KIT | KIT-Bibliothek | Impressum | Datenschutz

Aging time induced phase evolution and defect engineering in a bionic laminar graphene/CuAlMn composites for properties tailoring

Cheng, Yangyang; Jiang, Xiaosong ; Li, Dongxuan; Sun, Hongliang; Shu, Rui; Wu, Zixuan; Yang, Liu 1; Pang, Yong
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This study systematically investigates the influence of aging time on the phase composition, micro-defect evolution, and resultant properties of Cu-11.9Al-2.5Mn (wt%) composites enhanced with copper-coated graphene films (GFs(Cu)). Our results demonstrate that aging at 300 °C effectively enhances the mechanical properties and improves the synergy between strength and damping capacity. The optimal aging duration was identified as 120 min. Under this condition, the microhardness of the composite increased significantly. Correspondingly, due to microstructural optimization, the ultimate tensile strength increased from 415 MPa in the as-quenched state to 521 MPa, representing a 25.5% improvement. Although aging treatment led to a reduction in damping performance compared to the as-quenched state, extending the aging time (notably to 120 min) prompted a recovery and enhancement in damping capacity relative to shorter aging durations (e.g., 30 min). This paper provides an in-depth analysis of the property evolution and underlying strengthening mechanisms, focusing on martensitic defect evolution, interface/twin structure modifications, and dislocation behavior during aging. ... mehr


Originalveröffentlichung
DOI: 10.1016/j.matchar.2026.116022
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2026
Sprache Englisch
Identifikator ISSN: 1044-5803, 1873-4189
KITopen-ID: 1000190128
Erschienen in Materials Characterization
Verlag Elsevier
Band 232
Seiten 116022
Vorab online veröffentlicht am 12.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page