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Abstract

The widespread deployment of Artificial Intelligence (AI) at the edge has driven a paradigm shift
toward domain-specific hardware accelerators. Emerging architectures-ranging from Analog Compute-in-
Memory (CiM) and Non-Volatile Memory (NVM)-centric processors to Neuromorphic Computing and
Hyperdimensional Computing (HDC)-promise orders-of-magnitude improvements in energy efficiency
and latency. However, while these substrates are often used for their intrinsic robustness to noise and
stochastic process variations, this dissertation demonstrates that such robustness does not translate into
resilience against targeted physical attacks. This work systematically explores the physical security gap in
post-Von Neumann computing, establishing that the very physical properties enabling efficiency often
introduce novel, exploitable attack surfaces.

To address these challenges, this thesis develops a set of cross-layer analysis frameworks and counter-
measures, spanning device physics, circuit simulation, and real-hardware validation. First, the research
investigates Analog Compute-in-Memory (CiM) based on ReRAM and STT-MRAM. By developing
a physics-aware simulation framework, it is shown that analog non-idealities-such as device-to-device
variability and random telegraph noise-manifest as data-dependent leakage signatures. These signatures
allow adversaries to recover fixed weights using correlation-based and profiling attacks, enabling the
extraction of proprietary neural network models.

Second, the thesis uncovers a critical vulnerability in processor-centric NVM architectures. Through
real-hardware experiments on STT-MRAM, a novel class of persistent fault attacks is demonstrated.
By targeting the specific magnetic commit window of MRAM writes with nanosecond-scale voltage
glitches, an attacker can induce stable, non-volatile bit corruptions in stored cryptographic keys. This
persistence mechanism collapses the data complexity required for differential fault analysis (DFA) by
orders of magnitude, enabling full AES key recovery with fewer than 20 ciphertext pairs.

Third, the security of Neuromorphic Computing is analyzed through the introduction of FlexSpy,
the first design-time security framework for thin-film transistor (TFT)-based Spiking Neural Networks
(SNNs). The analysis reveals a unique quasi-DC leakage mechanism inherent to event-driven processing
on flexible substrates. Despite the absence of internal triggers, an attacker can exploit this leakage to
infer input classes and recover layer-wise spiking activity with high fidelity. Lightweight circuit-level
countermeasures are proposed that suppress this leakage by up to 70% with minimal power overhead.

Finally, the thesis presents a comprehensive security evaluation of FPGA-based Hyperdimensional
Computing (HDC). It exposes a “robustness mismatch,” where HDC’s algorithmic error tolerance
masks severe physical vulnerabilities. The work demonstrates successful Intellectual Property (IP)
theft via deep-learning-assisted side-channel analysis and remote, internal sensing attacks using on-chip
time-to-digital converters (TDCs). Furthermore, a targeted fault injection methodology (HyFault) is
developed, capable of inducing precise misclassifications. In response, effective defenses-including
dynamic masking and hypervector randomization-are introduced to restore security.

Collectively, these contributions provide a foundational understanding of the physical security risks in
emerging AI hardware, offering actionable design guidelines to ensure that the next generation of efficient
edge accelerators is secure by design.
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Zusammenfassung

Die weit verbreitete Nutzung von Künstlicher Intelligenz (KI) am Randbereich (Edge) hat einen Paradig-
menwechsel hin zu domänenspezifischen Hardware-Beschleunigern ausgelöst. Neuartige Architekturen
- von Analog Compute-in-Memory (CiM) und nichtflüchtigkeitsspeicherzentrierten (Non-Volatile Me-
mory, NVM) Prozessoren bis hin zu Neuromorpher Datenverarbeitung (NC) und Hyperdimensional
Computing (HDC) - versprechen Größenordnungen an Verbesserungen hinsichtlich Energieeffizienz und
Latenz. Obwohl diese Substrate häufig aufgrund ihrer intrinsischen Robustheit gegenüber Rauschen und
stochastischen Prozessvariationen eingesetzt werden, zeigt diese Dissertation, dass eine solche Robustheit
keinesfalls zu einer Widerstandsfähigkeit gegenüber gezielten physikalischen Angriffen führt. Die Arbeit
untersucht systematisch die Sicherheitslücke in post-von-Neumann-Systemen und zeigt, dass gerade die
physikalischen Eigenschaften, die Effizienz ermöglichen, neuartige und ausnutzbare Angriffsflächen
eröffnen.

Um diese Herausforderungen anzugehen, entwickelt diese Dissertation eine Reihe von schichtüber-
greifenden Analyseframeworks und Gegenmaßnahmen, die von der Bauelementphysik über die Schal-
tungssimulation bis hin zur Validierung auf realer Hardware reichen. Zunächst untersucht die Arbeit
Analog-Compute-in-Memory (CiM) auf Basis von ReRAM und STT-MRAM. Durch die Entwicklung eines
physikbewussten Simulationsframeworks wird gezeigt, dass analoge Nichtidealitäten - wie Bauelement-
zu-Bauelement-Variabilität und Random Telegraph Noise - datenabhängige Leckagesignaturen erzeugen.
Diese Signaturen ermöglichen es Angreifern, stationäre Gewichte mittels korrelationsbasierter und
profilierender Seitenkanalangriffe zurückzugewinnen und somit proprietäre neuronale Netzwerkmodelle
auszulesen.

Zweitens deckt die Dissertation eine kritische Schwachstelle in prozessorzentrierten NVM-Architekturen
auf. Durch Realhardware-Experimente an STT-MRAM wird eine neuartige Klasse von persistenten
Fehlerangriffen gezeigt. Durch das präzise Anvisieren des magnetischen Commit-Fensters des MRAM-
Schreibvorgangs mit Spannungsglitches im Nanosekundenbereich kann ein Angreifer stabile, nichtflüchtige
Bitfehler in gespeicherten kryptografischen Schlüsseln erzeugen. Dieser Persistenzmechanismus reduziert
die Datenkomplexität für differentielle Fehleranalyse (DFA) um mehrere Größenordnungen und ermöglicht
eine vollständige AES-Schlüsselrekonstruktion mit weniger als 20 Chiffretextpaaren.

Drittens wird die Sicherheit der Neuromorphen Datenverarbeitung anhand der Einführung von FlexSpy
analysiert, dem ersten Entwurfszeit-Sicherheitsframework für dünnschichttransistorbasierte (TFT) Spiking
Neural Networks (SNNs). Die Analyse zeigt einen einzigartigen quasi-DC-Leckagemechanismus, der
inhärent mit ereignisgetriebener Verarbeitung auf flexiblen Substraten verbunden ist. Trotz des Fehlens
interner Trigger kann ein Angreifer diese Leckage ausnutzen, um Eingangsklassen abzuleiten und schicht-
weise Spiking-Aktivität mit hoher Genauigkeit zu rekonstruieren. Leichte Schaltungs-Gegenmaßnahmen
werden vorgeschlagen, die diese Leckage um bis zu 70% reduzieren - bei minimalem zusätzlichen
Energieaufwand.

Abschließend präsentiert die Dissertation eine umfassende Sicherheitsanalyse hardwarebeschleunigter
Hyperdimensional Computing (HDC) Implementierungen auf FPGAs. Die Arbeit zeigt eine “Robust-
heitsdiskrepanz”, bei der die algorithmische Fehlertoleranz von HDC schwerwiegende physikalische
Verwundbarkeiten verdeckt. Die Ergebnisse demonstrieren erfolgreichen Diebstahl geistigen Eigentums
durch Deep-Learning-unterstützte Seitenkanalanalyse sowie durch entfernte, interne Messangriffe mittels
On-Chip Time-to-Digital Converters (TDCs). Darüber hinaus wird eine gezielte Fehlerinjektionsmethodik
(HyFault) entwickelt, die präzise Fehlklassifikationen hervorrufen kann. Als Reaktion werden wirksame
Gegenmaßnahmen - einschließlich dynamischem Masking und Hypervektor-Randomisierung - vorgestellt,
die die Sicherheit maßgeblich wiederherstellen.
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Zusammenfassung

Insgesamt liefern diese Beiträge ein grundlegendes Verständnis der physikalischen Sicherheitsrisiken in
aufkommenden KI-Hardwarebeschleunigern und bieten konkrete Entwurfsrichtlinien, um sicherzustellen,
dass die nächste Generation energieeffizienter Edge-Beschleuniger von Grund auf sicher gestaltet wird.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I. Preliminaries 13

1. Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1. The Crisis: The Memory Wall and the Energy Efficiency Gap . . . . . . . . . . 15
1.1.2. The Paradigm Shift: Emerging Hardware Accelerators . . . . . . . . . . . . . . 16
1.1.3. The Security Gap: Physical Vulnerabilities in the Post-Digital Era . . . . . . . . 17

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.1. The Failure of Digital Leakage Models in Analog Computing . . . . . . . . . . 18
1.2.2. The Threat of Persistence: Non-Volatility as an Attack Vector . . . . . . . . . . 18
1.2.3. Security Blind-Spots in Emerging Neuromorphic Hardware . . . . . . . . . . . 19
1.2.4. The "Robustness Mismatch" in Hyperdimensional Computing . . . . . . . . . . 19

1.3. Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1. RQ1: Vulnerabilities of Emerging NVM-based In-memory Computing (Analog) 20
1.3.2. RQ2: Persistent Faults in Processor-Centric NVM Architectures (MRAM) . . . . 21
1.3.3. RQ3: Security of Emerging Spiking Neuromorphic Computing (Flexible Edge-AI) 21
1.3.4. RQ4: Vulnerability of FPGA-based (HDC) . . . . . . . . . . . . . . . . . . . . 21

1.4. Methodology: Cross-Level Co-Optimization . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2. Accelerator Paradigms and Physical Foundations . . . . . . . . . . . . . . . . . . . . . 24

2.2.1. Reference Platform: The Sub-10 nm SRAM Fabric . . . . . . . . . . . . . . . . 24
2.2.2. Memory-Centric Accelerators: Analog Compute-in-Memory (CiM) . . . . . . . 25
2.2.3. Hyperdimensional Computing (HDC) on FPGA/ASIC . . . . . . . . . . . . . . 28
2.2.4. Spiking Neuromorphic Computing (NC) on Emerging Technology . . . . . . . . 29

2.3. Adversary Models and Attack Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1. Formal Models of Physical Attack Vectors . . . . . . . . . . . . . . . . . . . . . 30

2.4. Identified Research Gaps and Thesis Positioning . . . . . . . . . . . . . . . . . . . . . . 33
2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



Contents

II. Contributions 35

3. Vulnerabilities of Emerging Non-Volatile Memory (NVM)-based In-memory Computing: Simu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2. Physical Origins of Analog Leakage: From Device Physics to Circuit Dynamics . . . . . 38

3.2.1. Layer D - Device-Level Leakage Models . . . . . . . . . . . . . . . . . . . . . 40
3.3. Layer C - Circuit Design-Specific Leakage Realizations . . . . . . . . . . . . . . . . . . 41

3.3.1. Case I - Scouting-Logic XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2. Case II - Multiply–Accumulate (MAC) + tanh activation Layer . . . . . . . . . . 48
3.3.3. Case III - Multi-Layer MAC + tanh activation Network . . . . . . . . . . . . . . 51
3.3.4. Case IV - Content Addressable Memory (CAM)-Based Hyperdimensional Com-

puting (HDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.5. Common Pre-Processing and Evaluation Protocol (used in Cases II-IV) . . . . . 57

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4. Vulnerabilities of Emerging NVM-Backed Processor-centric Computing: FPGA Emulation . . . 59
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2. From Analog CiM Variability to Digital Persistent Faults . . . . . . . . . . . . . . . . . 60

4.2.1. Why MRAM’s Physics Matters for Security . . . . . . . . . . . . . . . . . . . . 60
4.2.2. The Intuition: Persistence⇒ Constancy⇒ Low Samples . . . . . . . . . . . . 60

4.3. Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4. Experimental Platform and Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1. Board-Level Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2. AES Integration and Key-Schedule Handling . . . . . . . . . . . . . . . . . . . 62

4.5. Attack Methodology: Targeting the MRAM Commit Window . . . . . . . . . . . . . . 62
4.5.1. Timing Model and Parameter Sweep . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2. Persistence Definition and Morphology . . . . . . . . . . . . . . . . . . . . . . 62

4.6. Cryptanalysis Under Persistent Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.1. Notation and Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6.2. Case A: Persistent Fault in 𝐾10 (Direct Leakage) . . . . . . . . . . . . . . . . . . 63
4.6.3. Case B: Persistent Fault in 𝐾9 (Constancy Test) . . . . . . . . . . . . . . . . . . 64
4.6.4. From Per-Byte to Full-Key: Required Reliability . . . . . . . . . . . . . . . . . 64
4.6.5. Robustness: SPFA Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.1. Selective Glitching Without Board Destabilization . . . . . . . . . . . . . . . . 65
4.7.2. Glitch Window and Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.3. Persistence and Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.4. Key-Recovery Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.5. Why 12–17 on Hardware (vs. 2–3 in the Ideal Model) . . . . . . . . . . . . . . . 66
4.7.6. Comparison to Volatile-Memory DFA . . . . . . . . . . . . . . . . . . . . . . . 67

4.8. Ablations and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.1. Targeting 𝐾10 vs. 𝐾9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.2. Effect of Multi-Byte Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8.3. Plaintext Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9. Countermeasures Tailored to MRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9.1. PUF-Bound Sealing of Key Slots . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.9.2. Randomized Commit Timing (Write Dither) . . . . . . . . . . . . . . . . . . . . 68
4.9.3. Dual-Slot + ECC/CRC + Write-Verify . . . . . . . . . . . . . . . . . . . . . . . 68
4.9.4. Rail Monitoring and Write Gating . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.9.5. Architectural Surface Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



Contents

4.10. Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10.1. Why This Work is Effective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10.2. Beyond This Chapter: Invertible Randomized Wrappers . . . . . . . . . . . . . 69

4.11. Practical Deployment Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11.1. Implications for Emerging AI Accelerators . . . . . . . . . . . . . . . . . . . . 69

4.12. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5. Vulnerability of Flexible Edge-AI-based Neuromorphic Computing: Simulation . . . . . . . . 71
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2. Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3. The FlexSpy Framework Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1. Threat Model and Leakage Observables . . . . . . . . . . . . . . . . . . . . . . 73
5.3.2. Substrate-Aware Leakage Model for f-SNNs . . . . . . . . . . . . . . . . . . . . 73
5.3.3. Trace Synthesis and Spike-Aligned Feature Extraction . . . . . . . . . . . . . . 74
5.3.4. Calibrated Attack Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.5. Leakage Quantification and Localization . . . . . . . . . . . . . . . . . . . . . 75

5.4. Experimental Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2. Label Inference from Power Leakage . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.3. Spike-Rate Recovery and Mutual Information . . . . . . . . . . . . . . . . . . . 77
5.4.4. Structural Profiling from Power Traces . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.5. Comparative Study: f-SNN vs. f-RNN . . . . . . . . . . . . . . . . . . . . . . . 79

5.5. Countermeasures and Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.1. Countermeasure 1: Spike-Time Randomization (Jitter) . . . . . . . . . . . . . . 80
5.5.2. Countermeasure 2: Event Balancing (Dummy Conductance) . . . . . . . . . . . 80
5.5.3. Evaluation of Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6. Vulnerability of Edge-AI-based Hyperdimensional Computing: FPGA Emulation . . . . . . . . 83
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2. Theoretical Framework: Hyperdimensional Computing and Hardware Vulnerability . . . 83

6.2.1. The Algebra of Hypervectors and Hardware Mapping . . . . . . . . . . . . . . . 83
6.2.2. Hyperdimensional Computing Hardware . . . . . . . . . . . . . . . . . . . . . 84
6.2.3. The Threat Landscape: Physical Access and Adversarial Capability . . . . . . . 85

6.3. Deep Learning-Assisted Power Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.1. The Dimensionality Limitations in Classical SCA . . . . . . . . . . . . . . . . . 85
6.3.2. Attack Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3. Empirical Evaluation and Transferability . . . . . . . . . . . . . . . . . . . . . 87
6.3.4. Evaluation of Side-Channel Attack Effectiveness . . . . . . . . . . . . . . . . . 89

6.4. Dynamic workload scheduling and Internal Sensing Side-Channel Analysis (SCA) Attack:
Collision-Based Timing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.1. Attack Overview and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.2. On-Chip Sensing with Time-to-Digital Converters . . . . . . . . . . . . . . . . 93
6.4.3. Collision Analysis in High-Dimensional HDC . . . . . . . . . . . . . . . . . . . 93
6.4.4. Implicit Triggering via Staircase Profiling . . . . . . . . . . . . . . . . . . . . . 94
6.4.5. Two-Stage Internal SCA Methodology . . . . . . . . . . . . . . . . . . . . . . . 95
6.4.6. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.7. Vulnerability Assessment of Unprotected HDC Designs . . . . . . . . . . . . . 97
6.4.8. Randomization-Based Countermeasure . . . . . . . . . . . . . . . . . . . . . . 99
6.4.9. Comparison with Other Attacks on HDC . . . . . . . . . . . . . . . . . . . . . 100

6.5. Active Integrity Attacks: Targeted Voltage-Level Fault Injection (HyFault) . . . . . . . . 100
6.5.1. Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



Contents

6.5.2. Profiling and Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.3. Fault Injection Attack Methodology . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.4. Countermeasures for Voltage Fault Injection . . . . . . . . . . . . . . . . . . . . 104
6.5.5. Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5.6. Integrated Countermeasures and the Robustness . . . . . . . . . . . . . . . . . . 109
6.5.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

III. Appendix 115

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

x



List of Figures

1.1. Visualization of the memory wall: Central Processing Unit (CPU) performance increases
rapidly while Dynamic Random-Access Memory (DRAM) latency stays nearly constant,
creating a fundamental bottleneck. The accompanying memory hierarchy and roofline model
highlight latency/energy scaling across cache levels and motivate mitigation techniques such
as data reuse, compression, near-memory compute, and wider Network-on-Chip (NoC). . . . 16

1.2. Traditional digital architectures maintain strict physical separation between logic (e.g., CPUs,
Advanced Encryption Standard (AES) engines) and memory (e.g., DRAM), providing strong
isolation and mature hardware-security guarantees. Emerging analog and memory-centric
accelerators collapse this boundary by co-locating computation and storage. While this
improves efficiency, it breaks architectural isolation and introduces new attack surfaces that
expose physical weights, internal states, and stored secrets to leakage and fault-injection
vulnerabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3. Coverage of research gaps by this thesis. The diagram maps the threat landscape across attack
vectors (columns) and impact severity (rows). Green ovals denote the specific contributions
of this work, filling critical gaps in prior research (gray dashed ovals). . . . . . . . . . . . . 20

2.1. (a) SRAM macro with periphery; (b) 6T bitcell. Distributed Wordline (WL)/Bitline (BL)
Resistance–Capacitance (RC) parasitics degrade read/write margins and shape dynamic
current signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2. Architecture of Compute-in Memory (CiM). . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3. Structure and operation of Resistive-Random Access Memory (ReRAM). . . . . . . . . . . 26
2.4. Structure and operation of Spin Torque Transfer-Magnetic Random Access Memory (STT-

MRAM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5. Overview of different operations in Hyperdimensional Computing (HDC). . . . . . . . . . . 28
2.6. Overview of different operations in spike-based Neuromorphic Computing (NC). . . . . . . 29

3.1. Layer-wise leakage extraction in Compute-in-Memory (CiM) framework . . . . . . . . . . . 39
3.2. Schematic of a scouting-based logic: different references create different logic operations

(XOR, AND, etc.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3. End-to-end simulation framework for evaluating the Correlation Power Analysis (CPA)

vulnerability of CiM operations. The pipeline incorporates device-level variation, electrical-
level SPICE simulation, Power Delivery Network (PDN) filtering, noise injection, and
statistical CPA analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4. End-to-end simulation framework for evaluating the CPA vulnerability of CiM operations.
The pipeline incorporates device-level variation, electrical-level SPICE simulation, PDN
filtering, noise injection, and statistical CPA analysis. . . . . . . . . . . . . . . . . . . . . . 44

3.5. CPA on different CiM implementations of an 8-bit XOR operation with the minimum number
of traces for key recovery (marked green) in all plots. For all attacks, the effects of the PDN
and Measurement Noise (MN) are considered. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6. CPAs on Resistive Random-Access Memory (ReRAM)-Magnetoresistive Random-Access
Memory (MRAM)-based CiM. Effect of adding the PDN and MN to the simulation flow
on the vulnerability of the design, shown by the amount of measurements needed for key
recovery (marked green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7. CPA performed on ReRAM-based CiM-design on which our protections are applied, showing
in both cases key recovery is unsuccessful. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1



List of Figures

3.8. Schematic of a MAC+tanh column: weighted current summation followed by a differential-pair
tanh activation and optional quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9. Feature extraction around evaluate and activation: timing landmarks, local energy, slope at
the activation edge, and comparator fault flag. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10. Template separation for different weight codes using activation-edge features; clusters remain
linearly separable even under PDN filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11. CPA and Test Vector Leakage Assessment (TVLA) on an unprotected MAC+tanh path (16
rows active). Minimum trace counts for disclosure are marked in green in the original plots. 51

3.12. Unprotected and protected comparators used in the activation/quantization stage. . . . . . . 52
3.13. Comparator power vs. input common-mode voltage before and after protection. . . . . . . . 53
3.14. Failed CPA and TVLA on the protected CiM sub-array (8 rows active). . . . . . . . . . . . . 53
3.15. Layer-wise leakage: grouped bars show |𝜌 | in evaluate/activation windows for L1-L3; lines

(right axis) show 𝑁TD computed with 𝑧 = 5. L1 dominates; deeper layers are attenuated by
tanh and PDN superposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16. Frequency-domain separability vs. PDN decoupling: ∆𝑓 (left axis) decreases with stronger
decoupling, which also reduces a simple layer-ID classifier’s accuracy (right axis). . . . . . . 55

3.17. Protected CiM design: tunable delay element in the comparator path to randomize activation
timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.18. CAM-based HDC search: ML precharge/evaluate and winner-take-all sense. . . . . . . . . . 56
3.19. Evaluate-window power vs. 1-byte query candidates: minimum at the correct class hypervector

(example: 0xd0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.20. ML voltage: least discharge (closest to 𝑉pre) when HD(x,w𝑟 ) is minimal (match). . . . . . . 57
3.21. Successful collision+Simple Power Analysis (SPA) attack on class-4 hypervector: correct ID

shows the minimum power; byte recovery statistics for 32/16/8-byte queries. . . . . . . . . . 57
3.22. Protected CAM-HDC: power attack fails. Correct and incorrect candidates are indistinguishable. 58

4.1. Experimental setup for voltage glitching attacks on Spin-Transfer-Torque Magnetoresistive
RAM (STT-MRAM). (a) System-level architecture showing Field-Programmable Gate Array
(FPGA) (Pynq-Z1), ChipWhisperer-Pro, and oscilloscope connections for glitch injection and
monitoring. (b) Laboratory setup with MRAM mounted on Pynq-Z1, ChipWhisperer CW305,
and CW1200. (c) Hardware implementation with MRAM daughterboard interfaced to the
Pynq-Z1 FPGA. (d) Printed Circuit Board (PCB) layout of the custom MRAM daughterboard. 61

4.2. Timing diagrams at the device interface, showing longer write cycle requirements compared
to read access. The extended write window makes write operations more susceptible to
precisely timed glitch injection, which is leveraged in our fault attack model. . . . . . . . . . 63

4.3. Empirical characterization and validation of optimal glitch injection timing in MRAM writes. 63
4.4. Spatial/polarity characterization of persistent MRAM faults, used later to weight SPFA scores. 64
4.5. Differential Fault Analysis (DFA)/Statistical Persistent Fault Analysis (SPFA) effectiveness

under persistent faults: (a) ≈12 pairs reach ∼95% per-byte success; (b) with𝑚=17, the correct
key reaches rank-1 in >99% of trials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6. SPFA score distribution: the correct key 𝑘∗ yields a sharp, stable peak at the same 𝛿 across
pairs; wrong keys are near-uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1. Circuit-level implementations of flexible neuromorphic circuits (f-NCs) analyzed in this
work. Left: f -SNN cell with Synapse, Charge/Integrate, and Reset/Discharge stages. Right:
f -RNN cell with recurrent 𝑅𝐶 dynamics for continuous-time state evolution. . . . . . . . . . 72

5.2. Distinct leakage primitives from raw power traces: spike-driven quasi-DC offsets in f-SNN
(left) vs. smoother low-frequency RC oscillations in f-RNN (right). . . . . . . . . . . . . . . 73

5.3. Overview of the FlexSpy framework pipeline. FlexSpy provides a complete design-time
flow: from technology-calibrated device simulation and PDN modeling to spike-aligned
feature extraction, a calibrated attack suite (CPA, templates, regression, MI), and quantitative
localization (SLI), enabling in-loop evaluation of countermeasures. . . . . . . . . . . . . . . 73

2



List of Figures

5.4. Leakage localization in time for f-SNN on P-Cons. Left: quasi-DC ∆𝐼𝐷𝐶 offsets in 𝐼𝐷𝐷 (𝑡 )
during spike epochs. Right: sliding-CPA shows that leakage is maximized in W2. . . . . . . 77

5.5. Cross-dataset leakage at the nominal corner: ROC–AUC for label inference using spike-
window features on six workloads. Blue bars: f -SNN; red bars: f -RNN; the dotted line
indicates chance (AUC = 0.5). The f -SNN consistently leaks more than the f -RNN. . . . . . 77

5.6. Model reliability and measurement robustness for label inference in f-SNN on P-Cons. . . . 78
5.7. Windowed quasi-DC current shift ∆𝐼𝐷𝐶 by class for f-SNN on P-Cons. Distinct class clusters

in the dominant W2 window visualize the rate-weighted ∑
𝑖 𝑔𝑖𝑠𝑖 leakage mechanism. . . . . . 78

5.8. Spike-rate recovery and mutual information analysis for f-SNN. . . . . . . . . . . . . . . . . 79
5.9. Confusion matrices for structural profiling from power traces in f-SNN. Gaussian templates

trained on spike-window features can recover both multiplicity and input source clusters. . . 79
5.10. Direct security comparison of f-SNN vs. f-RNN on P-Cons. The f-SNN’s spike-window

∆𝐼𝐷𝐶 offsets produce stronger instantaneous leakage than the f-RNN’s smoother envelopes. . 80

6.1. Architecture of the FPGA-based HDC accelerator. Raw data is streamed via DMA, encoded
as hypervectors, and classified in the associative memory (AM). Class hypervectors are
written by the CPU and stored in AM (large hypervectors are partitioned into segments). The
class with the smallest Hamming distance to the query is returned as the classification result. 85

6.2. ChipWhisperer-captured FPGA power trace showing different stages of HDC operations.
The trace exhibits a periodic pattern after a fixed timestamp, corresponding to similarity
computations, which is critical for SCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3. Grad-CAM heatmap highlighting regions within FPGA-based HDC power traces that
contribute most to ResNet-34 predictions. The highlighted intervals correspond primarily to
XOR similarity and POPCOUNT computations. . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4. Overview of the proposed adaptive Grad-CAM-based attack workflow. Power traces from
HDC inference are fed to a 1D ResNet-34 CNN for bit extraction. Grad-CAM visualizations
identify and refine critical leakage intervals, guiding targeted trace selection and cropping to
enhance attack efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5. ResNet-34-based bit extraction accuracy across FPGA platforms under explicit noise and jitter
conditions. Cross-platform consistency highlights that leakage is dominated by architectural
similarity (XOR + POPCOUNT structure) rather than chip-specific artifacts. . . . . . . . . . 88

6.6. Impact of adaptive Grad-CAM guidance. Left: bit extraction accuracy improvement across
iterations for adaptive vs. non-adaptive approaches. Right: SNR improvement across adaptive
iterations. The adaptive method achieves significantly higher accuracy with fewer traces by
focusing on critical leakage intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7. Bit recovery accuracy vs. number of analyzed traces for MNIST. ResNet-34-based SCA
converges above 90% accuracy for most classes after ≈ 8 × 105 traces; some classes (0 and 6)
remain harder to recover due to weaker leakage. . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8. TVLA analysis on unprotected HDC (MNIST): severe first-order leakage (t-values > 4.5)
and non-negligible second-order leakage (t-values > 2.5) during XOR and POPCOUNT
operations, confirming vulnerability to both first- and higher-order SCA. . . . . . . . . . . . 91

6.9. Robustness analysis (MNIST). Bit extraction accuracy of ResNet-34 under increasing Gaussian
noise and timing jitter. While accuracy degrades from ideal conditions, the attack remains
effective across realistic noise/jitter levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.10. TDC circuit used as an on-chip sensor [67]. A delay line, latches, and capture registers
convert fine-grained voltage-induced delay variations into a digital value observable by the
attacker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.11. (a) TDC values captured for different class candidates (MNIST) during profiling, demonstrating
distinct peaks per candidate. (b) Query injection time vs. peak power timing with queries
injected every 100 ns. The staircase pattern reveals the victim HDC execution period (300 ns)
and the internal latency (≈ 20 ns offset) to reach peak power. . . . . . . . . . . . . . . . . . 95

3



List of Figures

6.12. Proposed internal SCA methodology on an HDC accelerator. Stage 1 performs collision-based
sensitivity analysis to reduce the hypervector search space. Stage 2 uses a TDC sensor and
implicit triggering to distinguish candidate ClassHVs via power-induced timing variations. . 96

6.13. Floorplan of the proposed attack on Pynq-Z2. The HDC accelerator (victim, red) and TDC
sensor (attacker, yellow) are placed in different clock regions within the same FPGA fabric
but share the same PDN. Screenshot from Xilinx Vivado. . . . . . . . . . . . . . . . . . . . 96

6.14. (a) Cumulative number of collisions over time, showing an increasing trend as more
query hypervectors are classified. (b) Collision frequency over time, with peaks indicating
hypervectors that are particularly likely to align with the target ClassHV. . . . . . . . . . . . 97

6.15. TDC delay-line calibration for candidate ClassHVs on MNIST. The minimum TDC value
(red circle) corresponds to the correct candidate (ID 102). Measurements are performed with
TDC clocked at 24, 48, 72, and 96 MHz while the HDC remains at 24 MHz. . . . . . . . . . 98

6.16. Successful TDC-based power attacks on recovered ClassHVs for Fashion-MNIST and ISOLET
when both HDC and TDC modules operate at 24 MHz. . . . . . . . . . . . . . . . . . . . . 99

6.17. Effect of randomization on MNIST. (a) Sample power patterns of HDC operations with and
without randomization: the baseline (blue) shows predictable patterns, while the randomized
design (green) significantly disrupts correlation and peak structure. (b) Classification accuracy
(black, overlapping for protected and unprotected designs) and maximum bit recovery accuracy
for a single class: randomization reduces recovery from ≈ 80–83% (blue) to ≈ 19% (green). . 100

6.18. Confidence score distribution for 100k random input hypervectors (1000-D and 2000-D).
The adaptive threshold 𝜏 (pink) selects boundary-sensitive inputs near the decision boundary. 102

6.19. Profiling and sensitivity analysis on 1000-D HDC (MNIST). (a) CPA correlation coefficients;
hypervectors above the 0.15 threshold (red line) are highly sensitive and suitable for targeted
FI. (b) Representative power trace showing three phases: encoding, similarity computation,
and writing. The similarity phase exhibits the highest data-dependent variance and becomes
the primary target for fault injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.20. ChipWhisperer Pro trace with a single voltage glitch (blue) at 622 ns within the similarity
computation window (MNIST). This window is identified as highly fault-sensitive via profiling.104

6.21. Comparison of fault injection effectiveness before and after parameter optimization (1000-D
MNIST). After tuning glitch width, offset, and repetition count, successful faults more
consistently result in misclassification rather than resets or benign behavior. . . . . . . . . . 104

6.22. Countermeasure structure combining LFSR-based permutation randomization and dual XOR
masking. Class hypervectors are masked and permuted offline; query hypervectors are
dynamically masked and permuted at runtime, complicating precise glitch timing and profiling.106

6.23. Experimental setup: control PC, Pynq Z2 and Arty-A7 FPGA boards, ChipWhisperer
Pro (CW1200) for voltage glitching, and CW305 Artix-7 FPGA target board for precise
characterization of HyFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.24. Empirical analysis for optimal fault injection. (a) Misclassification probability across
candidate timestamps (5 ns increments); the optimal region near 78 ns is highlighted. (b)
Misclassification vs. glitch width, showing minimal effect at small widths, rapid growth
between 20–30 ns, and saturation beyond 30 ns. . . . . . . . . . . . . . . . . . . . . . . . . 107

6.25. Comparison of unprotected and protected HDC designs on MNIST under voltage-level fault
injection. (a) Attack success rate as a function of the number of glitch attempts for 1000-D
and 2000-D hypervectors, showing that countermeasures suppress misclassification from
∼89% down to ≤2–3%. (b) Power-trace variance before and after protection: the unprotected
design (red) exhibits strong data-dependent fluctuations, whereas the protected design (blue)
drastically reduces variance, indicating effective leakage suppression. . . . . . . . . . . . . 108

4



List of Figures

6.26. Effect of hypervector dimensionality and countermeasures on BRAM-based HDC accelerators.
(a) Higher dimensionality (2000-D) further suppresses misclassification rates across all
datasets, especially in protected designs. (b) The resulting accuracy loss remains small
(2–3%), demonstrating that the proposed countermeasures provide strong robustness with
minimal performance overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5





List of Tables

2.1. Physical attack taxonomy used in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2. Attacks and defenses on emerging AI accelerators arranged by Impact (rows) and Access

(columns). Red bullets denote attacks; blue bullets denote defenses. Technology tags: CiM =
compute-in-memory, SNN = spiking neural networks, HDC = hyperdimensional computing. 33

3.1. Side-channel paradigms: Digital Complementary Metal–Oxide–Semiconductor (CMOS) vs.
Analog CiM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2. Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3. Leakage predictors and timing windows for scouting-logic XOR. . . . . . . . . . . . . . . . 45
3.4. Minimum number of traces needed to attack various CiM technologies, based on simulations

including PV, PDN and MN. The result is averaged over 10 different chip instances. . . . . . 46
3.5. Predictors and timing windows for MAC+tanh. . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6. MAC+tanh leakage as a function of technology and PDN decoupling. Peak Pearson correlation

|𝜌 | is reported for the evaluate window (RC discharge) and the activation window (tanh bias
modulation). 𝑁𝑇𝐷 is the traces-to-disclosure estimate using 𝑁𝑇𝐷 ≈𝑧2/𝜌2 with 𝑧=5. . . . . . . 51

3.7. Impact of Analog-to-Digital Converter (ADC) resolution and dithering on MAC+tanh CPA.
Median traces to disclosure (𝑁𝑇𝐷 ) and empirical success rate after 1000 traces, averaged over
several seeds and PDN states. Dithering adds small, uniformly distributed input noise at the
ADC to break deterministic binning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8. Layer-wise leakage in a 3-layer analog Multi-Layer Perceptron (MLP) (ReRAM, medium
decoupling). Correlation and traces-to-disclosure are reported for evaluate and activation
windows per layer. 𝑁𝑇𝐷 uses 𝑧=5. The first layer leaks the most, deeper layers are attenuated
by the tanh nonlinearity and PDN superposition. . . . . . . . . . . . . . . . . . . . . . . . 54

3.9. Frequency-domain separability of layer windows under different PDN decoupling. ∆𝑓 is
the mean spectral-centroid difference between adjacent layers (larger is better). “Layer-ID
accuracy” is the cross-validated accuracy of a simple frequency-domain classifier that assigns
a window to its layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10. CAM-HDC identifiability: goodness-of-fit between predicted (Hamming Distance (HD)) and
measured match-line energy, together with median traces to disclosure for exact class-HV
recovery with a 32-byte query. ReRAM exhibits higher amplitude and slightly better model
fit, MRAM is cleaner but smaller in magnitude. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11. Collision-style class-HV recovery for CAM-HDC. Reported are recovered bytes and number
of required candidate queries for different query widths. Protected design uses random
precharge, staggered activation, and reference dithering. . . . . . . . . . . . . . . . . . . . . 56

4.1. Our work vs prior MRAM security literature . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1. Spike-Leakage Index (SLI) in dominant window W2 for f-SNN on P-Cons. Both counter-
measures (CMs) are effective, and the combination provides the strongest hotspot suppression. 80

5.2. Per-dataset countermeasure (CM) overheads and leakage reduction, grouped by architecture.
Values are relative to each model’s unprotected baseline; medians across parameter sweeps
are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1. Mapping of core HDC operations to FPGA resources and associated security implications. . 84
6.2. Detailed performance analysis of CNN variants for FPGA-based HDC side-channel attack

(MNIST dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7



List of Tables

6.3. Summary of ResNet-34-based SCA evaluation across multiple benchmark datasets and
FPGAs (1M trace budget unless noted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4. Comparative analysis of ResNet-34-based SCA with representative state-of-the-art attacks on
FPGA-HDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5. Recovered bits and inference accuracy for unprotected HDC designs. . . . . . . . . . . . . . 98
6.6. Comparative analysis of the proposed TDC-based internal SCA with representative attacks

on HDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7. Effect of Glitch Parameters on Misclassification (MNIST) . . . . . . . . . . . . . . . . . . . 105
6.8. Targeted misclassification results across benchmark datasets using HyFault. . . . . . . . . . 107
6.9. Area, timing, and power overhead of countermeasures (Artix-7 BRAM-based HDC). . . . . 109
6.10. Comparative analysis of HyFault with representative HDC attacks. . . . . . . . . . . . . . . 109
6.11. Qualitative summary of countermeasures: target, mechanism, overhead, and efficacy. . . . . 110

8



Acronyms

a-IGZO amorphous Indium-Gallium-Zinc Oxide.

ACIM Analog Compute-in-Memory.

ADC Analog-to-Digital Converter.

AES Advanced Encryption Standard.

ALU Arithmetic Logic Unit.

ANN Artificial Neural Network.

ASIC Application-Specific Integrated Circuit.

AXI Advanced eXtensible Interface.

BER Bit Error Rate.

BL Bitline.

BRAM Block RAM.

CAM Content Addressable Memory.

CiM Compute-in-Memory.

CMOS Complementary Metal–Oxide–Semiconductor.

CNN Convolutional Neural Network.

CPA Correlation Power Analysis.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DAC Digital-to-Analog Converter.

DC Direct Current.

DFA Differential Fault Analysis.

DL-SCA Deep-Learning-based Side-Channel Analysis.

DMA Direct Memory Access.

DNN Deep Neural Network.

DPA Differential Power Analysis.

DRAM Dynamic Random-Access Memory.

DSA Domain-Specific Architecture.

9



Acronyms

ECC Error-Correcting Code.

EM Electromagnetic.

FE Flexible Electronics.

FI Fault Injection.

FIB Focused Ion Beam.

FPGA Field-Programmable Gate Array.

HD Hamming Distance.

HDC Hyperdimensional Computing.

HW Hamming Weight.

ILA Integrated Logic Analyzer.

ISI Inter-Spike Interval.

KCL Kirchhoff’s Current Law.

LDA Linear Discriminant Analysis.

LIF Leaky Integrate-and-Fire.

LLM Large Language Model.

MAC Multiply–Accumulate.

MI Mutual Information.

MIM Metal–Insulator–Metal.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MN Measurement Noise.

MRAM Magnetoresistive Random-Access Memory.

MTJ Magnetic Tunnel Junction.

MVM Matrix-Vector Multiplication.

NC Neuromorphic Computing.

NoC Network-on-Chip.

NVM Non-Volatile Memory.

PCA Principal Component Analysis.

PCB Printed Circuit Board.

PCM Phase-Change Memory.

PDK Process Design Kit.
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Acronyms

PDN Power Delivery Network.

PFA Persistent Fault Analysis.

PMOD Peripheral Module Interface.

PUF Physical Unclonable Function.

PVT Process, Voltage, and Temperature.

QDA Quadratic Discriminant Analysis.

RC Resistance–Capacitance.

ReRAM Resistive Random-Access Memory.

RNN Recurrent Neural Network.

RTN Random Telegraph Noise.

SCA Side-Channel Analysis.

SLI Spike-Leakage Index.

SNM Static Noise Margin.

SNN Spiking Neural Network.

SNR Signal-to-Noise Ratio.

SoC System-on-Chip.

SPA Simple Power Analysis.

SPFA Statistical Persistent Fault Analysis.

SPI Serial Peripheral Interface.

STT-MRAM Spin-Transfer-Torque Magnetoresistive RAM.

TDC Time-to-Digital Converter.

TFT Thin-Film Transistor.

TIA Transimpedance Amplifier.

TMR Tunnel Magnetoresistance.

TVLA Test Vector Leakage Assessment.

UART Universal Asynchronous Receiver-Transmitter.

VDD Supply Voltage.

WL Wordline.
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1. Introduction and Motivation

The trajectory of modern computing is currently navigating a critical inflection point, driven by the
convergence of physical scaling limits and the explosive computational demands of Artificial Intelligence
(AI). For over half a century, the information technology sector has relied upon the consistency of Moore’s
Law and Dennard scaling to deliver exponential improvements in performance and energy efficiency.
However, as transistor feature sizes approach atomic scales, these reliable scaling laws have faltered,
giving rise to the "Dark Silicon" era where thermal constraints prevent the simultaneous utilization of
all on-chip resources. Concurrently, the nature of computational workloads has fundamentally shifted.
The dominance of control-heavy, sequential logic has transferred ground to data-intensive, massively
parallel workloads characteristic of AI and other machine learning paradigms. This mismatch between
traditional architectural principles and modern workload requirements has precipitated a crisis centered
on the movement of data, famously termed the "Memory Wall" [2].

This dissertation addresses the urgent need to re-evaluate hardware security in light of the architectural
solutions emerging to solve the Memory Wall crisis. As the industry pivots toward non-Von Neumann
architectures, specifically CiM Analog Compute-in-Memory (CiM), Neuromorphic Computing, and
Hyperdimensional Computing (HDC), it undoubtedly invalidates the abstraction layers that have historically
underpinned hardware security models [44], [48], [63] [21], [88]. By transitioning from digital,
deterministic logic to analog, stochastic, and approximate computing, these emerging accelerators expose
novel physical attack surfaces that are poorly understood and inadequately protected. The following
sections describe the context of this architectural shift, define the specific security gaps this research
addresses, and outline the technical contributions that form the core of this thesis.

1.1. Motivation

1.1.1. The Crisis: The Memory Wall and the Energy Efficiency Gap

The Von Neumann architecture, characterized by the physical and logical separation of the Central
Processing Unit (CPU) and the memory hierarchy, has served as the pillar of general-purpose computing
for decades. This separation necessitates the continuous transfer of instructions and data between storage
units (DRAM) and processing units via a shared bus. While effective for conventional workloads where
data reuse is low and control logic is complex, this architecture creates a "data traffic jam" for AI
applications.

Deep Learning models, particularly modern Transformers and Convolutional Neural Networks (Con-
volutional Neural Networks (CNNs)), are characterized by billions of parameters that must be fetched
from memory to perform Matrix-Vector Multiplications (Matrix-Vector Multiplications (MVMs)). The
energy cost of this data movement has now eclipsed the cost of the computation itself. Empirical analyses
indicate that fetching a single operand from off-chip DRAM can consume between 100 to 500 times more
energy than performing the floating-point operation on that data [36]. Consequently, in data-centric AI
workloads, the processor spends a significant portion of its time idle, waiting for data to arrive, while the
system’s power budget is dominated by the interconnects rather than the arithmetic logic units (Arithmetic
Logic Units (ALUs)).

This phenomenon, known as the Memory Wall, creates a formidable barrier to deploying advanced
AI at the edge. Edge devices, ranging from autonomous vehicles and industrial IoT sensors to wearable
health monitors, operate under stringent power envelopes and latency constraints that preclude the use of
power-hungry, bandwidth-limited Von Neumann architectures. To bridge this gap, the semiconductor
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1. Introduction and Motivation

(a) CPU–memory performance gap (“memory wall”). (b) Latency/energy hierarchy and roofline limit with mitigation levers.

Figure 1.1.: Visualization of the memory wall: CPU performance increases rapidly while DRAM latency stays nearly constant,
creating a fundamental bottleneck. The accompanying memory hierarchy and roofline model highlight latency/energy scaling
across cache levels and motivate mitigation techniques such as data reuse, compression, near-memory compute, and wider NoC.

industry is aggressively pursuing Domain-Specific Architectures (Domain-Specific Architectures (DSAs))
that minimize data movement by physically co-locating memory and computation.

1.1.2. The Paradigm Shift: Emerging Hardware Accelerators

This thesis specifically investigates three classes of emerging accelerators that represent the most
promising solutions to the Memory Wall: Analog Compute-in-Memory (CiM), Neuromorphic Computing
(Neuromorphic Computing (NC)), and Hyperdimensional Computing (HDC). Each of these paradigms
leverages novel device physics or computational models to achieve orders-of-magnitude improvements in
energy efficiency, yet each introduces distinct physical security vulnerabilities.

1.1.2.1. Analog Compute-in-Memory

Compute-in-Memory (CiM) fundamentally restructures the computing hierarchy by performing arithmetic
operations directly within the memory array, thereby eliminating the need to shuttle weight data across the
bus. While digital CiM implementations exist, Analog CiM is particularly compelling for AI inference due
to its ability to perform Matrix-Vector Multiplication (MVM) in the analog domain with extreme density.
In an Analog CiM crossbar utilizing Non-Volatile Memory (NVM) technologies, such as Resistive RAM
(ReRAM) or Spin-Transfer Torque Magnetic RAM (STT-MRAM), synaptic weights are encoded as the
physical conductance states of the memory cells [35], [41]. Input vectors are applied as voltages along the
wordlines. Following Ohm’s Law and Kirchhoff’s Current Law, the accumulation of current along the
bitlines naturally computes the dot product, the fundamental atomic operation of neural networks. This
in-situ computation allows for massive parallelism and near-zero data movement energy. However, reliance
on analog properties introduces device non-idealities, such as conductance variability, Random Telegraph
Noise (Random Telegraph Noise (RTN)), and thermal sensitivity, that have profound implications for
information leakage.

1.1.2.2. Neuromorphic Computing

Parallel to the architectural shift in high-performance computing is the material revolution enabling
"ubiquitous intelligence" via Flexible Electronics (Flexible Electronics (FE)). Fabricated on substrates
like polyimide using low-temperature processes, these devices utilize materials such as amorphous
Indium-Gallium-Zinc Oxide (amorphous Indium-Gallium-Zinc Oxide (a-IGZO)) Thin-Film Transistors
(Thin-Film Transistors (TFTs)). a-IGZO offers sufficiently high mobility for logic circuits while enabling
mechanical flexibility, transparency, and low manufacturing costs. When combined with the computational
paradigm of Spiking Neural Networks (Spiking Neural Networks (SNNs)), which process information
as sparse, asynchronous events (spikes) rather than continuous values, flexible electronics promise to
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Figure 1.2.: Traditional digital architectures maintain strict physical separation between logic (e.g., CPUs, AES engines)
and memory (e.g., DRAM), providing strong isolation and mature hardware-security guarantees. Emerging analog and
memory-centric accelerators collapse this boundary by co-locating computation and storage. While this improves efficiency, it
breaks architectural isolation and introduces new attack surfaces that expose physical weights, internal states, and stored secrets
to leakage and fault-injection vulnerabilities.

bring efficient AI to conformal surfaces like smart skin, medical implants, and smart packaging. Unlike
conventional CMOS, however, these flexible substrates lack robust packaging and sophisticated Power
Delivery Networks (PDNs), creating a physical environment that is uniquely exposed to side-channel
observation and manipulation [6], [23], [26].

1.1.2.3. Hyperdimensional Computing (HDC)

Hyperdimensional Computing (HDC) represents a radical departure from standard numerical representa-
tion. Inspired by the distributed and holographic nature of biological memory, HDC encodes information
into high-dimensional pseudo-random vectors (hypervectors). Learning and inference are performed using
computationally efficient bitwise operations (Binding via XOR, Bundling via Addition, and Similarity via
Hamming Distance) rather than complex floating-point arithmetic. HDC is celebrated for its intrinsic
algorithmic robustness; the distributed representation ensures that the failure of individual bits or moderate
levels of noise does not catastrophically affect the system’s accuracy. This makes HDC an ideal candidate
for implementation on error-prone, low-power hardware such as emerging NVMs or FPGAs (FPGAs).
However, as this thesis will demonstrate, this algorithmic error tolerance creates a "robustness Mismatch,"
potentially masking targeted attacks that exploit the specific hardware realization of HDC operations.

1.1.3. The Security Gap: Physical Vulnerabilities in the Post-Digital Era

While the performance and efficiency benefits of these emerging accelerators are extensively documented
in literature, their physical security posture remains critically underexplored. The transition from digital,
logic-centric Von Neumann systems to analog, memory-centric, and stochastic architectures creates a
security gap. Traditional hardware security models, developed primarily for digital cryptographic circuits
(e.g., AES on CMOS), rely on assumptions that are invalid in these new regimes.

Specifically, the physical proximity of memory and computation destroys the isolation that previously
protected secrets (weights, keys) from computation-dependent leakage. In Analog CiM, the "leakage"
is indistinguishable from the computation itself, as the supply current is a direct analog function of the
sensitive weights. In NVM-based systems, the non-volatility of memory cells introduces the threat of
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"persistence," where a transient fault injection becomes a permanent data corruption, fundamentally
altering the threat model for fault analysis. Furthermore, the deployment of AI at the edge places these
devices in physically accessible environments, exposing them to sophisticated SCA) and (Fault Injection
(FI) attacks that can extract proprietary models or corrupt inference integrity.

This dissertation is motivated by the premise that the true potential of emerging AI accelerators cannot
be realized without a rigorous understanding of their physical vulnerabilities. We argue that security must
be treated as a primary design constraint, co-optimized alongside power, performance, and area through a
cross-layer approach that spans device physics to system architecture.

1.2. Problem Statement

The overarching problem addressed in this thesis is the inadequacy of current hardware security frameworks
to protect emerging AI accelerators against physical attacks. The unique physical properties of NVM
devices, the analog nature of CiM, the sparsity of SNNs, and the distributed representation of HDC
introduce novel attack vectors that bypass standard digital countermeasures. This thesis decomposes this
problem into four specific technical challenges.

1.2.1. The Failure of Digital Leakage Models in Analog Computing

Hardware security has historically relied on digital leakage models, such as the Hamming Weight (HW)
or HD models, to quantify the correlation between power consumption and processed data. These models
assume that power consumption is dominated by the charging and discharging of load capacitances during
discrete digital switching events. However, in Analog CiM architectures utilizing ReRAM or STT-MRAM,
computation is performed in the charge or current domain. The power consumption is determined by the
summation of currents through a resistive crossbar array, governed by Ohm’s Law and Kirchhoff’s laws.
This current is a continuous analog function of the input voltages and the programmed conductance states
(weights). Furthermore, this signal is modulated by device-specific analog non-idealities:

Resistive RAM (ReRAM): Exhibits cycle-to-cycle variability and RTN due to the stochastic nature of
conductive filament formation and rupture.

STT-MRAM: Subject to thermal fluctuations affecting the Tunnel Magnetoresistance (Tunnel Magne-
toresistance (TMR)) ratio and stochastic switching probabilities.

Standard digital SCA methodologies fail to capture these complex, continuous-time interactions. There
is a critical lack of physics-aware leakage models that can accurately predict the information leakage of
Analog CiM macros or estimate the "Trace-to-Disclosure" metric for neural network weights stored in
NVM arrays. Without such models, designers cannot effectively evaluate the security of CiM accelerators
during the design phase.

1.2.2. The Threat of Persistence: Non-Volatility as an Attack Vector

The integration of NVM into processor-centric architectures, such as MRAM-based caches or embedded
MRAM (eMRAM) for key storage, introduces a novel and potent attack surface: persistent faults. In
traditional SRAM-based systems, a fault injected via voltage glitching or laser pulses is transient; it exists
only until the data is overwritten or the device is reset. This requires attackers to precisely synchronize
their injection for every single encryption or inference run they wish to corrupt. NVM technologies
fundamentally alter this dynamic. A fault injected during the write operation of an STT-MRAM cell
physically alters the magnetic orientation of the Magnetic Tunnel Junction (MTJ), permanently flipping
the bit. This "persistent" fault remains active across power cycles and resets until it is explicitly rewritten.
This persistence allows an attacker to inject a fault once during a "commit window and collect an arbitrary
number of faulty outputs (ciphertexts or inference results) derived from the same static fault. It drastically
reduce the data complexity required for differential analysis.
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Existing security evaluations often overlook the specific physics of the STT-MRAM write operation,
particularly the asymmetry between Parallel-to-Antiparallel and Antiparallel-to-Parallel switching, and the
"commit window" vulnerability where the MTJ is most susceptible to voltage disturbances. Conventional
countermeasures like redundancy (e.g., re-computing the result) are ineffective against persistent faults
because the re-computation will use the same corrupted data, yielding the same valid (but incorrect)
result.

1.2.3. Security Blind-Spots in Emerging Neuromorphic Hardware

The drive for ubiquitous AI has led to the development of emerging neuromorphic hardware based on thin-
film transistors (TFTs). While a-IGZO TFTs enable low-cost, flexible and lightweight implementations,
they operate under fundamentally different physical constraints than bulk silicon CMOS. Flexible substrates
typically use simplified Power Delivery Networks (PDNs) with shared supply rails and lack rigid packaging
and groundplanes that provide electromagnetic shielding in standard chips. When these substrates run
event-driven Spiking Neural Networks (SNNs), a unique leakage mechanism emerges. SNNs process
information via discrete spikes, meaning that the dynamic power consumption is directly proportional
to the instantaneous firing rate of the network. In flexible electronics, the slower switching speeds and
specific device physics of TFTs can manifest as "quasi-DC" leakage signatures that are highly correlated
with the input stimuli and the network’s internal state. Currently, there is no unified framework to model
these substrate-specific leakages or to simulate the vulnerability of flexible SNNs prior to fabrication.

1.2.4. The "Robustness Mismatch" in Hyperdimensional Computing

FPGA-based accelerators for HDC are gaining traction for edge learning due to their efficiency. A
common misconception in the HDC community is that the paradigm’s inherent algorithmic robustness, its
ability to tolerate Bit Error Rates (BERs), translates to hardware security. This thesis identifies this as the
"Robustness Mismatch". While HDC is indeed resilient to random, uniformly distributed noise, it is fragile
to targeted perturbations. The massive parallelism required by HDC (e.g., high-dimensional XOR arrays
for binding operations) generates distinct, high-magnitude power consumption patterns. These patterns
can be exploited by advanced Deep-Learning-based Side-Channel Analysis (DL-SCA) to recover the bits
of secret hypervectors representing the learned model. Furthermore, the algorithmic tolerance to errors
can be weaponized by an attacker to inject stealthy faults that force specific misclassifications without
causing a noticeable degradation in overall system accuracy or triggering crash-detection mechanisms.
Quantifying the limits of this robustness and identifying the precise hardware structures (e.g., Popcount
units) that act as a leakage pipe is an open problem.

1.3. Research Objectives and Contributions

The primary objective of this dissertation is to establish a comprehensive, physically grounded security
framework for emerging AI hardware accelerators. By bridging the gap between device physics, circuit
design, and system architecture, this research aims to characterize the unique vulnerabilities of post-Von
Neumann systems and develop cross-layer countermeasures.

Figure 1.3 maps the prior landscape against the central security gaps that this dissertation addresses.
Gray dashed ovals represent existing work, whereas green ovals highlight the specific contributions and
thesis results that fill these gaps. This visual summary illustrates how the present work spans Analog
CiM, persistent NVM-based attacks, flexible neuromorphic circuits, and FPGA-based HDC accelerators.

The research is structured around four central Research Questions (RQs), each addressing a specific
accelerator paradigm and security challenge.
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Figure 1.3.: Coverage of research gaps by this thesis. The diagram maps the threat landscape across attack vectors (columns) and
impact severity (rows). Green ovals denote the specific contributions of this work, filling critical gaps in prior research (gray
dashed ovals).

1.3.1. RQ1: Vulnerabilities of Emerging NVM-based In-memory Computing (Analog)

Research Question: How do the fundamental device physics and analog non-idealities of ReRAM and
STT-MRAM translate into exploitable side-channel leakage in Analog CiM architectures, and how can
this leakage be modeled and mitigated?

Contribution (Chapter 3):
This chapter presents a comprehensive simulation-based analysis of side-channel leakage in Analog

CiM accelerators.
Physics-Aware Modeling: We develop a hierarchical leakage model that propagates device-level

non-idealities (e.g., ReRAM conductance fluctuations, MRAM thermal noise) up to the array and system
level. This model explicitly captures the sensing current-leakage relationship and its modulation by device
stochasticity.

Primitive-Level Analysis: We analyze the vulnerability of specific analog compute primitives, including
Scouting Logic (XOR), MAC operations with non-linear activation functions (tanh), and Content
Addressable Memory (CAM) based HDC.

Quantification: We introduce metrics to quantify the "Trace-to-Disclosure" for weight recovery,
demonstrating that analog non-idealities, while typically considered noise, can actually create distinct
leakage fingerprints that facilitate model extraction.

Decision Failure Analysis: We investigate the reliability-security interface, showing how "decision
failure", incorrect sensing due to process variation, can be correlated with input patterns to reveal sensitive
information.
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1.3.2. RQ2: Persistent Faults in Processor-Centric NVM Architectures (MRAM)

Research Question: Can the unique write-physics of STT-MRAM, specifically the commit window and
switching asymmetry, be exploited to induce persistent faults, and how does this persistence alter the
landscape of Persistent Fault Analysis (PFA), generally discussed in digital leakage characterization?

Contribution (Chapter 4):
This chapter moves from simulation to real-hardware validation, focusing on STT-MRAM in processor-

centric systems.
Commit Window Characterization: We experimentally characterize the "commit window" of STT-

MRAM chips, the specific temporal window during a write cycle where the MTJ is most susceptible
to voltage glitches. We demonstrate the asymmetry in fault injection probability for magnetic polarity
transitions.

Persistent Fault Analysis (PFA): Using an FPGA-based platform with an MRAM-backed AES
implementation, we demonstrate a practical PFA attack [69], [79]. We show that a single successful glitch
during the key loading phase induces a persistent fault that enables full key recovery with a minimal
number of ciphertext pairs (12-17 pairs), significantly lower than the thousands required for standard DFA.

Countermeasures: We propose architectural defenses, such as randomized commit timing (dithering the
write pulse) and write-verification protocols, to mitigate the threat of persistent faults without abandoning
the benefits of NVM.

1.3.3. RQ3: Security of Emerging Spiking Neuromorphic Computing (Flexible Edge-AI)

Research Question: What are the dominant leakage mechanisms in flexible, thin-film transistor (TFT)
based Spiking Neural Networks (SNNs), and can design-time frameworks predict and mitigate these
vulnerabilities?

Contribution (Chapter 5):
This chapter addresses the security of flexible electronics, a domain previously untouched by hardware

security research.
FlexSpy Framework: We introduce FlexSpy, a unified simulation framework for assessing the SCA

vulnerability of flexible neuromorphic circuits. This framework integrates a-IGZO TFT device models
with circuit-level simulation to predict power side-channel signatures.

Quasi-DC Leakage: We identify a novel leakage mechanism specific to flexible SNNs: "quasi-DC"
leakage. Due to the slower timescales of TFTs and the event-driven nature of SNNs, the power consumption
exhibits distinct, data-dependent DC offsets correlated with the network’s firing rate.

Comparative Analysis: We demonstrate that flexible SNNs (f-SNN) exhibit higher leakage potential
compared to flexible (Recurrent Neural Networks (RNNs)) (f-RNN) due to the sparsity and spike-rate
encoding of SNNs.

Mitigation: We propose lightweight circuit-level countermeasures, such as "event balancing," to mask
the quasi-DC signature with minimal area and power overhead suitable for flexible substrates.

1.3.4. RQ4: Vulnerability of FPGA-based (HDC)

Research Question: Does the algorithmic robustness of Hyperdimensional Computing (HDC) extend to
physical security, or does it mask critical vulnerabilities to deep-learning-based SCA and targeted (FI)?

Contribution (Chapter 6):
This chapter presents a rigorous real-hardware security evaluation of FPGA-based HDC accelerators.
Deep Learning SCA: We demonstrate that standard Correlation Power Analysis (CPA) is often

insufficient for HDC due to the high dimensionality, but Deep Learning-based SCA (using adaptive
models with ResNet-34) can successfully learn the complex leakage patterns of the XOR and Popcount
units, achieving high accuracy in recovering Class Hypervectors.

Remote Sensing: We explore "Remote and Internal Sensing" attacks (e.g., "Collide & Conquer") where
an adversary utilizes on-chip Time-to-Digital Converters (Time-to-Digital Converters (TDCs)) to measure
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voltage fluctuations on the shared PDN, enabling side-channel attacks without physical access to the
board.

HyFault Injection: We introduce "HyFault," a targeted fault injection methodology that uses optimization
to find the precise timing and location to inject faults that force misclassification. We show that HDC’s
algorithmic robustness does not protect against these worst-case, targeted perturbations.

Defenses: We develop and evaluate countermeasures tailored for HDC, including "Lightweight Dynamic
Masking" and "Hypervector Randomization," which restore security with significantly lower overhead
than traditional cryptographic masking.16

1.4. Methodology: Cross-Level Co-Optimization

The complexity of emerging AI accelerators demands a methodology that transcends traditional abstraction
layers. A security solution optimized solely at the device level (e.g., improving the TMR ratio of MRAM)
might incur unacceptable system-level energy penalties. Conversely, an algorithmic defense (e.g., boolean
masking) might be ineffective if the underlying analog physics leaks information via a different channel
(e.g., thermal dependence).

Therefore, this thesis adopts a Cross-Level Co-Optimization approach. This methodology explicitly
models and exploits the correlations between:

Technology Level: Characterizing the fundamental physics of memory devices (ReRAM filaments,
MRAM spin-torque), process variations, and thermal effects.

Circuit Level: Analyzing analog sensing margins, current summation mechanisms, PDN parasitics, and
the impact of interconnect resistance.

Architecture Level: Optimizing array organization (e.g., tile size in CiM), memory hierarchy (e.g.,
MRAM vs. SRAM caches), and dataflow scheduling to minimize leakage exposure.

Application Level: Leveraging the properties of the AI model itself, such as the error tolerance of HDC
or the sparsity of SNNs, to design algorithm-aware defenses like hypervector randomization or spike
dithering.

By vertically integrating these layers, this research aims to deliver security solutions that are physically
grounded, architecturally efficient, and algorithmically robust.

1.5. Summary

The shift toward post-Von Neumann computing is imperative to sustain the progress of Artificial
Intelligence in the face of physical scaling limits. However, this transition cannot be made blindly.
The adoption of Analog CiM, NVM, NC and HDC architectures fundamentally alters the hardware
security landscape, introducing new vulnerabilities that are intrinsic to the physics of efficient computing.
This dissertation provides the first comprehensive, cross-layer framework to understand, model, and
mitigate these threats. By treating security as a foundational design metric co-optimized with energy
and performance, this work lays the groundwork for the secure deployment of the next generation of AI
hardware.
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This chapter establishes the physical and architectural ground truth that the rest of the thesis builds upon.
We first motivate why, in modern AI workloads, energy and latency are dominated by data movement
rather than arithmetic (the “memory wall”), and use this to frame two accelerator families that collapse
that bottleneck: (i) memory-centric, analog (CiM) fabrics (e.g., ReRAM and STT-MRAM crossbars)
and (ii) logic-centric edge accelerators (HDC and SNNs). For each case, we summarize device physics,
array/microarchitectural organization, and the analog/digital non-idealities, line RC, PDN filtering, device
variability, and non-volatility that shape side-channel leakage and fault susceptibility. We then formalize
adversary models and attack taxonomy (observation vs. perturbation; transient vs. persistent) together
with unified leakage and fault models for both digital and analog regimes, and standardize the evaluation
metrics used throughout (TVLA, correlation/𝑅2, Signal-to-Noise Ratio (SNR), trace-to-disclosure, success
rate) and the measurement stack assumptions. These definitions and primitives recur in later chapters as a
common language for analyzing vulnerabilities and validating countermeasures across device, circuit, and
architectural levels.

2.1. Introduction

The computational demands of modern AI, particularly in deep learning, have grown at a rate that far
outpaces traditional hardware scaling. This has created an architectural crisis known as the “von Neumann
bottleneck” or “memory wall” [2]. In conventional computing systems, the physical separation of logic
(in the processor) and memory (in DRAM) necessitates massive, constant data movement. This data
transfer is now the dominant factor in both system-level energy consumption and performance latency,
especially for the data-intensive workloads of modern neural networks.

In practice, the cost to move a word from off-chip memory can exceed the cost of an entire multi-
ply–accumulate on chip by one to two orders of magnitude, so optimizing arithmetic alone cannot recover
system efficiency. Dennard scaling slow down amplifies this imbalance, and the result is that memory
access patterns, interconnect distances, and power delivery limits increasingly set throughput and energy,
not the raw count of arithmetic units [2], [37], [55]. This observation motivates architectures that reduce
operand travel and that restructure where accumulation and nonlinearity occur in the compute path.

In response, a paradigm shift toward non-Von Neumann, domain-specific architectures is underway.
This landscape is increasingly dominated by two accelerator families that seek to co-locate or merge
memory and computation:

(i) Analog, Memory-Centric Accelerators: These platforms, often based on CiM, perform computa-
tion directly within the memory array. They exploit the physical properties of memory devices,
such as Ohmic conduction (𝐼 = 𝑉 /𝑅) in dense (NVM crossbars (e.g., ReRAM or STT-MRAM), to
execute analog MVM in-situ, thereby minimizing data movement [48], [78].

(ii) Digital and Logic-Centric Accelerators: These platforms map novel or bio-inspired computational
models directly onto efficient hardware fabrics. Examples include HDC, which maps a symbolic
algebra to digital logic [20], [89], and SNNs [5], [28], [74], which map event-driven neural
computation to mixed-signal analog-digital circuits.

For memory-centric CiM, a passive crossbar implements a dot product in a single evaluate phase:
row voltages encode the input vector, cell conductances encode weights, and column currents sum by
Kirchhoff’s current law. Column currents are then digitized by per column ADCs for downstream logic.
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The benefit is that weight values do not shuttle across buses every inference step, which reduces data
motion and improves effective bandwidth; the cost is sensitivity to device variability, finite dynamic range,
interconnect resistance, and quantization error [48], [78].

For logic-centric designs, the mapping is algebraic. HDC represents symbols as high-dimensional
random vectors, uses binding and bundling to construct composite representations, and compares classes
by population count. These operations map efficiently to wide xor networks, deep carry chains, and
adder trees, which is attractive for field programmable logic. SNNs implements leaky integrate and fire
dynamics with current mode synapses, capacitive accumulation, and threshold comparison; spikes occur
only when the membrane crosses a set threshold, so switching activity and current draw strongly follow
the data stream [5], [20].

While these platforms offer compelling, and often order-of-magnitude, benefits in throughput and
energy efficiency, their reliance on novel device physics, analog computation, and dense mixed-signal
integration exposes a new and poorly understood class of physical attack surfaces. The very non idealities
and physical phenomena (e.g., stochastic noise, process variations, interconnect parasitics) that these
architectures must contend with for reliability also create vectors for insecurity.

Concretely, side channels arise because supply current and electromagnetic emissions correlate with
internal states and switching activity, and fault attacks become practical when small perturbations in
supply or timing alter analog thresholds or commit states. Non-volatile memories introduce persistence, so
a single successful disturbance can survive resets and be reused by an adversary. These realities motivate
the unified leakage and fault framework used later in this thesis, and they mirror accepted evaluation
practice in hardware security, such as test vector leakage assessment for detection and persistent fault
analysis for exploitation [45].

This chapter lays the architectural and physical foundations used throughout the thesis. It builds the
formal models necessary to frame the subsequent security analyses of these emerging accelerators.

We proceed as follows. Section 2.2 details the device physics and circuit architectures of the accelerators
central to this thesis, establishing a baseline with SRAM and then formally introducing the non-ideal
physical models of ReRAM, STT-MRAM, HDC, and SNNs. The next section constructs a unified
framework for physical security analysis, consolidating adversary models, attack taxonomies, formal
mathematical models for side-channel leakage and fault injection, and the statistical metrics used for
evaluation. We present a state-of-the-art review of physical attacks on conventional and emerging AI
accelerators, synthesizing recent literature to identify the specific research gaps that this thesis addresses.
Finally, Section 2.5 summarizes the chapter and provides a bridge to the novel contributions presented in
subsequent chapters.

2.2. Accelerator Paradigms and Physical Foundations

This section summarizes the device physics and circuit architectures of the accelerator families analyzed
in this thesis and introduces the leakage and fault primitives used later. In particular, we establish a
common physical baseline—from sub-10 nm SRAM and its WL/BL parasitics to ReRAM/STT-MRAM
crossbars and HDC/SNNs implementation, that explains how computation interacts with the underlying
substrate. By highlighting the mechanisms through which data-dependent currents, device variability, and
PDN coupling emerge, this section provides the foundations required to understand the side-channel and
fault-injection behaviors.

2.2.1. Reference Platform: The Sub-10 nm SRAM Fabric

The 6-transistor (6T) Static Random Access Memory (SRAM) bitcell in Fig. 2.1 is the foundational
storage element in modern digital logic. It comprises two cross-coupled inverters (a bistable latch) and
two access transistors that connect the internal storage nodes to the differential bitline (BL) pair under
wordline (WL) control. The cell resides in a macro with peripheral address decoding, sensing, precharge,
and timing control. In advanced designs, the bitcell must also balance read stability against write ability

24



2.2. Accelerator Paradigms and Physical Foundations

Write circuitry

A
d

d
re

ss
 d

ec
o

d
er

 

Read circuitry

Pre-charger

MultiplexerTiming 
control 
module

Word-line

Bit-line Bit-line bar

…
…

…

VDD

Q

Q
-b

ar

Bit-line bar

Word-line

Bit-line

(a) (b)

Figure 2.1.: (a) SRAM macro with periphery; (b) 6T bitcell. Distributed WL/BL RC parasitics degrade read/write margins and
shape dynamic current signatures.

by carefully sizing the pull-up and pull-down devices, ensuring that the internal nodes do not inadvertently
flip during read-back. Furthermore, sense-amplifier and precharge circuits introduce additional analog
dynamics, such as offset, meta-stability sensitivity, and timing skew, that influence the instantaneous
supply current during memory accesses. These second-order effects become relevant for later sections
that compare SRAM behavior to emerging CiM fabrics.

While SRAM is logically digital, advanced sub-10 nm nodes reintroduce analog challenges. As
interconnect cross-sections shrink, WL/BL resistance dominates, creating IR drops that reduce static
noise margin (Static Noise Margin (SNM)) and stress read, write, and hold operations.1 Accurate
models therefore treat WL/BL not as ideal wires but as distributed RC networks discretized at cell
pitch. In addition, capacitive coupling between adjacent bitlines and wordlines introduces data-dependent
disturbances that influence both access latency and the transient current profile. Variability from random
dopant fluctuations and line-edge roughness further broadens the distribution of cell margins, making
the access behavior increasingly sensitive to Process, Voltage, and Temperature (PVT) conditions. This
analog-like behavior matters twice in this thesis: (i) as a baseline memory fabric against which CiM
is compared, and (ii) because SRAM-based CiM primitives (e.g., bitline computing) inherit the same
non-idealities (local mismatch, IR drop).

2.2.2. Memory-Centric Accelerators: Analog Compute-in-Memory (CiM)

Analog CiM performs matrix–vector multiplication (MVM) directly in a memory crossbar by exploiting
Ohm’s and Kirchhoff’s laws. For input row voltages 𝒗 ∈ R𝑁 and synaptic weights stored as crosspoint
conductances 𝑮 ∈ R𝑁×𝑀 , the column- 𝑗 current is

𝑖 𝑗 (𝑡 ) =
∑︁
𝑖

𝐺𝑖 𝑗 𝑣𝑖 (𝑡 ) ⇒ 𝒊(𝑡 ) ≈ 𝑮⊤𝒗(𝑡 ), (2.1)

which is then digitized by per-column ADCs. The promise of CiM relies on dense NVM devices as
programmable conductances𝐺𝑖 𝑗 . In practical crossbars, this current accumulation is also shaped by access
device resistance, finite line impedance, and bitline capacitance, which together introduce RC-induced
dispersion in the temporal response. The effective conductance matrix therefore, depends on both the
programmed cell states and parasitic elements distributed across the array, causing input-dependent
attenuation or distortion in 𝑖 𝑗 (𝑡 ). Furthermore, variations in device switching behavior and nonlinearity in
the cell 𝐼−𝑉 characteristics create additional offsets in the accumulated current, making these analog
dynamics a key origin of leakage and fault behavior studied later in this thesis.

1 In practice, write margins tend to be most sensitive because the WL driver must overcome line resistance to enable the access
devices.
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Figure 2.2.: Architecture of Compute-in Memory (CiM).

2.2.2.1. Device Physics I: Resistive RAM (ReRAM)

ReRAM stores information in the resistance of a metal–insulator–metal stack. Switching is filamentary;
an applied field forms or ruptures a nanoscale conductive filament in the insulator. In oxide-based devices
(VCM/OxRAM), oxygen ion migration creates or erases an oxygen-vacancy filament, yielding low- and
high-resistance states (𝐺LRS, 𝐺HRS). A key security implication is that filament formation is stochastic,
producing (i) device-to-device and cycle-to-cycle variability in 𝐺LRS/𝐺HRS, and (ii) Random Telegraph
Noise (RTN) during reads, as carriers trap or de-trap in CF defects.

Figure 2.3.: Structure and operation of Resistive-Random Access Memory (ReRAM).

In addition, the nonlinear 𝐼 −𝑉 characteristics of the CF at low voltages introduce bias-dependent
conductance shifts that modulate the readout current in a data-dependent manner. Local self-heating
in the filament can further aggravate temporal fluctuations, especially during consecutive accesses or
high-frequency operation. The surrounding access transistor and line parasitics also interact with the
intrinsic filament dynamics, shaping the instantaneous current seen at the bitline. These combined effects
propagate upward through the array and PDN, creating distinct analog signatures that become exploitable
leakage sources in later chapters.

2.2.2.2. Device Physics II: Spin-Transfer-Torque MRAM (STT-MRAM)

STT-MRAM uses a 1T1MTJ cell whose resistance depends on the relative magnetization of a pinned
and a free ferromagnetic layer, separated by MgO: 𝑅𝑃 (parallel) vs. 𝑅𝐴𝑃 (anti-parallel), with TMR
= (𝑅𝐴𝑃 − 𝑅𝑃 )/𝑅𝑃 . Writes employ spin-polarized current; the resulting spin-transfer torque flips the free
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layer if the current–time integral exceeds a critical threshold. Three features are security-relevant: (i)
asymmetric switching (P→AP vs. AP→P) with different critical conditions, (ii) stochastic switching
(thermal assistance), and (iii) read disturb risk if the read current biases the MTJ too aggressively.

Figure 2.4.: Structure and operation of Spin Torque Transfer-Magnetic Random Access Memory (STT-MRAM).

In addition, the MTJ resistance shows bias-dependent nonlinearity and voltage-controlled interfacial
anisotropy, which slightly shifts 𝑅𝑃 and 𝑅𝐴𝑃 during high-frequency accesses. The thermal stability factor
of the free layer impacts both switching probability and retention time, creating small but measurable
variations in read current that manifest as low-frequency noise at the array level. Line resistance and
access transistor variations also modulate the effective write current delivered to the MTJ, creating
spatially varying vulnerability to commit window faults. These combined effects become important when
modeling persistent faults and supply-coupled leakage in later chapters.

2.2.2.3. CiM Architecture and Analog Non-Idealities (ANIs)

STT-MRAM-based CiM. Under soft-read bias (≪ 𝐼𝑐), an MTJ behaves as a state-dependent resistor:

𝐼𝑖 𝑗 (𝑡 ) =
𝑉𝑖 𝑗 (𝑡 )
𝑅𝑡 + 𝑅𝑖 𝑗

, 𝑅𝑖 𝑗 = 𝑅𝑃 + 𝑏𝑖 𝑗 (𝑅𝐴𝑃 − 𝑅𝑃 ), 𝑏𝑖 𝑗 ∈ {0, 1}, (2.2)

with 𝑅𝑡 capturing access/line parasitics. Non-idealities include bias-dependent read disturb, thermal
magnetization noise (timing jitter), and mild voltage non-linearity.

ReRAM-based CiM. Reads follow 𝐼𝑖 𝑗 (𝑡 ) = 𝑉𝑖 𝑗 (𝑡 )/(𝑅𝑡 + 𝑅(𝑏𝑖 𝑗 , 𝑡 )), where 𝑅(𝑏𝑖 𝑗 , 𝑡 ) is stochastic due to D2D
variability and RTN. Additional ANIs include IR drops from line resistance, device I–V non-linearity
(e.g., 𝐼 = 𝐺0𝑉 + 𝜂𝑉 3), and sneak paths.

Power, PDN, and the leakage model. With ANIs, the conductance matrix becomes time-varying:
𝑮actual(𝑡 ) = 𝑮ideal + ∆𝑮(𝑡 ). Let 𝐼array(𝑡 ) = ∑

𝑗 𝑖 𝑗 (𝑡 ) be the array current. The supply-observed current is the
PDN-filtered version plus measurement noise:

𝐼VDD(𝑡 ) = [𝐼array(𝑡 ) ∗ ℎPDN(𝑡 )] + 𝑛(𝑡 ). (2.3)

Instantaneous power is therefore

𝑃 (𝑡 ) ≈ 𝒗(𝑡 )⊤𝑮actual(𝑡 ) 𝒗(𝑡 ) = 𝒗⊤𝑮ideal𝒗︸    ︷︷    ︸
ideal MVM

+ 𝒗⊤∆𝑮(𝑡 )𝒗︸     ︷︷     ︸
leakage term

. (2.4)

The second term quantifies the physics-driven side-channel: leakage scales with the correlation between
inputs 𝒗 and non-idealities ∆𝑮(𝑡 ). In practice, ℎPDN(𝑡 ) introduces attenuation, ringing, and low-pass
behavior determined by on-die and package-level decoupling, which distort the observable current
signature in a repeatable but circuit-dependent manner. Spatial coupling among wordlines and bitlines
also causes correlated fluctuations in 𝐼array(𝑡 ), especially when multiple columns evaluate concurrently.
Furthermore, device-level fluctuations such as RTN or thermal drift alter ∆𝑮(𝑡 ) across repeated queries,
creating small but statistically exploitable variations in 𝑃 (𝑡 ) that reappear in later security analysis.
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Compute primitives. CiMs supports various logic computing such as: (i) analog MVM/MAC with
post-activation (e.g., translinear tanh), (ii) in-sense window-comparator logic (e.g., scouting XOR), and
(iii) CAM-like match-line discharge (similarity search, discharge ∝ Hamming distance). These will be
targets for the security analyses that follow. Each primitive exercises different parts of the array and
periphery, resulting in distinct temporal current profiles that pass through the same PDN. For example,
MAC operations emphasize continuous current accumulation, whereas comparator-based logic produces
short, high-slope transients tied to decision thresholds. CAM style operations heavily stress match-lines
and discharge paths, creating characteristic exponential decay signatures on the supply rail. These
variations enable primitive specific leakage models that are later used to quantify vulnerability and
estimate traces to disclosure.

2.2.3. Hyperdimensional Computing (HDC) on FPGA/ASIC

HDC is an alternative computational paradigm inspired by the distributed, holographic encoding observed
in biological neural systems. Instead of operating on low-dimensional numeric values, HDC manipulates
high-dimensional binary or bipolar hypervectors whose redundancy provides natural robustness, rapid
learning, and efficient hardware realizations. The algebra of binding, bundling, and similarity enables
symbolic reasoning and classification using simple bitwise and arithmetic primitives. These properties
make HDC particularly attractive for FPGAs and Application-Specific Integrated Circuits (ASICs)
accelerators where massively parallel switching and deterministic dataflow can be exploited for high
throughput and energy efficiency.

Figure 2.5.: Overview of different operations in Hyperdimensional Computing (HDC).

HDC represents symbols as high-dimensional hypervectors 𝒉 ∈ {±1}𝐷 or {0, 1}𝐷 (e.g., 𝐷 = 10, 000)
and relies on three operations: binding (XOR for binary), bundling (element-wise majority/threshold),
and similarity (dot product/Hamming distance):

𝑆𝑐 = 𝒉⊤𝑞𝒘𝑐 , 𝑐 = arg max
𝑐
𝑆𝑐 . (2.5)

On FPGAs/ASICs, binding maps to LUT trees; bundling and similarity map to adder trees. On FPGAs,
synthesis targets dedicated carry chains (for example, CARRY4) for speed, concentrating data-dependent
switching there. This microarchitectural detail dominates dynamic power and becomes the primary source
of high-SNR leakage exploited later.

In addition, wide XOR and popcount structures switch thousands of bits per cycle, creating large,
temporally aligned current bursts that are highly correlated with the Hamming distance in equation (2.5).
The routing fabric and carry chain segmentation also introduce small but measurable timing skew that
accentuates these correlation peaks on the supply rail. BRAM readout of stored hypervectors further adds
deterministic access patterns that serve as reliable alignment markers in power and timing traces. These
architectural traits collectively define the leakage and fault surfaces that Chapters 5 and 6 exploit and
mitigate.
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2.2.4. Spiking Neuromorphic Computing (NC) on Emerging Technology

Spiking Neural Networks (SNNs) provide a bio-inspired computational model for neuromorphic computing
(NC), in which information is represented and processed through discrete spike events instead of continuous
activations. This event-driven nature reduces redundant switching activity and enables energy-efficient
inference, making SNNs suitable for resource-constrained edge platforms and emerging substrates such as
flexible electronics. Hardware implementations often combine analog membrane dynamics with digital
spike generation, resulting in a mixed-signal pipeline with characteristic timing and current signatures.
These properties introduce unique leakage and fault behaviors that differ significantly from conventional
ANN accelerators.

Figure 2.6.: Overview of different operations in spike-based Neuromorphic Computing (NC).

SNNs communicate via discrete spikes. Analog implementations of Leaky Integrate-and-Fire (LIF)
neurons comprise: (i) synaptic integration (Digital-to-Analog Converters (DACs) or transconductors
into a membrane capacitor 𝐶mem), (ii) a leak path, and (iii) a comparator that fires when 𝑉mem > 𝑉th and
then resets. Two security-relevant aspects follow. First, the analog front-end (DAC or Transimpedance
Amplifier (TIA) and associated biasing) has characteristic transient responses and current draw during
spike epochs, creating repeatable power-leakage windows. Second, 𝑉th is often derived from 𝑉DD (for
example, a resistor divider), so supply glitches directly modulate the effective threshold, providing a
physically simple fault-injection path that advances or delays the firing moment.

In addition, the membrane integration process introduces low-frequency components in the supply
current that scale with aggregate synaptic activity, making spike-rate-dependent leakage particularly
strong. The reset event typically produces sharp current edges that serve as reliable temporal markers in
power traces. Device-level non-idealities in TFT or CMOS neuron circuits, such as leakage currents or
temperature-dependent bias drift, further modulate the firing behavior in a data-correlated manner. These
effects collectively define the analog signatures that the flexible neuromorphic security analysis exploits
in later chapters.

2.3. Adversary Models and Attack Taxonomy

The feasibility and power of a physical attack are primarily determined by the adversary’s access and
capabilities. We consider three adversary models:

1. Laboratory Adversary (white box): Common in side channel and fault injection studies [4], [6],
[16], [18], this adversary has full physical possession of the device (e.g., a test chip or edge board).
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They can depackage and probe the die and deploy high-end instrumentation (oscilloscopes, probes,
pulse generators). Invasive and semi-invasive techniques are in scope.

2. Multi tenant Adversary (gray box): Relevant to cloud FPGA platforms [62], [64]. The attacker
lacks physical access but can co-locate a malicious spy design alongside a victim on the same
fabric. Attacks proceed by exploiting shared resources, for example, the on-chip PDN, clock trees,
or on-chip interconnects (Advanced eXtensible Interface (AXI)), to sense or perturb the victim
remotely.

3. Supply chain Adversary (white box at design/fab): Intersects design and manufacturing. The
adversary can insert a Hardware Trojan or leverage process non-idealities (e.g., in memristor
fabrication) to create backdoors or reliability-driven failures [29].

Unless stated otherwise, device-level characterization in this thesis assumes the Laboratory Adversary.

Attack Taxonomy. We classify attacks along two axes: (i) observational (measuring) vs. perturbational
(injecting), and (ii) transient vs. persistent. Table 2.1 summarizes the categories used throughout.

Table 2.1.: Physical attack taxonomy used in this thesis.

Category Mechanism (examples) Effect type Typical toolchain

Side-Channel
(SCA)

Supply current / EM / timing ob-
servations

Observational;
transient

Oscilloscope, In-
tegrated Logic
Analyzer (ILA),
Electromagnetic
(EM) probe; trigger

Fault Injection (FI) Voltage/clock glitch; EM/laser
pulse; PDN droop

Perturbational;
transient

ChipWhisperer,
pulse generator

Persistent Faults MRAM commit-window corrup-
tion; ReRAM drift/retention

Perturbational;
persistent

Rail crowbar switch,
scripted cycling

2.3.1. Formal Models of Physical Attack Vectors

We formalize the attack surfaces most relevant to this work: side channel leakage (observation) and
fault injection (perturbation). These models bridge device-level behavior with circuit and architectural
execution, allowing us to express how physical events map to measurable or exploitable system responses.
For leakage, we characterize how data-dependent currents, switching activity, and PDN coupling produce
statistically distinguishable features under realistic noise. For fault injection, we describe how timing,
voltage, or device state disturbances propagate through mixed-signal and digital pathways to alter
computation. These formal definitions provide the analytical foundation required for the vulnerability
assessments carried out in later chapters.

2.3.1.1. Side-Channel Leakage Models (Observation)

Side channel attacks exploit data-dependent physical emissions. The two platforms under study,
synchronous digital logic (FPGA/ASIC) and analog CiM, exhibit fundamentally different leakage
mechanisms. These mechanisms arise from distinct physical origins, timing structures, and noise
behaviors, which must be captured by separate leakage models. Expressing both within a unified notation
allows a coherent comparison across architectures and enables cross-technology vulnerability analysis
that is central to this thesis.
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Digital (CMOS) Leakage Model. In synchronous CMOS, power is dominated by dynamic switching of
load capacitances 𝐶𝐿,𝑘 at logic nodes 𝑘 [6], [10], [12], [18], [24]:

𝑃CMOS(𝑡 ) ≈
∑︁
𝑘

𝛼𝑘 (𝑡 )𝐶𝐿,𝑘 𝑉 2
𝐷𝐷 𝑓 + 𝑃static + 𝜀(𝑡 ), (2.6)

where 𝑓 is the clock frequency, 𝑃static accounts for leakage, 𝜀(𝑡 ) models noise, and 𝛼𝑘 (𝑡 ) ∈ {0, 1} is the
activity factor (whether node 𝑘 switched at time 𝑡). For a 𝐷-bit register update, aggregate switching
correlates with the Hamming distance between old and new values [12], [18], forming the basis of
Correlation Power Analysis (CPA) used against digital logic, including the HDC accelerators in Chapter
6. In practice, routing capacitances, clock tree loading, and glitching effects in combinational paths
further modulate 𝛼𝑘 (𝑡 ), creating fine-grained temporal features in 𝑃CMOS(𝑡 ). These secondary effects act
as alignment cues in real measurements and often strengthen information leakage.

Analog (CiM) Leakage Model. In analog CiM, leakage stems from the analog current summation itself,
which dominates CMOS switching. Using the power model in Eq. 2.4,

𝑃 (𝑡 ) ≈ 𝒗⊤𝑮ideal 𝒗 + 𝒗⊤∆𝑮(𝑡 ) 𝒗,

the observed supply current 𝐼VDD(𝑡 ) follows the PDN convolution of Eq. 2.3 [48], [63], [70], [78]. Leakage
therefore depends on the analog values of inputs 𝒗 and conductances 𝑮, including non-idealities ∆𝑮(𝑡 ).
Unlike CMOS switching, this leakage is continuous in amplitude and persists over the full evaluate
window, making averaging highly effective for weight extraction. Furthermore, parasitic resistances and
device noise introduce structured distortions that remain correlated across repeated queries, enabling
attack models that exploit temporal and spectral features of the current waveform.

Quantifying Leakage. Leakage strength is assessed via the Pearson correlation 𝜌 between 𝑁 observed
features (e.g., windowed power) 𝐿obs and 𝑁 model predictions 𝐿model:

𝜌 =
Cov(𝐿obs, 𝐿model)√︁

Var(𝐿obs) Var(𝐿model)
. (2.7)

In digital settings 𝐿model may be Hamming weight or distance; in CiM, it corresponds to analog MAC-
derived predictions. Correlation is particularly useful because it is agnostic to absolute scale and captures
linear dependence even under PDN filtering and moderate noise. Additional metrics, such as 𝑅2 and SNR,
complement 𝜌 and appear later in later Chapters to rigorously compare leakage across architectures and
PVT corners.

2.3.1.2. Fault Injection Models (Perturbation)

Fault injection perturbs operating conditions to induce computational errors. We model three attack
classes. These models capture how device-level variations, circuit delays, and PDN dynamics translate
into erroneous architectural behavior that can be exploited by an adversary. Expressing these mechanisms
formally allows quantitative reasoning about error rates, sensitivity windows, and the operating regimes
in which attacks become practical.

Digital Transient Faults (Timing Violation). Synchronous logic assumes timing closure. A setup time
violation occurs when the data at a flip-flop input arrives after its setup window relative to the capturing
edge. Static Timing Analysis (STA) requires [30], [33]:

𝑇𝑐𝑙𝑘 ≥ 𝐷𝑐𝑙𝑘2𝑞 + 𝐷𝑝𝑀𝑎𝑥 (𝑉𝐷𝐷 ,𝑇 ) +𝑇𝑠𝑒𝑡𝑢𝑝 −𝑇𝑠𝑘𝑒𝑤, (2.8)

where 𝐷𝑝𝑀𝑎𝑥 (max path delay) is strongly dependent on supply 𝑉𝐷𝐷 and temperature 𝑇 . An attacker can
violate Eq. 2.8 by:
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• Clock glitching: transiently shortening 𝑇𝑐𝑙𝑘 ,

• Voltage glitching: inducing a droop ∆𝑉𝐷𝐷 that increases 𝐷𝑝𝑀𝑎𝑥 .

Resulting faults include metastability, non-deterministic behavior, or early latching, deterministic re-
latching of the prior value [16]. Additional timing hazards, such as logic hazards, unequal path skews,
and temporary pulse filtering, broaden the vulnerability window, especially in deeply pipelined datapaths.
The PDN also couples disturbances across multiple logic blocks, amplifying the practical reach of a single
glitch event.

Transient Faults (Threshold Shifting). In analog SNNs, the analog comparator threshold 𝑉th is often
derived from 𝑉𝐷𝐷 (Section 2.2.4). A voltage glitch ∆𝑉𝐷𝐷 therefore perturbs the decision threshold:

𝑉th,faulty(𝑡 ) = 𝑉th,ideal + 𝑓 ((∆𝑉𝐷𝐷 ∗ ℎPDN)(𝑡 )) , (2.9)

with 𝑓 (·) approximating the threshold droop transfer [28]. The LIF neuron then fires early or late,
producing transient computational errors. Because the membrane voltage integrates current over time,
even a brief droop introduces cumulative deviation, shifting the firing moment by several milliseconds.
Comparator offset, bias current variation, and device leakage further magnify the effect, creating a wide
attack surface for low-cost voltage fault injection.

Persistent Faults (NVM State Corruption). Non-volatile accelerators admit faults that survive power
cycles.

• STT-MRAM: Exploits the asymmetric, stochastic write process (Section 2.2.2.2). A pulse
(𝑉pulse, 𝑡pulse) can be chosen to reliably flip AP→P but not P→AP [35], yielding data dependent reset
to one or reset to zero faults. The write path’s sensitivity to current density and thermal fluctuations
creates a narrow but repeatable commit window that an attacker can target with nanosecond
precision. Once implanted, such faults remain stable until explicitly rewritten, enabling repeated
exploitation.

• ReRAM: Repeated sub-threshold stress can induce cumulative resistance drift and retention
changes, corrupting analog weights [38], [63]. Local Joule heating, ion migration, and stochastic
filament reshaping cause gradual but persistent shifts in 𝐺LRS or 𝐺HRS, which distort analog MAC
outputs long after the initial perturbation. These effects represent a long-lived fault channel distinct
from the transient behavior seen in CMOS or SRAM.

2.3.1.3. Evaluation Methodology and Metrics

We standardize metrics from detection to exploitation and detail the measurement stack used across
experiments. These metrics provide a common basis for comparing leakage and fault sensitivity across
the diverse substrates analyzed in this thesis, including CMOS, analog CiM, flexible neuromorphics, and
FPGA HDC. They capture not only whether leakage is present but also how strongly it correlates with
secret data, how many traces or injections are needed for successful exploitation, and how reproducible
an induced fault is under realistic noise. Establishing these quantitative measures enables rigorous,
cross-chapter evaluation of attack feasibility and countermeasure effectiveness.

• Welch’s 𝑡-test (TVLA): Used for leakage detection. TVLA tests the null hypothesis that two trace
populations, for example fixed vs. random inputs, share the same mean [24], [26], [45]. Welch’s
two-sample statistic is robust to unequal variances. The industry threshold |𝑡 |> 4.5 indicates
rejection of 𝐻0 with very high confidence [45].

• Correlation 𝜌 and explained variance 𝑅2: Quantify the fit of a specific leakage model, digital or
analog. With 𝑅2 =𝜌2, higher values imply a larger share of explained trace variance [18].
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• SNR: Separability of data dependent signal from noise, SNR = Var[E[𝑃 |𝑥]]
E[Var[𝑃 |𝑥]] , with larger SNR

indicating an easier attack [8], [14], [24].

• Success Rate (SR): Empirical probability of correct recovery, key, weight, class, as a function of
traces or injected faults.

• Trace to Disclosure (𝑁TD): Practicality estimate for correlation based attacks. For target confidence
𝑧 and dominant correlation 𝜌★, 𝑁TD≈𝑧2/𝜌2

★, assuming trace independence.

• Persistence score (𝜋): For Chapter 3. Fraction of induced faults surviving 𝑛 power cycles, 𝜋 ≈1
indicates a truly persistent MRAM or ReRAM fault.

2.4. Identified Research Gaps and Thesis Positioning

This comprehensive review of the state of the art reveals clear (as shown in Table 2.2) and critical research
gaps. The vast majority of existing security analysis focuses on digital implementations of neural networks,
on CMOS, FPGAs, and GPUs, and employs digital leakage and fault models, for example Hamming
weight and logical bit flips [18], [24]. These models are well-suited for synchronous switching activity
in standard logic, yet they do not capture the physics that govern computation in emerging accelerators,
where current summation, device variability, and analog front ends dominate the signal.

Table 2.2.: Attacks and defenses on emerging AI accelerators arranged by Impact (rows) and Access (columns). Red bullets
denote attacks; blue bullets denote defenses. Technology tags: CiM = compute-in-memory, SNN = spiking neural networks,
HDC = hyperdimensional computing.

Impact / Access Training-time Remote Invasive Physical

Full System Com-
promise Data poisoning (CiM,

SNN) [31]

Backdoors / Neural
Trojans (CiM, SNN)
[51, 66]

Redundancy verifica-
tion (e.g., TMR) [1]

Shielding & redun-
dancy [3, 15]

Local User Privacy
Violation Membership inference

(CiM, SNN, HDC)
[54]

Model extraction
(SNN) [49]

Microprobing protec-
tion (active shields,
sensors) (CiM, sen-
sors) [15]

Model Privacy Vi-
olation Side-channel leakage

(CiM) [6, 18]
Adversarial queries /
inference [53]

Power/clock in-
jection detection
(EMFI/clock) [32, 34]

Denial of Service
Constant-activity neu-
rons (SNN) [13]

Packet flooding / activ-
ity saturation [13]

Glitch detectors,
shielding [34]

Legend: Attack Defense

In contrast, the security of the emerging analog, memory-centric, and logic-centric, HDC, paradigms
is identified by numerous sources as a major open problem [63], [78], [89]. The unique vulnerabilities
introduced by NVM device physics, analog computation, and novel microarchitectures remain largely
unexplored. The central, open questions are:

1. Gap 1, Analog SCA. How do the fundamental analog non idealities of CiM, such as ReRAM random
telegraph noise and device to device variability, and STT-MRAM thermal noise, translate into
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exploitable side channel leakage? Existing digital, Hamming weight models are insufficient because
they do not describe the correlation between input voltages and the time-varying conductance matrix
that arises from physical noise and process variation. A new, physics based analog leakage model
is required, one that can be instantiated on specific analog compute primitives such as scouting
logic XOR, MAC plus tanh activation, and CAM style similarity search, and that explicitly links 𝒗,
𝑮, and the measured supply signature through the PDN model introduced earlier [63], [70], [78].

2. Gap 2, Physics-aware and microarchitecture-aware attacks. How can an attacker exploit the
unique device physics of NVMs and the specific microarchitecture of digital accelerators to mount
more powerful fault attacks and higher fidelity leakage analyses?

(a) Persistent faults. While PFA and STT-MRAM write vulnerabilities, for example, asymmetric
switching and stochastic commit windows, are known independently, no prior work combines
them to demonstrate a practical, physics-based persistent fault attack that targets the MRAM
commit window and yields data-dependent stuck-at behavior across power cycles [35].

(b) Digital edge AI. The security of HDC on FPGAs is under studied. Practical, real hardware
attacks that target the specific HDC microarchitecture, for example, the carry chain-based
popcount and adder trees that dominate power, using advanced remote sensing, TDC, and
learning based analysis have not been demonstrated [56], [57], [89].

2.5. Summary

This chapter established the conceptual and physical foundations required for the remainder of the
thesis. We first motivated why modern AI workloads are increasingly bottlenecked by data movement
and outlined how emerging non–Von Neumann architectures, particularly analog CiM, neuromorphic
computing, and HDC, seek to overcome this limitation. We then introduced the device-level physics of
ReRAM, STT-MRAM, TFT-based flexible electronics, and advanced CMOS fabrics, emphasizing how
their non-idealities influence computation, power consumption, and vulnerability to physical attacks.

A unified threat model was developed, covering observational (SCA), perturbational (FI), transient, and
persistent fault scenarios. We formalized leakage and fault models for both digital and analog compute
substrates, and defined statistical metrics such as TVLA, correlation, SNR, mutual information, and
persistence scores that will be used consistently throughout the thesis to evaluate security.

The subsequent chapters address the above-mentioned gaps directly: Chapter 3 develops the analog
leakage framework for CiM, Chapter 4 demonstrates persistent-fault exploitation in MRAM devices and
its cryptographic implications, Chapter 5 explores a framework for side-channel security verification
before manufacture, and Chapter 6 applies both external and internal side-channel methodologies to
FPGA-based HDC accelerators.
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Contributions





3. Vulnerabilities of Emerging NVM-based
In-memory Computing: Simulation

3.1. Introduction

The rapid growth of data-intensive workloads—especially Large Language Models (LLMs) and generative
AI—has exposed the limits of von Neumann systems. When processing and memory are separated,
data movement dominates both latency and energy (often by 10×-100× over arithmetic), creating the
well-known “memory wall.” Compute-in-Memory (CiM) mitigates this gap by performing operations in
or near the array, improving energy efficiency and throughput for Machine Learning (ML)/Deep Neural
Network (DNN) inference [2], [59], [63], [78].

This chapter focuses on Analog CiM in contrast to Digital processor-centric design. Processor-centric
architecture largely relocates CMOS logic close to memory arrays; Analog Compute-in-Memory (ACIM)
instead exploits device physics (e.g., ReRAM, STT-MRAM) to perform MAC via Ohm’s law and
Kirchhoff’s Current Law (KCL). In many ACIM designs, model parameters are programmed as fixed
cell conductances and on-chip readout prevents direct weight dumps, creating a software-level “black
box” [42], [63], [78].

Security-relevant consequence. The same black-box property typically makes weights stationary
physical states bound to specific cells. An adversary who can issue repeated queries and observe power or
EM signals can average measurements, suppressing uncorrelated noise roughly as 1/

√
𝑁 over 𝑁 traces.

Thus, software opacity can inadvertently help SCA: the target is stationary, and the adversary can shape
inputs to probe it. Moreover, the spatial distribution of programmed conductances creates characteristic
current pathways that remain identical across evaluations, producing repeatable analog signatures even
under moderate measurement noise. Bias-dependent non-idealities in the devices further amplify these
correlations, making leakage more distinguishable than in deeply pipelined CMOS logic. Combined,
these factors convert the physical array structure itself into a stable oracle that an attacker can exploit
through carefully crafted input ensembles.

From discrete to continuous leakage. Unlike digital SCA—which relies on discrete switching activity
and Hamming-style models—ACIM leakage is the superposition of continuous analog currents and array
parasitics, subsequently filtered by the power-delivery network (PDN) and measurement path [6], [8],
[12], [19], [27]. A minimal readout model that we will use throughout the chapter is

𝐼BL(𝑡 ) =
∑︁
𝑖

𝑉𝑖 (𝑡 )𝐺𝑖 + 𝐼par(𝑡 ) + 𝜂dev(𝑡 ), (3.1)

𝑧(𝑡 ) = (ℎ ∗ 𝐼BL)(𝑡 ) + 𝑛meas(𝑡 ), (3.2)

where 𝑉𝑖 (𝑡 ) are input voltages, 𝐺𝑖 are stationary cell conductances (weights), 𝐼par(𝑡 ) captures line/selector
leakage and RC dynamics, 𝜂dev(𝑡 ) models device noise (e.g., thermal and RTN), ℎ is the PDN/analog
front-end impulse response, and 𝑛meas(𝑡 ) is measurement noise. Equations (3.1)-(3.2) highlight three
practical differences: (i) leakage is continuous-valued and input-weighted, (ii) it is spatio-temporal due to
IR/RC and PDN filtering, and (iii) it benefits from repeated-query averaging because𝐺𝑖 are time-invariant
during an attack.

Table 3.1 formalizes these contrasts and the resulting attack surface.
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Table 3.1.: Side-channel paradigms: Digital CMOS vs. Analog CiM.

Feature Digital CMOS (Conventional) Analog CiM (Emerging)

Leakage source Gate switching (dynamic power) Analog current aggregation in
crossbars (Ohm, KCL)

Leakage nature Discrete, data-dependent (Ham-
ming weight/distance)

Continuous; ∑
𝑖 𝑉𝑖𝐺𝑖 with para-

sitic terms
Time structure Localized in cycles/events Dispersed; shaped by RC/IR drop

and PDN filter ℎ
Dominant noise Process, quantization, back-

ground
Device noise (e.g., RTN), ther-
mal, parasitic distortions

State persistence Transient internal states Stationary conductances
(weights) during inference

Averaging leverage Limited—state changes fre-
quently

High—stationary weights enable
1/
√
𝑁 averaging

Typical attacks CPA, Differential Power Analysis
(DPA), simple templates

Profiled templates (Maha-
lanobis), Principal Component
Analysis (PCA)/denoising,
regression

Primary target Cryptographic keys/state bits Model architecture, weights, and
sometimes inputs

Measurement focus Core/logic power rails Array rails, bitline current, EM
from word/bitlines

Implication for this chapter. Because ACIM leakage encodes𝑉×𝐺 interactions and is shaped by analog
dynamics, effective attacks must (i) preserve or reconstruct the PDN/measurement filter ℎ, (ii) excite
the array with inputs that disambiguate conductances, and (iii) exploit stationarity via averaging and
template based inference. The remainder of the chapter develops a simulation-driven attack framework
around (3.1)-(3.2). In addition, the temporal alignment of evaluate and sense phases introduces structured
windows in which the leakage model is most predictive, allowing focused feature extraction rather than
full trace analysis. Device-level noise sources, while present, remain correlated with operating conditions
and therefore contribute usable statistical signatures. These properties make analog CiM particularly
suitable for profiling-based attacks, which benefit from the deterministic and repetitive nature of the
underlying physical computation.

3.2. Physical Origins of Analog Leakage: From Device Physics to Circuit
Dynamics

We construct a bottom-up threat model that links device physics to supply-rail/EM emissions through
three layers:

1. Device (D): Bitcell read currents in ReRAM and STT-MRAM. At this level, the physical state of each
memory element is represented as a conductance value subject to device-to-device variability, temporal
noise processes, and bias-dependent nonlinearity. ReRAM cells exhibit filamentary randomness and
RTN, while STT-MRAM cells show thermal activation and asymmetric resistance distributions tied to
magnetization states. These effects directly determine the instantaneous cell current under a given
read bias and become the earliest source of information leakage. Furthermore, device physics governs
the sensitivity to perturbation, for example read disturb in ReRAM or commit window vulnerability in
MRAM, which later translates to exploitable attack vectors.
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Figure 3.1.: Layer-wise leakage extraction in CiM framework

2. Array/Architecture (A): Wordline/bitline aggregation, parasitics, and PDN shaping. When hundreds
of cells evaluate simultaneously, their individual currents combine along resistive and capacitive
wordline and bitline networks, producing spatially coupled and temporally dispersed aggregate signals.
Line resistance introduces IR drop that modifies the effective read voltage, while capacitance generates
RC time constants that elongate or attenuate the analog response. Shared drivers, sense amplifiers,
and DAC elements contribute additional load that shapes the waveform before it reaches the supply.
The power-delivery network further filters these currents, embedding package inductance, decoupling
capacitance, and rail impedance into the observable signature. This architectural stage, therefore,
dictates how localized device events manifest as global supply-level leakage.

3. Design (C): Compute/sense primitives (e.g., scouting-logic XOR, MAC+ tanh, multi-layer pipelines,
CAM-HDC). Different compute primitives exercise the array in distinct ways, creating unique temporal
windows where leakage is strongest. XOR-based scouting logic produces short compare-driven spikes,
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MAC primitives generate continuous current accumulation, and CAM-style match-line discharge
yields exponential decays tied to Hamming distance. Activation functions, comparator thresholds, and
ADCs sampling add nonlinearities that modulate the amplitude and slope of the resulting waveform.
Multi-layer analog networks further superpose these patterns across depth, creating multi-modal
leakage signatures. These design-specific behaviors define the features exploited by profiling, template
attacks, correlation analysis, and pattern-based inference in the remainder of the chapter.

3.2.1. Layer D - Device-Level Leakage Models

ReRAM (1T1R). A 1T1R bitcell stores conductance states 𝐺LRS = 1/𝑅LRS and 𝐺HRS = 1/𝑅HRS. Under a
small read bias 𝑉𝑟 (linear regime), the cell read current is

𝐼cell(𝑏, 𝑡 ) =
𝑉𝑟

𝑅𝑡 + 𝑅(𝑏, 𝑡 )
, 𝑅(𝑏, 𝑡 ) = 𝑅(𝑏)

[
1 + 𝛿D2D]

+ 𝜂RTN(𝑡 ), (3.3)

where 𝑏 ∈ {HRS,LRS}, 𝑅𝑡 is the access/parasitic resistance, 𝛿D2D models device to device variation, and
𝜂RTN(𝑡 ) captures random telegraph noise. Read disturb is negligible for sufficiently small𝑉𝑟 and integration
time [22], [63]. In addition, the filamentary conduction mechanism produces strong cycle-to-cycle
variability, which introduces low-frequency drift in 𝑅(𝑏, 𝑡 ) across repeated reads. The nonlinear voltage
dependence of the conductive filament creates small but systematic changes in read current under different
stimulus amplitudes, contributing to data correlated analog leakage. The surrounding access transistor
also interacts with the filament resistance, amplifying mismatch and temperature sensitivity, and these
effects propagate upward during current summation at the array level.

STT-MRAM (1T1MTJ). For an MTJ read at 𝑉𝑟 ,

𝐼cell(𝑚) =
𝑉𝑟

𝑅𝑡 + 𝑅(𝑚)
, 𝑅(𝑚) ∈ {𝑅𝑃 , 𝑅𝐴𝑃 }, TMR =

𝑅𝐴𝑃 − 𝑅𝑃
𝑅𝑃

. (3.4)

Thermal and 1/𝑓 noise contribute to read variability; proper biasing avoids read disturb and state flips
during inference [42]. Furthermore, voltage-controlled magnetic anisotropy slightly modulates the
MTJ resistance under different bias conditions, creating subtle variations in the observed current. The
stochastic nature of magnetization in the free layer leads to read time fluctuations that can be exploited as
temporal leakage markers. Line resistance and transistor threshold variation introduce additional spread
between nominal 𝑅𝑃 and 𝑅𝐴𝑃 , which extends the distinguishability of MTJ states in integrated supply
measurements.

Device-layer takeaway. Both technologies decompose naturally into (i) a deterministic conductance
term set by state and access path, and (ii) a stochastic fluctuation term (RTN, thermal variation, device
mismatch). These terms are the primitive leakage sources that propagate upward through array summation
and PDN filtering. The deterministic component encodes the weight information directly, while the
stochastic component provides a source of exploitable temporal diversity across traces. Because these
fluctuations remain correlated with operating conditions and stimulus patterns, they generate consistent
side channel features after PDN shaping. Understanding this decomposition is essential for constructing
accurate leakage predictors and for explaining the trace structures analyzed in subsequent sections.

Consider an activated column 𝑗 with selected rows R. The bitline current is the superposition of
row-weighted cell currents plus parasitics:

𝐼𝐵𝐿,𝑗 (𝑡 ) =
∑︁
𝑖∈R

𝑉WL,𝑖 (𝑡 )𝐺𝑖 𝑗 (𝑡 ) + 𝐼 leak
𝑗 (𝑡 ) + 𝜀sneak

𝑗 (𝑡 ), (3.5)

where𝑉WL,𝑖 (𝑡 ) is the (possibly amplitude-coded) row voltage,𝐺𝑖 𝑗 (𝑡 ) follows (3.3) (or its MTJ analog), 𝐼 leak
𝑗

captures line or selector leakage, and 𝜀sneak
𝑗 lumps residual sneak or coupling effects (suppressed in 1T1X

but non-zero with finite 𝑅𝑡 ). Wordline and bitline resistances produce IR drop and RC dispersion, so 𝐼𝐵𝐿,𝑗 (𝑡 )
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is temporally shaped even for step inputs. In practical crossbars, these parasitics create column dependent
attenuation that modifies the apparent strength of each contributing conductance. The dynamic response
also depends on driver strength and rise-time limits, which distort the waveform observed at the supply.
Spatial proximity couples neighboring bitlines through capacitance, introducing correlated fluctuations
that persist after PDN filtering. These array-level distortions account for much of the structured leakage
that attackers later exploit by aligning traces to evaluate windows.

The array and peripheral currents (drivers, DACs or ADCs, sense amplifiers) draw from the supply and
are filtered by the PDN:

𝐼VDD(𝑡 ) =
(
[∑𝑗 𝐼𝐵𝐿,𝑗 (𝑡 )] + 𝐼periph(𝑡 )

)
∗ ℎPDN(𝑡 ) + 𝑛meas(𝑡 ), (3.6)

consistent with the readout model in §3.1. In practice, the PDN convolution introduces low-pass
characteristics that emphasize slower current components and suppress high-frequency switching noise.
Package inductance generates small overshoot and ringing that provide reproducible alignment points
across traces. The periphery contributes its own characteristic current bursts, for example ADC sampling
edges or sense-amplifier firing, which form reliable temporal landmarks. The combination of array
summation and PDN filtering therefore produces a structured current signature that directly reflects the
weighted conductance pattern being exercised. This structure becomes the basis of the correlation and
template-based predictors used later in the chapter.

An RC surrogate for BL dynamics. A convenient predictor for how input-weight interactions shape energy
on column 𝑗 over an evaluate window 𝑡𝑒 uses the bitline time constant

𝜏 𝑗 (𝑥,𝑤 ) =
𝐶BL

𝐺act, 𝑗 (𝑥,𝑤 ) +𝐺leak
, 𝐺act, 𝑗 (𝑥,𝑤 ) =

∑︁
𝑖∈R

𝛼𝑖 (𝑥 )𝐺𝑖 𝑗 ,

where 𝐶BL is the bitline capacitance, 𝐺leak is a residual conductance to ground or rails, and 𝛼𝑖 (𝑥 ) ∈ [0, 1]
encodes the (possibly analog) row activation implied by input 𝑥 . For a step-like row drive of amplitude𝑉𝑟 ,

𝑉𝐵𝐿,𝑗 (𝑡𝑒 ) = 𝑉𝑟
(
1 − 𝑒−𝑡𝑒/𝜏 𝑗

)
, 𝐸BL, 𝑗 (𝑥,𝑤 ) ∝ 𝐶BL𝑉

2
𝐵𝐿,𝑗 (𝑡𝑒 ),

which is equivalent to the compact form

𝐸BL, 𝑗 (𝑥,𝑤 ) ∝
[
1 − exp

(
−
𝑡𝑒 [𝐺act, 𝑗 (𝑥,𝑤 ) +𝐺leak]

𝐶BL

)]2
. (3.7)

This surrogate recurs across primitives because it abstracts the same physical mechanism: input-weighted
conductance accelerates BL charging, which modulates both instantaneous and integrated supply current
after PDN filtering. The model also explains why leakage strength increases when 𝑡𝑒 is tuned near the
midpoint of the exponential rise, where small changes in𝐺act, 𝑗 yield large differences in𝑉𝐵𝐿,𝑗 (𝑡𝑒 ). Variability
in 𝐶BL and 𝐺leak shifts this sensitivity point across columns, producing characteristic asymmetries that
tracing algorithms can detect. When multiple columns evaluate concurrently, their time constants become
partially correlated through the shared PDN, amplifying column-to-column structure in the measured
trace. These properties make the RC surrogate particularly effective for constructing analog-aware leakage
predictors in later sections.

3.3. Layer C - Circuit Design-Specific Leakage Realizations

The D/A layer physics manifest differently per primitive. We analyze four representative cases [96], [104],
[103].
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3.3.1. Case I - Scouting-Logic XOR

Design Motivation

Scouting logic performs Boolean functions in sensing using the analog sum of two cells during a read,
preserving states (no write-back). XOR is especially informative for weight recovery and cryptographic
evaluation because the decision depends on input or weight mismatch. This enables lightweight “probing”
of the stored conductances without modifying them, making it suitable for adversarial interrogation. The
primitive also avoids write disturbances and therefore supports repeated queries under identical conditions,
which enhances stationarity and reduces averaging noise. Since XOR collapses the two-device state into
three distinct current regions, it provides clear analog separation that survives PDN filtering. These
properties make scouting-XOR a convenient bridge between continuous analog behavior and downstream
digital decision logic.

Figure 3.2.: Schematic of a scouting-based logic: different references create different logic operations (XOR, AND, etc.).

Principle of Operation

Each XOR pair uses a weight cell (𝑤 ∈ {0, 1}) and an input cell (𝑥𝑘 ∈ {0, 1}) read simultaneously at 𝑉𝑟 .
The total conductance is

𝐺tot(𝑥𝑘 ,𝑤 ) =
1

𝑅𝑡 + 𝑅(𝑥𝑘 )
+

1
𝑅𝑡 + 𝑅(𝑤 )

. (3.8)

With two device states, three current bands (HH), (HL/LH), (LL) map to {𝐼low, 𝐼mid, 𝐼high}. A window
comparator with references 𝐼𝐿 < 𝐼𝐻 outputs

XOR(𝑥𝑘 ,𝑤 ) =

{
1, 𝐼𝐿 < 𝐼sense(𝑥𝑘 ,𝑤 ) < 𝐼𝐻 ,

0, otherwise.
(3.9)

This sensing stage introduces analog variations from comparator offset, bias current, and reference
ladder mismatch, which slightly distort the boundaries between regions but remain consistent enough for
correlation analysis. The pairwise read operation also emphasizes mismatch-driven behavior, making the
mid-band particularly sensitive to device noise and parasitics. These variations amplify distinguishability
between hypotheses, improving predictor performance during CPA.

Device/Array to Leakage

During evaluate, BL discharges via 𝑅eq = 1/𝐺tot, producing

𝐼BL(𝑡 ) ≃ 𝑉𝑟 𝐺tot(𝑥𝑘 ,𝑤 ) (1 − 𝑒−𝑡/𝜏BL), 𝜏BL =
𝐶BL

𝐺tot +𝐺leak
. (3.10)
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Supply current adds comparator toggling filtered by the PDN, yielding three observable bands. The
RC trajectory also shifts depending on line resistance and driver rise-time, introducing column-specific
distortions that persist across repeated evaluations. When the comparator fires, its regenerative action
generates a sharp current surge that produces a high-SNR peak after PDN filtering. Subtle RTN or thermal
variations in either cell modulate the early part of the discharge curve, making the evaluate window
particularly useful for analog leakage extraction. These combined dynamics create a multi-window
signature where both smooth and impulsive features encode the secret𝑤 .

Leakage Predictors

RC discharge (evaluate window):

𝑝RC
𝑘

=
[
1 − exp

(
− 𝑡𝑒 [𝐺tot(𝑥𝑘 ,𝑤 ) +𝐺leak]

𝐶BL

)]2
. (3.11)

Comparator activity (sense window):
𝑝XOR
𝑘

= 𝑥𝑘 ⊕𝑤. (3.12)

Shaping with window templates 𝑔eval(𝑡 ), 𝑔SA(𝑡 ) gives

p̂𝑘 (𝑡 ) = 𝛼 𝑝RC
𝑘
𝑔eval(𝑡 ) + 𝛽 𝑝XOR

𝑘
𝑔SA(𝑡 ). (3.13)

The templates approximate the characteristic waveform envelopes produced by BL discharge and SA
regeneration, allowing predictors to remain effective even under heavy PDN filtering. The additive
combination captures the fact that evaluate and sense windows are temporally disjoint and map to
different physical origins. In practice, the evaluate predictor dominates under strong decoupling, while
the comparator predictor becomes stronger when the PDN emphasizes high-frequency content. Weight
estimation, therefore, benefits from scanning both windows to locate the dominant leakage mode.

End-to-End Framework

Figure 3.3 summarizes the simulation-driven methodology used in this chapter to analyze the CPA
vulnerability of different CiM implementations. The workflow begins by instantiating device-level process
variation for each chip instance, using either resistive distributions for ReRAM-based CiM or transistor
and bitcell-width variations for SRAM-based baselines. These variations fix the physical conductance or
delay profile of the instantiated array and create the stationary leakage characteristics that an adversary
later exploits. After device sampling, the framework generates power traces for the full input space by
applying all input patterns while keeping the target weight fixed, mimicking the attacker’s ability to
repeatedly probe the same stationary secret.

The generated raw currents are then passed through an electrical-level SPICE simulation that includes
realistic wordline and bitline parasitics, access-transistor responses, and sense-path dynamics. At this
stage, we insert the PDN model, as shown in Figure 3.4, with package-level and on-chip RLC parameters,
ensuring that the observable current waveform reflects the same filtering and distortion seen in a real system.
The PDN convolution preserves the input-weight correlation but attenuates and temporally disperses
the signature, making the attack more representative of physical measurements. A measurement-noise
model is then applied to emulate oscilloscope or shunt-based probing noise, which allows controlled
experimentation across different SNR conditions.

Once traces are collected, they are processed by the CPA engine, which computes correlation between
predicted leakage features and the measured waveforms. The framework cleanly separates the roles of
physical modeling and statistical evaluation, allowing the same CPA engine to test multiple CiM primitives
under identical attacker assumptions. Because all leakage predictors are derived from the earlier D/A/C
layers, the same pipeline supports scouting-XOR, analog MAC, multi-layer CiM, and CAM-HDC cases.
This modularity also enables systematic sensitivity analysis with respect to PDN strength, device noise,
array dimensions, and input ensembles. The overall methodology provides a controlled environment for
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quantifying trace-to-disclosure, leakage windows, and the comparative robustness of different technologies
before validating insights on real hardware in later chapters.

As setup, we generate power traces by performing circuit-level simulations in the Cadence Virtuoso
simulator. The CiM architecture with NVM and SRAM in a 257-row crossbar array is implemented using
a 22𝑛𝑚 Global Foundries technology. We perform a Monte Carlo simulation for each state (LRS and
HRS) of the NVM with 1000 samples fixed at room temperature to get the resistance distribution. The
device models of the NVM used in the simulation and details about the simulation setup are enlisted in
Table 3.2. The values of all 𝑅, 𝐿, and 𝐶 for PDN are suggested from [72], while for the capacitor we
have used 𝐶𝑑𝑖𝑒=320 𝑛𝐹 , scaled to the maximum expected total current in our circuits for all technologies.
Additional MN is later injected computationally into the simulated traces using Python script. One million
traces were generated for each of the masking and hiding designs.

End

Start
For each chip-instance

SRAM-CiM
Tr width distribution

(µW , σW)

Memristive-CiM
Resistive distribution

(µR , σR)

 Generate power traces
for all input space

  Intoducing the device-level
process variation (PV)

 Power model

   Correlation power
analysis (CPA)

Generate 1 million power
traces (Key is fixed)

Current
source

SCA simulation
(Python)

Electrical-level
 simulation (SPICE)

Insert PDN model
(R,L,C)

Applying the
measurement noise

Figure 3.3.: End-to-end simulation framework for evaluating the CPA vulnerability of CiM operations. The pipeline incorporates
device-level variation, electrical-level SPICE simulation, PDN filtering, noise injection, and statistical CPA analysis.
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Figure 3.4.: End-to-end simulation framework for evaluating the CPA vulnerability of CiM operations. The pipeline incorporates
device-level variation, electrical-level SPICE simulation, PDN filtering, noise injection, and statistical CPA analysis.

CPA Workflow

Given trace 𝑇𝑘 (𝑡 ) and hypothesis𝑤ℎ ∈ {0, 1}:

1. Compute 𝐺tot(𝑥𝑘 ,𝑤ℎ) and 𝑝RC
𝑘

via (3.11),

2. Compute 𝑝XOR
𝑘

= 𝑥𝑘 ⊕𝑤ℎ,

3. Project trace onto 𝑔eval(𝑡 ), 𝑔SA(𝑡 ) to get 𝑦eval
𝑘

, 𝑦SA
𝑘

,
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Table 3.2.: Simulation parameters

MTJ model [39]
-Radius = 20 nm
- RA = 7.5Ω𝜇𝑚2

- Nominal TMR = 150%

VCM-based device
model: JART VCM
v1b Read variability
[80]

- Filament radius = 45 nm
- Length of the disc region =
0.6 nm
- Initial oxygen vacancies con-
centration in the disc [1026/𝑚3]
for ‘LRS’ = 3, for ‘HRS’ =
0.009

Temperature 27◦𝐶

(a) STT-MRAM-based CiM (b) SRAM-based CiM

Figure 3.5.: CPA on different CiM implementations of an 8-bit XOR operation with the minimum number of traces for key
recovery (marked green) in all plots. For all attacks, the effects of the PDN and MN are considered.

4. Evaluate Pearson correlation:
𝜌 (a, b) =

Cov(a, b)√︁
Var(a) Var(b)

, (3.14)

i.e., 𝜌eval = corr(𝑦eval, 𝑝RC), 𝜌SA = corr(𝑦SA, 𝑝XOR),

5. Pick𝑤ℎ maximizing |𝜌eval |, |𝜌SA | (or window-wise 𝑅2).

Trace-to-disclosure: 𝑁TD ≈ 𝑧2/𝜌2
★, with dominant 𝜌★. The dual-window structure offers robustness

because inaccuracies in one window can be compensated by the other. Projection step effectively isolates
leakage-rich components, reducing noise sensitivity and improving alignment tolerance. The hypothesis
scan is cheap due to binary 𝑤 , enabling rapid profiling of all weights in parallel. The workflow also
scales naturally to multi-bit cells by extending the hypothesis space, a capability used in later CiM attack
scenarios.

Table 3.3.: Leakage predictors and timing windows for scouting-logic XOR.

Window Predictor Physical meaning Target secret

Evaluate 𝑝RC BL discharge energy ∝ 𝐺tot 𝑤

Sense (SA) 𝑝XOR Comparator toggling on mismatch 𝑤

Precharge HD(driver) WL/BL driver activity (weak) –

3.3.1.1. CPA-based Vulnerability Assessment of Unprotected CiM Designs

The plots in this section correspond to the progress of correlation coefficients for different key bytes
at a particular time stamp with respect to the number of traces. All of these results are reported on an
exemplary chip instance.
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(a) CPA without any noise (b) CPA with the effects of the PDN (c) CPA with the effects of PDN and MN

Figure 3.6.: CPAs on ReRAM-MRAM-based CiM. Effect of adding the PDN and MN to the simulation flow on the vulnerability
of the design, shown by the amount of measurements needed for key recovery (marked green).

Table 3.4.: Minimum number of traces needed to attack various CiM technologies, based on simulations including PV, PDN and
MN. The result is averaged over 10 different chip instances.

CiM Technology Traces needed by simulation type
PV PV+PDN PV+PDN+MN

Phase-Change Memory (PCM) 21 41 47 ± 4
ReRAM 111 197 211 ± 15

STT-MRAM 143 189 228 ± 26
SRAM 212 276 322 ± 53

The red lines correspond to the correlation values with the correct key byte, whereas the blue lines
correspond to the correlation with incorrect keys. With green vertical lines, we denote the number of
traces, where key recovery is successful. As expected, when using a Hamming weight power model on an
XOR operation, all of the plots are symmetric, apart from noise effects. This also means that for each key
byte both the correct key as well as the bitwise complement show the highest absolute correlation values,
which can however easily be brute-forced by an attacker for a full key recovery.

We show how the correlation coefficients are changing with different amounts of traces in the case of
ReRAM in Figure 3.6c. For the remaining CiM implementations, we present the results of performing
CPA attacks in Figure 3.5.

As we apply the CPA on the power traces generated in the simulation environment, we also analyze the
effect of PDN noise and measurement noise on the vulnerability. We observe that both effects increase
the amount of traces required for key recovery to some extent. However, they all are still vulnerable with
more traces. Exemplary, we show the increase in the minimum number of traces for a successful attack in
ReRAM-based CiM in Figure 3.6.

These results were all performed on one chip instance. As one instance might be particularly difficult or
easy to attack (depending on PV), we cannot generalize these results. Thus, we additionally simulated
9 more chip instances to cross-check our results. We report our summarized results with the average
amount of traces needed as well as their variances across all chip instances in Table 3.4.

3.3.1.2. Proposed CiM-friendly Masking Protection

Block ciphers usually allow implementing the non-linear operations like S-Box as look-up tables, which
are included in our CiM design to account for a realistic implementation. We then apply masking on
the S-Boxes to strengthen the cryptographic module against side channel attacks, by generating masked
look-up tables 𝑇𝑚 with the following property 𝑇𝑚(𝑣 ⊕𝑚) = 𝑇 (𝑣) ⊕𝑚. That means, for each used mask𝑚,
we will generate a separate masked look-up table for the corresponding non-linear operation.

The designer of a cryptographic system may reuse a limited number of masking values as a trade-off
between security and the required amount of memory. To compensate for the negative effects on security,
the masks can be refreshed to new ones after a certain amount of encryption.

There are several advantages of the described masking scheme with respect to CiM architectures. First,
there is no need for any changes to the hardware, as we only need to extend the memory array. The memory
overhead increases with the number of masks that are used. Pre-computing the masked S-Box look-up
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tables is negligible, as it needs to be done only once. Another advantage is that the true random numbers
which are needed to randomly select a mask in the CiM can be generated by memristors themselves.

In this work, we reuse 16 masks that correspond to 16 masked S-Box look-up tables in the memory.
We choose these masks randomly from the pool of all available mask values, for which we pre-compute
the masked SBOX tables in an algorithmic way. The inputs themselves are not masked, and masking
is automatically applied within the CiM-based XOR operation for 𝑆𝐵𝑜𝑥𝑚(𝑖𝑛𝑝𝑢𝑡 ) ⊕ 𝑘𝑒𝑦𝑚 by randomly
choosing one of the masked look-up tables in the CiM-enabled memory. For each used mask we also
pre-compute a masked key 𝑘𝑒𝑦𝑚 and store it next to the masked look-up table in CiM-enabled memory,
so adding the key with CiM-based XOR returns an already unmasked output. This way, the intermediate
values that are processed are randomized, and the power consumption becomes independent of the secret
data.

3.3.1.3. Proposed Hiding Protection

We separately implement another type of countermeasures called hiding. Hiding countermeasures aim to
hide circuit activity by reducing the SNR between data-dependent differences in power consumption and
power noise.

In this paper, we follow the concept of power equalization [25] by adding duplicated logic that shall
mimic the inverse behavior of our actual circuit. In CMOS circuits, custom inverted circuits have to be
designed or dual-rail logic has to be used. For CiM we can benefit from the specific properties of a regular
memory array for a hiding solution that can be more easily transferred to other algorithms as well.

In our specific design, we extend the original 257 × 8 cell array with a complementary 257 × 8 array,
doubling the columns, leading to an overall array size of 257× 16. We operate half of the CiM columns as
usual, where one row contains the secret key and the other 256 rows contain the AES S-Box look-up. The
other half of the array stores a bitwise complementary key and bitwise complementary S-Box look-up.
During the CiM XOR operation, the total amount of activated memristor cells in HRS and the total
amount of activated cells in LRS is data-independent, namely 16 each.

In an ideal circuit, the resulting power consumption is equal for all input values, whereas our more
realistic circuit contains process and design variations that also lead to runtime variations later on. These
remaining variations result in side-channel leakage, which will eventually allow key recovery. However,
the number of required measurements will be significantly increased, which is demonstrated in our results.

(a) CPA on hiding protected design

(b) CPA on masking protected design

Figure 3.7.: CPA performed on ReRAM-based CiM-design on which our protections are applied, showing in both cases key
recovery is unsuccessful.
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3.3.2. Case II - MAC + tanh activation Layer

Design Motivation

Analog MAC+tanh is the workhorse of ACIM neural inference: weights are encoded as cross-point
conductances, inputs are driven as row voltages, and the resulting column current is integrated and passed
through an analog tanh activation. Because the accumulated current is proportional to 𝑮⊤𝒗, its magnitude
preserves information about the signed and multi-bit weight encoded in the conductances, leading to
amplitude-bearing leakage that is significantly richer than the binary decision of scouting logic. The
tanh block further introduces a smooth nonlinearity that compresses large positive or negative currents,
creating distinct analog regions (linear, semi-saturated, and fully saturated) that can be exploited by an
adversary to infer both magnitude and sign of weights. Low-frequency components of the MAC trajectory
are also preserved by the PDN more strongly than high-frequency edges, making this primitive particularly
vulnerable under strong on-die decoupling. A block-level schematic of the primitive is shown in Fig. 3.8.

Figure 3.8.: Schematic of a MAC+tanh column: weighted current summation followed by a differential-pair tanh activation and
optional quantization.

Principle of Operation

For column 𝑗 and trial 𝑘, the instantaneous MAC current is

𝐼MAC, 𝑗 (𝑘) =
𝑁in∑︁
𝑖=1

𝑉𝑖,𝑘 𝐺𝑖 𝑗 , (3.15)

which is converted and fed to a differential-pair tanh:

𝑉out, 𝑗 (𝑘) = 𝑉bias tanh
( 𝐼MAC, 𝑗 (𝑘)𝑅𝐿

2𝐼𝑇

)
, (3.16)

with load 𝑅𝐿 and tail current 𝐼𝑇 . Two windows dominate the observable supply current: the MAC
evaluate interval (summation/integration) and the activation interval (nonlinear bias modulation around
the diff-pair).

Device/Array to Leakage

With many active rows, the effective column conductance seen during evaluate is

𝐺col, 𝑗 (𝑘) =
∑︁
𝑖

𝑥𝑖,𝑘 𝐺𝑖 𝑗 , (3.17)

which sets both the amplitude and slope of 𝐼MAC, 𝑗 (𝑡 ). This trajectory is convolved with the PDN impulse
response, producing a smooth, high-SNR analog signature. Device-level phenomena, such as cell-to-cell
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variation, RTN, line resistance, and BL/WL driver slew, introduce stable, instance-specific distortions that
persist across queries and can be profiled. The activation stage adds a localized burst of current near the
operating point where the differential pair exhibits large transconductance (near its linear region). At
deeper saturation, the activation contribution flattens and becomes less informative, while the evaluate
window remains amplitude-coded.

Leakage Predictors

Evaluate (RC discharge). A compact energy predictor that captures PDN-filtered evaluate leakage is

𝑝MAC
𝑘

=
[
1 − exp

(
−
𝑡𝑒 [𝐺col, 𝑗 (𝑘) +𝐺leak]

𝐶BL

)]2
. (3.18)

Activation (nonlinear transconductance). For a differential-pair tanh, the small-signal transconductance
scales as 𝑔𝑚∝ 𝐼𝑇 sech2(·). Integrating over the activation window motivates

𝑝 tanh
𝑘

= sech2
(
𝛾 𝐺col, 𝑗 (𝑘)

)
, (3.19)

with a fitted 𝛾 absorbing gains and level shifts.

Shaped time predictor. We shape predictors with window templates 𝑔MAC(𝑡 ) and 𝑔tanh(𝑡 ):

p̂𝑘 (𝑡 ) = 𝛼 𝑝MAC
𝑘

𝑔MAC(𝑡 ) + 𝛽 𝑝 tanh
𝑘

𝑔tanh(𝑡 ), (3.20)

mirroring the disjoint physical origins of evaluate and activation leakage. For quick lookup, the mapping
between windows, predictors, and secrets is summarized in Table 3.5.

Table 3.5.: Predictors and timing windows for MAC+tanh.

Window Predictor Physical meaning Target secret

MAC Evaluate 𝑝MAC BL discharge ∝ ∑
𝑖 𝑥𝑖𝐺𝑖 W

Activation 𝑝 tanh 𝑔𝑚∝sech2(·) W
Precharge HD(driver) Driver toggling (weak) –

CPA/Hypothesis Testing

For hypothesis weights Wℎ and trial 𝑘,

𝑝
(1)
𝑘

=
∑︁
𝑖

𝑥𝑖,𝑘 𝐺𝑖 𝑗 (𝑤𝑖 𝑗,ℎ), (3.21)

𝑝
(2)
𝑘

= sech2(𝛾 𝑝 (1)
𝑘
) . (3.22)

Project the measured trace 𝑇𝑘 (𝑡 ) onto 𝑔MAC(𝑡 ) and 𝑔tanh(𝑡 ) to obtain 𝑦MAC
𝑘

and 𝑦tanh
𝑘

. Evaluate Pearson
correlations 𝜌MAC = corr(𝑦MAC, 𝑝 (1)) and 𝜌tanh = corr(𝑦tanh, 𝑝 (2)), then select the hypothesis maximizing
|𝜌MAC |+|𝜌tanh |. The traces-to-disclosure heuristic is 𝑁TD≈𝑧2/𝜌2

★ with dominant 𝜌★.

Vulnerability Analysis

Figures 3.9 and 3.10 illustrate leakage features around activation edges and template separability. In
our unprotected design with 16 simultaneous row activations, both CPA and TVLA confirm exploitable
leakage from the ADC/quantizer stage (see Figure 3.11): the correlation peak across candidate weights
grows with trace count, and the TVLA curve exceeds the |𝑡 |>4.5 threshold at the same windows where the
ADC toggles. Across technologies and PDN strengths, the quantitative trends for the evaluate/activation
windows are consolidated in Table 3.6, while the impact of ADC resolution and dithering is summarized
in Table 3.7.
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Figure 3.9.: Feature extraction around evaluate and activation: timing landmarks, local energy, slope at the activation edge, and
comparator fault flag.

Figure 3.10.: Template separation for different weight codes using activation-edge features; clusters remain linearly separable
even under PDN filtering.

Countermeasure: Balanced Comparator/Dummy Path

To reduce activation-stage leakage, we instantiate a duplicate, cross-biased comparator that draws
complementary current, equalizing power across input common-mode variations (concept in Figure 3.12).
The measured/simulated power versus input CM voltage becomes nearly flat after protection (Figure 3.13),
and both CPA and TVLA attacks fail on the protected sub-array (Figure 3.14).

Practical Notes. MAC leakage enables multi-bit recovery; activation produces short bursts near zero
crossings. ReRAM provides larger dynamic range but more RTN; STT-MRAM is quieter but smaller
in amplitude. PDN decoupling trades evaluate-window correlation (stronger with more decap) against
activation-edge visibility (weaker with more decap). Comparator offset and metastability add timing jitter
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(a) CPA on ADC outputs (b) TVLA on ADC windows

Figure 3.11.: CPA and TVLA on an unprotected MAC+tanh path (16 rows active). Minimum trace counts for disclosure are
marked in green in the original plots.

Table 3.6.: MAC+tanh leakage as a function of technology and PDN decoupling. Peak Pearson correlation |𝜌 | is reported for the
evaluate window (RC discharge) and the activation window (tanh bias modulation). 𝑁𝑇𝐷 is the traces-to-disclosure estimate
using 𝑁𝑇𝐷 ≈𝑧2/𝜌2 with 𝑧=5.

Technology PDN decap Evaluate window Activation window

|𝜌 | 𝑁𝑇𝐷 |𝜌 | 𝑁𝑇𝐷

ReRAM Low 0.21 567 0.14 1276
MRAM Low 0.18 772 0.11 2067
ReRAM Med. 0.24 435 0.16 977
MRAM Med. 0.20 625 0.13 1480
ReRAM High 0.27 343 0.18 772
MRAM High 0.23 473 0.15 1112

that can be exploited by template attacks but weakens raw CPA, reinforcing the benefit of feature-based
profiling.

3.3.3. Case III - Multi-Layer MAC + tanh activation Network

Motivation and Overview

Deep analog networks cascade MAC+tanh blocks. A shared PDN superposes per-layer currents so the
observed supply current is a sum of filtered layer activities:

𝐼VDD(𝑡 ) =
𝐿∑︁
ℓ=1
[𝐼 (ℓ)

array(𝑡 ) ∗ ℎPDN(𝑡 )] . (3.23)

For layer ℓ: 𝐼 (ℓ)
MAC, 𝑗 (𝑘) = ∑

𝑖 𝑉
(ℓ)
𝑖,𝑘
𝐺

(ℓ)
𝑖 𝑗

and 𝑉 (ℓ+1)
𝑖,𝑘

= tanh(𝛽ℓ 𝐼 (ℓ)
MAC,𝑖 (𝑘)). Early layers operate in a wider linear

region and therefore leak stronger amplitude information; deeper layers are progressively compressed by
the preceding tanh stages and contribute shorter, smaller features.

Device/Array to Leakage

The PDN acts as a linear mixer, coupling layers temporally and spectrally. Unequal evaluate durations,
duty cycles, and layer-local decoupling produce distinct “leakage colors” that can be separated by
time-frequency weighting. Instance-specific offsets (e.g., SA thresholds, line RCs) persist across trials
and can be profiled, while device noise (RTN/thermal) adds colored, partially correlated perturbations.
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Table 3.7.: Impact of ADC resolution and dithering on MAC+tanh CPA. Median traces to disclosure (𝑁𝑇𝐷 ) and empirical success
rate after 1000 traces, averaged over several seeds and PDN states. Dithering adds small, uniformly distributed input noise at the
ADC to break deterministic binning.

Configuration Median 𝑁𝑇𝐷 Success @ 1000 traces

6-bit ADC (no dither) 360 100%
8-bit ADC (no dither) 430 97%
10-bit ADC (no dither) 540 90%
8-bit ADC + dither 690 81%

M9 M11 M10

M1 M10M5 M6

M7 M3 M4 M8
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(b) Balanced comparator with dummy path

Figure 3.12.: Unprotected and protected comparators used in the activation/quantization stage.

Predictors and Shaping per Layer

We extend (3.18)-(3.19) layer-wise:

𝑝
MAC,(ℓ)
𝑘

=
[
1 − exp

(
−
𝑡

(ℓ)
𝑒 [𝐺 (ℓ)

col, 𝑗 (𝑘) +𝐺leak]

𝐶
(ℓ)
BL

)]2
, 𝑝

tanh,(ℓ)
𝑘

= sech2
(
𝛾ℓ 𝐺

(ℓ)
col, 𝑗 (𝑘)

)
, (3.24)

and construct
p̂(ℓ)
𝑘

(𝑡 ) = 𝛼ℓ 𝑝MAC,(ℓ)
𝑘

𝑔MAC,ℓ (𝑡 ) + 𝛽ℓ 𝑝 tanh,(ℓ)
𝑘

𝑔tanh,ℓ (𝑡 ). (3.25)

Monotonic tanh lets correlation propagate: 𝑝MAC,(ℓ+1)
𝑘

= 𝑓(W(ℓ+1), tanh(W(ℓ)x𝑘 )), albeit with attenuation.
Numerical results for a three-layer ReRAM MLP are provided in Table 3.8 and visualized in Fig. 3.15.

Profiling Attack: Layer-wise PCA + Likelihood

Classical CPA deteriorates under layer superposition and compression. We therefore adopt a profiling
pipeline that (i) windows traces per layer using coarse timing markers, (ii) applies PCA inside each window
to suppress uncorrelated noise and PDN spillover, and (iii) models the profiled PC vectors with a simple
Gaussian likelihood per hypothesis. For a victim, we select the hypothesis maximizing the per-layer
likelihood and fuse layers by a weighted sum of log-likelihoods. Pre-processing (baseline removal, mild
band-selection, alignment, and per-window z-score) follows the common steps detailed in §3.3.5.
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(a) Unprotected: unbalanced power (b) Protected: balanced power

Figure 3.13.: Comparator power vs. input common-mode voltage before and after protection.

(a) CPA fails on protected array (b) No TVLA leakage after protection

Figure 3.14.: Failed CPA and TVLA on the protected CiM sub-array (8 rows active).

Algorithm 1 Layer-wise PCA + Likelihood for Multi-Layer ACIM

Require: Profiling traces 𝑃 (ℓ)(𝑡 ) per layer ℓ
Ensure: Recovered W(1), . . . ,W(𝐿)

1: for ℓ = 1 to 𝐿 do
2: Window→ 𝑃 (ℓ)(𝑡 ); compute PCA projection𝑊PCA,ℓ and retain top PCs (≥90% variance)
3: Fit Gaussian 𝑝(L(ℓ) |𝐾 ) on PC vectors for weight/class hypothesis 𝐾
4: For victim, compute L(ℓ)(𝐾 ) = 𝑝(L(ℓ)

victim |𝐾 )
5: Fuse: logLtot(𝐾 ) = ∑

ℓ 𝜔ℓ logL(ℓ)(𝐾 ); output 𝐾∗ = arg max𝐾 logLtot(𝐾 )

Decision Metrics. Beyond |𝜌 |, we report layer-wise likelihoods L(ℓ), Mahalanobis distances between
profiled clusters, PCA variance ratios, and TVLA across windows to show leakage presence and
identifiability under PDN coupling. Complementary frequency-domain statistics are reported in Table 3.9
and visualized in Fig. 3.16.

Countermeasure: Timing Diversification

To blunt profiling, we introduce small, tunable per-bit delays in the activation/comparator path, randomized
across inferences (see Figure 3.17). The resulting time warps decorrelate layer windows across traces
while preserving correctness.

Practical Notes. Superposition yields compound peaks; early layers contribute broad, high-energy win-
dows, later layers contribute short, saturated bursts. Shared PDN couples all blocks; decap/gating choices
affect every layer simultaneously. PCA is robust to mild misalignment and captures instance-specific
structure introduced by PDN poles and sense-path offsets.
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Table 3.8.: Layer-wise leakage in a 3-layer analog MLP (ReRAM, medium decoupling). Correlation and traces-to-disclosure
are reported for evaluate and activation windows per layer. 𝑁𝑇𝐷 uses 𝑧 = 5. The first layer leaks the most, deeper layers are
attenuated by the tanh nonlinearity and PDN superposition.

Layer Evaluate window Activation window

|𝜌 | 𝑁𝑇𝐷 |𝜌 | 𝑁𝑇𝐷

L1 0.22 517 0.15 1112
L2 0.17 866 0.12 1737
L3 0.12 1737 0.09 3087

Figure 3.15.: Layer-wise leakage: grouped bars show |𝜌 | in evaluate/activation windows for L1-L3; lines (right axis) show 𝑁TD
computed with 𝑧 = 5. L1 dominates; deeper layers are attenuated by tanh and PDN superposition.

3.3.4. Case IV - CAM-Based HDC

Design Motivation and Operation

HDC accelerators commonly use CAMs for similarity search over stored class hypervectors. For row 𝑟

storing w𝑟 and query x, match-lines (MLs) are precharged to 𝑉pre and then released; each bit mismatch
opens a discharge path. The ML current is

𝐼ML,𝑟 (𝑡 ) =
𝑁∑︁
𝑖=1

𝑉read(𝑡 )𝐺𝑟𝑖 [𝑥𝑖 ⊕𝑤𝑟𝑖], (3.26)

thus proportional to Hamming distance (HD). The total supply current sums all rows via the PDN:

𝐼VDD(𝑡 ) =
∑︁
𝑟

[𝐼ML,𝑟 (𝑡 ) ∗ ℎPDN(𝑡 )]. (3.27)

Match events (small HD) yield slow ML discharge and reduced dynamic current; mismatches (large HD)
accelerate discharge and increase current, creating a direct power-HD mapping. The CAM/HDC primitive
is sketched in Fig. 3.18.

Predictors and Shaping

With ML capacitance 𝐶ML and effective mismatch conductance 𝐺eff,𝑟 = ∑
𝑖 𝐺𝑟𝑖[𝑥𝑖 ⊕𝑤𝑟𝑖], the ML voltage

decays as

𝑉ML,𝑟 (𝑡 ) = 𝑉pre𝑒
−𝑡/𝜏𝑟 , 𝜏𝑟 =

𝐶ML

𝐺eff,𝑟
.

We use an RC-energy predictor

𝑝RC
𝑟 =

[
1 − exp

(
−
𝑡𝑒 (𝐺eff,𝑟 +𝐺leak )

𝐶ML

)]2
, (3.28)

and a logical HD predictor
𝑝HD
𝑟 = HD(x,w𝑟 ) =

∑︁
𝑖

[𝑥𝑖 ⊕𝑤𝑟𝑖]. (3.29)
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Table 3.9.: Frequency-domain separability of layer windows under different PDN decoupling. ∆𝑓 is the mean spectral-centroid
difference between adjacent layers (larger is better). “Layer-ID accuracy” is the cross-validated accuracy of a simple frequency-
domain classifier that assigns a window to its layer.

PDN decap ∆𝑓 (kHz) Layer-ID accuracy

Low 32 0.92
Med. 26 0.88
High 21 0.84

Figure 3.16.: Frequency-domain separability vs. PDN decoupling: ∆𝑓 (left axis) decreases with stronger decoupling, which also
reduces a simple layer-ID classifier’s accuracy (right axis).

Shaping with 𝑔eval(𝑡 )/𝑔SA(𝑡 ) yields

p̂𝑟 (𝑡 ) = 𝛼 𝑝RC
𝑟 𝑔eval(𝑡 ) + 𝛽 𝑝HD

𝑟 𝑔SA(𝑡 ). (3.30)

Goodness-of-fit between predicted HD and measured ML energy, and the resulting identifiability, are
summarized later in Table 3.10.

Profiling/Collision Workflow

We combine a simple collision strategy with single-trace analysis (SPA): vary a constrained subset of
query bits/bytes, record the evaluate-window power or the sense-window peak, and select candidates that
minimize power (best match). Iterating this procedure walks toward the stored class hypervector. The
algorithm below formalizes the byte-wise variant used in our experiments. End-to-end recovery statistics
for different query widths are reported in Table 3.11.

Algorithm 2 Hamming-Distance Collision on CAM-HDC
1: procedure CollisionAttack(HDCModel)
2: for 𝑖 ← 0 to 𝑛−1 do ⊲ byte index
3: for 𝑗 ← 0 to 255 do
4: queryHV← 0; queryHV[0 :𝑖]← 𝑗

5: if classify(HDCModel, queryHV) = 𝑐 then
6: candidates[𝑐][𝑖].append( 𝑗 )
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Figure 3.17.: Protected CiM design: tunable delay element in the comparator path to randomize activation timing.
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Figure 3.18.: CAM-based HDC search: ML precharge/evaluate and winner-take-all sense.

Table 3.10.: CAM-HDC identifiability: goodness-of-fit between predicted (HD) and measured match-line energy, together with
median traces to disclosure for exact class-HV recovery with a 32-byte query. ReRAM exhibits higher amplitude and slightly
better model fit, MRAM is cleaner but smaller in magnitude.

Configuration 𝑅2 (HD→ Energy) Median 𝑁𝑇𝐷 Notes

ReRAM, Low decap 0.84 280 high amplitude
MRAM, Low decap 0.78 360 cleaner, lower swing
ReRAM, Med. decap 0.80 338 matches Fig. 3.21a trend
MRAM, Med. decap 0.74 410
ReRAM, High decap 0.76 430 stronger PDN smoothing
MRAM, High decap 0.70 510

Table 3.11.: Collision-style class-HV recovery for CAM-HDC. Reported are recovered bytes and number of required candidate
queries for different query widths. Protected design uses random precharge, staggered activation, and reference dithering.

Setting 32-byte query 16-byte query 8-byte query

Unprotected 28/32 bytes, 338 cand. 16/16 bytes, 156 cand. 8/8 bytes, 68 cand.
Protected (RP+ST+RD) ≤ 1/32 bytes, > 2000 cand. 3/16 bytes, > 2000 cand. 4/8 bytes, > 2000 cand.

Leakage Observation and Results

Figure 3.19 shows that power is minimized for an exact match (smallest HD), and Figure 3.20 confirms
the slowest ML discharge in the matched case. Using only 338 candidate traces, the correct class-4
hypervector is identified; the first 32 bytes are recovered with high accuracy (see Figure 3.21). These
observations are consistent with the model-fit and disclosure estimates in Table 3.10 and the query-width
sweep in Table 3.11.

Countermeasure

Randomize precharge levels and stagger row activation to decorrelate the power-HD mapping across
traces. In our protected design, candidates become indistinguishable in evaluate-window power, and the
collision attack fails (see Figure 3.22).

Practical Notes. Leakage scales approximately linearly with HD; while the PDN superposes row currents,
the winning row produces a distinct correlation signature. Sense-amp jitter broadens the sense window;
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Figure 3.19.: Evaluate-window power vs. 1-byte query candidates: minimum at the correct class hypervector (example: 0xd0).

Figure 3.20.: ML voltage: least discharge (closest to 𝑉pre) when HD(x,w𝑟 ) is minimal (match).

using a wider 𝑔SA(𝑡 ) improves robustness. Effective mitigations include randomized precharge, activation
staggering, and reference dithering.

3.3.5. Common Pre-Processing and Evaluation Protocol (used in Cases II-IV)

Pre-processing. We apply baseline removal (polynomial/moving-average detrend), mild band-selection to
suppress 1/𝑓 , coarse alignment via cross-correlation with a reference template, optional local time-warp
around evaluate/sense edges, and per-window z-score normalization. When noise is colored, a whitened
matched filter𝑤 = Σ−1

𝑛 𝑔/(𝑔⊤Σ−1
𝑛 𝑔) improves SNR in each window.

Decision metrics. Alongside |𝜌 |/𝑅2, we report traces-to-disclosure 𝑁TD, Mahalanobis distances for
template separability, per-hypothesis likelihoods L, PCA variance ratios (scree and top-PC scatter), and
TVLA (Welch 𝑡 with |𝑡 |> 4.5) to corroborate leakage and reproducibility.

(a) Power over top candidates (b) Bytes recovered vs. query width

Figure 3.21.: Successful collision+SPA attack on class-4 hypervector: correct ID shows the minimum power; byte recovery
statistics for 32/16/8-byte queries.
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Figure 3.22.: Protected CAM-HDC: power attack fails. Correct and incorrect candidates are indistinguishable.

3.4. Summary

We presented a unified, device-accurate framework for analyzing side-channel leakage in ACIM ac-
celerators. Starting from the fundamental physics of ReRAM and STT-MRAM bitcells, we modeled
how conductance variations propagate through the array to create observable power signatures. We
dissected four specific compute primitives: Scouting Logic XOR, MAC+tanh, Multi-layer Networks, and
CAM-based HDC.

For each primitive, we derived physics-based leakage predictors and demonstrated successful attacks
using simulation data. We showed that while standard CPA is effective for simple primitives, advanced
techniques like PCA-based layer separation and collision analysis are required for deep networks and
high-dimensional search. Finally, we proposed and validated specific circuit-level countermeasures,
such as tunable delay elements and dummy-balanced comparators, that effectively suppress leakage
with minimal overhead. These results establish a foundation for the secure design of next-generation
non-volatile AI accelerators.
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4.1. Introduction

This chapter bridges the device-level vulnerabilities of STT-MRAM characterized in Chapter 3 (which
focused on CiM and sense-path variability) with a digital fault-security study. We pivot from analog noise
characteristics to a potent digital attack: a persistent-fault attack on AES when its round-key schedule
is stored in MRAM [109]. We present a practical, board-level, non-invasive voltage-glitch methodology
that precisely targets MRAM write cycles. By momentarily starving the MRAM’s power rail, we bias
the spin-transfer-torque switching mechanism to create persistent bit-level corruptions in the stored key
schedule. We then demonstrate how these stable, reproducible faults enable very low-data-complexity
key recovery using DFA and SPFA [9], [69], [82]. We conclude this chapter by proposing several
MRAM-specific countermeasures, including both hardware and architectural-level fixes, that can harden
designs against this threat class with modest implementation overhead.

Core message. Persistence transforms a one-time physical event into an algorithmically reusable
cryptanalytic primitive. This is the central thesis of our attack: unlike transient faults (e.g., in SRAM)
that must be injected with precise timing for every execution, a single successful persistent-fault injection
campaign corrupts the key indefinitely. The adversary can then, at their leisure, collect an arbitrary
number of faulty ciphertexts from this single, stable fault. This reuse mechanism is what collapses the
data complexity. Under persistence, we demonstrate that AES key recovery becomes possible with only
12–17 correct/faulty ciphertext pairs on real hardware. This result is two orders of magnitude more
efficient than many volatile-memory DFA settings, which often require thousands of precisely timed
injections and statistical collection to succeed.

Why AES as a case study. Although this experiment targets a cryptographic accelerator, AES serves here
as a controlled benchmark to expose a generic persistent-fault primitive in STT-MRAM devices. The
motivation is not to study cryptography per se, but to use AES’s well-understood algorithmic structure,
standardized test vectors, and established differential-fault-analysis framework (DFA/SPFA) as an ideal
platform for precisely measuring how device-level, non-volatile write faults propagate through digital
logic. This controlled environment allows us to quantify the fault physics and statistical exploitation
requirements.

The same non-volatile write mechanism that enables stable key corruption in AES directly threatens
AI accelerators that employ MRAM to store weights, feature maps, or hypervectors. The same physical
mechanism, a reproducible, persistent bit corruption originating from a glitched MRAM commit window,
is equally applicable to MRAM arrays used for storing model weights or hypervectors in AI accelerators.
By first demonstrating the fault physics and statistical exploitation on AES, we obtain a reproducible and
interpretable baseline. This baseline directly informs the threat and countermeasure models for MRAM-
backed AI accelerators, which we explore in the chapter’s conclusion. The unified countermeasures
proposed, such as PUF-sealing, commit-window randomization, write-verify, and rail monitoring, later
reappear as the foundation for securing non-volatile storage in these emerging AI architectures.
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4.2. From Analog CiM Variability to Digital Persistent Faults

4.2.1. Why MRAM’s Physics Matters for Security

Chapter 3 established that the fundamental MTJ physics enabling STT-MRAM for CiM also yields
inherent analog variance, such as read/sense noise and device-to-device asymmetries [43]. Here, we pivot
from that analog read-path analysis to a digital write-path threat model. We investigate what happens
when MRAM holds sensitive digital keys, and an attacker introduces carefully timed supply glitches
during write operations.

By momentarily depressing the supply voltage, we bias the spin-transfer switching process, which can
prevent the MTJ’s free layer from flipping correctly. This induces non-volatile bit errors that persist across
reboots, power cycles, and system resets, remaining stable until explicitly overwritten. This persistence
is the key differentiator from transient SRAM/DRAM upsets. These persistent corruptions convert one
successful physical fault into a tool for many faulty encryptions. This drastically reduces the ciphertext
requirement for DFA and enables the highly efficient SPFA framework.

4.2.2. The Intuition: Persistence⇒ Constancy⇒ Low Samples

The power of persistence is best understood through its direct algorithmic consequence: constancy. Let’s
assume a write-time glitch successfully implants a single-byte difference 𝛿 ̸=0 in a round key, for instance
in 𝐾9[ 𝑗], which is now persistently stored. Because this fault is non-volatile, this exact faulty key 𝐾 ′9 is
reused for all subsequent encryptions.

Due to the AES structure, this fault in byte 𝑗 of 𝐾9 propagates through the 10th round’s SubBytes
and ShiftRows operations to affect exactly one ciphertext byte, 𝑖 = 𝜋−1( 𝑗 ), at the input to the final
AddRoundKey. For any given plaintext, we can collect the correct ciphertext𝐶 (from an uncorrupted key)
and the faulty ciphertext 𝐶′ (from the persistently corrupted key).

For the correct guess 𝑘 = 𝐾10[𝑖] of the last-round key byte, the quantity

𝑇𝑘 (𝐶[𝑖],𝐶′[𝑖]) = 𝑆−1(𝐶[𝑖] ⊕ 𝑘) ⊕ 𝑆−1(𝐶′[𝑖] ⊕ 𝑘)

will be constant and equal to 𝛿 across all collected plaintext-ciphertext pairs. This equation effectively
"peels off" the last round’s AddRoundKey and SubBytes operations, revealing the differential 𝛿 at the
input to the 10th round’s SubBytes. For an incorrect key guess 𝑘 ′ ̸= 𝐾10[𝑖], the 𝑇𝑘 ′ values will appear
random and uncorrelated across the pairs.

This constancy test is a powerful distinguisher. It collapses the 28 per-byte hypothesis space with
very few samples. In an ideal model (a perfect single-byte fault, no measurement noise, perfect 𝐶/𝐶′
pairing),𝑚 = 2 pairs would suffice to find a unique candidate, and𝑚 = 3 pairs would make a false positive
statistically impossible. On real hardware, however, faults can be messy (multi-byte, multi-bit) and the
system has noise. Therefore, robust SPFA scoring under this real-world fault morphology requires about
12–17 pairs to filter out noise and push the per-byte success probability to ≈95–100%. As we show later,
this high per-byte reliability is necessary to achieve full 16-byte key success.

4.3. Threat Model

Adversary. We assume a non-invasive, board-level attacker who has temporary physical access to a
device that stores AES keys in an external or on-chip STT-MRAM. The attacker does not require expensive
equipment like a Focused Ion Beam (FIB) or laser. No decapsulation or direct probing of the MRAM
die is needed. The attacker also does not modify the AES algorithm or the FPGA’s logic. Crucially, the
attacker does not need the ability to read the MRAM’s contents directly, only to observe the output of the
AES engine. The attacker can reset the board, interact with the device using standard I/O (e.g., Universal
Asynchronous Receiver-Transmitter (UART), Direct Memory Access (DMA), AXI-Stream), and, most
importantly, physically perturb the MRAM’s dedicated power rail.
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Figure 4.1.: Experimental setup for voltage glitching attacks on STT-MRAM. (a) System-level architecture showing FPGA
(Pynq-Z1), ChipWhisperer-Pro, and oscilloscope connections for glitch injection and monitoring. (b) Laboratory setup with
MRAM mounted on Pynq-Z1, ChipWhisperer CW305, and CW1200. (c) Hardware implementation with MRAM daughterboard
interfaced to the Pynq-Z1 FPGA. (d) PCB layout of the custom MRAM daughterboard.

Capabilities. The attacker possesses three key capabilities: (i) Voltage glitching: The ability to connect
to the 𝑉MRAM power rail (e.g., at a decoupling capacitor) and momentarily short it to ground using an
external MOSFET crowbar, inducing a voltage droop. (ii) Chosen I/O: The ability to send plaintexts to
the AES engine and receive the corresponding ciphertexts. This is a standard user-level interaction. (iii)
Coarse timing: The ability to roughly synchronize the glitch with the MRAM write operation. This
does not require picosecond precision; monitoring a coarse signal like a GPIO pin, an LED, or a serial
"Key-loading..." message is sufficient to align the glitch within the millisecond-scale window of the
key-writing process.

Objective. The attacker’s goal is to induce a persistent byte difference 𝛿 in the MRAM-resident expanded
AES key. Once this stable fault is implanted, the attacker will perform a "pre-fault" encryption (to get 𝐶)
and a "post-fault" encryption (to get 𝐶′) using the same plaintext. By collecting a small number of these
(𝐶,𝐶′) pairs, the attacker aims to recover the full 128-bit master key via the DFA/SPFA constancy test.

4.4. Experimental Platform and Instrumentation

4.4.1. Board-Level Setup

We use a commodity, off-the-shelf Xilinx Pynq-Z1 FPGA board, which features a Zynq-7000 System-on-
Chip (SoC). This board is connected via its Peripheral Module Interface (PMOD) header to a custom SPI
STT-MRAM daughterboard (featuring a commercially available MRAM chip). To enable clean glitch
injection, the MRAM’s power rail (𝑉MRAM) is isolated from the board’s global 3.3 V rail using a small
series element (either a 1–2 Ω resistor or a ferrite bead). This isolation prevents the glitch from crashing
the main Zynq processor while ensuring the MRAM chip feels the full effect of the droop.

A ChipWhisperer-Pro serves as our glitch controller, driving a low-𝑅DS(on) MOSFET configured as a
"crowbar." When triggered, the MOSFET briefly shorts 𝑉MRAM to ground, generating sharp 10–80 ns
voltage droops of 350–700 mV. For validation, a Tektronix MSO 2024B oscilloscope monitors 𝑉MRAM,
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the main 3V3_SYS rail, the SPI chip select (CS#), SPI clock (SCLK), and the glitch trigger (TRIG) signal.
Figure 4.1 shows the overall system diagram and lab photos that we will reference during timing analysis.

4.4.2. AES Integration and Key-Schedule Handling

To create a realistic but faultable interface, we designed our system to explicitly store all AES round keys
(𝐾0 through𝐾10) in the external STT-MRAM, rather than caching them in the FPGA’s on-chip Block RAM
(BRAM) as a fully hardened design might. We implemented a custom Key-Schedule Manager (KSM)
module in the FPGA logic. This KSM is responsible for streaming the key bytes from the MRAM over the
Serial Peripheral Interface (SPI) bus into the AES core as needed. The AES core itself remains unmodified
(a standard, unhardened AXI-Stream-based core). This architecture exposes the key-schedule-to-MRAM
interface, making the write operation a distinct, targetable event.

4.5. Attack Methodology: Targeting the MRAM Commit Window

4.5.1. Timing Model and Parameter Sweep

Our first step is to precisely locate the MRAM’s sensitive commit window. We know that MRAM write
cycles are significantly longer and more power-intensive than read cycles. Only the narrow commit
window within this cycle is sensitive to voltage faults. To find it, we generate one trigger (TRIG) signal
from the FPGA at the start of each SPI data write. We then systematically sweep the glitch parameters:

• Offset: from -200ns before the TRIG to +800ns after.

• Width: from 5ns to 200ns.

• Depth: from 10% to 35% drop of 𝑉MRAM.

For each (offset, width, depth) tuple, we perform ≥1000 write-and-read-back repetitions to build a
statistical map of the fault probability. As shown in Figure 4.2, the device-interface timing clarifies why
the write path is vulnerable, and the empirical sweep in Figure 4.3a pinpoints the narrow high-probability
region (validated by the scope captures in Figure 4.3b).

4.5.2. Persistence Definition and Morphology

Not all observed faults are useful. We establish a strict definition for a persistent fault: a corrupted
byte must (i) appear identically across 100 consecutive read-back attempts, (ii) survive ≥5 complete
board power cycles (cold reboots), and (iii) be correctly cleared upon a subsequent, clean (non-glitched)
overwrite.

When analyzing the faults that meet this definition, we observe their fault morphology (i.e., their
physical shape). Spatially, the faults are highly localized: we observe 1–3 flipped bits, almost always
within a single byte, with only rare spillover to an adjacent byte. Temporally, we confirm the STT
asymmetry: the P→AP transition (’0’→’1’) shows up to 3× higher susceptibility to glitches than the
AP→P transition. This physical bias, shown in Figure 4.4, is a key finding we can use to optimize the
SPFA.

4.6. Cryptanalysis Under Persistent Faults

4.6.1. Notation and Fault Model

We formalize the attack on AES-128 [7]. Let the round keys be 𝐾0, . . . , 𝐾10. We use 𝑆 for the SubBytes
S-box and 𝑆−1 for its inverse. 𝜋 denotes the ShiftRows permutation, and 𝑥[𝑖] denotes byte 𝑖 of a state 𝑥 .
Our persistent fault model states that a successful glitch injects a fixed, nonzero byte difference 𝛿 ∈ F28
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Figure 4.2.: Timing diagrams at the device interface, showing longer write cycle requirements compared to read access. The
extended write window makes write operations more susceptible to precisely timed glitch injection, which is leveraged in our
fault attack model.

(a) Glitch window characterization: measured fault probability vs.
glitch offset for P→AP and AP→P transitions.

(b) CS#, SCLK, and TRIG traces confirm that the glitch overlaps the
MRAM write commit window.

Figure 4.3.: Empirical characterization and validation of optimal glitch injection timing in MRAM writes.

into some round key byte 𝐾𝑟 [ 𝑗]. This creates a faulty key schedule 𝐾 ′ where 𝐾 ′𝑟 [ 𝑗] = 𝐾𝑟 [ 𝑗] ⊕ 𝛿 , and this
𝐾 ′ is used for all subsequent encryptions until it is overwritten.

4.6.2. Case A: Persistent Fault in𝐾10 (Direct Leakage)

This is the simplest, though less common, case. If the attacker successfully glitches a byte 𝑖 in the final
round key, 𝐾 ′10[𝑖] = 𝐾10[𝑖] ⊕ 𝛿 , then for any plaintext 𝑃 , the correct and faulty ciphertexts 𝐶,𝐶′ will be:

𝐶′[𝑖] = 𝑆(𝑋9[𝑖]) ⊕ 𝐾 ′10[𝑖] = 𝑆(𝑋9[𝑖]) ⊕ 𝐾10[𝑖] ⊕ 𝛿 = 𝐶[𝑖] ⊕ 𝛿

𝐶′[ 𝑗] = 𝐶[ 𝑗] (for 𝑗 ̸= 𝑖)

The fault difference ∆𝐶[𝑖] = 𝐶[𝑖] ⊕ 𝐶′[𝑖] = 𝛿 is observed directly on the ciphertext output. This
immediately exposes the corrupted byte location 𝑖 and the fault value 𝛿 . Standard last-round differential
tests can then be used to recover 𝐾10[𝑖] immediately.
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(a) Persistent faults: spatial locality (targeted byte vs. neighbors). (b) Persistent faults: bit-flip polarity with P/AP asymmetry.

Figure 4.4.: Spatial/polarity characterization of persistent MRAM faults, used later to weight SPFA scores.

4.6.3. Case B: Persistent Fault in𝐾9 (Constancy Test)

This is the more general and powerful attack. Let the persistent fault be 𝐾 ′9[ 𝑗] = 𝐾9[ 𝑗] ⊕ 𝛿 . This fault 𝛿
at the input to round 9 propagates. At the input to the last round (after round 9’s SubBytes, ShiftRows,
and MixColumns), the difference will have diffused. However, when we look at the *output* ciphertext,
only byte 𝑖 = 𝜋−1( 𝑗 ) (the byte affected by ShiftRows from 𝑗) is impacted by this fault *before* the final
MixColumns (which doesn’t exist in the last round). Let 𝑢[ 𝑗] be the state input to 10th-round SubBytes.

𝐶[𝑖] = 𝑆(𝑢[ 𝑗]) ⊕ 𝐾10[𝑖]

𝐶′[𝑖] = 𝑆(𝑢[ 𝑗] ⊕ 𝛿) ⊕ 𝐾10[𝑖]

To find the unknown 𝐾10[𝑖], we test all possible values 𝑘 in our case. We rearrange the equations:
𝑢[ 𝑗] = 𝑆−1(𝐶[𝑖] ⊕ 𝑘) and 𝑢[ 𝑗] ⊕ 𝛿 = 𝑆−1(𝐶′[𝑖] ⊕ 𝑘). Eliminating the unknown state 𝑢[ 𝑗] by XORing the
two equations gives the PFA constancy test:

𝑇𝑘 (𝐶[𝑖],𝐶′[𝑖]) = 𝑆−1(𝐶[𝑖] ⊕ 𝑘) ⊕ 𝑆−1(𝐶′[𝑖] ⊕ 𝑘) = 𝛿 ⇐⇒ 𝑘 = 𝐾10[𝑖]. (4.1)

For the correct key 𝑘 , 𝑇𝑘 will equal the *constant* value 𝛿 for all pairs (𝐶,𝐶′). For a wrong key 𝑘 , 𝑇𝑘 will
be random. The chance that a wrong key 𝑘 *also* produces a constant 𝑇𝑘 across𝑚 pairs is approximately
2−8(𝑚−1). Using𝑚 = 3 pairs makes the error probability ≈ 2−16, making false positives negligible. This is
an analytic lower bound [9].

4.6.4. From Per-Byte to Full-Key: Required Reliability

The constancy test recovers one byte, 𝐾10[𝑖], at a time. To recover the full 16-byte key 𝐾10, we need
all 16-byte tests to succeed. Define 𝑝byte(𝑚) as the success probability for a single byte using𝑚 pairs.
Assuming the byte recoveries are approximately independent, the probability of recovering the entire key
is:

𝑝all(𝑚) ≈ (𝑝byte(𝑚))16

This formula reveals a critical challenge. Even if our per-byte success is a high 95% (𝑝byte = 0.95), the
full-key success would be 0.9516 ≈ 0.44 (less than 50/50). To target a robust full-key success of 𝑝all ≥ 0.95,
we require a per-byte success of 𝑝byte ≥ 0.951/16 ≈ 0.9968. This explains why our experiments must push
𝑚 well beyond the ideal 2–3 pairs, into the 12–17 range, to achieve near-certain full-key success on real,
noisy hardware.

4.6.5. Robustness: SPFA Scoring

Real-world faults are not always ideal single-byte injections. Multi-byte bursts (∼6% of our campaigns)
and the P→AP asymmetry distort the pure constancy test. For example, a multi-byte fault might mean
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(a) Per-byte success probability vs. number of pairs (b) Key-rank CDF for one byte of 𝐾10

Figure 4.5.: DFA/SPFA effectiveness under persistent faults: (a) ≈12 pairs reach ∼95% per-byte success; (b) with𝑚=17, the
correct key reaches rank-1 in >99% of trials.

Figure 4.6.: SPFA score distribution: the correct key 𝑘∗ yields a sharp, stable peak at the same 𝛿 across pairs; wrong keys are
near-uniform.

that 𝑇𝑘 is constant for 90% of pairs but "noisy" for 10%. A simple "is-it-constant" check would fail. We
therefore use a more robust SPFA-style consistency score. Instead of a binary check, we compute the
histogram of 𝑇 (𝑡 )

𝑘
values across all𝑚 pairs for a given key 𝑘 . The correct key 𝑘 will have a histogram with

a very strong peak at 𝛿 , while wrong keys 𝑘 ′ will have flat, uniform histograms. This scoring method
tolerates partial/noisy constancy and still singles out the correct key. This score can be optionally weighted
by physically likely 𝛿 values (e.g., those corresponding to P→AP flips). The characteristic separation this
produces is shown later in Figure 4.6.

4.7. Results and Analysis

4.7.1. Selective Glitching Without Board Destabilization

Our oscilloscope captures confirm the effectiveness of the isolated power rail design. We successfully
generated sharp 350-700mV droops on𝑉MRAM, lasting 10-80ns. Critically, the main 3V3_SYS rail for the
Zynq processor remained stable, deviating by < 20mV. This proves that we can aggressively fault the
MRAM without causing a system-wide crash or reset, a key requirement for a practical attack. Faults
were only observed when the droop pulse overlapped with the pre-characterized commit window (from
Figure 4.3a and Figure 4.3b), validating both our rail isolation and timing alignment methodology.

4.7.2. Glitch Window and Asymmetry

The experimental results from the parameter sweep (section 4.5) are clear. The high-probability fault
window is consistently ≈40–60ns wide and centered ≈+120ns after the SPI write trigger (Figure 4.3a).
Scope validation in Figure 4.3b shows the overlap of the crowbar pulse with this commit window. We
also quantified the physical asymmetry. By controlling the data written (all ’0’s vs. all ’1’s), we isolated
P→AP and AP→P transitions; the former reached 55–70% peak fault probability vs. 20–35% for the latter,
which is consistent with the polarity histograms in Figure 4.4b.
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Table 4.1.: Our work vs prior MRAM security literature

Works Platform Attack
Class

Result
(AES)

Reliability/Endurance
of STT-
MRAM [61],
[68]

SimulationVariation /
stress anal-
ysis

N/A

Leakage in MRAM
systems [58]

Device Side-
channel
(tim-
ing/power)

N/A

Magnetic field
bias on pMTJ
MRAM [71], [76]

Device Magnetic
fault/bias

N/A

CPA on MRAM-
backed crypto [50]

Device
+ board

Power side-
channel
(CPA)

key recov-
ery 2k–5k
traces

This work
(MRAM write-
cycle faults)

Device
+ board

Voltage-
glitch
during
writes

key recov-
ery 12–17
ciphers

4.7.3. Persistence and Morphology

We validated the non-volatility of the faults. All injected faults that passed our filter remained perfectly
stable across 100 consecutive reads and, more importantly, across at least five full power cycles of the
board. They were only cleared by a clean, non-glitched write. Out of 50 successful fault-injection
campaigns, 42 produced a persistent fault. The morphology was predominantly byte-local: most persistent
faults consisted of 1–3 flipped bits within a single target byte. However, multi-byte bursts (corrupting 2–4
adjacent bytes) occurred in ∼6% of campaigns, reinforcing the need for robust SPFA scoring over simple
DFA as visualized by Figure 4.6.

4.7.4. Key-Recovery Effectiveness

With persistent 𝐾9 faults, we evaluated the SPFA algorithm’s effectiveness.

• Per-byte success vs. pairs: Using our SPFA scoring, acquiring ≈12 pairs yields a ∼95% per-byte
success rate (Figure 4.5a). Pushing to ≈17 pairs increases the per-byte success to ∼100%, and the
correct key reaches rank-1 in >99% of trials (Figure 4.5b).

• SPFA separation: A visualization of the SPFA scores (Figure 4.6) shows the correct key’s
score clustering tightly at the maximum, while all 255 wrong key guesses have scores scattered
near-uniformly, demonstrating a large statistical separation.

Because each (𝐶,𝐶′) pair contains information for all 16 bytes (as the fault propagates differently to each),
the same𝑚 = 12–17 pairs are sufficient for the full-key recovery.

4.7.5. Why 12–17 on Hardware (vs. 2–3 in the Ideal Model)

The discrepancy between the analytic bound (𝑚 = 2 or 3) and our hardware result (𝑚 = 12 to 17) is
explained by real-world non-idealities: (i) Fault Morphology: The ideal model assumes a single-byte
fault 𝛿 . Our hardware sometimes produced multi-byte faults or 𝛿 values that were not perfectly constant
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(e.g., if the glitch was probabilistic), creating "noise" in the constancy test. (ii) Statistical Robustness:
The SPFA scoring method, which uses a histogram, inherently requires more samples than a simple binary
check to build a statistically significant peak. (iii) Full-Key Requirement: As shown in section 4.6,
achieving 𝑝all ≥ 0.95 requires a per-byte reliability 𝑝byte ≳ 99.7%. The ideal 𝑚 = 3 might only give
𝑝byte = 99%. The extra pairs (from 3 to 17) are needed to bridge this gap and ensure all 16 bytes are
recovered reliably.

4.7.6. Comparison to Volatile-Memory DFA

The impact of this result is best seen in comparison. Classical DFA on volatile memory (SRAM/DRAM)
is a high-effort attack. The fault is transient, so the attacker must re-inject a fault for every single ciphertext
they wish to collect. This often requires thousands of attempts, meticulous synchronization, and complex
statistics to separate successful injections from system crashes. Our persistent-fault method requires
one successful glitch campaign. After that, the per-run synchronization challenge is eliminated. This
collapses the data complexity and practical effort to just 12–17 pairs for reliable, full-key recovery.

4.8. Ablations and Sensitivity

4.8.1. Targeting𝐾10 vs.𝐾9

We analyzed attacks targeting both 𝐾10 and 𝐾9. Targeting 𝐾10 is simpler, as it yields direct byte differences
∆𝐶 = 𝛿 (Case A). This is easy to detect and requires fewer algebraic checks. However, this simplicity is
also a weakness, as the direct ∆𝐶 can be easily masked by simple countermeasures. Targeting 𝐾9 (Case B)
is more powerful. It unlocks the stronger, non-linear constancy test of Equation 4.1. We found this test
performs much better under the robust SPFA scoring, especially when the fault morphology is messy
(e.g., multi-byte), as the S-box’s non-linearity helps differentiate the signal.

4.8.2. Effect of Multi-Byte Bursts

We explicitly studied the ∼6% of campaigns that resulted in multi-byte fault bursts. When bursts flip
adjacent round-key bytes (e.g., 𝐾9[ 𝑗] and 𝐾9[ 𝑗 + 1]), the diffusion of AES causes some ciphertext bytes to
carry overlapping evidence from both faults. A simple DFA test would fail. However, SPFA’s aggregate
histogram-based score is highly resilient. It effectively integrates the "partial evidence" from all pairs and
bytes, reducing false positives and still identifying the correct key, albeit at the cost of requiring a slightly
higher𝑚 (e.g., closer to 17 pairs than 12).

4.8.3. Plaintext Selection

We tested whether chosen-plaintext strategies (e.g., selecting plaintexts that stress specific S-box activity
patterns or known differential trails) offered any advantage over uniform random plaintexts. We found that
uniform random plaintexts are perfectly sufficient. The "signal" from the persistent fault 𝛿 is so strong
and consistent that it dominates the statistical analysis. While chosen-plaintext strategies might offer a
marginal gain (e.g., reducing𝑚 from 17 to 16), the empirical improvement was within the noise bound of
our experimental campaigns.

4.9. Countermeasures Tailored to MRAM

Our analysis of the fault’s physical origin (the commit window) and its algorithmic exploitation (persistence)
points to several effective, MRAM-specific countermeasures.
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4.9.1. PUF-Bound Sealing of Key Slots

We bind each MRAM key slot to a device-unique secret derived from a Physical Unclonable Function
(Physical Unclonable Function (PUF)). On boot, the device reads the MRAM slot, decrypts it with the
PUF key, and verifies an integrity tag (e.g., a MAC). A persistent corruption from a glitch attack will
cause this integrity check to fail. The system can then securely invalidate the faulty slot and request
re-provisioning. This countermeasure converts the *silent* data corruption into a detectable attestation
failure, preventing any reuse of the faulty key.

4.9.2. Randomized Commit Timing (Write Dither)

Our attack relies on a fixed, predictable glitch offset (+120ns) to hit a fixed, predictable commit window
(40-60ns wide). This can be broken by introducing jitter. A hardware write-controller can dither the
MRAM write pulse timing. By adding a PUF-keyed, pseudo-random delay of ±(80–100) ns to the start of
the commit, the sensitive window will move around randomly in time, far exceeding its 40-60ns width.
An attacker’s fixed-offset glitch will now miss the window most of the time, reducing the fault probability
from >50% to near zero. This adds negligible latency overhead.

4.9.3. Dual-Slot + ECC/CRC + Write-Verify

This is a classic data-integrity solution, applied here for security. Instead of storing one copy of the key,
we store two masked copies per slot (e.g., 𝐾 and 𝐾 ⊕ 𝑅) and/or add Error-Correcting Code (ECC) or
a Cyclic Redundancy Check (CRC). Most importantly, implement a write-verify protocol: after every
MRAM write, the KSM must immediately read the data back and verify its integrity (checking ECC/CRC,
or that the two masked copies XOR to 𝑅). This check must happen before the key is used. Our dominant
fault morphology (single-byte flips) is easily caught by this. On mismatch or ECC failure, the system
must scrub and rewrite the slot.

4.9.4. Rail Monitoring and Write Gating

Since the attack requires a fast voltage droop on 𝑉MRAM, this droop can be detected. An on-chip,
lightweight monitor (e.g., a fast ring-oscillator (RO) or the Zynq’s built-in XADC) can sense the 𝑉MRAM
rail. The MRAM write-controller can be gated by this monitor: it should refuse to initiate a write cycle
unless the rail has been detected as stable for a minimum pre-window duration. This blocks a large
fraction of simple crowbar-style attempts or forces the adversary into using much smaller, less-effective
(and thus less reliable) glitch pulses.

4.9.5. Architectural Surface Reduction

The most robust solution is to reduce the attack surface entirely. Avoid storing the full, expanded round-key
schedule persistently. Instead, store only the 128-bit master key (sealed and PUF-bound, as above). The
round keys can then be generated on-the-fly by a hardware key-expansion core and stored in volatile,
on-chip BRAM for each encryption session. This eliminates the MRAM write operation on the sensitive
round keys entirely.

4.10. Discussion and Outlook

4.10.1. Why This Work is Effective

This attack is highly effective because it represents a confluence of three factors: (1) Physically grounded:
It is not a theoretical model. It exploits a narrow, repeatable, physical property of STT-MRAM: the
write-cycle commit window and its STT asymmetry. (2) Algorithmically potent: It leverages the
persistence of the NVM to perfectly match the PFA/SPFA attack model, which provides the constant-𝛿
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structure needed for the constancy test. (3) Practical: The attack is board-level, non-invasive, and uses
commodity tools (FPGA, ChipWhisperer). It achieves a full key recovery with a remarkably low data
complexity of just 12–17 pairs.

4.10.2. Beyond This Chapter: Invertible Randomized Wrappers

Looking forward, a more advanced architectural hardening could involve per-encryption invertible
nonlinear transforms. The idea is to insert byte-wise bijections (e.g., small, keyed S-boxes) as pre-
and post-processing wrappers around the standard AES core. These wrappers would be re-keyed for
every encryption. This breaks the fundamental assumption of PFA/SPFA: even if the fault 𝛿 in the
key is persistent, the observable differential at the ciphertext 𝑇𝑘 (𝐶,𝐶′) is no longer constant, as it is
"de-correlated" by the changing wrappers. Note that simpler countermeasures like linear masks or masked
S-boxes (common in SCA defense) are often ineffective against this attack, as the persistence-driven
constancy holds regardless of linear masking.

4.11. Practical Deployment Guidance

Based on these findings, we offer concrete guidance for engineers deploying MRAM-backed secure
systems:

• Supply routing: Treat𝑉MRAM as a sensitive security rail. Isolate it from other rails (as we did) and
add local monitoring. Avoid routing externally visible trigger signals (like ”𝑆𝑃𝐼𝐶𝑆”) that correlate
directly with MRAM commit windows.

• Key lifecycle: All persistent key slots must be sealed (e.g., to a PUF) and tagged with version
numbers or integrity MACs. Implement a secure boot process that scans and verifies these slots.
Periodically scrub and refresh slots.

• Helper data: If using PUFs or ECC, the helper data and ECC tags must also be protected with
integrity checks. Never store raw, reconstructible PUF responses.

• Secure boot: The bootloader must "fail closed." On any MRAM slot verification failure, it must
halt, log the event, and enter a secure recovery or re-provisioning mode, rather than booting from a
potentially corrupted state.

4.11.1. Implications for Emerging AI Accelerators

Although the quantitative analysis in this chapter targets an AES key schedule, the primary motivation
is to characterize a fundamental vulnerability. The underlying threat is not specific to AES; it is the
vulnerability class of write-time, byte-local persistent corruption in STT-MRAM. This exact primitive has
direct and severe implications for emerging AI accelerators that increasingly rely on MRAM and other
NVMs for on-device model storage, in-memory computing, or intermediate caching. Three concrete
mappings illustrate this risk transfer.

First, MRAM is increasingly proposed for direct weight and hypervector storage due to its non-volatility,
high density, and low-leakage (zero standby power). A persistent bit flip in an on-device neural network
weight or a Hyperdimensional Computing (HDC) class hypervector creates a persistent change in the
model’s inference behavior. This is perfectly analogous to a persistent key fault producing repeatable
faulty ciphertexts. In HDC systems, where classification relies on bit-wise similarity (e.g., Hamming
distance), a few targeted, flipped bits in a stored class hypervector could systematically alter similarity
scores, inducing a targeted and repeatable misclassification (e.g., forcing a specific input to always be
classified as an adversary-chosen category).

Second, modern secure deployment practices often mandate that on-device models are encrypted at
rest. The decryption key for these models must be stored somewhere. If this key is stored in MRAM, it
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becomes a direct target. Our SPFA demonstration on MRAM-backed AES shows that such key material is
highly vulnerable to low-cost, low-sample persistent fault extraction. Once this model-decryption key is
recovered, the proprietary AI model (the weights, architecture) becomes trivially exfiltrable, constituting
a major intellectual property breach. Thus, SPFA is not merely a cipher-level concern but a direct threat
to model confidentiality.

Third, hybrid attacks become possible. An adversary could use passive side-channel analysis (SCA) to
profile the accelerator’s memory access patterns, identifying the precise timing and physical addresses of
sensitive write operations (e.g., model update or key provisioning). Armed with this timing information,
they can then launch a targeted persistent-glitching attack, maximizing the probability of corrupting a
specific, high-value parameter. This combined SCA+PFA pipeline is particularly potent for edge AI
accelerators that operate with real-time constraints and often forgo robust write-verification checks to
save power and latency.

These observations motivate a unified defensive strategy. The same security principles apply. Measures
that defend MRAM-backed AES, such as PUF-sealing of storage slots, randomized commit timing,
write-verify with ECC/CRC, and on-chip rail monitoring, naturally transfer to securing AI accelerators.
We advocate for encrypting and/or MAC-ing model parameters under a PUF-derived key, using hardware
to jitter MRAM write timing to prevent repeatable fault injection, implementing robust post-write detection
(write-verify) to detect and scrub persistent corruptions, and avoiding long-lived persistent caches of any
sensitive model artifacts. We demonstrate the foundation for this transferability in section 4.9 by applying
PUF-binding and write-verify to the AES setting, outlining how these identical measures protect model
integrity and confidentiality in broader AI accelerator contexts.

4.12. Summary

This chapter demonstrated that MRAM’s core feature—non-volatility—can be turned against it. A
well-timed, non-invasive write-cycle glitch becomes a persistent cryptanalytic primitive. This primitive
creates stable, byte-localized key-schedule faults that survive reboots. We showed how this persistence
perfectly matches the PFA/SPFA model, collapsing the data complexity for a full AES-128 key recovery to
a practical 12–17 ciphertext pairs on real hardware. We presented the physically grounded methodology for
finding the MRAM commit window, a complete cryptanalysis (using the Equation 4.1 constancy test and
robust SPFA scoring, Figure 4.6), and a suite of MRAM-specific countermeasures (like write-dithering and
PUF-sealing) with modest overheads. The results send a clear message: MRAM-backed cryptosystems
and secure storage designs demand a new class of defenses that go beyond those designed for transient
SRAM/DRAM faults, with direct implications for the security of next-generation AI accelerators.
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5.1. Introduction

The convergence of AI with novel hardware form factors is paving the way for ubiquitous, intelligent
systems. Applications in wearable health monitoring, soft robotics, and bio-electronic interfaces demand
computing platforms that are not only energy-efficient but also mechanically compliant, lightweight, and
low-cost. FE, often based on TFTs like amorphous indium-gallium-zinc oxide (a-IGZO), have emerged
as a primary enabler for this vision, allowing computation to be integrated directly onto conformal and
even transparent substrates [101].

In parallel, biologically inspired SNNs have garnered significant interest as a power-efficient computing
paradigm for these edge applications. Unlike conventional Artificial Neural Network (ANN)s, SNNs
operate on event-driven, discrete spikes, performing sparse, asynchronous computation. This model
drastically reduces redundant switching activity, making f-SNNs an ideal match for the stringent power
and thermal budgets of on-skin or implantable devices.

However, this combination of flexible substrates and event-driven computing introduces a new, largely
unexplored security vulnerability. The very attributes that make FE attractive are, from a security
perspective, critical weaknesses:

• Reduced Physical Protection: Flexible devices inherently lack the rigid packaging, metallic
shielding, and complex multi-layer ground planes of conventional silicon chips. This thin
encapsulation significantly increases exposure to physical leakage.

• Simplified Power Delivery: To maintain low cost and flexibility, these systems often rely on
limited I/O and shared power supply rails, restricting the use of common side-channel defenses like
split-domain power or on-chip filtering.

• Data-Correlated Activity: The event-driven nature of SNNs, while efficient, directly correlates
power consumption with the data being processed. Each spike, or lack thereof, represents a discrete
computational event, yielding current and timing signatures that are rich with information.

This research confronts the hypothesis that these factors combine to make flexible SNNs (f-SNNs) highly
susceptible to power-based SCA. While SCA on rigid CMOS neural accelerators is a well-established
field [86], the unique device physics of a-IGZO TFTs and the analog, continuous-time dynamics of
flexible circuits present a distinct and uncharacterized threat landscape [95].

To bridge this critical gap, this chapter introduces FlexSpy, a comprehensive, design-time side-channel
framework specifically engineered for flexible neuromorphic hardware. FlexSpy provides the first
end-to-end pipeline to model, simulate, and quantify power-based information leakage in f-SNNs before
fabrication.
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5.2. Hardware Design

5.2.0.1. Flexible Spiking Neural Networks (f-SNN).

Spiking neurons [97], [98], [102] exchange discrete events and remain quiescent between spikes. As
shown in Figure 5.1 (left), a typical f-SNN cell integrates (i) a synaptic input stage that forms a current or
conductance sum

𝑖syn(𝑡 ) =
∑︁
𝑖

𝑤𝑖 𝑠𝑖 (𝑡 ),

(ii) an 𝑅𝐶 integrator that accumulates charge to a threshold, and (iii) reset-discharge control that enforces
a refractory interval. These blocks map well to TFT physics and enable low-power operation on bendable
substrates.

However, their continuous conduction paths and shared supply rails create data-dependent shifts in the
supply current: quasi-DC offsets during spike epochs with sharp edges at spike onsets/offsets. These
offsets later provide alignment anchors and classification features in side-channel traces, as exploited by
FlexSpy.

5.2.0.2. Flexible Recurrent Neural Networks (f-RNN).

Flexible recurrent designs realize smooth state dynamics without discrete spikes. Each hidden state is
stored on a capacitor, while first- or second-order 𝑅𝐶 sections set learnable time constants 𝜏𝑖 = 𝑅𝑖𝐶𝑖 .
Weighted sums and activation functions use resistive networks and transconductance stages, forming a
continuous-time approximation to recurrent models, as shown in Figure 5.1 (right). Compared with sparse,
event-driven f-SNNs, f-RNNs produce smoother supply-current envelopes with weaker spike-aligned
features; leakage concentrates at low frequencies and reflects interactions between state voltages, bias
currents, and the power-delivery network (PDN).

Figure 5.1.: Circuit-level implementations of flexible neuromorphic circuits (f-NCs) analyzed in this work. Left: f -SNN cell with
Synapse, Charge/Integrate, and Reset/Discharge stages. Right: f -RNN cell with recurrent 𝑅𝐶 dynamics for continuous-time
state evolution.

As summarized in Figure 5.2, the f-SNN supply current exhibits step-like, spike-synchronous offsets,
whereas the f-RNN output is smoother and less sharply aligned to individual events. This qualitative
difference is the root cause of richer, more easily exploitable leakage in f-SNNs.

5.3. The FlexSpy Framework Methodology

FlexSpy is a design-time, simulation-based framework for predicting, localizing, and mitigating power
side-channel leakage in flexible neuromorphic circuits (f-NCs). The complete end-to-end procedure
is illustrated conceptually in Figure 5.3 and detailed in Algorithm 3. The pipeline begins with device
models and a circuit netlist, synthesizes power traces, extracts spike-aligned features, and then executes a
calibrated attack suite to quantify and localize leakage.
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(a) Raw traces of f-SNN showing spike-triggered current
steps.

(b) Raw traces of f-RNN showing smooth oscillatory en-
velopes.

Figure 5.2.: Distinct leakage primitives from raw power traces: spike-driven quasi-DC offsets in f-SNN (left) vs. smoother
low-frequency RC oscillations in f-RNN (right).

Figure 5.3.: Overview of the FlexSpy framework pipeline. FlexSpy provides a complete design-time flow: from technology-
calibrated device simulation and PDN modeling to spike-aligned feature extraction, a calibrated attack suite (CPA, templates,
regression, MI), and quantitative localization (SLI), enabling in-loop evaluation of countermeasures.

5.3.1. Threat Model and Leakage Observables

We assume a practical, non-invasive adversary with the following capabilities:

• Measurement: The attacker has physical access to the device and inserts a small (1–10 Ω) shunt
resistor in series with the main 𝑉𝐷𝐷 supply (Supply Voltage (VDD)). They measure the voltage
drop across this shunt to record a single, aggregate power trace, 𝐼𝐷𝐷 (𝑡 ).

• No Internal Access: The attacker has no internal probes, no access to on-chip clocks, and no
dedicated “trigger” signal indicating the start of computation.

• Alignment: To overcome the lack of a trigger, we introduce a virtual trigger, 𝑉trig(𝑡 ), which the
attacker computes numerically from the same power trace. This virtual trigger is used only to
segment the trace into spike epochs for analysis.

5.3.2. Substrate-Aware Leakage Model for f-SNNs

Understanding what leaks is the first step. Based on the a-IGZO TFT physics and the circuit topology in
Figure 5.1, the total supply current 𝐼𝐷𝐷 (𝑡 ) can be modeled as the sum of three primary components:

𝐼𝐷𝐷 (𝑡 ) ≈ 𝐼𝑏𝑖𝑎𝑠 +𝑉ℎ𝑒𝑎𝑑
∑︁
𝑖

𝑔𝑖𝑠𝑖 (𝑡 ) +
∑︁
𝑘

𝐶𝑘
𝑑𝑉𝑘

𝑑𝑡
+ 𝑛(𝑡 ), (5.1)

where:

• 𝐼𝑏𝑖𝑎𝑠 is the static, idle current of the circuit.

• 𝑉ℎ𝑒𝑎𝑑
∑
𝑖 𝑔𝑖𝑠𝑖 (𝑡 ) is the quasi-DC offset term. This is the dominant leakage source. 𝑔𝑖 represents

synaptic conductances (weights), and 𝑠𝑖 (𝑡 ) is synaptic activity (spike rate). During a spike epoch,
active synapses create continuous conduction paths, drawing a sustained current proportional to the
total active conductance. This creates an observable DC-level shift in the power trace, consistent
with the step-like behavior in Figure 5.2.
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• ∑
𝑘 𝐶𝑘

𝑑𝑉𝑘
𝑑𝑡

is the transient displacement current from charging/discharging internal node capaci-
tances 𝐶𝑘 . These currents correspond to sharp spike edges.

• 𝑛(𝑡 ) is device and instrumentation noise.

At the millisecond/kHz scales of SNNs, the quasi-Direct Current (DC) offset term dominates the
observable leakage, and it is this feature that FlexSpy primarily targets when building leakage models and
attacks.

5.3.3. Trace Synthesis and Spike-Aligned Feature Extraction

Trace Synthesis. The framework uses a Process Design Kit (PDK)-calibrated transient simulation (e.g.,
in Cadence Spectre) to generate power traces. Neuron and synapse blocks are implemented with a-IGZO
TFT models, poly-resistors, and Metal–Insulator–Metal (MIM) capacitors. A compact model of the PDN,
including series rail resistance and decoupling capacitors, is crucial for capturing the non-ideal effects of
a flexible backplane (e.g., rail droop and coupling between distant cells). Traces are simulated across
various process, voltage, and temperature (PVT) corners to emulate realistic manufacturing variation and
environmental conditions.

Spike-Aligned Feature Extraction. We apply a three-step process to isolate information-rich features
from the raw 𝐼𝐷𝐷 (𝑡 ) trace:

1. Baseline Removal & Filtering: The idle baseline 𝐼𝑏𝑖𝑎𝑠 is estimated from quiescent segments and
subtracted. A light low-pass filter suppresses measurement noise while preserving the ms-scale
dynamics of the quasi-DC offsets.

2. Virtual Trigger Alignment: The attacker computes the virtual trigger 𝑉trig(𝑡 ) to identify spike
epochs. Since the quasi-DC offsets create sharp edges at their onset and offset, their derivative is
large. The virtual trigger is thus computed as the time-derivative of the supply current (or the shunt
voltage):

𝑉trig(𝑡 ) = 𝛼
𝑑

𝑑𝑡
𝐼𝐷𝐷 (𝑡 ) ≡ 𝑑

𝑑𝑡
𝑉𝑠ℎ𝑢𝑛𝑡 (𝑡 ). (5.2)

By thresholding 𝑉trig(𝑡 ), the attacker robustly detects the rising and falling edges of spike windows
[𝑡0, 𝑡1] without any internal trigger.

3. Per-Window Feature Computation: For each segmented window𝑤 , the framework computes the
key leakage feature, the average DC-level shift:

∆𝐼 (𝑤)
𝐷𝐶

=
1

𝑡1 − 𝑡0

∫𝑡1
𝑡0

(𝐼𝐷𝐷 (𝑡 ) − 𝐼𝑏𝑖𝑎𝑠 )𝑑𝑡, (5.3)

which directly measures the quasi-DC term in Equation 5.1. Additional features such as spike count
(estimated from 𝑉trig), inter-spike intervals (Inter-Spike Interval (ISI)), and coarse timing statistics
are also extracted to form a feature vector 𝑍 (𝑤) per window.

For downstream attacks we typically concatenate window-wise features into a design-level vector zdesign,
optionally augmented by device-level indicators (e.g., idle noise, static offsets).

5.3.4. Calibrated Attack Suite

After feature extraction, FlexSpy applies a suite of attacks (summarized in Algorithm 3) to quantify the
exploitable information.
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Correlation Power Analysis (CPA). CPA is used to localize when leakage is strongest. We correlate the
feature vector 𝑍 (𝑤) (primarily ∆𝐼 (𝑤)

𝐷𝐶
) with a linear predictor of rate-weighted activity,

𝑥 =
∑︁
𝑖

𝑔𝑖𝑠𝑖 ,

and compute the Pearson correlation across windows. Peaks in the sliding-CPA trace identify dominant
leakage windows and validate the quasi-DC leakage model [12].

Template Profiling (Gaussian). To perform label inference (classifying which input 𝑦 was processed),
we train Gaussian templates (e.g., Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA)) on the feature vectors 𝑍 from a profiling set. At attack time, per-window log-likelihoods are
summed to form a global score for each candidate label, yielding a powerful profiled attack.

Regression for Continuous Recovery. To recover continuous values such as layer-wise spike rates, we
train ridge regressors mapping the feature vector 𝑍 to per-layer rate vectors 𝑟 (𝑙 ). High 𝑅2, low NMSE,
and high cosine similarity indicate that an attacker can accurately estimate intermediate firing rates from
power alone.

5.3.5. Leakage Quantification and Localization

Two-Layer Mutual Information Accounting. To distinguish device-specific leakage from design-level
leakage, we use a two-layer Mutual Information (MI) decomposition. Let 𝑆 denote the secret (e.g., label𝑦),
𝐿device capture device-specific features (e.g., idle noise, static offsets), and 𝐿design denote the spike-window
features (e.g., ∆𝐼𝐷𝐶 , counts). The total information satisfies

I (𝑆 ;𝐿device, 𝐿design) = I (𝑆 ;𝐿device) + I (𝑆 ;𝐿design | 𝐿device), (5.4)

which we estimate empirically following standard information-theoretic practice [17]. This decomposition
reveals how much information stems from the neuromorphic design versus the underlying substrate and
fabrication variations.

Spike-Leakage Index (SLI) for Hotspot Ranking. To provide actionable feedback to designers, we must
localize where and when leakage occurs. We define the Spike-Leakage Index (SLI) as a normalized MI
for a specific circuit block 𝑏 (e.g., Synapse, Charge, Reset) and time window𝑤 :

SLI(𝑏,𝑤 ; 𝑆) =
I (𝑆 ;𝑍 (𝑤)

𝑏
)

𝐻 (𝑆)
∈ [0, 1], (5.5)

where 𝑍 (𝑤)
𝑏

is the feature vector extracted from block 𝑏 in window𝑤 , and 𝐻 (𝑆) is the entropy of the secret
𝑆 . High SLI highlights spatio-temporal hotspots, enabling targeted countermeasures.

5.4. Experimental Evaluation and Results

5.4.1. Experimental Setup

We instantiated the f-SNN and f-RNN circuits in Cadence Virtuoso Spectre using technology-calibrated
a-IGZO TFT models. The PDN model included typical parameters for a large-area flexible substrate
(𝑅rail ≈ 6–10 kΩ, 𝐶decoupling ≈ 30 𝜇F). We simulated millisecond-length traces in the 1–5 kHz regime
across nominal, low-𝑉𝐷𝐷 , and high-temperature corners.

For workloads, we used time-series datasets from the UCR Archive [40] with a 70/15/15 split for
profiling, validation, and attack. Reported metrics include ROC–AUC (ROC-AUC) for label inference,
normalized MSE (𝑁𝑀𝑆𝐸) and cosine similarity for spike-rate regression, and mutual information (MI)
for leakage quantification.
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Algorithm 3 FlexSpy End-to-End Procedure
1: Inputs: Netlist 𝑁 , Device Models 𝑀 , Stimuli 𝑋 , Targets 𝑂 , PDN parameters
2: Outputs: CPA peaks, AUC/Accuracy, 𝑅2/NMSE, MI, SLI map, Security–Power trade-offs

3: Step 1: Synthesize Traces
4: for all (𝑥 , corner) ∈ 𝑋 ×𝑀 do
5: Run transient simulation on 𝑁 with PDN
6: Record 𝐼𝐷𝐷 (𝑡 ) and compute 𝑉trig(𝑡 )← 𝑑

𝑑𝑡
𝐼𝐷𝐷 (𝑡 )

7: Step 2: Build Features
8: 𝐼𝐷𝐷 (𝑡 )→ baseline removal→ light filtering
9: Use 𝑉trig(𝑡 ) to segment spike windows [𝑡0, 𝑡1]

10: Compute per-window features 𝑍 ← {∆𝐼𝐷𝐶 , count, ISI, timing}
11: Standardize features by corner

12: Step 3: CPA
13: Correlate windowed 𝑍 with hypothesis 𝑥 = ∑

𝑔𝑖𝑠𝑖
14: Record peak correlation and window index𝑤peak

15: Step 4: Profiling (Templates)
16: Fit Gaussian templates (e.g., LDA/QDA) for targets 𝑜 ∈ 𝑂
17: At attack time, sum per-window log-likelihoods for classification

18: Step 5: Regression
19: Train ridge model 𝑍 ↦→ 𝑟 (𝑙 ) (layer-wise rates)
20: Report 𝑅2, NMSE, cosine similarity on held-out traces

21: Step 6: MI / SLI
22: Estimate I (𝑆 ;𝐿device) and I (𝑆 ;𝐿design | 𝐿device)
23: Compute SLI(𝑏,𝑤 ; 𝑆)← I (𝑆 ;𝑍 (𝑤)

𝑏
)/𝐻 (𝑆) for all 𝑏,𝑤

24: Step 7: Evaluate Countermeasures
25: Sweep jitter, balancing, and PDN settings
26: Re-run Steps 1–6
27: Report leakage reduction vs. power/latency/area overhead

5.4.2. Label Inference from Power Leakage

We first evaluated the ability to infer the input class label 𝑦 from the spike-window feature vector zdesign.
At the nominal corner, a logistic classifier trained on zdesign achieves an ROC–AUC of ROC-AUC = 0.91

with low calibration error (ECE < 5%), confirming a strong, class-dependent signal. At low 𝑉𝐷𝐷 and high
temperature, the AUC degrades gracefully to 0.85 and 0.82, respectively. Augmenting the feature vector
with simple device-variation indicators (e.g., idle noise) improves AUC by only ≈ 0.02, indicating that
class information is dominated by the design-level spike-window features.

Figure 5.4 shows how sliding-CPA localizes the leakage in time. The left panel illustrates the measured
supply current 𝐼𝐷𝐷 (𝑡 ) with shaded spike windows (W1–W3), where quasi-DC offsets appear during spike
epochs in the f-SNN. The right panel plots the sliding-CPA correlation for multiple hypotheses: a bundle
of incorrect hypotheses (gray) stays near zero except for small fluctuations, while the correct hypothesis
(red) exhibits a sharp correlation peak confined to the dominant spike window W2. This behavior agrees
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(a) Measured 𝐼𝐷𝐷 (𝑡 ) with spike windows (W1–W3); quasi-
DC offsets in f-SNN appear during spike epochs.

(b) Sliding-CPA localization: the correct hypothesis (red)
peaks in window W2, incorrect ones (gray) near zero.

Figure 5.4.: Leakage localization in time for f-SNN on P-Cons. Left: quasi-DC ∆𝐼𝐷𝐶 offsets in 𝐼𝐷𝐷 (𝑡 ) during spike epochs.
Right: sliding-CPA shows that leakage is maximized in W2.

Figure 5.5.: Cross-dataset leakage at the nominal corner: ROC–AUC for label inference using spike-window features on six
workloads. Blue bars: f -SNN; red bars: f -RNN; the dotted line indicates chance (AUC = 0.5). The f -SNN consistently leaks
more than the f -RNN.

with the quasi-DC leakage model in Equation 5.1 and highlights that ∆𝐼𝐷𝐶 drives most of the measurable
signal.

Across datasets, the same pattern holds. Figure 5.5 summarizes cross-dataset leakage at the nominal
corner: the f-SNN consistently exhibits higher label leakage (higher ROC-AUC) than the f-RNN, with
error bars showing 95% confidence intervals across runs. The f-RNN’s smoother dynamics and weaker
spike alignment yield lower instantaneous leakage, although some information still accumulates over
longer time horizons.

Calibration and robustness to measurement noise are shown in Figure 5.6. The classifier is slightly
under-confident but maintains ECE < 5%, and AUC degrades smoothly under added measurement noise,
again indicating that spike-window observables dominate over device noise.

Finally, Figure 5.7 visualizes class-dependent leakage for P-Cons. The windowed current shift ∆𝐼 (𝑤)
𝐷𝐶

in
the dominant W2 window differs measurably between classes, directly reflecting the rate-weighted term
𝑉ℎ𝑒𝑎𝑑

∑
𝑖 𝑔𝑖𝑠𝑖 (𝑡 ) in Equation 5.1. This separation explains the high AUC and provides an intuitive picture

of the leakage source.

5.4.3. Spike-Rate Recovery and Mutual Information

Beyond classification, we evaluate whether an attacker can reconstruct continuous-valued intermediate
data such as layer-wise spike rates. A ridge regressor is trained to map zdesign to the firing-rate vectors r(ℓ)

of each layer.
Across PVT corners, we obtain 𝑁𝑀𝑆𝐸 = 0.14 and cosine similarity of 0.93 between predicted and true

spike-rate vectors. Figure 5.8 (a) plots predicted vs. true rates on held-out traces, showing a near-linear
trend. This linearity reflects the quasi-static term ∑

𝑖 𝑔𝑖𝑠𝑖 in Equation 5.1 captured by ∆𝐼𝐷𝐶 : average firing
rate in each window is essentially encoded in a rate-weighted current offset.
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(a) Reliability diagram: the model is slightly under-
confident with ECE < 5%, and adding device-variation
indicators yields only minor benefit.

(b) AUC vs. added measurement noise (normalized):
smooth roll-off, consistent with dominance of spike-
window features.

Figure 5.6.: Model reliability and measurement robustness for label inference in f-SNN on P-Cons.

Figure 5.7.: Windowed quasi-DC current shift ∆𝐼𝐷𝐶 by class for f-SNN on P-Cons. Distinct class clusters in the dominant W2
window visualize the rate-weighted ∑

𝑖 𝑔𝑖𝑠𝑖 leakage mechanism.

We also apply the two-layer MI decomposition in Equation 5.4. For label leakage, we measure

𝐼 (𝑦;𝐿device) ≈ 0.09 bits, 𝐼 (𝑦;𝐿design | 𝐿device) ≈ 0.68 bits,

which implies that roughly 88% of class-related information stems from spike-window features, not
device-specific fingerprints. For rates and multiplicity, conditional MI lies in the range 0.72–0.81 bits at
nominal conditions and drops by ∼ 20% at low 𝑉𝐷𝐷 . Overall, most recoverable information is attributable
to design-level spike windows.

5.4.4. Structural Profiling from Power Traces

We next assess whether power traces leak structural information about the neuromorphic circuit, beyond
labels and rates. Gaussian templates are trained on concatenated spike-window features to recover two
design-level targets that arise naturally in flexible analog neuromorphic circuits:

• Synapse Multiplicity 𝑘: the number of active conductance paths contributing to a spike window
(𝑘 ∈ {0, . . . , 4} in our experiments).

• Source Clusters (C1–C4): groups of synaptic inputs defined by connectivity or receptive-field
origin.

At nominal conditions, synapse multiplicity reaches 87.3% accuracy (F1-score 85.9%, ECE 3.2%),
with confusions concentrated on adjacent 𝑘 values, as shown in Figure 5.9 (a). Source-cluster inference
(C1–C4) achieves 83.1% Top-1 and 95.2% Top-2 accuracy when incorporating simple timing context
(Figure 5.9 (b)). Corner degradation is modest (e.g., 82% / 79% at high-𝑇 /low-𝑉𝐷𝐷 ), confirming the
robustness of structural profiling.

These results show that power traces leak not only what the network is computing (labels, rates), but also
how it is structured (multiplicity and connectivity pattern), enabling reverse-engineering of neuromorphic
architectures.
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(a) Layer-wise rate recovery on held-out traces (P-Cons); dashed
line is identity.

(b) Two-layer MI decomposition: labels leak primarily via design-
level spike-window activity.

Figure 5.8.: Spike-rate recovery and mutual information analysis for f-SNN.

(a) Profiling synapse multiplicity 𝑘 for f-SNN on P-Cons;
mistakes are mostly off-by-one.

(b) Source-cluster profiling (C1–C4); errors concentrate
on neighboring clusters.

Figure 5.9.: Confusion matrices for structural profiling from power traces in f-SNN. Gaussian templates trained on spike-window
features can recover both multiplicity and input source clusters.

5.4.5. Comparative Study: f-SNN vs. f-RNN

To understand how flexible dynamical primitives differ in leakage behavior, we repeat the analysis for
f-RNN circuits that implement second-order 𝑅𝐶 filters. As already hinted by Figure 5.2, the f-RNN
produces low-frequency oscillatory envelopes, whereas the f-SNN exhibits quasi-DC steps aligned with
spike epochs.

Under identical rails, corners, and workloads, f-SNN achieves higher AUC and lower rate-recovery
NMSE due to stronger static-current coupling. Figure 5.10 summarizes the comparison on P-Cons: the
f-SNN exhibits stronger label leakage (AUC 0.90 vs. 0.82) and lower NMSE in recovering internal activity
(0.14 vs. 0.26). The f-RNN hides instantaneous spikes but accumulates leakage more slowly over time,
making it inherently more robust to the spike-window style of attack that FlexSpy targets.

Overall, the comparative study confirms our hypothesis: the event-driven f-SNN is the more vulnerable
architecture when leakage is dominated by rate-weighted quasi-DC offsets.

5.5. Countermeasures and Mitigation

A key goal of FlexSpy is to enable in-loop evaluation of defenses, allowing designers to iteratively refine
circuits at design time. We analyze two lightweight, circuit-level countermeasures that specifically target
the quasi-DC leakage mechanism identified in Equation 5.1.

79



5. Vulnerability of Flexible Edge-AI-based Neuromorphic Computing: Simulation

(a) Label leakage (ROC–AUC): f-SNN 0.90 > f-RNN 0.82. (b) State/rate NMSE: f-SNN 0.14 < f-RNN 0.26.

Figure 5.10.: Direct security comparison of f-SNN vs. f-RNN on P-Cons. The f-SNN’s spike-window ∆𝐼𝐷𝐶 offsets produce
stronger instantaneous leakage than the f-RNN’s smoother envelopes.

Table 5.1.: Spike-Leakage Index (SLI) in dominant window W2 for f-SNN on P-Cons. Both countermeasures (CMs) are effective,
and the combination provides the strongest hotspot suppression.

Block (W2) Baseline +Jitter +Balancing +Both

Synapse 0.55 0.43 0.22 0.17
Charge/Integrate 0.40 0.31 0.16 0.12
Reset/Discharge 0.18 0.14 0.07 0.05

5.5.1. Countermeasure 1: Spike-Time Randomization (Jitter)

The first defense aims to break the adversary’s ability to align traces. We introduce bounded jitter
(typically ±5%) into the neuron’s reset path, implemented by modulating the effective threshold with
a small pseudo-random current source. This jitter desynchronizes spike epochs across measurements,
reducing the sharpness of CPA peaks and smearing the ∆𝐼𝐷𝐶 features across time. As a result, profiling
templates and regression models must average over more variability, weakening both label inference and
rate recovery.

5.5.2. Countermeasure 2: Event Balancing (Dummy Conductance)

The second defense directly attenuates the quasi-DC amplitude of ∆𝐼𝐷𝐶 . We add a balancing branch (a
switched TFT resistor or conductance element) that sources a small, calibrated counter-current whenever
a synapse is active. The balancing element is sized to partially cancel the rate-weighted current offset,
making the total current draw of an active epoch closer to that of an idle epoch. In feature space, this pulls
the class clusters for ∆𝐼𝐷𝐶 (cf. Figure 5.7) closer together, reducing separability.

5.5.3. Evaluation of Defenses

We re-run the full FlexSpy pipeline with spike-time jitter and event balancing enabled, both individually
and in combination. The SLI metric provides a fine-grained view of hotspot mitigation, while aggregate
metrics (AUC, NMSE, MI) quantify global security improvements.

Table 5.1 reports the SLI for the dominant window W2 in the f-SNN on P-Cons. In the unprotected
baseline, the Synapse block exhibits an SLI of 0.55 in W2. Enabling only jitter reduces this to 0.43, while
balancing alone cuts it to 0.22. The combination of jitter and balancing is most effective, suppressing the
primary Synapse leak by approximately 70% to an SLI of 0.17. Charge/Integrate and Reset/Discharge
blocks exhibit similar trends, though with smaller absolute SLI values.

Table 5.2 summarizes area/power overhead and leakage reduction across datasets for both f-SNN and
f-RNN. For f-SNN, the combined countermeasures reduce total leakage by 50–70% with area overheads
of 3.5–5.0%, power overheads of 7.0–9.0%, and accuracy impact below 0.5 percentage points. The f-RNN,
which exhibits weaker baseline leakage, still benefits from 22–38% leakage reduction at slightly lower
overheads.
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Table 5.2.: Per-dataset countermeasure (CM) overheads and leakage reduction, grouped by architecture. Values are relative to
each model’s unprotected baseline; medians across parameter sweeps are reported.

Dataset f-SNN f-RNN

Area↑ (%) Power↑ (%) Acc. ∆ (pp (%)) Leak↓ (%) Area↑ (%) Power↑ (%) Acc. ∆ (pp (%)) Leak↓ (%)

CBF 3.5 7.0 −0.2 60 2.8 5.5 −0.2 29
P-Cons 4.0 8.0 −0.3 56 3.0 6.0 −0.2 24
PPOC 4.5 8.5 −0.4 53 3.2 6.2 −0.3 23
DPTW 5.0 9.0 −0.5 50 3.5 6.5 −0.3 22
MPOAG 4.0 8.0 −0.3 55 3.0 6.0 −0.2 25
Symbols 3.5 7.0 −0.2 70 2.8 5.5 −0.2 38
CM = spike-time jitter (±5%) + event balancing. f-SNN benefits more because its leakage is dominated by spike-window ∆𝐼𝐷𝐶

offsets, while f-RNN has smoother, lower-contrast envelopes.

Overall, the countermeasures offer a highly favorable security–power trade-off. FlexSpy thus not only
diagnoses f-SNN vulnerabilities but also validates practical, substrate-aware defenses.

5.6. Summary

This chapter introduced FlexSpy, the first substrate-aware, design-time security framework for flexible
spiking neuromorphic hardware. We demonstrated that the unique combination of flexible substrates (thin,
unshielded, shared rails) and SNN computational dynamics (event-driven, sparse) creates a significant
and previously unquantified power side-channel vulnerability.

The core technical contribution is a unified device-to-design-to-network model that links the physics
of a-IGZO TFTs to observable, network-level information leakage. We identified the dominant leakage
primitive: a rate-weighted, quasi-DC current offset stemming from active synaptic conductances during
spike epochs. Using only a single, non-invasive power measurement and a self-generated virtual trigger,
an attacker can exploit this primitive to infer labels with ROC-AUC = 0.91 and recover layer-wise spike
rates with 𝑁𝑀𝑆𝐸 = 0.14.

Our comparative analysis showed that the f-SNN’s event-driven model is substantially more “leaky”
than the smoother dynamics of an f-RNN, both in terms of label inference and internal state reconstruction.
To provide actionable design guidance, we developed the Spike-Leakage Index (Spike-Leakage Index
(SLI)), an MI-based metric that successfully localizes security hotspots in time and across circuit blocks.

Finally, we demonstrated that this vulnerability is not fundamental. Two lightweight countermeasures,
spike-time jitter and event balancing, were proposed and validated. Together, they suppress quasi-DC
leakage by 38–70% with modest power overhead (≤ 9%), small area cost, and negligible accuracy
degradation. FlexSpy thus provides a necessary, early-stage assessment tool and a pathway towards
building a new generation of flexible neuromorphic devices that are secure by design. Future work will
extend this framework to other channels (e.g., EM emissions) and explore co-design of training algorithms
and circuit primitives to further harden f-SNNs against side-channel threats.

81





6. Vulnerability of Edge-AI-based Hyperdimensional
Computing: FPGA Emulation

6.1. Introduction

The rapid proliferation of AI at the network edge has fundamentally altered the architectural requirements
of modern computing systems. As applications such as autonomous driving, wearable health monitoring,
and industrial IoT expand, the constraints of power, latency, and bandwidth have rendered cloud-centric
DNNs are increasingly untenable for real-time, localized processing.

HDC has emerged as a transformative paradigm in this context. By mimicking the high-dimensional,
distributed representation of information found in biological neural circuits, HDC offers a lightweight,
energy-efficient alternative to traditional Von Neumann architectures. Its reliance on simple, highly
parallelizable bitwise operations, such as XOR and population counts, makes it an ideal candidate for
hardware acceleration on FPGAs.

However, the transition from algorithmic theory to physical implementation introduces a critical,
often overlooked dimension: hardware security. While HDC is celebrated for its intrinsic algorithmic
robustness, its ability to tolerate stochastic noise and random bit flips without significant degradation in
inference accuracy, this characteristic creates a dangerous robustness paradox. The very redundancy that
protects HDC from random noise can obfuscate the presence of targeted malicious attacks, while the
highly optimized, parallel hardware structures required for efficiency inadvertently expose broad attack
surfaces.

This chapter provides an in-depth analysis of the physical security posture of FPGA-based HDC
accelerators. Synthesizing empirical data from three recent works, [108], [105], and [106], we construct
a holistic threat model that spans passive SCA, remote internal sensing, and active fault injection (FI).
Through the examination of over one million power traces and cross-platform validation on Artix-7,
Arty-A7, and Zynq-based architectures, we show that unprotected HDC accelerators are vulnerable to:

• Intellectual Property (IP) theft: model extraction rates exceeding 90% via bit-level recovery of
class hypervectors (ClassHVs);

• Integrity violations: targeted misclassification rates approaching 90% under carefully injected
faults.

We further evaluate the efficacy of several countermeasures, including Adaptive Grad-CAM-guided de-
fenses, dynamic masking, and hypervector randomization, demonstrating that security can be substantially
improved with modest resource overhead.

6.2. Theoretical Framework: Hyperdimensional Computing and Hardware
Vulnerability

6.2.1. The Algebra of Hypervectors and Hardware Mapping

HDC represents information as hypervectors, pseudo-random vectors of high dimensionality, typically
𝐷 ≥ 1,000 bits. Rather than operating on precise numerical values, HDC manipulates distributed binary
patterns. The core algebra is built around three primary operations:
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Table 6.1.: Mapping of core HDC operations to FPGA resources and associated security implications.

HDC Operation Math Function FPGA Mapping Security Implication

Binding A ⊕ B Parallel XOR gates
(LUTs)

High switching activity; leak-
age correlates with Hamming dis-
tance.

Bundling sgn(A + B + . . . ) Adder trees and com-
parators

Complex power profile; prone to
overflow/saturation faults.

Similarity ∑(A ⊕ B) POPCOUNT logic and
accumulators

Primary leakage point; power lin-
early tracks hypervector similarity.

Storage Memory read/write Block RAM / distributed
RAM

Susceptible to read/write fault
injection; read accesses leak
ClassHV contents.

1. Binding (Association): associates two pieces of information (e.g., a symbol and its value).
Mathematically, binding is often realized via dimension-wise Exclusive-OR,

C = A ⊕ B,

producing a third hypervector that is nearly orthogonal to both inputs.

2. Bundling (Superposition): aggregates multiple hypervectors into a single representative hypervec-
tor, typically via component-wise addition followed by a thresholding or majority function,

C = sgn

(∑︁
𝑗

A𝑗

)
,

where the sign/threshold operator is applied dimension-wise.

3. Permutation (Sequence Encoding): encodes order (e.g., positions in a sequence or time series) by
permuting coordinates of a hypervector, such as a rotation or cyclic shift operation.

The inference phase, the primary target of side-channel and fault attacks, involves calculating similarity
between a query hypervector (QueryHV) and stored class hypervectors (ClassHVs). The standard
similarity metric is a Hamming distance (or equivalently, Hamming similarity), computed via XOR
followed by a POPCOUNT (population count).

These abstract operations map to specific FPGA resources and carry distinct security implications,
summarized in Table 6.1.

As Table 6.1 highlights, similarity computation (XOR + POPCOUNT) is the most critical from a
side-channel perspective: power consumption is directly correlated with the Hamming distance between
QueryHV and ClassHV, providing an exploitable leakage source.

6.2.2. Hyperdimensional Computing Hardware

HDC, as a machine-learning classifier, represents complex raw data as high-dimensional hypervectors.
Two fundamental operations, binding and bundling, are used to encode structure and aggregate information.
Data elements are represented as randomly initialized hypervectors, referred to as item vectors. For
instance, encoding a binary image involves generating an item memory containing a unique hypervector
for each pixel position. Hypervectors corresponding to active pixels are then bundled into a single
hypervector representing the image [46], [52].

Figure 6.1 shows the architecture of the FPGA-based HDC accelerator considered in this chapter.
During training, hypervectors from samples of the same class are aggregated into representative𝐶𝑙𝑎𝑠𝑠𝐻𝑉 s,
stored in an associative memory (AM). During inference, input samples undergo the same encoding,
producing 𝑄𝑢𝑒𝑟𝑦𝐻𝑉 s [73], [75], [90], [91]. Classification is performed by comparing 𝑄𝑢𝑒𝑟𝑦𝐻𝑉 s with
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Figure 6.1.: Architecture of the FPGA-based HDC accelerator. Raw data is streamed via DMA, encoded as hypervectors, and
classified in the associative memory (AM). Class hypervectors are written by the CPU and stored in AM (large hypervectors are
partitioned into segments). The class with the smallest Hamming distance to the query is returned as the classification result.

stored 𝐶𝑙𝑎𝑠𝑠𝐻𝑉 s using similarity metrics (Hamming distance / POPCOUNT) realized in the AM. Our
HDC configuration reflects workloads similar to sensor classification tasks in edge devices, such as gesture
recognition and health monitoring.

6.2.3. The Threat Landscape: Physical Access and Adversarial Capability

We adopt three different threat models tailored to edge deployments for three different works:

• Passive power profiling (local SCA): The adversary attaches external equipment (e.g., ChipWhis-
perer Pro, oscilloscope) to measure the power consumption of the FPGA while the HDC accelerator
performs inference. The goal is confidentiality compromise: extracting ClassHVs and thereby
stealing the trained model IP.

• Dynamic workload scheduling: The adversary is on the environment of dynamic workload
scheduling to efficiently handle multiple AI inference tasks sequentially using static FPGA
resources [99](popular for edge-AI devices). Unlike cloud-based FPGA setups, where multiple
workloads are explicitly partitioned and simultaneously executed [83], [92], dynamically scheduled
edge FPGAs lack explicit synchronization signals, fundamentally changing how side-channel
leakage can be observed.

• Active fault injection FI: The adversary manipulates supply voltage, clock, or environmental
conditions to induce timing violations or logic upsets. The goal is integrity compromise: forcing
targeted misclassifications or degrading reliability by corrupting similarity computations or memory
contents.

In the remainder of this chapter we first focus on the local power side-channel attack vector, demonstrating
that deep-learning-based analysis can recover sensitive bits with high accuracy. Subsequent sections build
upon this to analyze dynamic workload scheduling scenarios and fault-based attacks.

6.3. Deep Learning-Assisted Power Attack

6.3.1. The Dimensionality Limitations in Classical SCA

Classical (SCA) techniques such as Correlation Power Analysis (CPA) and Differential Power Analysis
(DPA) assumes that at a given time instant, power consumption is linearly correlated with the Hamming
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Figure 6.2.: ChipWhisperer-captured FPGA power trace showing different stages of HDC operations. The trace exhibits a
periodic pattern after a fixed timestamp, corresponding to similarity computations, which is critical for SCA.

weight or Hamming distance of the secret-dependent data being processed. This assumption holds
reasonably well for cryptographic primitives and small datapaths, but it breaks down in HDC accelerators.

HDC operations are inherently parallel: a single clock cycle may involve the switching of thousands
of bits (e.g., 𝐷 = 5,000–10,000). The switching activity associated with any single secret bit is thus
superimposed on the aggregate activity of the remaining 𝐷 − 1 bits, creating a holographic noise effect.
From an SCA perspective, the signal-to-noise ratio (SNR) of any individual bit is extremely low.

Empirically, standard difference-of-means or correlation-based tests fail to reliably distinguish the
leakage of a single target bit, even when millions of traces are available. The attacker would require an
impractically large number of measurements to overcome the dimensionality-induced noise floor. This
motivates the use of deep learning to automatically learn nonlinear, high-dimensional leakage patterns
from raw traces.

Figure 6.2 shows a representative power trace captured from the FPGA-based HDC accelerator using
ChipWhisperer. Different HDC pipeline stages produce distinct patterns, and a periodic structure emerges
after a fixed timestamp corresponding to repeated similarity computations. Identifying and exploiting
these regions is critical for successful SCA.

6.3.2. Attack Methodology

To overcome the high-dimensional noise floor, we adopt a deep-learning-based SCA (DL-SCA) approach
inspired by recent work on HDC leakage. The method employs a specialized 1-dimensional Residual
Neural Network (ResNet-34) to operate directly on raw power traces, without manual point-of-interest
selection.

The choice of a deep residual architecture is strategic:

• Hierarchical feature extraction: Unlike template attacks that rely on manually selected time
samples, the ResNet-34 learns to automatically extract features from the raw trace. Early layers
capture low-level switching transients, while deeper layers encode higher-level patterns associated
with bundling, binding, and similarity operations.

• Mitigation of vanishing gradients: Residual connections facilitate gradient flow through many
layers, enabling efficient training on long, noisy time series such as power traces. This is crucial
when traces span many clock cycles and contain correlated noise.

6.3.2.1. Adaptive Grad-CAM-Guided Attack Framework

A key innovation is the integration of Gradient-weighted Class Activation Mapping (Grad-CAM) into an
adaptive attack loop. Grad-CAM was originally developed for computer vision to visualize which spatial
regions of an image influence a CNN’s decision. Here, we repurpose it for temporal leakage localization.

At a high level, Grad-CAM is used to compute an importance score for each time sample in a trace,
indicating how much that sample influences the CNN’s ability to predict a target bit. Figure 6.3 illustrates
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Figure 6.3.: Grad-CAM heatmap highlighting regions within FPGA-based HDC power traces that contribute most to ResNet-34
predictions. The highlighted intervals correspond primarily to XOR similarity and POPCOUNT computations.

Figure 6.4.: Overview of the proposed adaptive Grad-CAM-based attack workflow. Power traces from HDC inference are fed to
a 1D ResNet-34 CNN for bit extraction. Grad-CAM visualizations identify and refine critical leakage intervals, guiding targeted
trace selection and cropping to enhance attack efficiency.

Grad-CAM heatmaps highlighting the temporal regions where XOR and POPCOUNT logic contribute
the most to leakage.

The adaptive attack proceeds iteratively, as summarized in Figure 6.4 and Algorithm 4:

1. Initial training: Train the ResNet-34 on a broad set of traces covering the entire inference operation,
without prior alignment or cropping.

2. Leakage visualization: Apply Grad-CAM to the trained model to obtain a heatmap over time.
Each time point receives a score indicating its contribution to correctly predicting the secret bit.

3. Critical interval identification: Identify high-score intervals, or “hotspots”, which correspond to
clock cycles where XOR similarity and POPCOUNT accumulate are performed.

4. Targeted refinement: Collect or select new traces and crop them to focus on these intervals,
effectively filtering out irrelevant pipeline stages (e.g., encoding or DMA transfers) and thereby
improving SNR.

5. Retraining: Retrain the network on these refined traces, iterating until bit extraction accuracy
saturates.

6.3.3. Empirical Evaluation and Transferability

We validate the adaptive DL-SCA methodology on a real-hardware setup using a ChipWhisperer Pro
(CW1200) attacking a dedicated Artix-7 FPGA target board (CW305). Approximately one million power
traces are collected during HDC inference, covering multiple benchmark datasets (MNIST, ISOLET,
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Algorithm 4 Adaptive Grad-CAM-Guided 1D ResNet-34 SCA

Require: Initial dataset 𝑋init, labels (bits) 𝑌 , iterations 𝑇 , initial model 𝑓 (0)
𝜃

Ensure: Optimized model 𝑓 (𝑇 )
𝜃

, minimized trace count
1: for 𝑡 = 1 to 𝑇 do
2: Train CNN: 𝑓 (𝑡 )

𝜃
← train(𝑓 (𝑡−1)

𝜃
, 𝑋 (𝑡−1), 𝑌 )

3: Apply Grad-CAM to identify critical leakage intervals:
4: 𝐼

(𝑡 )
critical ← GradCAM(𝑓 (𝑡 )

𝜃
, 𝑋 (𝑡−1), 𝑌 )

5: Refine data collection: select new traces around critical intervals:
6: 𝑋 (𝑡 ) ← SelectTraces(𝐼 (𝑡 )

critical, 𝑋available)
7: Evaluate bit extraction accuracy on a validation set
8: if accuracy is sufficiently high then terminate early
9: return 𝑓 (𝑇 )

𝜃

Figure 6.5.: ResNet-34-based bit extraction accuracy across FPGA platforms under explicit noise and jitter conditions. Cross-
platform consistency highlights that leakage is dominated by architectural similarity (XOR + POPCOUNT structure) rather than
chip-specific artifacts.

HAR, CARDIO, CIFAR-10). For each dataset, traces are captured under a profiling attack scenario, with
labels corresponding to individual bits of selected ClassHVs.

High-level observations:

• The adaptive Grad-CAM-guided ResNet-34 achieves high bit extraction accuracy (up to ≈ 93%)
while substantially reducing the number of traces needed to surpass practical thresholds (e.g., 85%
accuracy).

• The learned leakage features are transferable across FPGAs. Models trained on CW305 traces can
be applied to Arty-A7 traces (Tektronix MSO2024B), with modest loss of accuracy, demonstrating
that leakage is largely architectural rather than chip-specific.

• Dataset complexity plays a role: tasks with more complex and higher-entropy inputs (e.g., CIFAR-
10) yield slightly lower bit extraction accuracy than simpler tasks such as MNIST or voice/gesture
recognition, but remain well above the level required for effective model reconstruction.

Figure 6.5 illustrates how bit extraction accuracy varies across FPGA platforms and noise conditions,
motivating a more detailed, quantitative evaluation of SCA effectiveness in the following subsection.
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Figure 6.6.: Impact of adaptive Grad-CAM guidance. Left: bit extraction accuracy improvement across iterations for adaptive vs.
non-adaptive approaches. Right: SNR improvement across adaptive iterations. The adaptive method achieves significantly
higher accuracy with fewer traces by focusing on critical leakage intervals.

Table 6.2.: Detailed performance analysis of CNN variants for FPGA-based HDC side-channel attack (MNIST dataset).

CNN Model # Residual Blocks Bit Extraction
Accuracy (%)

Inference Speed
(queries/s)

Training Time
(GPU-hours)

Min. Traces for
>85% Accuracy

CNN (Base) – 81.3 420 6.8 –
ResNet-20 10 89.1 360 8.4 ∼ 0.95M
ResNet-34 16 93.8 340 9.6 ∼ 0.5M

6.3.4. Evaluation of Side-Channel Attack Effectiveness

Building on the experimental setup described above, we now quantify the effectiveness of the proposed DL-
SCA across CNN architectures, datasets, FPGA platforms, and measurement conditions. We emphasize
both bit extraction accuracy and robustness under realistic noise, jitter, and masking countermeasures.

6.3.4.1. Performance Analysis of CNN Variants

We first compare the adaptive Grad-CAM-guided approach across three CNN architectures: a standard
1D CNN, a 1D ResNet-20, and the proposed 1D ResNet-34. Figure 6.6 shows how accuracy and SNR
evolve across Grad-CAM iterations.

The adaptive CNN-based method improves both accuracy and data efficiency:

• It attains up to 93% bit extraction accuracy, nearly doubling the accuracy of a non-adaptive baseline
using the same number of traces.

• It provides ≈ 1.7× higher maximum bit extraction accuracy than the non-adaptive strategy,
particularly when using ResNet-34.

Table 6.2 summarizes bit extraction accuracy, inference speed, training time, and minimum trace count
required to exceed 85% accuracy for each CNN variant on MNIST traces.

Despite its slightly higher training time and modestly lower inference throughput, the 1D ResNet-34
provides the best trade-off for SCA: it captures subtle, high-dimensional leakage patterns more effectively
than shallower networks.

6.3.4.2. ResNet-34-Based Bit Extraction Accuracy

We next evaluate ResNet-34 across multiple datasets and measurement configurations. Table 6.3
summarizes bit extraction accuracy, required traces, training time, and inference speed for three categories:

1. ChipWhisperer CW1200 measurements (CW305 FPGA): baseline, high-quality power traces.

2. Oscilloscope measurements (Arty-A7 FPGA): more noise and jitter, representative of less
specialized lab setups.
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Figure 6.7.: Bit recovery accuracy vs. number of analyzed traces for MNIST. ResNet-34-based SCA converges above 90%
accuracy for most classes after ≈ 8 × 105 traces; some classes (0 and 6) remain harder to recover due to weaker leakage.

3. Vivado post-implementation power simulation (Zynq-7000): noise-free, idealized environment
useful for upper-bound analysis.

Table 6.3.: Summary of ResNet-34-based SCA evaluation across multiple benchmark datasets and FPGAs (1M trace budget
unless noted).

Dataset FPGA Platform Trace Collection Method Bit Extraction (%) Traces Required Training Time (h) Inference Speed (queries/s) Remarks
ChipWhisperer CW1200 Measurement (CW305 FPGA)

MNIST CW305 CW1200 93 800,000 9.2 420 Baseline; consistently high leakage
ISOLET CW305 CW1200 91 750,000 7.2 410 Stable leakage characterization
HAR CW305 CW1200 90 780,000 7.0 412 Slightly reduced accuracy due to data complexity
CARDIO CW305 CW1200 89 830,000 7.5 405 Moderate noise sensitivity
CIFAR-10 CW305 CW1200 88 880,000 8.0 395 Lower accuracy due to more complex data

Oscilloscope Measurement (Arty-A7 FPGA)
MNIST Arty-A7 Tektronix MSO2024B 91 850,000 8.2 395 Measurement noise impact evident
ISOLET Arty-A7 Tektronix MSO2024B 88 820,000 7.9 390 Noise slightly reduces accuracy
HAR Arty-A7 Tektronix MSO2024B 87 840,000 8.0 388 Consistent under realistic noise
CARDIO Arty-A7 Tektronix MSO2024B 86 890,000 8.5 380 Elevated noise sensitivity
CIFAR-10 Arty-A7 Tektronix MSO2024B 84 920,000 9.0 375 Accuracy impacted by high jitter

Vivado Post-Implementation Power Simulation (Zynq-7000)
MNIST Zynq-7000 Vivado Simulation 98 500,000 6.0 440 Idealized, noise-free baseline
ISOLET Zynq-7000 Vivado Simulation 96 500,000 6.5 435 High baseline without practical artifacts
HAR Zynq-7000 Vivado Simulation 95 520,000 6.8 430 Consistent extraction accuracy
CARDIO Zynq-7000 Vivado Simulation 95 550,000 7.1 425 Strong accuracy in simulated environment
CIFAR-10 Zynq-7000 Vivado Simulation 93 580,000 7.4 420 Slight reduction from complex patterns

Masked FPGA Implementations (Dynamic Masking Countermeasure)
MNIST CW305 CW1200 18 800,000 7.5 360 Significant leakage reduction verified
ISOLET CW305 CW1200 21 750,000 7.9 355 Consistent masking effectiveness
HAR CW305 CW1200 18 780,000 8.0 352 Effective leakage mitigation
CARDIO CW305 CW1200 17 830,000 8.3 348 Reliable protection against leakage
CIFAR-10 CW305 CW1200 19 880,000 8.7 345 High protection despite data complexity

As expected, simulated traces provide an upper bound on bit extraction accuracy, but real measurements
on CW305 still achieve 88–93% accuracy across datasets. Arty-A7 traces, which are noisier and less
controlled, exhibit modest accuracy degradation but remain clearly above the threshold needed for effective
model extraction. Masked implementations, discussed later as a countermeasure, dramatically reduce bit
extraction accuracy to 17–21%, near the random guess baseline.

Figure 6.7 shows how bit recovery accuracy improves as the number of analyzed traces increases for
MNIST. Accuracy starts at ≈ 40–50% for fewer than 2 × 105 traces, then rapidly improves and stabilizes
beyond ≈ 8 × 105 traces, exceeding 90% for most classes. Classes 0 and 6 converge at lower accuracy
(≈ 60%), indicating weaker or less distinguishable leakage patterns for those classes (e.g., lower switching
activity).

6.3.4.3. Higher-Order Leakage Analysis (TVLA)

Grad-CAM analysis in subsection 6.3.2 and subsubsection 6.3.2.1 identified XOR and POPCOUNT
operations as dominant leakage sources. To systematically quantify leakage order and severity, we perform
Test Vector Leakage Assessment (TVLA) on unprotected HDC implementations.

Figure 6.8 reports first- and second-order TVLA statistics for MNIST on CW305. Significant first-order
leakage is observed (t-values > 4.5) during similarity computation, and notable second-order leakage
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Figure 6.8.: TVLA analysis on unprotected HDC (MNIST): severe first-order leakage (t-values > 4.5) and non-negligible
second-order leakage (t-values > 2.5) during XOR and POPCOUNT operations, confirming vulnerability to both first- and
higher-order SCA.

Figure 6.9.: Robustness analysis (MNIST). Bit extraction accuracy of ResNet-34 under increasing Gaussian noise and timing
jitter. While accuracy degrades from ideal conditions, the attack remains effective across realistic noise/jitter levels.

(t-values > 2.5) arises from nonlinear interactions and glitches. These results confirm that the unprotected
HDC accelerator is highly vulnerable not only to basic first-order attacks but also to higher-order SCA.

6.3.4.4. Impact of Noise and Jitter on CNN Attack Robustness

Real-world traces inherently contain measurement noise and timing jitter. While CW1200 provides
high-quality captures, other platforms (or field deployments) may exhibit more severe imperfections. To
systematically characterize the impact of such imperfections on CNN-based SCA, we generate synthetic
traces using Vivado post-implementation simulations and inject controlled Gaussian noise and timing
jitter.

Figure 6.9 shows ResNet-34 bit extraction accuracy as a function of incrementally introduced noise
and jitter for MNIST. In the ideal case (no noise, no jitter), accuracy exceeds 98%. Introducing realistic
Gaussian noise slightly reduces accuracy; adding timing jitter further degrades performance to ≈ 84–87%.
Nonetheless, the attack remains effective across a wide range of conditions, emphasizing the need to
consider SCA robustness under realistic, noisy environments.

6.3.4.5. Comparison with State-of-the-Art Attacks

Finally, Table 6.4 compares the proposed ResNet-34-based SCA with representative state-of-the-art
attacks on FPGA-HDC accelerators. Prior works have demonstrated:

• Model inversion and reconstruction of classifier decision boundaries;

• Adversarial parameter perturbations (e.g., RowHammer-like bit flips) to induce misclassifications;

• Voltage and thermal stress to inject faults into HDC implementations.

Our DL-SCA attack is complementary: rather than perturbing the model, it passively extracts ClassHV
bits with high accuracy, enabling IP theft and subsequent off-line cloning of HDC models. Combined
with prior FI techniques, this creates a rich attack surface for both confidentiality and integrity violations.
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Table 6.4.: Comparative analysis of ResNet-34-based SCA with representative state-of-the-art attacks on FPGA-HDC.
Aspect Hernandez et al. [84] Liu et al. [94] Krautter et al. [93] This Work
Attack Type Model inversion Adversarial parameter Voltage/thermal stress Power side-channel
Target Platform FPGA-HDC FPGA-HDC FPGA-HDC FPGA-HDC
Attack Method Feature reconstruction Bit flipping (RowHammer-style) Voltage/thermal variations CNN-based trace analysis
Vulnerability Exploited Associative memory Associative memory Implementation logic Similarity computation leakage
Key Outcome High reconstruction accuracy Targeted misclassification (∼ 90%) Significant accuracy degradation Bit recovery up to ∼ 93%
Trigger Mechanism Reconstruction queries Parameter perturbation Stress conditions Profiling-based power traces
Countermeasures Evaluated Noise injection, quantization – – Dynamic masking, randomization
Evaluation Metrics Information leakage Attack success rate Fault-induced accuracy drop Bit recovery, TVLA, robustness

6.4. Dynamic workload scheduling and Internal Sensing SCA Attack:
Collision-Based Timing Analysis

While the CNN-based power SCA discussed above requires external probing of the FPGA power supply, a
more insidious threat arises when an attacker can deploy logic within the same FPGA fabric as the victim
HDC accelerator. This scenario is common in multi-tenant cloud FPGAs or SoC-based edge nodes where
user designs share on-chip resources.

Edge platforms, particularly FPGA-based devices such as AMD-Xilinx Kria System-on-Module
(SoM)kalapothas2022efficient and Efinix Titanium FPGAsczymmek2023review, frequently employ
dynamic workload scheduling to efficiently handle multiple AI inference tasks sequentially using static
FPGA resources. Unlike cloud-based FPGA setups, where multiple workloads are explicitly partitioned
and simultaneously executed, dynamically scheduled edge FPGAs lack explicit synchronization signals,
fundamentally changing how side-channel leakage can be observed. Consequently, traditional remote
side-channel attacks commonly applied in cloud FPGA setups cannot be directly applied to edge FPGA
deployments. This introduces unique challenges, motivating new approaches tailored to the characteristics
of dynamically scheduled HDC-based edge environments.

In such environment, the adversary may not have physical access to supply rails or pins, but can still
monitor shared on-chip infrastructure. A powerful primitive is to instantiate on-chip time-to-digital
converters (TDCs) or ring-oscillator sensors that sense voltage fluctuations on the shared PDN. By
carefully timing their own switching activity to collide with the victim’s HDC operations, the attacker can
perform collision-based timing and power analysis without any external measurement equipment.

6.4.1. Attack Overview and Threat Model

We consider an attacker whose primary goal is to compromise the confidentiality of stored class
hypervectors (ClassHVs) in an FPGA-based HDC accelerator. These ClassHVs represent the trained
model’s intellectual property and are sufficient to replicate or clone the model. Given HDC’s robustness
to noise [47], even partial recovery of ClassHV bits (e.g., 70–80%) is enough to build a highly accurate
replica.

Our threat model assumes:

1. Encoding knowledge: The attacker knows the hypervector encoding scheme (dimension 𝐷,
bundling, binding, and permutation rules) and can generate structurally valid query hypervectors
(QueryHVs).

2. Query access: The attacker can submit controlled inputs (QueryHVs or raw data) to the HDC
classifier and observe the predicted label or confidence information via the normal system interface.

3. On-chip sensor placement: The attacker can synthesize a small sensor core (TDC) into the same
FPGA, sharing the PDN with the victim HDC accelerator. This is realistic in partially reconfigurable
or dynamic workload spaces, similar to a multi-tenant cloud FPGA scenario.

4. Timing control: The attacker can schedule query injections with coarse timing control (e.g., at fixed
intervals) but does not have access to internal trigger signals from the HDC accelerator. Fine-grained
alignment is obtained implicitly through staircase profiling (described in subsection 6.4.4).
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Figure 6.10.: TDC circuit used as an on-chip sensor [67]. A delay line, latches, and capture registers convert fine-grained
voltage-induced delay variations into a digital value observable by the attacker.

We explicitly exclude any direct access to configuration bitstreams, training datasets, or internal
memories. All information is derived solely from (i) publicly observable classifier outputs and (ii) timing
variations measured by the on-chip TDC.

6.4.2. On-Chip Sensing with Time-to-Digital Converters

A TDC is a circuit that converts time (or delay) into a digital code and is extremely sensitive to supply
voltage variations. In our context, it serves as an internal voltmeter that monitors the PDN shared with the
HDC accelerator.

The core of the TDC is a delay line composed of a chain of buffers with latches (or flip-flops) tapped
along the path. At every measurement:

• A clock edge is launched into the delay line.

• Latches are enabled at the start of the clock cycle and disabled halfway through the period.

• The number of latches that have toggled when sampling is performed encodes how far the clock
edge has propagated, i.e., the effective delay.

Since the propagation delay of the buffers depends on the core voltage 𝑉int, any voltage droop on the
PDN, for example, when the HDC accelerator performs intensive XOR and POPCOUNT operations,
slows down the signal, reducing the number of toggled latches. The captured thermometer-like code is
then read out through registers and converted to a scalar TDC value.

A dedicated clock generator in the FPGA fabric produces different clock frequencies for the TDC and
the HDC accelerator. The TDC typically runs at a higher frequency to increase temporal resolution, while
the HDC uses a lower frequency optimized for inference latency and throughput. Both domains share the
same PDN, so power-hungry HDC operations induce measurable shifts in the TDC readouts. The TDC
architecture is illustrated in Figure 6.10.

6.4.3. Collision Analysis in High-Dimensional HDC

Collision analysis is a classical technique in side-channel cryptanalysis [11]. In traditional settings (e.g.,
AES), the attacker leverages known plaintext–ciphertext pairs and searches for distinct keys or intermediate
values that produce identical outputs, thereby narrowing the key space and localizing leakage.

In HDC, we adapt this idea to the high-dimensional hypervector space. Because ClassHVs are
constructed as distributed and redundant representations, distinct QueryHVs can produce highly similar
similarity scores (i.e., small Hamming distance to a given ClassHV). We refer to such cases as partial
collisions. These partial collisions are data-dependent and carry information about the underlying
ClassHV.

Our key intuition is:

• QueryHVs that frequently yield the same predicted class and exhibit very low Hamming distance to
that class’s hypervector must be structurally close to the true ClassHV in hypervector space.
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Algorithm 5 Collision-Based Hypervector Candidate Reduction
1: procedure CollisionReduce(HDC, CHV, 𝐻𝑉dim, percentile)
2: 𝑅𝑎𝑛𝑑𝑜𝑚𝐻𝑉 ← GenerateRandomHVs(𝐻𝑉dim, numHV)
3: 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← [ ], 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← [ ]
4: for 𝑖 ← 1 to numHV do
5: 𝑔𝑢𝑒𝑠𝑠𝐶𝑙𝑎𝑠𝑠 ← Classify(HDC, 𝑅𝑎𝑛𝑑𝑜𝑚𝐻𝑉 [𝑖])
6: if 𝑔𝑢𝑒𝑠𝑠𝐶𝑙𝑎𝑠𝑠 = targetClass then
7: 𝑑 ← HD(𝑅𝑎𝑛𝑑𝑜𝑚𝐻𝑉 [𝑖],CHV)
8: Append(𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑅𝑎𝑛𝑑𝑜𝑚𝐻𝑉 [𝑖])
9: Append(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑑)

10: 𝜏 ← Percentile(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, percentile)
11: 𝑓 𝑖𝑛𝑎𝑙𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← {𝑐 ∈ 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 | HD(𝑐,CHV) ≤ 𝜏}
12: return 𝑓 𝑖𝑛𝑎𝑙𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

• By identifying and analyzing these collision-prone QueryHVs, we can form a reduced candidate set
that tightly constrains the bits of the secret ClassHV, dramatically reducing the search space for the
subsequent TDC-based attack.

6.4.3.1. Collision-Based Hypervector Candidate Reduction

Given the high dimensionality (we use 𝐷 = 5000), exhaustive exploration of the hypervector space is
infeasible. To address this, we introduce a software-side collision-based candidate reduction that operates
before any hardware side-channel measurement:

1. Random candidate generation: Generate a large pool (e.g., 100,000) of random hypervectors
𝐻𝑉𝑖 ∈ {0, 1}𝐷 as QueryHVs.

2. Classification and filtering: For each candidate 𝐻𝑉𝑖 , obtain the predicted class label from the
HDC accelerator. Retain only those candidates that are classified as the target class.

3. Distance scoring: For each retained candidate, compute its Hamming distance to a reference (e.g.,
an approximate or initial ClassHV) and record the distance.

4. Percentile-based selection: Choose the subset of candidates whose distance lies within the lowest
𝑝% (e.g., 𝑝 = 2%). These candidates form the collision-sensitive set that most closely resembles the
true ClassHV.

5 summarizes the procedure.
In practice, this procedure reduces the candidate set from tens of thousands of random hypervectors

to O(103) high-quality candidates that are statistically very close to the true ClassHV. As shown later in
subsection 6.4.7, this reduction significantly decreases the number of traces needed in the subsequent
TDC-based attack.

6.4.4. Implicit Triggering via Staircase Profiling

A major challenge in remote internal attacks is synchronization: without an explicit trigger signal from the
victim circuit, how can the attacker precisely align TDC measurements with the victim’s HDC operations?

We address this using an implicit triggering technique based on staircase profiling. During a preliminary
profiling phase, the attacker:

• injects carefully chosen QueryHVs at fixed intervals (e.g., every 100 ns, corresponding to a 10 MHz
injection rate), and

• continuously records TDC outputs at a high sampling rate.
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(a) (b)

Figure 6.11.: (a) TDC values captured for different class candidates (MNIST) during profiling, demonstrating distinct peaks per
candidate. (b) Query injection time vs. peak power timing with queries injected every 100 ns. The staircase pattern reveals the
victim HDC execution period (300 ns) and the internal latency (≈ 20 ns offset) to reach peak power.

Because the injection pattern is asynchronous to the HDC accelerator’s internal execution period, the
phase difference between query injection and the start of HDC computation drifts over time. When
plotting the time of observed TDC peaks against the injection index, a characteristic staircase pattern
emerges:

• TDC peaks associated with HDC similarity computation appear periodically within each HDC
execution window (e.g., every 300 ns).

• The absolute peak timing within the window (e.g., at 20 ns offset from the start) reveals the internal
latency until the most power-hungry operations occur (such as XOR + POPCOUNT).

Figure 6.11 illustrates this behavior. The staircase pattern exposes both the HDC execution period
(300 ns in our prototype) and the internal offset at which maximum power occurs. After this profiling, the
attacker knows exactly when to sample the TDC within each execution window, effectively constructing a
virtual trigger without any wired connection to the victim.

6.4.5. Two-Stage Internal SCA Methodology

Combining the collision-based reduction and implicit triggering, our internal SCA attack proceeds in two
stages, summarized in Figure 6.12.

Stage 1: Collision-based candidate reduction (software-side). The attacker uses the collision analysis in
subsubsection 6.4.3.1 to reduce the hypervector search space. This step:

• runs entirely off-chip using standard classifier outputs,

• yields a compact set of candidate QueryHVs that are strongly correlated with the target ClassHV,
and

• reduces the number of hypervectors for which expensive TDC measurements must be collected.

Stage 2: TDC-based side-channel discrimination (hardware-side). Using the implicit trigger discovered
via staircase profiling:

• The attacker injects reduced candidate QueryHVs into the HDC accelerator with precise timing.

• The TDC, clocked at one or more frequencies, records delay-line states at the time of peak HDC
activity.

• Because XOR-based similarity computations consume less power when the candidate QueryHV is
more similar (lower Hamming distance) to the true ClassHV, the TDC readings encode similarity
information.
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Figure 6.12.: Proposed internal SCA methodology on an HDC accelerator. Stage 1 performs collision-based sensitivity analysis
to reduce the hypervector search space. Stage 2 uses a TDC sensor and implicit triggering to distinguish candidate ClassHVs via
power-induced timing variations.

Figure 6.13.: Floorplan of the proposed attack on Pynq-Z2. The HDC accelerator (victim, red) and TDC sensor (attacker, yellow)
are placed in different clock regions within the same FPGA fabric but share the same PDN. Screenshot from Xilinx Vivado.

By comparing TDC outputs across candidates, the attacker infers which candidate bits are consistent
with the true ClassHV. Aggregating these observations yields a bit-wise estimate of the secret ClassHV.
As shown later, we achieve ≈ 83% bit recovery for a 5000-D ClassHV using this method.

6.4.6. Experimental Setup

We implement and evaluate the internal sensing attack on a Pynq-Z2 board. The Pynq-Z2 integrates a
Xilinx Zynq XC7Z020 SoC combining an ARM-based processing system (PS) and programmable logic
(PL) on the same die, which naturally supports both victim and attacker logic in one device.

Key aspects of the setup (illustrated in Figure 6.13):

• The HDC accelerator is implemented in one region of the PL and clocked at 24 MHz. It receives
QueryHVs from a host PC via UART or AXI, performs similarity computation against stored
ClassHVs, and returns the predicted class label.

96



6.4. Dynamic workload scheduling and Internal Sensing SCA Attack: Collision-Based Timing Analysis

(a) (b)

Figure 6.14.: (a) Cumulative number of collisions over time, showing an increasing trend as more query hypervectors are
classified. (b) Collision frequency over time, with peaks indicating hypervectors that are particularly likely to align with the
target ClassHV.

• The TDC sensor is implemented in a separate clock region, clocked at several frequencies (24, 48,
72, and 96 MHz) to probe different timing sensitivities. It shares the PDN with the HDC accelerator
and outputs TDC codes through a UART interface.

• During profiling experiments, a debug trigger can optionally be asserted when the HDC module
starts processing a QueryHV (for validation). However, the main attack uses only implicit timing
derived from staircase profiling, making explicit triggers unnecessary in principle.

This arrangement reflects a multi-tenant scenario: the TDC core behaves like a small, hostile co-located
IP that passively monitors PDN activity while the HDC accelerator performs normal inference.

6.4.7. Vulnerability Assessment of Unprotected HDC Designs

The TDC delay values directly reflect instantaneous power consumption: lower power leads to smaller
voltage droop, shorter propagation delays, and thus a different TDC code. For similarity computations in
HDC, we exploit the fact that:

• lower Hamming distance between QueryHV and ClassHV⇒ fewer bit flips in XOR logic⇒ lower
dynamic power, and

• this manifests as a distinguishable pattern in the TDC readings.

Collision statistics. We first analyze collisions produced by Algorithm 5. Figure 6.14 shows:

• The cumulative collisions (Figure 6.14a) grow over time as more QueryHVs are evaluated, with
distinct surges when hypervector patterns align strongly with the target ClassHV.

• The collision rate (Figure 6.14b) exhibits sharp peaks during phases of strong alignment. These
peaks identify particularly informative QueryHVs that are later used as candidates in the TDC-based
attack.
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Figure 6.15.: TDC delay-line calibration for candidate ClassHVs on MNIST. The minimum TDC value (red circle) corresponds
to the correct candidate (ID 102). Measurements are performed with TDC clocked at 24, 48, 72, and 96 MHz while the HDC
remains at 24 MHz.

Table 6.5.: Recovered bits and inference accuracy for unprotected HDC designs.
Dataset Inference acc. Bits recovered Inference acc.

(before attack) (% of ClassHV) (after attack)
MNIST 81% 83.3% 78%

F-MNIST 79% 79.8% 73%
ISOLET 84% 73.0% 78%

Overall, we extract on the order of 1000 candidate ClassHV IDs as promising targets before performing
any side-channel measurement.

TDC calibration and bit recovery. We then apply the TDC-based attack (Stage 2) on the reduced candidate
set. Figure 6.15 illustrates the TDC delay calibration across several candidate IDs for the MNIST dataset.

The correct candidate hypervector consistently produces the lowest TDC code across multiple TDC
frequencies, enabling reliable identification. Using this approach, we recover a 5000-D ClassHV for
MNIST with 83.3% of bits correct.

We further validate the attack on Fashion-MNIST (F-MNIST) and ISOLET, as shown in Figure 6.16.

Impact on inference accuracy. To quantify the practical impact of bit recovery, Table 6.5 reports the
percentage of recovered bits and corresponding inference accuracy before and after the ClassHV is
reconstructed using the attack.

Even though the recovered ClassHVs contain only 73–83% correct bits, the resulting inference accuracy
remains close to the baseline (within 3–6 percentage points). This confirms that partial hypervector
recovery is sufficient for practical model theft.
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(a) Fashion-MNIST: minimum TDC value (red marker) at candidate ID 96.

(b) ISOLET: minimum TDC value (red marker) at candidate ID 388.

Figure 6.16.: Successful TDC-based power attacks on recovered ClassHVs for Fashion-MNIST and ISOLET when both HDC
and TDC modules operate at 24 MHz.

6.4.8. Randomization-Based Countermeasure

Ensuring security in resource-constrained edge AI systems is challenging. Conventional countermeasures
like heavy-weight masking, large dummy loads, or constant-power logic are often impractical on FPGAs
due to area, power, and latency overheads. We therefore propose a lightweight randomization strategy
tailored to HDC accelerators.

The core idea is to decorrelate the HDC’s instantaneous switching activity from the true data-dependent
similarity computation by injecting controlled randomness into encoding and memory access patterns.
Concretely:

• A small LFSR-based pseudo-random number generator is instantiated on-chip.

• Its output is used to generate pseudo-random masks that are XORed with intermediate hypervectors
and/or memory addresses during both training and inference.

• The masks are chosen so that the final decision logic (e.g., after unmasking or compensating
operations) preserves the correct classification result, but the instantaneous power consumption
becomes much less correlated with the true QueryHV–ClassHV similarity.

As shown in Figure 6.17, randomization:

• preserves classification accuracy (baseline and protected curves overlap), and

• drastically reduces the maximum bit recovery accuracy to about 19%, effectively neutralizing the
TDC-based attack.

The additional hardware cost of the LFSR and a small number of XOR gates is modest, making this
countermeasure attractive for edge deployments.
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(a) (b)

Figure 6.17.: Effect of randomization on MNIST. (a) Sample power patterns of HDC operations with and without randomization:
the baseline (blue) shows predictable patterns, while the randomized design (green) significantly disrupts correlation and peak
structure. (b) Classification accuracy (black, overlapping for protected and unprotected designs) and maximum bit recovery
accuracy for a single class: randomization reduces recovery from ≈ 80–83% (blue) to ≈ 19% (green).

Table 6.6.: Comparative analysis of the proposed TDC-based internal SCA with representative attacks on HDC.
Aspect Yang et al. [81] Hernandez et al. [84] Liu et al. [94] Krautter et al. [93] This work (TDC-based SCA)
Attack type Adversarial input Model inversion Adversarial parameter attack Voltage/timing stress FI Internal side-channel attack
Target HDC classifier FPGA-HDC FPGA-HDC FPGA-HDC FPGA-HDC
Attack method Genetic algorithm Feature reconstruction Bit flipping (RowHammer-like) Voltage/thermal stress TDC timing and power analysis
Vulnerability exploited Inference input space Associative memory semantics Associative memory encoding Implementation timing margins Similarity operation leakage (XOR+POPCOUNT)
Key outcome (%) Misclassification (∼ 78) Input reconstruction (∼ 81) Misclassification (∼ 90) Accuracy degradation Bit recovery (∼ 83)
Trigger mechanism Adversarial inputs Reconstruction queries Parameter perturbation Voltage/thermal variation Profiled timing triggering (implicit)
Countermeasures evaluated Adversarial training Noise injection, quantization – – Randomization-based hiding

6.4.9. Comparison with Other Attacks on HDC

Finally, Table 6.6 compares our internal TDC-based SCA with other prominent attacks on HDC classifiers.
While adversarial-input and parameter-based attacks focus on inducing misclassification or corrupting
associative memories, our approach directly targets hardware-level leakage of the similarity computation.

In summary, the internal TDC-based attack complements the external DL-SCA together, they show
that both external power measurements and internal timing sensors can be exploited to steal or clone
HDC models. This underscores the need for side-channel-aware design and lightweight, HDC-specific
countermeasures for secure edge AI deployment.

6.5. Active Integrity Attacks: Targeted Voltage-Level Fault Injection
(HyFault)

The third attack vector, HyFault, shifts the focus from confidentiality (IP theft) to integrity (targeted
misclassification). While HDC is often cited for its robustness against random errors (e.g., bit flips due to
soft errors), we show that it is highly vulnerable to targeted voltage-level fault injection under precise
timing information modeling. By combining boundary-sensitive profiling with cycle-accurate power
analysis and optimized glitching, an attacker can force specific misclassifications with success rates
approaching 90%, even in high-dimensional HDC implementations.

6.5.1. Threat Model

Attack Capability

We consider an attacker with non-invasive physical access to the target HDC accelerator, for example in a
lab setting or on a physically exposed edge device. The attacker:

• can control the supply voltage of the FPGA using a fault injection platform such as ChipWhisperer
Pro (CW1200), enabling precise voltage glitches at nanosecond time scales;
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• has detailed knowledge of the HDC architecture and inference pipeline (encoding, similarity
computation, memory organization) but no direct access to internal associative memory storing
sensitive ClassHV bits (proprietary IP of the HDC accelerator);

• is constrained by realistic limitations: restricted measurement time, limited physical access sessions,
and noisy measurement conditions.

Attack Goals

The attacker’s primary goal is to induce targeted misclassification by injecting voltage-level faults during
critical phases of HDC inference. The injected faults cause controlled bit flips or timing violations that
perturb similarity scores, thereby forcing specific wrong labels (e.g., digit “4”→ “9”). Unlike traditional
cryptographic fault attacks that recover keys, our threat model targets the functional integrity of HDC
models (e.g., safety-critical classification outcomes) [60], [77], [85].

6.5.2. Profiling and Sensitivity Analysis

HDC’s redundancy and distributed representation confer robustness to random faults: flipping a few
random bits seldom changes the predicted class [100], [107]. As a result, naively glitching at arbitrary
times or on arbitrary queries rarely leads to misclassification. To mount an effective attack, we must (i)
identify input hypervectors that lie close to decision boundaries and (ii) locate timing windows where
small perturbations have maximal impact. We consider hypervector dimensionalities of 1000-D and
2000-D, which are representative for practical edge deployments.

6.5.2.1. FPGA-Based Boundary Detection

To avoid exhaustive power profiling on the victim device (which is resource-intensive), we use a reference
FPGA from the same family as the target (e.g., CW305) for rapid boundary screening. Each input image 𝐼
is encoded into a query hypervector 𝑄𝐼 . The HDC accelerator computes similarity scores between 𝑄𝐼 and
each stored class hypervector 𝐶𝑖 using Hamming similarity:

𝑆(𝑄𝐼 ,𝐶𝑖 ) = 𝐷 − HammingDistance(𝑄𝐼 ,𝐶𝑖 ), (6.1)

where 𝐷 is the hypervector dimensionality.
We define a confidence margin for input 𝐼 as the difference between the top-two similarity scores:

𝑅(𝐼 ) = 𝑆best(𝑄𝐼 ,𝐶𝑖 ) − 𝑆second-best(𝑄𝐼 ,𝐶𝑖 ). (6.2)

Inputs with low 𝑅(𝐼 ) lie close to the decision boundary between two classes. We declare an input
boundary-sensitive if

𝑅(𝐼 ) ≤ 𝜏, (6.3)

where the threshold 𝜏 = 𝜇 − 1.5𝜎 is computed empirically from the distribution of confidence scores
(mean 𝜇, standard deviation 𝜎). We then minimally perturb the corresponding hypervectors 𝑄𝐼 (e.g.,
flipping ≈ 0.5% of bits) and collect power traces while the FPGA recomputes similarity. Correlation power
analysis (CPA) on these traces identifies hypervectors and time windows with high sensitivity to small
perturbations. The full procedure is summarized in Algorithm 6. Figure 6.18 shows a typical confidence
distribution for 100k randomly generated inputs in 1000-D and 2000-D configurations; the threshold 𝜏
(pink) selects boundary-sensitive images. We then perform CPA to locate sensitive hypervectors and time
windows. As shown in Figure 6.19, a correlation threshold of 0.15 identifies roughly 500 highly sensitive
hypervectors, while the power trace reveals the similarity computation window as the most vulnerable
region due to its strong data-dependent activity.
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Algorithm 6 Boundary Detection for Sensitive Hypervectors
1: Input: Image set {𝐼 }
2: Output: Boundary-sensitive image set B
3: B ← ∅
4: for each image 𝐼 in {𝐼 } do
5: Encode 𝐼 → 𝑄𝐼
6: Compute similarities 𝑆(𝑄𝐼 ,𝐶𝑖 ) for all classes 𝑖
7: Find 𝑆best and 𝑆second-best
8: 𝑅(𝐼 )← 𝑆best − 𝑆second-best

9: Compute 𝜇, 𝜎 from {𝑅(𝐼 )} and set 𝜏 = 𝜇 − 1.5𝜎
10: for each 𝐼 with 𝑅(𝐼 ) ≤ 𝜏 do
11: Minimally perturb 𝑄𝐼 (≈ 0.5% bits)
12: Collect power traces; perform CPA to confirm sensitivity
13: B ← B ∪ {𝐼 }
14: return B

Figure 6.18.: Confidence score distribution for 100k random input hypervectors (1000-D and 2000-D). The adaptive threshold 𝜏
(pink) selects boundary-sensitive inputs near the decision boundary.

6.5.2.2. Sensitivity vs. Dimensionality

Boundary detection yields a comparable number of sensitive input patterns across 1000-D and 2000-D
settings, but the effort required for successful fault injection grows with dimensionality. HDC’s robustness
is enhanced in higher dimensions: more bits encode the same semantic information, and more bit flips are
needed to cross the decision boundary.

In our experiments:

• For 1000-D hypervectors, perturbations of 2–5 bits (≈ 0.5%) per sensitive hypervector are sufficient
to cause misclassification.

• For 2000-D hypervectors, perturbations of 5–10 bits (still ≈ 0.5%) are required to achieve similar
misclassification behavior.

This dimensional scaling provides a useful baseline when interpreting the success rates of HyFault
across different HDC configurations.

6.5.3. Fault Injection Attack Methodology

Given the set of sensitive inputs and vulnerable timing windows, we now describe the voltage-level
fault injection methodology. The attack proceeds in two main stages: Random fault injections within
vulnerable windows to map coarse sensitivity and optimization of glitch timing (other parameters too) to
maximize misclassification.
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(a) (b)

Figure 6.19.: Profiling and sensitivity analysis on 1000-D HDC (MNIST). (a) CPA correlation coefficients; hypervectors above
the 0.15 threshold (red line) are highly sensitive and suitable for targeted FI. (b) Representative power trace showing three phases:
encoding, similarity computation, and writing. The similarity phase exhibits the highest data-dependent variance and becomes
the primary target for fault injection.

6.5.3.1. Random Fault Injection within Vulnerable Windows

From the power traces in Figure 6.19(b), we identify the similarity computation region as the most
fault-sensitive phase. We initially inject random glitches in this window, using standardized parameters
from prior work [65], [87], such as:

• glitch width ≈ 20 ns,

• near-zero offset from the start of the similarity phase.

We sweep candidate timestamps across this phase and perform 10–40 injections per point. For each
timestamp, we record:

• the fraction of successful faults (any effect),

• the fraction causing correct classification,

• the fraction causing wrong classification (our desired outcome),

• the fraction causing resets or crashes.

This coarse sweep reveals regions where glitches are more likely to cause misclassification, which
become the basis for fine-grained timing optimization.

6.5.3.2. Optimization of Fault Injection Timing and Parameters

To achieve targeted misclassification with high probability, we model the fault injection process and derive
an optimal timestamp 𝑡∗. For a set of candidate timestamps 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, we empirically estimate:

𝑃fault(𝑡𝑖 ) =
Successful faults at 𝑡𝑖

Total trials at 𝑡𝑖
, (6.4)

and conditional probabilities of classification outcomes given a fault:

𝑃CC |fault(𝑡𝑖 ) + 𝑃WC |fault(𝑡𝑖 ) + 𝑃NC |fault(𝑡𝑖 ) = 1, (6.5)

where CC, WC, and NC denote correct, wrong, and no classification, respectively.
The overall misclassification probability at 𝑡𝑖 is:

𝑃WC(𝑡𝑖 ) = 𝑃fault(𝑡𝑖 ) · 𝑃WC |fault(𝑡𝑖 ), (6.6)

and we also consider the transition probability from correct to wrong classification:

𝑃WC,trans(𝑡𝑖 ) = 𝑃WC |fault(𝑡𝑖 ) · 𝑃CC(𝑡𝑖 ). (6.7)
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Figure 6.20.: ChipWhisperer Pro trace with a single voltage glitch (blue) at 622 ns within the similarity computation window
(MNIST). This window is identified as highly fault-sensitive via profiling.

Figure 6.21.: Comparison of fault injection effectiveness before and after parameter optimization (1000-D MNIST). After tuning
glitch width, offset, and repetition count, successful faults more consistently result in misclassification rather than resets or
benign behavior.

We choose the optimal timestamp 𝑡∗ by maximizing:

𝑡∗ = arg max
𝑡𝑖
(𝑃fault(𝑡𝑖 ) · 𝑃WC |fault(𝑡𝑖 ) + 𝑃WC,trans(𝑡𝑖 )) . (6.8)

In practice, we first identify candidate windows via the coarse sweep, then refine around these windows
with 5 ns steps and optimized glitch widths and offsets.

6.5.3.3. Empirical Verification with ChipWhisperer Pro

We empirically validate the model using the ChipWhisperer Pro (CW1200) platform. Figure 6.20 shows a
power trace captured from the CW305 Artix-7 FPGA under a representative 1000-D MNIST workload,
with a glitch injected at 622 ns during the similarity phase.

Initially, using nominal glitch parameters (20 ns width, zero offset), we observe modest misclassification
rates. After optimizing glitch timing and parameters, misclassification probabilities increase sharply, as
shown in Figure 6.21 and Table 6.7.

Glitch widths of 25–30 ns with offsets around -15 to -20 ns and higher repetition counts give misclassi-
fication rates up to 89% while keeping reset rates relatively low.

6.5.4. Countermeasures for Voltage Fault Injection

To mitigate HyFault, we design countermeasures that disrupt the attacker’s ability to correlate timing and
power signatures with specific similarity operations, without incurring prohibitive overheads.

6.5.4.1. Hypervector Randomization

Hypervector randomization hides regularity in power and timing by permuting hypervector dimensions at
runtime. We implement:
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Table 6.7.: Effect of Glitch Parameters on Misclassification (MNIST)
Voltage Glitch Parameters Injection Outcome

Offset (ns) Width (ns) Repeat Misclassified (%) Reset (%)
-10 20 10 0 9
-15 20 10 4 15
-20 20 10 9 22
-10 25 20 23 36
-15 25 20 61 31
-20 25 20 74 23
-10 30 40 71 14
-15 30 40 89 11
-20 30 40 89 2
-10 35 40 85 14
-15 35 40 83 13
-20 35 40 83 16

• a lightweight LFSR-based PRNG to generate pseudo-random permutation indices;

• precomputed permutation tables for ClassHVs, applied once at initialization;

• dynamic permutations for QueryHVs during inference.

These permutations preserve functional correctness (decoding is unaffected), but destroy the repeatability
of per-dimension switching patterns. As a result, the timing map between bit positions and glitch timestamps
becomes unstable, making targeted glitches far less effective.

6.5.4.2. Dual XORMasking

To further strengthen the similarity computation against faults, we introduce dual XOR masking. Masked
class hypervectors are computed offline as:

𝐻class_masked = 𝐻class ⊕ 𝑀class, (6.9)

while query hypervectors are dynamically masked:

𝐻query_masked = 𝐻query ⊕ 𝑀query. (6.10)

Similarity is then computed on masked values:

𝐻result = 𝐻query_masked ⊕ 𝐻class_masked. (6.11)

For additional robustness, we use two independent masks per query and class:

𝐻masked1 = (𝐻query ⊕ 𝑀query1) ⊕ (𝐻class ⊕ 𝑀class1), (6.12)
𝐻masked2 = (𝐻query ⊕ 𝑀query2) ⊕ (𝐻class ⊕ 𝑀class2), (6.13)

with masks refreshed by a PRNG. This splits the effective computation into two shares that must
remain consistent; a fault in one path tends to decorrelate the shares, yielding noise rather than a clean
misclassification.
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Figure 6.22.: Countermeasure structure combining LFSR-based permutation randomization and dual XOR masking. Class
hypervectors are masked and permuted offline; query hypervectors are dynamically masked and permuted at runtime, complicating
precise glitch timing and profiling.

Figure 6.23.: Experimental setup: control PC, Pynq Z2 and Arty-A7 FPGA boards, ChipWhisperer Pro (CW1200) for voltage
glitching, and CW305 Artix-7 FPGA target board for precise characterization of HyFault.

6.5.5. Evaluation and Results

6.5.5.1. Experimental Setup

Figure 6.23 shows the integrated experimental framework. A baseline, unprotected BRAM-based HDC
accelerator is implemented on a Pynq Z2 FPGA (100 MHz), synthesized using Xilinx Vivado 2023.1.
Classification outputs are sent via UART to a host PC for validation. For fault injection, we use the
CW1200 with a CW305 FPGA board. Due to API constraints, we port the validated HDC design from an
Arty-A7 to CW305 via a compatible bitstream. Profiling on Arty-A7 identifies the similarity computation
cycles (e.g., cycles 62–76) as most sensitive; glitches on CW305 are then synchronized to these cycles.
Glitch parameters (offset, width, amplitude) are iteratively tuned under realistic attacker constraints.

6.5.5.2. Profiling and Sensitivity (Quantitative)

Using the ChipWhisperer Pro, we perturb 3,300 sensitive inputs, flipping 2–5 bits per 1000-D hypervector,
and collect ≈ 20,000 target power traces. CPA confirms strong correlation between specific hypervectors
and trace windows (see Figure 6.19), and a correlation threshold of 0.15 selects the top 500 hypervectors
as highly sensitive. This reduces the subsequent glitching effort substantially.

6.5.5.3. Targeted Misclassification Across Datasets

By exploiting intrinsic similarity between certain classes (e.g., visually similar digits or neighboring
letters), HyFault can steer predictions from an original class to a chosen target class. Table 6.8 summarizes
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Table 6.8.: Targeted misclassification results across benchmark datasets using HyFault.
Dataset Original Target Sim. Diff. (%) Misclass. (%)

MNIST
4 9 1.5 85
3 8 2.1 80
1 7 2.3 78

ISOLET
B D 2.3 78
M N 2.7 76
F S 3.0 72

Cardio Normal Arrhythmia 1.8 82
Arrhythmia Normal 2.0 79

CIFAR-10 Cat Dog 2.1 75
Automobile Truck 2.4 72

HAR Walking Upstairs 1.6 80
Upstairs Downstairs 1.9 77

(a) Misclassification rate as a function of fault-injection times-
tamp. A clear peak emerges at the optimal injection point near
𝑡★ ≈ 78 ns, indicating maximum sensitivity of the similarity-
computation phase.

(b) Effect of glitch width on misclassification behavior. Small
widths produce minimal impact, rapid growth appears between
20–30 ns, and misclassification rate saturates near 89% beyond
30 ns.

Figure 6.24.: Empirical analysis for optimal fault injection. (a) Misclassification probability across candidate timestamps (5 ns
increments); the optimal region near 78 ns is highlighted. (b) Misclassification vs. glitch width, showing minimal effect at small
widths, rapid growth between 20–30 ns, and saturation beyond 30 ns.

results across benchmark datasets. Class pairs with small similarity-score differences (≈ 1.5–3%)
are especially vulnerable: precisely timed glitches during similarity computation can reliably redirect
predictions.

6.5.5.4. Timing and Glitch Parameter Optimization

We empirically map misclassification probability vs. glitch timestamp and width. Figure 6.24a shows the
probability of misclassification as a function of injection time (5 ns step). The most vulnerable timestamp
is around 78 ns relative to the start of the similarity window.

Combining timing and width sweeps yields the optimized parameters in Table 6.7, achieving misclassi-
fication rates up to 89% on 1000-D MNIST with acceptable reset rates.

6.5.5.5. Impact of Hypervector Dimensionality

We evaluate HyFault on 1000-D and 2000-D HDC implementations. Increasing dimensionality reduces
fault injection success: misclassification rates decrease by ≈ 3 percentage points for MNIST when moving
from 1000-D to 2000-D, due to greater redundancy and dispersion of information. This effect is further
reinforced when countermeasures are applied (see below).
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(a) Attack success rate vs. number of fault-injection attempts for
1000-D and 2000-D HDC designs. Countermeasures reduce mis-
classification rates from nearly 90% to below 3%, demonstrating
strong resistance to targeted fault injection.

(b) Power-trace variance comparison. The unprotected design
(red) shows high variance caused by data-dependent switching
activity, while the protected design (blue) exhibits significantly
lower and more uniform variance, confirming reduced leakage.

Figure 6.25.: Comparison of unprotected and protected HDC designs on MNIST under voltage-level fault injection. (a) Attack
success rate as a function of the number of glitch attempts for 1000-D and 2000-D hypervectors, showing that countermeasures
suppress misclassification from ∼89% down to ≤2–3%. (b) Power-trace variance before and after protection: the unprotected
design (red) exhibits strong data-dependent fluctuations, whereas the protected design (blue) drastically reduces variance,
indicating effective leakage suppression.

(a) Misclassification rates across datasets for 1000-D and
2000-D BRAM-based HDC. Increasing dimensionality
(2000-D) consistently lowers misclassification probability,
demonstrating improved robustness under protection.

(b) Classification accuracy drop after applying counter-
measures. Accuracy degrades only slightly (2–3%), con-
firming that protection achieves strong security with mini-
mal impact on model performance.

Figure 6.26.: Effect of hypervector dimensionality and countermeasures on BRAM-based HDC accelerators. (a) Higher
dimensionality (2000-D) further suppresses misclassification rates across all datasets, especially in protected designs. (b) The
resulting accuracy loss remains small (2–3%), demonstrating that the proposed countermeasures provide strong robustness with
minimal performance overhead.

6.5.5.6. Effectiveness of Proposed Countermeasures

We apply the combined hypervector randomization and dual XOR masking to the BRAM-based HDC
design and repeat targeted fault injection experiments. Figure 6.25 compares success rates and power
variance before and after protection. Across datasets, misclassification rates fall to ≤ 2–3% under
protection, effectively returning the system to near-native reliability.

The effect of dimensionality under protection is shown in Figure 6.26: higher dimensionality further
suppresses attack success, especially in BRAM-dominated implementations.

Table 6.9 summarizes area, timing, and power overheads of the countermeasures.
Overheads are modest: BRAM increases by 12.7–16.3%, FFs by 4.9–5.8%; latency increases

11.2–14.5%, throughput decreases 6.4–8.9%, and power grows only 2.8–3.1%. Classification accuracy
drops insignificantly (≈ 2–3%), making the scheme practical for resource-constrained edge deployments.

6.5.5.7. Number of Power Traces Required

Typical cryptographic SCA often requires hundreds of thousands to millions of traces to extract fine-grained
leakage. In contrast, the HDC classifier exhibits strong, localized leakage during similarity computation.
Our profiling and sensitivity analysis require only ≈ 20,000 traces to identify sensitive hypervectors
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Table 6.9.: Area, timing, and power overhead of countermeasures (Artix-7 BRAM-based HDC).

Dim. Resource Utilization ↑ (%) Timing Overhead (%) Power ↑ (%)BRAM FF Latency ↑ Throughput ↓
1000-D 12.7 4.9 11.2 6.4 2.8
2000-D 16.3 5.8 14.5 8.9 3.1

Table 6.10.: Comparative analysis of HyFault with representative HDC attacks.
Aspect This Work (HyFault) Yang et al. [81] Hernandez et al. [84] Liu et al. [94] Krautter et al. [93]
Attack Type Fault injection Adversarial input Model inversion Adversarial parameter Voltage/timing stress
Target FPGA-HDC HDC simulation FPGA-HDC FPGA-HDC FPGA-HDC
Method Profiling + voltage glitch Genetic algorithm Feature reconstruction Bit flipping (RowHammer-like) Voltage/thermal/timing stress
Vulnerability Phase Similarity computation Inference input space Model encoding Associative memory Implementation logic
Success Rate 89.7% misclassification 78% misclassification High reconstruction accuracy ∼89% misclassification Significant accuracy drop
Countermeasures Masking + randomization Adversarial training Noise injection, quantization – –

and optimal glitch timings. This relatively small trace count underscores the practical vulnerability of
FPGA-based HDC to fault injection. Table 6.10 compares HyFault with representative HDC attacks.
HyFault is unique in combining boundary profiling, precise glitch timing, and hardware-level evaluation
to achieve near-deterministic misclassification on FPGA-HDC.

6.5.6. Integrated Countermeasures and the Robustness

6.5.6.1. Dynamic Masking Against DL-SCA

To address the deep-learning-based power SCA from section 6.3, we employ lightweight dynamic masking.
Hypervectors are XORed with pseudo-random masks 𝑀 generated by an on-chip PRNG:

• Stored ClassHVs are masked: 𝐶′ = 𝐶 ⊕ 𝑀 .

• Query QueryHVs are masked with the same or related mask: 𝑄 ′ = 𝑄 ⊕ 𝑀 .

• Similarity is computed on (𝐶′, 𝑄 ′); linearity of XOR allows the effective mask to cancel or be
compensated, preserving correctness while randomizing instantaneous Hamming weights.

This reduces ResNet-34-based bit extraction accuracy from 93% to ≈ 18%, as validated by higher-order
Test Vector Leakage Assessment (TVLA): first-order t-values drop from 9.7 (severe leakage) to 2.2 (below
4.5 threshold), indicating that both first- and second-order leakage are effectively suppressed. Overhead is
modest: ≈ 1.6× LUTs and ≈ 1.4× latency, considerably lighter than traditional cryptographic masking.

6.5.6.2. Hypervector Randomization and Dual Masking Against FI/Collision

For collision-based remote SCA (section 6.4) and HyFault, hypervector randomization and dual XOR
masking (see Figure 6.22) jointly obfuscate timing and power signatures. Query permutation breaks
the attack’s implicit timing map, while dual masking converts precise faults into largely random noise.
Combined, these defenses reduce misclassification success from ∼ 89.7% to ∼ 2.1%, effectively restoring
HDC’s natural robustness. The summary of the trade-offs in our proposed countermeasures is addressed
in Table 6.11.

6.5.6.3. The Robustness Paradox in HDC

The distributed and redundant nature of hypervectors allows HDC classifiers to tolerate substantial levels
of random noise: flipping even hundreds of bits rarely alters the predicted class because information
is encoded holistically across thousands of dimensions. This characteristic is often cited as evidence
of HDC’s robustness. However, our results reveal that this robustness is highly asymmetric and holds
only for stochastic, unstructured perturbations. When an adversary introduces targeted faults at precisely
chosen cycles, locations, or logic paths, this redundancy becomes a liability. Small but strategically
aligned perturbations, for example, flipping 5–10 specific bit positions in the XOR or POPCOUNT
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6. Vulnerability of Edge-AI-based Hyperdimensional Computing: FPGA Emulation

Table 6.11.: Qualitative summary of countermeasures: target, mechanism, overhead, and efficacy.
Countermeasure Target Attack Mechanism Area / Time Efficacy
Dynamic masking DL-SCA (CNN) XOR with PRNG mask ∼1.6× LUTs, 1.4× latency 93%→ 18% bit acc.
Query randomization FI & collision SCA Dimension permutation Minimal / negligible 89.7%→ 2.1% succ.
Dual XOR masking FI & collision SCA Redundant computation Moderate / low 89.7%→ 2.1% succ.

datapath—can deterministically bias similarity scores, collapse class-decision margins, and force consistent
misclassifications without triggering resets or detectable anomalies. We refer to this phenomenon as
the robustness paradox: the same distributed representation that masks random noise also masks the
attacker’s controlled perturbations, enabling stealthy integrity violations.

Crucially, all three attack vectors studied in this thesis converge on the similarity computation unit
(XOR + POPCOUNT) as the dominant architectural hotspot. In DL-SCA, the massive parallel switching
of the XOR array produces high-SNR, data-dependent power signatures that a deep CNN can learn to
exploit. In dynamic workload scheduling and TDC-based SCA, the high instantaneous current draw of
POPCOUNT operations induces measurable timing shifts on the shared PDN, enabling on-chip sensors to
infer Hamming-distance variations remotely. In HyFault, the tight timing margins of the POPCOUNT
adder tree make it highly susceptible to precisely timed voltage glitches, which selectively corrupt
similarity accumulation while leaving the remaining HDC pipeline unaffected. Taken together, these
observations show that while HDC is resilient to random noise at the algorithmic level, the hardware
realization of similarity computation exposes a concentrated and repeatable vulnerability—a clear focal
point for future hardening and secure microarchitectural design.

6.5.7. Summary

This chapter presented a comprehensive security evaluation of FPGA-based HDC accelerators, spanning
three hardware-level attack vectors:

• Deep-learning-assisted power SCA (DL-SCA): A 1D ResNet-34, combined with adaptive Grad-
CAM, learns non-linear leakage features from power traces, achieving up to 93% bit recovery on
ClassHVs across datasets and FPGA platforms.

• Ddynamic workload scheduling/internal sensing SCA (collision-based TDC attacks): By
combining collision analysis with on-chip TDC sensors, an attacker can recover ≈ 83% of ClassHV
bits without physical probing, exploiting PDN timing fluctuations.

• Voltage-level fault injection (HyFault): Using boundary profiling, timing optimization, and
ChipWhisperer-based glitching, targeted misclassification rates up to 89.7% are achieved on
BRAM-based HDC accelerators, with realistic glitch parameters.

Collectively, these results establish a baseline of insecurity: unprotected FPGA-HDC accelerators are
vulnerable to both IP theft and integrity compromise. At the same time, we show that these vulnerabilities
are not fundamental. Lightweight, HDC-aware countermeasures, such as dynamic masking, hypervector
randomization, and dual XOR masking, can reduce attack success rates to below 3% with modest overhead
in area, latency, and power, and minimal impact on accuracy.

As edge AI scales and HDC becomes more widely deployed, algorithmic robustness alone is insufficient
as a security guarantee. The transition from “robust by design” to secure by design requires explicit
hardware hardening, side-channel-aware architectures, and standardized countermeasures. Future work
should aim at formal verification of side-channel resilience for HDC accelerators, integration of these
defenses into tool flows, and extending protections to emerging edge platforms, ensuring that the energy
efficiency and robustness of hyperdimensional computing do not come at the cost of security.
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7. Conclusion and Outlook

Summary of the Thesis

This dissertation developed a cross-layer, experimentally validated framework for the physical security
of emerging AI hardware accelerators. The work began by formalizing physics-aware leakage and
fault models for analog CiM architecture, then demonstrated real-hardware attacks and defenses on
digital/FPGA accelerators, HDC, and finally generalized the methodology to neuromorphic substrates.
The contributions close long-standing gaps between device physics, circuit-level non-idealities, and
system-level security evaluation, and they translate into concrete, low-overhead countermeasures suitable
for edge deployment.

Contributions.

• Analog CiM (ReRAM/MRAM) leakage modeling (Ch. 3): The thesis provides a device-to-
array-to-PDN model that explains how analog non-idealities, captured by the v⊤∆G(𝑡 )v term,
propagate to supply/EM observables. The model yields windowed predictors for compute primitives
(scouting-logic XOR; MAC+tanh; CAM/HDC) and predicts traces-to-disclosure (𝑁TD) trends
under PDN decoupling and technology corners, enabling design-time leakage sign-off.

• Persistent faults in MRAM-backed digital systems (Ch. 4): On real hardware, the thesis shows
that rail-isolated, nanosecond-scale voltage glitches during the STT-MRAM commit window
induce persistent, byte-local corruptions in stored keys. The resulting constancy enables low-
data-complexity cryptanalysis (DFA/SPFA): a full AES-128 key is recovered with only 12–17
correct/faulty pairs, two orders of magnitude below typical volatile-memory DFA requirements.
PUF-sealed key slots, randomized commit timing, and write-verify/ECC neutralize this class with
modest overhead.

• Emerging Neuromorphic computing (Ch. 5): For a-IGZO-based flexible SNNs, the work
introduces FlexSpy, a design-time framework that identifies a dominant leakage primitive: rate-
weighted quasi-DC offsets during spike epochs. Using only a single shunt trace and a self-generated
“virtual trigger,” the attacker achieves label inference up to ROC–AUC = 0.91 and recovers layer-wise
firing rates with NMSE = 0.14. Two lightweight defenses, spike-time jitter and event balancing,
reduce measurable leakage by 38–70% at ≤ 9% power cost.

• FPGA HDC: real-hardware SCA & FI (Ch. 6): The work demonstrates three complementary
attacks on HDC accelerators. (i) A deep-learning SCA (1D ResNet-34 with adaptive Grad-CAM)
attains up to 93% bit recovery of ClassHVs; (ii) a remote, TDC-based timing/power attack (“Collide
& Conquer”) reaches 83% recovery without external probes; and (iii) a targeted voltage-glitch attack
(HyFault) forces up to 89.7% misclassification. Defenses, dynamic masking, and hypervector
randomization with dual XOR masking cut recovery/misclassification down to ∼18% and ∼2%,
respectively, with ∼1.6× LUT and ∼1.4× latency overheads for SCA hardening and single-digit
percent overheads for FI hardening.
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Synthesis: From Physics to Systems to Defenses

A unifying physical thread

Across CiM arrays, flexible neuromorphics, and FPGA HDC, one mechanism dominates: data-dependent
current draw filtered by a shared power-delivery network. Whether the signal is continuous (analog
CiM) or impulsive (CMOS switching in HDC), the PDN converts internal activity into measurable
supply/timing signatures. Conversely, precisely timed supply perturbations convert PDN susceptibility
into fault channels (droop-induced delay or mixed-signal threshold shifts). This duality explains why
the same unit (XOR+popcount similarity in HDC; sense/activation in CiM; synaptic epochs in f-SNNs)
becomes the focal point for both SCA and FI.

Summary of Methods

The thesis establishes a repeatable methodology: (i) leakage/fault priors grounded in device physics;
(ii) windowed predictors tied to compute primitives; (iii) rigorous statistics (TVLA, |𝜌 |, 𝑁TD, MI, SLI);
and (iv) controlled instrumentation stacks on boards and in simulation. This progression, from formal
predictor to measurement to mitigation, turns “security by afterthought” into security by construction.

What the results imply for edge AI

Three system-level insights emerge.

1. HDC’s tolerance to random faults masks fragility to targeted faults and aligned leakages; flexible
SNN sparsity, prized for energy efficiency, becomes a strong quasi-DC side channel. Robustness
must be recast as adversarial robustness at the hardware boundary.

2. Internal monitors (e.g., TDCs) and shared resources that exist for reliability and DVFS become
high-fidelity side-channel sensors under multi-tenancy; their use must be threat-modeled and
access-controlled.

3. Per-inference masking/permutation, start-time jitter, and randomized commit timing are cheap yet
highly effective, because they break alignment (SCA) and destroy determinism (FI/PFA) while
preserving functional equivalence.

Answers to the Research Questions (RQs)

RQ1 (Device→Leakage/Fault link). The derived models and simulations show how ReRAM/MRAM
conductances and WL/BL parasitics set windowed predictors that correlate with measured traces;
commit-window asymmetries in STT-MRAM produce persistent faults under nanosecond-scale droops.
RQ2 (Beyond classical SCA for FPGA-HDC). Deep models discover temporally localized leakage
(XOR/popcount) that classical CPA cannot, achieving up to 93% bit recovery and transferring across
FPGA boards; dynamic masking reduces TVLA from ∼9.7 to ∼2.2 and bit recovery to ∼18%.
RQ3 (FI operating regime). Voltage-glitch FI succeeds when aligned to similarity windows and BRAM
read phases, achieving up to 89.7% targeted misclassification; dual-share/permute defenses push success
down to ∼2% while keeping throughput and power impacts small.
RQ4 (PDN covert activation & joint hardening). On-chip timing sensors (TDC) and controlled
query cadence enable implicit triggering and remote SCA with 83% recovery; the same PDN-centricity
motivates joint defenses (masking, permutation, start-time jitter, monitoring) that simultaneously blunt
SCA and FI.
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Design Guidance

1. Treat XOR+popcount (HDC), sense/activation (CiM), and synaptic epochs (SNN) as security-
critical IP. Apply per-inference masking/permutation and bounded start-time jitter; avoid storing or
transporting unmasked hypervectors.

2. Use time hopping (few-cycle, seed-driven jitter), randomized scheduling of CAM/ML reads, and,
for NVM, PUF-keyed commit dithering.

3. Lightweight rail monitors (RO/XADC) should gate writes and freeze outputs under droop; track
TVLA/MI/SLI as regression checks alongside timing and power sign-off.

4. Seal persistent assets (keys, weights, hypervectors) to a device-unique PUF with integrity tags; add
dual-slot/ECC with write-verify and short-TTL caches for sensitive artifacts.

5. Scope and rate-limit access to on-chip sensors (e.g., TDC/ILA) under multi-tenancy; isolate critical
rails and avoid public triggers correlated with sensitive commit windows.

Limitations

• Adversary model. Most empirical results assume laboratory- or gray-box capabilities (board access
or co-tenancy). While widely relevant to edge devices and cloud FPGAs, fully remote adversaries
were not the focus.

• Scope of channels. The strongest results center on power/timing channels; EM and thermal
channels, while discussed, warrant deeper empirical coverage for flexible substrates and dense CiM
arrays.

• Defense composition. While the thesis quantifies single/paired countermeasures with resource
budgets, formal composability guarantees (e.g., proofs under adaptive attackers) remain open.

Outlook and Future Work

1. Integrate TVLA/MI/SLI targets into Neural Architecture Search (NAS) and HDC encoder design;
co-train models that maximize functional accuracy while minimizing hardware leakage predictability.

2. Elevate security metrics to first-class sign-off alongside STA and power closure (e.g., “security
timing corners” with PDN droop models and leakage budgets).

3. Provide lightweight, verifiable entropy sources for per-inference masking/jitter on low-end FPGAs
and flexible substrates.

4. Develop access-control and attestation for on-chip monitors (TDC/XADC/thermal) to prevent their
repurposing as covert sensors under multi-tenancy.

5. Extend FlexSpy-like methodologies to EM channels and to other emerging technology (PCM,
FeFET CiM; 3D-integrated fabrics), including aging-aware leakage evolution.

This thesis establishes that the physical layer is the root of both vulnerability and defense in edge
AI hardware. By turning device physics into quantitative predictors, measurements into reproducible
benchmarks, and randomness into structured protection, the work charts a practical path to hardware-
rooted trust. The proposed techniques, from per-inference masking/jitter to countermeasure, reduce
successful attacks from the 80–90% range to single digits with acceptable overheads, and they generalize
across analog CiM, flexible neuromorphics, and FPGA HDC. As edge intelligence becomes ubiquitous,
the methodolgies developed here, models, metrics, and mitigations, provide a foundation for designing
accelerators whose efficiency does not come at the expense of security.
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Algorithm 7 Test Vector Leakage Assessment (TVLA) Using Welch’s 𝑡-Test

Require: Two sets of leakage traces: L0 ∈ R𝑁0×𝑇 (fixed / class 0), L1 ∈ R𝑁1×𝑇 (random / class 1);
1: transform 𝑔(·) (identity for first order, centered square for second order);
2: significance threshold 𝜏 (typically 𝜏 = 4.5 for first order).

Ensure: 𝑡-statistic vector t ∈ R𝑇 and leakage mask ℓ ∈ {0, 1}𝑇 .
⊲ Optional: apply non-linear transform for higher-order TVLA

3: for 𝑖 = 1 to 𝑁0 do
4: for 𝑡 = 1 to 𝑇 do
5: 𝑌

(0)
𝑖,𝑡
← 𝑔(L0[𝑖, 𝑡])

6: for 𝑖 = 1 to 𝑁1 do
7: for 𝑡 = 1 to 𝑇 do
8: 𝑌

(1)
𝑖,𝑡
← 𝑔(L1[𝑖, 𝑡])

⊲ Compute Welch’s 𝑡-statistic per time sample
9: for 𝑡 = 1 to 𝑇 do

10: 𝜇0[𝑡]← 1
𝑁0

∑𝑁0
𝑖=1 𝑌

(0)
𝑖,𝑡

11: 𝜇1[𝑡]← 1
𝑁1

∑𝑁1
𝑖=1 𝑌

(1)
𝑖,𝑡

12: 𝜎2
0[𝑡]← 1

𝑁0−1
∑𝑁0
𝑖=1 (𝑌

(0)
𝑖,𝑡
− 𝜇0[𝑡])2

13: 𝜎2
1[𝑡]← 1

𝑁1−1
∑𝑁1
𝑖=1 (𝑌

(1)
𝑖,𝑡
− 𝜇1[𝑡])2

14: 𝑠𝑒[𝑡]←
√︃
𝜎2

0[𝑡]/𝑁0 + 𝜎2
1[𝑡]/𝑁1 ⊲ Standard error

15: if 𝑠𝑒[𝑡] > 0 then
16: 𝑡[𝑡]← 𝜇0[𝑡] − 𝜇1[𝑡]

𝑠𝑒[𝑡]
17: else
18: 𝑡[𝑡]← 0
19: ℓ[𝑡]← 1( |𝑡[𝑡]|≥ 𝜏) ⊲ Leakage flag
20: return t, ℓ

117



Algorithm 8 Mutual Information and Spike-Leakage Index Estimation

Require: Discrete secrets {𝑆𝑛}𝑁𝑛=1, 𝑆𝑛 ∈ S;
1: Leakage feature vectors {z𝑛}𝑁𝑛=1 for a given block 𝑏 and window𝑤 ;
2: number of histogram bins 𝐵 per feature dimension;
3: (optional) device-level features {zdev

𝑛 }𝑁𝑛=1 for two-layer MI.
Ensure: 𝐼 (𝑆 ;𝑍 ) in bits, SLI(𝑏,𝑤 ; 𝑆) ∈ [0, 1];

4: (optional) two-layer decomposition 𝐼 (𝑆 ;𝐿device) and 𝐼 (𝑆 ;𝐿design | 𝐿device).
⊲ Step 1: discretize leakage features by binning

5: Define bin edges for each dimension of z using min/max or quantiles.
6: for 𝑛 = 1 to 𝑁 do
7: 𝑠 ← 𝑆𝑛
8: 𝑞 ← Bin(z𝑛) ⊲ Map z𝑛 to a discrete bin index 𝑞 ∈ {1, . . . , 𝑄}
9: 𝐶𝑆[𝑠]← 𝐶𝑆[𝑠] + 1

10: 𝐶𝑍 [𝑞]← 𝐶𝑍 [𝑞] + 1
11: 𝐶𝑆𝑍 [𝑠, 𝑞]← 𝐶𝑆𝑍 [𝑠, 𝑞] + 1

⊲ Step 2: convert counts to probabilities
12: 𝑁 ← ∑

𝑠∈S 𝐶𝑆[𝑠]
13: for all 𝑠 ∈ S do
14: 𝑝𝑆[𝑠]← 𝐶𝑆[𝑠]/𝑁
15: for all 𝑞 with 𝐶𝑍 [𝑞] > 0 do
16: 𝑝𝑍 [𝑞]← 𝐶𝑍 [𝑞]/𝑁
17: for all (𝑠, 𝑞) with 𝐶𝑆𝑍 [𝑠, 𝑞] > 0 do
18: 𝑝𝑆𝑍 [𝑠, 𝑞]← 𝐶𝑆𝑍 [𝑠, 𝑞]/𝑁

⊲ Step 3: compute entropy of the secret
19: 𝐻𝑆 ← 0
20: for all 𝑠 ∈ S with 𝑝𝑆[𝑠] > 0 do
21: 𝐻𝑆 ← 𝐻𝑆 − 𝑝𝑆[𝑠] log2 𝑝𝑆[𝑠]

⊲ Step 4: compute mutual information 𝐼 (𝑆 ;𝑍 )
22: 𝐼 ← 0
23: for all (𝑠, 𝑞) with 𝑝𝑆𝑍 [𝑠, 𝑞] > 0 do

24: 𝐼 ← 𝐼 + 𝑝𝑆𝑍 [𝑠, 𝑞] log2

(
𝑝𝑆𝑍 [𝑠, 𝑞]
𝑝𝑆[𝑠]𝑝𝑍 [𝑞]

)
⊲ Step 5: compute Spike-Leakage Index (SLI) for block 𝑏, window𝑤

25: if 𝐻𝑆 > 0 then
26: SLI(𝑏,𝑤 ; 𝑆)← 𝐼/𝐻𝑆
27: else
28: SLI(𝑏,𝑤 ; 𝑆)← 0

⊲ Optional: two-layer MI decomposition 𝐼 (𝑆 ;𝐿device) and 𝐼 (𝑆 ;𝐿design | 𝐿device)
29: if device-level features zdev

𝑛 are provided then
30: Estimate 𝐼 (𝑆 ;𝐿device) using the above steps with (𝑆𝑛, zdev

𝑛 ).
31: Form concatenated features z̃𝑛 ← [zdev

𝑛 , z𝑛].
32: Estimate 𝐼 (𝑆 ; [𝐿device, 𝐿design]) using (𝑆𝑛, z̃𝑛).
33: 𝐼 (𝑆 ;𝐿design | 𝐿device)← 𝐼 (𝑆 ; [𝐿device, 𝐿design]) − 𝐼 (𝑆 ;𝐿device)
34: return 𝐼 , SLI(𝑏,𝑤 ; 𝑆) (and optional two-layer MI terms)
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Algorithm 9 Correlation Power Analysis (CPA)

Require: Power traces {𝑇𝑘 (𝑡 )}𝑁
𝑘=1, inputs {𝑥𝑘 }𝑁𝑘=1, hypothesis spaceW for secret𝑤 , window templates

{𝑔𝑤(𝑡 )}, leakage predictors {PredictLeakage𝑤(·)}
Ensure: Estimated secret 𝑤̂ , per-window correlation scores 𝜌𝑤(𝑤ℎ)

1: for all hypotheses𝑤ℎ ∈ W do
2: for 𝑘 = 1 to 𝑁 do
3: for all windows𝑤 do
4: Compute predicted leakage

𝑝
(𝑤)
𝑘
← PredictLeakage𝑤(𝑥𝑘 ,𝑤ℎ)

5: Extract scalar feature from the trace via projection

𝑦
(𝑤)
𝑘
←

∫
𝑇𝑘 (𝑡 )𝑔𝑤(𝑡 ) d𝑡

⊲ Matched filter / window integration
6: for all windows𝑤 do
7: Compute Pearson correlation between predicted and measured leakage:

𝜌𝑤(𝑤ℎ)← corr({𝑦(𝑤)
𝑘
}𝑁
𝑘=1, {𝑝

(𝑤)
𝑘
}𝑁
𝑘=1)

8: Define hypothesis score
𝑆(𝑤ℎ)← max

𝑤
|𝜌𝑤(𝑤ℎ)|

9: Select best hypothesis
𝑤̂ ← 𝑎𝑟𝑔𝑚𝑎𝑥

𝑤ℎ∈𝑊
𝑆(𝑤ℎ)

10: Compute traces-to-disclosure estimate using dominant correlation

𝜌★← max
𝑤ℎ∈W, 𝑤

|𝜌𝑤(𝑤ℎ)| , 𝑁TD ≈
𝑧2

𝜌2
★

⊲ 𝑧 is the desired confidence parameter (e.g., 𝑧 = 5)
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