KIT | KIT-Bibliothek | Impressum | Datenschutz

Reinforcement Learning for AMR Charging Decisions: The Impact of Reward and Action Space Design

Bischoff, Janik 1; Rinciog, Alexandru; Meyer, Anne ORCID iD icon 1
1 Institut für Informationsmanagement im Ingenieurwesen (IMI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We propose a novel reinforcement learning (RL) design to optimize the charging strategy for autonomous mobile robots in large-scale block stacking warehouses. RL design involves a wide array of choices that can mostly only be evaluated through lengthy experimentation. Our study focuses on how different reward and action space configurations, ranging from flexible setups to more guided, domain-informed design configurations, affect the agent performance. Using heuristic charging strategies as a baseline, we demonstrate the superiority of flexible, RL-based approaches in terms of service times. Furthermore, our findings highlight a trade-off: While more open-ended designs are able to discover well-performing strategies on their own, they may require longer convergence times and are less stable, whereas guided configurations lead to a more stable learning process but display a more limited generalization potential. Our contributions are threefold. First, we extend SLAPStack, an open-source, RL-compatible simulation-framework to accommodate charging strategies. Second, we introduce a novel RL design for tackling the charging strategy problem. ... mehr


Originalveröffentlichung
DOI: 10.1007/978-3-032-09156-7_20
Zugehörige Institution(en) am KIT Institut für Informationsmanagement im Ingenieurwesen (IMI)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-09156-7
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000190144
Erschienen in Learning and Intelligent Optimization – 19th International Conference, LION 19, Prague, Czech Republic, June 15–19, 2025, Proceedings, Part I. Ed.: Y. Zhang
Veranstaltung 19th International Conference on Learning and Intelligent Optimization (2025), Prag, Tschechien, 15.06.2025 – 19.06.2025
Verlag Springer Nature Switzerland
Seiten 298 - 315
Serie Lecture Notes in Computer Science ; 15744
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page