KIT | KIT-Bibliothek | Impressum | Datenschutz

Characterizing and Evaluating Mental Health Misinformation on Social Media: A Qualitative and Deep Learning-Based Study

Yang, Xiyuan; Ba, Kexin 1; Xie, Jiushu ; Wang, Yan; Kong, Li ; Liu, Yikang
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Social media plays a powerful role in accelerating the spread of misinformation, especially in the mental health domain, where misleading content may even cause disasters. Given the extensive coverage and complexity of social media data, manually moderating online misinformation is infeasible. Therefore, the present study proposes an integrated framework that combines qualitative analysis and deep learning to automatically detect and evaluate mental health misinformation. Guided by expert interviews and grounded theory, in the present study, a 21-level, fine-grained credibility assessment framework covering seven dimensions was developed. Using the framework, in this study, 814 Chinese social media posts were manually annotated, and a high-quality dataset was constructed. On this dataset, we trained and evaluated three deep learning models, that is, Gated Recurrent Unit (GRU), Bidirectional Encoder Representations from Transformers (BERT), and Robustly Optimized BERT Approach (RoBERTa), to automatically assess the credibility of mental health content. The results show that BERT, GRU, and RoBERTa models are effective at leveraging a range of clear sentiment-related cues and surface-level patterns to evaluate mental health misinformation on social media, particularly on dimensions such as Inflammatory Expression and One-sidedness of Expression. ... mehr


Zugehörige Institution(en) am KIT Fakultät für Informatik (INFORMATIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2025
Sprache Englisch
Identifikator ISSN: 2152-2715, 2152-2723
KITopen-ID: 1000190139
Erschienen in Cyberpsychology, Behavior, and Social Networking
Verlag Mary Ann Liebert
Vorab online veröffentlicht am 15.12.2025
Schlagwörter mental health, characterizing misinformation, evaluating misinformation, misinformation detection, social media
Nachgewiesen in Scopus
Web of Science
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page