface
and the opposite boundary modeled as an open absorbing boundary condition.
Open-absorbing conditions allow components to diffuse through this boundary
and leave the system irreversibly. Each lattice site can represent either a solvent
or a product of the reaction between neighboring sites. The rejection-free KMC
algorithm selects one reaction from the set of possible reactions to transition
from one state to the next, based on transition-state theory [176]. SEI formation
proceeds through a sequence of chemical reactions, beginning with electron
reduction that produces both inorganic and organic species. Inorganic components
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tend to cluster, forming the inorganic domains, while organic molecules diffuse and
aggregate into the organic portion of the SEI. To model the diversity of SEI growth,
reaction rates are drawn from the literature [177—-179]and sampled systematically
using Latin hypercube sampling. In total, fifteen distinct reaction rates govern
the process, and 50,000 unique, 15D reaction rate vectors are generated for the
simulations. Each vector leads to a distinct spatiotemporal configuration of the
SEI. The resulting simulation outputs are color-coded to visually distinguish
inorganic, organic, and intermediate precursor species in the final SEI snapshot.
Key structural observables of SEI calculated in this study include volume fraction,
thickness, density, and porosity of the SEI layer.

After generating the SEI dataset using the KMC algorithm, the resulting simulation
outputs are preprocessed for a data-driven study using prVAE. The source dataset
from the simulation consists of 50000 2D SEI configurations obtained at the last
step of KMC simulations, along with their observables, such as volume fraction,
thickness, density, and porosity, and the corresponding reaction barrier for the
15-dimensional vector. The 2D SEI configurations are encoded categorically,
followed by one-hot encoding based on the color codes assigned to each reaction
product in the considered configuration. The observables of the SEI configuration
and reaction barrier set are preprocessed to a normalized range to improve
the performance and stability of the implemented generative framework. The
preprocessed data for each SEI configuration is written to a TFRecord file for
efficient serialization of structured data and to prepare the data for further machine
learning study.

In this study, the machine learning workflow is managed using Kadi4Mat, an
open-source data management platform discussed in detail in the methodology
chapter. The use of Kadi4Mat enables the systematic collection and organization of
simulation data and associated metadata [129]. The electronic laboratory notebook
component of Kadi4Mat offers a variety of tools for data handling, preprocessing,
and analysis [130]. To support data-driven research, KadiAI and CIDS extensions
within the Kadi4Mat framework are used, which provide specialized functions for
developing and running machine learning tasks.
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4.1.2 Property regressor VAE architecture and Training

The proposed prVAE in this study uses a complementary approach of generative
and discriminative modeling. As discussed in the Chapter 2, the vanilla VAE
learns the continuous latent space focusing only on the extracted essential spatial
features of the SEI configurations. To enable effective inverse design of SEI
configurations, it is necessary to understand the structure-properties relationship
of the SEI formation mechanism for a given reaction barrier set.

To enable data-driven characterization, VAE can be trained jointly with a property
regressor network. The property regressor implemented as a dense neural network
predicts the desired SEI observable properties (P) from the latent representation
and backpropagates the learned physical information into the latent space during
training. This architectural setup incorporates a regression loss alongside the
standard VAE objectives, guiding the model to learn both spatial features and key
physical properties simultaneously. The convolutional neural network is used to
define the encoder and decoder components of VAE. The property regressor is
defined using fully connected layers to map the latent space to property predictions.
During training, the decoder reconstructs SEI configurations from latent vectors
sampled from the approximate posterior, whereas the property regressor receives
only the latent mean as input. Figure 4.1a presents the prVAE model architecture
used for training.

The following hyperparameters for the prVAE model are selected through manual
hyperparameter tuning. The encoder is built from a sequence of 2D convolutional
layers with filters of sizes 32, 64, and 128, followed by a dense layer with 100
units. The decoder reconstructs data via a series of 2D deconvolutional layers
with 128, 64, 32, and 23 filters. To enhance stability and boost performance,
batch normalization is incorporated after each convolutional layer. The latent
space dimension is set to 50 based on empirical testing. Stride values of two
and one are applied within the convolutional architecture, and rectified linear
units are used as the activation function throughout. For property prediction, the
regressor component uses two fully connected layers with 200 neurons each. For
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training, the preprocessed dataset is split into 0.7 for training, 0.15 for validation,
and 0.15 for testing. The model is trained for 250 epochs with a learning rate
of 3¢5, The ADAM optimizer minimizes the loss during training by updating
model parameters.

Figure 4.1b and Figure 4.1c compare the reconstructed SEI configurations predicted
by the prVAE to the actual ground truth of test samples outside the training dataset.
The results show that the model accurately captures the essential features of SEI
configurations and performs well on unseen data. Figure 4.1d further confirms that
the loss curves for the training and validation sets are closely aligned, indicating
that the prVAE maintains strong generalization and does not overfit to the training
data.

4.1.3 Latent space based characterization of SEI

The learned latent space of prVAE is used to understand the structure-property
relationship in the SEI configuration. The jointly trained regressor incorporates
physical property information into the latent space via backpropagation during
training. The integration of physical information in the learned data-driven
properties of SEI configuration improves the expressiveness of the learned latent
space. The obtained information-rich latent space enables characterization of SEI
configurations with target physical properties.

The randomly selected test dataset of 7500 samples is used to evaluate the
performance of prVAE in encoding complex structural configurations and physical
properties of SEI in a reduced lower-dimensional latent space. To improve
the visualization and interpretability of the 50-dimensional learned latent space,
PCA is used to reduce its dimension by selecting principal components. The
performance of the prVAE model is compared with that of the vanilla VAE in
learning a continuous, information-rich latent space. Figure 4.2 shows that the
prVAE model performs better than the vanilla VAE in capturing the physical
information associated with the latent feature of SEI.
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Figure 4.1: a) Schematic of the prVAE architecture, highlighting mean and variance as parameters
of the encoded distribution, with € indicating the stochastic term used for model repa-
rameterization during training. b) Example SEI configuration selected from the test
set. c¢) Predicted SEI configuration for the same test sample, demonstrating that the
prVAE reliably reconstructs SEI features. d) Training loss curves, with P representing
model predictions for physical properties of SEL such as volume fraction, thickness,
porosity, and density. Reproduced from [108] under the terms of the Creative Commons
Attribution—-NonCommercial-NoDerivatives (CC BY-NC-ND) license.

The principal components of the learned latent space indicate that it is smooth,
property-informed, and interpretable, enabling systematic characterization, opti-
mization, and interpolation of SEI configurations. The prVAE encodes property
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information into the latent space, where each latent-space point decodes into a
valid SEI configuration.

4.1.4 Prediction of SEl properties

The prVAE model enables targeted design of SEI configurations and property-
informed sampling of SEI configurations with a target property. The VAE in prVAE
serves as a generative framework that can reconstruct new SEI configurations by
decoding sampled latent points. The property regressor in prVAE introduces an
auxiliary neural network that predicts physical properties directly from the encoded
latent representation of each SEI configuration. The performance of the property
regressor is evaluated using R? score between the actual and predicted property
on the test dataset. As shown in Figure 4.3, the property regressor achieves a
higher coefficient of determination (R?) between actual and predicted properties
of SEI configurations from the test dataset. The high coefficient of determination
shows that the property regressor captured almost most of the physical property
information to encode in the latent space. The slightly lower values of R? score
observed for porosity compared to other properties can be attributed to its low
variance across the dataset.

Figure 4.4 shows that porosity exhibits weak correlation with the other physical
properties of the SEI, indicating that it depends less on the encoded structural
features that predominantly influence the other physical properties.

4.1.5 Guided generation of SEI

The SEI configurations generated from the latent space can be guided by in-
troducing conditional inputs to the prVAE decoder. In this study, the reaction
barrier space is used as an additional input alongside the sampled latent vectors
from the encoded low-dimensional distribution. Through this conditioning, the
prVAE learns to generate SEI configurations that correspond to specific reaction
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Figure 4.2: PCA of learned latent spaces for the vanilla VAE (left) and prVAE (right), showing that
the prVAE produces a more structured, property-aware latent representation linked to SEI
volume fraction, porosity, thickness, and density. Reproduced from [108] under the terms
of the Creative Commons Attribution—-NonCommercial-NoDerivatives (CC BY-NC-ND)
license.
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Figure 4.3: Prediction of selected properties of the SEI by the property regressor. The property
regressor trained alongside the VAE achieved a high R? score for each selected property
and high prediction accuracy. Reproduced from [108] under the terms of the Creative
Commons Attribution—-NonCommercial-NoDerivatives (CC BY-NC-ND) license.

barrier environments, allowing the reconstruction of reaction-dependent SEI
configurations.
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Figure 4.4: Heatmap showing the correlation between different target physical properties. The low
variance and weak correlation of porosity with other properties explain the low R? score
in predicting the porosity information of SEI configurations. Reproduced from [108]
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC-ND) license.

As presented in previous sections, the prVAE organizes its latent space according
to gradients of physical properties. When extended with conditional inputs, this
organization becomes sensitive to both structural and kinetic parameters. In this
work, the conditional prVAE is trained with thickness as the guiding property,
enabling the latent dimensions to capture the distribution of encoded features in
an ordered manner. PCA is used to evaluate the effectiveness of the learned latent
space of conditional prVAE in describing the SEI configurations and property
information. Figure 4.5 shows that the first principal component accounts for the
major variations related to SEI thickness, while the second principal component
and third principal component, as shown in Figure 4.6 and Figure 4.7 remain
nearly constant, despite changes in thickness.
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Figure 4.5: Latent space exploration along the first principal component: The first principal component
holds the majority of the variational information of the property thickness and is conditioned
by the reaction barrier set. The decoding of minimum (left), mean (middle), and maximum
(right) values of the first principal component to the corresponding SEI configuration
is shown here. Reproduced from [108] under the terms of the Creative Commons
Attribution—-NonCommercial-NoDerivatives (CC BY-NC-ND) license.

The increase in purple and red regions in the SEI configuration reflects the
expanding extent of organic and inorganic layers, respectively, while the orange
areas indicate intermediate reaction products that contribute to organic SEI
formation. To explore how property information and reaction barriers influence
the learned representation, the latent variables and reaction barrier values are
interpolated within their minimum and maximum ranges.

Walking the latent space along these interpolation paths generates SEI con-
figurations corresponding to different reaction barrier conditions. Figure 4.8b
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Figure 4.6: Latent space exploration along the second principal component: The second principal com-
ponent does not carry any variational information about the thickness. The explainability
of this principal component in describing the SEI configuration is insignificant compared
to that of the first principal component. The decoding of minimum (left), mean (middle),
and maximum (right) values of the second principal component to the corresponding
SEI configuration is shown here. Reproduced from [108] under the terms of the Creative
Commons Attribution—-NonCommercial-NoDerivatives (CC BY-NC-ND) license.

demonstrates how, by varying either the reaction barrier input or the latent variables
while keeping the other constant, the prVAE produces SEI configurations with
controlled thickness and composition. Conditioning the decoder with reaction
barrier inputs thus enables the generation of SEI configurations that align with
specified reaction conditions, supporting the targeted design of interphases with
tunable physical properties.
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Figure 4.7: Latent space exploration along the third principal component: The third principal
component also shows a similar trend to the second principal component. The decoding
of minimum (left), mean (middle), and maximum (right) values of the third principal
component to the corresponding SEI configuration is shown here. Reproduced from [108]
under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
(CC BY-NC-ND) license.

4.1.6 Discussion

This study demonstrates characterization of structure-property relationship of SEI
configurations in LIBs using information-rich latent space learning. The proposed
prVAE model, captures essential data-driven features of SEI configurations
required for efficient characterizations. The integration of a property regressor
into the VAE architecture allows the prVAE model to encode a continuous,
information-rich latent space. The property regressor also shows high accuracy
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Figure 4.8: Latent space exploration of the SEI configuration: a) Guided SEI generation from the
sampled mean of the latent variables while varying the conditional input barrier; b)
SEI generation from the sampled mean of the input barrier while varying the latent

variables. Reproduced from [108] under the terms of the Creative Commons Attribu-
tion—-NonCommercial-NoDerivatives (CC BY-NC-ND) license.

in predicting the physical properties. The learned, information-rich latent space
consists of data-driven properties organized by physical properties, enabling
systematic exploration and optimization of SEI configurations. The prVAE model
demonstrates exceptional performance in predicting key physical properties of SEI
structures, achieving R? scores exceeding 0.98 for volume fraction, thickness, and
density, while porosity yields B2 of 0.8334. The high correlation between predicted
and target properties indicates that the latent space effectively encodes the essential
physical information governing SEI stability. The continuous information-rich
latent space enables smoother interpolation between known SEI configurations,
allowing exploration of intermediate SEI configurations that are not present in the
original dataset. Conditioning the decoder input with a reaction barrier further
extends the generative capability of prVAE. The conditioning mechanism allows
the prVAE to synthesize SEI configurations corresponding to specific reaction
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environments and specific properties. The prVAE framework can be adapted for
a range of material design strategies, including exploration, interpolation, and
optimization. The continuous latent space obtained serves as a valuable input
to optimization models, enabling the identification of SEI configurations and
property combinations that enhance battery performance and safety.

4.2 Virtual screening and characterization of
battery materials using latent diffusion
model

Material characterization is an important aspect of the materials development
cycle, providing a means to probe and measure structural, chemical, and physical
properties. Through characterization techniques, insights into the relationship
between structural and functional properties can be obtained. Computational
material screening serves as an early-stage ranking of materials against defined
performance metrics. The integration of characterization and screening processes
in the material development cycle accelerates the identification of materials that
meet specific functional requirements of the application while reducing time and
cost. [180, 181]

Comprehensive characterization across multiple length scales is vital for under-
standing how atomic structure, crystallographic domains, and chemical compo-
sition govern the electrochemical performance of battery electrodes. Selecting
suitable characterization techniques to capture these features is complex, as each
method offers distinct strengths and limitations [87]. Atomic force microscopy
(AFM) is one of the multifunctional techniques used to study and characterize
batteries with nanometric resolution [182, 183]. AFM can be operated in multiple
modes to image the topographic evolution of electrodes during charge-discharge.
AFM can also be used to study the local electrochemical activity, current distribu-
tions, surface potential, ion transfer, and other surface properties of the electrode
surface with high resolution [184, 185]. The current AFM machines employ
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an automated tip preparation method that uses ML techniques to provide the
operator with information on the required tip functionalization and tip quality,
thereby reducing the time spent on tip preparation. As a result, the automated
tip functionalization enables the investigation of thousands of samples daily. But
AFM experiments produce unlabeled data, making interpretation tedious and
challenging even for experts [186—191].

Interpreting the contrast patterns observed in high-resolution atomic force mi-
croscopy images would require a detailed understanding of the various factors
that give rise to these variations [192]. The contrast features captured in AFM
data are essential for understanding the distinct nature of image contrasts and for
discerning intermolecular interactions in AFM images. However, interpreting
experimental AFM images, particularly for molecular systems, is challenging
due to the complexity of structural corrugations, chemical heterogeneity, and
instrumental parameters [193]. As a result, analyzing AFM images is often
time-consuming and dependent on expert interpretation, underscoring the need for
a more efficient, systematic approach.

The Probe-Particle AFM (PPAFM) developed by Hapala et al. [194-196] is an
open-source software that simulates high-resolution AFM and various scanning
probe microscopy techniques with sub-molecular resolution, encompassing all
essential elements of AFM imaging. PPAFM uses a simple mechanical model to
simulate the interaction between the probe and the sample. PPAFM is an open-
source software that simulates high-resolution AFM captured using a diverse range
of modified tips across different tip-sample distances. The PPAFM model treats
the tip apex as a flexible particle, typically functionalized with a carbon monoxide
(CO) molecule, and also with other molecules such as Xe, C1~, and H5O to capture
tip-sample interactions. The functionalized tip deflects in response to local force
fields encompassing Pauli repulsion, Van der Waals attraction, and electrostatic
interactions, which capture the mechanisms governing contrast formation while
maintaining computational efficiency. High-resolution AFM distinguishes atoms
within a molecule by inferring the subtle variation in tip-sample interactions
[197, 198]. While 2D image features, such as sharp vertices, are easily identifiable
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visually, extracting three-dimensional information to differentiate atoms in a similar
environment remains a significant challenge [199].

Advances in deep learning have enabled data-driven strategies capable of addressing
the challenges of interpreting complex high-dimensional data. Deep learning
models enable the automatic extraction of important features from experimental
and simulation data, supporting applications such as phase segmentation, the
synthesis of artificial datasets, and material optimization [62, 110, 200, 63, 111].
Machine learning methods have enabled the prediction of molecular structures and
chemical compositions by analyzing 3D stacks of constant-height AFM images.
This progress opens new possibilities for battery material research to predict the
material behavior at the molecular level. The previous data-driven approaches
in AFM analysis have focused on deterministic convolutional neural networks
to map force maps to individual material descriptors. These approaches have
demonstrated effectiveness in reconstructing particular features and facilitating
nanoscale characterization. However, they are limited in their capacity to perform
generative modeling tasks, such as sampling, interpolation, and generating novel
material configurations. [201-203]

The functional properties of materials play a significant role in screening and
designing battery materials tailored to specific applications. The average voltage of
a material plays a crucial role in defining its operating voltage, which can enhance
energy production and inspire new system designs. Gravimetric and volumetric
capacities evaluate the total charge a material can store and the energy it holds
per unit weight and per unit volume. Furthermore, volume change refers to the
expansion and contraction of electrode materials during charge and discharge cycles,
which is crucial for achieving long-term stability and high performance. Finding
the right balance in these properties enhances battery performance, increases
energy storage, and reduces size for various applications. [204] To develop battery
materials that improve performance and safety, researchers often conduct numerous
trial-and-error experiments based on characterization and screening. ML-assisted
methods can accelerate the effective translation of materials informatics from
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characterization techniques to the inverse design of battery materials tailored to
the functional properties required for a specific application.

This study proposes the BattGen model to virtually characterize and screen battery
materials based on their functional properties, such as average voltage, volume
change, gravimetric and volumetric capacity, and gravimetric and volumetric
energy. The proposed model implements data on battery materials from the Mate-
rials Project database [95], which provides information on electrode compositions
and their associated functional properties for various working ions [205-207]. For
this study, the chemical formulas of approximately 3,154 electrode materials at the
end of their discharge cycles are used to generate inputs for virtual atomic force
microscopy (AFM) simulations using the PPAFM model, thereby constructing
a comprehensive material database. In this proof-of-concept, virtual 3D AFM
image stacks serve as input data, leveraging the compatibility of image-like data
with convolutional neural network-based latent diffusion models. This process
involves converting 3D AFM stacks into 2D image descriptors that capture the
essential features of the battery electrodes under investigation. The resulting
lower-dimensional latent space, which integrates both the latent features of the
3D AFM data and corresponding battery functional properties, enables efficient
screening and identification of target materials. The developed framework merges
atomic-level structural information with compositional data to support early-stage
virtual screening of battery candidates. While the implemented approach does not
encompass all experimental and device-level considerations, it focuses on critical
material characteristics to streamline the identification of promising options for
subsequent experimental validation.

4.2.1 Data generation and preprocessing

The source data for this study are obtained from the Materials Project (MP)
database, which provides programmatic and web-based access to a wide range of
material properties and computational results. The Battery Explorer module of MP
is used to retrieve battery-specific information, including electrode compositions
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and their corresponding functional properties such as average voltage, gravimetric
and volumetric capacities, energy density, and volume change during charge and
discharge cycles. The battery materials extracted from the MP database are defined
based on the following battery systems: Lithium (Li), Magnesium (Mg), Zinc
(Zn), Calcium (Ca), Potassium (K), Sodium (Na), Aluminum (Al), Yttrium (Y),
Rubidium (Rb), and Caesium (Cs). The extracted materials are filtered to remove
duplicate entries in the battery composition, yielding 3,167 unique battery material
configurations.

For each electrode material, the atomic coordinates of the discharge-state structure
are extracted from the database and used as input for virtual AFM simulations
generated through the PPAFM model. Simulations are performed at multiple
tip—sample separations to produce three-dimensional AFM stacks that capture
variations in force response with respect to tip height. Each 3D stack is further
processed into a set of 2D image-based descriptors that capture the material’s
structural and chemical characteristics. For the AFM simulation, the maximum
scan dimension is set to 128 x 128, and each augmented molecule is scanned
for ten different sample distances. The auxiliary map function of the PPAFM
model allows the generation of corresponding material descriptors, such as height
maps, Van-der-Waals sphere, atomic discs, and multimap sphere elements (type
map). [201-203]. To increase representational diversity, each atomic structure is
rotated through a series of quasi-random orientations generated using Fibonacci
spiral sampling in tangent sphere space. The most informative configurations
are then selected based on entropy-driven variation in depth profiles to maintain
structural diversity across the dataset. Each AFM image is evaluated using
Minimum distance to edge = min(x, width — 1 — z, y, height — 1 — /) to confirm
that the entire molecular structure lies within the simulated scan window. Here,
(z,y) denotes the coordinates of the pixel with maximum intensity, while the
image dimensions are 128 pixels each. AFM images with a minimum distance to
the edge equal to zero are considered invalid, indicating that the main feature lies
outside the defined scan dimensions used to simulate the entire dataset. During the
AFM simulations, 13 material configurations, along with the 390 corresponding
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rotations that consistently produced invalid AFM images, are removed to prevent
the inclusion of data lacking learnable information for training.

The resulting dataset contains 3, 154 distinct battery electrode compositions
and approximately 94, 640 valid AFM image samples. The force-map data are
normalized to a range of [—1, 1], while functional properties are scaled to [0, 1]
to improve numerical stability during model training. Each atomic configuration
is also encoded into a fixed-length material composition vector aligned with the
periodic table, where each index records the atomic count of a corresponding
element up to atomic number 112. This representation enables the latent diffusion
model to associate learned image features with the underlying chemical composition
and functional properties. The dataset is divided into training, validation, and
test sets in a 70 : 15 : 15 ratio, ensuring that identical material compositions
do not appear across subsets. Sample weights are applied inversely to class
frequency to reduce bias toward more common working ions. The data generation,
preprocessing, and storage processes are documented and managed using the
Kadi4Mat infrastructure [129, 130]. This study uses CIDS and KadiAl [134] to
set up and run ML workflows. Figure 4.9 illustrates the data generation pipeline
of the study.

4.2.2 BattGen architecture and training

The proposed BattGen model, based on LDM, enables characterization and
screening of battery materials conditioned on functional properties. The BattGen
model consists of three primary components: a VAE with a patch discriminator as
the translation model, a conditional LDM as the screening model, and an atom
regressor as the material composition predictor. Figure 4.10 shows the schematic
illustration of the BattGen model.

The translation model automates the characterization of material structure in
AFM images into meaningful material descriptors. The translation model is a
VAE with a patch discriminator that integrates an image-conditioned patch-based
adversarial objective from the Pix2Pix GAN. The image-conditioned patch-based
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Figure 4.9: Training data generation pipeline. The source data for this study is obtained from the
Battery Explorer feature of the Materials Project database. Atomic coordinates of the
battery formulas and their functional properties are extracted using the Materials Project
Application Programming Interface (API). The extracted data is organized and managed
through the Kadi4Mat programming interface. KadiAl and CIDS enable the machine
learning process in this study. Reproduced from [109] under the terms of the Creative
Commons Attribution (CC BY) license.

adversarial objective allows a supervised image-image translation task. The
encoder component of the VAE receives a three-dimensional AFM stack as input
and learns a meaningful latent representation by extracting essential features.
The decoder component of VAE decodes the compressed latent representation
into material descriptors. The implemented patch discriminator acts as a critic
by evaluating the local spatial patch between the target and generated material
descriptors. The translation model consists mainly of convolution layers along
with residual and attention layers. The residual block of layers allows the model to
learn deep hierarchical features while preserving essential information between
layers. The attention layers help the model to focus on the global features of the
1nput.

The learned compressed latent representation from the translation model is used
to train the screening model. The screening model is a conditional LDM that
enables targeted screening of battery materials based on functional properties. As
discussed in the Section 2.5.3, the DM can be seen as a composition of forward
and reverse diffusion processes. The forward diffusion process gradually injects
Gaussian noise via a series of variance-scheduled noise steps. The role of the
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4.2 Virtual screening and characterization of battery materials using latent diffusion model

implemented denoising Unet here is to learn the reverse diffusion to predict the
noise at each step of the forward diffusion process. In LDM, the diffusion process is
applied to the compressed lower-dimensional representation of data. In this study,
the conditional LDM uses a denoising U-Net architecture to learn a controlled
reverse diffusion process on the latent representation conditioned on the given
conditions.

Battery property conditioning

Forward diffusion process ™ orking on
] - |
Zy Z; Z1y Zr Volume change

AFM force maps ) )
1} ‘Gravimetric capacity

Atomic discs
i I I Denoising UNet
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Figure 4.10: Overview of the BattGen model. The first frame shows the encoder and decoder of the
translational model, which maps AFM force maps to corresponding battery material
descriptors. The middle frame highlights the diffusion model in the learned latent space,
guided by battery functional properties for the virtual screening of target battery materials.
Reproduced from [109] under the terms of the Creative Commons Attribution (CC BY)
license.

?

Conditioning

The implemented U-Net is a symmetric architecture with convolution, attention,
and residual block layers. The U-Net consists of an encoding-decoding architecture
with bridge networks. The overall architecture resembles a letter U, hence the name
U-Net. The layers in the encoder (downsampling) part of the U-Net architecture
are skip connected and concatenated with layers in the decoder (upsampling)
part. These skip connections enable the U-Net to leverage fine-grained details
learned in the encoder to construct an image in the decoder. The conditioning
of the U-Net on battery functional properties is achieved through the symmetric
concatenation of these properties at the start of each down, middle, and up blocks
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in the U-Net. This symmetric conditioning along the encoding, bridging, and
decoding paths of the U-net moves the generated compressed latent representation
towards conditioned functional properties. The Unet is trained using the MSE loss
function. For the forward diffusion process, the number of time steps 7" is set to
1000, as used in the original implementation by Ho et al. [69]. The number of
diffusion timesteps of 1000 is found empirically sufficient to disrupt the original
data structure, allowing gradual noise injection necessary for stable training of the
reverse diffusion process. The sequence f31, . . ., B determines the variance of the
Gaussian noise added at each step of the forward process, increasing linearly from
10~% to 0.02, which are small relative to data normalized to the range [—1, 1].

In addition to translating and screening battery materials based on material
descriptors, an atom regressor model is used to decode the molecular composition
vector from the learned latent space. The atom regressor model constitutes a
balanced combination of convolution and dense layers. The last layer of the atom
regressor model uses softplus activation to avoid negative values in the predicted
molecule composition vector. The molecular composition vector consists of a
vector length up to atomic number 112. Training the atom regressor model is
optimized using the MSE loss function.

4.2.3 Automated translation of characterization data to
material descriptors

The trained VAE component of the BattGen model is used to translate a 3D stack
of simulated AFM images with fore maps at varying tip-sample distances into
corresponding material descriptors, such as a height map, Van der Waals sphere,
atomic disc, and type map. The patch discriminator trained adversarially with the
VAE consists of two convolutional branches to handle grayscale descriptors, such as
height maps, van der Waals spheres, and atomic discs, and RGB-based descriptors,
such as type maps, which encode red, green, and blue colors to represent different
atoms based on van der Waals radius. In the type map descriptor, the red, green,
and blue channels are used to classify the different types of atomic species relevant
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to the study. The blue channel signifies the working ion species, the green
channel represents gas phase elements, and the red channel corresponds to all
other elements up to atomic number 112 in the periodic table.

The visual representations of the studied material descriptors are presented
in Figure 4.10. Modifying the patch discriminator’s architecture to process
patches from both grayscale and RGB images improved the VAE’s reconstruction
performance. This adjustment reduced color prediction errors, particularly in
type map generation, and enabled better distinction of local features in force
maps through the receptive fields established at each convolutional layer of the
discriminator. As shown in Figure 4.11, the model accurately translates image
descriptors from test samples corresponding to different battery ion types. The
translation framework achieves an FID score of 2.301 when converting 3D AFM
scans into grayscale descriptors, indicating high reconstruction fidelity. For type
map translation, an FID score of 26.845 is achieved, indicating moderate fidelity
with satisfactory visual quality. Overall, the low FID values demonstrate that the
model’s generated outputs closely approximate the real data distribution.

4.2.4 Application targeted screening of battery materials

The virtual screening of battery materials is achieved by conditioning the learned
latent space of the translational model on functional properties. The conditioned
functional properties include average voltage, gravimetric and volumetric capacity,
gravimetric and volumetric energy density, volume change, and working ion. The
functional properties of batteries as conditionals, along with the time embedding
and learned latent representation from the translation model, are provided as
inputs to the U-Net component of the LDM. The time embedding guides the
model in estimating the level of noise added at each step of the forward diffusion
process. Incorporating these functional properties as conditioning inputs enables
the application targeted screening of electrode materials, considering potential
working ions such as Lithium (Li), Magnesium (Mg), Zinc (Zn), Calcium (Ca),
Potassium (K), Sodium (Na), Aluminum (Al), Yttrium (Y), Rubidium (Rb), and
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Caesium (Cs). Demonstrating the implemented virtual screening tool involves
providing pure random Gaussian noise, along with working ion and battery
properties, as inputs to the trained U-Net model. The model then screens various
material configurations based on the specified battery properties. In this case, the
initial condition of the Gaussian noise is crucial for determining the types of material
descriptors that are generated. Figure 4.12 shows the predictions of the LDM under
certain seeding conditions and rotations on test samples outside the training dataset
for different working-ion and battery functional properties. To assess the impact
of each conditioning variable on the generated outputs, a sensitivity analysis is
performed using the L2 distance metric. This approach measures variations in the
output by perturbing each conditioning variable by £0.05 while maintaining the
remaining variables constant. As all continuous variables are min—max normalized
to the [0, 1] range, the value +0.05 corresponds to a 5% relative change and allows
consistent comparison across given conditionals. Applying both positive and
negative perturbations allows the identification of potential asymmetries in the
model’s response. For categorical variables, such as the working ion, a discrete
substitution strategy is employed, in which the original ion is replaced with each
valid alternative, and the resulting L2 distances are averaged to evaluate their
overall influence. Figure 4.13 shows that the gravimetric and volumetric capacities
demonstrate the strongest influence, followed by gravimetric energy density and
average voltage. The volumetric energy density, volume change, and working ion
contribute less, indicating reduced influence on generation. These results highlight
the dominant role of gravimetric and volumetric properties in the screening of
battery materials.

4.2.5 Composition vector prediction

The atom regressor of the BattGen model is used to predict chemical information
from scanned AFM images. By leveraging the latent space learned, the regressor
predicts the composition vector, revealing chemical information associated with
each AFM image. The model demonstrates strong predictive capability, estimating
material composition vectors for atomic numbers up to 112 and effectively mapping
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Figure 4.11: Comparison plot between image-based material descriptor ground truth and corresponding
predictions using the implemented translation model. Reproduced from [109] under the
terms of the Creative Commons Attribution (CC BY) license.

99



4 Results of generative deep learning for battery material design and analysis

image features to their underlying elemental distributions. As shown in Figure 4.14,
the predicted atomic counts align closely with the true values for most working
ions, with minor deviations observed for Aluminum (Al), Rubidium (Rb), Yttrium
(Y), and Cesium (Cs). Quantitative evaluation results presented in Table 4.1
and visualized in Figure 4.15 indicate high predictive accuracy across several
working ions. The model demonstrates high predictive accuracy, achieving a
coeflicient of determination (R2) score of 0.9996 for Magnesium (Mg), 0.9989 for
Lithium (Li) and Zinc (Zn), and 0.9931 for Calcium (Ca). However, the model
performance for Cesium (Cs) and Rubidium (Rb), with R2 scores of 0.5087 and
0.7284, respectively, indicates challenges in capturing their underlying patterns
due to their lower frequency in the training samples. For Aluminum (Al) and
Potassium (K), the model exhibits intermediate performance, with R2 scores of
0.8097 and 0.849, respectively. The model generalizes well for most elements, but
certain atoms will need additional samples for improved accuracy.

Table 4.1: Evaluation metrics of the atom regression model

Atom Metrics
MAE MSE R2 score
Li 0.021 0.0236 0.9989

Na 0.0181 0.1593  0.9707
Mg 0.0138 0.03 0.9996
Al 0.0475 0.2687  0.8097
K 0.0211  0.1054 0.849
Ca 0.0089  0.011 0.9931
Zn 0.0072  0.0073  0.9989
Rb 0.0169 0.0738  0.7284
Y 0.0158 0.0411 0.9015
Cs 0.0115 0.0705  0.5087
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Gravimetric capacity 24.9%

Volumetric capacity 14.1%
Gravimetric energy 14.0%

Average voltage 13.5%

Volume change - | 12.5%
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Figure 4.13: Relative sensitivity of conditioning variables in the conditional latent diffusion model.
The influence of each input condition on the generated outputs is quantified using
a normalized L2 distance metric. The sensitivity analysis indicates that gravimetric
capacity and volumetric capacity have a significant impact on the model’s performance
in screening battery materials. Reproduced from [109] under the Creative Commons
CC-BY license.

4.2.6 Discussion

The proposed BattGen model demonstrates automated structure characterization
of AFM scans and application-targeted screening of battery materials. By
transforming high-resolution AFM images into meaningful latent representations,
the model enables a direct connection between structural features and the underlying
chemical composition. The integration of the LDM for virtual screening allows
the generation of material descriptors conditioned on specific battery functional
properties, providing a systematic approach to identify promising electrode
materials for defined applications.

The translation component of BattGen demonstrates strong performance in re-
constructing material descriptors and predicting elemental composition for most
working ions. The atom regressor effectively predicts atomic distributions, with
high accuracy for commonly represented elements such as Magnesium, Lithium,
Zinc, and Calcium. Lower predictive performance for elements such as Cesium
and Rubidium reflects the limited representation of these ions in the training
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dataset, indicating the need for additional data to improve generalization. Inter-
mediate accuracy for Aluminum and Potassium suggests that moderate dataset
representation is sufficient for reliable prediction, but further improvement could be
achieved through targeted data augmentation or additional experimental samples.
The translation component performs well on simulated AFM scans of simplified
cathode compositions; the extension to experimental AFM data requires adaptation.
Experimental scans often exhibit complex surface features, mixed compositions,
imaging noise, and variable conditions not captured in simulations. Addressing
these challenges through preprocessing, augmentation, and transfer learning on
a limited set of labeled experimental images is expected to enhance the model’s
generalization and applicability to real-world material discovery.
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Figure 4.14: Graphical visualization of the performance of the atom regression model in the prediction
of atoms based on the working ion of the battery in the material composition vector.
The distribution of true and predicted atom counts aligns well, with notable deviations
observed for aluminum (Al), rubidium (Rb), yttrium (Y), and cesium (Cs). The width of
each violin represents the kernel density estimation of the distribution. The thick dashed
line in each violin represents the median, while the thin dashed lines denote the 25th
and 75th percentiles. Reproduced from [109] under the terms of the Creative Commons
Attribution (CC BY) license.
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Figure 4.15: Prediction error distributions for individual atomic species in the atom regression model.
Each subplot presents a histogram and kernel density estimate (KDE) of the errors, with
a dashed line indicating zero error. While most atoms are predicted accurately, larger
deviations are observed for aluminum (Al), rubidium (Rb), yttrium (Y), and cesium (Cs).
Reproduced from [109] under the terms of the Creative Commons Attribution (CC BY)
license.

The screening component of BattGen demonstrates the selection of battery
materials based on functional metrics. The implemented screening approach
prioritizes materials that are promising for a specific use case, thereby narrowing
the candidate list for further computational or experimental validation. The
implemented application-driven screening approach enables application-targeted
exploration of the materials space, especially where extensive DFT datasets are
not available. Future work will focus on incorporating DFT-based predictions of
battery properties [208—211] to guide the second-stage screening of optimized
battery materials for a specific use case.
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5 Conclusion

5.1 Summary and Concluding Remarks

This thesis presents a comprehensive generative deep learning framework for
the advanced design of battery materials. Based on the contributions [108, 109,
135, 15], the theory, methodology, and demonstration of results of generative
deep learning frameworks in characterization, screening, and guided generation of
battery materials are discussed. To solve the complex physicochemical evolution
of battery materials across different scales and time, the generative model, in
tandem with the discriminative model, is used as a methodology framework of the
thesis to accelerate the different battery material design stages. The integration
of a generative model and a complementary discriminative model enables us to
access the expansion and contraction design pathways of battery materials.

VAE is the primary foundation of the implemented generative framework. The
VAE architecture enables multiscale material design by extracting essential
features from high-dimensional material data and encoding them into a compact
latent representation. The learned latent representation captures the underlying
distribution of data-driven features and enables tractable exploration of material
design space. Integrating discriminative models and conditional information
into latent space learning enhances the latent space’s expressiveness by infusing
key property information that influences material design and performance. The
results confirm that combined generative and discriminative modeling of material
data yields latent representations that are both interpretable and predictive. The
information-rich latent space enables interpolation, optimization, and exploration
of material design space.
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For SEI analysis, the implemented prVAE model accurately captures key structural
and physical properties of SEI configurations by integrating generative and
discriminative modeling. The jointly trained property regressor with VAE organizes
the learned latent space according to observable properties of SEI configurations.
The resulting information-rich latent space shows that the learned representation
captures the essential multiscale physics governing simulated SEI configurations
and allows controlled exploration and generation of SEI configurations with target
physical properties. The analysis reveals the broader potential of latent generative
models as a foundation for inverse material design. This stage of the framework
relies on a single decoding step to achieve target material configurations. The
single decoding step in the prVAE model limits its ability to generate diverse
material configurations for given target properties.

Integrating LDM in the framework extends beyond one-shot generation by using a
series of denoising steps. The number of denoising steps in DM allows the model to
gradually refine the latent representation toward a desirable configuration, yielding
multiple decoding trajectories rather than a single decoding step. The multi-
step decoding process enhances the diversity and fidelity of generated material
configurations. Integrating patch discriminators with LDM further improves the
generated configurations, preserving global coherence and fine structural details.
The generation process in LDM can be guided by gradually conditioning the
denoising process. This allows LDM to define different application modes, such
as translation and screening. The translation application uses a VAE and a patch
discriminator to convert high-dimensional characterization data into meaningful
material descriptors and composition vectors. The screening process uses a
conditional denoising U-Net architecture for targeted, diverse screening of battery
materials based on specified functional properties.

The developed generative-discriminative framework is a step toward data-driven,
property-aware materials design. The flexibility of the framework supports a wide
range of applications, from screening to inverse design, by defining an information-
rich latent space. The latent-powered generative knowledge, combined with
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discriminative meaningful assessment, provides a cohesive approach to accelerate
data-driven design of advanced battery materials.

Despite these advancements, seamlessly integrating data-driven modeling into bat-
tery research poses four critical challenges for the development of next-generation
battery materials. First, the scarcity of high-quality, diverse, large-scale datasets
tailored to battery materials. Experimental battery data are often sparse, heteroge-
neous, and expensive to obtain, leading to overfitting, limited generalization, and
reduced robustness in generative models. The complexity of battery systems, with
intricate electrochemical processes, requires comprehensive datasets that capture
multiscale interactions and dynamic behaviors.

Second, generative models often function as black boxes, making it difficult to
interpret their decision-making processes and the physical and chemical prin-
ciples behind material generation. This lack of interpretability is a barrier for
experimentalists and engineers seeking to use these models effectively.

Third, ensuring that generated materials are novel, synthesizable, and stable under
real-world conditions remains a significant challenge. Bridging the gap between
computational predictions and experimental validation is essential for translating
generative model outputs into practical battery materials. While models may
propose promising candidates, their utility depends on efficient and accurate
experimental synthesis and characterization. The development of closed-loop
autonomous experimentation platforms that integrate generative models, robotic
synthesis systems, and advanced characterization techniques is still in its early
stages.

Finally, training and deploying generative models, especially those with large latent
spaces and complex architectures, requires substantial computational resources
and energy, which can be prohibitive for researchers without access to high-
performance computing infrastructure. As a result, battery performance is
influenced by interactions across multiple length scales involving coupled physical
phenomena, making it highly complex to integrate diverse data types and physical
constraints into a unified generative framework.

107



5 Conclusion

5.2 Outlook

The implemented framework can be extended to act as a surrogate model to
understand the range of simulation methods for battery materials. Integrating
automated Al model generation based on input-output pairs enables access to
multiscale design pathways for battery materials and delivers faster insights without
requiring simulation expertise. This will help battery researchers to make the
computational design process faster, and can reduce the cost of setting up the
simulation environment.

To support this, research should prioritize developing techniques for generating
synthetic data, using active learning, and enhancing transfer learning to address
data scarcity. In addition, establishing robust data standardization and sharing
practices within the research community will foster collaboration and enhance data
utility. Building on these foundations, integrating core electrochemical principles
into generative model design and operation can improve interpretability, predictive
accuracy, and the generation of realistic, stable battery materials. Furthermore,
future research should focus on creating automated feedback loops between
computational design and experimental validation to increase process accuracy
and efficiency. The implementation of autonomous laboratories equipped with
robotic synthesis and characterization systems guided by generative models will
further streamline the research process. Collectively, these advancements will
enable rapid iteration through cycles of material design, synthesis, and testing,
thereby accelerating the discovery of new battery materials.

The development of explainable artificial intelligence techniques specifically
designed for generative models improves understanding of how materials are
generated and the influence of material features on achieving desired properties.
By elucidating the mechanisms underlying model predictions, researchers can
gain critical insights into prediction accuracy. Advancing generative models
in materials science necessitates processing and generating information across
multiple modalities, such as chemical formulas, crystal structures, spectroscopic
data, and performance curves, while simultaneously performing tasks including

108



5.2 Outlook

material generation, property prediction, and synthesis pathway recommendation.
Implementing robust uncertainty quantification within generative models can
guide experimental efforts by enabling researchers to prioritize materials based on
the confidence in predicted properties, thereby improving the interpretability of
model outputs.
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4.9  Training data generation pipeline. The source data for this

study is obtained from the Battery Explorer feature of the
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the Materials Project Application Programming Interface

(API). The extracted data is organized and managed through

the Kadi4Mat programming interface. KadiAI and CIDS

enable the machine learning process in this study. Reproduced

from [109] under the terms of the Creative Commons

Attribution (CC BY) license. . . . . . . ... ... ... ..... 94
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4.13 Relative sensitivity of conditioning variables in the

conditional latent diffusion model. The influence of each

input condition on the generated outputs is quantified using a

normalized L2 distance metric. The sensitivity analysis

indicates that gravimetric capacity and volumetric capacity

have a significant impact on the model’s performance in
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