KIT | KIT-Bibliothek | Impressum | Datenschutz

STAR-APTV: Deep learning-enabled 3D flow reconstruction in evaporating multicomponent droplets

Park, Bumsoo; Mauch, Julius 1; Kweon, Hyeokjin; Kriegseis, Jochen ORCID iD icon 1; Lee, Seungchul ; Kim, Hyoungsoo
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Multicomponent droplet evaporation generates inherently three-dimensional, solutal-Marangoni flows that challenge single-camera velocimetry. We present STAR-APTV (Segmentation and Tracking Anything-based Robust Astigmatic Particle Tracking Velocimetry), a zero-shot, deep-learning-assisted, astigmatic particle tracking framework for time-resolved 3D-3C flow reconstruction with minimal optical hardware. We leverage zero-shot segmentation using SAM to detect particles in microscopic images without any task-specific labels or training. To characterize each detected particle under optical aberration, we combine shape-aware refinement using elliptic Fourier descriptors with intensity-based features within the refined mask region. We then estimate depth using an uncertainty-aware deep learning model, in which the estimated 3D trajectories are stabilized with a multi-object tracking algorithm and Kalman filter. Against a representative baseline (DefocusTracker), STAR-APTV detects up to six times more particles at high seeding density, while maintaining temporally coherent tracks, and preserving positional accuracy of particles in the presence of noise. ... mehr


Originalveröffentlichung
DOI: 10.1016/j.measurement.2026.120368
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2026
Sprache Englisch
Identifikator ISSN: 0263-2241, 1873-412X
KITopen-ID: 1000190122
Erschienen in Measurement: Journal of the International Measurement Confederation
Verlag Elsevier
Band 266
Seiten 120368
Vorab online veröffentlicht am 14.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page