KIT | KIT-Bibliothek | Impressum | Datenschutz

GRASPing Anatomy to Improve Pathology Segmentation

Li, Keyi 1; Jaus, Alexander 2; Kleesiek, Jens; Stiefelhagen, Rainer ORCID iD icon 2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Radiologists rely on anatomical understanding to accurately delineate pathologies, yet most current deep learning approaches use pure pattern recognition and ignore the anatomical context in which pathologies develop. To narrow this gap, we introduce GRASP (Guided Representation Alignment for the Segmentation of Pathologies), a modular plug-and-play framework that enhances pathology segmentation models by leveraging existing anatomy segmentation models through pseudolabel integration and feature alignment. Unlike previous approaches that obtain anatomical knowledge via auxiliary training, GRASP integrates into standard pathology optimization regimes without retraining anatomical components. We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework’s inner workings. We find that GRASP consistently achieves top rankings across multiple evaluation metrics and diverse architectures. The framework’s dual anatomy injection strategy, combining anatomical pseudo-labels as input channels with transformer-guided anatomical feature fusion, effectively incorporates anatomical context. The code is available at https://github.com/unrpi18/GRASP.


Originalveröffentlichung
DOI: 10.1007/978-3-032-09513-8_47
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2026
Sprache Englisch
Identifikator ISBN: 978-3-032-09513-8
ISSN: 0302-9743, 1611-3349
KITopen-ID: 1000190145
Erschienen in Machine Learning in Medical Imaging – 16th International Workshop, MLMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings. Ed.: Z. Cui
Veranstaltung 16th International Workshop on Machine Learning in Medical Imaging (MLMI 2025), Daejong, Südkorea, 23.09.2025
Verlag Springer Nature Switzerland
Seiten 487 - 497
Serie Lecture Notes in Computer Science ; 16241
Vorab online veröffentlicht am 02.01.2026
Nachgewiesen in Scopus
OpenAlex
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page