

Review

Block copolymer concepts of how transcription organizes the stem cell genome

Yuzhi Bao¹, Shaoqian Ma², Xiaohua Shen² and Lennart Hilbert^{1,3}

Stem cells display a highly dispersed genome organization that supports flexible gene regulation. Here, we present block copolymer concepts to explore how transcriptional activity from specific genomic regions, or ‘blocks’, shapes and controls several features of this architecture. Nascent transcripts tethered to chromatin can disrupt compaction and promote the formation of a micro-dispersed state of euchromatin, explaining one typical feature of the stem cell genome. A second feature is long-lived transcriptional clusters, which form via condensation at super-enhancer blocks and mediate both long-range interactions and local transcription factor accumulation. Lastly, we conceptualize promoters and gene bodies as a two-block polymer, for which sequential switching on and off of the polymer blocks controls the association and subsequent release of developmental genes with the long-lived clusters. The presented block copolymer framework provides explanations as well as hypotheses of how transcription-associated processes contribute to distinct features of stem cell genome organization.

Addresses

¹ Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

² State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China

³ Zoological Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Corresponding author: Hilbert, Lennart (lennart.hilbert@kit.edu)
Lennart Hilbert (@lennarthilbert.bsky.social), Yuzhi Bao (@yuzhibao.bsky.social)

Current Opinion in Genetics & Development 2026, 96:102428

This review comes from a themed issue on **Genome Architecture and Expression**

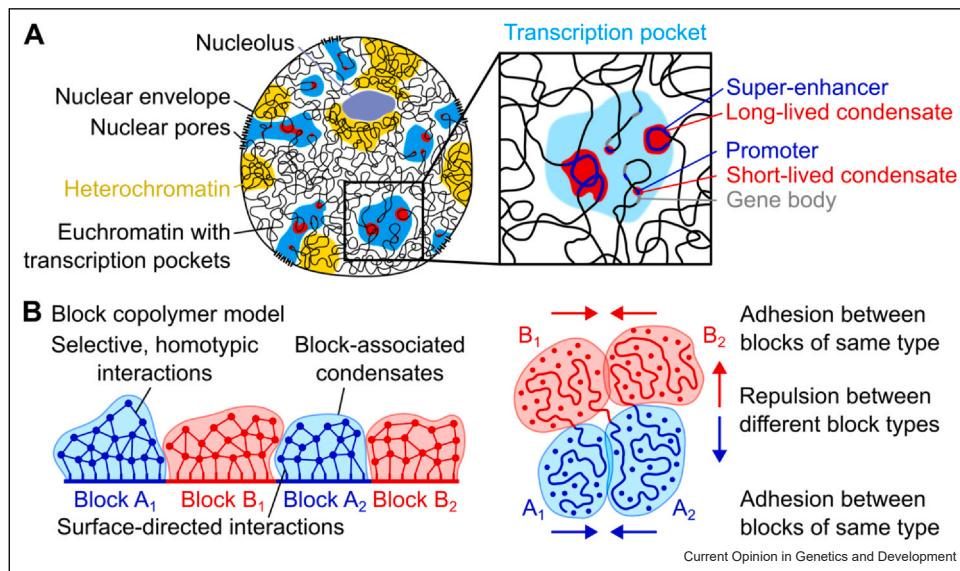
Edited by **Luca Giorgetti** and **Daniel Jost**

For complete overview of the section, please refer to the article collection, “[Genome Architecture and Expression \(2026\)](#)”

Available online 14 January 2026

<https://doi.org/10.1016/j.gde.2025.102428>

0959-437X/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).


Introduction

The three-dimensional (3D) organization of the genome and transcription in stem cells and pluripotent embryos shows several unusual features. These features occur more rarely in other cells and seem to correspond to developmental functional requirements of stem cells (Figure 1a). Here, we use block copolymer models to conceptualize how transcription of different genomic elements and the interaction of these elements with biomolecular condensates contribute to these stem cell-typical features across different scales.

A block copolymer is a polymer made up of distinct segments, each with selective affinities for different molecular species. These segments represent genome regions that exhibit selective interactions for different liquid-phase condensates, allowing spatial partitioning based on condensate preferences (Figure 1b). Selective homotypic (‘same-to-same’) interactions drive the association of interacting molecules into condensates, which selectively form at specific polymer regions due to surface-directed interactions (the block regions act as ‘condensation surfaces’) [2].

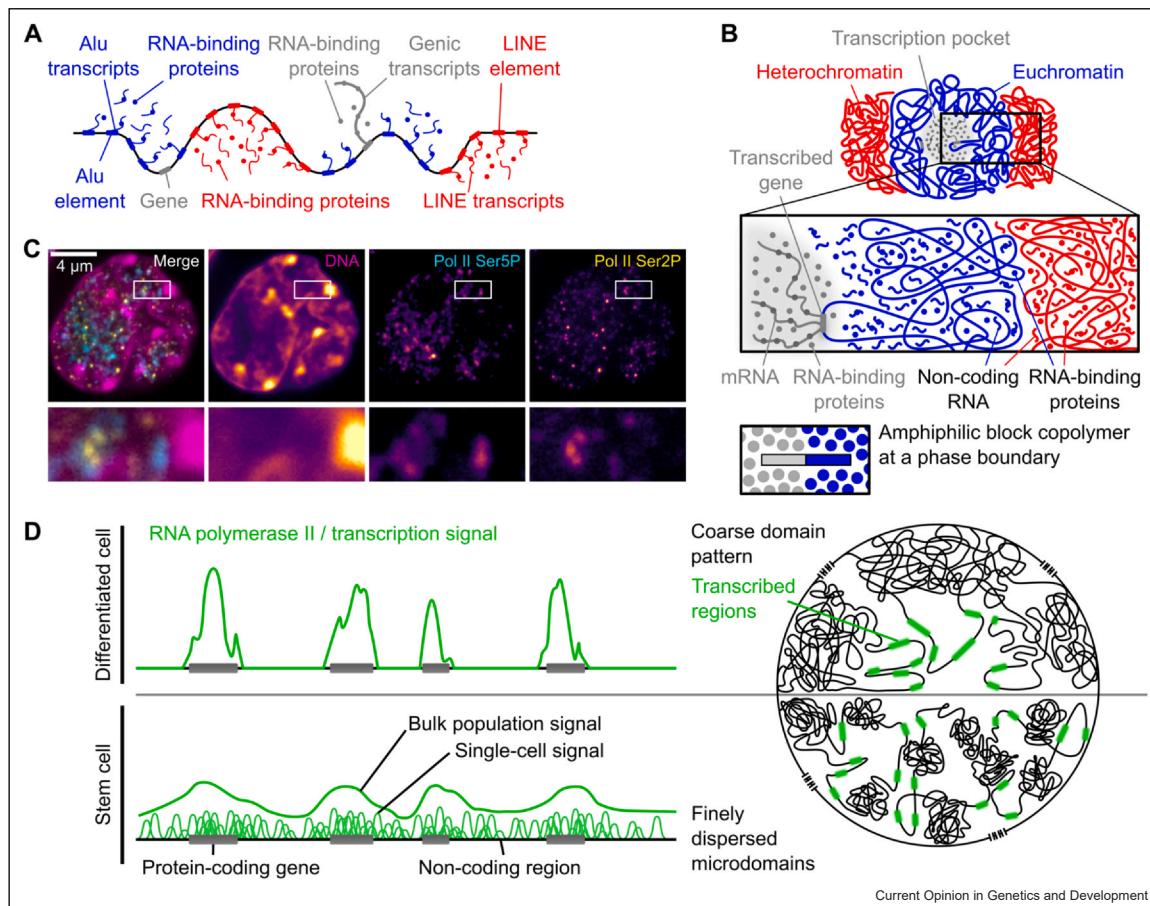
Here, we use the generic concept of block copolymers and selectively interacting condensates to conceptualize several stem cell-typical features of the 3D organization of the genome and transcriptional regulation. Note that, in each case, the exact types of polymer blocks and their particular arrangement along the chromosome are specified differently for each given context. We will first address the role of chromatin-associated transcripts in A/B compartmentalization and the micropatterning of transcription pockets within euchromatin (Figure 1a). Further, we discuss the formation of prominent and long-lived RNA polymerase II (Pol II) clusters, which form inside transcription pockets by localized condensation on ‘super-enhancers’ (Figure 1a). Lastly, we present a promoter-gene body two-block model that conceptualizes how visits of developmental genes to such clusters are coordinated with the main steps of transcriptional control. Except for A/B compartmentalization, all described features have a prevalence of occurring in stem cells or early embryonic development. We therefore denote these features, especially when occurring in combination, as stem cell-typical. The

Figure 1

Stem cell-typical organization of the genome and transcription, and the block copolymer sorting concept. **(a)** When viewed by light and electron microscopy, the nucleus is compartmentalized at the scale of a few 100 nm into a transcriptionally permissive compartment (A compartment) and a largely transcriptionally repressed compartment (B compartment). Heterochromatic genomic domains contribute to the B compartment and associate with the nuclear lamina and nucleoli. Euchromatin domains phase-separate from heterochromatic domains, thereby forming the A compartment [1]. Within the more permissive, euchromatic A compartment, transcribed regions demix from nontranscribed regions and localize to RNA-rich microenvironments, or ‘transcription pockets’. In stem cells, transcription pockets contain long-lived, prominent transcriptional clusters located at super-enhancer regions. **(b)** The different copolymer blocks of type A and type B are arranged in a linear sequence, acting as binding platforms with selective affinities for different particle species. These interacting particles exhibit homotypic interactions, thereby undergoing liquid-like phase separation. Driven by adhesion between condensates of the same type, polymer blocks of the same type associate into a compartment pattern.

proposed block copolymer models can, nevertheless, be conceptually transferred to other cell types, even though the block assignment needs to be adjusted to each particular setting, as we illustrate with selected examples.

Transcription instantiates block regions that drive micropatterning of hetero- and euchromatin


To set the playing field of overall 3D genome organization, we first address polymer concepts for establishing a primarily heterochromatic B compartment and a primarily euchromatic A compartment. A/B compartmentalization is widely conserved across species and cell types and is established dynamically after cell division and during early embryonic development [3]. Note that A/B compartmentalization is not a stem cell-typical feature but serves to illustrate the block copolymer concept.

Transcripts from the heterochromatic repetitive element LINE-1 (L1, comprising ~20% of the mouse genome) and the euchromatic element B1 (Alu-like, comprising ~3.6%) play a central role in this compartmentalization, consistent with these elements’ broad genomic coverage [3]. In the genomic DNA sequence, these elements occur in a clustered pattern, occupying mutually

exclusive regions spanning several megabases (Figure 2a) [3]. These repetitive elements contribute to A/B compartment formation via RNA transcripts that ‘decorate’ the genomic regions containing the respective repetitive elements (Figure 2a). A block copolymer perspective can conceptualize how these decorating transcripts feed back into compartmentalization. Here, nascent transcripts act as binding points for molecular partners undergoing liquid-like condensation. For example, the heterochromatin protein HP1 α undergoes phase separation *in vitro* in the presence of L1 transcripts [3]. Block-specific tethering via nascent RNA transcripts, such as L1, enables condensate-mediated sorting of heterochromatic and euchromatic regions into distinct compartments (Figure 2b,c) [3]. Supporting this picture, heterochromatic and euchromatic domains exhibit ripening behaviors typical of liquid-like phases [1]. Further, the interactions of euchromatin and heterochromatin with BRD4 and HP1 α condensates, respectively, are consistent with predictions from elastocapillary theory regarding polymers interacting with phase-separated liquids [6].

Previous block copolymer models explained the epigenetically driven folding of megabase-scale (compartment domains) by a fine-tuned combination of

Figure 2

Transcription from block-like genomic regions contributes to A/B compartmentalization and to stem cell-typical micro-dispersal of euchromatin. **(a)** Heterochromatic and euchromatic regions can be conceptualized as polymer blocks (LINE element- and Alu element-rich blocks, respectively). The affinity of these blocks to specific interacting RNA-binding proteins (RBPs) is established via nascent transcripts decorating different genomic regions, resulting in directed adhesion of condensates [3]. **(b)** Nascent transcripts anchored at transcription sites connect transcribed genomic regions to RNA-rich domains, contributing to the dispersal of euchromatin, similar to an amphiphilic two-block copolymer. **(c)** Representative image showing heterochromatin domains, euchromatin dispersal, and localization of recruited RNA polymerase II clusters (Pol II Ser5P) as well as elongating RNA polymerase II (Pol II Ser2P) within dispersed euchromatin in the nucleus of a mouse embryonic stem cell. **(d)** Transcription occurs at elevated levels throughout intergenic genomic regions in stem cells and is even more pronounced after the deletion of the Pol II C-terminal domain [4]. Single-cell sequencing reveals that the transcription sites in intergenic regions alternate between individual cells [5]. We hypothesize that this spreading of transcription to intergenic regions could contribute to the stem cell-typical micro-dispersed state of chromatin.

nonspecific and epigenetically selective interactions between epigenetically defined blocks [7]. The resulting dynamic multistability regime of polymer folding reproduced an experimentally observed 3D folding pattern that stochastically connects multiple domains with identical epigenetic marks into larger compartments. Subsequent models that assigned polymer blocks on the basis of sequencing results and the position of 3D chromatin loops became increasingly powerful at predicting 3D contact maps [8]. These models also allowed additional insights into the topology of chromosome entanglement and suggested the involvement of liquid-like phase separation phenomena in genome folding. Notably, while not specific to stem cells, these models

also suggested that regions containing highly expressed genes are excluded from dense domains containing primarily inactive regions of chromatin [8].

Also, when assessed by microscopy in stem cells, the euchromatin compartment appears internally separated into transcriptionally inactive euchromatin domains interspersed with transcription pockets. These transcription pockets accumulate RNA transcripts bound by RNA-binding proteins (RBPs) and exclude chromatin with low transcriptional activity, leading to locally lowered chromatin concentrations within transcription pockets (Figure 2b,c) [9–11]. Nascent transcripts, tethered to chromatin via elongating Pol II, form RNA–RBP

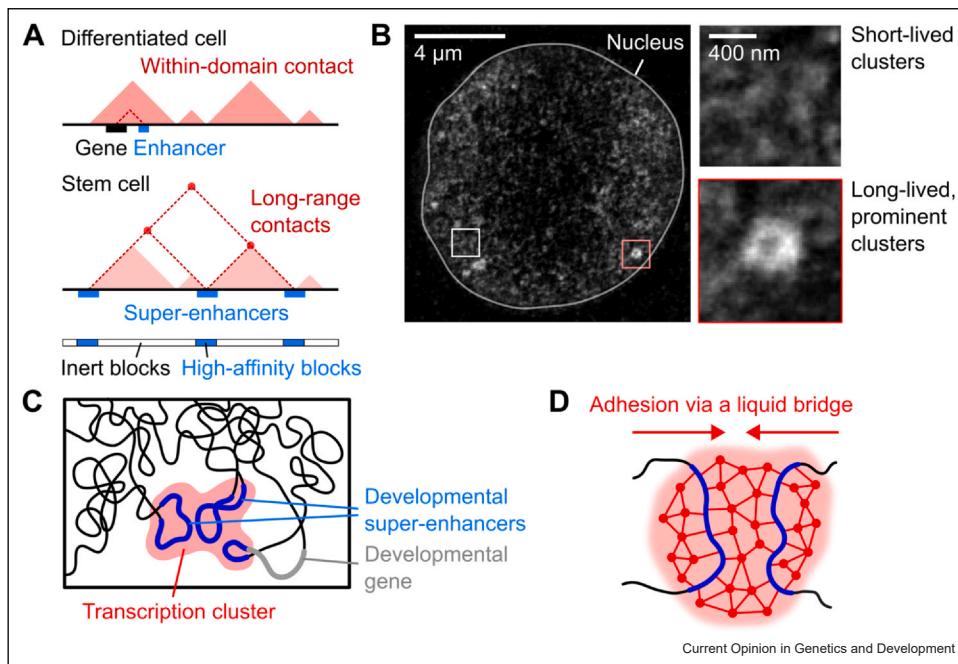
complexes and thus partition with the RNA–RBP complexes inside the transcription pocket (Figure 2b). From the polymer perspective, active transcription sites exhibit the necessary characteristics of an amphiphile. Amphiphiles typically comprise two block segments with ‘opposing’ affinities, resulting in their ability to micro-disperse liquid-phase systems [12] (Figure 2b).

Several studies show a 3D genome organization in stem cells that is distinctly more dispersed than in differentiated cells, both at the nanometer-scale in terms of chromatin fiber packing [13] and across higher scales of chromatin folding [14–16]. For euchromatin in mouse embryonic stem cells (mESCs) and zebrafish embryos, transcription stabilizes transcription pockets and euchromatin domains into a finely dispersed, mutually exclusive microdomain pattern at the scale of a few 100 nm [10]. Chemical perturbations that abolish transcript tethering via engaged Pol II result in marked coarsening of this domain pattern, analogous to coarsening in canonical amphiphile-containing systems at insufficient amphiphile concentrations [12]. Given the two-block, alternating pattern of eu- and heterochromatin segments, the question emerges whether this bivalency could establish amphiphilic particles, despite a deviation from the conventional picture of a simple two-block amphiphile. Indeed, polymer simulations and experiments in human cells and fruit fly embryos revealed two effects associated with amphiphile action: kinetic stabilization against coarsening and deformation of HP1 α condensates [17].

This dispersing effect of transcription might relate to repetitive elements that undergo transient activation specifically during pluripotency, and whose transcription contributes to overall genome organization and developmental potency (HERV-H, MERVL, L1) [18–20]. Similarly, targeted activation of L1 transposons amplified developmental 3D contacts necessary for embryonic development [21]. Functional relevance can be seen for hominoid-specific L1 elements in hiPSCs, which escape repression and influence neural differentiation and support organoid growth [22].

In mESCs, nascent transcripts were also detected in a much larger portion of the genome — 50 times more than in differentiated cells — including heterochromatin [5]. Single-cell analysis showed nascent transcripts consistently covering euchromatin, but their locations in heterochromatin varied between individual cells (Figure 2d) [5]. This apparent confinement of transcription to genic regions upon differentiation becomes more challenging in species with greater gene spacing. Notably, greater gene spacing correlates with an increased number of 7-amino-acid repeats in the Pol II CTD across species [23]. Conversely, acute degradation of the Pol II CTD lifts transcriptional confinement, activating otherwise silent intergenic and repetitive regions and biasing cells toward totipotent states typical of

early development [4]. The broad, transient activation of transcription — especially in intergenic regions — appears to expand cell fate options, leading us to hypothesize that widespread intergenic transcription sites may drive the micro-dispersed stem cell genome state (Figure 2d).


As differentiation progresses, the genome becomes more compartmentalized, and domains become more defined [15,16]. In terminally differentiated chicken erythrocytes, this leads to hypercompartmentalization, with a centrally located B compartment [24]. Transcription is reduced and shifts from genes toward short RNAs, while genes enriched in Pol II that has initiated but not transitioned into transcript elongation ('recruited Pol II') move towards the nuclear periphery. Taken together, progressing differentiation correlates with an increasing confinement of transcription to smaller stretches of the genome. In line with a model where transcription establishes polymer blocks that induce dispersal of chromatin, this progressive confinement of transcribed regions is accompanied by a coarsening of chromatin with progressing differentiation. Accordingly, the role of Pol II, RNA, and transcription to establish dispersing genomic blocks can be transferred to cells in different degrees of differentiation. The stem cell-typical micro-dispersal of chromatin, however, results from a relaxed confinement of transcription to only small parts of the genome, so that this dispersing effect spreads through larger regions of the genome in less differentiated cells.

Condensates forming at gene-regulatory elements establish three-dimensional contacts over long genomic distances

Enhancer-gene interactions are central to transcriptional control, with contacts between enhancers and promoters typically occurring within contact domains spanning several 100 000 base pairs (bp) (Figure 3a) [26]. Stem cells and early embryos feature clusters of enhancers, termed ‘super-enhancers’, which form long-range 3D contacts anchored at domain boundaries, sometimes spanning several domains and bridging up to several million bp [27,28] (Figure 3a). Such long-range contacts are anchored at transcriptional hubs enriched in Pol II and transcription factors [27,29,30]. Microscopy reveals these hubs as large, stationary clusters (several hundred nanometers in diameter) near super-enhancers, residing within transcriptional pockets at stationary positions for several tens of minutes (Figure 3b) [10,25,31]. In mESCs, there are about 15 such clusters per nucleus, and in pluripotent zebrafish embryos, ≈30 per nucleus, set against a background of smaller, transient transcriptional clusters common to most cell types [25,31–33].

From a block copolymer perspective, the formation of these long-lived transcriptional clusters can be understood as the

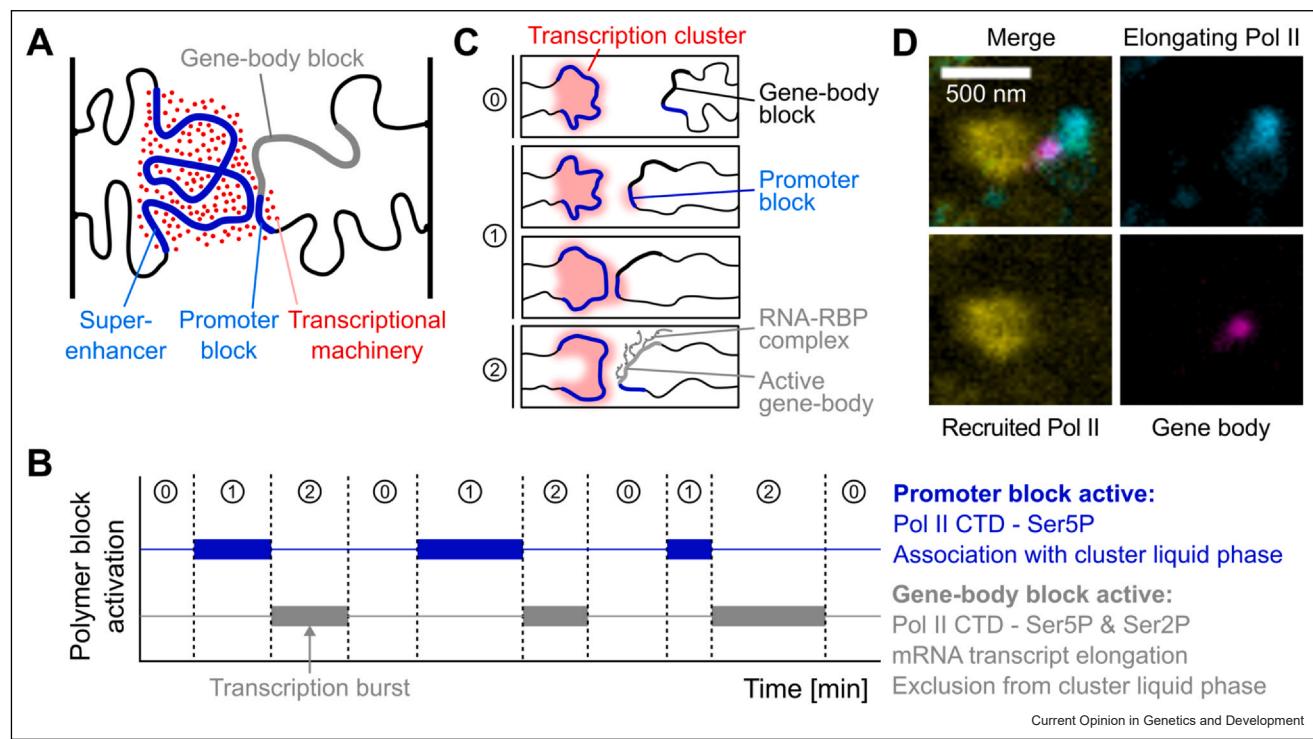
Figure 3

Long-range super-enhancer and promoter contacts form via simultaneous association with transcription factor clusters. (a) Within stem cells, super-enhancers associate into cliques over the distance of several topologically associating domains (TADs, indicated in red), exceeding the range of enhancer-gene contacts seen also in differentiated cells. For the stem cell case, a conceptual sketch comprising inert blocks and high-affinity blocks representing super-enhancers is shown. (b) Representative stimulated emission double depletion (STEDD) microscopy image showing prominent transcriptional clusters in a pluripotent zebrafish embryo nucleus with immunolabeled recruited RNA polymerase II (Pol II). The marked boxes and detail zooms show point-like Pol II clusters (short-lived) as well as the prominent, stem cell–typical clusters (long-lived), which span several 100 nm in size [25]. (c) Stem cell–typical long-range contacts are frequently established via looping of super-enhancers and genes to stem cell–typical clusters, which are enriched in transcriptional activators, recruited Pol II, and RNA transcripts. (d) Liquid-like condensates form via a combination of (i) homotypic interactions among transcription factors and (ii) interactions of transcription factors with regions carrying ‘active enhancer’ marks. In consequence, condensation occurs most prominently at currently active super-enhancers, which can enter into sustained contact via a ‘liquid bridge’ formed by fusion of super-enhancer–associated condensates.

condensation of transcriptional machinery into liquid-like assemblies. This condensation is helped by specific high-affinity block segments within an overall ‘inert polymer’ (Figure 3a). This model is based on observations that super-enhancer epigenetic marks like H3K27ac act as scaffolds for the co-condensation of enhancer-associated factors (such as mediator and BRD4) and Pol II into prominent clusters [31,34,35] (Figure 3c). Studies in frog egg extract and in zebrafish embryos confirmed that transcriptional condensates can form at regulatory chromatin and mediate the adhesion of several strands via the fusion of condensates, yielding a shared ‘liquid bridge’ (Figure 3d) [25,36]. Similar long-range tethering and localization of genomic regions was also shown in engineered intracellular systems exhibiting optically controlled phase separation [37,38].

Long-range contacts, including those crossing contact domains, are not exclusive to stem cells. Initially, contacts with ranges over several 10 000 bp were identified for the mouse β -globin locus [39], followed by detection of contacts exceeding several million bp distance at Pol

II clusters [40]. In the inflammatory response in human umbilical vein endothelial cells (HUVECs) that is mediated by tumor necrosis factor alpha (TNF- α), hierarchical gene-regulatory contacts over approximately 50 million bp occur [41,42]. Knocking down enhancer RNA at the TNF-9 super-enhancer in mouse macrophages or its human homolog lowers TNF- α levels and improves rheumatoid arthritis symptoms [43]. Recent studies show that certain sequence elements can equip regular enhancers with super-enhancer or long-range capabilities also in differentiated cells or multipotent progenitors [44,45]. Thus, even though super-enhancers are frequently found and studied in stem cells, similarly extensive regulatory elements can occur in other cell types. For shorter regulatory elements, previous works already applied the concept of polymer blocks with affinities for specific proteins and RNAs, successfully explaining enhancer–promoter contacts over canonical interaction distances of less than one million bp. For example, a model that assigns polymer block regions on the basis of a minimal set of epigenetic data predicted


experimentally observed 3D folding configurations and dynamics from cell populations as well as single cells [46]. Notably, this model explicitly treats proteins that transiently bind to and crosslink different polymer segments, allowing the prediction of experimentally validated enhancer-promoter folding configurations for different transcriptional states [46]. Crucial application value of such predictive polymer models exists in understanding the gene-regulatory mechanisms leading from structural variants, such as deletion, duplication, or inversion, to clinically observed disease phenotypes [47]. These examples illustrate that the fundamental concept of regulatory elements as polymer blocks has explanatory value also for differentiated cells and disease mechanisms.

Promoter and gene body act as switchable polymer blocks that coordinate gene-cluster visits

A polymer model comprising a ‘promoter block’ and a ‘gene-body block’ can explain how a gene associates

with and is released from the spatially stationary, super-enhancer-associated clusters (Figure 4a). Live imaging of long-range enhancer-promoter interactions in embryos and stem cells shows approaches to 200–300 nm distance during periods of transcriptional activation [48–51]. For short-range regulation (less than 100 000 bp sequence distance) and in differentiated cells, enhancer-promoter distances of 100–200 nm were observed [52,53]. In fruit fly embryos, microscopy shows that multiple super-enhancers group into cliques separated by several hundred nanometers, which are sporadically visited by genes [51,54]. This spacing of 100 nm or more during enhancer-promoter interactions suggests that super-enhancer-associated condensates act as ‘adhesive spacers’: transcribed genes are placed close to the margins of, but excluded from the liquid-like material making up these clusters [25,55,56]. In block copolymer terms, placing a region with super-enhancer-like epigenetic properties near a gene can promote this type of association (Figure 4a). CpG islands upstream of promoters, especially when hypomethylated and enriched

Figure 4

Temporal switching of a promoter block and a gene-body block connects the step-wise control of transcription with visits of a gene to a super-enhancer-associated cluster. (a) An enhancer-like ‘promoter block’ placed upstream of the ‘gene-body block’ drives the association of the gene to a super-enhancer-associated cluster via the liquid bridge mechanism. (b) Illustration of the temporal sequencing of promoter block activity (1), gene-body block activity (2), and return to an uninduced state (0, both blocks inactive) on the scale of several minutes. Periods during which a given block is active are indicated by the numbers above a temporal segment and also by a thick block in blue (promoter block) or gray (gene-body block) painted into the respective segment to better visualize the temporal sequencing. Vertical positions of blue and gray lines and blocks are shifted solely to facilitate interpretation and hold no physical meaning. (c) Resulting coordination between gene visit and transcription hub unfolding. (d) Representative confocal micrograph showing gene-cluster interaction associated with transcription in a pluripotent zebrafish embryo nucleus. Fluorescence labels are for recruited RNA polymerase II (Pol II Ser5P), transcribing RNA polymerase II (Pol II Ser2P), and a developmental gene, *kif2b*.

for H3K27ac during early development, can take this role, enabling long-range contacts between genes and enhancers [57,28]. Likewise, hypomethylated L1 elements in hiPSCs but also composite transposons in differentiated cells can function as promoter- or enhancer-like adhesive blocks, supporting long-range, RNA-dependent gene regulation as a more general concept [22,58].

Short enhancer-like blocks upstream of promoters can mediate gene-cluster association through a liquid bridge mechanism. The relatively short sequence length of such enhancer-like blocks implies infrequent and transient association of genes with the relatively longer super-enhancer elements — as is observed experimentally (Figure 4a) [51,54,59]. Also, gene proximity to a super-enhancer and the start of transcription are often not synchronized, and long-range enhancer-gene contacts and transcription change asynchronously through early development [29,31,59]. This asynchronous behavior can be explained by how transcription control steps alter the liquid-phase properties of the Pol II CTD (Figure 4b). During initiation, Ser5 phosphorylation of the CTD increases Pol II's liquid-phase affinity, promoting clustering with transcription activators and association with initiation condensates [23,56,60,61]. In stem cells, the long-lived super-enhancer condensates can take the role of such initiation condensates. Following initiation, Pol II transitions into transcript elongation, which requires an additional CTD repeat motif phosphorylation at the Serine 2 position (Ser2P) by cyclin-dependent kinase 9 (CDK9). The additional Ser2P modification and the newly synthesized RNA transcripts convert the liquid-phase properties of Pol II, leading to exclusion of the transcribed gene from the initiation condensate [62–64]. This loss of compatibility can be conceptualized via a second polymer block, which represents the gene body and is placed adjacent to the enhancer-like block (Figure 4a). Finally, by activating the adhesive enhancer-like block and the repulsive gene block sequentially, initiation and elongation become linked to gene-cluster association and release, respectively (Figure 4b,c). This coordination of initiation with cluster association and elongation with release from clusters was indeed seen by expansion microscopy [33] and in a pseudo-time reconstruction of gene-cluster visits (Figure 4d) [59,2].

The necessity of a gene to visit a prominent, stationary cluster for activation can be explained via the sequestration of activating factors. A short enhancer-like block attracts elevated but low levels of activators, facilitating adhesion to the super-enhancer cluster but not transition into elongation (Figure 4c, 1). Once the gene associates with a larger cluster, the higher local concentration of activators — especially CDK9 — triggers elongation and release of the gene from the cluster (Figure 4c, 2)

[65,66]. The two-block model alone does not explain experimentally observed enhancer specificity [40,41], which can, however, be attributed to selective partitioning of transcription factors, determined by charge patterns in intrinsically disordered domains [67].

Considering the two-block promoter-gene body architecture, the question arises as to how far a single gene that transiently visits a transcriptional cluster could take the role of a dispersing amphiphilic particle. Here, a pseudo-time analysis revealed that, in coordination with the transcriptional activation of a gene that engages a transcriptional cluster, the cluster transitions for a few seconds to a more dispersed morphology and relaxes to a droplet-like shape as the transcriptionally active gene moves away from the cluster [59]. Additionally, higher levels of transcription elongation correlate with dispersal of transcriptional clusters in embryonic cells, which can be recapitulated by both polymer models as well as synthetic DNA mimics of bivalent amphiphilic particles that disperse transcriptional condensates [68].

Recent polymer models also support the idea that transcription of specific regions, or blocks, can alter folding patterns and dynamics. In one case, gene activation induced localized, dynamic refolding at the minute time scale, which could only be resolved due to a simulation resolution of 1 kb and was obscured at larger length scales [69]. In another model, Micro-C data with a few kb resolution could be reproduced by simulations that track single Pol II complexes progressing through the gene body [70]. Here, transient interactions between the engaged Pol II complexes established within-gene 3D interactions, resulting in the formation of a micro-compartment around the gene body that is largely shielded from extra-genic interactions. These examples illustrate that models that represent the effects of transcription as dynamically changing polymer blocks likely have explanatory power across various stem cell and differentiated cell types, but need to be adjusted to each given regulatory scenario [80]. Super-enhancers appear as a distinguishing feature of stem cells, acting as temporally persistent polymer blocks that serve as scaffolds for long-lived accumulations of activating factors, with which regulated genes can transiently interact.

Complementary mechanisms and models

This review focused on how protein-RNA condensates can organize the genome and control transcription. Sequencing-based mapping (Hi-C) has identified cohesin-mediated loop extrusion as another main mechanism underlying genome organization [71]. Recent improvements in mapping resolution (Micro-C) underline that, in fact, an intricate interplay of cohesin-mediated processes as well as protein and Pol II clustering-related processes drives enhancer–promoter interactions

[72–75]. For example, cohesin-mediated loop extrusion antagonizes Pol II and transcription during loop formation; computational models suggest that the range of 3D contacts increases when cohesin-mediated extrusion is absent [72,73]. Cohesin is also implicated in bridging-induced phase separation, where a cross-linker and a sufficiently long polymer interact, as shown *in vitro* [76]. Consistent *in vivo* observations indicate that cohesin keeps euchromatin domains demixed from each other [77]. Supercoiling of DNA by an interaction of transcription with cohesin-mediated loop extrusion has also been implicated in genome folding [78]. Lastly, recent studies outside the stem cell context show that the disruption of multienhancer hubs does not significantly affect the regulatory function of individual enhancer–promoter pairs [79]. Accordingly, while the block copolymer model helps conceptualize stem cell genome organization, readers should remember that it is a simplification, and other mechanisms and complementary models should be considered.

Microscopy technical descriptions and data sets

Figure 2c: mESC labeled by immunofluorescence, data acquired by instant Structured Illumination Microscopy (iSIM), average z-projection (five consecutive confocal sections, z step 0.2 µm, samples kindly provided by Carmelo Ferrai). **Figure 4d:** zebrafish embryos labeled by oligopaint DNA fluorescence *in situ* hybridization followed by immunofluorescence, data acquired by iSIM, single confocal section (unpublished data, Hilbert laboratory). **Figure 3b** generated from publicly available data: <https://doi.org/10.5281/zenodo.4973062>.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work, the authors used Perplexity and Consensus to search the scientific literature, discuss parts of the review content, draft individual sentences, and edit the manuscript. After using these services, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Data Availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgements

This work was supported by the Helmholtz Association program “Natural, Artificial and Cognitive Information Processing”. Yuzhi Bao is additionally funded via a German Research Foundation grant to Lennart Hilbert (Joint

Sino-German projects, DFG HI 2167/4-1). Lennart Hilbert additionally acknowledges financial support from the Carl Zeiss Foundation and the Center for Synthetic Genomics. We thank Miha Modic, Marieke Oudelaar, Mark Pownall, Argyris Papantonis, and members of the Shen lab for comments on the manuscript. We thank Carmelo Ferrai, Alicia Günthel, Elly Lohrer, and Alicia Schmidt-Heydt for the provision and processing of samples as well as the sharing of unpublished microscopy data.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, Joffe B, Dekker J, Fudenberg G, Solovei I, Mirny LA: **Heterochromatin drives compartmentalization of inverted and conventional nuclei.** *Nature* 2019, **570**:395–399, <https://doi.org/10.1038/s41586-019-1275-3>
2. Hilbert L, Gadzekpo A, Vecchio SL, Wellhäuser M, Tschurikow X, Prizak R, Becker B, Burghart S, Oprzeska-Zingrebe EA: **Chromatin-associated condensates as an inspiration for the system architecture of future DNA computers.** *Ann NY Acad Sci* 2025, **1552**:12–28, <https://doi.org/10.1111/nyas.15415>
3. Lu JY, Chang L, Li T, Wang T, Yin Y, Zhan G, Han X, Zhang K, Tao Y, Perchard M, Wang L, Peng Q, Yan P, Zhang H, Bi X, Shao W, Hong Y, Wu Z, Ma R, Wang P, Li W, Zhang J, Chang Z, Hou Y, Zhu B, Ramalho-Santos M, Li P, Xie W, Na J, Sun Y, Shen X: **Homotypic clustering of L1 and B1/Alu repeats compartmentalizes the 3D genome.** *Cell Res* 2021, **31**:613–630, <https://doi.org/10.1038/s41422-020-00466-6>
4. Xu J, Li X, Hao X, Hu X, Ma S, Hong Y, Zhang J, Yan D, Deng H, Na J, Ji X, Chang Z, Shen X: **Co-transcriptional RNA processing boosts zygotic gene activation.** *bioRxiv* [Preprint] 2024, <https://doi.org/10.1101/2024.09.14.613088>
5. Ma S, Hong Y, Chen J, Xu J, Shen X: **Single-cell nascent transcription is sparse and heterogeneous, revealing cellular plasticity.** *Cell* 2025, **188**:6873–6891.e23, <https://doi.org/10.1016/j.cell.2025.09.003>.
- Reveals stochastic spreading of transcription into otherwise quiescent genomic regions in pluripotent stem cells.
6. Zhao H, Strom AR, Eeftens JM, Haataja M, Košmrlj A, Brangwynne CP: **Condensate-driven chromatin organization via elastocapillary interactions.** *bioRxiv* [Preprint] 2025, <https://doi.org/10.1101/2025.06.12.659369>.
- Comprehensive theoretical and experimental assessment of the mesoscopic organization of euchromatin around BRD4 condensates and heterochromatin within HP1 α condensates.
7. Jost D, Carrivain P, Cavalli G, Vaillant C: **Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains.** *Nucleic Acids Res* 2014, **42**:9541–9549, <https://doi.org/10.1093/nar/gku698>
8. Di M, Zhang B, Lieberman E, Wolynes PG, Onuchic JN: **Transferable model for chromosome architecture.** *Proc Natl Acad Sci USA* 2016, **113**:12168–12173, <https://doi.org/10.1073/pnas.1613607113>
9. Monneron A, Bernhard W: **Fine structural organization of the interphase nucleus in some mammalian cells.** *J Ultrastruct Res* 1969, **27**:266–288, [https://doi.org/10.1016/S0022-5320\(69\)80017-1](https://doi.org/10.1016/S0022-5320(69)80017-1).
- Early ultrastructural characterization of RNA localizing to chromatin domain boundaries and accumulating within chromatin-depleted “pockets”.
10. Hilbert L, Sato Y, Kuznetsova K, Bianucci T, Kimura H, Jülicher F, Honigmann A, Zaburdaev V, Vastenhouw NL: **Transcription organizes euchromatin via microphase separation.** *Nat Commun* 2021, **12**:1360, <https://doi.org/10.1038/s41467-021-21589-3>
11. Nozawa R-S, Boteva L, Soares DC, Naughton C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M, Hill B, Duncan

RR, Maciver SK, Gilbert N: **SAF-A regulates interphase chromosome structure through oligomerisation with chromatin-associated RNAs.** *Cell* 2017, **169**:1214-1227, <https://doi.org/10.1016/j.cell.2017.05.029>

12. Larson RG, Scriven LE, Davis HT: **Monte Carlo simulation of model amphiphile-oil-water systems.** *J Chem Phys* 1985, **83**:2411-2420, <https://doi.org/10.1063/1.449286>

13. Ricci M-A, Manzo C, García-Parajo MF, Lakadamyali M, Cosma M-P: **Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.** *Cell* 2015, **160**:1145-1158, <https://doi.org/10.1016/j.cell.2015.01.054>

14. Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP: **Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo.** *PLoS One* 2010, **5**:e10531, <https://doi.org/10.1371/journal.pone.0010531>

15. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A, Cavalli G: **Multiscale 3D genome rewiring during mouse neural development.** *Cell* 2017, **171**:557-572.e24, <https://doi.org/10.1016/j.cell.2017.09.043>

16. Szabo Q, Donjon A, Jerković I, Papadopoulos GL, Cheutin T, Bonev B, Nora EP, Bruneau BG, Bantignies F, Cavalli G: **Regulation of single-cell genome organization into TADs and chromatin nanodomains.** *Nat Genet* 2020, **52**:1151-1157, <https://doi.org/10.1038/s41588-020-00716-8>

17. Tortora MMC, Brennan LD, Karpen G, Jost D: **HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation.** *Proc Natl Acad Sci USA* 2023, **120**:e2211855120, <https://doi.org/10.1073/pnas>

18. Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Destici E, Qiu Y, Hu R, Lee AY, Chee S, Ma K, Ye Z, Zhu Q, Huang H, Fang R, Yu L, Izpisua Belmonte JC, Wu J, Evans SM, Chi NC, Ren B: **Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells.** *Nat Genet* 2019, **51**:1380-1388, <https://doi.org/10.1038/s41588-019-0479-7>

19. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth A, Singer O, Trono D, Pfaff SL: **Embryonic stem cell potency fluctuates with endogenous retrovirus activity.** *Nature* 2012, **487**:57-63, <https://doi.org/10.1038/nature1244>

20. Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ, Torres-Padilla ME: **LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo.** *Nat Genet* 2017, **49**:1502-1510, <https://doi.org/10.1038/ng.3945>

21. Li X, Bie L, Wang Y, Hong Y, Zhou Z, Fan Y, Yan X, Tao Y, Huang C, Zhang Y, Sun X, Li JXH, Zhang J, Chang Z, Xi Q, Meng A, Shen X, Xie W, Liu N: **LINE-1 transcription activates long-range gene expression.** *Nat Genet* 2024, **56**:1494-1502, <https://doi.org/10.1038/s41588-024-01789-5>.
Targeted activation of otherwise silenced LINE-1 transposons amplified 3D contacts necessary for embryonic development, supporting a central role of repetitive elements in the establishment of pluripotency.

22. Adami A, Garza R, Gerdes P, Johansson PA, Dorazehi F, Koutounidou S, Castilla-Vallmaya L, Atacho DAM, Sharma Y, Johansson JG, Tam O, Kirkeby A, Barker RA, Hammell MG, Douse CH, Jakobsson J: **LINE-1 retrotransposons mediate cis-acting transcriptional control in human pluripotent stem cells and regulate early brain development.** *Cell Genom* 2025, **5**:100979, <https://doi.org/10.1016/j.xgen.2025.100979>

23. Quintero-Cadena P, Lenstra TL, Sternberg PW: **RNA Pol II length and disorder enable cooperative scaling of transcriptional bursting.** *Mol Cell* 2020, **79**:207-220.e8, <https://doi.org/10.1016/j.molcel.2020.05.030>.
Shows that the number of repeats of the 7-amino-acid repeat motif in the C-terminal domain of RNA polymerase II scales with the expansion of the noncoding fraction in an evolutionary comparison.

24. Penagos-Puig A, Claudio-Galeana S, Stephenson-Gussinye A, Jácóme-López K, Aguilar-Lomas A, Pérez-Molina R, Furlan-Magaril M: **RNA polymerase II pausing regulates chromatin organization in erythrocytes.** *Nat Struct Mol Biol* 2023, **30**:1092-1104, <https://doi.org/10.1038/s41594-023-01037-0>

25. Pancholi A, Klingberg T, Zhang W, Prizak R, Mamontova I, Noa A, Sobucki M, Kobitski AY, Ulrich Nienhaus G, Zaburdaev V, Hilbert L: **RNA polymerase II clusters form in line with surface condensation on regulatory chromatin.** *Mol Syst Biol* 2021, **17**:e10272, <https://doi.org/10.1525/msb.202110272>

26. Zuin J, Roth G, Zhan Y, Cramard J, Redolfi J, Piskadlo E, Mach P, Kryzhanovska M, Tihanyi G, Kohler H, Eder M, Leemans C, van Steensel B, Meister P, Smallwood S, Giorgetti L: **Nonlinear control of transcription through enhancer-promoter interactions.** *Nature* 2022, **604**:571-577, <https://doi.org/10.1038/s41586-022-04570-y>.
Introduces a nonlinear model of enhancer-promoter interactions, challenging traditional linear transcription regulation and offering a paradigm shift for gene regulatory networks.

27. Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas L-M, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PAW, Nicodemi M, Pombo A: **Complex multi-enhancer contacts captured by genome architecture mapping.** *Nature* 2017, **543**:519-524, <https://doi.org/10.1038/nature21411>

28. Chen Z, Snetkova V, Bower G, Jacinto S, Clock B, Dizehchi A, Barozzi I, Mannion BJ, Alcaina-Caro A, Lopez-Rios J, Dickel DE, Visel A, Pennacchio LA, Kvon EZ: **Increased enhancer-promoter interactions during developmental enhancer activation in mammals.** *Nat Genet* 2024, **56**:675-685, <https://doi.org/10.1038/s41588-024-01681-2>.
Reveals that 61% of developmental enhancers bypass neighboring genes, partially explained by CpG methylation and chromatin inaccessibility at the promoter. Gives support to our suggestion that enhancer-like, promoter-proximal blocks enable gene-cluster contacts.

29. Ghavi-Helm Y, Klein FA, Pakozdi T, Ciglar L, Noordermeer D, Huber W, Furlong EE: **Enhancer loops appear stable during development and are associated with paused polymerases.** *Nature* 2014, **512**:96-100, <https://doi.org/10.1038/nature13417>

30. Hug CB, Grimaldi AG, Kruse K, Vaquerizas JM: **Chromatin architecture emerges during zygotic genome activation independent of transcription.** *Cell* 2017, **169**:216-228, <https://doi.org/10.1016/j.cell.2017.03.024>

31. Cho W-K, Spille J-H, Hecht M, Lee C, Li C, Grube V, Cisse II: **Mediator and RNA polymerase II clusters associate in transcription-dependent condensates.** *Science* 2018, **361**:412-415, <https://doi.org/10.1126/science.aar4199>

32. Cho W-K, Jayanth N, English BP, Inoue T, Andrews JO, Conway W, Grimm JB, Spille J-H, Lavis LD, Lionnet T, Cisse II: **RNA Polymerase II cluster dynamics predict mRNA output in living cells.** *eLife* 2016, **5**:e13617, <https://doi.org/10.7554/eLife.13617>

33. Pownall ME, Miao L, Vejnar CE, M'Saad O, Sherrard A, Frederick MA, Benitez MD, Boswell CW, Zaret KS, Bewersdorf J, Giraldez AJ: **Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin.** *Science* 2023, **381**:92-100, <https://doi.org/10.1126/science.adc5308>.
Reveals the nanoscale organization of transcriptional clusters in pluripotent zebrafish embryos and visualizes the exclusion of transcribed genes from large clusters using expansion microscopy.

34. Gibson BA, Doolittle LK, Schneider MW, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK: **Organization of chromatin by intrinsic and regulated phase separation.** *Cell* 2019, **179**:470-484.e21, <https://doi.org/10.1016/j.cell.2019.08.037>

35. Sabari BR, Agnese AD, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuimers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuimers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA: **Coactivator condensation at super-enhancers links phase separation and gene control.** *Science* 2018, **361**:ear3958, <https://doi.org/10.1126/science.aar3958>

36. Quail T, Gofier S, Elsner M, Ishihara K, Murugesan V, Renger R, Jülicher F, Brugués J: **Force generation by protein-DNA co-condensation.** *Nat Phys* 2021, **17**:1007-1012, <https://doi.org/10.1038/s41567-021-01285-1>.

Shows that transcription factor condensates can fold up DNA strands and even “zip together” two strands.

37. Shin Y, Chang YC, Lee DS, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M, Brangwynne CP: **Liquid nuclear condensates mechanically sense and restructure the genome.** *Cell* 2018, **175**:1481-1491, <https://doi.org/10.1016/j.cell.2018.10.057>.

Shows that liquid-like condensates can selectively partition the genome into distinct compartments, acting as “mechanical chromatin filters”.

38. Strom AR, Kim Y, Zhao H, Chang Y-C, Orlovsky ND, Košmrlj A, Storm C, Brangwynne CP: **Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity.** *Cell* 2024, 5282-5297, <https://doi.org/10.1016/j.cell.2024.07.034>.

Provides intracellular evidence that condensate interfacial forces can selectively reposition and glue together specific DNA loci.

39. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, De Laat W: **Looping and interaction between hypersensitive sites in the active β -globin locus.** *Mol Cell* 2002, **10**:1453-1465, [https://doi.org/10.1016/S1097-2765\(02\)00781-5](https://doi.org/10.1016/S1097-2765(02)00781-5)

40. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei C-L, Ruan Y, Bieker JJ, Fraser P: **Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells.** *Nat Genet* 2010, **42**:53-61, <https://doi.org/10.1038/ng.496>

41. Papantonis A, Larkin JD, Wada Y, Ohta Y, Ihara S, Kodama T, Cook PR: **Active RNA polymerases: mobile or immobile molecular machines?** *PLoS Biol* 2010, **8**:e1000419, <https://doi.org/10.1371/journal.pbio.1000419>

42. Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM: **Chromosomal contact permits transcription between coregulated genes.** *Cell* 2013, **155**:606-620, <https://doi.org/10.1016/j.cell.2013.09.051>

43. Cho M, Kim SM, Lee J, Kwon OC, Woo W, Lee E, Park HJ, Lee Y, Dho SH, Kim TK, Park MC, Flavell RA, Kim LK: **Targeting eRNA-producing super-enhancers regulates TNF α expression and mitigates chronic inflammation in mice and patient-derived immune cells.** *Adv Sci* 2025, **12**:e05214, <https://doi.org/10.1002/advs.202505214>

44. Blayney JW, Francis H, Rampasekova A, Camellato B, Mitchell L, Stolper R, Cornell L, Babbs C, Boeke JD, Higgs DR, Kassouf M: **Super-enhancers include classical enhancers and facilitators to fully activate gene expression.** *Cell* 2023, **186**:5826-5839.e18, <https://doi.org/10.1016/j.cell.2023.11.030>

45. Bower G, Hollingsworth EW, Jacinto SH, Alcantara JA, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronski-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ: **Range extender mediates long-distance enhancer activity.** *Nature* 2025, **643**:830-838, <https://doi.org/10.1038/s41586-025-09221-6>

46. Buckle A, Brackley CA, Boyle S, Marenduzzo D, Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N: **Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci.** *Mol Cell* 2018, **72**:786-797, <https://doi.org/10.1016/j.molcel.2018.09.016>

47. Bianco S, Lupiáñez DG, ChiarIELLO AM, Annunziatella C, Kraft K, Schöpflin R, Wittler L, Andrey G, Vingron M, Pombo A, Mundlos S, Nicodemi M: **Polymer physics predicts the effects of structural variants on chromatin architecture.** *Nat Genet* 2018, **50**:662-667, <https://doi.org/10.1038/s41588-018-0098-8>

48. Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T: **Dynamic interplay between enhancer-promoter topology and gene activity.** *Nat Genet* 2018, **50**:1296-1303, <https://doi.org/10.1038/s41588-018-0175-z>

49. Li J, Dong A, Saydaminova K, Chang H, Wang G, Ochiai H, Yamamoto T, Pertsinidis A: **Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells.** *Cell* 2019, **178**:491-506.e28, <https://doi.org/10.1016/j.cell.2019.05.029>

50. Du M, Stitzinger SH, Spille J-H, Cho W, Lee C, Hijaz M, Quintana A, Cissé II: **Direct observation of a transcriptional condensate**

effect on super-enhancer controlled gene bursting. *Cell* 2024, **187**:331-344.e17, <https://doi.org/10.1016/j.cell.2023.12.005>.

A potentiation of transcriptional bursting is shown to result from vicinity to a transcriptional condensate, without requiring direct spatial overlap of either the enhancer or the gene with the transcriptional condensate, challenging emerging condensate-based models of enhancer-based gene regulation.

51. Le DJ, Hafner A, Gaddam S, Wang KC, Boettiger AN: **Super-enhancer interactomes from single cells link clustering and transcription.** *bioRxiv [Preprint]* 2024, <https://doi.org/10.1101/2024.05.08.593251>.

Suggests that associations of multiple super-enhancers over distances of more than 500 nm, rather than close contacts at the range of 100–200 nm, are relevant for the induction of developmental genes.

52. Li J, Hsu A, Hua Y, Wang G, Cheng L, Ochiai H, Yamamoto T, Pertsinidis A: **Single-gene imaging links genome topology, promoter-enhancer communication and transcription control.** *Nat Struct Mol Biol* 2020, **27**:1032-1040, <https://doi.org/10.1038/s41594-020-0493-6>

53. Zhu Y, Balaji A, Han M, Andronov L, Roy AR, Wei Z, Chen C, Miles L, Cai S, Gu Z, Tse A, Yu BC, Uenaka T, Lin X, Spakowitz AJ, Moerner WE, Qi LS: **High-resolution dynamic imaging of chromatin DNA communication using Oligo-LiveFISH.** *Cell* 2025, **188**:3310-3328.e27, <https://doi.org/10.1016/j.cell.2025.03.032>

54. Espinola SM, Götz M, Bellec M, Messina O, Fiche J-B, Houbron C, Dejean M, Reim I, Cardozo Gizzii AM, Lagha M, Nollmann M: **Cis-regulatory chromatin loops arise before TADs and gene activation, and are independent of cell fate during early Drosophila development.** *Nat Genet* 2021, **53**:477-486, <https://doi.org/10.1038/s41588-021-00816-z>.

Single-cell chromosome tracing reveals that a cluster of multiple enhancers interacting with more than one gene is, nevertheless, visited rarely by genes and only by one gene at once.

55. Iborra FJ, Pombo A, Jackson DA, Cook PR: **Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei.** *J Cell Sci* 1996, **109**:1427-1436, <https://doi.org/10.1242/jcs.109.6.1427>.

Early characterization of the internal organization of transcriptional clusters, here referred to as “transcription factories”.

56. Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP: **Nucleated transcriptional condensates amplify gene expression.** *Nat Cell Biol* 2020, **22**:1187-1196, <https://doi.org/10.1038/s41556-020-00578-6>.

Illustrates internal structuring of transcriptional condensates in living cells.

57. Pachano T, Sánchez-Gaya V, Ealo T, Mariner-Faulí M, Bleckwenn T, Asenjo HG, Respuela P, Cruz-Molina S, Muñoz-San Martín M, Haro E, van IJcken WF, Landeira D, Rada-Iglesias A: **Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness.** *Nat Genet* 2021, **53**:1036-1049, <https://doi.org/10.1038/s41588-021-00888-x>.

Key study explaining how CpG islands might act as enhancer-like block segments placed upstream of gene promoters, thereby facilitating long-range contacts with enhancers.

58. Zhou Z, Zhu S, Hong Y, Jin G, Ma R, Lin F, Zhang Y, Lee HY, Liu N: **Composite transposons with bivalent histone marks function as RNA-dependent enhancers in cell fate regulation.** *Cell* 2025, **188**:5878-5894.e18, <https://doi.org/10.1016/j.cell.2025.07.014>

59. Hajabadi H, Mamontova I, Prizak R, Pancholi A, Koziolek A, Hilbert L: **Deep-learning microscopy image reconstruction with quality control reveals second-scale rearrangements in RNA polymerase II clusters.** *PNAS Nexus* 2022, **1**:pgac065, <https://doi.org/10.1093/pnasnexus/pgac065>

60. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q: **Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.** *Nature* 2018, **558**:318-323, <https://doi.org/10.1038/s41586-018-0174-3>

61. Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, Liu Z, Peng M, Zhang W, Jiang X, Ren W, Xu Y, Wu Z, Wang K, Zhan G, Lu JY, Han X, Li T, Wang J, Li G, Deng H, Li B, Shen X: **Phase separation of RNA-binding protein promotes polymerase binding and**

transcription. *Nat Chem Bio* 2022, **18**:70-80, <https://doi.org/10.1038/s41589-021-00904-5>

62. Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu TT-KT, Marie-Nelly H, McSwiggen DT, Kovic G, Dailey GM, Cramer P, Darzacq X, Zweckstetter M: **RNA polymerase II clustering through carboxy-terminal domain phase separation.** *Nat Struct Mol Biol* 2018, **25**:833-840, <https://doi.org/10.1038/s41594-018-0112-y>

63. Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille J-H, Afeyan LK, Zamudio AV, Shrinivas K, Abraham BJ, Boija A, Decker T-M, Rimel JK, Fant CB, Lee TI, Cisse II, Sharp PA, Taatjes DJ, Young RA: **PoI II phosphorylation regulates a switch between transcriptional and splicing condensates.** *Nature* 2019, **572**:543-548, <https://doi.org/10.1038/s41586-019-1464-0>

64. Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM, Lee TI, Sharp PA, Cissé II, Chakraborty AK, Young RA, Tong IL, Sharp PA, Cisse II, Chakraborty AK, Young RA: **RNA-mediated feedback control of transcriptional condensates.** *Cell* 2021, **184**:207-225.e24, <https://doi.org/10.1016/j.cell.2020.11.030>

65. Ugolini M, Kerlin MA, Kuznetsova K, Oda H, Kimura H, Vastenhout NL: **Transcription bodies regulate gene expression by sequestering CDK9.** *Nat Cell Biol* 2024, **26**:604-612, <https://doi.org/10.1038/s41556-024-01389-9>. Provides evidence that sequestration of CDK9 into transcriptional clusters confines transcriptional activation to specific genes. Part of the mechanistic explanation of how the visit of a gene to a transcriptional cluster is inherently coupled to the gene's transition into transcriptional elongation.

66. Fallacro S, Mukherjee A, Ratchasanmuang P, Zinski J, Haloush YI, Shankta K, Mir M: **A fine kinetic balance of interactions directs transcription factor hubs to genes.** *bioRxiv [Preprint]* 2024, <https://doi.org/10.1101/2024.04.16.589811>. Dissects how DNA-motif-targeted binding and interactions with co-binding partners establish microenvironments with enriched transcription factor concentration, leading to quasi-persistent back-to-back occupation of binding sites by transcription factors. Part of the mechanistic explanation of how the visit of a gene to a transcriptional cluster is inherently coupled to the gene's transition into transcriptional elongation.

67. Lyons H, Veetil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR: **Functional partitioning of transcriptional regulators by patterned charge blocks.** *Cell* 2023, **186**:327-345, <https://doi.org/10.1016/j.cell.2022.12.013>. Provides a mechanism of how intrinsically disordered domains can establish transient but nevertheless specific interactions leading to selective partitioning of phase-separating proteins.

68. Tschurikow X, Gadzekpo A, Tran MP, Chatterjee R, Sobucki M, Zaburdaev V, Göpfrich K, Hilbert L: **Amphiphiles formed from synthetic DNA-nanomotifs mimic the stepwise dispersal of transcriptional clusters in the cell nucleus.** *Nano Lett* 2023, **23**:7815-7824, <https://doi.org/10.1021/acs.nanolett.3c01301>

69. Forte G, Buckle A, Boyle S, Marenduzzo D, Gilbert N, Brackley CA: **Transcription modulates chromatin dynamics and locus configuration sampling.** *Nat Struct Mol Biol* 2023, **30**:1275-1285, <https://doi.org/10.1038/s41594-023-01059-8>

70. Salari H, Fourel G, Jost D: **Transcription regulates the spatio-temporal dynamics of genes through micro-compartmentalization.** *Nat Commun* 2024, **15**:5393, <https://doi.org/10.1038/s41467-024-49727-7>

71. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL: **A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.** *Cell* 2014, **159**:1665-1680, <https://doi.org/10.1016/j.cell.2014.11.021>

72. Zhang S, Übelmesser N, Barbieri M, Papantonis A: **Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion.** *Nat Genet* 2023, **55**:832-840, <https://doi.org/10.1038/s41588-023-01364-4>

73. Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort MA, Pomp W, Meaburn K, Taylor T, Shchuka VM, Kocanova S, Nazarova M, Oliveira GM, Mitchell JA, Soutoglou E, Lenstra TL, Molina N, Papantonis A, Bystricky K, Sexton T: **Transcription processes compete with loop extrusion to homogenize promoter and enhancer dynamics.** *Sci Adv* 2024, **10**:eabd0987, <https://doi.org/10.1126/sciadv.adb0987>. Reveals an interplay between transcription and chromatin looping, which should be considered in addition to models purely based on liquid-like condensates.

74. Ramasamy S, Aljahani A, Karpinska MA, Cao TB, Velychko T, Cruz JN, Lidschreiber M, Oudeelaar AM: **The Mediator complex regulates enhancer-promoter interactions.** *Nat Struct Mol Biol* 2023, **30**:991-1000, <https://doi.org/10.1038/s41594-023-01027-2>

75. Goel VY, Huseyin MK, Hansen AS: **Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments.** *Nat Genet* 2023, **55**:1048-1056, <https://doi.org/10.1038/s41588-023-01391-1>

76. Ryu JK, Bouchoux C, Liu HW, Kim E, Minamino M, de Groot R, Katan AJ, Bonato A, Marenduzzo D, Michieletto D, Uhlmann F, Dekker C: **Bridging-induced phase separation induced by cohesin SMC protein complexes.** *Sci Adv* 2021, **7**:eabe5905, <https://doi.org/10.1126/sciadv.abe5905>

77. Iida S, Shimazoe MA, Minami K, Tamura S, Ashwin SS, Higashi K, Nishiyama T, Kanemaki MT, Sasai M, Schermelleh L, Toyoda A, Kurokawa K, Maeshima K: **Cohesin prevents local mixing of condensed euchromatic domains in living human cells.** *bioRxiv [Preprint]* 2025, <https://doi.org/10.1101/2025.08.27.672592>

78. Neguembor MV, Martin L, Castells-García Á, Gómez-García PA, Vicario C, Carnevali D, AlHajAbed J, Granados A, Sebastian-Perez R, Sottile F, Solon J, ting Wu C, Lakadamyali M, Cosma MP: **Transcription-mediated supercoiling regulates genome folding and loop formation.** *Mol Cell* 2021, **81**:3065-3081.e12, <https://doi.org/10.1016/j.molcel.2021.06.009>

79. Karpinska MA, Zhu Y, Fakhraei Ghazvini Z, Ramasamy S, Barbieri M, Cao TB, Varahram N, Aljahani A, Lidschreiber M, Papantonis A, Oudeelaar AM: **CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation.** *Nat Struct Mol Biol* 2025, **32**:1268-1281, <https://doi.org/10.1038/s41594-025-01555-z>. Disruption of multienhancer hubs is shown not to affect transcriptional control by pair-wise enhancer-promoter interactions, challenging emerging condensate-based models of multienhancer gene regulation.

80. Barshad G, Lewis JJ, Chivu AG, Abuhashem A, Krietenstein N, Rice EJ, Ma Y, Wang Z, Rando OJ, Hadjantonakis AK, Danko CG: **RNA polymerase II dynamics shape enhancer-promoter interactions.** *Nat Genet* 2023, **55**:1370-1380, <https://doi.org/10.1038/s41588-023-01442-7>. Concludes from an assessment of thousands of enhancers that specifically paused RNA polymerase II (called "recruited" in our review) stabilizes enhancer-promoter interactions, in line with our two-block model of gene-cluster interaction.