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Abstract Cloud feedback is a dominant source of uncertainty in climate model estimates of equilibrium
climate sensitivity (ECS). Cloud controlling factor analysis can observationally constrain cloud feedback. For
the first time, we use separate rather than unified frameworks to assess high‐ and low‐cloud feedbacks and
constrain the net cloud feedback and subsequently, the ECS. We find a robustly positive cloud feedback (i.e., a
negative feedback is <0.5% probable), indicating that clouds amplify global warming. We assess the individual
and combined impacts of our cloud feedback constraints on ECS using three approaches. Two indicate an
upward ECS shift with reduced uncertainty, preserving ECS–feedback correlations but using cloud feedback as
a single line of evidence. The third, a Bayesian framework combining multiple lines of evidence, also suggests a
higher ECS but with a smaller increase and broader confidence range.

Plain Language Summary The equilibrium climate sensitivity (ECS) is a measure of the Earth's
temperature response to a doubling of atmospheric carbon dioxide. However, climate model projections of the
ECS remain highly uncertain. Clouds respond to CO2‐driven environmental changes (e.g., increasing surface
temperature) which can amplify or dampen climate change. Such cloud feedbacks have been pinpointed as a
dominant source of uncertainty in the ECS. Cloud‐controlling factor analysis derives relationships between
meteorological variables and clouds in an attempt to reduce uncertainties in model projections of the cloud
feedback. Our separate high‐ and low‐cloud controlling factor frameworks yield robustly positive estimates of
the overall cloud feedback (with less than 0.5% probability of being negative). We subsequently evaluate the
downstream constraints on the ECS, following three distinct approaches. In all cases, we find a shift toward
higher values, but note that the shape of the constrained ECS distribution is strongly dependent on our prior
assumptions, including the climate models considered.

1. Introduction
The equilibrium climate sensitivity (ECS), defined as the Earth's steady‐state temperature response to a doubling
of atmospheric carbon dioxide (CO2), serves as a foundation for understanding the planet's response to increasing
greenhouse gas emissions. Despite the increasing sophistication of the Earth System Models (ESMs) used to
simulate the Earth's response to CO2, ECS projections are still subject to considerable uncertainty (Forster
et al., 2021; Marvel & Webb, 2025; Sherwood et al., 2020). In fact, the most recent Coupled Model Intercom-
parison Project Phase 6 (CMIP6) generation of ESMs covers a wider range of ECS estimates than previous
generations, spanning 1.8–5.6 K (Zelinka et al., 2020).

Cloud feedback has been pinpointed as a prevailing cause of the uncertainty within CMIP5/6 ECS projections
(Sherwood et al., 2020). As the atmosphere warms, the vertical structure, microphysics, and areal coverage of
clouds changes, thus modulating the global top‐of‐the‐atmosphere (TOA) energy balance and either amplifying or
dampening climate change. Sherwood et al. (2020) identify six key mechanisms driving the net cloud feedback:
reductions in the areal coverage of tropical and mid‐latitude marine low clouds, tropical anvil clouds, and land
clouds; increasing free‐tropospheric cloud altitude; and changes in high‐latitude, low‐cloud optical depth.

Since Sherwood et al. (2020, hereafter S20)'s assessment, several studies have sought to improve process un-
derstanding and tighten uncertainties associated with different feedback mechanisms. For example, anvil cloud
(McKim et al., 2024; Sokol et al., 2024) and tropical low‐cloud (Cesana & Del Genio, 2021; Myers et al., 2021;
Wu et al., 2025) feedbacks have received particular attention due to their large uncertainties. Approaches include:
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constraints derived from satellite observations (Cesana & Del Genio, 2021; Raghuraman et al., 2024; Wall
et al., 2022), cloud‐resolving models (Sokol et al., 2024), theoretical approaches (McKim et al., 2024), emergent
constraints (Thackeray et al., 2024), and cloud‐controlling factor (CCF) analyses (Ceppi et al., 2024; Myers
et al., 2021; Wilson Kemsley et al., 2025; Wu et al., 2025).

Here, we focus on CCF analyses given their foundation in being (a) robustly applicable across CMIP archives, (b)
motivated by physical intuition in the choice of the CCFs, and (c) providing direct links between historical and
future data (Nowack & Watson‐Parris, 2025). CCFs are meteorological variables shaping the large‐scale cloud
environment and life‐cycle (Andersen et al., 2023; Klein et al., 2017; Stevens & Brenguier, 2009; Wilson
Kemsley et al., 2024). CCF‐based observational cloud feedback constraints derive relationships between his-
torical cloud‐induced top‐of‐atmosphere (TOA) radiative anomalies and the CCFs. Assuming linearity, the re-
lationships derived from historical simulations are extrapolated into and validated under warmer climates,
typically using abrupt quadrupling of CO2 (abrupt‐4×CO2) experiments across ESMs (e.g., Ceppi et al., 2024;
Ceppi & Nowack, 2021; Myers et al., 2021; Qu et al., 2015; Wilson Kemsley et al., 2025). By extension, these
approximately climate‐invariant relationships can be estimated from observational data and used to constrain
cloud‐radiative responses to changes in the CCFs.

Ceppi and Nowack (2021, hereafter CN21) advanced previous frameworks by using ridge regression to derive the
CCF relationships, rather than using multiple linear regression (MLR) with locally defined CCFs (e.g., Myers
et al., 2021; Qu et al., 2015). CN21 showed that using CCFs within large spatial domains (instead of locally
defined) increased predictive skill for global cloud feedback (λNET) under abrupt‐4×CO2 climate model
projections—likely due to the synoptic scale within which the life‐cycle of clouds exists in monthly‐average data.
More recent CCF analyses have sought to constrain feedback associated with specific cloud types or altitudes
(Ceppi et al., 2024; Myers et al., 2021; Wilson Kemsley et al., 2025; Wu et al., 2025), motivated by the different
processes driving feedback from different cloud regimes (Ceppi et al., 2017; Fuchs et al., 2018; Gettelman &
Sherwood, 2016).

For example, Ceppi et al. (2024; hereafter C24) followed a similar approach to CN21 but for feedback specifically
isolated from low clouds (λLOW). C24 used CCFs and a spatial domain optimized for the abrupt‐4×CO2 pre-
dictions of λLOW and found a more strongly amplifying feedback than most climate models suggest. Their work
built upon Myers et al. (2021), who also constrained λLOW (instead using MLR with local CCFs) but found a less
positive low cloud feedback. C24 showed that the discrepancy between theirs and Myers et al. (2021)'s constraint
was due to the changed CCF sensitivity patterns with increased domain size, which more accurately captured the
forced response.

Motivated by the uncertain anvil cloud feedback, Wilson Kemsley et al. (2025, hereafter WK25) used CCF
analysis to observationally constrain feedback from changes in high‐cloud amount, using CCFs and a spatial
domain specifically targeting high clouds (Wilson Kemsley et al., 2024). It is considered highly likely that the
areal coverage of anvil clouds decreases as the atmosphere warms (Bony et al., 2016; McKim et al., 2024; Saint‐
Lu et al., 2020; Wodzicki & Rapp, 2022). WK25 showed that ESMs typically underestimate these reductions in
global high‐cloud amount and even more substantially underestimate associated longwave (LW) and shortwave
(SW) cloud feedbacks, which observations indicate are large and robustly negative and positive, respectively
(also shown by Raghuraman et al., 2024). WK25 attributed this to a misrepresented “stability iris” mechanism
within the climate models (Bony et al., 2016; Zelinka & Hartmann, 2010, 2011). Regardless, they found an
approximately neutral high‐cloud amount feedback, indicating that reductions in areal anvil cloud coverage
would not drive a globally stabilizing feedback.

Recent advances in CCF analysis now allow optimized setups for constraining low‐ and high‐cloud feedbacks,
motivating us to derive distinct observational constraints for each and combine them into a joint constraint on
λNET. This approach also enables us to assess, for the first time within a CCF‐type framework, how constraints on
high‐cloud feedbacks shape downstream ECS constraints. This methodological separation aligns with the mul-
tiple lines of evidence framework of S20, treating separate cloud‐feedback components as distinct yet comple-
mentary sources of information. We first use separate, targeted CCF frameworks to constrain low‐ and high‐cloud
feedbacks before deriving a joint constraint on λNET. We then evaluate how these updated cloud‐feedback
constraints influence ECS estimates under three distinct approaches: (a) using our λNET constraint directly, (b)
applying separate high‐ and low‐cloud feedback constraints while preserving their correlation structure, and (c)
incorporating our constraints as one of several lines of evidence within S20's Bayesian framework.
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2. Data and Methods
2.1. Data Sets

For observations, we use the Moderate Resolution Imaging Spectroradiometer (MODIS) combined Aqua/Terra
cloud property data set, collection 6.2 (Pincus et al., 2023), from July 2002 to June 2023. In place of direct
observations, ERA5 meteorological CCFs are used. For our core set of ESMs, we use 16 CMIP5/6 models that
have run the International Satellite Cloud Climatology Project (ISCCP) simulator (for both historical and abrupt‐
4×CO2 scenarios) and, for consistency with previous work, we use historical simulations from 1981 to 2000
(C24, WK25). We use abrupt‐4×CO2 simulations from an additional 30 ESMs where all meteorological variables
required to calculate the CCFs are available (totaling 46; Text S1 in Supporting Information S1). All data sets
have been re‐gridded to a common 5° × 5° spatial resolution with monthly‐mean temporal resolution. We use a
“near‐global” spatial domain from 60°S to 60°N; high latitudes are excluded because of artifacts arising at high
solar zenith angles.

Both MODIS and the ISCCP CMIP5/6 data provide cloud‐amount histograms, from which radiative anomalies
associated with changes in clouds at different top pressures can be derived using cloud‐radiative kernels
(Zelinka, 2022; Zelinka et al., 2016). We isolate cloud‐radiative anomalies, R, from non‐low (hereafter “high” for
conciseness) and low clouds, according to their cloud‐top pressures. For MODIS, we follow previous studies
(e.g., Ceppi et al., 2024; Myers et al., 2021; Wilson Kemsley et al., 2025; Zelinka et al., 2016) and define high
clouds with top pressures <680 hPa. For the ESMs, the ISCCP simulator tends to misattribute mid‐level clouds in
the 560–680 hPa range to higher pressure levels (Ceppi et al., 2024) and therefore we use a lower cutoff of
560 hPa instead. All other clouds we define as low, accounting for obscuration of low‐clouds by upper‐level
clouds following Zelinka et al. (2024). We refer to low‐ and high‐cloud radiative anomalies as RLOW and
RHIGH, respectively. Categorizing clouds by atmospheric pressure allows us to select CCFs targeting the different
cloud types and constrain them separately. We first remove the seasonal cycles from all variables as is
commonplace in these analyses (Andersen et al., 2023; Myers et al., 2021; Wilson Kemsley et al., 2024).

2.2. Statistical Framework

We first determine cloud‐radiative “sensitivities” at each grid‐cell, using separate frameworks for RLOW and
RHIGH. We approximate a change in R at each grid‐cell r as a linear function of anomalies in the CCFs, X:

dR(r)≈ ∑
M

i=1

∂R(r)
∂Xi

dXi, (1)

for the LW and SW components of RHIGH and RLOW, whereM is equal to the number of unique CCFs, X is a vector
of length equal to the total number of surrounding grid‐cells (i.e., “spatial domain”) centered at grid‐cell r, and the
sensitivity, Θ to the i‐th CCF is defined as

Θi =
∂R(r)
∂Xi

. (2)

We calculate Θ using ridge regression instead of MLR as it allows us to consider non‐local CCFs within larger
spatial domains with a much lower risk of over‐fitting (Andersen et al., 2020, 2023; Ceppi & Nowack, 2021;
Nowack et al., 2023; Wilson Kemsley et al., 2024).

Though we build on the work of C24 and WK25, we recalculate constraints on low‐cloud and high‐cloud
feedbacks anew, maintaining consistent methodology. For low clouds, we follow C24, using: surface tempera-
ture (Tsfc), relative humidity at 700 hPa (RH700), estimated inversion strength (EIS; over ocean, lower tropo-
spheric stability over land), sea‐surface temperature advection (SSTadv), near‐surface wind speed (WS) and
vertical velocity at 700 hPa (ω700) as CCFs within a 5 × 5 grid‐cell domain (corresponding to a 25° × 25°
longitude×latitude grid) for low clouds. Our key difference to C24 is our sampling of observational uncertainty
from MODIS alone (see below).

For RHIGH, we follow WK25's framework, though here constraining the total high‐cloud feedback. We use
WK25's CCFs: Tsfc, upper tropospheric static stability (SUT), RH700, upper tropospheric relative humidity
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(UTRH), upper tropospheric (easterly) wind shear (ΔU300), and vertical velocity at 300 hPa (ω300) and a 21 × 11
grid‐cell domain (which corresponds to a 105° × 55° longitude×latitude grid). Justifications for our choice of
domain sizes and CCF calculations are provided in Text S1 of Supporting Information S1.

The CMIP5/6 sensitivities are subsequently multiplied by their corresponding ESM CCF responses to the global
mean surface temperature (GMST) increase associated with abrupt‐4×CO2 experiments for each grid‐cell within
the spatial domain,

dR(r)
dGMST

≈ ∑
M

i=1
Θi

dXi

dGMST
, (3)

yielding a “local feedback.” We hence calculate the area‐weighted mean and multiply by 0.86 to approximate a
global‐mean value, accounting for the fractional surface area within 60°S–60°Nwhile neglecting contributions of
the small polar regions to the global‐mean feedback. This is henceforth referred to as our climate model “pre-
dicted” feedback.

We calculate the ESM “actual” feedback by regressing global‐mean R (calculated within the same 60°S–60°N
latitude range) against the GMST increase associated with corresponding abrupt‐4×CO2 experiments (Gregory
et al., 2004) and multiplying by 0.86. We then regress the actual cloud feedback against our predicted cloud
feedback to calculate the prediction error. This captures uncertainty from our choice of CCFs as well as im-
perfections in the linear ridge functions and their extrapolative skill under 4×CO2 projections.

For our observational constraints, we first learn observed sensitivities (Equation 2). To quantify observational
uncertainty, we follow WK25's approach and draw (with replacement) ten 20‐year samples of monthly observed
R (and the CCFs), thus calculating 10 sets of observational sensitivities for LW and SW RLOW and RHIGH. Note
that we use consistent resampling indices for both high and low cloud frameworks to maintain consistency (where
net feedbacks are the sum of the separate high and low feedback terms). Observational uncertainty has also been
quantified using separate satellite products (without bootstrapping, e.g., CN21, C24), but it is known that several
satellite data sets may suffer from artifacts arising from (e.g.) orbital drift and missing data (Norris & Evan, 2015),
which WK25 found affected their constraint. Observed sensitivities are then multiplied by the 46 sets of abrupt‐
4×CO2 CCF projections (Equation 3), and we use a Monte‐Carlo sampling method to derive a constraint on the
observational uncertainty incorporating the prediction error (Text S2 and S3 in Supporting Information S1)
(Ceppi & Nowack, 2021; Nowack et al., 2023).

Finally, we constrain the ECS using our observational cloud feedback constraints, following three commonly
used approaches. First, we regress the ECS for each ESM against our cloud feedback predictions (e.g., Ceppi &
Nowack, 2021; Myers et al., 2021), which are well correlated due to the role clouds play in ECS uncertainty. The
second approach by Bretherton and Caldwell (2020) was constructed for combining several emergent constraints.
In our application, we fit a multivariate Gaussian probability density function (PDF) to the ECS and to the
observationally constrained cloud feedbacks. Finally, we follow S20's Bayesian approach, which is by design not
sensitive to a single line of evidence. Each approach is discussed in more detail in Sections 4.1–4.3. All un-
certainties henceforth denote 90% confidence ranges, and significant correlations at the p = 0.05 level are
denoted using an asterisk throughout the Main Text (∗).

3. Cloud Feedback Constraints
We first recalculate C24's low‐cloud constraint following our bootstrapping approach for the observational un-
certainty. This yields a central estimate of λLOW = 0.46 ± 0.16 Wm− 2 K− 1, more positive than the multi‐model
mean by 0.20 Wm− 2 K− 1 (Figure 1a). Our estimate is essentially identical to C24's of λLOW = 0.45 ± 0.27
Wm− 2 K− 1, and our observationally constrained λLOW spatial distribution (Figure S2 in Supporting Informa-
tion S1) qualitatively resembles C24's five‐dataset constraint, reinforcing confidence in sampling from MODIS
alone. Our estimate however, has a tighter confidence range; a likely consequence of sampling uncertainty within
MODIS, in addition to exclusion of potential observational artifacts from alternative data sets (Norris &
Evan, 2015). Our central estimate for λLOW is slightly more positive (+0.05 Wm− 2 K− 1) than the sum of S20's
assessed low‐cloud feedbacks. Importantly, our constrained 66% confidence range corresponds to approximately
a 60% reduction in uncertainty over S20. Note that here, we have split S20's assessed land‐cloud feedback equally
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Figure 1. (a) Central estimates and uncertainty ranges for λLOW, λHIGH and λNET from ESMs, observations (solid bars), and S20 (hatched bars). Thin and thick bars are the
90% and 66% confidence ranges, respectively. (b) Actual versus predicted λNET for 16 ESMs. Solid and dashed lines are the lines‐of‐best‐fit, and 95% prediction errors
(Text S2 and S3 in Supporting Information S1), respectively (1:1 line is indicated in solid gray). Distributions on the x‐ and y‐axis are (arbitrarily scaled) PDFs for the
observational estimates. High‐ECS (≥4.5 K) models are denoted using colored symbols. Multi‐model mean (c) “actual” and (d) “predicted” feedback, versus
(e) observationally constrained λNET. Hatching in (c–e) denotes regions where 80% of the models or observational realizations share the same sign.
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into high and low‐cloud feedbacks. According to S20, most of their +0.08 Wm− 2 K− 1 land‐cloud feedback is
likely due to reductions in the amount of low‐level clouds (but clouds at all vertical levels decrease). If we were to
ascribe all of S20's land‐cloud feedback to low clouds, our central estimate is even closer to S20's (with only
+0.01 Wm− 2 K− 1 difference).

Now constraining λHIGH (extending WK25 who only constrained the high‐cloud amount feedback), we find a
central estimate of 0.12 ± 0.24 Wm− 2 K− 1 (Figure 1a), close to the multi‐model mean of 0.13 Wm− 2 K− 1 but
more positive than S20 (by +0.08 Wm− 2 K− 1). The correlations between predicted and actual LW and SW high‐
cloud feedback components are individually strong, but when summed, a large proportion of the variability
cancels (Figure S3 in Supporting Information S1). This leaves a smaller spread in net λHIGH to constrain.
Importantly, a smaller spread in ESM λHIGH does not mean the models are in agreement—several ESMs
reproduce the “right” net λHIGH but for the wrong physical reasons. In the model mean, positive net λHIGH is driven
by a positive LW feedback offset by a weakly negative SW feedback (Figure S3 in Supporting Information S1). In
contrast, our constraint indicates an approximately neutral LW feedback and a positive SW feedback. Near‐
neutral LW (high‐cloud) feedback likely arises from an observationally implied stronger negative feedback
from global reductions in high‐cloud amount (WK25), offset by a positive LW feedback from rising free‐
tropospheric cloud altitude (Zelinka & Hartmann, 2010). Supporting this, we find the largest discrepancies be-
tween observationally constrained and ESM feedbacks are in the tropics (Figure S2 in Supporting
Information S1).

Next, we constrain λNET by summing the corresponding bootstrapped observational λHIGH and λLOW realizations
(each derived from their own CCF frameworks), along with the corresponding ESM‐predicted and actual
feedbacks. The strong correlation between predicted and actual λNET (r = 0.82∗; Figure 1b) demonstrates that the
CCF relationships remain valid when applied separately to different cloud components, also confirming their
approximate invariance across climate timescales. To test whether separate frameworks improves the constraint,
we repeat our analysis using a unified framework, learning sensitivities for the total LW and SW components (not
partitioned by cloud‐top pressure) using the same CCFs as CN21—EIS, Tsfc, RH700, UTRH, and vertical velocity
at 500 hPa within a 21 × 11 grid‐cell spatial domain. Our separate frameworks yield a tighter constraint (by
approximately 10%) on λNET than this unified approach (Figure S4 in Supporting Information S1). Additionally,
tailored CCFs produce more physically interpretable sensitivities (not shown here; see Wilson Kemsley
et al. (2024) or CN24) since high‐ and low‐cloud feedbacks arise from distinct mechanisms (Ceppi et al., 2017;
Gettelman & Sherwood, 2016; Wilson Kemsley et al., 2024).

We find a robustly positive central estimate of λNET = 0.64 ± 0.32 Wm− 2 K− 1 (Figures 1a and 1b). Our central
estimate lies within—though at the upper end of—the IPCC Sixth Assessment Report (AR6)'s “likely” range
(0.12–0.72 Wm− 2 K− 1; Forster et al., 2021), noting that our 66% upper‐interval lies beyond this “likely” range.
Our estimate is also more positive than the multi‐model mean (+0.24 Wm− 2 K− 1) and S20's central estimate
(+0.19 Wm− 2 K− 1), though our 90% confidence range is entirely encapsulated within S20's 90% confidence
range. Our constrained 90% confidence range is approximately 30% tighter than both the ESMs and S20, and
according to our constraint, negative λNET is less than 0.5% probable, despite being negative in three ESMs (none
of which we consider “high‐ECS” models). Our higher estimate is largely driven by λLOW, and partitioning the
cloud‐feedback contributions into distinct regimes (Text S4 and Figure S1 in Supporting Information S1) reveals
that the discrepancy cannot be attributed to a single regime, as constraints are consistently more positive (except
tropical ascent). Our central estimate is also higher than CN21's (0.43 Wm− 2 K− 1). This may arise from several
factors, including our subset of models, different cloud‐radiative data sets, or the inclusion of all CCFs in our
extrapolation.

We find that observationally‐constrained and CMIP CCF‐predicted spatial distributions for λNET are broadly
similar, but with larger magnitudes for the former (Figures 1e and 1d). Discrepancies in sign are however present
in the Eastern Pacific, Maritime Continent and Indian Ocean where observationally‐derived CCFs suggest
negative contributions. The close spatial agreement between the “CMIP‐predicted” and “CMIP‐actual” feedbacks
(Figures 1c and 1d) indicates that these discrepancies are driven primarily by differences between the observed
and ESM sensitivities. Examining the spatial distributions for λLOW and λHIGH reveals that this discrepancy in sign
is largely due to strong negative contributions from λHIGH (Figure S2 in Supporting Information S1) which we
ascribe to the ESMs underestimating decreases in high‐cloud amount with warming (WK25).
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4. Constraining the ECS
The ECS quantifies Earth's long‐term warming response to greenhouse gas forcing and has significant policy
implications (Grose et al., 2018; Hassler et al., 2018). For example, halving the uncertainty in climate sensitivity
could yield global economic savings of trillions of dollars (Hope, 2015). We thus explore the implications of our
cloud feedback constraints on the ECS by comparing three distinct approaches, showing that constraints differ
substantially depending on prior assumptions and methodological choices. Our analysis highlights the importance
of the ECS—feedback correlation structure, but also the need to constrain not only the uncertainty in cloud
feedback but also its central estimate, which can influence the constrained range. Henceforth, we make a
distinction between the ECS calculated from our subset of 16 ESMs, ECSsub (μ = 4.06 ± 1.74 K, N = 16), and
the ECS for ESMs where all meteorological variables are available for the extrapolation, ECSall
(μ = 3.48 ± 1.64 K, N = 46).

First, we follow a regression‐based approach (CN21, Myers et al., 2021, C24), using our predictions for λNET
(Figures 1a and 1b). We refer to this ECS constraint as Regressionnet. Secondly, we explore Bretherton and
Caldwell (2020, hereafter BC20)'s method for combining constraints using separate λHIGH and λLOW constraints.
We refer to this constraint as Gaussianhigh − low. These two approaches preserve the correlation structure between
cloud feedbacks and ECS. Finally, we substitute our revised λNET estimate into S20's Bayesian framework,
referring to this ECS constraint as Bayesiannet. Incorporating a broader range of evidence, this approach does not
account for relationships between individual feedback terms and the ECS.

4.1. Regression Constraint

ECS is physically related to the effective radiative forcing, F, and the total feedback parameter, λTOTAL, which
includes contributions from all sources of feedback, through ECS = − F

λTOTAL
. Thus, the inverse of the ECS is also

proportional to the net cloud feedback parameter. We regress ECSsub (not its reciprocal like CN21 and C24)
against predicted λNET. This is to facilitate a straightforward comparison with method BC20, where ECS must be
normally distributed (Text S6 in Supporting Information S1). We find that ECSsub is well correlated (r = 0.65∗)

with our predictions for λNET. A key difference between this approach and BC20 is that it does not impose as-
sumptions about the shape of the constrained ECS distribution. We find a central value for constrained
Regressionnet = 4.92 ± 1.50 K, higher than the multi‐model mean ECSsub by 0.86 K (Figure 2b) and falling
above the 66% confidence range of S20's assessment and the “likely” AR6 range (Forster et al., 2021; Sherwood
et al., 2020).

4.2. Gaussian Constraint

Next, we follow BC20's “Method U” for constraining the ECS using emergent, conditionally uncorrelated
constraints, applied to observational constraints. We build a joint multivariate Gaussian PDF for ECS and the
cloud feedback terms based on ESM‐derived relationships, assuming that the ESM feedbacks, ECS, and
observational errors are normally distributed (Text S5 and S6 in Supporting Information S1). Specifically, we
build the multivariate PDF using two, separate feedback terms: λHIGH and λLOW.

Constraining ECSsub in this way yields a central estimate of Gaussianhigh − low of 4.63 ± 1.46 K; a 0.57 K increase
compared to the multi‐model mean ECSsub (Figure 2b). This is just under a 20% reduction in the ESM 90%
confidence range and a slightly tighter constraint than Regressionnet. The discrepancies between Gaussianhigh − low

and Regressionnet arise primarily from methodological differences, but with a minor contribution from condi-
tioning the ECS on two constraints rather than just one. For example, Figure 2c “Gaussiannet” shows constrained
ECS only using our λNET constraint (Figure 1a), marginally wider than Gaussianhigh − low.

Gaussianhigh − low is only slightly narrower than Gaussiannet due to a more positive correlation between the ESM
ECSsub and λNET distributions (r = 0.83∗; note that the correlation shown in Figure 2a is between predicted λNET
and ECS) than between ECSsub and λLOW or λHIGH (r = 0.75∗ and r = 0.59∗, respectively). Gaussianhigh − low,
however, yields intuitive weights linking each term to the constrained mean ECS,

Δ ≈ 0.11 × x̄o,HIGH + 0.38 × x̄o,LOW, (4)

Geophysical Research Letters 10.1029/2025GL118366

WILSON KEMSLEY ET AL. 7 of 12

 19448007, 2026, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
118366 by Peer N

ow
ack , W

iley O
nline L

ibrary on [01/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where x̄o,HIGH and x̄o,LOW represent how strongly the central estimates of our high‐ and low‐cloud feedback
constraints deviate from the ESM means (Text S5 in Supporting Information S1), which we use to quantify the
separate impacts of the λLOW and λHIGH constraints on Gaussianhigh − low. The weight for x̄o,LOW is larger than
x̄o,HIGH due to the dominant role of low‐cloud feedbacks in driving ECS uncertainty (Bony & Dufresne, 2005;
Caldwell et al., 2016; Sherwood et al., 2020). Though the high‐cloud weight is non‐zero, its influence is small
because x̄o,HIGH deviates only slightly from the ESM mean (− 0.04 weighted by 0.11; Figure S6 in Supporting
Information S1), whereas x̄o,LOW deviates more strongly (+1.07, weighted by 0.38). Despite contributing little to

Figure 2. (a) ECSsub against predicted λNET. (b) Observational constraint on ECSsub derived using panel (a) (Regressionnet), the Gaussian constraint (Gaussianhigh − low),
alongside S20's equilibrium climate sensitivity distribution and “Bayesiannet.” (c) The CMIP Prior and Gaussian constraints on ECSsub (“Gaussianhigh − low” and
“Gaussiannet”). Circles (empty and solid) above PDFs show 90% and 66% confidence ranges, respectively. (d) Gaussian constraint on ECSall, derived from 46 climate
models and our λNET (Figure 1a). Thin and thick rectangles in all panels denote the 90% and 66% confidence ranges, respectively.
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the upwards shift, our constraint on λHIGH explains roughly 16% as much of
the posterior ECS variance reduction as λLOW.

Here, constrained ECS is sensitive to the ESM set by design, and with only 16
(high‐ECS biased) ESMs, we compare our Gaussianhigh − low constraint to one
derived from a more comprehensive set of ESMs (Gaussiannet,all). More
ESMs have simulated the required abrupt‐4×CO2 experiments to calculate
λNET (not decomposed by cloud‐type; CN21), and thus we derive the joint
PDF from ECSall (N = 46) and λNET, using our constrainet on λNET
(Figure 1a). This yields a revised Gaussiannet,all of 3.70 ± 1.48 K–a 0.22 K
increase in the mean relative to ECSall, and a tighter 90% confidence range by
0.32 K (Figure 2d). This is a smaller upward shift than Gaussianhigh − low,
primarily due to a smaller difference between the observationally constrained
central estimate for λNET and the ESM mean (Figure S6 in Supporting In-
formation S1), but also slightly smaller constraint weights due to a less
positive correlation between λNET and ECSall (r = 0.70∗). This confirms the
Gaussian constraint is highly sensitive to the set of ESMs fromwhich the ECS
prior is derived. Regardless, our finding of a warmer ECS remains consistent.

4.3. Bayesian Constraint

Both Regressionnet and Gaussianhigh − low require ESM distributions for their constraints, and therefore con-
strained PDFs are—at minimum, somewhat—dependent on the subset of ESMs. Our ECSsub is high‐shifted and,
due to the relatively small sample size, correlations between cloud feedback and ECSsub may not be fully
representative of the true relationships. Furthermore, Sherwood and Forest (2024) caution that an ECS constraint
based solely on ESMs may not be realistic due to shared errors within the models, and that individual cloud‐
feedback constraints may over‐interpret downstream ECS constraints. S20 instead constrain ECS using a
Bayesian framework incorporating multiple lines of evidence, including historical and paleoclimate records
alongside process understanding from cloud and other climate feedbacks. However, the final ECS constraint
remains subject to methodological choices that influence the shape of the constrained PDF (S20; Sherwood &
Forest, 2024)

We substitute our λNET = 0.64 ± 0.32 Wm− 2 K− 1 into S20's framework (S20's λNET = 0.45 ± 0.54 Wm− 2

K− 1). The revised ECS, Bayesiannet, has a central estimate of 3.35 K, an increase of 0.24 K (Figure 3). However,
despite an uncertainty reduction of 1

3 in λNET compared to S20, we find a widening of the updated ECS 90%
confidence range, contrasting our previous approaches. Indeed, S20's 90% confidence range is 2.26–4.70 K
(2.44 K width) while our Bayesiannet 90% confidence range is 2.46–4.98 K (2.52 K width). This is due to the
inverse relationship between ECS and λ, highlighting the sensitivity of the ECS uncertainty to not only the un-
certainty in cloud feedback, but also its central value.

High‐cloud feedback had a smaller (non‐negligible) influence on Gaussianhigh − low than our low‐cloud feedback
constraint. We again assess the relative importance of the two feedback terms by repeating S20's Bayesian
constraint without our λHIGH estimate. Combining S20's high‐cloud feedback with our λLOW (adding errors in
quadrature) gives λNET = 0.49 ± 0.41 Wm− 2 K− 1. Despite reduced cloud‐feedback uncertainty, the newly
constrained PDF (“Bayesianlow,” Figure 3) remains similar to S20's original due to the less uncertain, but more
positive λNET. This highlights the importance of also incorporating revised high‐cloud feedback estimates into
such ECS constraints.

Finally, by repeating this constraint using our central estimate for λNET but with S20's original uncertainty
(e.g., λNET = 0.64 ± 0.54Wm− 2 K− 1), we quantify the effect reduced uncertainty has at our more positive cloud
feedback. This yields an ECS with central estimate of 3.30 K and a 90% confidence range of 2.36–5.05 K (2.69 K
width) in contrast to Bayesiannet’s 2.52 K width, confirming that the original widening of uncertainty is due to the
more positive λNET. A smaller tightening of the 90% confidence range (<10%) at the revised mean λNET is likely
because cloud feedback is one line of evidence among many, but also the correlation structure between the ECS
and specific cloud‐feedbacks are not preserved. For example, ECS spread is more strongly related to λLOW than to
tropical high‐cloud amount feedbacks (Dawson & Schiro, 2024). Reducing the uncertainty in total λNET will not

Figure 3. Sherwood et al. (2020)'s equilibrium climate sensitivity probability
density function (“S20 PDF”), our constraint using λNET (“Bayesiannet”), and
λLOW only (“Bayesianlow”), and a constraint using our central estimate for λNET,
but S20's uncertainty (“Revised μ, S20 σ”). Empty and filled circles above the
PDFs show the 90% and 66% confidence ranges, respectively.
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reflect the relative strengths of these relationships. Further exploration of ECS constraints that retain the corre-
lation structure between ECS and individual feedbacks is an avenue for future work.

5. Conclusion
We, for the first time, observationally constrain global cloud feedback (λNET) using separate CCF frameworks for
high and low clouds to better represent their different physical drivers. Our observational constraint indicates a
robustly amplifying global cloud feedback of 0.64 ± 0.32 Wm− 2 K− 1 (with <0.5% probability of being nega-
tive), more positive than the multi‐model mean based on 16 climate models. This is also more positive than both
Sherwood et al. (2020) and the latest IPCC report (Forster et al., 2021) central estimates, but lies within the 66%
confidence and “likely” ranges of both, respectively.

Quantifying the implications of our cloud feedback constraints on the ECS following three different approaches,
we find that two approaches suggest a substantial upwards shift in the climate model ECS distribution, accom-
panied by reductions in uncertainty. We show that the tightening of the climate model ECS posterior is mainly
driven by reduced uncertainty in low‐cloud feedback, but with high‐cloud feedback making a non‐negligible,
secondary contribution. The third, following the Bayesian Sherwood et al. (2020) framework, also indicates a
warmer ECS but, despite reducing cloud feedback uncertainty by approximately 1

3, we find an increase in the ECS
90% confidence range. This results from our more positive cloud feedback relative to S20—driven by both low‐
and high‐clouds, here with a slightly stronger high‐cloud influence—and from the inverse relationship between
ECS and cloud feedback. This highlights that ECS uncertainty depends not only on feedback uncertainty but also
on its central value.

Each method provides unique benefits. The regression approach does not impose a strict normal distribution on
the constrained ECS, while we can compare relative contributions of our feedback terms using the multivariate
Gaussian approach. These approaches preserve the correlation structure of ECS and cloud feedback terms, though
both methods use cloud feedbacks as a single indicator of ECS uncertainty, possibly overstating the downstream
constraint on the ECS, and are sensitive to the underlying ESMs. Instead, S20 considers cloud feedback among
other lines of evidence, and accordingly we find (keeping the central estimate for cloud feedback fixed), a smaller
reduction in ECS uncertainty. Ultimately, irrespective of the ESM prior or assumptions imposed on the feedback
or ECS distributions, our CCF‐derived constraints consistently suggest that cloud feedback is more strongly
amplifying than these climate models, S20, and the IPCC suggest.
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